SPC5: an efficient SpMV framework vectorized using ARM SVE and x86 AVX-512
- Strasbourg University, UFR de Mathématique et d’Informatique
7, rue René Descartes, 67084 Strasbourg, France
Evann.Regnault@etu.unistra.fr - Inria Nancy, CAMUS Team
615 Rue du Jardin-Botanique, 54600 Villers-lès-Nancy, France - ICube laboratory, ICPS Team
300 bd Sébastien Brant, 67412 Illkirch Cedex, France
Berenger.Bramas@inria.fr
Abstract
The sparse matrix/vector product (SpMV) is a fundamental operation in scientific computing. Having access to an efficient SpMV implementation is therefore critical, if not mandatory, to solve challenging numerical problems. The ARM-based AFX64 CPU is a modern hardware component that equips one of the fastest supercomputers in the world. This CPU supports the Scalable Vector Extension (SVE) vectorization technology, which has been less investigated than the classic x86 instruction set architectures. In this paper, we describe how we ported the SPC5 SpMV framework on AFX64 by converting AVX512 kernels to SVE. In addition, we present performance results by comparing our kernels against a standard CSR kernel for both Intel-AVX512 and Fujitsu-ARM-SVE architectures.
Key words
SpMV, vectorization, AVX-512, SVE
Digital Object Identifier (DOI)
https://doi.org/10.2298/CSIS230819005R
Publication information
Volume 21, Issue 1 (January 2024)
Year of Publication: 2024
ISSN: 2406-1018 (Online)
Publisher: ComSIS Consortium
Full text
Available in PDF
Portable Document Format
How to cite
Regnault, E., Bramas, B.: SPC5: an efficient SpMV framework vectorized using ARM SVE and x86 AVX-512. Computer Science and Information Systems, Vol. 21, No. 1, 203–221. (2024), https://doi.org/10.2298/CSIS230819005R