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Abstract. In this paper, an atomic mobile agent group communication
protocol is designed to have the following beneficial features. The proto-
col enables each agent to adaptively choose a small number of forwarders
among its visiting nodes based on its decision. Also, it replicates paths on
which messages should be transmitted to their targeting mobile agents in
an effective manner. The mobile agent group location cache each sending
agent keeps in our protocol can considerably speed up message delivery
to a group of agents and lower message forwarding load imposing on for-
warders. Furthermore, it allows messages destined to a group of agents
to be reliably delivered to all surviving agents in the same order despite
their mobility and F forwarders’ failures unlike the other existing ones.
Simulation results indicate that our protocol considerably performs bet-
ter than the existing one in terms of message delivery time and location
information management overhead.

Keywords: mobile agent, group communication, scalability, reliability, totally-
ordered delivery.

1. Introduction

Mobile agent is an autonomous and independent software program to satisfy
the corresponding user’s goal on behalf of the user while visiting various target
nodes through a network [1], [4], [5], [8], [16]. This mobile agent technology has
several advantages such as reduction of network traffic, overcoming of network
delay, enabling asynchronous execution and enhancement of dynamic adapt-
ability [4], [5], [8]. Thanks to these desirable features, this technology is very
widely used in distributed systems.

However, as the size of these fields is rapidly increasing, several research
issues related to the mobile agent technology such as communication, secu-
rity, dynamic adaptation, etc., should be reconsidered to be suitable for their
scale. Among them, it is the most important issue to enhance the performance
of the agent communication in Internet-scale infrastructures. For this purpose,
some effective and efficient inter-agent communication protocols are required
in distributed agent-based systems.

Most of existing mobile agent communication protocols [3], [9], [10], [11],
[12] are focusing on the point-to-point based communication issues for scalable
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and reliable message delivery to mobile agents despite their migrations. How-
ever, as community-based computing has prevailed as a general model of cur-
rent and future generation computing, group-based communication is becoming
an essential building block for this computing. Thus, the inter-agent communi-
cation protocols for mobile agents also require the third feature, agent group
communication. Furthermore, as atomic group communication semantics pro-
viding both agent group communication reliability and totally ordered message
delivery is becoming an essential demand for many P2P-based group applica-
tions such as P2P file replication for high assurance, multimedia games, video
conferencing, message-based social networking, etc. [6], [15], it should been
considered in this literature. In here, totally ordered message delivery ensures
that messages sent to a set of group members are delivered by all those mem-
bers in the same order. But, to the best of our knowledge, among the existing
protocols, there is no one addressing the important three issues harmoniously
due to their respective limitations. Apart from these previous works, several
multi-cast protocols considering node mobility being developed in Mobile IP
fields [15] may be applied for mobile agent group communications. However, as
they are designed for supporting the transparent sub-net change of a mobile
node, they are not appropriate for handling the migration of a group of software
agents from one computer to another because of their different characteristics.

In this paper, we propose an atomic mobile agent group communication pro-
tocol to achieve all the requirements mentioned above. This protocol improves
scalability by enabling each mobile agent to choose only a few among its visit-
ing nodes as agent location manager depending on its preferred policies such
as location updating and message delivery costs, security, network latency and
topology, inter-agent communication patterns, etc.. Second, to guarantee agent
communication reliability despite agent location managers’ failures, it allows
each mobile agent’s location information to be replicated in an effective way
to preserve its scalability to a maximum. Also, it has messages destined to an
agent group to be reliably delivered to its surviving group members in the same
order. Lastly, each sending agent’s agent group location cache significantly al-
lows message delivery time to the targeted mobile agents to be shortened and
message forwarding load imposing on agent location managers to decrease.

The rest of the paper is organized as follows. In section 2, we describe the
distributed agent-based system model assumed and in section 3, review related
works. Sections 4 and 5 present an atomic mobile agent group communication
protocol and prove its correctness. In sections 6 and 7, we show simulation
results and conclude this paper.

2. System Model

This paper considers an asynchronous distributed agent based system where
there is no global memory, no global clock and no bound on message delay.
The system consists of a set of agent service nodes. Each service node sup-
ports an environment in which agents can operate safely and securely, and
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provides a uniform set of services through which visiting agents can access its
local resources in a limited way regardless of their locations. An agent is ini-
tially created on a service node, called home node of the agent, and is given a
unique identifier within the node. So, each agent can be identified as a globally
unique object in the system by using the combination of its local identifier and
the identifier of its home node. When an agent migrates in the system, its code
and state information are captured and then transferred to the next node. After
arriving at the node, the mobile agent resumes and performs its task, if needed,
by interacting with other agents. In order to perform an assigned task on be-
half of a user, a mobile agent AID executes on a sequence of l(l > 1) service
nodes according to its itinerary, IAID =[DNhome, DN1, · · ·, DN(l−1)], which may
be statically determined before the mobile agent is created on its home node or
dynamically while progressing its execution. It is assumed that communication
channels support standard asynchronous message passing with the reliable
FIFO ordering property and are immune to partitioning. Mobile agents can mi-
grate and messages be passed along these channels. Finally, we assume that
service nodes and mobile agents crash based on the fail-stop model, in which
they lose contents in their volatile memories and stop their executions [14].

3. Related Work

Broadcast-based protocol [12] guarantees transparent and reliable inter-agent
communication and can also provide multicast communication to a set of agents.
But, to locate the message destination, the protocol has to contact every vis-
iting node in the network. Thus, its large traffic overhead makes broadcasts
impractical in large-scale distributed agent systems.

In home-based protocol [9] inspired by Mobile IP [13], every mobile agent
has a home node and should register its current location with the home node
whenever it moves. Thus, when some messages are sent to a mobile agent
currently located at a foreign node, the messages are first directed to its home
node, which forwards them to the agent. This protocol is simple to implement
and results in little mobile agent locating overhead. However, it is unsuitable for
highly mobile agents in distributed agent based systems because every agent
location updating and message delivery are all performed around the home
node, which introduces centralization. Additionally, in the distributed agent-based
systems, the home node may be disconnected from the network.

Forwarding pointer-based protocol [10] forces each node on a mobile agent’s
movement path to keep a forwarding pointer to the next node on the path. Thus,
if a message is delivered to an agent not being at the home node, the message
must traverse a list of forwarders. Thus, this protocol can avoid performance bot-
tlenecks of the global infrastructure, and therefore improve its scalability, partic-
ularly in large-scale distributed agent-based systems, compared with the home
based one. Additionally, even if a home node is disconnected from the rest of
the network, the forwarding pointer based protocol allows agents registering
with the node to communicate with other agents. However, as highly mobile
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agents leads to the length of their chains of pointers being rapidly increasing,
its message forwarding overhead may be significantly larger. Furthermore, the
number of forwarding pointers each service node needs to keep on its storage
may exponentially increase if a large number of mobile agents are running in
the systems. In a previous work [10], a type of update message called inform
message was introduced to include an agent’s current location for shortening
the length of trails of forwarding pointers. In this case, a node that receives the
message is allowed to update its table if the received information is more recent
than the one it had. However, it introduces no concrete and efficient solutions for
this purpose, for example, when update messages should be sent, and which
node they should be sent to. To consider failures of forwarders, a fault-tolerant
directory service for mobile agents using redundancy of forwarding pointers [11]
was proposed.

Mailbox-based protocol [3] was proposed to provide location-independent
reliable message delivery. It allows messages to be forwarded at most once be-
fore they are delivered to their receiving agents. Also, the movement of agents
can be separated from that of their mailboxes by determining autonomously
whether each mailbox is migrated to its owner agent. However, uncertainty of
message delivery to mailboxes may result in useless early pollings. On the other
hand, even if urgent messages are forwarded to a mailbox on time, they can be
delivered to its corresponding agent very late depending on the agent’s polling
time. Moreover, whenever each mailbox moves, its new location information
should be broadcasted to every node which the mailbox has visited. This may
incur high traffic overhead if assuming most agents are highly mobile.

All the above stated protocols haven’t ever consider reliable agent group
communication with atomic message delivery order.

4. The Proposed Protocol

4.1. Location Updating Operation

First of all, before describing our proposed protocol, let us define two impor-
tant terms, forwarder and locator, according to the role of location managers.
Forwarder of an agent is a directory service node that maintains a forwarding
pointer of the agent on its storage. Thus, there may be the various number of
forwarding nodes of each agent in the system according to which agent commu-
nication protocol is used. Locator of an agent is a special forwarder managing
the identifier of the service node that the agent is currently running on. Assum-
ing every node is failure-free, our protocol requires only one locator for each
mobile agent to address agent mobility. But, if the protocol intends to tolerate
up to F (F ≥ 1) node crash failures, (F+1) locaters of each mobile agent should
exist. Our location updating algorithm is designed to guarantee reliable delivery
to mobile agents despite both agent mobility and F failures of forwarders as
follows. In this algorithm, every mobile agent α should keep the following infor-
mation.
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• LCInfoα: It is the location information of agent α consisting of two fields,
l locators and agent t. l locators is a set of identifiers of agent α’s live locators.
agent t is the timestamp associated with agent α. Its value increments by one
whenever the agent moves to a new node. Thus, when agent α migrates to a
new node, it should inform only locators of the agent in l locators of both its
new location and agent t so that the locaters can locate the agent.

Each forwarder Ni has to maintain the following agent location information
on its storage.

• NextFwdrsi: It is a vector which maintains the location information of every
mobile agent which is not currently running on Ni, but which Ni is a forwarder
of. Its element consists of six fields, agent id, l nextfwdrs, c node, agent t,
manage f , migrate f and msg Q. l nextfwdrs is a set of identifiers of the
nodes which Ni thinks are the locators of agent agent id. If node Ni is the
agent’s current locator, this field is set to a empty set. In this case, the third field
c node contains the identifier of the node where the agent is currently running.
Otherwise, the field c node’s value isn’t used for message forwarding. agent t
is the timestamp associated with the agent when being located at the latest
among the nodes in l nextfwdrs. It is used for avoiding updating recent loca-
tion information by older information [10]. manage f is a bit flag indicating if Ni

is a locator of agent agent id or not. In the first case, its value is set to true
and otherwise, false. migrate f is a bit flag designating if the agent is currently
moving to another node(=true) or not(=false). msg Q is a message queue for
buffering all the messages destined to agent AID on its migration. Its element
consists of two fields, a message m and the source node ID of the message,
SID.

Then, we assume that the value of F is 1 in all examples shown later for ex-
plaining. First, let us see how to perform failure-free operations of the algorithm
using Fig. 1. In this figure, each circle stands for a service node and an agent
α is going to travel from its home to another 12 nodes in order. Also, each gray
shaded circle stands for a forwarder of the agent. Initially, when the agent is cre-
ated, its home node becomes the first forwarder and locator of the agent. Unlike
the previous forwarding pointer-based protocols [10], [11], our protocol allows
each agent to select only a few among its visiting nodes as its forwarders de-
pending on its decision. In this example, when the agent is migrating from node
N1 to node N2, it forces N1 to be its next forwarder. In this case, both Nhome and
N1 become agent α’s two locators. Afterwards in our protocol, agent α should
register its location with its current locators Nhome and N1 on every migration
until it decides its new forwarder. When the agent is going to N6, it determines
that N5 is a proper node as its next forwarder. Then, N5 informs Nhome that both
N5 and N1 play the role of agent α’s locator from now. Thus, the current location
of the agent will have been managed by N5 and N1 until the agent selects N10

as its next forwarder. Afterwards, N10 and N5 become the locators of the agent.
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Fig. 1. An illustration of our location updating procedure on locators

In this way, our algorithm can control adaptively the tradeoff between location
updating and message delivery costs depending on agent’s preferences.

4.2. Atomic Message Delivery Operation to Mobile Agent Groups

To ensure messages to a mobile agent group be reliably delivered to all the live
members of the group in the same order, our protocol requires the following
data structures for sending or receiving agents. First, every agent α in a group
g should keep the following membership information.

• GMInfog,α: a table for saving location information of the other agents which
are members of agent group g. Its element is a tuple (agent id, l fwdrs). l fwrdrs
is a set of identifiers of every other agent agent id’s most recent forwarders. Ini-
tially, agent id’s most recent forwarder is set to its home node in l fwdrs.

Each sending agent β has to maintain the following mobile agent location
cache.

• GMCacheβ : It is a table which temporarily keeps location information of each
mobile agent which agent β communicates with. Its element consists of four
fields, group id, agent id, l fwdrs and agent t. l fwdrs is a set of identifiers
of the nodes which agent β guesses are locators of agent agent id in group
group id. Thus, to send messages to agent agent id, agent β forwards them to
the latest among agent id’s live locaters in l fwdrs. If there is no live locater in
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l fwdrs, the messages are sent to the home node of agent agent id. agent t is
the timestamp assigned to agent agent id when the agent registered with the
latest among all locators in l fwdrs.

In our protocol, among mobile agents in a group, a group leader is selected
and determines the order of each received message. If a sending agent β is
attempting to transmit a message m to a group g, it broadcasts the message
to the latest forwarder γ of every member agent α of group g by consulting
GMCacheβ . Then, message m can be routed from γ to a live locator of agent
α and then arrive at the node where agent α is currently running. At this time,
delivering the message to agent α’s application should be delayed until the
message order is determined in the group. When the group leader receives the
message, it assigns a sequence number to the message and informs the other
members of the number based on its GMInfog,leader. If a member α detects
missing an message sent to its group occurring from its sender’s failure when
the agent has obtained the delivery order of the message from its group leader,
it has to solicit the leader to retransmit the message. Afterwards, each mem-
ber agent can deliver the message to the corresponding application in order.
In this case, the agent must delay executing all the output commit actions[7]
depending on the messages delivered until the group agreement on their deliv-
ery orders is completed. Additionally, it should keep both the identifier and the
delivery sequence number of the message with itself into its buffer and acknowl-
edges the number assignment to the group leader. Then, the leader notifies its
live members of the group agreement on the message delivery order. After re-
ceiving the global commitment from the leader, each non-faulty member can
purge the information for the multicast message from its buffer.

Let us illustrate how our atomic message delivery algorithm based on the
fault-tolerant location updating algorithm mentioned in section 4.1 satisfies our
goal using three examples. In Fig. 2, there is a mobile agent group gp1 con-
sisting of two agents MA1

1 and MA2
1, which move from their home nodes DNA

and DNB to new nodes DNA+i and DNB+2 according to their itineraries. In
this case, agents MA1

1’s and MA2
1’s first locators become DNA and DNB re-

spectively, which manage the current location information of the two agents
in NextFwdrsA and NextFwdrsB . Also, suppose that the first agent MA1

1 is
the group gp1’s leader. Each agent has to maintain the location information of
the other agent members in its group like GMInfo1,1 and GMInfo1,2. After-
wards, a sending agent MAβ on node DNS attempts to send a message m1 to
group gp1. In our protocol, each sending agent keeps an agent group location
information cache to accelerate message delivery to its frequently communi-
cating agent or agent group. The cache is initially set to record each agent’s
home node information in its corresponding element like GMCacheβ . Thus, in
this case, as the sending agent has no short-cut information to agent mem-
bers of group gp1, it sends the message to their respective home nodes DNA

and DNB , which forward the message to their corresponding agents by looking
up NextFwdrsA and NextFwdrsB . When receiving the message, each agent
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Fig. 2. In case agent MAβ sends a message m1 to group gp1 after two agents MA1
1

and MA2
1 in gp1 moved to nodes DNA+i and DNB+2 respectively

shouldn’t deliver it to the corresponding application until its group leader noti-
fies itself of the global sequence number of the message to ensure the atomic
message delivery condition. So, the group leader MA1

1 increases the global se-
quence number by one and informs the other agent members of the number by
sending a control message don(m1) with it based on its membership informa-
tion GMInfo1,1. Then, the control message is transmitted to agent MA2

1 via its
current locator DNB allowing the message m1 to be delivered to the applica-
tion. Hereafter, although the following procedure isn’t drawn in this figure, the
global agreement on the message delivery order should be reached and then
notified its live members.

Fig. 3 and 4 show an example that the second agent MA2
1 migrates to new

nodes DNB+3 and DNB+4 in order before the sending agent MAβ are going
to send another message m2 to group gp1. In this example, as MA2

1 moves
from DNB+3 to DNB+4, it decides DNB+3 is a proper node as its new loca-
tor. From this time, MA2

1 will directly be located by both DNB and DNB+3.
Then, the message m2 can be forwarded to all the agent members of group
gp1 in the same way as mentioned above. But, in Fig. 3, as MA2

1 can recognize
the sending agent didn’t have the new locator’s information, it informs MAβ

of the information by sending a message CUpdate including its two locators’
information for considering locator’s failure. In this case, MAβ updates the sec-
ond agent’s locators information on its location cache GMCacheβ . Afterwards,
when the sending agent are sending other messages to the group gp1, the mes-
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Fig. 3. In case MAβ sends a message m2 to gp1 after MA2
1 has migrated to DNB+3

and DNB+4 in order

sages can be forwarded directly to the new locator closer to the second agent
by consulting the cache, causing message delivery to be accelerated. When
MA2

1 receives a control message don(m2) from its group leader MA1
1 like in

Fig. 4, it can update the leader on its new locator assignment when returning
an acknowledgement about the message delivery number to the leader.

Fig. 5 illustrates how the group leader MA1
1 updates sending agents like

MAβ and its own agent members like MA2
1 on its new locator selection during

its migration. In this example, DNA+i becomes the leader’s second locator. In
this case, as a new message m4 is first forwarded by DNA to MA1

1, MA1
1 noti-

fies MAβ of its two locators information on a control message CUpdate. Also,
when MA1

1 informs MA2
1 of m4’s delivery number, its two locators information

in message don(m4) can be reflected on MA2
1’s membership table GMInfo1,2.

4.3. Recovery Operation

In mobile agent group communication, there are two kinds of mobile agent fail-
ures, general member’s and group leader’s failures. First, if some agent mem-
bers except for their group leader crash, their identifiers and locators information
have only to be removed from the other surviving agent members’ membership
table GMInfo in our protocol. However, if the group leader’s failure is detected,
the following complicated procedure should be performed. Among the other live
agent members, a new group leader is elected that has delivered the largest
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Fig. 4. In case MAβ sends a message m2 to gp1 after MA2
1 has migrated to DNB+3

and DNB+4 in order(continued)

number of messages destined to their group. Then, the leader should force the
other live agent members to receive the global delivery sequence numbers of
all the messages which it has delivered, but they haven’t yet, and deliver the
messages in the same order. Afterwards, the following acknowledgement and
global commitment procedures mentioned in section 4.2 are performed.

5. Correctness

This section proves liveness and safety of our proposed mobile agent group
communication protocol using 5 lemmas.

5.1. Liveness

This section shows our protocol ensure validity and agreement properties in
order.

Definition 1. MsgPassingRouteToMA(msg,AIDT , AIDS) is a sequence <
DNi, DNi+1, ..., DNn > of forwarders of the target mobile agent AIDT consti-
tuting a route with no cycle for transmitting a message msg from the sending
mobile agent AIDS to DNn in our protocol. In here, the last forwarder DNn is
the only live locator of agent AIDT in MsgPassingRouteToMA(msg,AIDT ,
AIDS) where its immediate predecessor DNn−1 has chosen to forward msg.
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Fig. 5. In case MAβ sends a message m4 to gp1 after MA1
1 and MA2

1 have visited
DNA+i+1 and DNB+6 respectively

For any node pair, DNα and DNβ , in the route (i ≤ α < β ≤ n), agent AIDT

has visited DNα before DNβ .

Lemma 1. If more than F forwarders for any target mobile agent AIDT have
been created in our protocol, MsgPassingRouteToMA(msg,AIDT , AIDS) is
always made even in case of F failures of its forwarders.

Proof. We prove this lemma by contradiction. Assume that our protocol may
not make a route MsgPassingRouteToMA(msg,AIDT , AIDS) if F forwarders
or fewer crash. This assumption means there exists one forwarder DNϵ, not
locator, that cannot progress sending msg to its immediate successor from
AIDS any longer. However, according to our protocol, the second element of
NextFwdrsDNϵ , l nextfwdrs, contains identifiers of its F+1 immediate succes-
sors. So, even if, among them, F successors fail, DNϵ can forward msg to the
only live one DNϵ+1. As no more failures of forwarders will occur later, msg can
be eventually delivered to the last forwarder DNn from DNϵ+1.
Therefore, the route MsgPassingRouteToMA(msg,AIDT , AIDS) made by
our protocol exists even in case of F failures. This contradicts the hypothe-
sis. �

Lemma 2. If an agent δ sends a message m to any member µ of mobile agent
group gpi in our protocol, the message is eventually delivered to the member
regardless of its movements.
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Proof. Suppose that the message m should be delivered to the agent µ, and the
sender agent δ and the receiver agent µ are currently running on nodes DNα

and DNβ respectively. When DNα attempts to send the message to agent µ,
DNα first looks up the address of the most recent forwarder for µ from its agent
location cache GMCacheα. If there is the address in the cache, DNα sends the
message to this address. Otherwise, it obtains the address of µ’s home node
from µ’s identifier and then sends the message to the address. In both cases,
suppose the forwarder is denoted by DNγ . The proof proceeds by induction
on the number of all the forwarders ∈ MsgPassingRouteToMA(msg, µ, δ), de-
noted by |MsgPassingRouteToMA(msg, µ, δ)|.
[Base case]
In this case, DNγ is the locator of agent µ. Therefore, the following two cases
should be considered.
Case 1: γ = β.
In this case, DNβ can find µ’s location information e from a list of agents running
on DNβ . There are two subcases considered.
Case 1.1: e.migrate f = 0.
In this case, the message msg is trivially delivered to µ because µ is currently
running on node DNβ .
Case 1.2: e.migrate f = 1.
In this case, agent µ attempts to move to another node DNτ . Thus, the mes-
sage is saved on µ’s message queue e.msg Q in NextFwdrsDNγ until the
movement process is completed. After agent µ has migrated to DNτ , the mes-
sage can be correctly delivered to µ from its queue on DNγ when the agent
resumes its execution on the node DNτ .
Case 2: γ < β.
In this case, DNγ looks up µ’s location information e from NextFwdrsγ . Then,
it checks the value of a flag variable e.migrate f . There are two subcases ac-
cording to the value.
Case 2.1: e.migrate f = 0.
In this case, the message is sent directly to DNβ . Then, the subsequent pro-
cedure is performed like in case 1.1. Therefore, µ can correctly receive the
message.
Case 2.2: e.migrate f = 1.
In this case, agent µ is migrating to another node DNτ . Thus, the message
is buffered into µ’s message queue e.msg Q in NextFwdrsγ until the move-
ment process is completed. After the migration, the value of a flag variable
e.migrate f changes to 0 and then the message recorded in the queue is for-
warded to DNτ . Therefore, the message can be correctly delivered to µ.
[Induction hypothesis]
We assume that the lemma is true for the message msg in case that |MsgPassingRouteToMA
(msg, µ, δ)| = k.
[Induction step]
After the message has been safely routed to the k-th forwarder DNω by induc-
tion hypothesis, DNω retrieves µ’s location information e from NextFwdrsω.
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Then, it forwards the message to the (k+1)-th forwarder DNϵ, which is the loca-
tor of agent µ. The following case is similar to the base case mentioned above.
Therefore, the message can be correctly delivered to µ.
By induction, our protocol enables the message m sent from the sender δ to be
correctly delivered to any member µ of the agent group gpi despite its move-
ments. �

Lemma 3. Our protocol terminates within a finite time.

Proof. There are two cases there may occur blocking in our protocol.
Case 1: agents migrate to another nodes or some of forwarders fail.
For this case, lemmas 1 and 2 proved that there is no blocking involved.
Case 2: the group leader lcur of a mobile agent group gpi fails.
In this case, a new group leader lnew having the most recent message mlast

whose delivery order is assigned by lcur is elected among the other group mem-
bers and takes over lcur ’s role. Assume lval is the value of the delivery order of
mlast that has been delivered by lnew before lcur ’s failure. For ensuring liveness
of our recovery procedure, it should be shown that every live group member
can deliver and acknowledge all the messages whose receipt order is less than
or equal to lval after the procedure completed. According to the recovery pro-
cedure, all the messages for which global commitment procedures terminated
have already been purged from every group member’s buffer. The remaining
messages with the delivery order up to lval and their orders must be available
in at least lnew ’s buffer because they are unable to be removed until the global
group agreement on their corresponding delivery orders has been completed.
Thus, our recovery procedure enables every live group member to deliver them
in order.
Therefore, our protocol terminates within a finite time. �

5.2. Safety

This section shows our protocol ensure atomicity and total order properties in
order.

Lemma 4. If a member µ in a mobile agent group gpi delivers a message m
and begins executing any output commit action depending on m, m is delivered
by every live group member despite µ’s future failures.

Proof. We prove this lemma by contradiction. Assume that our protocol dis-
ables some agent members from delivering m even if µ starts performing any
output commit action occurring after having delivered m before µ’s failure. This
assumption means there are one or more live agents that may not deliver m
after the global group agreement on m’s delivery order has been completed.
However, the agreement finalization should occur only after every live agent in
group gpi including µ has received m’s delivery sequence order number from
the group leader and delivered it when our protocol executed as explained in
section 4.2. This contradicts the hypothesis. �
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Lemma 5. All live agent members of a mobile agent group deliver each mes-
sage destined to the group in the same order.

Proof. We prove this lemma by contradiction. Assume that our protocol may
not satisfy totally-ordered delivery condition in some cases. This assumption
means there are one or more messages, denoted by DISORDERED, that
live members of a mobile agent group gpi has delivered in different orders in
our protocol. There are two cases to be considered.
Case 1: the group leader lcur of gpi is alive.
In this case, no message in DISORDERED may exist because every mes-
sage destined to gpi is always ordered only by the group leader during failure-
free operation.
Case 2: the group leader lcur of gpi fails.
In this case, a new group leader lnew having the most recent message whose
delivery order is assigned by lcur is elected among the other group members
and takes over lcur ’s role. Suppose that acked is the value of the last message
to gpi delivered and acknowledged by all the group members including lnew
before lcur ’s failure. Thus, the order of every message whose delivery order
is less than or equal to acked is uniquely assigned by lcur. Secondly, assume
nacked is the value of the delivery order of the most recent message that has
been delivered by lnew, but not acknowledged by all the group members before
lnew becomes the group leader. All the messages with the delivery order up to
nacked are sequenced only by lcur and can be recovered by lnew like in lemma
3. Additionally, no message with the delivery order larger than nacked might
have been delivered by any live group member. Thereafter, lnew defines the
delivery order of all the messages whose order is greater than nacked.
Therefore, our protocol can guarantee totally-ordered delivery semantics in all
the cases. This contradicts the hypothesis. �

6. Simulation

Hereafter, our protocol’s effectiveness will be analyzed with respect to message
delivery time and location management overhead using a discrete-event simu-
lation language [2]. The counterpart evaluated with ours is the representative
faut-tolerant forwarding pointer-based protocol [11], having no agent group sup-
port functionality like the other existing ones and sending a message destined
to an agent group to each member of the group using its uni-cast primitive.
For fair comparisons, this protocol is modified to be capable of ensuring totally-
ordered and reliable message delivery like ours. The two compared protocols
are each abbreviated by MAGCP(Mobile Agent Group Communication Proto-
col) and MFPP(Moreau’s Forwarding Pointer-based Protocol) [11] in order. The
number of node failures, F , they should both tolerate is set to 1, i.e., two loca-
tors of each agent should exist. For this evaluation, two following performance
indices should be explained. The one is LTMDtime, the average latency of for-
warding a message destined to a mobile agent group from a sender until the
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message is actually delivered to all group members. The other is LInfono, the
average number of agent location entries that each service node keeps on its
storage. A simulated system is composed of 100 nodes each associated with a
coordinate(x, y). They are all interconnected with each other. Any two adjacent
nodes are connected with a LAN link having a bandwidth of 100 Mbps. For sim-
plicity of this simulation, we assume that both bandwidth and propagation delay
between any pair of nodes are proportional to their distance. In our simulation
environment, there are several important simulation parameters as follows. The
first is Setsnd, the set of nodes being capable of sending messages to a mobile
agent group. Nodes in the set are uniformly distributed along the entire net-
work. The second is LChgthrd, the threshold which is required when a mobile
agent decides whether the current locator of the agent should be changed. If
a randomly generated probability variable δ for an agent ma is greater than its
threshold LChgthrd when the agent attempts to migrate to another node, the
next node becomes the locator of the agent. In this simulation, it is assumed
that the threshold LChgthrd is determined when its agent is created and isn’t
changed during the entire life cycle of its agent any more. The third is Staytime,
the mean time elapsed when a mobile agent stays at a node for performing
its task, following an exponential distribution. The last simulation parameter is
MAGroupSizeno, the total number of agents created in the system and joining a
mobile agent group. Also, the size of each application message transmitted be-
tween any two agents ranges from 512 bytes to 1 kbytes and the size of each
control message for the inter-agent communication is 128 bytes. In addition,
messages to the agent group are sent to the network with a interval following
an exponential distribution with a mean Tms=100ms. All experimental results
shown in this simulation are all averages over a number of trials.

Fig. 6 shows the average message delivery time, LTMDtime, for the two
protocols, MFPP and MAGCP, for the specified range of the Staytime in case
MAGroupSizeno is 200 and Setsnd is 3. In this figure, as their Staytimes de-
crease, their LTMDtimes are contrarily becoming longer. This phenomenon re-
sults from the reason that short mobile agent’s stay period has length of the
path for forwarding messages to the agent become longer. However, this figure
indicates our protocol MAGCP reduces about 11.8-54.6% of LTMDtime com-
pared with MFPP. The first reason is that MAGCP allows each agent to choose
the smaller number of message forwarders among all of its visiting nodes unlike
MFPP. The second reason is that sender’s mobile agent group location cache
of MAGCP may significantly accelerate the speed of message delivery to each
agent member. In particular, as Staytime is shorter, this figure demonstrates that
higher performance improvement in the message delivery time may be obtained
from these desirable features of MAGCP.

Fig. 7 shows the amount of agent location information kept by each ser-
vice node, LInfono, for the two protocols with varying MAGroupSizeno in case
Staytime is 4 seconds and Setsnd is 3. As MAGroupSizeno becomes bigger,
their LInfonos are also increasing. This outcome arises from the reason that the
increase of the size of mobile agent group leads to the larger number of agent
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location entries each node should keep on its storage. But, this simulation re-
sults indicate MAGCP reduces about 38-52% of LInfono compared with MFPP.
Especially, as MAGroupSizeno grows larger, the increasing rate of MAGCP’s
LInfono is stepping up at a much lower speed compared with MFPP’s.

Fig. 6. Message delivery time

7. Conclusion

This paper proposes an atomic mobile agent group communication protocol
to achieve all the following requirements existing protocols couldn’t address
due to their respective limitations. This protocol improves scalability by enabling
each mobile agent to choose only a few among its visiting nodes as agent lo-
cation manager depending on its preferred policies such as location updating
and message delivery costs, security, network latency and topology, inter-agent
communication patterns, etc.. Second, to guarantee agent communication reli-
ability despite agent location managers’s failures, it allows each mobile agent’s
location information to be replicated in an effective way to preserve its scalability
to a maximum. Also, it has messages destined to an agent group to be reliably
delivered to its surviving group members in the same order. Lastly, each send-
ing agent’s agent group location cache significantly allows message delivery

1226 ComSIS Vol. 10, No. 3, June 2013



Constructing Atomic Mobile Agent Group Communication Protocol

Fig. 7. Location management overhead

time to the targeted mobile agents to be shortened and message forwarding
load imposing on agent location managers to decrease.
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