
UDC 004.43, DOI: 10.2298/CSIS0901023K

Model Driven Engineering of a Tableau Algorithm
for Description Logics

Nenad Krdžavac2, Dragan Gašević1, and Vladan Devedžić2

1School of Computing and Information Systems, Athabasca University, Canada
2
FON–School of Business Administration, University of Belgrade, Serbia
nenadkr@tesla.rcub.bg.ac.yu, dgasevic@acm.org, devedzic@fon.rs

Abstract. This paper presents a method for implementing tableau
algorithm for description logics (DLs). The architectures of the present
DL reasoners such as RACER or FaCT were developed using
programming languages as Java or LISP. The implementations are not
based on original definition of the abstract syntax, but they require
transformation of abstract syntax into concrete syntax implementation
languages use. In order to address these issues, we propose the use of
model-driven engineering principles for the development of a DL
reasoner where a definition of a DL abstract syntax is provided by
means of metamodels. The presented approach is based on the use of
a MOF-based model repository and QVT-like transformations, which
transform models compliant to the DL metamodel taken from the OMG’s
Ontology Definition Metamodel specification into models compliant to
the Tableau metamodel defined in this paper.

Keywords: Description Logics, Model Driven Architecture, Tableau
Algorithm.

1. Introduction

Model-driven engineering (MDE) introduces a software development shift
form the programming-centered paradigm to the model-driven paradigm [3].
Models, as the first class citizens in MDE, allow developers to build their
models at different levels of abstraction. Models also reduce the costs of
reusing the present software artifacts in new software solutions [21]. Having in
mind the fact that models should constantly be transformed from one form
(e.g., Platform Independent Model) into another one (e.g., Platform Specific
Model), model transformations has been recognized as the crucial component
for MDE [3].

Being developed in parallel with MDE, the concept of the Semantic Web
tries to semantically interconnect Web resource using knowledge
representation techniques, more specifically ontologies [25]. By using
ontologies, the Semantic Web provides potentials for developing intelligent
services based on logic-based reasoning. That is the reason why the present

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 24

ontology languages such as OWL have been grounded on description logics
(DLs). In fact, the core of the Semantic Web is to implement DL-based
reasoners that are able to reason over ontologically represented knowledge.
Some publicly available DL reasoners [7], [6], [15] are mainly implemented
using Java or Lisp. However, extending their functionality to support new DL
types or deploying them to other platforms such as .NET can be a very
tedious and time consuming task. This is due to the fact that various types of
DL have different abstract syntax, which should be mapped to concrete
syntax of the implementation platform or language. This, in fact, switches the
focus from an actual problem to low level platform specific details. Thus,
producing a reasoner takes longer and it does not possess any mechanisms
that checks whether the implemented reasoner is compliant with the abstract
syntax of the DL type being implemented.

The objective of this paper is to show how MDE techniques can be applied
to developing a DL reasoner. In fact, we propose the method of implementing
of the tableau algorithm that tries to compute the basic reasoning service of
DLs (i.e., satisfiability), which is used as a basis for other reasoning services,
namely subsumption, consistency, and instance checking. To implement the
tableau algorithm using the MDE principles, we used the following two MOF-
based metamodels:
1. The DL metamodel that is a non-normative part of the current OMG’s

(www.omg.org) effort for developing the Ontology Definition Metamodel
(ODM) [24];

2. The Tableau metamodel that represent a tableau.
Basically, our proposed implementing method for the DL tableau algorithm

means transforming a DL knowledge base (i.e., an instance of the DL
metamodel in terms of the MDA) into its tableau model (i.e., an instance of the
Tableau metamodel). For that transformation we use Atlas Transformation
Language (ATL), a QVT-like model transformation language [8].

The proposed implementation of the tableau algorithm is developed in the
context of AIR [5]. It is a framework that uses MDA metamodelling principles
for developing intelligent systems based upon different knowledge
representations [5]. The central part of AIR is a model-repository [22] that
various kinds of intelligent systems, as well as models of any other domain of
interest. The other important part of AIR is an integrated development
environment with a rich GUI for specifying the AIR workbench. The AIR
workbench is built on top of the Eclipse (www.eclipse.org) plug-in architecture,
today’s leading extensible platform, which supports many relevant MDE
efforts such as Eclipse modeling Framework (EMF) and Generative Model
Transformer (GMT) (www.eclipse.org).

The next section defines one specific type of DLs, which is currently
implemented by the tableau algorithm. In section 3, we describe the basic
concepts of the MDA. Section 4 describes the metamodelling foundation of
the tableau algorithm, by defining the DL metamodel and the Tableau
metamodel. We present a method for implementing the tableau algorithms for
description logics based on the ATL [8] that is an alternative to the OMG’s
MOF2 QVT standard [14] for model transformations. Section 6 gives a

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 25

discussion of the related work, while the final section provides concluding
remarks and directions of the future research.

2. Description logics and tableau algorithm

Historically, DLs evolved from semantic networks and frame systems, mainly
to satisfy the need of giving a formal semantics to these formalisms [2]. As the
name DLs indicates, one of characteristics of these languages is that they are
equipped with formal logic-based semantics. The basic notions in DLs are
concepts (unary predicates) and roles (binary predicates) [2]. DLs are logic
formalisms used as a basis for the Semantic Web ontology languages (e.g.,
OWL) [18] and they offer reasoning services [2], which can be applied to
reasoning with ontologies. Reasoning is important to ensure the quality of
ontology [18]. In this section we define syntax and semantics of ALC and
define the tableau algorithm.

2.1 The ALC description logic

The smallest propositionally closed DL is the ALC DL [2]. According to [19],
syntax and semantics of the language is given by the following two definitions:
Definition 1. (Syntax of ALC language).
Let NC and NR be disjoint and countable infinite set of concepts and role
names. The set of ALC-concepts is the smallest set, such that:

1. Every concept name A∈ NC is an ALC concept.
2. If C and D are ALC concepts and R∈NR then ¬C, C ⊓ D, C ⊔ D,

∃R.C, and ∀R.C are ALC concepts.
Every ALC formula can be constructed applying 1 and 2 rule.

Definition 2. (Semantics of ALC language).
An ALC interpretation is a pair (∆I ,·I) where ∆I is a non-empty set called
domain, and ·I is an interpretation function that maps every concept name A to
a subset AI

 of ∆I and every role name to a binary relation RI over ∆I. The
interpretation function is extended to complex concepts as follows:

1. (¬C)I= ∆I \ CI,
2. (C ⊓ D)I=CI ∩DI,
3. (C ⊔ D)I=CI∪DI,
4. (∃R.C)I={d ∈ ∆I|(∃e)((d,e) ∈ RI ∧ e ∈CI)},
5. (∀R.C)I={d ∈ ∆I | (∀e)((d, e) ∈ RI ⇒ e ∈ CI}.

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 26

Example 1.
Suppose that the nouns Human and Male are concept names and hasChild is
the role name, then the ALC concept (Human ⊓ ∃hasChild.T) represents all
persons that have a child, while the concept (Human ⊓ ∀hasChild.Male)
represents all persons with all children being males.□

Some extensions of the language are given in [7]. A knowledge base
developed by using DLs consists of two components TBox and ABox [2].
TBox contains terms (formulas) that define concepts and describe
relationships between concepts over roles (binary predicates). On the other
hand, the name of assertions is ABox that represents named individuals
expressed in terms of the concepts and roles [2]. A concept described in TBox
is similar to a class defined in an object-oriented language or UML and roles
are similar to relationships (binary) between classes, but without behavioral
components. Individuals in ABox can be viewed as objects in object-oriented
programming or UML, without behavioral components.

DLs terms satisfy DeMorgans’s laws [7]. This means that every concept
expression can be transformed into negation normal form (NNF). For
example, the negation normal form of the concept ¬(Male ⊓ Female) is
concept (¬Male ⊔ ¬Female). According to [7], that negation applies only to
atomic concepts and not to composite concept terms. It is important in the
case of reasoning with anontology.

2.2 The tableau algorithm

According to [2], basic reasoning services in DLs are: subsumption,
consistency, satisfiability, and instance checking. Satisfiability of a concept
expression C is a problem of checking whether there exists a model [7]. It
means whether exists an interpretation I (explained in Sect. 2.1) in which
CI≠∅. In that context the interpretation I is a model for a concept C. Other
reasoning services can be calculated with satisfiability. The tableau algorithm
tries to prove satisfiability of a concept term C, by demonstrating a model in
which C can be satisfied [7]. A tableau is a graph that represents such a
model (see Fig. 1a), with nodes corresponding to individuals and edges
corresponding to relationships between individuals [7]. Every DLs term can be
represented by a tree (a special case of graph) structure, but a tableau has
different structure then a DL formula. Fig. 1b shows the process of building a
tableau for DLs. Before constructing a tableau for a concept term, we must
transform such term into NNF [7].

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 27

a) b)

Fig. 1. The tree of tableau: a) general principle; b) an example of a tableau for DLs

According to [7], the tableau algorithm starts with a single individual (Fig. 1)
that satisfies an arbitrary concept C. New nodes are created according to
expansion rules [2]. These rules are different in different DLs. Expansion rules
define rules of building new nodes. Every node is connected to a set of
concept terms. Expansion rules for the ALC DL are described in [7].

3. Model-Driven Architecture

The Model Driven Architecture (MDA) is defined as a realization of MDE
principles proposed by the Object Management Group (OMG) [11]. Models
play a major role in the MDA. The most general definition of a model says that
a model is a simplified view of reality [21], or, more formally, a model is a set
of statements about a system under study [20]. In fact, one can say that a
model is a clear set of formal elements that describes something being
developed for a specific purpose and can be analyzed using various methods
[11]. Metamodels are another key concept used in the MDA. A metamodel is
a specification model for a class of systems under study, where each system
under study in the class is itself a valid model expressed in a certain modeling
language. A metamodel makes statements about what can be expressed (i.e.,
asserted) in the valid models of a certain modeling language. Basically, a
metamodel defines what well-formed models are, i.e., models should conform
to their metamodels.

The central part of the MDA is the four-layer modeling architecture (see
Fig. 2). The topmost layer (M3) is called the metametamodel layer. The OMG
has defined a standard in this layer – the MOF (Meta-Object Facility).
According to [10], the MOF is the language intended for defining metamodels
in the M2 layer. The rationale for having these four levels with one common
metametamodel is to enable both the use and the generic managing of many
models and metamodels, and to support their extensibility and integration.
Examples of standard MOF-defined metamodels are the metamodel of UML
and the Ontology Definition Metamodel (ODM) [13].

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 28

Fig. 2. Four Layer Architecture of MDA (see [3])

The next layer is the model layer (M1) – the layer where we develop real-
world models. In terms of UML, this means classes, their relationships, and
objects. In fact, here we refer to a modified MDA four-layer architecture where
classes and their relations are defined in the M1 layer, while real-world things
are in the M0 layer [1, 3]. In the original MDA proposal [16], instances of
models (e.g. UML objects) were resided in the M0 layer. Defining two different
types of instantiation relations, namely linguistic and ontological, Atkinson and
Kühne proved why models should reside in the M1 layer [1].

There is an XML-based standard for sharing metadata that can be used for
all of the MDA’s layers. This standard is called XML Metadata Interchange –
XMI [12] (Fig. 2). The meaning of XMI is twofold, i.e., it is a set of rules for
serialization of MOF-compliant models (e.g., UML models) and a set of rules
for generation of schema for each MDA layer (e.g., the UML XMI schema).

A set of reflective APIs consisting of reflective interfaces has been defined
for the MOF in order to enable the management of MOF-based models,
metamodels, and metametamodels in programs. Java Metadata Interfaces
(JMI) [4] is a realization of the standard called JSR040 [4], and JMI defines
Java programming interfaces for manipulating MOF-based models and
metamodels [4]. JMI interfaces allow users to create, update, and access
instances of metamodels in Java.

Model transformations have been identified as the crucial technology for
achieving the MDA goals of model driven software development [3].
Responding to that need, the OMG has adopted a standard for model
transformations called MOF2 Query/View/Transformation (QVT) [14]. Three
vital subjects of the proposal that ensure the full realization of MDA are:

1. Queries: Take a model as input, and select specific elements from that
model;

2. Views: Represent models that are derived from other models;
3. Transformations: Take a model as input and update it or create a new

model.
Since the MOF2 QVT specification has lately been adopted, it is not fully

supported by the present tools. However, we can instead use model

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 29

transformation engines that have been based on the model transformation
languages developed by some of the major MOF2 QVT contributions such as
ATL [8].

Besides the MDA’s MOF-based architecture, there is also another well-
known framework developed called the EMF [27]. The main difference is that
the EMF is based on another metametamodel, Ecore, which is equivalent to
the MDA’s MOF. The EMF also supports generation of Java-based interfaces
for managing Ecore defined metamodels and models. The EMF also supports
XMI serialization of Ecore compliant models.

4. Metamodelling foundation

Our DL reasoner is based on the DL metamodel proposed by the OMG’s
working group on the ODM [13] and on the Tableau metamodel that we
developed. In this section we describe both metamodels. Fig. 3 shows the
place of these two metamodels in the MDA four-layer architecture.

Differences between the DL metamodel and the Tableau metamodel (Fig.
4) are:
1. A model (in terms of the MDA) of a tableau has a different structure than a

model (in terms of the MDA) of a DL formula.
2. The DL metamodel describes how to build DL terms in a knowledge base.

For both representations we use the XMI format.

Fig. 3. Metamodelling foundation of the DL reasoner

4.1 Description Logic metamodel

The DL metamodel [13] is defined by the MOF2 language and graphically
represented by using UML2’s graphical notation. In an initial draft of the ODM
specification [13], the DL metamodel was a central part of the ODM
architecture [13]. However, the DL metamodel is not a central one, and it is

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 30

now defined as a non-normative metamodel [24]. Although, the DL
metamodel is non-normative, it is still a suitable reference for describing DLs
using the MOF. Furthermore, from the implementation point of view it is not
important, because the meaning of the metamodel has not been changed.

Fig. 4 gives an excerpt of the DL metamodel taken from the ODM
specification [24]. The top-level concept of the DL metamodel metaclass
hierarchy is the Term metaclass (see Fig. 4). The metaclass Term
corresponds to definition of the DL syntax (see Sect. 2.1 – Def. 1). The DL
metamodel [13] supports a DLs that is a logical basis for OWL [19].

Fig. 4. A part of the OMG’s DL metamodel [13]

The design pattern Composite has been used in building DLs terms
(formulas). The pattern consists of the metaclasses Term, Expression and
Element. The metaclasses that are used in building concepts and roles are
inherited from the Element metaclass. Logical constructors are represented
by metaclasses that are inherited from the Constructor metaclass. The
metamodel supports metaclasses that represent TBox and Abox of a
knowledge base [13]. The metaclass TBox is connected with metaclass Term
via an association relation (Fig. 5).

Fig. 5. The TBox and ABox metaclasses defined in the OMG's ODM specification [13]

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 31

Fig. 6. A DL model represented in Ecore editor for Eclipse

According to the proposed DLs metamodel, we may build models saved in
EMF [27] repository. Fig 6 illustrates an Ecore-based DL model of Father
which has at least one daughter. It is intersection relation between concepts
Parent and concept e3. The first concept e3 (Fig. 6) says that among all
children, at least one is daughter, but the second one says that all children are
persons. XML representation of the model is presented in Fig. 7.

Fig. 7. XML representation of a DL model from Fig. 6

4.2 The Tableau metamodel

We have developed our own Tableau metamodel using MOF, while we used
the UML graphical notation to represent graphically that metamodel. The
tableau algorithm uses a tree (T) to represent the model being constructed [7],

<?xml version="1.0" encoding="ASCII"?>
<Expression xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="dl" Identifier="e1">
 <term_1 xsi:type="Expression" Identifier="e2">
 <term_1 xsi:type="Expression" Identifier="e3">
 <term_1 xsi:type="Role" Identifier="hasChild"/>
 <otherTerm xsi:type="Concept" Identifier="Girl"/>
 <constructor xsi:type="Existencial" Identification="Exists"/>
 </term_1>
 <otherTerm xsi:type="Expression" Identifier="e3">
 <term_1 xsi:type="Concept" Identifier="Person"/>
 <otherTerm xsi:type="Role" Identifier="hasChild"/>
 <constructor xsi:type="ForAll" Identification="ALL"/>
 </otherTerm>
 <constructor xsi:type="Intersection" Identification="AND"/>
 </term_1>
 <otherTerm xsi:type="Concept" Identifier="Parent"/>
 <constructor xsi:type="Intersection" Identification="And"/>
</Expression>

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 32

hence the Composite design pattern [17] can be used in describing the core
concepts of the Tableau metamodel.

The Tableau metamodel can be logically divided in two parts. The first part
comprises metaclasses that represent concept terms in DLs, and correspond
to metaclasses in the DL metamodel in Fig. 5. Some of them are:
1. Formula that represents common DL terms;
2. AtomicFormula that represents atomic concepts in DLs like roles and

concepts;
3. SubFormula represents a part of the common DLs formula. It is similar to

the concept of subformula in propositional logics. For example, there are
three subformulas in concept Human � �hasChild.Male like Human,
∀hasChild.Male, and Male.

These metaclasses have the same structure like metaclasses Term,
Element and Expression in the DL metamodel [13].

Fig. 7. A Tableau metamodel1

The second part of the Tableau metamodel consists of the metaclasses
and their relationships that represent the model (in terms of the DL definition),
which is constructed according to expansion rules described in [7]. The
metaclass ConceptInstance represents all nodes in such a model. Every node
corresponds to some set of concept terms. This is represented by the
association (aggregation) between the metaclasses Formula and
ConceptInstance (Fig. 7). Every role connects at least two individuals and that

1 Tableau metamodel is developed using Poseidon UML tool (www.gentleware.com)

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 33

is represented by the association between the metaclasses Role and
ConceptInstance.

The Tableau metamodel (Fig. 7) supports only the ALC DL. [7] The
metamodel is an extension of the metamodel published in [28]. The support is
provided by the metaclasses that represent logical constructors like Or, Not,
And, ForAll, Exists, NumberRestrictions.

5. The implementation of the Tableau metamodel

Fig. 8 shows the basic idea of the architecture of the reasoner. The repository
contains models and both the DL and Tableau metamodels. Generated JMI
interfaces and ECore classes (http://www.eclipse.org/modeling/emft/) are
used to deal with the models. The reasoner functionality can be extended by
using abstract classes that implement JMI interfaces.

Fig. 8. The architecture of the reasoner

In the previous section we have described metamodels referred to in the
first step of our implementation. In the rest of the section we describe other
implementation steps.

5.1. Implementation Repository for the Tableau Metamodel

A model repository is used for storing and retrieving models that conform to
both DLs and the Tableau metamodels. It is built by using the NetBeans
Metadata Repository (MDR) [22], which is based on the JMI specification. To
implement the repository for the Tableau metamodel, we performed the
following steps:

1. Conversion of the UML metamodel of the Tableau metamodel into an
equivalent MOF metamodel and conversion of the MOF-based Tableau
metamodel into an Ecore metamodel [8].

Since the MOF uses UML’s graphical notation, we developed the Tableau
metamodel by using the tool Poseidon (http://www.gentleware.com/) for UML
[23], which should be converted in the MOF. Practically, we exported the
Tableau metamodel from Poseidon for UML into the UML XMI format. Using
the uml2mof.jar tool [22] we converted it into the MOF XMI format.

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 34

Furthermore, since the architecture of our reasoner uses the ATL [8] for
transforming models, we had to convert the MOF-based Tableau metamodel
into the Ecore-based metamodel. For the sake of the conversion of the MOF-
based Tableau metamodel into its Ecore-based equivalent we used Eclipse’s
plug-in for the EMF [27].

2. Generating JMI interfaces for the Tableau metamodel using
theNetBeansMDR in order to provide Java interfaces for managing
models based on the Tableau metamodel.

3. Instantiation of models based on the Tableau metamodel in theNetBeans
MDR.

Performing the above steps, we faced some practical problems related to
the implementation of the repository for the Tableau metamodel. Namely,
during the generation of JMI interfaces, all OCL constraints
(http://www.omg.org/technology/documents/formal/ocl.htm) were ignored and
we had to implement them manually. For example, OCL constraint defined in
DLs metamodel, like {disjoint}, is ignored during generating JMI interfaces.
Manual implementation means that we should use Java, in order to satisfy all
of these constraints in model (metamodel).

5.2. Implementation of the tableau algorithm using model
transformations

This section indicates some reasons why model transformations is useful
approach for the implementation of reasoning algorithms based on the
tableau algorithm and describe our initial results in developing model
transformations between the DL metamodel and the Tableau metamodel. ATL
[8] is an answer to the OMG’s QVT RFP (query view transformation) [14]. A
plenty of useful details about the language is described in [8]. This section
describes only some benefits of using such a language for implementing the
reasoning algorithms. Some of these advantages are:
1. ATL can be integrated in the EMF [27].

ATL is a declarative and hybrid language [8]. The syntax of the language
can be integrated into a Java-based environment. It means that the
reasoning rules for description logics can be written directly in some Java
environment using the expressive power of the language. In the EMF
environment, the ATL code can be run and debugged.

2. A transformation model in ATL is a set of transformation rules and Boolean
operations.
Reasoning algorithms, based on the tableau for description logics, are
based on a set transformation rules [7], including Boolean operations. The
ATL language supports set and Boolean operations. The syntax and
semantics of ALT are described in [8].

3. ATL is compatible with JMI interfaces.
The ATL transformation model is first read by using the ATL parser and
loaded into Java meta-data repository which is based on a JMI compliant
repository. The generated JMI interfaces for the Tableau metamodel can

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 35

be integrated into the ATL language and help in the implementation of the
reasoning rules. The interfaces support extension of the rules for very
expressive DLs. Although, mainly intended to deal with MDA models
(based on MOF meta-models and accessible via XMI or JMI), the EMF with
integrated ATL should also handle other kinds of models from different
technological spaces (e.g. Java programs, XML documents, DBMS
artifacts, etc.) [8]. This is important in case of using the DLs’ reasoning
services in other platforms like intelligent metamodelling frameworks,
especially in the case of using such a reasoning machine to reason on
UML models (not UML diagrams).

5.2.1 M2-transfromations of DL and Tableau metamodels

The first step in implementing the reasoning algorithm is bridging the DL
metamodel and the Tableau metamodel in the M2 layer (see Fig. 3) using the
ATL language. Basically, we identified mappings between concepts of two
different models, and Table 1 describes the high-level transformations
between elements of the DL and Tableau metamodel.

Table 1. Relationships between metaclasses of the DLs and Tableau metamodels

Tableau Metamodel DL Metamodel
Formula Term
Atomic Formula Element
SubFormula Expression
Concept Concept
Role Role
Constructor Constructor

5.2.2 M1-transfromations of the DL and Tableau metamodels

In the M1 layer (Fig. 3), the DL model in NNF is transformed into the tableau
model according to the reasoning expansion rules [7]. In ATL, we define a
function for transforming a DL model to NNF of that model (see Fig. 9).

helper context DL!DL def : getNegations() : String =
self.Identifier->collect(e | e.Identifier)->

 asSet()->
 iterate(UniqueIdentifier; acc : String = '' |
 idn +
 if idn = '' then

UniqueIdentifier
 else

' and ' + UniqueIdentifer
 endif

)
;

Fig. 9. An excerpt of the ATL transformation that transforms DL models into the
negation normal form

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 36

The function collects all negations in a DL model. If negations are in front of
a Term, we must delete such connections of the Term and connect negations
to every atomic concept in the Expression (defined in the DL metamodel) that
represents all SubExpressions in that Term (defined in DL metamodel).
Basically, this function tries to implement DeMorgans’s laws defined in Sect.
2.1.

Using the similar approach, we transform the DL model in NNF into its
corresponding tableau model compliant to the Tableau metamodel. Actually,
we define a few functions in the helper [8] section of the ATL code. The
functions return all terms that consist of logical operation intersections and
transform such Terms into two sub-Terms. A similar situation is the definition
of other functions for other logical terms. In this solution, we use OCL
functions integrated in the ATL language. According to our practical
experiences all expansion rules may not be implemented using only the ATL
language [8]. In that case, we use JMI interfaces and abstract classes which
implement JMI interfaces. These interfaces must be implemented for both the
DL metamodel and the Tableau metamodel. Combination of ATL and Java is
the best way to implement all reasoning services, as some reasoning rules
are easier for implementation in Java than in ATL.

Reasoning process is done during transformation from a DL model to a
tableau model. Example 2, demonstrates a transformation a DL model of two
atomic concepts into a tableau model. Fig. 9 represents a part of ATL code for
the transformation.

Example 2.Let be Professor and Student are two atomic concepts.
Intersection of two concepts is denoted by standard DLs notations as
(Professor ⊓ Student).□

If we want to check satisfiability of the concept, according to [7], we must
create an instance of the concept called “x”. Applying the rule for intersection
of two concepts, we can create a set of constraints as follows: L(x) =
{Professor, Student, Professor ⊓ Student}.

There are no rules which can be applied to the constraint system and we
can conclude that above concept is satisfiable.

The DL model (in the term of MDA) of the concept (Professor ⊓ Student) is
described in Fig. 10, in the Ecore-based (http://www.eclipse.org/
modeling/emft/) editor, and conforms to OMG’s DLs metamodel [13]. Its XML
representation is described at Fig. 11. In this example, we describe how to
apply implemented transformation to the DL model.

Fig. 10. Ecore-based model of the concept (Professor ⊓ Student)

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 37

Fig. 11. XML representation of the concept (Professor ⊓ Student)

Using the implemented transformations, a tableau model for the concept is
generated as shown on Fig. 12. The XML representation of the model is
presented at Fig. 13.

Fig 12. The Tableau model of the concept (Professor ⊓ Student)

Example 3: Suppose that we defined three concepts A, B and C. We want to
check satisfiability of next concept: (A ⊓ ¬A) ⊓ (B ⊓ C).

Fig. 14 represents tableau model for concept defined in example 3. This
concept is not satisfiable. Model shown on fig. 14 represents unsatisfiable
points colored with blue. Also, as in previous example, one variable “x” is
generated during this transformation.

Constraint system as beginning point in reasoning processes can be
presented as finite set of classes (models), as follows:

L(x) = { A ⊓¬A ⊓ (B ⊓ C) } (1)

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 38

Fig. 13. XML representation of the tableau model for the concept (Professor ⊓
Student)

Individual “x” (See Figure 14 above) is an instance of all subconcepts in
this set. Using reasoning rules (in this case it is intersection rule for ALC logic)
[7], this constraint system, described by formula (4), can be extended in new
ones:

L(x) = { A, ¬A} ∪ L(x) (2)
Constraint system consists of clash and formula (3) is not satisfiable, which

implies that question subsumes answer and student give true answer.
Unsatisfiable points of the beginning model is represented by blue color on
Figure 14.

Fig. 14. Tableau model for concept defined in example 3

Example 3 will help us to explain application of the reasoner in intelligent
analysis of students' solutions. It means using the reasoner in checking
satisfiability of students' answers in case of multiple choice.

If system offers three options on a question, marked with A , B and C. If
student checked answer A, reasoner will generate tableau model (shown on
fig. 14) for student's answer with respect to given answers. For given example
3, reasoner checks weather student's answer(A) is subsumed by given
(possible) answers (A, B, C). Implemented system can not solve more
complex unsatisfiable problems then example 3.

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 39

6. Related work

Some existing reasoners for description logics [6], [7], [15] are de facto
standards in the world of DLs reasoners. Their authors implemented all of the
known DLs reasoning services, while some of them have the support for well-
known ontology tools. For example, RACER [6] has support for Protégé
(http://protege.stanford.edu/) that is the leading ontology editor.

Besides all advantages that all of these reasoners have, they still have
some disadvantages that we have tried to address by applying MDE
techniques to develop a DL reasoner. We list them below:
1. The present reasoners are implemented in programming languages without

explicitly defined model that can be easily extended with new functionalities
and re-implementation for new platforms.
It is important in the case of an integrated model of a reasoner in a more
complex model of the software that needs some specific DL reasoning
services or the use of a specific DL type.

2. The classical reasoners may not be extended by software developers and
may not fulfill their requirements.
The current reasoners can not be integrated as plug-in architecture in some
software development platform such as Eclipse. The importance of such
integration is checking consistency of UML models during software
development. For example, Eclipse supports a plug-in for Together.2
Our reasoner can be extended using abstract classes that implement JMI
interfaces. The user of our reasoner can extend functionality of the
reasoner according to their requirements, but without changing core of the
reasoner. Our reasoner is plug-in architecture to any software that supports
such ability.

3. The present reasoners use data structures of classical programming
languages to represent the tableau.
In our solution we use the XMI format for saving tableau model. It is more
reliable to search and update the tableau model using JMI interfaces or
ECore classes than using data structures of programming languages.

4. Some current [15] reasoners depend on language specific parsers, e.g.,
Jena (http://jena.sourceforge.net/) for OWL in implementation reasoner
functionality.
For search, update throughout DL models and tableau models we use JMI
interfaces and ECore classes, while all of them can be imported into the
repository by using XMI and the ATL’s joint framework for managing model
metadata (i.e., AMMA) [26].

5. Reasoners like PELLET [15] and FACT [7] are the YES/NO sort of
software. Their reasoning algorithm generates only Yes or No answers
when checking the consistency of ontology. So, for example, it is difficult to
use them, to analyze the semantics of users’ answers in intelligent
question/answer systems (e.g., in intelligent educational systems) [9].

2 http://www.borland.com/us/products/together/index.html

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 40

Using JMI interfaces and ECore classes, generated from the Tableau
metamodel, the tableau model may be analyzed to find useful information
about the users’ answers in cases when the users give wrong answers.

Besides the present DL reasoners, the recent OMG’s ODM [13] initiative is
very relevant to the proposed model-driven implementation of the DL
reasoner. Although, the reasoner is based on the DL metamodel that is non-
normative part of the ODM specification, still the reasoner can be used for the
future development of the model-driven reasoner for OWL and RDF(S)
languages. The core metamodels of the ODM specification, namely the OWL
and RDF(s) metamodels, can easily be transformed into the DL metamodel by
using the QVT-like language, and thus our Tableau metamodel can be used
as a basis for the implementation of reasoning services of the OWL and
RDF(s) languages. Furthermore, the algorithm can be extended to support
reasoning over UML models as well.

Considering the AIR framework for developing intelligent systems using
MDE concepts [5], the proposed model-driven engineering of the tableau
algorithm has a full compatibility with AIR. First, they are both based on the
same model repository, i.e., JMI-based NetBeans MDR
(http://mdr.netbeans.org/). Second, as the AIR workbench is based on the
Eclipse plug-in architecture, the used tools (e.g., ATL) for developing the
tableau algorithm are also compatible with the AIR workbench. Since we have
developed an AIR plug-in for the ODM [5], the proposed tableau algorithm can
be used to reason over ODM-based ontologies developed in AIR.

7. Conclusion and future work

Applying the MDE principles, we have proposed the development of a DL
reasoner-that is to say, the tableau algorithm that is used for the computation
of the satisfiability reasoning service on which all other reasoning services
rely. Employing the DL metamodel of the OMG’s ODM specification we have
shown the practical value of that metamodel for implementing DL reasoners,
so that metamodel is a non-normative part of the specification. The definition
of the Tableau metamodel for the tableau algorithm enabled the
implementation of the satisfiability reasoning service, and thus the tableau
algorithm, to be done only by a model transformation from the DL metamodel
into the Tableau metamodel. Besides achieving the expected goals to have a
DL reasoner (e.g. to be efficiently extended or retargeted to a new platform),
the use of metamodelling and model repository provided us with an additional
advantage over the current DL reasoners. In fact, the current DL reasoners
can only give “yes” or “no” as an answer when checking consistency of a DL
model, while our approach can also detect the cause of an inconsistency.

We are currently working on the implementation of other DL reasoning
services that are based the tableau algorithm presented in this paper. We are
also developing a specialized GUI for the reasoner that has a plug-in
architecture. We will also further extend the reasoner, so that it can support

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 41

DL typeson which the standard Semantic Web ontology languages rely (i.e.,
OWL) (http://www.w3.org/2007/OWL/wiki/OWL_Working_Group). We plan to
develop QVT transformations from the OWL ODM metamodel [13] into the DL
metamodel in order to provide a reasoner for the OMG’s ODM specification
[13]. Finally, we plan to test the developed algorithm in practical Semantic
Web applications such as intelligent educational systems, for example, to
analyze the semantics of the students’ answers.

8. References

1. C. Atkinson, T. Kuhne, “Model-Driven Development, A Metamodelling
Foundation”, IEEE Software, vol.20, No. 5, 2003, pp. 36-41.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi , P. Patel-Schneider, The
Description Logic Handbook-Theory, Implementation and Application, Cambridge
University Press, 2003.

3. J. Bezivin, “In Search of a Basic Principle for Model-Driven Engineering,”
Upgrade, vol. 5, No. 2, 2004, pp. 21-24.

4. R. Dirckze, (spec. leader): “Java Metadata Interface (JMI) API Specification ver.
1.0”, 2002 [Online]. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr040/

5. D. Djuric, D. Gasevic, V. Damjanovic, “AIR-A Platform for Intelligent Systems”, In
Proceedings of 1st IFIP International Conference on Artificial Intelligence
Applications and Innovations, Toulouse France, 2004, pp. 383-392.

6. V. Haarslev, R. Moller, RACER System Description, In Proceedings of the
International Joint Conference on Automated Reasoning, Siena, Italy, 2001, pp.
701–705.

7. I. Horrocks, Optimising Tableaux Decision Procedures for Description Logics, PhD
Thesis, University of Manchester, 1997.

8. F. Jouault, I. Kurtev, “Transforming Models with ATL”, In Proceedings of the
Model Transformations in Practice Workshop at MoDELS, Montego Bay, Jamaica,
2005.

9. N. Krdzavac, D. Gasevic, V. Devedzic, “Description Logic Reasoning in Web-
based Education Environment”, In Proceedings of the Workshop on Adaptive
Hypermedia and Collaborative Web-based Systems (4th International Conference
on Web Engineering), Munich, Germany, 2004.

10. Meta Object Facility (MOF) Specification, v1.4,
[Online]. Available: http://www.omg.org/docs/formal/02-04-03.pdf

11. J. Mukerji,J. Miler, ”MDA Guide Version. 1.0.1”, [Online]. Available:
http://www.omg.org/docs/omg/03-06-01.pdf

12. “OMG XMI Specification, ver. 1.2”, OMG Document Formal/02-01-01, 2002.
[Online.] Available: http://www.omg.org/cgi-bin/doc?formal/2002-01-01.pdf

13. “Ontology Definition Metamodel”, Preliminary Revised Submission to OMG RFP
ad/2003-03-40 1, 2004. [Online]. Available: http://codip.grci.com/odm/draft

14. “Request for Proposal: MOF 2.0 Query / Views /Transformations RFP”, OMG
Document: ad/2002-04-10 (2002) [Online]. Available:
http://www.omg.org/docs/ad/02-04-10.pdf

15. E. Sirin,B. Parsia, “An OWL DL Reasoner”, In Proceedings on International
Workshop on Description Logics (DL2004), Whistler, BC, Canada, June 2004.

Nenad Krdžavac, Dragan Gašević, and Vladan Devedžić

ComSIS Vol. 6, No. 1, June 2009 42

16. R. Soley, “MDA, An Introduction”, 2004. [Online]. Available: http://www.omg.org
17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable of Ebject-Oriented Software, Addison-Wesley, Reading, MA, 1995,
ISBN: 0201633612

18. F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages
for the semantic web. In Dieter Hutter and Werner Stephan, editors, Mechanizing
Mathematical Reasoning: Essays in Honor of Jörg Siekmann on the Occasion of
His 60th Birthday, LNAI 2605, Springer, Berlin, 2005, pp. 228-248

19. C. Lutz: The Complexity of Description Logics with Concrete Domains. PhD
thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany, (2002).

20. E. Seidewitz, “What Models Mean,” IEEE Software, vol. 20, no. 5, 2003, pp. 26-
32.

21. B. Selic, “The Pragmatics of Model-Driven Development,” IEEE Software,
vol. 20, no. 5, 2003, pp. 19-25.

22. NetBeans Metadata Repository (MDR), http://mdr.netbeans.org, 2003.
23. Poseidon for UML, http://www.gentleware.com, 2006.
24. “Ontology Definition Metamodel,” OMG Document ad/06-05-01,

http://www.omg.org/cgi-bin/doc?ad/06-05-01.pdf, 2006.
25. Berners-Lee, T., Hendler, J., Lassila, O. “The Semantic Web,” Scientific American,

vol. 284, no. 5, 2001, pp. 34-43.
26. Bézivin, J., Jouault, F., Rosenthal, F., and Valduriez, P. (2005), “The AMMA

platform support for modeling in the large and modelling in the small,” LINA
Technical Report No. 04.09, University of Nantes, France, 2005.

27. Eclipse Modeling Framework, http://www.eclipse.org/emf, 2006.
28. N. Krdžavac, V. Devedžić, “A Tableau Metamodel for Description Logics”, In

Proceedings of Workshop on Automated Reasoning Bridging the Gap between
Theory and Practice, University of Bristol, UK, April 2006.

Nenad Krdzavac is currently PhD student at the FON-School of Business
Administration, University of Belgrade, Serbia. So far, he has authored
several research papers. He is a member of the GOOD OLD AI research
group. His research interests are Description Logics

Dragan Gasević is an Assistant Professor in the School of Computing and
Information Systems at Athabasca University and an Adjunct Professor at
Simon Fraser University. He is a recipient of Alberta Ingenuity's 2008 New
Faculty Award. His research interests include semantic technologies, software
language engineering, and learning technologies. He has (co-)authored
around 190 research papers published. He has been serving on editorial
boards of three international journals and has edited special issues in journals
such as IET Software and IEEE TSE. He has been the organizer, chair, and
member of program committees of many international conferences.

Vladan Devedzić is a Professor and Head of the Department of Software
Engineering at FON-School of Business Administration, University of
Belgrade, Serbia. His research interests focus on the practical engineering
aspects of developing intelligent educational systems for the Web, while his

Model Driven Engineering of a Tableau Algorithm for Description Logics

ComSIS Vol. 6, No. 1, June 2009 43

long-term goal is to merge ideas from intelligent systems and software
engineering. He has authored/co-authored more than 280 research papers,
published in international and national journals or presented at international
and national conferences, as well as six books on intelligent systems and
software engineering.

Received: December 05, 2006; Accepted: August 05, 2008.

