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Abstract. Trajectory data streams contain huge amounts of data pertain-
ing to the time and position of moving objects. It is crucial to extract use-
ful information from this peculiar kind of data in many application sce-
narios, such as vehicle traffic management, large-scale tracking manage-
ment and video surveillance. This paper proposes a density-based clus-
tering algorithm for trajectory data stream called CTraStream. It contains
two stages: trajectory line segment stream clustering and online trajec-
tory cluster updating. CTraStream handles the trajectory data of moving
objects as an incremental line segment stream. For line segment stream
clustering, we present a distance measurement approach between line
segments. Incremental line segments are processed quickly based on
previous line clusters in order to achieve clustering line segment stream
online, and line-segment-clusters in a time interval are obtained on the fly.
For online trajectory cluster updating, TC-Tree, an index structure, which
stores all closed trajectory clusters, is designed. According to the line-
segment-cluster set, the current closed trajectory clusters are updated
online based on TC-Tree by performing proposed update rules. The algo-
rithm has exhibited many advantages, such as high scalability to process
incremental trajectory data streams and the ability to discover trajectory
clusters in data streams in real time. Our performance evaluation exper-
iments conducted on a number of real and synthetic trajectory datasets
illustrate the effectiveness, efficiency, and scalability of the algorithm.

Keywords: trajectory stream clustering, density-based clustering, line seg-
ment cluster, trajectory cluster, TC-Tree, online.

1. Introduction

Recently, advances in GPS, smartphones, and other electronic monitoring de-
vices have facilitated the speed of collecting coordinates of moving objects. In
these real time applications, the location data of mass moving objects are re-
ceived in the form of trajectory streams. From this huge volumes of data, how
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to extract useful information in the trajectory streams has become very impor-
tant. Therefore, incremental trajectory data stream mining is receiving a lot of
attentions. Trajectory clustering, which groups the trajectories of moving objects
to reveal interesting correlations among them, has a number of applications in
vehicle traffic management, logistics management, pattern recognition, and be-
havior analysis [21]. For example, clustering the trajectory data stream of mov-
ing objects in real time can obtain some motion patterns to help administrators
to predict movement trends and prevent anomalous events from occurring in a
large security system. Density-based clustering can discover the clusters with
arbitrary shapes and filter out noise, which is very useful for identifying the rela-
tions of moving objects whose mobile direction is stochastic and unpredictable.
Thus, an efficient clustering algorithm based on density is essential for trajec-
tory data streams analysis in these applications with real time constraint.

In this paper, regarding to clustering trajectory data streams that pertain to
time and the position of moving objects, we propose a clustering algorithm,
CTraStream, which can discover the trajectory clusters with explicit temporal
information and spatial information from data streams. The following contribu-
tions are made: First, we provide a definition of distance measure between
trajectory line segments, and, by employing the distance measure, CTraStream
performs density-based clustering on received trajectory line segment streams
to obtain line segment clusters in real time. Second, a TC-Tree structure is
designed, which stores the closed trajectory clusters and represents the rela-
tionship among trajectory clusters. Finally, the trajectory clusters on TC-Tree is
updated according to the line segment clusters online. Comprehensive empir-
ical studies on real data and large synthetic data demonstrate the clustering
effectiveness, efficiency, and scalability of our developed algorithm.

The remainder of this paper is organized as follows: We discuss related clus-
tering algorithms in Section 2. In Section 3, we first define the basic notions of
our algorithm and introduce the general framework of CTraStream. A detailed
description of CLnStream, a density-based line segment stream clustering al-
gorithm, is provided in Section 4, and TraCluUpdate, a online update process
of trajectory cluster, is presented in Section 5. Evaluation experiments of ef-
fectiveness and efficiency are shown in Section 6. Finally, Section 7 presents
conclusions and points out directions for future work.

2. Related Works

Typical clustering methods based on density, such as algorithms based on lo-
cal connectivity DBSCAN [18], OPTICS [16], and algorithms based on density
function DENCLUE [1], give the notion of density. These algorithms can dis-
cover clusters with arbitrary shapes in spatial databases. However, they can’t
be applied to clustering trajectory data. Gaffney et al. [5][4] propose a cluster-
ing algorithm based on probabilistic model for trajectories. Gaffney’s algorithm
considers the trajectory as a whole and uses a mixture of regression models
to represent a set of trajectories. Then, unsupervised learning is carried out
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using the maximum likelihood principle. Specially, the EM algorithm is used
to estimate hidden parameters involved in probability models, and then deter-
mine the clusters membership. But the basic processing unit of the clustering is
the whole trajectory. Nanni [15] adapts two classical distance-based clustering
methods (K-means and hierarchical agglomerative clustering) to trajectories.
Then, Nanni et al [19] propose a time-focused trajectory clustering algorithm
based on density. In Their paper, a simple notion of distance between trajecto-
ries is first defined, and then a new approach to trajectory clustering problems
based on OPTICS, called temporal focusing, is presented, which aims to ex-
ploit the intrinsic semantics of temporal dimensions to improve the quality of
trajectory clustering.

Piciarelli et al. [2] propose a trajectory clustering algorithm suited for on-
line behavior analysis. The incremental trajectories are matched with previous
clusters in space and grouped into the closest clusters, and the clusters are or-
ganized in a tree-like structure, which can be used to detect anomalous events.
Lee et al. [8] present a trajectory clustering framework based on density, called
TRACLUS, which is a partition-and-group framework for discovering common
sub-trajectories in trajectory databases. In the partition phase, trajectories are
partitioned into a set of quasi-linear segments using the minimum description
length principle. In the group phase, all line segments are grouped using a
density-based clustering method, and a representative trajectory for each clus-
ter is determined. Based on TRACLUS, Lee et al. [9] succeedingly propose a
feature generation framework TraClass for trajectory classification. It generates
a hierarchy of features by partitioning trajectories and exploring region-based
and trajectory-based clustering. Zhenhui Li et al. [27] propose a clustering
framework for incremental trajectory called TCMM, which contains online micro-
cluster maintenance and offline macro-cluster creation. The former is used to
incrementally update the micro-clusters that store compact summaries of sim-
ilar line segments to reflect the changes; the latter performs macro-clustering
based on the set of micro-clusters when a user requests to see current clus-
tering result. All of TRACLUS, TraClass and TCMM employ the density-based
clustering method, but trajectories are represented as sequences of line seg-
ments without explicit temporal information.

Gudmundsson et al. [11] study the computational complexity and approx-
imation strategies for a few motion patterns, such as flock pattern, which is
defined as a group of at least m moving objects such that the objects always
lay inside a circle of given radius during a period longer than a given thresh-
old. A similar objective is pursued in [6], which emphasizes efficiency issues.
Yifan Li et al. [26] propose an extension of micro-clustering to moving objects–
moving micro-clustering (MMC)–which groups line segments of trajectories that
lie within a bounding rectangle of given size in a certain time interval. However,
MMC algorithm uses K-mean algorithm [17] as the generic algorithm, so it has
some limitations in clustering with any shapes. Elnekave et al. [20] present an
incremental clustering method for discovering evolving groups of moving ob-
jects similar to MMC. In the method, trajectories are represented as a list of min-
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imal bounding boxes (MBBs), and a similarity between two trajectories based
on MBBs is defined. With the definition, the method employs a trajectory-fitted
version of the incremental K-mean algorithm for clustering moving objects. With
similar objective, Jensen et al. [3] present a scheme that is capable of incre-
mentally clustering moving objects. It employs a notion of object dissimilarity
and clustering features, and uses a quality measure for incremental clusters to
identify clusters that are not compact enough after certain insertions and dele-
tions. Although the objectives of such algorithms are a somewhat different, they
focus on the efficient discovery of static clusters at variable time snapshots.

Won et al [12] propose a trajectory clustering scheme for vehicles moving
on road networks, which defines a trajectory as a sequence of road segments
a moving object has passed by. The scheme modifies and adjusts FastMap
and hierarchical clusters by measuring total length of matched road segments,
and yields fairly accurate clustering results. However, the algorithm only can
work on clustering objects in a spatial network. Kalnis et al. [13] provide a for-
mal definition of moving clusters to discover a set of objects that move close
to each other for a long time interval. During the time interval, some objects
may leave or enter the cluster, but the portion of common objects should be
higher than a predefined threshold in two continuous timestamps. Jeung et al.
[10] define a convoy pattern, in which a set of objects that move together in
a cluster with arbitrary shapes during at least k continuous timestamps. They
propose three algorithms involving trajectory simplification techniques to query
the convoy patterns from trajectory databases in a filter-refinement framework.
However, these works cannot handle trajectory data streams efficiently since
clusters are re-calculated from scratch every time. Efficient maintenance of
such meta-trajectory clusters on streams requires a thorough analysis of the
spatio-temporal properties of moving objects, which is a key issue addressed in
our work.

3. Problem Formulation

3.1. Notion Definition

Trajectory data stream in which there are N moving objects is defined as fol-
lows: S =(P 0

1P
0
2 . . . P 0

i . . . P 0
nP

1
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2 . . . P 1

i . . . P 1
n . . . P j
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n . . .). Where, P j
i is location of the ith moving object at the jth times-

tamp. Real time positions of moving objects at each sampling time interval are
received in form of data stream.

Definition 1. (Trajectory line segment) For moving object O, its position is
pi when timestamp is ti, and position is pi+1 when timestamp is tt+1. Vector
−−−−→
pipi+1 is called a trajectory line segment of the moving object O, also known as
line segment.

As shown in Fig. 1, li and lj , respectively, is a line segment of the moving
objects i and j. Since the line segment is a vector consisting of two continu-
ous sampling positions of a moving object, line segments have characteristic of
strong timeliness and directionality.
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Definition 2. (Line segments distance) For line segments of two moving
objects during same time interval, the distance between li and lj is defined
as formula (1), which is composed of three components: start distance, center
distance, and end distance.

dist(li, lj) = α ∗ dstart(li, lj) + β ∗ dcenter(li, lj) + γ ∗ dend(li, lj) (1)

dstart(li, lj) = |psi − psj | is the distance between psi the starting point of seg-
ment li and psj the starting point of segment lj , dcenter(li, lj) = |a − b| is the
distance between a the midpoint of the segment li and b the midpoint of the
segment lj , dend(li, lj) = |pei − pej | is the distance between pei the end point of li
and pej the end point of lj . α, β, γ, respectively, stands for the weight of the start
distance, the center distance and end distance.

Fig. 1. Distance between line segments. θ is the included angle of li and lj .

The weights are relative to θ the included angle of the two line segments, as
defined in formula (2).

α = (1− sinθ/2)/3

β = 1/3

γ = (1 + sinθ/2)/3

, 0 ≤ θ ≤ π/2


α = (sinθ/2)/3

β = 1/3

γ = (2− sinθ/2)/3

, π/2 < θ ≤ π

(2)

By formula (2), when the included angle θ is zero, the start distance, the
center distance, and the end distance occupy the same proportion; while the
weight of end distance increases in the distance formula as angle θ increases.

According to the definition of line segment distance, the line segments of
numbers of moving objects during same time interval may distribute densely.
Suppose D is the set of line segments during time interval [i, i + 1], e is the
threshold of distance between two line segments.
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Definition 3. (Neighborhood) For line segments li, the set {l|l ∈ D and
dist(l, li) ≤ e} is called the neighborhood of segment li, denoted by NLnsD(li),
and let|NLnsD(li)| denotes the number of NLnsD(li).

Definition 4. (Core line segment) A line segment li is a core line segment if
|NLnsD(li)| is not less than MinLns .

Definition 5. (Border line segment) If |NLnsD(li)| is less than MinLns, but
there is a core line segment lj satisfying lj ∈ NLnsD(li), then the line segment
li is called a border line segment of the line segment cluster containing lj .

Definition 6. (Isolated line segment) A line segment li is an isolated line
segment only if it is neither a core line segment nor a border line segment.

Definition 7. (Directly density-reachable) If a line segment li is the neigh-
borhood of a core line segment lj , then li is directly density-reachable from
lj .

Obviously, li is not necessarily a core line segment, so lj is not necessarily
directly density-reachable from li, therefore, directly density-reachable is asym-
metrical.

Definition 8. (Density-reachable) A line segment li is density-reachable
from a line segment lj , if there is a series of line segments li, li+1, . . . , lj−1, lj ∈
D such that lk directly density-reachable from lk+1(k = i, i+ 1, . . . , j − 1, j).

Like directly density-reachable, density-reachable is also asymmetrical, but
the density-reachable is transitive. If li is density-reachable from a line segment
l, and l is density -reachable from a line segment lj , then li is density-reachable
from lj .

Definition 9. (Density-connected) If a line segment li and a line segment lj
are both density-reachable from a line segment l, then li is density-connected
to lj .

According to the definition 9, density-connected is symmetrical for a pair of
line segments.

Definition 10. (Line-segment-cluster) Grouping the set D into a series of in-
dependent subset in which all line segments is density-connected to each other,
each non-empty subset C is called a line-segment-cluster, abbr. l-s-cluster, if it
satisfies the following two conditions:

(1) Connectivity: ∀li; lj ∈ C, li is density-connected to lj ;
(2) Maximality: ∀li; lj ∈ D, if li ∈ C and lj is density-reachable from li, then

lj ∈ C.
Each l-s-cluster can be comprised of at least one core line segment and all

line segments being density-reachable from one of the core line segments. The
set of line-segment-clusters in time interval [i, i + 1] is denoted as LC[i,i+1] =

{lc1[i,i+1], lc
2
[i,i+1], . . . lc

k
[i,i+1]}.

Lemma 1. A core line segment must and only belongs to a l-s-cluster.
Proof: Let D be the current line segment set, and assume the core segment

l belongs to two l-s-clusters lc1[i,i+1], lc
2
[i,i+1]. Since the core line segment l ∈

lc1[i,i+1], according to the definition of l-s-cluster, any line segment l′ belonging to
lc1[i,i+1] is density-connected to l. Meanwhile, l is a core line segment of lc1[i,i+1],
the line segments which is density-connected to l are all density-reachable from
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l, therefore, any line segment l′(l′ ∈ lc1[i,i+1]) is density-reachable from l. Sim-
ilarly, for any line segment l′′(l′′ ∈ lc2[i,i+1]) is also density-reachable from l. In
conclusion, any line segment l′(l′ ∈ lc1[i,i+1]) and l′′(l′′ ∈ lc2[i,i+1]) are all density-
connected to each other, lc1[i,i+1], lc

2
[i,i+1] are the same l-s-cluster according to

the definition of l-s-cluster. �
As shown in Fig. 2, there are 18 moving objects. Each line segment with an

arrow stand for a trajectory line segment of the moving object, and the number
marked on the line segment indicates the time interval of the line segment. Sup-
posed MinLns is 2, all line segments in a red ellipse constitute a line cluster.

Definition 11. (Trajectory cluster) For all moving objects in the trajectory
stream N , a 2-tuples (O, [i, j]) is called a trajectory cluster if there exists lcik[k,k+1] ∈
LC[k,k+1](k = i, i+1, . . . , j−1) such that the set O ⊆

∩j−1
k=i lc

ik
[k,k+1] (O ∈ N) dur-

ing the time interval [i, j](j > i). O is the set of objects in the trajectory cluster,
and i and j is the start time and end time of the trajectory cluster respectively.

If (O, [i, j]) is a trajectory cluster, and any 2-tuples (O′, [i, j]) (O′ ⊃ O) is not
a trajectory cluster, then (O, [i, j]) is object-closed.

Fig. 2. An example of line segment clusters and trajectory clusters. Each line
segment with an arrow represents a trajectory line segment of the moving ob-
ject, and the number on the line segment indicates the time interval of the line
segment.

Lemma 2. For a set O(O ∈ N) including any m moving objects, if there
exists lcik[k,k+1] ∈ LC[k,k+1](k = i, i + 1, . . . , j − 1) such that O =

∩j−1
k=i lc

ik
[k,k+1]
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during time interval [i, j](j > i), then the 2-tuples (O, [i, j]) is a object-closed
trajectory cluster.

The lemma 2 is intuitive. Since O =
∩j−1

k=i lc
ik
[k,k+1], for any O′(O′ ⊃ O),O′ ⊃∩j−1

k=i lc
ik
[k,k+1],so the 2-tuples (O′, [i, j]) is not a trajectory cluster by the defini-

tion 11. Therefore, lemma 2 is proved.
If a 2-tuples (O, [i, j]) is a trajectory cluster, and (O, [i−1, i]) and (O, [j, j+1])

are not trajectory clusters, then (O, [i, j]) is time-closed.
A trajectory cluster (O, [i, j]) is called a closed trajectory cluster, if and only

if (O, [i, j]) is both object-closed and time-closed. As shown in Fig. 2, the l-s-
clusters of continuous time intervals constitute a closed trajectory cluster.

3.2. General Framework of CTraStream

CTraStream is divided into two online processes: line segment stream cluster-
ing, CLnStream, which clusters the line segment stream of moving objects on-
line to obtain the l-s-clusters of current time interval, and the online update pro-
cess of trajectory clusters, TraCluUpdate, which is responsible for online update
trajectory clusters and extract closed trajectory clusters based on the TC-Tree
structure. The framework of CTraStream algorithm is described in Algorithm 1,
the two stages will be explained in section 4 and section 5, respectively.

4. CLnStream: Clustering Line Segment Stream based on
Density

CLnStream performs clustering based on density for line segments of current
time interval, and then gets l-s-clusters at the end of the current time interval.
Compared with clustering results of sampling points, the l-s-clusters of moving
objects represent the mobile status and trends more accurately.

When receiving a new point pti , a new line segment lp =
−−−−→
pt−1pt is created

and added to the line segments set D of the time interval [t− 1, t]. The new line
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segment only affects local l-s-clusters, so our algorithm only needs to perform
the update processing on lp and its neighborhood.

4.1. New Line Segment Affect

The new line segment lp only effects local l-s-clusters of current time interval.
The effected line segments could be divided into 2 groups:

New core line segments: with introduction of the new line segment lp,
some border line segments of its neighborhood may become a core line seg-
ment. And the clusters, in which these line segments are, will be updated. The
set of new core line segments is denoted by NewCoreLnsD(lp), as shown in
formula 3. If lp is a core line segment, then lp ∈ NewCoreLnsD(lp).

NewCoreLnsD(lp) = {l||NLnsD(l)| ≥ MinLns

and |NLnsD−lp | < MinLns
} (3)

Updated core line segments: Due to some border line segments become
core line segments, these new core line segments will result in updating the
l-s-clusters within their neighborhood according to the Lemma 1. So the previ-
ous core line segments in the neighborhood of NewCoreLnsD(lp) need to be
updated as well. The set of core line segments which need to be updated is
denoted by UpdateCoreLnsD(lp), as shown in formula 4.

UpdateCoreLnsD(lp) =
{
l|∃lc ∈ NewCoreLnsD(lp), l ∈ NLnsD−lp(lc)

and |NLnsD−lp(l)| ≥ MinLns
} (4)

When adding the new line segment lp, some density-connections in D ×D
may be established. And these connections bring an influence on the distribu-
tion of the l-s-clusters in which NewCoreLnsD(lp) and UpdateCoreLnsD(lp)
are. According to NewCoreLnsD(lp) and UpdateCoreLnsD(lp), we can distin-
guish the following cases to process the l-s-clusters.

(1) Isolated line segment. If NewCoreLnsD(lp) is empty, then the new
segment lp is not a core segment, and there is no new core line segment. In
this case, lp is considered as an isolated line segment.

(2) Create l-s-cluster. If NewCoreLnsD(lp) is not empty and UpdateCoreLnsD(lp)
is empty, then we can say there is no l-s-cluster in the local neighborhood of lp.
In this case, create new l-s-clusters according to the NewCoreLnsD(lp), and
absorb line segments being density-reachable from the NewCoreLnsD(lp) into
the new l-s-clusters.

(3) Extend l-s-clusters. If NewCoreLnsD(lp) is not empty and all elements
of UpdateCoreLnsD(lp) belong to a l-s-cluster, then there is only one l-s-cluster
around local neighborhood of the new segment lp. In this case, the line seg-
ments being density-reachable from the core line segments are absorbed into
the l-s-cluster according to the NewCoreLnsD(lp).

(4) Merge l-s-clusters. If NewCoreLnsD(lp) is not empty and the elements
of UpdateCoreLnsD(lp) belong to several l-s-clusters, then there are more than
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one l-s-clusters around the local neighborhood of the new line segment lp. In
this case, merge the l-s-clusters into one or several, and absorb the line seg-
ments being density-reachable from the NewCoreLnsD(lp) into the merged
l-s-clusters.

4.2. Description of CLnStream

The pseudo code of CLnStream is shown as Algorithm 2. The detail steps of
algorithm are described as following:

(1) Find the neighborhood of the new segment lp.
According to section 4.1, find out the set NewCoreLnsD(lp) and

UpdateCoreLnsD(lp).
(2) Clustering process if lp is a core line segment, otherwise go to (3).
If lp satisfies the conditions of core line segment, all elements in NewCoreLnsD(lp)

are directly density-reachable from lp, and all elements in UpdateCoreLnsD(lp)
are also density-reachable from lp. So the l-s-clusters in local area of the lp
should be merged into a l-s-cluster. Therefore, we first process the new line
segment lp if it is a core line segment, detail code is shown as line 3-13. If
UpdateCoreLnsD(lp) is empty, then a new l-s-cluster is created, and all ele-
ments of NewCoreLnsD(lp) and all line segments being directly density-reachable
from any element of NewCoreLnsD(lp) are absorbed into the new l-s-cluster.
If the elements in the UpdateCoreLnsD(lp) only belong to one l-s-cluster, then
NewCoreLnsD(lp) and all line segments being directly density-reachable from
any element of NewCoreLnsD(lp) are absorbed into the cluster. If the ele-
ments of UpdateCoreLnsD(lp) are attributed to several l-s-clusters, then merg-
ing these clusters into a l-s-cluster, and absorbing NewCoreLnsD(lp) and line
segments being directly density-reachable from any element in NewCoreLnsD(lp)
into that cluster. In the pseudo code, |UpdateCoreLnsD(lp).clusters| stands for
the number of l-s-clusters in UpdateCoreLnsD(lp), and NLnsD(NewCoreLnsD(lp))
is the set of the neighborhood of all elements in the NewCoreLnsD(lp).

(3) Clustering process if lp is not a core line segment.
If lp does not satisfy the conditions of core line segment, there will exist

multiple l-s-clusters within the neighborhood of lp. Clustering processing is de-
scribed as line 15-24. For every element of the NewCoreLnsD(lp) named lq,
we first find the core neighborhood of lq denoted CoreNLnsD(lq), and then per-
form the clustering process under three cases. If the CoreNLnsD(lq) is empty,
create a new l-s-cluster, and then absorb the lq and line segments being di-
rectly density-reachable from lq into the new cluster. If the elements in the
CoreNLnsD(lq) only belong to one l-s-cluster, then lq and all line segments
being directly density-reachable from lq are absorbed into the cluster. If ele-
ments of the CoreNLnsD(lq) are attributed to multiple l-s-clusters, then merge
the multiple l-s-clusters into one l-s-cluster, and absorb the lq and line segments
being directly density-reachable from lq into the merged l-s-cluster.

The l-s-clusters are obtained immediately when current time interval is over.
After that, the TraCluUpdate conducts the update process for trajectory clusters
on the set of l-s-clusters.
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5. TraCluUpdate: online updating trajectory clusters on
TC-Tree

Closed trajectory cluster is represented by a 2-tuples (O, [i, j]), which describes
a maximum number of moving objects laying within a l-s-cluster in each time in-
terval unit during the longest time interval [i, j]. This section introduces a online
updating approach of closed trajectory clusters on TC-Tree storage structure.

5.1. TC-Tree

The TraCluUpdate maintains a single linked list L indexing the trajectory clus-
ters that need to be updated and a closed trajectory clusters binary tree (TC-
Tree). The structure of TC-Tree is shown in Fig. 3. TC-Tree is a binary tree with
multiple root nodes, each non-root node represents a closed trajectory cluster,
and left sub-tree of each root node stores a series of closed trajectory clusters
with same start time. TC-Tree employs the “left child-right sibling” insert rule, so
the relationship of all root nodes is sibling.
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Supposed the set of l-s-clusters in current time interval [j, j +1] is LC[j,j+1],
for the node TCNode = (O, [i, j]), if its left child is not null, then its left child-
node (O′, [i, j + 1]) satisfies the condition that ∃lcik[j,j+1] ∈ LC[j,j+1] makes O′ =

O ∩ lcik[j,j+1]; if the right child of its left child-node is not null, then the right
child-node of its left child-node (O′′, [i, j + 1]) satisfies the conditions of O′′ =
O ∩ lcik[j,j+1], and O′ ∩ O′′ = ϕ. If the left sub-tree of TCNode is null, then for
∀lcik[j,j+1] ∈ LC[j,j+1], (O ∩ lcik[j,j+1], [i, j + 1]) is not a closed trajectory cluster.

This description of TC-Tree further gives its following properties.
Property 1. For a node (O, [start, end]) of TC-Tree, any non-null node

(O′, [start′, end′]) in its left sub-tree satisfies following three conditions: (1) O′ ⊂
O; (2) start′ = start; and (3) end′ > end.

Property 2. For a node (O, [start, end]) of TC-Tree, any non-null node
(O′, [start′, end′]) in its right sub-tree satisfies following two conditions: (1) O′ ∩
O = ϕ; and (2) start′ = start.

Fig. 3 shows an example of TC-Tree during time interval [t1, t3]. TC-Tree
stores efficiently all closed trajectory clusters, and also reveals the spatio-temporal
relationship of closed trajectory clusters. In addition, the L maintains the all cur-
rent closed trajectory clusters of TC-Tree, shown as green linked list in Fig. 3.

Fig. 3. An example of TC-Tree during time interval [t1, t3].

5.2. Update Rules

Let [j, j+1] be the current time interval, LC[j,j+1]={lc1[j,j+1], lc
2
[j,j+1], . . . lc

k
[j,j+1]}

be the set of l-s-clusters obtained by CLnStream. The operation of inserting new
nodes into TC-tree should follow the rule 1.

Rule 1. Consider inserting a new node into sub-tree of TC, a node of TC-
tree, for left sub-tree inserting, if the left child of TC is null, then directly insert
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the new node into its left child, otherwise insert the new node into the right sub-
tree of its left child; for right sub-tree inserting, if the right child of TC is null,
then directly insert the new node into its right child, otherwise insert the new
node into the right sub-tree of its right child.

Lemma 3. Consider a node (O, [start, j]) of TC-Tree, if there exists a l-s-
cluster lci[j,j+1](1 ≤ i ≤ k) such that lci[j,j+1] ⊇ O, then 2-tuples (O, [start, j+1])

is a current closed trajectory cluster.

Proof: the lemma 3 is intuitive. Since (O, [start, j]) is a closed trajectory
cluster with respect to [j − 1, j], if there exists lci[j,j+1] ⊇ O, then O = O ∩
lci[j,j+1] =

∩j
k=start lc

ix
[k,k+1]. Therefore, (O, [start, j + 1]) is a current closed

trajectory cluster. �
Rule 2. Consider a node (O, [start, j]) of L, if there exists a l-s-cluster

lci[j,j+1](1 ≤ i ≤ k) such that lci[j,j+1] ⊇ O, then update this node to (O, [start, j+

1]).

Lemma 4. Consider a node (O, [start, j]) of TC-Tree, if there exists a l-s-
cluster lci[j,j+1](1 ≤ i ≤ k) such that |O∩ lci[j,j+1]| ≥ MinLns and O∩ lci[j,j+1] ̸=
O, then the node (O, [start, j]) is a closed trajectory cluster, and 2-tuples (O ∩
lci[j,j+1], [start, j + 1]) is a object-closed trajectory cluster.

Proof: Due to there exists a l-s-cluster lci[j,j+1] such that O ∩ lci[j,j+1] ̸= O,
so lci[j,j+1] ̸= O and O ∩ lci[j,j+1] ⊂ O. Therefore, (O, [j, j + 1]) is not a trajec-
tory cluster, further the node (O, [start, j]) is a closed trajectory cluster. And
since|O ∩ lci[j,j+1]| = |

∩j
k=start lc

ik
[k,k+1]| ≥ MinLns, it can be derived that

(O ∩ lci[j,j+1], [start, j + 1]) is a object-closed trajectory cluster by Lemma 2.
�

Lemma 5. (Backward closure checking) Consider a object-closed trajec-
tory cluster (O, [start, j + 1]), if there exists a current closed trajectory cluster
(O, [start′, j + 1]) in TC-Tree such that start′ < start, then (O, [start, j + 1])
is not a closed trajectory cluster, otherwise (O, [start, j + 1]) must be a current
closed trajectory cluster.

Proof: First, since (O, [start′, j+1]) is a closed trajectory cluster and start′ <
start, so (O, [start′, start]) is a trajectory cluster, further we can get (O, [start, j+
1]) is not a closed trajectory cluster.

Second, when there is no a current closed trajectory cluster (O, [start′, j+1])
in TC-Tree such that start′ < start, namely, ∀start′ < start, (O, [start′, j + 1])
is not a closed trajectory cluster. we assume that ∃(O, [start′, start])(start′ <
start) is a trajectory cluster, due to (O, [start, j+1]) is a object-closed trajectory
cluster, obviously, (O, [start′, j + 1]) also is a object-closed trajectory cluster.
In another word, there must be a closed trajectory cluster (O, [start′′, j + 1])
such that start′′ ≤ start′. This is in conflict with the precondition, thus, the
assumption is invalid. Therefore, when there is no a current closed trajectory
cluster (O, [start′, j + 1]) in TC-Tree such that start′ < start, (O, [start, j + 1])
is a current closed trajectory cluster. �
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L maintains all current closed trajectory clusters, in order to check whether a
trajectory cluster is closed or not, so we only need to perform backward closure
checking by comparing with nodes in L whose start time is earlier than start.

Rule 3. Consider every node (O, [start, j]) of L, if there exists a l-s-cluster
lci[j,j+1](1 ≤ i ≤ k) such that |O ∩ lci[j,j+1]| ≥ MinLns and O ∩ lci[j,j+1] ̸= O,
then backward check whether the (O, [start, j+1]) is closed or not, if yes, insert
the trajectory cluster (O, [start, j+1]) into the left sub-tree of (O, [start, j]), and
insert the (O, [start, j + 1]) into L at next of (O, [start, j]). After (O, [start, j]) is
updated, delete it from L.

By lemma 2, every 2-tuples (lci[j,j+1], [j, j+1])(1 ≤ i ≤ k) is an object-closed
trajectory cluster, hence we get rule (4).

Rule 4. For every l-s-cluster lci[j,j+1](1 ≤ i ≤ k), if (ci[j,j+1], [j, j = 1]) is a
closed trajectory cluster, then insert the new node (lc[j,j+1]i , [j, j + 1]) into left
sub-tree of a new root node, and insert the new node into the tail of L.

By lemma 3 and lemma 4, all nodes indexed in L are current closed trajec-
tory cluster after updating, and the start time of nodes is incremental from head
to tail in L.

5.3. Algorithm of TraCluUpdate

Pseudo code of TraCluUpdate is shown in Algorithm 3. Line 1-16 describe the
updating process of the linked list L, TraCluUpdate performs the rule 2 and rule
3 on nodes of L in turn first. Line 23-28 is detailed code of backward closure
checking insert rule. Finally, rule 4 is carried out on L, as depicted line 17-22.

TC-Tree stores all closed trajectory clusters, we can traverse the TC-Tree to
find out the closed trajectory clusters when user issues request to query. And
because the updating linked list L maintains the all current closed trajectory
clusters, we can directly search the L for responding the query on current closed
trajectory clusters.

6. Experiment

In this section, comprehensive experiments are conducted on real data and syn-
thetic datasets to evaluate the performance of CTraStream compared against
CMC [10] and TCMM [27]. The recently and mostly related works to our algo-
rithm are the convoy pattern discovery and incremental trajectory clustering.
CMC proposed in [10] is a incremental solution for discovering convoy being
similar with trajectory cluster from trajectory database. TCMM adapts the micro-
and macro-clustering framework for handling incremental trajectory data. How-
ever, TCMM is not designed for clustering trajectory data streams. This is be-
cause sub-trajectory micro-clustering employed in TCMM has to wait for nontriv-
ial number of new points accumulated to form sub-trajectories, which consumes
additional buffer space and waiting time.

All the algorithms are implemented in C#, and all the experiments are per-
formed on a 2.8 GHz I7 processor with 4GB memory. The system runs win-
dows7 operating system and visual studio 2010.
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6.1. DataSets and Experimental Methodologies

Datasets. Data 1 is a real trajectory dataset from GeoLife project [25] con-
ducted by Microsoft Research Asia, which includes GPS trajectory dataset of
178 users in a period of over four years (from April 2007 to October 2011). A
GPS trajectory of this dataset is represented as a sequence of time-stamped
points, each of which contains the information of latitude, longitude and altitude.
This dataset contains 17,621 trajectories with a total distance of 1,251,654 kilo-
meters and a total duration of 48,203 hours. These trajectories were recorded
by different GPS loggers and GPS-phones, and have a variety of sampling
rates. 91 percent of the trajectories are logged in dense, e.g. every 1-5 sec-
onds or every 5-10 meters per point.

Data 2 is a sub set of real trajectory data from T-Drive project [7] carried out
by Microsoft Research Asia, which provides a smart driving direction services
based on GPS trajectories of a large number of taxis. It helps users to find out
the practically fastest path to a destination at a given departure time. It has
been built based on a real-world trajectory dataset generated by 30,000 taxis
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in Beijing in a period of 3 months, from February 2nd to February 8th in 2008.
Data1 and data2 are also used in many previous studies, such as [24][14].

Data 3 is a GPS data set including 10 days’ GPS data of 47 deer from
Starkey project [23]. The dataset includes around 287,000 locations of elk, deer,
and cattle that were collected during these seasons and years in the Main Study
Area. Each animal location is provided as a point estimation (term as coordina-
tions in the Easting and Northing direction) and also placed in the center point of
each 30x30meter pixel that encompasses the point estimation. This database
represents one of the largest data sets of animal locations ever compiled, re-
leased, and documented for use by scientists, students, and educators.

Data 4 is generated by Thomas Brinkhoff’s network-based generator of mov-
ing objects [22], which includes trajectories of 200 moving objects with 200
sampling timestamps. This synthetic data generator has been used to generate
synthetic data in many studies, also used in [13].

Experimental Methodologies. To confirm the behaviors of the algorithms in
real applications, we run all the experiments utilizing both the synthetic and the
real datasets. For the experiments, we run the experiments for multiple rounds,
and get the average value.

We measure two key metrics for stream clustering algorithms, effectiveness
and efficiency. The effectiveness of clustering algorithms refers to how the al-
gorithm can effectively discover all clusters, while the efficiency stands for the
clustering time, which is more important for stream clustering algorithms. In par-
ticular, we measure the average clustering time of each line segment and aver-
age running time it takes to clustering for a long time under different parameters.
This running time includes the time utilized by the two stages of trajectory data
stream clustering. For the effectiveness evaluation, we compare the clusters
discovered by our method with CMC. We further verify the effectiveness of our
algorithms with respect to different timestamps on real and synthetic datasets.

In addition, the effect of input parameters on efficiency is evaluated in pa-
rameter sensitivity analysis (section 6.4). Sensitivity analysis is the study of how
the inputs effect the algorithm. The purpose is test the robustness of our algo-
rithm in the presence of uncertainty. The experimental methodologies are also
used for evaluating performance of clustering algorithms in [8][27].

6.2. Effectiveness

First, we verify the effectiveness of CTraStream on four datasets. Some tested
cases of Clustering results of CTraStream, comparing with CMC, is shown in
Fig. 4-Fig. 7. Setting same parameters for the two algorithms: e=150, MinLns=3
on data 1 and data 2, e=200, MinLns=3 on data 3, e=20, MinLns=3 on data
4. We check the results at two timestamps on each dataset. The experiment
results show that most of clusters discovered by CTraStream are consist with
convoys mined by CMC. In particular on data 3, when t=90, CTraStream discov-
ers 44 closed trajectory clusters including 3 current closed trajectory clusters,
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while CMC finds out 51 closed Convoys including 3 current closed convoys.
When t=110, CTraStream discovers 50 closed trajectory clusters including 4
current closed trajectory clusters, while CMC finds out 61 closed convoys in-
cluding 4 current closed convoys. As shown in Fig. 4, two closed convoys mined
by CMC on data 1 lose a closely moving object compared with the correspond-
ing trajectory clusters discovered by CTraStream. And Fig. 5(a) and Fig. 5(b)
demonstrate the same situation on data 2. Fig. 6(a) and 7(a) show two current
closed trajectory clusters on data 3 and data 4 respectively, and Fig. 6(b) and
6(b) show corresponding current closed convoys. The trajectory clusters dis-
covered by CTraStream contain more relative time information compared with
the convoys discovered by CMC. Fig. 6(c) and 6(d) depict respectively a closed
trajectory cluster and two closed convoys on data 3. Obviously, CMC divides
a group movement into two convoys. In conclusion, compared with CMC, the
trajectory clusters discovered by CTraStream are closer to real movement track
of moving objects with respect to the same parameters.

Fig. 4. Effectiveness comparison between CTraStream and CMC on data 1

6.3. Efficiency

Scalability. Next, a running time test is carried out on four datasets to verify
the data stream processing efficiency of CTraStream with parameters e=150,
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Fig. 5. Effectiveness comparison between CTraStream and CMC on data 2

Fig. 6. Effectiveness comparison between CTraStream and CMC on data 3
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Fig. 7. Effectiveness comparison between CTraStream and CMC on data 4

MinLns=3 on data1 and data 2, e=150, MinLns=3 on data 3, e=40, MinLns=4
on data 4. The running time of CTraStream in each time interval unit is reported
in Fig. 8, in which the running time on data 1, data 3 and data 4 refer to left y-
axis, and the running time on data 2 refers to right y-axis. The results show that
the running time in every time interval unit fluctuates smoothly within a small
range with increase or decrease in timestamp. And the results also demon-
strate that our algorithm have a good scalability. In addition, Statistics on the
experimental results shows that average clustering time of CTraStream for a
line segment is about 0.42 ms, 0.64 ms, 0.42 ms and 0.3 ms on data 1, data 2,
data 3 and data 4, respectively.

Efficiency comparison. With increase in received trajectory points, the run-
ning time of CTraStream compared against CMC, TCMM on data 1-4 is pre-
sented in Fig. 9. It is noted that CTraStream and CMC use same parameter
values on same datasets, while TCMM sets dmax=4*e on the corresponding
datasets. The running time is the cumulative time of clustering all received tra-
jectories from beginning. In Fig. 6, CtraStream and CMC refer to the left y-axis,
and TCMM refers to right y-axis. The results of our experiments indicate that
the cumulative time of CTraStream is slightly linear over the number of received
trajectory points. Although TCMM can deal with the incremental trajectory data,
it only considers the spatial correlation. And since treating each isolated line
segment as a micro-cluster, hence the efficiency will drop with increase of re-

ComSIS Vol. 10, No. 3, June 2013 1311



Yanwei Yu et al.

Fig. 8. Clustering time of CTraStream during each time interval unit on four
datasets

Fig. 9. Comparisons of clustering time of CTraStream, CMC, and TCMM on four
datasets

ceived trajectory points. CMC employs DBSCAN to cluster received points on
every timestamp, and then extracts their common objects and finds the max-
imum timestamp set to form convoys. When the number of moving objects is
bigger, CMC will have a much lower efficiency than CTraStream, as shown in
the experiment on data 2.
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Fig. 10. Efficiency of CTraStream, CMC and TCMM w.r.t. e on four datasets

6.4. Parameter Sensitivity

The step of line segment stream clustering in CTraStream has two important
parameters: e and MinLns. They determine the neighborhood range of the
line segments. A larger e and a smaller MinLns results in large l-s-clusters
during time interval unit, so that the trajectory clusters is more relax; while a
small e and a larger MinLns has an opposite effect. We evaluate the effect
of the parameters on the clustering efficiency on four datasets for CTraStream,
TCMM and CMC. Fig. 10 shows the results with respect to e, CTraStream and
CMC refer to the left y-axis, and TCMM refers to the right y-axis. We can see
that with increase of e, CTraStream has a slight growth in running time, and for
CMC, there is a slight fluctuation, but it has larger change range compared with
CTraStream, while TCMM have a significant drop in running time. TCMM only
has one parameter of e, so only the running time of CTraStream and CMC with
respect to MinLns are shown in Fig. 11. CTraStream refers to the left y-axis,
and CMC refers to the right y-axis. Variation of MinLns has a modest effect on
efficiency of CTraStream and CMC. However, comparing with TCMM and CMC,
the time taken by CTraStream is still significantly less specially for high volumes
of moving objects.

ComSIS Vol. 10, No. 3, June 2013 1313



Yanwei Yu et al.

Fig. 11. Efficiency of CTraStream and CMC w.r.t. MinLns on four datasets

7. Conclusion

Discovering trajectory clusters from trajectory data stream is challenge, and ex-
isting solutions to related problems are ineffective in processing data stream.
This paper proposes a trajectory data stream clustering algorithm based on
density, CTraStream, to extract all closed trajectory clusters from trajectory
data streams online. CTraStream considers the incremental trajectories of mass
moving objects as line segment streams. In the first stage, a density based line
segment stream clustering algorithm is presented and a set of l-s-clusters is
obtained at end of current time interval. In the second stage, a TC-tree is main-
tained to store all closed trajectory clusters, an is updated according to the set
of l-s-clusters by performing the update rules.

CTraStream effectively solves the problem of trajectory data stream clus-
tering. Our experimental comparison of CTraStream, CMC and TCMM on a
number of real and synthetic data sets demonstrates the effectiveness and
efficiency of our algorithm. However, there may be problems where this as-
sumption does not hold, i.e. parameters can adjust adaptively with change of
trajectory data stream. In future work, we plan to investigate this case and apply
CTraStream into real-time monitoring system of mass moving objects to detect
automatically anomalous motion patterns.
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