
UDC 004.439:00.55

From Lisp S-Expressions to Java Source Code

António Menezes Leitão

Instituto Superior Técnico / INESC-ID
Lisboa, Portugal

antonio.leitao@dei.ist.utl.pt

Abstract. The syntax of Lisp languages is based on S-expressions, an
extremely simple form of structured data representation that is
nevertheless fundamental to the development of Lisp syntactic
extensions. By adopting a more conventional syntax, the Java language
placed itself in a difficult position in regard to user-defined syntax
extensions. In spite of the many efforts to provide mechanisms for such
extensions, they continue to be more difficult to use than S-expression-
based ones. In this paper, we will describe the use of the S-expression
syntax in a Java code generation environment. By providing an S-
expression based program representation for Java source code, we are
able to reuse and extend Lisp macro-expansion techniques to
significantly simplify the construction of Java programs.

Keywords: S-expressions, Macros, Common Lisp, Java.

1. Introduction

S-expressions (Symbolic Expressions) were invented by John McCarthy in
the late 50s as a notation for both programs and data in the language Lisp
[16].

S-expressions are usually expressed as fully-parenthesized prefix notation
(also known as Cambridge Polish notation). For example, the mathematical
expression 1+2×3 is represented in S-expression notation as (+ 1 (* 2 3)).
Data can also be easily represented and there are old and recent proposals
for its standardized use [17] [20].

McCarthy’s original idea also suggested the use of a different, more
ALGOLesque, format named M-expressions (Meta Expressions), that would
be translated into S-expressions. In M-expression notation, the previous
expression looks like +[1, *[2, 3]]. However, programmers started to use
and appreciate the S-expression format and M-expression never caught up.

Homoiconicity is one of the fundamental ideas behind the S-expression
notation. A language is said to be homoiconic when the primary
representation of a program source code is implemented using a primitive
type of the language itself. Thus, in a homoiconic language, a program can be
constructed, analyzed, and evaluated using the programming language itself.

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 20

Lisp is the best known example of a homoiconic programming languages but
there are other examples such as Prolog, SNOBOL and Tcl.

The ability to write programs that write programs is the hallmark of meta-
programming [12]. A meta-program is written in a meta-language and its
execution generates programs written in an object-language. In the case of
homoiconic languages, such as Lisp, where programs and data are
represented using the same S-expression notation, the meta-language and
the object-language can be the same.

From its inception Lisp was extensively used for meta-programming,
including writing self-modifying programs. However, these programs were
perceived as generally difficult to debug and with performance problems. As
time went by, simpler and more standardized forms of meta-programming
were developed and one, in particular, became well established: macros [19].

The word “macro” has a somewhat dubious reputation due to the problems
of their use in the C programming language but that reputation is totally
undeserved when we talk about Lisp. Macros in C are processed using a
special program (a pre-processor) that operates as a text-replacement tool
that does not understand the syntax of the language and that might create
problems that are hard to debug.

In Lisp, a macro describes a program that accepts program fragments (as
S-expressions) and computes a new program fragment (an S-expression) that
is evaluated in place of the macro call. This means that Lisp macros do not
deal with the program text but with the program syntax tree instead.

For performance reasons, the evaluation of the macro call and the
evaluation of the new program fragment produced by that call occur at
different times (called, respectively, macro-expansion time and run time) and,
in most implementations, the new program fragment replaces the original
macro-call so that there is only one macro-expansion for each call.

Macros have been used in Lisp languages for quite a long time (at least,
since 1963 [11]) and are fundamental for syntactically extending the
language. In dialects such as Common Lisp [2], a significant part of the
language is implemented using macros.

As an example of the use of a macro, consider the following program
fragment in Common Lisp that reads the first line of text contained in the given
file:

(with-open-file (s "/tmp/file.txt")
 (read-line s))

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 21

The macro with-open-file is responsible for opening the file, executing the
read-line operation requested and, in the end, closing the file and returning
whatever was read. This behavior, however, is not implemented by the macro
itself but by its macro-expansion, i.e., by the S-expression that is computed by
the macro call. In fact, after macro-expansion time, what is really evaluated is
the form:1

(let ((s (open "/tmp/file.txt")))
 (unwind-protect
 (read-line s)
 (when (streamp s)
 (close s))))

This sort of code generation can be very easy to do when we combine the

Lisp macro system with a template-based quasiquotation approach [5].
Quasiquotation allows us to provide the following definition for the with-open-
file macro:

(defmacro with-open-file ((f filename) form)
 `(let ((,f (open ,filename)))
 (unwind-protect
 ,form
 (when (streamp ,f)
 (close ,f)))))

The idea behind quasiquotation is that it operates as a parameterized

version of quotation and is generally used to describe templates for code
generation where some “unquoted” parts (those proceeded by commas) will
be filled in by evaluating the corresponding expression. Given the fact that
macros receive their arguments unevaluated (as S-expressions) and that they
must compute an S-expression as result, it is extremely tempting to use
quasiquotation in macros and, in fact, they are heavily used for that purpose.
The macro/quasiquotation combination is one of the best features of Lisp and
has been appropriately called “the ultimate CASE tool” [3].

In many cases, macros do nothing more than construct an S-expression
from a template described by quasiquotation that incorporate the arguments
to the macro call. The with-open-file example presented above shows this
behavior, as can be seen in the (read-line s) argument that is carried over

1We present only a simplification of the expansion that is done in most

implementations of this macro.

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 22

the expansion without any changes. In these cases, the arguments are
treated as completely opaque objects.

In some other cases, however, it is necessary to look inside those
arguments. For example, the extended loop macro provided in Common Lisp
is used to express iterations and it expands into different forms depending on
the presence of certain symbols in the macro arguments, such as from, in,
and while, so that a (loop for i from ... to ... do ...) and a
(loop while ... do ...) can produce different expansions.

As another example, consider the macro that increments a place: (incf x)
is the same as (setf x (+ x 1)). However, if the macro argument is more
complex, e.g., in (incf (first (foo))), the naive application of the macro
will generate the form (setf (first (foo)) (+ (first (foo)) 1)) that
will incorrectly evaluate (foo) twice. To solve this problem it is necessary to
look inside the argument in order to generate a program that avoids duplicate
evaluation.

In other cases, the situation is even more complex. Sophisticated syntactic
extensions, such as the Series ([23]) and Iterate ([1]) packages, must
extensively analyze and rearrange the source code that is passed as
argument. For an even more extreme case, consider Screamer ([21]), a non-
deterministic variant of Common Lisp that depends on a few macros to
convert a program into continuation-passing-style and that also
(incrementally) operates a whole-program analysis to distinguish deterministic
and non-deterministic functions. The common theme across the previous
examples is that macros, sometimes, must do a lot more than the simple
template instantiation provided by quasiquotation.

In spite of its long history, there are still some problems associated with
Lisp macros (unintended variable capture, out-of-order evaluation, etc) and
some of these problems have been solved, e.g., by the hygienic macros [9]
and syntactic closures [6] that have been proposed for the Scheme dialect of
Lisp. Common Lisp, however, still uses the traditional model because it is
simpler and it does not entail the same problems that it does in Scheme.

In the rest of this paper, for reasons that will be obvious, we will only
consider the Common Lisp model.

2. The Linj Language

System Software maintenance is an highly difficult task, in particular, when
the software is written in one programming language but the maintenance
team prefers to develop in a different language. To deal with this problem,
management tends to restrict the set of “acceptable” programming languages
to the most widely used ones such as Java. This imposes a difficult constraint
on developers that prefer to work in less mainstream languages such as
Common Lisp.

Linj is a Common Lisp-like language intended to be translated into human-
readable Java source code. The fundamental idea behind Linj is that it should

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 23

be possible to develop a program in a Common Lisp dialect but deliver it in
Java just like if the program was originally written in Java. Linj was designed
by carefully selecting some of the best features of Common Lisp and avoiding
or slightly changing those that are difficult to translate into readable Java
source code.

A preliminary version of Linj was described in [7] and a real example of its
use was presented in [8]. The paper [13] explains the use of Linj in a
reengineering setting and [14] discusses the round-trip process from Java to
Linj. In this paper we will focus on the meta-programming capabilities of Linj
for Java code generation, a topic that was only superficially addressed in the
previous papers. We will now present a short overview of the Linj language.

As a first example of a Linj program, we will consider the typical factorial
function:

(defun fact (n)
 (if (= n 0)
 1
 (* n (fact (1- n)))))

The previous definition is written using the exact same syntax that would be

used in the Common Lisp language. However, instead of being used by a
Common Lisp evaluator, the previous definition is translated by the Linj
compiler into the following Java source code:

public static Bignum fact(Bignum n) {
 if (n.compareTo(Bignum.valueOf(0)) == 0) {
 return Bignum.valueOf(1);
 } else {
 return n.multiply(fact(n.subtract(Bignum.valueOf(1))));
 }
}

It is important to note that, as a first approximation, the Linj compiler

generates Java code that preserves the semantics of the original Common
Lisp program. In this particular example, the presence of arithmetical
operations allowed the compiler to infer that the factorial function accepts a
number as argument and returns a number as result. However, it could not
infer a more specific type for these numbers (such as integer or floating point)

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 24

and, consequently, the generated program will depend on a run-time library
that implements a generic (arbitrary large) rational number called Bignum.2

It is possible, however, to include in the program more specific type
information about the function parameter n. If, instead of writing the above fact
function definition, the programmer writes

(defun fact (n/long)
 (if (= n 0)
 1
 (* n (fact (1- n)))))

then he is also asserting that the parameter n is a long. This allows Linj to

make a more aggressive type inference to conclude that the function also
returns longs. This extra aggressiveness is justified because it allows Linj to
generate code that more closely resembles a human-written code fragment,
as can be seen below:

public static long fact(long n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

As another example, consider the following Linj function that computes the

biggest of three integer arguments:

(defun max-x-y-z (x/int y/int z/int)
 (let ((max-x-y (if (> x y) x y)))
 (if (> max-x-y z)
 max-x-y
 z)))

The Linj compiler translates the previous function into the following Java

fragment:

2The compiler can be trivially configured to use different Java classes and

primitive types in the generated code, e.g., BigInteger in the place of Bignum.

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 25

public static int maxXYZ(int x, int y, int z) {
 int maxXY = (x > y) ? x : y;
 if (maxXY > z) {
 return maxXY;
 } else {
 return z;
 }
}

3. Linj Syntax

Linj compiles source code that is very similar to Common Lisp to target code
that is very similar to human-written Java. Syntactically speaking, Linj
programs are so similar to Common Lisp that the Linj compiler inputs them
using the exact same read function that is provided by Common Lisp. This
was an important design decision because it allowed us to effortlessly reuse
all the Common Lisp machinery for read-macros.3 Just like in Common Lisp,
reading a Linj program produces an S-expression.

S-expressions are the basis for Common Lisp macro capabilities but they
are not enough for the full set of Linj macro capabilities. Common Lisp has an
extremely simple syntax where forms can be categorized as symbols, conses
or self-evaluating objects. On the other hand, Java has a very complex syntax
with a large number of syntactical categories, including expressions,
statements, blocks, compilation units, etc. Moreover, Common Lisp allows
forms to be combined in arbitrary ways while Java has much more strict rules
regarding the grammatical combination of expressions, statements, blocks,
class declarations, etc. For example, contrary to Common Lisp, expressions
in Java cannot contain variable declarations.

In order to reduce the gap between the syntaxes of Common Lisp and
Java, Linj imposes additional syntactical constraints upon the S-expression
forms, allowing the same S-expression to be classified according to the place
where it occurs. This should be evident in the previous max-x-y-z example,
where the first if form is classified as an expression and translated into Java’s

3In spite of being frequently seen together, read-macros have little in

common with (normal) macros, as they just implement specialized parsing
behavior triggered when the reader encounters the corresponding macro
character.

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 26

conditional expression and the second one is classified as a statement and
translated into Java’s if statement.

Although it might seem that increasing the complexity of S-expressions is a
step back relative to the uniform syntax of Lisp, the fact is that, in Linj, macros
can also take advantage of the rich syntax and semantics of the Java
language to provide a more expressive macro system.

In general, the Linj syntax accepts the large majority of Common Lisp
programs but there are some cases where a correct Common Lisp program is
rejected. To understand the issue, we present a fragment of the Linj grammar:

<statement> ::= <if statement> | <let statement> | …
<if statement> ::= (if <expression> <statement> <statement>)
<expression> ::= <literal> | <reference> | <if expression> | …
<if expression> ::= (if <expression> <expression> <expression>)

Note, in the above grammar, that the same if form can be classified both

as a statement or as an expression. Other forms, such as the let, can only
be parsed as statements. Now, let’s consider the following Common Lisp
forms:

 (if (let ((w (max y z))) (let ((w (max y z)))
 (> x (* w w))) (if (> x (* w w))
 (+ x y) (+ x y)
 (+ x z)) (+ x z)))

Although both forms are valid Common Lisp forms, only the form on the

right is a valid Linj form. The form on the left isn’t valid in Linj because an if
(be it expression or statement) expects an <expression> as its first argument
and the let is a <statement>.

Although the Linj grammar seems like a severe restriction to a Common
Lisp programmer, using a more restricted syntax is an important advantage
for a translation process that wants to generate readable code and, in fact, the
Linj grammar was carefully designed to describe Common Lisp sources that
can be effectively translated into readable Java code.

To use the Linj grammar we implemented a second parsing process (using
a recursive descent parser with backup) that takes the S-expression produced
by the Common Lisp parser and constructs abstract syntax trees (ASTs)
where the nodes are instances of CLOS [18] classes related to the different
syntactical categories. Each parse rule describes an S-expression-based
pattern that will match an S-expression-based program: the parser operates
over the S-expressions constructed by the Common Lisp reader and not over
the textual representation of programs.

Both the S-expression based program representation and the AST based
program representation are essential for Linj macro capabilities and, to this
end, each AST node contains a reference to the S-expression that it
represents. In the next section we discuss Linj macro capabilities.

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 27

4. Linj Macros

A Common Lisp macro is a Common Lisp program that accepts S-
expressions as arguments and that generates Common Lisp code fragments
as results.

Linj would not be a Common Lisp-like language if it didn’t implement
Common Lisp-like macros. However, besides providing the traditional
Common Lisp macros, Linj also allows two other types of macros that take
advantage of the richer syntactic and semantic information that is available in
the Linj ASTs.

We will now explain these three different types of macros.

4.1 Traditional Macros

The first form of macro in Linj is indistinguishable from a Common Lisp macro.
In fact, the body of the macro is written in Common Lisp. The macro
expansion, however, entails a subtle difference: the same Linj macro call
might be expanded more than once.

In Common Lisp, macro expansion occurs when a macro-call is
encountered while processing forms that are meant to be evaluated. In Linj,
macro expansion occurs during the parsing phase and has to be repeated
whenever the parser backtracks past the macro-call.

To understand this issue, consider an hypothetical implementation and use
of the anaphoric if macro[10] (we will call it aif). The idea is to introduce the
locally scoped pronoun it that is lexically visible in the if branches and that
stands for the result of the if test expression. Here is one example of its use:

(aif (long-computation)
 (princ it)
 (princ "Failed!"))

and here is the macro definition:

(defmacro aif (test-form then-form else-form)
 `(let ((it ,test-form))
 (if it
 ,then-form
 ,else-form)))

Using this macro, Linj is capable of expanding the previous macro call into

(let ((it (long-computation)))
 (if if
 (princ it)
 (princ "Failed!")))

and then it will translate the macro-expanded code into

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 28

Object it = longComputation();
if (it != null) {
 System.out.print(it);
} else {
 System.out.print("Failed!");
}

Now, let’s imagine that the Linj parser is trying to parse the aif macro call
as an expression. As we just saw, after expanding the macro call, the result is
a let form that introduces a new variable declaration.

Unfortunately, a Java expression cannot contain variable declarations and,
by extension, neither can a Linj expression, so the parser backtracks as far as
necessary, undoing all macro-expansions, and attempts other parsing rules,
including the one that treats the entire aif form as a statement, causing re-
expansion of the macro call whose result can now be correctly parsed.

For this reason, the Linj (macro-)programmer should be aware that macros
should be side-effect free so that their macro calls can be expanded more
than once. This is not a problem in practice because, due to the different
phases of macro expansion and evaluation, it is extremely rare, even in
Common Lisp, to find a macro that causes side effects.

As another example, consider the Linj version of the with-open-file
Common Lisp macro that was presented in the introduction. Given the fact
that Java deals with files using a decorator design pattern, Linj provides a
more sophisticated macro definition that allows the specification of the stream
class to use for reading from and writing to files and also allows the
specification of an arbitrary composition of stream decorators. Here, for
illustrative purposes, we will present a simpler implementation that only
provides the instantiation of two different classes, namely, file-input-
stream and file-output-stream:

(defmacro with-open-file ((var filename
 &key (direction :input))
 &body body)
 `(let ((,var
 ,(ecase direction
 (:input `(new file-input-stream ,filename))
 (:output `(new file-output-stream ,filename)))))
 (unwind-protect
 (progn ,@body)
 (unless (eq ,var null)
 (close ,var)))))

The next Linj fragment shows a typical use of the previous macro where we
open a file for input, another one for output, we read an S-expression from the
first and we write it in the second:

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 29

(with-open-file (in "f1" :direction :input)
 (with-open-file (out "f2" :direction :output)
 (write out (read in))))

Its translation into Java is the following:

FileInputStream in=new FileInputStream("f1");
try {
 FileOutputStream out=new FileOutputStream("f2");
 try {
 out.write(in.read());
 } finally {
 if (out != null) {
 out.close();
 }
 }
} finally {
 if (in != null) {
 in.close();
 }
}

Note how the simple three-line Linj example is translated into a
combination of try-finally statements that ensure that streams are properly
closed even in the event of abnormal exits.

4.2 Context Sensitive Macros

Sometimes, Linj programmers want to write macros that produce different
expansions depending on the syntactic context where the macro call occurs.
Consider, for example, a (very) simplified implementation in Linj of a sprintf
function that accepts any number of arguments whose textual representation
will be interspersed in the middle of a string at the positions indicated by a %
marker.

It is easy to define a first version that depends on Java’s StringBuffer
class:

(defmacro sprintf (str &rest args)
 (let ((parts (split-sequence #\% str)))
 `(let ((buff (new 'string-buffer ,(first parts))))
 ,@(loop for part in (rest parts)
 collect `(append buff ,(pop args))
 collect `(append buff ,part))
 (to-string buff))))

This macro is used, for example, in:

(defun foo (x y)
 (sprintf "I have % apples and % oranges" x y))

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 30

After macro expansion and translation into Java, we get:

public static String foo(Object x, Object y) {
 StringBuffer buff = new StringBuffer("I have ");
 buff.append(x);
 buff.append(" apples and ");
 buff.append(y);
 buff.append(" oranges");
 return buff.toString();
}

The macro seems useful but, unfortunately, it does not work in the following
example:

(defun bar (x y)
 (length (sprintf "I have % apples and % oranges" x y)))

The reason for not working is that the macro expansion includes a let form
that, as we said before, can only be parsed as a statement. However, in the
above example, the macro call occurs in a position (call argument) where an
expression is expected.

To solve this problem, we can provide a different macro that guarantees
that the macro expansion can be parsed as an expression. Here is one
possibility:

(defmacro sprintf (str &rest args)
 (let ((parts (split-sequence #\% str)))
 `(concat ,(first parts)
 ,@(loop for part in (rest parts)
 collect (pop args)
 collect part))))

Using this version, the bar function is translated into:

public static int bar(Object x, Object y) {
 return ("I have " + x + " apples and " +
 y + " oranges").length();
}

Given the fact that both macro definitions have advantages we don’t want
to be forced to prefer one over the other. Fortunately, the Linj macro system
allow us to have both sprintf macro definitions available at the same time as
long as we tag them with the syntactical category that is expected for the
macro expansion, allowing the parser to choose the macro definition that is
most appropriate for the parsing situation at hand. This is a very important
feature to allow the best human-readable Java code generation for every
conceivable situation. The tag is a symbol that names the intended syntactical
category and is placed between the macro name and its list of parameters.

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 31

This feature is also very important for error reporting during the compilation
process. To understand this issue, let’s suppose that one programmer defines
a macro that expands into a form that must be parsed as a statement but
another programmer uses that macro in a context where an expression was
expected. In this case, a parsing error is generated but the error is related to
the expanded code and not to the original macro call, thus making it more
difficult to the programmer to understand the error message. However, if the
macro developer had tagged his macro with the appropriate syntactical
category, then the macro expansion would not be attempted and the error
message would simply report that it was not possible to parse the macro call
in a context where an expression was expected, thus making it much more
easier for the macro user to understand the problem.

4.3 Semantic Macros

Semantic Macros allow Linj to go one step further: they have the same syntax
and same conceptual model as syntactical macros but they operate not on the
S-expression representation as traditional and syntactical macros do but on
the Linj AST instead. This gives them an additional power to analyze the AST
and generate cleverer expansions.

In this section we will focus on semantic macros that only explore type
information but, in practice, these macros can explore all the information that
is available in the AST. To this end, the Linj compiler provides an API that
includes functions for walking the AST, for inspecting its nodes, for obtaining
the type of the expressions, etc.

As a first example, consider the Common Lisp function logbitp: it accepts
an index and an integer and it tests the value of the indexed bit in the two-
complement binary representation of the integer. Java’s BigInteger method
testBit(i) is similar: it accepts an integer parameter i and returns true if
the i-th bit of the receiver is 1 and false otherwise.

Unfortunately, there is no similar method for Java primitive integer types
int and long, not even in some utility class such as java.lang.Math, thus
forcing the programmer to use a combination of shifting and masking to
achieve the same effect. This is bad because it makes the conversion of code
between primitive integer types and reference integer types more difficult than
it needs to be.

To solve this problem, the Linj programmer can define a macro but this
macro must be very different from the previous ones because, this time, the
macro expansion does not depend on the syntactical form of the arguments
neither does it depend on the syntactical category of the macro call. Now, the
macro-expansion depends on the type of one of the arguments. To explore
this type information, the Linj API exposes the get-type function. This
function accepts an AST node that represents an expression and returns the
(static) type of the expression, using type inference to derive that information.

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 32

Using this API, we can define a logbitp macro that accepts two
expressions, the first one evaluating to an index and the second one to an
integer. The macro computes the type of the second expression, distinguishes
between the primitive types and the reference type BigInteger (using the
predicates primitive-type-reference-p and big-integer-type-p,
respectively) and returns an appropriate macro-expansion. Here is one
possible definition:

(def-linj-macro expression
 (logbitp ?e1/expression ?e2/expression)
 (let ((type2 (get-type ?e2)))
 (cond ((primitive-type-reference-p type2)
 `(not (zerop (logand ,?e2 (ash 1L ,?e1)))))
 ((big-integer-type-p type2)
 `(test-bit ,?e2 ,?e1))
 (t
 (fail)))))

Note that if the type does not pass the macro tests, meaning that the
second argument has a type that is neither primitive nor a BigInteger, then
the macro fails, i.e., it declines to expand.

Now, let’s consider the following example that uses the macro in two
different places:

(defun baz (x/long y/big-integer)
 (eq (logbitp 5 x)
 (logbitp 5 y)))

In the previous example, it is obvious that the macro cannot syntactically
distinguish between the two calls. However, due to the introspective
capabilities explored by the macro, Linj is capable of translating the previous
function into the following equivalent Java code:

public static boolean baz(long x, BigInteger y) {
 return ((x & (1L << 5)) != 0) == y.testBit(5);
}

It is worth mentioning that Linj’s semantic macros go beyond what
Common Lisp macros can usually do. This isn’t a Common Lisp shortcoming
but a consequence of the dynamic nature of the language: Common Lisp is a
dynamically typed language, meaning that there is very little type information
available at macro-expansion time. Linj, on the other hand, is as statically
typed as Java, allowing semantic macros to explore much more semantic
information.

As a final example, consider the use of a for-each macro that iterates
different kinds of objects, as exemplified below:

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 33

(defun iterate (x/iterator) ;;an iterator
 (let ((y (new 'string-tokenizer "1 2 3")) ;;an enumeration
 (z #(1 2 3))) ;;a vector
 (for-each (e x)
 (princ e))
 (for-each (e y)
 (princ e))
 (for-each (e z)
 (princ e))))

The difficulty with the logbitp and for-each macros is that their
expansion depends not on the syntactical form of the arguments (in the
examples, they are indistinguishable) but on their semantic properties instead.
In this case, it depends on the type of the iterated expression, that is, the
types of x, y and z but this information can only be made available after
parsing the S-expression and annotating the resulting AST with the types
computed for the expression nodes. This means that the for-each macro
expansion must be delayed until the AST is ready to provide the information it
might need.

To achieve this effect, macro calls for these semantic macros are not
expanded at parse time, thus becoming AST nodes themselves. Later on, a
tree visitor responsible for expanding these macro calls is activated and all
macro calls are expanded in a top-down fashion.

During the macro-expansion, what the macro receives as arguments is
either S-expressions or completely parsed AST sub-trees that can be
analyzed, manipulated, and reused at will. The macro specifies what it
expects to receive by tagging each parameter with the syntactical category it
wants (or none if it just wants the S-expression). If, during one expansion,
information regarding other (semantic) macro calls is needed, its expansion is
also computed, thus triggering a kind of chain reaction.

The final phase of the expansion is the generation of an S-expression that
can also include fragments of the already parsed AST and that is
subsequently parsed to compute a new AST subtree that replaces the
semantic macro call. Obviously, to compute this expansion, one might use the
same quasiquotation that is used in traditional and syntactical macros.

We will now complete the previous example, showing a possible
implementation of the for-each macro:

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 34

(def-linj-macro statement
 (for-each (?var ?form/expression) . ?body)
 (let ((form-type (get-type ?form)))
 (cond ((array-type-reference-p form-type)
 `(dovector (,?var ,?form) . ,?body))
 ((super-type-p (iterator-type) form-type)
 `(let ((iter ,?form))
 (while (has-next iter)
 (let ((,?var (next iter))) . ,?body))))
 ((super-type-p (enumeration-type) form-type)
 `(let ((enum ,?form))
 (while (has-more-elements enum)
 (let ((,?var (next-element enum))) . ,?body))))
 (t
 (error "Unknown type for iteration ~A" form-type)))))

Note that the macro definition requires the form parameter to be parsed as
an expression. Using this expression, the macro computes its type using the
function get-type: this is an entry-point for the type inferencer that, given an
expression, returns the static type of the value of the expression; it is
guaranteed that its dynamic type will be a subtype of this static type.
Depending on this type, the macro then expands into different forms that will
be used in place of the macro call.

For the example given above, the three syntactically identical uses of the
macro produces three completely different expansions, each dealing with a
different type of iterated object:

public static void iterate(Iterator x) {
 StringTokenizer y = new StringTokenizer("1 2 3");
 int[] z = new int[] { 1, 2, 3 };
 Iterator iter = x;
 while (iter.hasNext()) {
 Object e = iter.next();
 System.out.print(e);
 }
 StringTokenizer enum = y;
 while (enum.hasMoreElements()) {
 Object e = enum.nextElement();
 System.out.print(e);
 }
 int limit = z.length;
 for (int i = 0; i < limit; ++i) {
 int e = z[i];
 System.out.print(e);
 }
}

The previous example also demonstrates the usefulness of user-defined
syntax extensions: Linj programmers have been using the for-each macro
since Java 1.1, while Java programmers had to wait until Java 5 for a similar
syntax extension provided by the Java language itself. Another advantage is

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 35

that just by changing the macro definition, the same Linj programs can now be
simply recompiled to generate Java sources that take advantage of the Java 5
for-each statement.

Given the fact that Linj macros can depend on the available type
information and that the type inference mechanism depends on the expansion
of macros, it is possible to create circularities. These circularities will be
detected by the Linj compiler and will be represented using a cyclic type. As a
result, The Linj (macro) programmer should be prepared to deal with this type,
either by aborting the macro expansion or by replacing the cyclic type with
some other type or by using some other strategy.

A final important point about semantic macros in Linj is that they can
decline to expand, meaning that they might not want to generate any
expansion. In this case, Linj shadows the macro (so that it cannot be
recursively applied to the same AST node) and re-parses the original S-
expression form of the node. This is useful to provide partial evaluators that
can generate more efficient code but only if they have sufficient static
information available.

5. Related Work

There is a large number of proposals for including macro capabilities in
syntactically rich languages such as C or Java. In most cases, there is a
serious attempt to reuse in the meta-language the same (or a similar)
language that is used in the object-language. In [24], a Lisp-inspired template
approach for C is used but where macros are programmed in an extended C
that is interpreted at macro-expansion time.

Semantic macros were also proposed in [15] in terms that are very similar
to ours. The authors present a new experimental language—XL—that
borrows its semantics from Scheme but whose syntax, although S-expression
based, has many more syntactical categories. Again, this is very similar to our
own approach (except that we borrowed our semantics from Common Lisp
and Java). The biggest difference, however, is that the extra syntax is visible
in the source code, making macro definitions harder to write and understand.

OpenJava [22] is a macro system for Java where programmers customize
the definition of class meta-objects for describing macro expansions.
OpenJava was designed to address the needs of semantic macros and, to
this end, it provides an object-oriented representation of programs that include
logical and contextual information.

The biggest difference between Linj and OpenJava is that OpenJava does
not use any template-based approach, instead preferring to construct the
macro expansion by hand. Linj allows both, although quasiquotation is more
used because it is clearer.

Jak [4] is an extensible superset of Java with support for meta-
programming. Jak is part of JTS (Jakarta Tool Suite), a set of tools aimed at
the construction of domain-specific languages. JTS represents source code

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 36

using SSTs (surface syntax trees) and ASTs (that are semantically-checked
and annotated SSTs). Jak also uses a template based approach but where
the code fragments must be surrounded by keywords (named tree
constructors) that express the intended syntactical categories. There are
several such tree constructors expressing, among others, expressions,
statements, method definitions, classes, etc.

In contrast, Linj does not need tree constructors because the (meta-
)programmer can indicate, in the macro definition, any syntactical category
that he wants and this category is used to restrict the triggering of the macro
expansion and for parsing its result. In Jak, the meta-language is Java
complemented with an API for processing the SSTs and ASTs.

In general, all the approaches that attempt to add meta-programming
capabilities to mainstream programming languages suffer from the fact that
they target non-homoiconic languages. This makes it difficult to use template-
based quasiquotation and, in many cases, it forces the macro writers to
manually construct syntactically valid program fragments, a task that is
difficult, tedious and error prone. Moreover, given the fact that macro
expansion is done at (or before) compile-time, the macros must be coded
using a meta-language that cannot be the same as the object-language, thus
making the process more complex.

What we think is the major difference between our approach and others is
the fact that our real object-language is hidden from the Linj programmer. In
fact, while using Linj, the programmer never sees Java. What he sees is Linj,
that is, a Common Lisp with a slightly restricted syntax. Our meta-language is
(unrestricted) Common Lisp but since there’s no relevant differences between
Common Lisp and Linj and, moreover, macros generally use quasiquotation
that further hides the differences, few Linj (meta-)programmers are aware of
the fact that they are using two different languages. As a result, Linj seems to
be an homoiconic language while, in practice, it is not.

6. Conclusions

S-expressions are one of John McCarthy marvelous inventions that still are,
almost 50 years later, one of Lisp most distinguishing features. Being an
uniform representation for both code and data, S-expressions allow code to
be treated as data and data to be treated as code. Lisp macros are the best
tool to explore, in a disciplined way, this uniform treatment. In a macro call,
the code in the macro arguments is treated as data and the data produced by
the macro is treated as code. When used in combination with quasiquotation,
macros become an extremely simple but powerful tool for meta-programming.

In this paper, we presented the Linj approach to meta-programming for
Java. Linj is a Common Lisp-like language that superimposes a Java-like
grammar on top of S-expressions in order to allow Linj programs to be
translated into human-readable Java programs. Linj programs are parsed into
S-expressions that, according to the Linj grammar, are then parsed into ASTs.

From Lisp S-Expressions to Java Source Code

ComSIS Vol. 5, No. 2, December 2008 37

Meta-programming in Linj is obtained through the use of Linj macros that
accept either S-expressions or ASTs and that generate Linj S-expressions
that are further parsed into ASTs. In the end of the translation process, these
ASTs are finally transformed into Java source code.

The implementation of macros in Linj is more complex than in Common
Lisp but we believe we managed to preserve the look and feel of Common
Lisp macros while allowing much more sophisticated macro operations,
including exploring syntactic and semantic aspects of the macro call
arguments or of the expected results. It is also possible for these macros to
operate arbitrary transformations of the entire AST. This sophistication is
needed in Linj to provide the best possible translation from Linj S-expressions
to human-readable Java source code.

7. References

1. J. Amsterdam. The iterate manual. Technical Report AIM-1236, MIT
Artificial Intelligence Laboratory, Oct. 6 1990.

2. ANSI and ITIC. American National Standard for Information Technology:
programming language — Common LISP. American National Standards
Institute, 1430 Broadway, New York, NY 10018, USA, 1996. Approved
December 8, 1994.

3. H. G. Baker. Critique of DIN Kernel Lisp definition version 1.2. Lisp and
Symbolic Computation, 4(4):371–398, Mar. 1992.

4. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing
domain-specific languages. In Proceedings Fifth International Conference
on Software Reuse, pages 143–153, Victoria, BC, Canada, 2–5 1998.
IEEE.

5. A. Bawden. Quasiquotation in Lisp. In Proceedings of PEPM’99, The
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, ed. O. Danvy, San Antonio, January 1999., pages
4–12, Jan. 1999.

6. A. Bawden and J. Rees. Syntactic closures. In Proceedings of the 1988
ACM Symposium on LISP and Functional Programming, Salt Lake City,
Utah., July 1988.

7. A. M. L. . J. Cachopo. Translating Lisp into Java. In International Lisp
Conference, San Francisco, USA, October 2002.

8. A. M. L. . J. Cachopo. Pre-ProCLessing: Embedding Lisp within Java. In
International Lisp Conference, New York, USA, October 2003.

9. W. Clinger and J. Rees. Macros that work. In Conference Record of the
Eighteenth Annual ACM Symposium on Principles of Programming
Languages, pages 155–162, Orlando, Florida, January 21–23, 1991.
ACM SIGACT-SIGPLAN, ACM Press.

10. P. Graham. On Lisp: advanced techniques for Common Lisp. Prentice-
Hall, Englewood Cliffs, NJ 07632, USA, 1994.

António Menezes Leitão

 ComSIS Vol. 5, No. 2, December 2008 38

11. T. P. Hart. MACRO definitions for LISP. Report A. I. MEMO 57,
Massachusetts Institute of Technology, A.I. Lab., Cambridge,
Massachusetts, Oct. 1963.

12. A. H. Lee and J. L. Zachary. Reflections on metaprogramming. j-IEEE-
TRANS-SOFTW-ENG, 21(11):883–893, Nov. 1995.

13. A. M. Leitao. Migration of Common Lisp programs to the Java platform -
the Linj approach. csmr, 0:243–251, 2007.

14. A. M. Leitao. The next 700 programming libraries. In International Lisp
Conference 2007. Association of Lisp Users, april 2007.

15. W. Maddox. Semantically-sensitive macroprocessing. Technical Report
CSD-89-545, University of California, Berkeley.

16. J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine (Part I). Communications of the ACM, 3(4):184–
195, 1960.

17. J. McCarthy. The common business communication language. In
V. Lifschitz, editor, Formalizing Common Sense: Papers by John
McCarthy, pages 175–186. Ablex Publishing Corporation, Norwood, New
Jersey, 1990.

18. A. Paepcke. Object-Oriented Programming: The CLOS Perspective. The
MIT Press, 1993.

19. K. M. Pitman. Special forms in LISP. In LISP Conference, pages 179–
187, 1980.

20. R. L. Rivest. SEXP (S-expressions). Internet Engineering Task Force -
Internet Draft, 1997.

21. J. M. Siskind and D. A. McAllester. Nondeterministic lisp as a substrate
for constraint logic programming. In AAAI, pages 133–138, 1993.

22. M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-
based macro system for Java. In W. Cazzola, R. J. Stroud, and F. Tisato,
editors, Reflection and Software Engineering, LNCS 1826, pages 119–
135. Springer-Verlag, July 2000.

23. R. C. Waters. Common Lisp: The Language, chapter Appendix A. Digital
Press, 89.

24. D. Weise and R. F. Crew. Programmable syntax macros. In SIGPLAN
Conference on Programming Language Design and Implementation,
pages 156–165, 1993.

António Menezes Leitão was born in Portugal and received a B.Sc. in
Mechanical Engineering, a M.Sc. in Electrotechnical Engineering and PhD in
Computer Science from Instituto Superior Técnico/Universidade Técnica de
Lisboa (IST). He is a professor at IST and a Researcher at Instituto de
Engenharia de Sistemas e Computadores-Research & Development (INESC-
ID) His research interests include software engineering, software
maintenance, and programming language design.

Received: July 16, 2008; Accepted: November 17, 2008.

