
UDC 004.43

Program Comprehension for Domain-Specific
Languages*

Maria João Varanda Pereira1, Marjan Mernik2, Daniela da Cruz3 and Pedro
Rangel Henriques3

1Polytechnic Institute of Bragança
Campus de Sta. Apolónia, Apartado 134 – 5301-857, Bragança, Portugal

mjoao@ipb.pt
2University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ul. 17, 2000 Maribor, Slovenia

marjan.mernik@uni-mb.si
3University of Minho - Department of Computer Science,

Campus de Gualtar, 4715-057, Braga, Portugal
{danieladacruz,prh}@di.uminho.pt

Abstract. In the past, we have been looking for program comprehension
tools that are able to interconnect operational and behavioral views,
aiming at aiding the software analyst to relate problem and program
domains in order to reach a full understanding of software systems. In
this paper we are concerned with Program Comprehension issues
applied to Domain Specific Languages (DSLs). We are now willing to
understand how techniques and tools for the comprehension of
traditional programming languages fit in the understanding of DSLs.
Being the language tailored for the description of problems in a specific
domain, we believe that specific visualizations (at a higher abstraction
level, closer to the problem level) could and should be defined to
enhance the comprehension of the descriptions in that particular
domain.

Keywords: program understanding, problem comprehension, DSLs.

* This work is supported by the grant for Slovenia-Portugal Cooperation in Science and
Technology, SLO-P-11/01-04: Program Comprehension for Domain-Specific
Languages

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 2

1. Introduction

Domain-Specific Languages (DSLs) ([1–10]) are languages tailored to specific
application domains and offer users more appropriate notations and
abstractions. By definition, DSLs are more expressive and easier to use than
General-Purpose Languages (GPLs) for the domain in question, with
corresponding gains in productivity, and reduced maintenance costs. Some
specific goals of DSLs such as:

− to make programming more accessible to end-users;
− to improve correctness of the written programs, and
− to improve the program developing time,

seem to follow on implicitly from the DSL definition. But, have these claims
really been proved in practice? All the above claims have a common
denominator in the assertion that DSL programs are easier to comprehend.

Therefore, in the project Program Comprehension for DSLs we have the
following objectives:

− to measure how much easier it is to use (learn, develop, evolve) and
understand DSLs when compared to GPLs,

− to ascertain whether if existing program comprehension approaches,
techniques, or even tools are applicable to DSLs, and

− to allow the enhancement of DSL program comprehension tools by
enabling user-centric visualization.

Program Comprehension (PC) [11, 12] is a hard cognitive task that involves
constructing a mental model of the program and trying to reconstruct the
thoughts of the original programmer. This process becomes easier when
concrete representations are automatically produced, revealing different
aspects of the program’s structure and behavior. Hence, program
visualization and program animations are important aids for accomplishing
this task. Even more important, is the ability to create visual representations
that allow the programmer to interconnect the execution of program
statements with the effect produced by them; thus allowing visualization of the
relation between problem and program domains.

We discuss in the paper how this generic assertion—which is the basis for
PC in the context of traditional programming languages—can be more
adequately exploited within the context of DSLs.

The paper is organized as follows. In Section 2, the Cognitive Dimensions
Framework (CDF), used to assess visual languages, is briefly introduced and
its application to study the usability of DSLs is discussed. Existing approaches
and techniques for the Program Comprehension of GPLs are shortly revisited
in Section 3, where we also discuss their reuse in building specific tools to
help in the comprehension of DSL programs. A description of user-centric
visualization (the concept and a possible realization) follows the Section 4.
Finally, two examples that illustrate our user-centric visualization idea are
included in Section 5. The paper is concluded in Section 6.

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 3

2. Using and Understanding DSLs

Cognitive Theory ([13–16]) provides some guidelines on how to measure a
human’s ability to program. Cognitive Dimensions Framework [17] (or CDF for
short) provides cognitively-relevant aspects which can be used to determine
how easy it is to learn the language, develop, evolve, and comprehend a
program.

These cognitive dimensions, included in the referred CDF, are:
− Closeness of mapping - languages should be task-specific,
− Viscosity - revisions should be painless,
− Hidden dependencies - the consequences of changes should be

clear,
− Hard mental operations - enigmatic constructions should not be

allowed,
− Imposed guess-ahead - user should not be obliged to premature

commitment,
− Secondary notation - languages should allow for encompassing

additional information,
− Visibility - search trails should be short,
− Consistency - user expectations should not be broken,
− Diffuseness - language should not be too verbose,
− Error-proneness - notation should inherently catch mistakes avoiding

errors,
− Progressive evaluation - the user should get immediate feedback,
− Role expressiveness - the relationships among components should

be clearly seen,
− Abstraction gradient - languages should allow different abstraction

levels.
These cognitive dimensions framework has been used to assess the

usability of visual programming languages [17–19], while no such study exists
for DSLs. One of the main goals of the proposed project is to study how easy
it is to use DSLs and comprehend the respective programs by preparing a set
of questions guided by those dimensions. Those questions will then be used
to compare DSL programs with the equivalent GPL ones.

Below are some speculations concerning the gain afforded by the use of
DSLs which will be proved.

Closeness of mapping refers to how wide the semantic gap is between the
problem and solution spaces. It was shown in the study [20] that plenty of low-
level primitives, which are often purely syntactical, is one of the biggest
cognitive barriers for end-user programmers. In this regard DSLs can
outperform GPLs. On the other hand, an experienced programmer
comprehends program not just as a series of statements but as a structure of
components working together. In other words, a programmer needs to
understand operations, and data structures, as well as program structure.
Therefore, it is important to study whether end-users have problems when

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 4

composing components together within DSL programs. They might
understand primitives well, but have difficulties putting pieces together.

Viscosity refers to how much effort is needed to perform small changes. It
is somehow surprising that visual programming languages have high viscosity
yet the opposite is true for textual languages. This is due to spatial
relationships in visual languages, where even a small change requires to
rearrange several components. Since many DSLs are textual, we expect them
to perform well in this dimension too; the high abstraction level and usual
simplicity of those languages should also have a positive influence in this
dimension, inducing low viscosity.

Hidden dependencies refer to the interactions among program components
(short and long-range) that are not immediately visible. Changing one part
might have an undesirable effect on the other parts of the program. Textual
languages often suffer from severe hidden dependency problems (e.g., side
effects, aliasing, ...). An open question is: can hidden dependencies be
avoided in DSLs by proper design?

Hard mental operations refer to points in the program where the
programmer needs to think hard in order to understand it or even needs
additional tools. Another open question deserving further investigation is: can
DSL be free of such hard mental operations?

Imposed guess-ahead refers to situations where the programmer is forced
to make a decision before he has the information he needs. This often
happens when there are a lot of internal dependencies, when constraints on
the ordering exist, or when inappropriate notation is used.

Secondary notations refers to the possibility of using other mechanisms
(e.g., grouping, positioning, commenting, interleaving code of a different
language) to convey important information about the code. Some studies [17]
show that textual languages allow a substantial amount of secondary notation;
and what about DSLs: do they usually allow the use of secondary notations?

Visibility refers to code which can be directly accessible without additional
cognitive work. The simple measure would be the number of steps to make a
given component visible. Textual languages usually have better visibility than
visual languages. This is true if programs are relatively short. However, it is
necessary to research whether this is the case for DSLs.

Consistency refers to the ability to infer the rest of the language from
current incomplete knowledge of it. This much depends on proper language
design rather than on differences among GPLs and DSLs. Anyway, DSL has
fewer concepts and such language property might be easier to achieve.

Diffuseness refers to the number of symbols needed to express the
meaning. By definition, DSLs use existing domain notation which should be at
an appropriate level of verbosity, so it is expected that they exhibit low
diffuseness.

Error proneness refers to the capability of a language to induce ’careless
mistakes’. GPLs, due to their extension and intrinsic complexity, are usually
error-prone. We conjecture that this problem can be overcome in the context
of DSLs due to the narrow domain they are designed for; usually a DSL is

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 5

much smaller and simpler, so mistakes are more unlikely to happen. This
intuition also requires deep study to be proved.

Progressive evaluation refers to the ability to test an incomplete program.
No general statement can be made about this ability concerning DSLs as it
depends completely on the domain and mainly on the philosophy underlying
the language design. So we can say that this is another open item for further
investigation.

Role expressiveness refers to the ability to see how each component of a
program relates to the whole. The high role expressiveness can be more
easily achieved in DSLs due to domain specifics and shorter programs.

Abstraction gradient refers to the minimum and maximum levels of
abstraction. DSLs might suffer from the problem that raising abstraction level
to the point where end-users are unable to handle them, since hidden
dependency might be bigger.

Some of these cognitive dimensions (e.g., hidden dependencies, hard
mental operations, secondary notation, visibility, and role expressiveness) can
be enhanced by DSL program visualization and program comprehension
tools. This topic is discussed in the rest of the paper.

3. Comprehension Tools for DSLs

The second objective of the work under discussion is to identify the precise
needs in terms of information and visualization for DSL program
comprehending, in order to know if the existing approaches, techniques and
tools for the comprehension of GLP programs can be reused. Of course, this
investigation will lead to the development of aid tools. Just as happens with
program understanding tools, the tools for Domain Specific Program
Comprehension (DsPCTools) have to extract and display static or dynamic
data about a program, in order to help the analyst understand its structure and
behavior.

In the context of the research described here, the first task is to identify
information that would be useful for comprehension and that must be
extracted from the source program. This stage is specific and should be
worked out from the beginning.

Then, we search for suitable approaches (methods and techniques) to
extract, and store this information. According to our background on program
comprehension ([21–24]), we are convinced that existing PC techniques can
be used for DSLs.

We have some experience with two different approaches: on one hand, we
have developed an animator that does not modify the source program and
uses abstract interpretation techniques, aimed at an easy and systematic
adaptation to cope with different programming languages; on the other hand,
for the development of other PC tools we have applied a technique called
program instrumentation that modifies the source code (inserting inspector
functions) in order to collect dynamic information at runtime.

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 6

In the first case, the source program is not compiled and so: variables are

not converted into memory locations; algebraic operations are not
transformed into register operations involving value-transfers among memory
addresses; control flow into jumps to code addresses; and input/output into
read/write operations on files. Instead, we work with abstractions of program
concerns—such as assignment, algebraic operations, conditions for
controlling the execution flow, input/output, etc.); then we interpret those
abstractions (no assembly code is executed).

Concerning the second approach, we have expertise in weaving inspectors
in the source program to catch and record the functions that are actually
called during execution and their concrete parameters (or in a Web context,
the program units that are interpreted by the server, or the links really visited).

The development of both approaches—abstract interpretation and code
instrumentation—relies completely on traditional grammar-oriented
techniques for compiler writing and implementation. We use Translation
Grammars or Attribute Grammars [25] to specify the tools, and resort to
Compiler Generators for automatically producing the code of the target
processors. As DSLs processing is also completely supported by grammars
technology we sustain the statement above that PC techniques are reusable
in this specific context.

Techniques to visualize and navigate over the information so far
collected—which constitutes the third step in this work—may also be inherited
from generic PC approaches. This intuition comes directly from the above
referred evidence—the same internal representation is usable for both
contexts.

What should then be tuned specifically for each domain is the visual
representations to be employed by the visualizers in order to make the
perception easier and clearer. When conceiving visual representations to
display the static or dynamic data extracted from programs written in GLPs, it
is impossible to choose icons or drawings which are too expressive for the
sake of generality; moreover and given such a broad range of application
areas, it is fairly difficult to find systematic and generic ways to graphically
represent the problem domain adequately. In contrast, we hope that, working
with DSLs, we can obtain total profit from the inherent speciality, in order to
look for expressive and adequate visual representations for each domain.

Concerning the implementation of such a strategy, we suggest to follow
Alma’s approach [26]. Alma is a system for program visualization and
animation that deals easily with different programming languages and allows
for the construction of more appropriate visualizations for each domain. The
purpose of this tool is to help the programmer to inspect data and control flow
for a given program (static view of the algorithm realized by the program —
visualization), and to understand its behavior (dynamic view of the algorithm
— animation).

The core of such tool is language independent; it is similar to a compiler’s
Back-End (BE) that takes as input an abstract representation—as
intermediate representation, between the FE and the BE, we use a Decorated

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 7

Abstract Syntax Tree (DAST)—and implements the visualizer and the
animator components in a systematic way. This is achieved by means of two
rule bases, one for the visualization of tree nodes, and another for tree
rewriting.

To process a concrete programming language, Alma is customized by
providing a dedicated Front-End (FE) that converts the input programs into
internal abstract representation.

Concerning the characteristics of each particular DSL, we are aware that
we need to study as many cases as possible to understand whether the
specific language concepts and constructions require definition and inclusion
in our internal representation of new abstraction, or even adaptation of their
operational semantics.

However for all the cases worked out until now, the abstractions provided
by the original DAST were sufficient. The next section introduces how to apply
ALMA’s approach in the implementation of a user-centric program
comprehension tool.

4. User-centric Comprehension Tools for DSLs

As previously stated, there are many different DSLs (focused on different
targets and following different styles). DSLs can have a more procedural
(imperative) style or follow a more declarative one. In the procedural case,
those languages describing data and operations over data; can be considered
as very similar to the GPLs. Declarative DSLs usually describe high-level
specifications, data or activity models, etc.; in this case, it makes no sense at
all to analyze the descriptions written in that DSL from an operational point of
view, because typically they do not have an associated execution model.

It means that any direct influence of the language itself during the
comprehension process needs further investigation. In this section we discuss
how to explore domain specific property in order to enhance the visual
representation to be used by comprehension tools.

As previously stated, the semantic gap between the problem and program
domains is much smaller in the DSLs context. Program and problem
comprehension can be achieved easily because it is easier to visualize a
conceptual mapping between both. Within the problem domain level,
visualizations deeply depend on this domain. The big challenge in this
direction relies precisely on the fact that a DSL has special characteristics that
imply a deeper study concerning the kind of visualizations that are more
appropriate for each case.

So, it would also be useful to construct visualization tools where end-users,
not language designer or developer, can easily specify their own visualization
(End-user programming: [27–29]).

In this section, we expose one solution which is based on
visualization/animation system Alma [30]. The main idea is to build a graphical
editor. The graphical editor will enable the end-user to associate each node of

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 8

the DAST with a geometric figure (a square, circle, etc), or an image; and
also, it will enable the end-user to associate each node with an external (end-
user defined) drawing function. This will permit the creation of specific
drawings parameterized to fit well in each particular DSL. The external
function will be called using the attributes available in the DAST nodes to tune
the picture to each concrete situation, as illustrated in the next Section for the
Robot example (see Section 5.1) - a parameterized external function is
necessary to show the Robot movements in the room.

We can include that functionality, keeping the tree visualizer engine generic
and unchanged; and also the animator system, based on a tree rewriting
engine, is kept unchanged.

This approach is quite easy to implement and will grant to the
visualizer/animator system, customized for a concrete DSL, effective
improvement and better quality as an aid tool for understanding
specifications/programs written in that specific language.

5. Illustrating User-centric Comprehension Tools for DSLs

In this section, and aiming at illustrating the ideas proposed, we introduce two
DSLs and show the visualizations that should be created by generic
DsPCTools enhanced with the user-centric approach, in order to refine
problem domain visualization.

Controlling a Robot, a first example of DSL
In this section we take, as an example, a program that controls the

movements of a cleaning robot. Let us assume that Roby is a small robot
whose mission is to clean a rectangular area; a grid is used for quick
referencing the robot’s position (line 0 is the top, and column 0 is the
leftmost). Roby can move straight-ahead up, down, right and left, a given
number of steps (one step corresponds to one grid square).

To control Roby, we use a simple DSL that basically allows us to choose
the direction and length of each straight movement in order to, sequentially,
compose its activity. The program below is written in the robot control
language (RCL); after setting the start position as the upper left corner (the
square with coordinates 0,0), we define its cleaning path as 3 steps down, 7
steps right, 2 steps up, and 4 more steps left, before stopping:

xi= 0
yi= 0
DOWN 3
RIGHT 7
UP 2
LEFT 4

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 9

By aiming at making a clear distinction between the abstraction levels of
the operational (at program domain level) and behavioral (at problem domain
level) views, and willing to clarify how each one contributes for the program
understanding, the purpose of this example is to produce two different views
from the same input program.

Fig. 1 is a screen-shot obtained after executing the last statement in the
program; it corresponds to the complete animation scenario, exhibiting the
final state. This is an operational view.

Another possible animation is shown in Fig. 2; notice that in this case only
the last visualization is shown (the path, or the intermediate robot positions
are kept). This one is more abstract and shows the effect produced by the
program over the robot.

To produce this behavioral view, the visualization doesn’t show anymore,
variables and operations; instead, they are now concerned with displaying the
external objects controlled by the program.

Fig. 1. Robot Operational Animation

The interesting, and perhaps difficult, point is to understand what the
relevant attributes are. In this example, it is clear that what we need to draw
the robot in each cleaning position.

The robot example is a typical case where it is more useful to inspect the
object’s evolution (behavioral view) than the program behind it (operational
view). However both play an important role in the program comprehension
process. In our opinion, visualization of these two views makes possible the
relationship between the two different domains and follows Brooks theory [11]
of a complete mental representation of a program. The DAST shown in Figure
3 is obtained from the program listed above, using a map between the robot
language and DAST nodes. The assignment statements (in the robot control
language) were represented by ASSIGN nodes, and the movement
statements (defining the direction and number of steps) were represented by
LST nodes.

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 10

Fig. 2. Robot Animation

Fig. 3. DAST generated for the robot example

Then we can assign rewrite and visualization rules to the nodes of the
DAST in order to create a visual representation, and animation; these rules

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 11

make use of the semantic information stored in the Identifier table shown in
Fig. 4.

Fig. 4. Identifier Table containing the Name, Type, Class, Value and memory Address

of the program variables and the parameter kind (TParam={IN, OUT, INOUT})

The rewrite rules used in this example evaluate the robot coordinates after
the execution of each movement statement, looking up, once again, on the
Identifier Table. The written form of each rewrite rule is as follows:

rew_rule(idProd)= <t: tree-pattern>,
 (cond: condition),
 <newProdId: idProd : newtree: tree-pattern>,
 {eval: attribute_evaluation}

<tree-pattern>=<root, child_1, ..., child_n>

In this template, cond is a boolean expression (by default, evaluates to
true) and eval is a sequence of statements to compute the new attribute
values (the default action is skip). Below is the rewrite rule associated with a
production, named plst, of RCL grammar:

rew_rule(plst)=<l:LST, a:CONST, b:CONST>,
 (getvalue(b)!=NULL),
 <l:LST, a:CONST, b:CONST>,
 {x=getTableVal(xi);
 y=getTableVal(yi);
 calculate(x,y,getValue(a),getValue(b))
 putTableVal(xi,x);
 putTableVal(yi,y);}

The written form of each visualization rule is as follows:

vis_rule(idProd)= <t: tree-pattern>,

(cond: condition),
{dp: drawing_procedure}

In this template, cond is a boolean expression (by default, evaluates to

true) and dp is a sequence of one or more calls to elementary drawing
procedures.

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 12

A set of visualization rules, like the one listed below, originates the picture

shown in Fig. 1. The purpose of such a set of rules is to display the robot
command, its parameter, and the new values for xi and yi.

vis_rule(plst)= <l:LST, a:CONST, b: CONST>,
 (),
 {drawRect(a.name,a.value);
 draw_arrow(b.name);
 drawRect("xi",getTableVal(xi));
 drawRect("yi",getTableVal(yi));}

We can modify the abstraction level of the visualization produced,
associating new visual rules (drawing different kinds of pictures) to different
nodes. The idea is to create new visualization rules in order to associate more
abstract drawings to upper tree nodes (nodes corresponding to high level
grammar symbols). Concerning this example (Roby cleaning task) we want to
use new visualization rules to be able to inspect the object behavior (Roby
walking along the cleaning area), instead of the behavior of the control
program.

By using the same rewrite rule (above defined to evaluate Roby’s
coordinates), and a new visualization rule (listed below and now associated
with the RCL grammar named pprocdef), that draws the robot in different
positions, we will obtain the picture shown (overlapped) in Fig. 2.

vis_rule(pprocdef)= <a:PROCDEF, b:STATS>,

(),
{drawrobot(getValue(xi), getValue(yi))}

The function drawrobot draws the robot in those coordinates. This

function could also use other parameters in order to put different robot images
depending on its direction as we can see in Fig. 2.

FDL - Feature Description Language
As a second example, we chose FDL, a Feature Description Language

introduced in [31] aiming at the description of objects in knowledge domains.
The following sentence is an example of a FDL description:

car: all(carBody,Transmission,Engine,HorsePower,pullsTrailer?)
Transmission: one_of (automatic, manual)
Engine: more_of (electric, gasoline)
HorsePower: one_of (lowPower, mediumPower, highPower)

The specification above describes a car in terms of its parts. A car is
composed by other features. Each of these features can be atomic or
composite. This DSL has a set of operators: all, one_of, more_of and ?
for optional features. This FDL specification will be translated to an internal

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 13

representation. Then, a set of visualization rules will be applied in order to
generate dual views.

Fig. 5. FDL operational view

Figure 6. FDL diagram

Fig. 5 shows the operational view. This kind of view can be constructed
using visualization rules associated to lower level nodes of the DAST.

The behavioral view is shown the Fig. 6. Here we use a visualization rule
associated with the root of the syntax tree. The main idea is to represent the
object defined by the specification visualizing its behavior and checking the
attribute values in the identifier table. In this case, a FDL diagram can be
generated emphasizing the relationship between entities.

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 14

6. Conclusions

This paper introduces the three main research directions of our ongoing
bilateral (Portugal/Slovenia) project on Program Comprehension for DSLs
(named DSLpc).

We started the paper by briefly revisiting the definition of DSL, and
analyzing its actual impact. We stated that this concept implies that a DSL
program should be more concise, natural and clearer than the equivalent
solution (to solve the same problem) expressed in a GPL. This perspective
leads directly to our first concern in this project: to understand and measure
how easy it is to use (learn, develop, and evolve) and comprehend programs
written in DSLs; this task, similar to a language usability assessment, is hard
but it should be done. We will carry out that study using direct observation,
and questionnaires to measure the user comprehension of DSL and GPL
descriptions (this requires the preparation, application and analysis of
appropriate inquiries).

The three main components of a Program Comprehension tool were
revisited.

Then we affirm that standard approaches to deal with GPLs can be reused
with DSLs. Our second goal in this project is precisely concerned with proving
the statement above. This second task will also identify the particular
information needs in the context of DSL comprehension.

The third direction of our research will focus in the enhancement of DSL
program comprehension tools, by enabling user-centric visualization. We
exposed a concrete solution improving Alma, a visualization/animation
system, with extra functionality to allow the user to specify for each particular
DSL, the visual representation he wants to apply.

7. References

1. Mernik, M., Heering, J., Sloane, T.: When and how to develop domain-
specific languages. ACM Computing Surveys 37(4) (2005) 316 -344

2. Kosar, T., Lopez, P.M., Barrientos, P.A., Mernik, M.: A preliminary study
on various implementation approaches of domain-specific language. Inf.
Softw. Technol. 50(5) (April 2008) 390–405

3. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an
annotated bibliography. SIGPLAN Not. 35(6) (June 2000) 26–36

4. Wile, D.: Lessons learned from real DSL experiments. Sci. Comput.
Program. 51(3) (2004) 265–290

5. Wile, D.: Supporting the DSL spectrum. J. Comput. Inform. Techn. 9(4)
(2001) 263–287

6. Bentley, J.: Little languages. Communications of the ACM 29(8) (1986)
711–721

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 15

7. Kamin, S.N.: Research on domain-specific embedded languages and
program generators. Electronic Notes in Theoretical Computer Science
14 (1998)

8. Thibault, S.: Domain-specific languages: Conception, implementation and
application. PhD thesis, University of Rennes (1998)

9. Klint, P., Laemmel, R., Verhoef, C.: Towards an engineering discipline for
grammarware. ACM Transactions on Software Engineering and
Methodology 14(3) (2005) 331–380

10. Spinellis, D.: Notable design patterns for domain-specific languages.
Journal of Systems and Software 56(1) (2001) 91–99

11. Brooks, R.: Using a behavioral theory of program comprehension in
software engineering. In: ICSE ’78: Proceedings of the 3rd international
conference on Software engineering, Piscataway, NJ, USA, IEEE Press
(1978) 196–201

12. Storey, M.A.: Theories, methods and tools in program comprehension:
Past, present and future. In: 13th International Workshop on Program
Comprehension (IPWC’05). (2005)

13. Pane, J.F., Myers, B.A., Miller, L.B.: Using HCI techniques to design a
more usable programming system. (2002) 198–206

14. Blackwell, A.F.: Ten years of cognitive dimensions in visual languages
and computing: Guest editor’s introduction to special issue. J. Vis. Lang.
Comput. 17(4) (2006) 285–287

15. Petre, M.: Cognitive dimensions ”beyond the notation”. Journal of Visual
Languages and Computing 17(4) (2006) 292–301

16. Clarke, S., Becker, C.: Using the cognitive dimensions framework to
measure the usability of a class library. In: Proceedings of the First Joint
Conference of EASE PPIG (PPIG 15) (2003)

17. Green, T., Petre, M.: Usability analysis of visual programming
environments: a ’cognitive dimensions’ framework. Journal of Visual
Languages and Computing 7(2) (1996) 131–174

18. Yang, S., Burnett, M., DeKoven, E., Zloof, M.: Representation design
benchmarks: a design-time aid for VPL navigable static representations.
Journal of Visual Languages and Computing 8(5/6) (1997) 563–599

19. Burnett, M.: Visual programming. Encyclopedia of Electrical and
Electronics Engineering (1999)

20. Lewis, C., Olson, G.: Can principles of cognition lower the barriers to
programming? In: 2nd workshop on Empirical Studies of Programmers.
(1987)

21. da Cruz, D., Henriques, P.R., Pereira, M.J.V.: Strategies for program
inspection and visualization. In: CSE’08 - International Scientific
Conference on Computer Science and Engineering, High Tatras, Slovakia
(September 2008)

22. Sim, S.E., Storey, M.A.: A structured demonstration of program
comprehension tools. In: Seventh Working Conference on Reverse
Engineering (WCRE’00), Brisbane, Australia (November 2000)

23. Ko, A.J., Uttl, B.: Individual differences in program comprehension
strategies in unfamiliar programming systems. In: 11th IEEE International

Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz and Pedro Rangel
Henriques

 ComSIS Vol. 5, No. 2, December 2008 16

Workshop on Program Comprehension (IWPC’03), pages 175–184,
Portland, Oregon,USA (May 2003)

24. Maletic, J.I., Marcus, A.: Supporting program comprehension using
semantic and structural information. In: 16th IEEE International
Conference on Automated Software Engineering (ASE2001), San Diego -
USA, IEEE (November 2001) 107– 114

25. Knuth, D.E.: The genesis of attribute grammars. In: WAGA: Proceedings
of the International conference on Attribute grammars and their
applications, New York, NY, USA, Springer-Verlag New York, Inc. (1990)
1–12

26. da Cruz, D., Henriques, P.R., Pereira, M.J.V.: Constructing program
animations using a pattern-based approach. ComSIS – Computer
Science an Information Systems Journal, Special Issue on Advances in
Programming Languages 4(2) (Dec2007) 97–114 ISSN: 1820-0214.

27. Nardi, B.A.: A small matter of programming: perspectives on end user
computing. MIT Press (1993)

28. M. Burnett, C.C., Rothermel, G.: End-user software engineering.
Communications of the ACM 48(9) (2005) 53–58

29. Sutcliffe, A., Mehandjiev, N.: End-user development: Tools that empower
users to create their own software solutions. Communications of the ACM
47(9) (2004) 31–32

30. Pereira, M.J.V., Henriques, P.: Visualization / animation of programs in
Alma: obtaining different results. In: VMSE2003 - Symposium on Visual
and Multimedia Software Engineering (HCC’03), New Zealand, IEEE
(October 2003) 260–262

31. van Deursen, A., Klint, P.: Domain-specific language design requires
feature descriptions. Journal of Computing and Information Technology
10(1) (2002) 1–17

Maria João Varanda Pereira received the M.Sc. and Ph.D. degrees in
computer science from the University of Minho in 1996 and 2003 respectively.
She is currently an Adjunct Professor at the Polytechnic Institute of Bragança
in the Informatics and Communications Department. Her research interests
include programming languages, compilers, grammar-based systems, visual
languages, program comprehension, animation systems and domain specific
languages.

She was responsible for PCVIA (Program Comprehension by Visual
Inspection and Animation), a FCT funded national research project. She is
involved in bilateral cooperation projects with Slovenia since 2000.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently a
professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also an adjunct professor at the University of
Alabama at Birmingham, Department of Computer and Information Sciences.

Program Comprehension for Domain-Specific Languages

ComSIS Vol. 5, No. 2, December 2008 17

His research interests include programming languages, compilers, grammar-
based systems, grammatical inference, and evolutionary computations. He is
a member of the IEEE, ACM and EAPLS.

Daniela da Cruz received a degree in "Mathematics and Computer Science",
at University of Minho, and now she is starting a Ph.D. degree in "Computer
Science" also at University of Minho, under the MAPi doctoral program. She
joined the research and teaching team of "gEPL, the Language Processing
group" in 2005. She is teaching assistant in different courses in the area of
Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO). As a
researcher of gEPL, Daniela is working with the development of compilers
based on attribute grammars and automatic generation tools. She developed
a compiler and a virtual machine for the LISS language (an imperative and
powerful programming language conceived at UM).
She was also involved in the PCVIA (Program Comprehension by Visual
Inspection and Animation), a FCT funded national research project; in that
context, Daniela worked in the implementation of "Alma", a program visualizer
and animator tool for program understanding. She is now enrolled in a new
bilateral cooperation project with Slovenia under the subject "Program
Comprehension for Domain Specific Languages".

Pedro Rangel Henriques got a degree in "Electrotechnical/Electronics
Engineering", at FEUP (Oporto University), and finished a Ph.D. thesis in
"Formal Languages and Attribute Grammars" at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher. Since 1995 he is the coordinator of the "Language
Processing group". He teaches many different courses under the broader
area of programming: Programming Languages and Paradigms (Procedural,
Logic, Functional and OO); Compilers and Formal Development of Language
Processors; etc. He is co-author of the "XML & XSL: da teoria à prática" book,
publish by FCA in 2002. Pedro Rangel Henriques has supervised M.Sc. (16)
and Ph.D. (14) thesis, and more than 100 graduating trainingships/projects, in
the areas of: language processing (textual and visual), and structured
document processing; program animation and program comprehension;
knowledge discovery from databases, data-mining, and data-cleaning. He
also was responsible for several applicational projects (in the interface
university/external-community, industry), mainly in the area of information
systems (databases and web oriented). From 2002 until 2004 he was the
Head of the Department, and at moment he is the President of APPIA, the
Portuguese Association for Artificial Intelligence.

Received: July 16, 2008; Accepted: November 17, 2008.

