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EDITORIAL

Due to a considerably increasing interest of the authors for ComSIS in recent 
two years, we may say that this seventh year of publishing is a challenging 
one for a whole Editorial Board in many aspects. This is the first year in which 
we decided to publish two extra special issues, apart from two regular ones. 
The one of them, titled Advances in Languages, Related Technologies and 
Applications, is in front of you. We created it with a hope to provide 
exchanging useful research ideas and experiences in the area of 
programming and domain specific languages, and compilers. 

On behalf of the ComSIS Consortium, let us use this opportunity to give our 
thanks to the reviewers and all of the authors for their high-quality work and 
remarkable enthusiasm. Above all, let us give great thanks to the guest 
editors, António Menezes Leitao and Boštjan Slivnik, who invested a lot of 
their efforts in creation of this special issue, as well as to Maria Ganzha, 
Marcin Paprzycki (WAPL'2009), and Pedro Rangel Henriques (CoRTA'2009), 
for their fruitful organizational support. 

Mirjana Ivanovi ,     Ivan Lukovi ,
Editor-in-Chief      Vice-Editor-in-Chief 
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GUEST EDITOR’S MESSAGE 

Programming languages are the most fundamental form of expression for 
programmers. Compilers are, therefore, the most important tools to turn into 
action the ideas expressed in a programming language. At the same time, the 
fields of Computer Science and Software Engineering are becoming broader 
every day. New programming languages must support, in the most simple and 
economic way possible, the expression of new ideas in Computer Science 
and of ever more complex designs in Software Engineering. Likewise, 
compilers should be able to effectively implement new programming language 
constructs, both from the programmer’s as well as from the final user’s point 
of view. 

This special issue contains revised and expanded versions of the best papers 
presented either at the Conference on Compilers, Programming Languages, 
Related Technologies and Applications (CoRTA’2009) or at the Workshop on 
Advances in Programming Languages (WAPL’09). The former, organized by 
the Faculty of Sciences of the University of Lisbon, took place on September 
10-11, 2009 in Lisbon, Portugal. The latter was a workshop of an International 
Multiconference on Computer and Information Technology (IMCSIT’2009) 
which was organized by Polish Information Processing Society and took place 
in Mragowo, Poland on October 12–14, 2009. 

But just as one of the events took place near the geographical center of 
Europe and the other took place at the continent’s extreme point where 
centuries ago European expansion around the globe started, so the papers of 
this special issue address, on one hand, the most central questions in 
contemporary research and, on the other hand, extend them to the edge of 
research. 

As the names of both events suggest, they shared a similar scope. The list of 
suggested topics included, among others 

 compiling techniques, 
 domain-specific languages, 
 programming language concept design, 
 formal techniques and tools, and 
 automata theory and applications. 

The program committees of both events were pleased to observe that 
theoretical and practical papers were submitted, providing them the 
opportunity to produce a balanced selection of both kinds of papers. 

At the end of both events, the best papers submitted were selected for 
possible publication in a special issue of ComSIS and their authors were 
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invited to prepare extended versions of their papers. These extended versions 
were then reviewed by experts in the field. In order to ensure the best 
possible quality, the improved papers were then submitted to a second round 
of reviewing. 

The paper Comparing General-Purpose and Domain-Specific Languages: An 
Empirical Study by Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João 
Varanda Pereira, Matej repinšek, Daniela da Cruz, and Pedro Rangel 
Henriques, describes an experiment that was carried out to clarify whether 
domain-specific languages have significant advantages over general-purpose 
languages for the construction of graphical user interfaces. The comparison 
between languages was done using the Cognitive Dimension Framework and 
the experiment shows that domain-specific languages are indeed 
advantageous, thus settling an important question in the programming 
language research area. 

The paper VisualLISA: A Visual Environment to Develop Attribute Grammars 
by Nuno Oliveira, Maria João Varanda Pereira, Pedro Henriques, Daniela da 
Cruz, and Bastian Cramer, discusses the design of a new visual language for 
attribute grammars and the development of the associated programming 
environment. The author’s solution is based on the use of DEVil, a system 
that generates a visual programming environment from high-level 
specifications. This solution is a relevant contribution that combines concepts 
from the areas of Program Comprehension, Attribute Grammars and Visual 
languages. 

Jaroslav Porubän, Michal Forgá  and Miroslav Sabo contributed a paper 
entitled Annotation Based Parser Generator. It describes a parser generator 
which focuses on the abstract grammar: the parser is generated from the 
annotations associated with Java classes specifying the abstract syntax. 
Hence, by simply changing annotations one can produce parsers for different 
concrete grammars that all correspond to the same abstract syntax. 

The paper On Automata and Language Based Grammar Metrics by Matej 
repinšek, Tomaž Kosar, Marjan Mernik, Julien Carvelle, Rémi Forax and 

Gilles Roussel concentrates on grammar metrics. In other words, how 
programming languages can be compared based on their syntactic structure 
and what a programming language designer can learn from it. 

Another paper, Subtree Matching by Pushdown Automata by Tomas Flouri, 
Jan Janousek, and Borivoj Melichar, is about a subtree matching, a problem 
which often appears in compiler technology as trees are widely used for 
internal representations of all kinds. In this particular case, the problem has 
been solved using a pushdown automaton, another formalism known well to 
the compiler writers. 
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Finally, the paper A Tool for Modeling Form Type Check Constraints and 
Complex Functionalities of Business Applications, by Ivan Lukovi ,
Aleksandar Popovi , Jovo Mosti , and Sonja Risti , is about a domain specific 
language for specifying check constraints and a tool that enables visually 
oriented design and parsing check constraints. 

As guest editors, we would like to thank the authors for their valuable 
contribution to this special issue, and the referees for their dedicated work and 
high-quality remarks that helped improve the papers. Furthermore, we would 
like to thank the members of both program committees as they have carried 
out the first and thus the most painful selection of submitted papers, and to 
the organizers of both events, namely CoRTA’2009 and WAPL’09 and, by 
extension, to the organizers of the main conferences, namely, INForum’2009 
and IMCSIT’2009. 

Finally, we are grateful to Prof. Ivan Lukovi , Vice Editor-in-Chief of ComSIS, 
who provided unlimited support and assistance during the selection and 
reviewing process that culminated in this special issue. 

Boštjan Slivnik 
António Menezes Leitao 
Guest Editors 
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Abstract. Many domain-specific languages, that try to bring feasible 
alternatives for existing solutions while simplifying programming work, 
have come up in recent years. Although, these little languages seem to 
be easy to use, there is an open issue whether they bring advantages in 
comparison to the application libraries, which are the most commonly 
used implementation approach. In this work, we present an experiment, 
which was carried out to compare such a domain-specific language with 
a comparable application library. The experiment was conducted with 36 
programmers, who have answered a questionnaire on both 
implementation approaches. The questionnaire is more than 100 pages 
long. For a domain-specific language and the application library, the 
same problem domain has been used – construction of graphical user 
interfaces. In terms of a domain-specific language, XAML has been used 
and C# Forms for the application library. A cognitive dimension 
framework has been used for a comparison between XAML and C# 
Forms.

Keywords: domain-specific languages; general-purpose languages; 
program comprehension; empirical software engineering. 

1. Introduction 

The primary goal in developing a new programming language is to make 
programming more efficient. The perfect programming language should 
provide the right level of abstraction, meaning that it describes solutions 
naturally and hides unnecessary details. Also, it should be expressive enough 
in the problem domain and should provide guarantees on properties that are 
critical for the problem domain. It should also have precise semantics to 
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enable formal reasoning about a program. With general-purpose languages 
(GPLs), this is difficult to achieve, since GPLs tend to be general, resulting in 
poor support for domain-specific notation. On the other hand, domain-specific 
languages (DSLs) can be designed in many problem domains to exactly have 
properties mentioned above. A DSL is a language that is tailored to a specific 
application domain that offers appropriate notations and abstractions [1]. For 
a domain in question, DSLs are more expressive and are easier to use than 
GPLs, with gains in productivity and maintenance costs [2 - 4]. 

GPLs are perfectly established in the life-cycle of software development. 
Their characteristics are widely spread amongst software engineers. On the 
other hand, the integration of DSLs into the software development life-cycle is 
not so smooth [5]. However, many DSL studies during the last ten years [1, 3, 
6 – 12], reveal the importance of these languages in software engineering. 
The concentration on a definition of notation that would only express concepts 
of a single application domain, brings the possibility to sharpen the edges of a 
language, which makes it more and more efficient in various directions, which 
are briefly elaborated below. One of these directions is the efficiency of being 
read and learned by the domain experts [13]. To use DSLs that allow focusing 
on the problem and not on the solution, can be profitable at earlier stages of 
the software life-cycle as well [14], such as requirements analysis and 
management [15]. Moreover, there is the possibility of integrating domain 
experts in the later stages of the software development life-cycle [2, 16]. 
Since the usage of GPLs requires good programming skills, the domain-
experts, who are not proficient in that area, can do very little on this matter. 
However, with the use of DSLs, they can concentrate on the programming 
tasks and they can even do programming. Another benefit of DSLs is that 
software maintenance is simplified [2], since DSLs provide self-
documentation that avoids the search for documentation resources, which 
may be unavailable in the first place. DSLs are also claimed to be a good 
approach for software reuse [17]. In this context, not only the pieces of 
software are reused, but also the knowledge embodied in the language. 
Another facet of efficiency can be observed in the tools that give support to a 
language. Their processors, for instance, can be improved to offer better 
results, as the domain is restricted and the knowledge is centralized [18, 19]. 
All together, these aspects diminish the costs of engineering and 
reengineering, and increase reliability and maintainability of the software 
constructed with DSLs [20]. 

Although, DSLs have proven their usefulness, GPLs together with 
application libraries (APIs) are still the most commonly used programmer’s 
choice when preparing new solutions for their problems. One of the reasons 
that DSLs are not accepted among the practitioners is the lack of DSLs’ 
promotion. Further, studies that would point out the benefits of DSL over GPL 
solution are rare. In this paper, we will use the cognitive dimension framework 
(CDF) [21, 22, 23] to compare DSL and GPL programs and to expose 
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properties that are enhanced in the context of DSLs. The goal of the project1

is to measure how easy it is to understand programs written in DSLs 
compared to GPLs. In this manner, the experiment is conducted with the use 
of questionnaires to measure programmers’ understanding of DSL and GPL 
programs on the same problem domain, a construction of graphical user 
interfaces (GUIs). More precisely, with these questionnaires, we attempt to 
confirm that DSL programs are easier to understand than GPL programs. 
This hypothesis is defended with an experiment in a controlled environment, 
using direct observations of the experiment evaluation model involving CDF. 

The organization of this paper is as follows. Related work on the 
preparation of an experiment and CDF is discussed in Section 2. The 
experiment skeleton, the identification of its main goals, and experiment 
details are introduced in Section 3. The experiment results, with the cognitive 
dimension framework, are given in Section 4. Concluding remarks are 
summarized in Section 5. 

2. Related work 

This work can be classified within the category of empirical software 
engineering. Empirical research in software engineering is an important 
discipline that shows practical results on how practitioners (developers, end-
users) come to accept and use technologies, techniques, etc. In order to 
avoid questionable results and to have an option to repeat the research, 
giving the same results, experiments must be prepared with caution. One of 
the most well known frameworks for software experiments is described in 
[24]. This framework concentrates on building the knowledge concerning the 
context of an experiment and is based on organizing sets of related studies 
(family of studies). Such studies contribute to common hypotheses, which do 
not vary for individual experiments. In order to prepare this experiment we 
have followed guidelines from a framework [24]. We have also defined: 
context of the study, experiment hypothesis, comparison validity, and 
measurement framework. 

Teaching environments give us an opportunity to conduct experiments in 
computer science programs as well. However, a lot of concerns are 
connected with the accuracy of results in such environments and several 
threats to the validity of experiments have to be identified as well as to 
interpret the results correctly. For those who are interested to read more 
about this topic, a checklist for integrating empirical studies in teaching 
activities can be found in the work [25]. 

As stated above, an important step in the experiment preparation is to set 
down the measurement framework – how the results of an experiment are 
evaluated and interpreted. In cognitive theory, guidelines on how to measure 

                                                     
1This work is sponsored by bilateral project “Program Comprehension for Domain-

Specific Languages” (code BI-PT/08-09-008) between Slovenia and Portugal. 



Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej 
repinšek, Daniela da Cruz, and Pedro Rangel Henriques 

ComSIS Vol. 7, No. 2, Special Issue, April 2010 250

a human’s ability to program are defined. CDF [21] provides cognitively-
relevant aspects which can be used to determine how easy it is to understand 
a program. In our study, CDF is used to compare user understanding of DSL 
and GPL programs. In the past the CDF has been used to assess the 
usability of visual programming languages [26, 27] and spreadsheets [28].

Recently, another application for cognitive dimensions can be found in [29], 
where a method for designing Framework-Specific Modeling Languages 
(FSMLs) is presented. From FSML specifications, a user can build 
applications based on object-oriented frameworks. In FSML software, artifacts 
(models, languages, etc.) are evaluated according to their goals with different 
quality methods. Particularly, the quality of notation is measured with 
cognitive dimensions – a heuristic measure that evaluates the notation and its 
environment.

Before this experiment, the authors of the paper were involved in another 
similar experiment [30]. That work is important for an interested reader, since 
the information on experiment skeletons is described in great detail. 
Difference between both experiments is in the hypothesis and 
exclusion/inclusion of CDF. Also, the problem domain in experiment [30] is 
different (graph description with DOT language [31]) than in this paper 
(construction of GUI with XAML). 

This paper is also closely related to the field of Program Comprehension, 
which is a hard cognitive task, done by a software analyst. In the process of 
program comprehension, the use of tools to interconnect different views 
(operational, behavioral, etc.) to understand the results of applications, are 
indispensable. Traditional techniques on program comprehension from GPLs 
(visualizers, animators, etc.) have been studied and applied to DSLs in our 
previous work [32], where CDF was also briefly described and applied to 
DSLs.

3. Presentation of experiment 

In this section the preparation, execution, and experiment evaluation model is 
given.

3.1. Objective of the experiment 

In [3] the empirical results that compare ten diverse implementation 
approaches for DSLs, conducted on the same representative language, are 
provided. Among the implementation approaches, the comparison also 
included the XML-based approach. From this study, it can be concluded that 
XML-based approach has some disadvantages [3]. Although, XML usage and 
its tool support are spreading, this is one of the reasons that XAML [33], as a 
representative DSL, has been chosen for this study. XAML, the Extensible 
Application Markup Language, is a language for construction of graphical 
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user interfaces in Windows Presentation Foundation and Silverlight 
applications of .NET Framework 3.5. C# Forms [34] has been used for the 
comparison since it covers the same domain of graphical user interfaces. 

3.2. Hypothesis of the experiment 

In order to perform the comparison on XAML and C# Forms, two separate 
questionnaires have been prepared. The study that was carried out had a 
task to observe programmers’ efficiency on understanding programs with both 
approaches, compare the results obtained through questionnaires and use 
them to investigate the following hypothesis: 

H1null
There is no significant difference in program understanding between 

domain-specific or general-purpose languages, when using XAML or C# 
Forms for comparison. 

H1alt
There is a significant difference in program understanding between 

domain-specific or general-purpose languages when using XAML instead of 
C# Forms. 

This hypothesis is the object of investigation in the conducted experiment 
and is further examined in the Section 4, where the questionnaires results are 
presented.

3.3. Preparation of experiment  

The results from an experiment are reliable if the repetition of the experiment 
can be proven [35]. Repetition is strongly connected to agreements set down 
before the start of the experiment [24]. Therefore, some rules and constraints 
were defined for the questionnaire implementers:

– the same group of questions for both experiments on a GPL and a DSL 
must be used, 

– the questions for two applications on the same question were prepared 
(easier and harder application domain), 

– the equal questions in DSL and GPL questionnaires must be defined by 
the same number of components in order to obtain the same level of question 
complexity, and

– the questions and the given choices (programs) must be reviewed by 
other domain experts, to obtain a code as optimal as possible. 

As stated above, two questionnaires have been prepared for program 
understanding of DSL and GPL programs. Then, the structure of 
questionnaires has been defined to cover the following three topics of 
program understanding: learn, perceive, and evolve. In the first group, 
questions on learning notation and meaning of programs have been given to 
the programmers. In the second group, questions on program perceiving 



Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej 
repinšek, Daniela da Cruz, and Pedro Rangel Henriques 

ComSIS Vol. 7, No. 2, Special Issue, April 2010 252

have been defined, such as identification of correct meaning from a given 
program, language constructs, new construct meaning, and meaning of a 
program with given comments. In the third group, programmers had been 
challenged to expand/remove/replace program functionality. 

For these three groups, 11 questions have been defined: 
– Learn 
• Q1 Select syntactically correct statements. 
• Q2 Select program statements with no sense (unreasonable). 
• Q3 Select a valid program with the given result. 
– Perceive 
• Q4 Select a correct result for the given program. 
• Q5 Identify language constructs. 
• Q6 Select a program with the same result. 
• Q7 Select a correct meaning for the new language construct. 
• Q8 Identify language constructs in the program with comments. 
– Evolve 
• Q9 Expand the program with new functionality. 
• Q10 Remove functionality from the program. 
• Q11 Change functionality in the program. 
Learning and perceiving questions have been defined as a multiple-choice 

question, and questions under evolve have been defined as an essay 
question (programmers are challenged to modify existing code). Both, XAML 
and C# Forms questionnaires have been constructed with the use of the 
above questions.

To illustrate the style of the questions, used in the questionnaires, an 
example is presented in Figure 1. Because of the question size only the 
correct choice is given. Complete questionnaires can be found on a project 
group webpage2. The above questions (Q1-Q11) have been used as 
templates to define DSL and GPL questionnaires. The first version of DSL 
and GPL questionnaires has been given to a small group as a training set, in 
order to receive feedback. Further, results from a training set have been 
studied and used to refine the questions before applying them to the target 
groups of students. Most correctness issues were related to the program 
failures, question understandability and question complexity comparability 
between DSL and GPL questions.

3.4. Execution of the experiment 

Besides well-structured questionnaires, other factors have also been 
controlled in the experiment. The list of experiment execution actions in the 
classroom (just before starting, as soon as it begins, and during the 
experiment) are provided below:

– a short tutorial, for end-users, has been given on the problem domain 
(graphical user interfaces), 

                                                     
2 http://epl.di.uminho.pt/~ gepl/DSL/ 
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– a tutorial on domain specific notation (XAML), together with an example 
of a program, has been given to end-users, 

– a tutorial on application library (C# Forms) together with an example of 
the program has been given to end-users, 

– a tutorial has been given to end-users in their native language, however 
the slides, programs and experiment questionnaires were in English, and 

– the slides and the examples have been given to end-users and could be 
used during the experiment. 

If necessary, individual help to better understand the questions was 
provided to the programmers. 

3.5. Processing the results 

There were also issues that needed to be controlled, after the programmers 
completed the questionnaire. One of those is submission completeness. 
When students submitted their questionnaires, it was checked if the 
questionnaire contained answers to all questions. Most of the programmers 
answered the questions, however if some answers were missing, the 
programmers were advised to complete the questionnaire. Still, if some 
answers were found missing during the processing of the results, the 
complete programmer questionnaire was eliminated from the further 
experiment analysis. For previously mentioned reasons, one submission has 
been eliminated from the results. 

3.6. Threats to validity 

In each experiment, there are several threats to the validity of results. Those 
threats need to be identified and handled before the start of the experiment. 
To restrict the impact of the experiment environment on the results, the 
following issues have been identified for our study. 

Chosen domain Results of the experiment are strongly connected to 
programmers’ experiences and knowledge of the chosen problem domain. In 
Table 1, programmers’ familiarity with the construction of the GUI is 
presented, together with the experience on XAML and C# Forms library 
application. From Table 1, we can conclude that programmers are 
experienced in the construction GUIs domain. However, their experience in 
implementation technique differs – programmers were unfamiliar with XAML 
on one hand (median value 1), and had good knowledge in constructing GUIs 
with C# Forms (median value 4) on the other. Uneven knowledge on both 
notations could have made an influence on comparison results. 

Programmers’ experience In Table 2, results from the self evaluation test 
are presented, where students (second year of undergraduate computer 



Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej 
repinšek, Daniela da Cruz, and Pedro Rangel Henriques 

ComSIS Vol. 7, No. 2, Special Issue, April 2010 254

science) grade their general knowledge on programming, programming in C# 
language and prior experience with DSLs. Comparing knowledge on C# 
(median value 4) and prior experience with DSLs (median value 2) could have 
also made an influence on experiment results. 

Table 1. Programmers’ knowledge in construction of graphical user interfaces  
(N = 36) 

 Average3 Median St. dev. 
Familiarity GUI domain 3.39 4 1.18 
Knowledge of XAML 1.36 1 0.68 
Knowledge of C# Forms application library 3.5 4 1.11 

Table 2. Programmers experiences in programming (N = 36) 

 Average Median St. dev. 
Skills in programming 3.41 3.5 0.65 
Skills of programming in 
C#

3.53 4 0.74 

Prior experience with DSLs 2.28 2 0.70 

Comparability of questionnaires The same type of questions in DSL and 
GPL questionnaires contain a similar number of graphical components 
(labels, text fields, buttons, etc), to obtain the same level of complexity. 

Order of questionnaires An experiment on program understanding was 
carried out twice, at different times and on different students. The first group 
started the experiment with the questionnaire on DSL and proceeded with a 
GPL questionnaire. The second group started the questionnaire on GPL and
finished with the DSL questionnaire. In such a way, the influence of starting 
the experiment on the same questionnaire with all subjects was avoided and 
with such, the order of questionnaires is not relevant for the outcome of the 
study.

4. Results 

All together, programmers answered 22 questions on both questionnaires. 
Success rate for questions varied from 27.14% for Q6 to 79.73% for Q9 
(Table 3). Differences in success rate in the same language (DSL/GPL) can 
be explained with different difficulty level (some questions were harder than

                                                     
3 A five-grade scale, starting from very bad (1) to very good (5) was used for self-

evaluation questionnaires (in Tables 1 and 2). Note, that column “Average” shows 
the average value given by 36 programmers, “Median” stands for middle value in set 
of programmers grades and “St. dev.” represents standard deviation on given 
grades.
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Fig. 1. Question 5 in DSL and GPL questionnaires with the correct choice 
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others). On the other hand the biggest difference between GPL and DSL is 51.16% in 
the case of Q9. The smallest difference is found in Q2, where the difference is just 
3.44%. In this case, the success rate was even slightly better for GPL than DSL. In our 
opinion, this is due to the difficultness of Q2 (success rate was less than 39%), where 
syntactically correct programs with no sense have to be identified. Since programmers 
have more experience in C# Forms than XAML (Table 1), they were more successful 
with GPL than DSL, in finding programs with no sense. 

Table 3. Average programmer success rate (N = 35) 

Question DSL GPL Difference 
 XAML C# Forms  
Q1 72.97% 48.57% 24.4% 
Q2 35.14% 38.57% -3.44% 
Q3 64.86% 35.71% 29.15% 
Q4 77.03% 70.00% 7.03% 
Q5 64.86% 48.57% 16.29% 
Q6 39.19% 27.14% 12.05% 
Q7 75.68% 62.86% 12.82% 
Q8 62.16% 45.71% 16.45% 
Q9 79.73% 28.57% 51.16% 
Q10 68.92% 41.43% 27.49% 
Q11 66.22% 30.00% 36.22% 

Table 4. Average programmer success rate on learn, perceive and evolve (N=35) 

 DSL GPL 
 XAML C# Forms Question

Mean Std.
dev.

Std. err. 
mean Mean Std.

dev.
Std. err. 
mean

Learn Q1, Q2, and
Q3 57.62% 21.90% 3.70% 40.95% 22.99% 3.89% 

Perceive Q4, Q5, Q6,
Q7, and Q8 64.57% 19.45% 3.29% 50.86% 18.69% 3.16% 

Evolve Q9, Q10,
and Q11 70.95% 20.35% 3.44% 33.33% 26.20% 4.43% 

Total All
questions 64.34% 14.81% 2.50% 43.37% 15.99% 2.70% 

However, drawing conclusions based on an average value of a single 
question can be extremely risky. Therefore, by grouping questions into learn, 
perceive and evolve categories, we can obtain more reliable results. In Table 
4, the success rate on questions by the individual group is presented with a 
mean value, standard deviation, and standard error mean. Table 4 confirms 
our presumption that program understanding, in terms of learn, perceive and 
evolve, is much better for DSL programs than for GPL programs. Later 
observation is especially obvious from the results on evolve questions – the 
mean value of the success rate was 37.62% better for DSL than on GPL 
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questions (see mean values in Table 4). Similar results were also obtained on 
the other problem domain described in [30]. To support the results in Table 3 
and Table 4, statistical tests have been performed to evaluate whether the 
comparison shows the statistical significant difference. Efficiency on both 
questionnaires (see last row from Table 4) has been compared for all 
programmers. The results from questionnaires were statistically tested with t-
test, since the means of two independent groups were compared. The 
threshold for the independent t-test was set to  = 0.05 and the test results 
are shown in Table 5. The most important column in the table is the 
significance

Table 5. Independent t-test for program understanding (N = 35) 

95% Confidence  
Interval of  
the Difference t Sig.

(two-tailed) Mean Std.
dev.

Std. err. 
mean

Lower Upper 
XAML
vs.  
C# Forms 

5.474 0.000 20.971 22.664 3.831 13.186 28.757 

column. Observing this data confirms that the difference in mean value 
between XAML and C# Forms program understanding was significant, since 
a significant level was not reached. With observations from Table 5, we could 
reject null hypothesis H1null since subjects did better on XAML program 
understanding and accept the alternative hypothesis: (H1alt): there is a 
significant difference in program understanding between domain-specific or 
general-purpose languages when using XAML instead of C# Forms. 

While this experiment indeed shows superiority of DSLs on an end-user 
ability to learn, perceive and evolve programs in this particular domain, it does 
not provide possible explanations why DSLs programs are easier to 
understand. The “psychology of programming” [36, 37] is a research field 
which tries to identify, understand and explain those cognitive processes 
which take place during reasoning (e.g., programming, program 
understanding). In this context, CDF [21] provides useful dimensions, which 
help us to better explain why DSL programs are easier to understand than 
GPL programs. The CDF has been used before to assess the usability of 
visual programming languages [26], while no such study exists for DSLs. 
These cognitive dimensions are: 

– Closeness of mapping – languages should be task-specific; 
– Viscosity – revisions should be painless; 
– Hidden dependencies – the consequences of changes should be clear; 
– Hard mental operations – no enigmatic is allowed; 
– Imposed guess-ahead – no premature commitment; 
– Secondary notation – allow to encompass additional information; 
– Visibility – search trails should be short; 
– Consistency – user expectations should not be broken; 
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– Diffuseness – language should not be too verbose; 
– Error-proneness – notation should catch mistakes avoiding errors; 
– Progressive evaluation – get immediate feedback; 
– Role expressiveness – see the relations among components clearly; 
– Abstraction gradient – languages should allow different abstraction 

levels.
The next step was to connect cognitive dimensions with our questions. We 

identified which dimensions are relevant for a particular question (Table 6). As 
it can be seen Di (dimension i of CDF) can be related to several questions 
used in our questionnaires. 

Table 6. Questions connection to cognitive dimensions

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 
Closeness of mapping 1 1 1 1 1 1 1 1 1 1 1 
Viscosity 0 0 0 0 0 0 0 0 1 1 1 
Hidden dependencies 0 0 1 1 1 1 0 1 0 1 0 
Hard mental operations 0 1 1 1 1 1 1 1 0 0 0 
Imposed guess-ahead 0 0 0 0 0 0 0 0 1 0 1 
Secondary notation 0 0 0 0 0 0 0 1 0 0 0 
Visibility 0 0 1 1 1 1 1 1 0 0 0 
Consistency 0 0 0 0 0 1 1 0 0 0 0 
Diffuseness 1 1 1 1 1 1 1 1 1 1 1 
Error-proneness 1 1 1 1 1 1 1 1 1 1 1 
Progressive evaluation 0 0 0 0 0 0 0 0 0 0 0 
Role expressiveness 0 1 1 1 1 1 1 1 1 1 1 
Abstraction gradient 0 0 1 1 1 1 1 1 0 0 0 

Questions have been designed in such a way that they directly reflect 
cognitive dimensions as much as possible. However, not all cognitive 
dimensions play an important role in all questions. Hence, to evaluate a single 
cognitive dimension (Di) we proposed the following formula: 

j

j

j

iji
C

S
QD *

11

1

where Qij stands for the value from Table 6, which means whether dimension 
Di is connected to the question Qj. Variable Sj represents an average 
programmer’s success rate on question Qj (Table 3). For example, if 4 
programmers out of 5 answered question Q1 correctly, the value of S1 would 
be 0.8. Finally, Cj represents the number of cognitive dimensions relevant for 
Qj (for example, C1 = 3). This formula is used for XAML as well as for C# 
Forms. Intuitively, it means that cognitive dimensions contribute to the 
success of a particular question. Here, we assume that contribution of 
involved cognitive dimensions was equally distributed (one cognitive 
dimension is not more important than the other, if it is involved). Moreover, we 
assume that the higher values always mean a positive influence of particular 
cognitive dimension. For example, higher values for ’closeness of mapping’ 
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mean that the semantic gap between the problem and the solution space is 
small, or higher values for ’hidden dependencies’ mean that short and long-
range interactions among program components are immediately visible.

Table 7 roughly shows how a particular cognitive dimension contributes to 
the questionnaires’ success for XAML, as well as for C# Forms. From Table 7 
it can be seen that in our experiment, the most influential for DSL/GPL 
program understanding were: closeness of mappings, diffuseness, error-
proneness, role expressiveness, and hard mental operations. More than 
particular values, the difference among cognitive dimensions for XAML and 
C# Forms is far more important. The biggest difference among cognitive 
dimensions was in closeness of mappings, diffuseness, error-proneness, role 
expressiveness, and viscosity. 

Table 7. Influence of cognitive dimension to XAML and C# Forms 

 DSL GPL Difference 
 XAML C# Forms  
Closeness of mapping 1.127 0.749 0.377 
Viscosity 0.442 0.237 0.206 
Hidden dependencies 0.486 0.343 0.143 
Hard mental operations 0.525 0.421 0.105 
Imposed guess-ahead 0.243 0.098 0.146 
Secondary notation 0.069 0.051 0.018 
Visibility 0.455 0.344 0.111 
Consistency 0.128 0.100 0.028 
Diffuseness 1.127 0.749 0.377 
Error-proneness 1.127 0.749 0.377 
Progressive evaluation N/A N/A N/A 
Role expressiveness 0.884 0.587 0.296 
Abstraction gradient 0.455 0.344 0.111 

Closeness of mapping refers to the width of the semantic gap between the 
problem and the solution spaces. Diffuseness refers to the number of 
symbols needed to express the meaning. By definition, DSLs use existing 
domain notation, which should be at an appropriate level of verbosity, so it is 
expected that they exhibit low diffuseness. On the other hand, it was shown in 
[38] that plenty of low-level primitives, which are often purely syntactical, are 
one of the biggest cognitive barriers for end-user programmers. Error 
proneness refers to the capability of a language to induce careless mistakes. 
GPLs, due to their extension and intrinsic complexity, are usually error-prone, 
while DSLs, due to the narrow domain they are designed for, are usually less 
error prone. Role expressiveness refers to the ability to see how each 
component of a program relates to the whole. The high role expressiveness 
can be more easily achieved in DSLs due to domain specifics and shorter 
programs. It is shown in our experiment that differences in closeness of 
mapping, diffuseness, error proneness, and role expressiveness among 
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XAML and C# Forms are the biggest and the source of main contribution for 
easier understanding of XAML programs than programs written in C# Forms.

Viscosity refers to the amount of effort that is needed to perform small 
changes. Since DSLs are usually at a high abstraction level and have natural 
notation, small changes should be easier to perform. It is shown in our 
experiment that the difference in viscosity between XAML and C# Forms was 
among the largest. Viscosity was involved only in questions Q9-Q11, which 
were much better solved with the use of XAML than using C# Forms. We can 
conclude that viscosity had an important influence on this success. 

5. Conclusion and future work 

The purpose of this paper is to promote formal studies on the advantages of 
DSLs over GPLs. In this paper we have tried to explain the difference 
between DSL/GPL program understanding, using the cognitive dimension 
framework. Questionnaires on understanding programs have been prepared 
and given to the programmers. Each programmer answered a 100 page long 
questionnaires and on an average spent more than 3 hours solving 44 
questions.

Results show that programmers’ success rate was around 15% better for 
DSL in all three groups of questions: learn, perceive and evolve, despite the 
fact that programmers were significantly less experienced in XAML than C# 
Forms. Further, the experiment measurement framework included cognitive 
dimensions to identify the aspects among these dimensions that are 
enhanced in the context of DSL. It can be learned from the study that DSLs 
are superior to GPLs in all cognitive dimensions. The cognitive dimensions, 
with the biggest influence in the experiment, are closeness of mappings, 
diffuseness, error-proneness, role expressiveness, and viscosity. 

We consider that the results of this experiment are reliable despite the fact 
that the experiment has been done only on a single domain. One of the future 
tasks of this project is to conduct similar experiments in different domains. 
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Abstract. The focus of this paper is on crafting a new visual language for
attribute grammars (AGs), and on the development of the associated pro-
gramming environment. We present a solution for rapid development of
VisualLISA editor using DEViL. DEViL uses traditional attribute gram-
mars, to specify the language’s syntax and semantics, extended by vi-
sual representations to be associated with grammar symbols. From these
specifications a visual programming environment is automatically gener-
ated. In our case, the environment allows us to edit a visual description
of an AG that is automatically translated into textual notations, including
an XML-based representation for attribute grammars (XAGra), and is in-
tended to be helpful for beginners and rapid development of small AGs.
XAGra allows us to use VisualLISA with other compiler-compiler tools.

Keywords: Attribute Grammar, Visual Languages, XML Dialect, DEViL,
VisualLISA, XAGra.

1. Introduction

An AG can be formally defined as the following tuple: AG = (G,A,R,C), where
G is a context-free grammar, A is the set of attributes, R is the set of eval-
uation rules, and C is the set of contextual conditions. Each attribute has a
type, and represents a specific property of a symbol X; we write X.a to in-
dicate that attribute a is an element of the set of attributes of X, denoted by
A(X). For each X (terminal or non-terminal), A(X) is divided into two disjoint
sets: the inherited and the synthesized attributes. Each R is a set of formulas,
like X.a = func(..., Y.b, ...), that define how to compute, in the precise con-
text of a production, the value of each attribute. Each C is a set of predicates,
pred(..., X.a, ...), describing the requirements that must be satisfied in the pre-
cise context of a production.
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As can be deduced from this complex definition of AGs they are not as easy
to specify as people would desire because there is a gap between the problem
solution (the desired output) and the source language that must be interpreted.
The user must take care on choosing the appropriate attributes and their eval-
uation rules. Since the beginning, the literature related with compilers presents
AGs using syntax trees decorated with attributes. So it is usual to sketch up
on paper trees with attributes representing an AG. This strategy allows the de-
velopers to imagine a global solution of the problem (in a higher abstraction
level) and to detect complex dependencies between attributes, symbols and
functions, avoiding spending time with syntax details. However, such informal
drawings require the designer to translate them manually into the input notation
of a compiler generator. The person who drew it must go through the translation
of the pencil strokes into the concrete syntax of the compiler generator. These
inconveniences make the developers avoid the usage of AGs and go through
non systematic ways to implement the languages and supporting tools. So, in
this paper, we develop a Visual Language (VL), as a meta-language to write
AGs, based on a previous conceptualization that we have proposed in [1]. The
idea of this VL is not only about having a nice visual depiction and then to trans-
late it into a target notation, but also about syntactic and semantic consistency
checks.

VLs and consequently the Visual Programming Languages (VPLs) aim at
offering the possibility to solve complex problems by describing their properties
or their behavior through graphical/iconic definitions [2]. Icons are used to be
composed in a space with two or more dimensions, defining sentences that are
formally accepted by parsers, where shape, color and relative position of the
icons are relevant issues. A visual programming language implies the existence
of a Visual Programming Environment (VPE) [3, 4], because its absence makes
the language useless. Commonly, a visual programming environment consists
of an editor, enriched by several tools to analyze, to process and to transform
the drawings.

The main idea of this work is the development of a VPE, named VisualLISA,
that assures the possibility of specifying AGs visually, and to translate them
into plain text specifications or, alternatively, into a universal XML representa-
tion designed to support generic AG specifications. The original objective of this
environment is to be used as front-end for LISA [5] system, diminishing the dif-
ficulties regarding the specification of AGs in LISA. However, the generality of
the environment enables its use with systems other than LISA.

The visual programming environment is automatically generated by DEViL,
our choice among many other tools studied; so, in this paper, the system is
introduced and its use explained. However, our objective in this paper is not
concerned with the discussion of compiler development tools, but show the be-
fits of using an effective one.

In section 2, related work is presented. In Section 3 and 4, VisualLISA lan-
guage and editor are informally described. In Section 5 the language is formally
specified, defining syntactic rules, semantic constraints and a valid translation
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scheme for both LISA (the first target), and XAGra notations. In Section 6, the
DEViL generator framework, used for the automatic generation of the visual
editor, will be presented. In Section 7, following the informal conception and its
formalization, using DEViL, the visual language and the editor implementation
is shown. An overview on how to use the editor to describe an AG, is given in
Section 8.

In Section 9, XAGra dialect is formally presented. Its main idea is to gen-
eralize the output of AG editing tools; instead of generating a description for
a specific compiler generator, the editor under development can produce this
general purpose dialect. Then to use this editor as a Front End (FE) for a spe-
cific generator, it is only necessary to resort to a simple translator to convert the
XML description into the specific notation of that CG. This approach raises the
usefulness of the editor, as it can be used as a FE for a larger range of grammar-
based generators. However, as its applicability does not end here, we introduce,
in Appendix A, XAGraAl, a tool that, based on XAGra specifications, performs
grammar analysis and transformations.

The paper is concluded in Section 10.

2. Related Work

Despite of existing many other applications for AGs, they are commonly as-
sociated with the development of computer languages and related tools like
parsers, translators, compilers, and others. In this context, the language engi-
neers, started to develop tools to systematize and automatize the process of
defining AGs. So, several works on this area may be cited.

LISA [5, 6] is a compiler generator based on attribute grammars, developed
at University of Maribor at Slovenia. Its main objective is to generate a compiler
for a language. The compiler is created by the specification of a textual attribute
grammar. It automatically generates graphical and visualization tools [7] to in-
spect the written grammar, but it always need a textual specification of the AG.

In the same way, AnTLR [8], a powerful compiler generator, requires textual
specifications for the language grammar. This system provides online visualiza-
tion of the grammar productions but it does not provide any visualization about
the attributes neither the semantic rules of each production.

Other similar compiler generators like UltraGram [9] or ProGrammar [10]
also produce graphical tools to ease the understanding of the grammar. But still,
the input for these compiler generators is always a text-based specification.

The same happens in the visual languages generation area. DEViL [11],
a generator of visual programming languages and editors, takes advantage of
AGs to define these visual outcomes. But, despite of providing excellent and
usable results, the engineer needs to grasp a whole new syntax to define the
AG used to produce the visual language.

In [12], Ikezoe et al. present a systematic debugger for attribute grammars
integrated in a visual tool, and it provides visualizations of the grammar showing
the dependency between the symbols and the attributes. Although this is a

ComSIS Vol. 7, No. 2, Special Issue, April 2010 267



Nuno Oliveira et al.

useful tool, it is only used after constructing the AG, not being a good help to
map the mental construction of an AG into its specifications.

There are, indeed, several tools to support the specification and develop-
ment of AGs and their associated tools, however, and according to our knowl-
edge, acquired through years of research work on the area, there are no tools
that allow the specification of AGs using a visual notation.

3. VisualLISA - A Domain Specific Visual Language

For many years we have been thinking about and working with AGs. Inevitably
we created an abstract mental representation of how it can be regarded and
then sketched, for an easier comprehension and use. So we decided to im-
plement a framework that follows that representation. The conception of that
framework is described in this section.

3.1. The Language Conception

VisualLISA, as a new Domain Specific Visual Language (DSVL) for attribute
grammar specification, shall have an attractive and comprehensible layout, be-
sides the easiness of specifying the grammar model.

We think that a desirable way to draw an AG is to make it production ori-
ented, and from there design each production as a tree. The Right-Hand Side
(RHS) symbols should be connected, by means of a visible line, to the Left-
Hand Side (LHS) symbol. The attributes should be connected to the respective
symbols, using a connection line different from the one referred before, as both
have different purposes (see Figure 6). The rules to compute the values of
each attribute should exhibit the shape of a function with its arguments (input
attributes) and its results (the output attributes). Two kinds of functions should
be represented: the identity function (when we just want to copy values) or a
generic function (for other kind of computations). Often a production has a con-
siderable number of attributes and nontrivial computations. Therefore we think
that for visualization purposes, the layout of each production should work as
a reusable template to draw several computation rules. Hence, the rules are
drawn separated from each other, but associated to a production.

All these features can be seen in the following example, which gives a big
picture of how things get easier when dealing with the visual notation on a
real language. For this illustration we resort to LISS [13], which is a program-
ming language allowing the operation with atomic or structured integers values.
Moreover, it is fully specified using an AG, from where two semantic productions
are shown in Listing 1. For illustration purposes, some semantic rules from the
actual productions were dismissed.

Figure 3.1 shows the visual specification of production P1, taking advantage
of the production layout reuse feature, for rapid development and clarity. This
means that the user doesn’t have to draw the production each time he needs to
specify the computation of another attribute.
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Listing 1. One Production form LISS
1 P1 : Expr → Expr RelOp SingExp {
2 ( . . . )
3 Expr [ 1 ] . inRow = Expr [ 0 ] . inRow ;
4 Expr [ 1 ] . inCo l = Expr [ 0 ] . inCo l ;
5 SingExp . inRow = Expr [ 0 ] . inRow ;
6 ( . . )
7 Expr [ 0 ] . out = Expr [ 1 ] . out + RelOp . out + SingExp . out ;
8 }
9

10 P2 : SingExp → Term {
11 SingExp . out = Term . out ;
12 ( . . . )
13 }

(a)
(b)

Fig. 1. LISS production on VisualLISA, with associated semantic rules

This way, Figure 3.1 (a) we copy the values from the inherited attributes of
the LHS symbol to the symbols at RHS; and on another computation associated
with the same production (c.f. Figure 3.1 (b)), we assign a value to the LHS’s
out attribute using a function and the values of other attributes implied in the
production.

4. VisualLISA: The Environment

VisualLISA editor should be compliant with the idea of offering a nice and non
error-prone way of sketching the AG, as a first step; and an easy translation of
the model into a target language, as a second step. So, three main features are
highlighted: (i) syntax validation, (ii) semantics verification and (iii) code gen-
eration. The syntax validation restricts some spatial combinations among the
icons of the language. In order to avoid syntactic mistakes, the edition should be
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syntax-directed. The semantics verification copes with the static and dynamic
semantics of the language. Finally, the code generation feature generates code
from the drawings sketched up. The target code would be LISAsl or XAGra.
LISAsl specification generated is intended to be passed to LISA system in
a straightforward step. XAGra specification generated is intended to give the
system more versatility and further usage perspectives.

5. Specification of VisualLISA

The specification of VisualLISA bases on three main issues: i) the definition
of the underlying language’s syntax; ii) the language semantics and iii) the
description of the textual specifications into which the iconic compositions will
be translated.

5.1. Syntax

The Picture Layout Grammar (PLG) formalism [14], is an attribute grammar
to formally specify visual languages. It assumes the existence of pre-defined
terminal symbols and a set of spatial relation operators. Our acquaintance with
PLG formalism, from previous works, led us to use it to specify the syntax of
VisualLISA. Listings 2 present some rules of the language specification. For
the sake of space we only present the key rules of the specification; the missing
productions are comparable to those shown.

Figure 2 shows the concrete and connector icons used for VisualLISA
specifications. LeftSymbol is the LHS of a production, while NonTerminal and
Terminal are used to compose the RHS. The second line of icons in Figure 2
presents the several classes of attributes. Function and Identity, both repre-
senting operations, are used to compute the attribute values. The other icons
connect the concrete symbols with each other, to rig up the AG.

Listing 2. VisualLISA Partial Syntax Definition.

1 AG → conta ins (VIEW, ROOT)
2
3 VIEW → l a b e l s ( text , rectangle )
4
5 ROOT → l e f t t o (PRODS, SPECS)
6
7 SPECS → conta ins (VIEW,
8 over (LEXEMES, USER FUNCS) )
9

10 PRODS → group of (SEMPROD)
11
12 SEMPROD → conta ins (VIEW, l e f t t o (
13 group of ( group of (RULE ELEM) ) ,
14 group of (AG ELEM) ) )
15
16 AG ELEM → LEFT SYMBOL
17 | NON TERMINAL
18 | TERMINAL
19 | SYNT ATTRIBUTE
20 | INH ATTRIBUTE
21 | TREE BRANCH
22 | INT ATTRIBUTE
23 | SYNT CONNECTION
24 | INH CONNECTION
25 | INT CONNECTION

1 RULE ELEM → FUNCTION
2 | IDENTITY
3 | FUNCTION ARG
4 | FUNCTION OUT
5
6 TERMINAL → l a b e l s ( text , rectangle )
7
8 INT ATTRIBUTE → l a b e l s ( text , t r i ang le )
9

10 INT CONNECTION → po in ts f rom (
11 p o i n t s t o (
12 dash l ine ,
13 ∼INT ATTRIBUTE ) ,
14 ∼TERMINAL)
15
16 FUNCTION → over ( rectangle , text )
17
18 FUNCTION OUT → po in ts f rom (
19 p o i n t s t o ( arrow ,
20 ∼INH ATTRIBUTE ) ,
21 ∼FUNCTION)
22 | po in ts f rom (
23 p o i n t s t o ( arrow ,
24 ∼SYNT ATTRIBUTE) ,
25 ∼FUNCTION)
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LeftSymbol NonTerminal Terminal

SyntAttribute InhAttribute IntrinsicValueAttribute

Function SyntConnection InhConnection

IntrinsicValueConnection FunctionArg

FunctionOut Identity TreeBranch

Fig. 2. The Icons of VisualLISA

5.2. Semantics

In order to correctly specify an AG, many semantic constraints must hold. These
constraints are related with the attribute values that depend on the context in
which the associated symbols occur in a sentence. We separated these con-
straints into two major groups. One concerning the syntactic rules, Production
Constraints (PC), and another the respective computation rules, Computation
Rules Constraints (CRC).

The following statements are representative constraints of VisualLISA’s
semantic correctness, concerning the two groups identified before:

PC: The data type of an attribute X.a in a production, must be the same in
any production where X.a occurs.

CRC: The type of the target attribute and the return type of a function, when
they are connected by a FunctionOut symbol, must match.

The complete set of constraints can be seen in [9].

5.3. Translation

The translation (Ls → τ → Lt) is the transformation of a source language
into a target language. τ is a mapping between the productions of the Ls

(VisualLISA) and the fragments of Lt (LISAsl ∪ XAGra). These fragments
will be specified in this sub-section.

A Context Free Grammar (CFG) is a formal and robust way of representing
LISA specifications’ structure. Listing 3 presents that high-level CFG.
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Listing 3. LISA structure in a CFG.
1 p1 : LisaML → language i d { Body }
2 p2 : Body → Lexicon A t t r i b u t e s Product ions Methods
3 p3 : Lexicon → lexicon { LexBody }
4 p4 : LexBody → ( regName regExp )�
5 p5 : A t t r i b u t e s → at t r ibu tes ( type symbol . attName ; ) �
6 p6 : Product ions → rule i d { Der i va t i on } ;
7 p7 : De r i va t i on → symbol : : = Symbs compute { SemOperations }
8 p8 : Symbs → symbol+
9 p9 : | epsilon

10 p10 : SemOperations → symbol . attName = Operat ion ;
11 p11 : Operat ion → . . .
12 p12 : Methods → method i d { j avaDec la ra t i ons }

Reserved words, written in bold, enhance the main fragments in a LISA
sentence, making it more readable. The definition of smaller chunks, introduced
by each keyword, enables a more modular processing (code generation. . . )

Regarding the literature, there is not an XML standard notation for AGs. So
that, XAGra was defined using a schema. The whole structure of this schema
can be seen in detail in Section 9.

6. DEViL - A Tool for Automatic Generation of Visual
Programming Environments

We searched for VPE generators like MetaEdit+ [15], but their commercial na-
ture was not viable for an academic research. Also, we experimented VLDesk [16],
Tiger [17], Atom3 [18] and other similar tools, however none of them gave us
the flexibility that DEViL offered, as described below.

The DEViL system generates editors for visual languages from high-level
specifications. DEViL (Development Environment for Visual Languages) has
been developed at the University of Paderborn in Germany and is used in many
nameable industrial and educational projects.

The editors generated by DEViL offer syntax-directed editing and all fea-
tures of commonly used editors like multi-document environment, copy-and-
paste, printing, save and load of examples. Usability of the generated editors
and DEViL itself can be found in [11]. DEViL is based on the compiler genera-
tor framework Eli [19], hence all of Eli’s features can be used as well. Specially
the semantic analysis module can be used to verify a visual language instance
and to produce a source-to-source translation.

To specify an editor in DEViL we have to define the semantic model of the
visual language at first. It is defined by the domain specific language DEViL
Structure Specification Language (DSSL) which is inspired by object-oriented
languages and offers classes, inheritance, aggregation and the definition of at-
tributes. The next specification step is to define a concrete graphical represen-
tation for the visual language. It is done by attaching so called visual patterns
to the semantic model of the VL specified in DSSL. Classes and attributes of
DSSL inherit from these visual patterns. Visual patterns [20] describe in what
way parts of the syntax tree of the VL are represented graphically, e.g. we can
model that some part should be represented as a “set” or as a “matrix”. DEViL
offers a huge library of precoined patterns like formulae, lists, tables or image
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primitives. All visual patterns can be adapted through control attributes. E.g.
we can define paddings or colors of all graphical primitives. Technically visual
patterns are decorated to the syntax tree by specifying some easy inheritance
rules in a DSL called LIDO.

To analyse the visual language, DEViL offers several ways. The first one re-
sults from the fact that editors generated by DEViL are syntax directed. Hence,
the user cannot construct wrong instances of the VL It is limited by its syntax
and cardinalities expressed in DSSL. Another way is to define check rules e.g.
to check the range of an integer attribute or to do a simple name analysis on a
name attribute. To navigate through the structure tree of the VL, DEViL offers
so called path expressions which are inspired by XPath. They can be used in
a small simple DSL to reach every node in the tree. After analysis, DEViL can
generate code from the VL instance. This is done with the help of Eli which
offers unparsers, template mechanism (Pattern-based Text Generator — PTG)
and the well-known attribute evaluators from compiler construction.

7. Implementation of VisualLISA

To implement VisualLISA, we could have followed a non systematic way, re-
sorting to usual software development methods. But our know-how on compiler
construction led us to reuse the systematic generative approach followed in that
area. In this case, the implementation process will be supported by the formal
specification made in Section 5, and automated by the VPE chosen, DEViL.
Adopting the standard compiler construction process to the DEViL usage pe-
culiarities, we will follow a four-step process: i) Abstract Syntax Specification; ii)
Interaction and Layout Definition; iii) Semantics Implementation; and iv) Code
Generation.

7.1. Abstract Syntax

The specification of the abstract syntax of VisualLISA, in DEViL, follows an
object-oriented notation, as referred previously. This means that the nontermi-
nal symbols of the grammar are defined modularly: the symbols can be seen
as classes and the attributes of the symbols as class attributes.

The syntax of the visual language is determined by the relations among their
symbols. Therefore, for an high level representation of the language’s syntax,
a class diagram can be used. This diagram should meet the structure of the
PLG model in Figure 2. The final specification for the language is then an easy
manual process of converting the diagram into DSSL. Figure 3 shows a small
example of the diagram and the resultant specification.

There are two types of classes in this notation: concrete and abstract. The
concrete classes are used to produce a syntax tree, which is manipulated in the
other steps of the environment implementation. The abstract classes, besides
the normal inheritance properties can be used to define syntactic constraints.
These classes generate the syntax-directed editor.
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1CLASS Root {
2name : VAL VLStr ing ;
3semprods : SUB Semprod∗;
4defs : SUB D e f i n i t i o n s ! ;
5l i b r a r y : SUB L i b r a r y ? ;
6}

Fig. 3. Class Diagram and Respective DEViL Notation

In order to make possible the specification of separated computation rules
reusing the same layout of a production, we used DEViL’s concept of coupled
structures [21]. It couples the syntactic structure of two structure tree — for
VisualLISA we used the structure of symbol Semprod, which is used to model
a production. In practice, it means that the layout defined for a production is
replicated whenever a computation rule is defined, maintaining both models
synchronized all the time.

7.2. Interaction and Layout

The implementation of this part, in DEViL, consists of the definition of views.
A view can be seen as a window with a dock and an editing area where the
language icons are used to specify the drawing.

VisualLISA Editor is based on four views: rootView, to create a list of
productions; prodsView, to model the production layout; rulesView, to specify
the semantic rules reusing the production layout and defsView, to declare global
definitions of the grammar.

At first the buttons of the dock, used to drag structure-objects into the edition
area, are defined. Then the visual shape of the symbols of the grammar for the
respective view are defined. Figure 4 shows parts of view definitions and the
respective results in the editor. The code on the left side of Figure 4 defines the
view, the buttons and the behavior of the buttons. The default action is the in-
sertion of a symbol in the editing area. The bluish rectangular image represents
the button resultant from that code.

1 VIEW rootView ROOT Root{
2 BUTTON IMAGE ” img : : btnProd ”
3 INSERTS Semprod
4 INFO ” Product ion ” ;
5 }

1SYMBOL pview NonTerminal
2INHERITS VPForm
3COMPUTE
4SYNT. drawing =
5ADDROF( ntDrawing ) ;
6END;

Fig. 4. Parts of View Definitions and Respective Visual Outcomes

274 ComSIS Vol. 7, No. 2, Special Issue, April 2010



VisualLISA: A Visual Environment to Develop Attribute Grammars

Symbol NonTerminal is represented by the orange oval in Figure 4. The
code on the right reveals the semantic computation to define the shape of that
symbol. Shape and other visual aspects of the tree-grammar symbols are au-
tomatically defined associating, by inheritance, visual patterns.

7.3. Semantics

As long as VisualLISA is defined by an AG, the contextual conditions could be
checked using the traditional approach. DEViL is very flexible and offers some
other ways to implement this verification module. The approach used to develop
VisualLISA, is completely focused on the contexts of the generated syntax
tree. DEViL offers a tree-walker, that traverses the tree and for a given context
— a symbol of that tree — executes a verification code (callback-functions),
returning an error whenever it occurs. With this approach it is easy to define
data-structures helping the verification process. This approach is very similar to
the generic AG approach, but instead of attributes and semantic rules, it uses
variables which are assigned by the result of queries on the tree of the model.

Listing 4 shows the code for the implementation of a constraint defined
in [22].

Listing 4. Implementation of Constraint: “Every NonTerminal specified in the
grammar must be root of one production”

1 c h e c k u t i l : : addCheck Semprod {
2 set n [ l l e n g t h [ c : : g e t L i s t {$obj . grammarElements .CHILDREN[ LeftSymbol ]} ] ]
3 set symbName [ c : : get {$obj . name .VALUE}]
4 i f { $n == 0 } {
5 return ” Product ion ’$symbName ’ must have one Root symbol ! ”
6 } e l s e i f {$n > 1} {
7 return ” Product ion ’$symbName ’ must have only one Root symbol ! ”
8 }
9 return ” ”

10 }

A considerable amount of the constraints defined in Section 5.2 were verified
resorting to the Identifier Table, which is a well known strategy in language
processing for that purpose.

7.4. Code Generation

The last step of the implementation, concerning the translation of the visual AG
into LISA or XAGra, can be done using the AG underlying the visual language
(as usual in language processing). For this task, DEViL supports i) powerful
mechanisms to ease the semantic rules definition; ii) facilities to extend the
semantic rules by using functions and iii) a template language (PTG of Eli
system) incorporation to structure out the output code.

The use of patterns (templates) is not mandatory. But, as seen in the formal
definition of LISA and XAGra notation (Section 5.3), both of them have static
parts which do not vary from specification to specification. Hence templates are
very handy here. Even with templates, the translation of the visual AG into text
is not an easy task. Some problems arise from the fact that there is not a notion
of order in a visual specification. We used auxiliary functions to sort the RHS
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symbols by regarding their disposition over an imaginary X-axe. Based on this
approach we also solved issues like the numbering of repeated symbols in the
production definition.

The templates (invoked like functions) and the auxiliary functions, together
with other specific entities, were assembled into semantic rules in order to de-
fine the translation module. One module was defined for each target notation.
New translation modules can be added, to support new target notations.

8. AG Specification in VisualLISA

Figure 5 shows the editor look and feel, presenting the four views of our editor.

Fig. 5. VisualLISA Editor Environment

To specify an attribute grammar the user starts by declaring the productions
(in rootView) and rigging them up by dragging the symbols from the dock to the
editing area (in prodsView), as commonly done in VPEs. The combination of
the symbols is almost automatic, since the editing is syntax-directed. When the
production is specified, and the attributes are already attached to the symbols,
the next step is to define the computation rules. Once again, the user drags
the symbols from the dock, in rulesView, to the editing area, and compounds
the computations by linking attributes to each other using functions. Sometimes
it is necessary to resort to user-defined functions that should be described in
defsView. In addition, he can import packages, define new data-types or define
global lexemes.
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As example we present a simple AG , called Students Grammar, used to
process a list of students, described by their names and ages. The objective of
this AG is to sum the ages of all the students. This grammar can be textually
defined as shown in Listing 5.

Listing 5. Students Grammar
1 P1 : Students → Student Students {Students0 . sum = Student . age + Students1 . sum}
2 P2 : Students → Student {Students . sum = Student . age}
3 P3 : Student → name age {Student . age = age . value}

Figures 6 and 7 show the three productions that constitute the grammar.
In Figure 6, the attributes are associated with the symbols of the production.

Moreover, the production has a semantic rule that computes the value of the
LHS’s attribute, sum, by adding the value of the attributes in the RHS symbols,
sum and age, using an inline function named SumAges

Fig. 6. Specification of production P1 with associated semantics

In Figure 7 (a), the identity function is used to copy the value of the attribute
age to the attribute sum. In Figure 7 (b), the third production, makes use of
terminal symbols and associated intrinsic values. The computation rule, in this
production, is based on the conversion of the textual value of the age into an
integer.

When the grammar is completely specified and semantically correct, code
can be generated. Figure 8 shows, in LISA and XAGra notations, the code
generated for production P1 in Figure 6.

9. XAGra- An XML dialect for Attribute Grammars

In this section is defined an XML dialect to cope with attribute grammars. We
called it XAGra, which stands for XML dialect for Attribute Grammars.
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(a)
(b)

Fig. 7. Specification of Productions P2 and P3, (a) and (b) respectively, with associated
semantic rules.

(a) (b)

Fig. 8. Code Generated for LISA (a) and XAGra (b) specifications.
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XAGra denotes the abstract representation of an AG. The notation defined
here, is mainly based on the definition of AG presented in the Introduction, but
it also borrows parts from the notations inherent to various AG-based compiler
generator tools.

One of the standardized ways to define a new XML dialect is the creation
of a schema, using the standard XML Schema Definition (XSD) language. For
the sake of space, the integral textual definition of XAGra’s schema is not pre-
sented, and for reasons of visibility and readability, the complete drawing of the
schema is broken into several important sub-parts. Figures 9 to 13 are used to
support the explanation of the dialect.

XAGra’s root element was defined as attributeGrammar. This element
has a single attribute, name, whose objective is to store the name of the gram-
mar, or the language that the grammar defines; and is a sequence of several
elements. These elements represent components of the formal definition of an
AG, incremented with extra parts related to the usage of AG-based compiler
generators.

Table 1 defines a relation of inclusion between the XAGra notation elements
and the components that constitute the formal definition of an AG, which is re-
covered next:

AG = (T,N, S, P,A,R,C, T )

Table 1. Derivation of XAGra Notation From the Formal Definition of AG

XAGra Element ⊇ AG Components
symbols T,N, S

attributesDecl A

semanticProds P,R,C, T
importations ∅

functions ∅

The relations depicted in Table 1 give an overview about the information that
each element of XAGra notation will store. The following sections will describe
with more detail such elements and the information they store.

Listing 6 presents a fragment of a grammar that computes the age of a set of
students. This example is used to compare the concrete notation of a compiler
generator to the XML fragments that are shown in the sequent figures.

Next sections present a complete description of the elements of XAGra
scheme. However, the importations and functions elements are skipped, be-
cause their structure is simple and similar to the other parts shown.

9.1. Element symbols

Figure 9 presents the schema for the element symbols. As the name suggests,
this element contains the declaration of the grammar’s vocabulary.
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Listing 6. Example of Students Grammar
1 language StudentsGra {
2 l ex i con{
3 Name [A−Z ] [ a−z ]+
4 . . .
5 }
6 a t t r i b u t e s
7 i n t STUDENTS.sum;
8 . . .
9 r u l e Students 1 {

10 STUDENTS : : = STUDENT STUDENTS compute {
11 STUDENTS.sum = STUDENTS[ 1 ] . sum + STUDENT. age ;
12 } ;
13 }
14 . . .
15 method u s e r D e f i n i t i o n s {
16 impor t java . u t i l . A r r a y L i s t
17 p u b l i c i n t sum( i n t x , i n t y ){
18 r e t u r n x+y ;
19 }
20 }
21 }

1 <symbols>
2 <t e rm ina l s>
3 <t e rm ina l id="name">[A−Z ] [ a−z ]+</ t e rm ina l>
4 </ t e rm ina l s>
5 <nontermina ls>
6 <nontermina l id="students" />
7 </ nontermina ls>
8 <s t a r t n t="students" />
9 </ symbols>

Fig. 9. XAGra Schema – Element Symbols: definition and example
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It is composed of a sequence of three elements: terminals, nontermi-
nals and start.

The element terminals is a sequence of zero or more elements named
terminal, which, in its turn, has one attribute, id, used to store the name
of a terminal symbol. This attribute is an identifier, hence any instance of it,
must be different from the others, and must be always instantiated. Besides the
information kept on the attribute, this element has a textual content where the
respective Regular Expression (RE) can be declared.

The element nonterminals has similar structure. The difference lays on
the fact that it represents a sequence of zero or more elements nonterminal
which have no textual content. The attribute id has the same purpose as the
attribute with the same name in the element terminal.

Finally, the element start has a single attribute named nt. This attribute
is used to refer the nonterminal (already defined in the XAGra specification),
correspondent to the start symbol (or Axiom) of the AG.

9.2. Element attributesDecl

This element is composed of a sequence of zero or more elements dec-
laration. For the sake of readability, Figure 10 only depicts the structure
of the element declaration, which is a sequence of one or more elements
attribute. This one has three mandatory attributes: i) id – stores the name
of the attribute being declared. Any kind of text can be used to define it, but it
is always better to use the following notation: X.a, where X is the name of a
symbol in T ∪N and a is the name of an attribute in A(X) . As it is an identifier, it
must be different from all other identifiers on the specification; ii) type – stores
the data type of the current attribute value and iii) class – defines the class of
the attribute. It must be one of: InhAttribute, SyntAttribute and IntrinsicValueAt-
tribute.

1 <a t t r i b u t e s D e c l>
2 <d e c l a r a t i o n>
3 <a t t r i b u t e id="students.sum" type="int" class="SyntAttribute" />
4 </ d e c l a r a t i o n>
5 </ a t t r i b u t e s D e c l>

Fig. 10. XAGra Schema – Element Attribute Declarations: definition and example
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9.3. Element semanticProds

The element semanticProds represents the structure to define productions
and associated semantic rules in XAGra specifications. This structure is com-
posed of a sequence of zero or more elements semanticProd. Each seman-
ticProd has one single attribute, name, used to store the mandatory name of
the production, as an identifier.

Element semanticProd has three direct descendants: lhs, rhs, com-
putation, whose structure is explained in the next paragraphs and that are
depicted in Figures 11, 12 and 13.

Element lhs (Figure 11) is used to refer to the nonterminal symbol on the
LHS of the production. This element has a single attribute, nt, to refer to an
existent nonterminal.

1 <l hs n t="students" />

Fig. 11. XAGra Schema – Element Semantic Productions: LHS definition and example

Element rhs (Figure 12), stores the nonterminals on the RHS of a produc-
tion. It is composed of a sequence of zero or more elements element. For
this purpose, each element, has a single attribute, symbol, which is manda-
tory and represents a reference to a terminal or nonterminal symbol, already
instantiated in the initial symbols structure.

1 <rhs>
2 <element symbol="student" />
3 <element symbol="students" />
4 </ rhs>

Fig. 12. XAGra Schema – Element Semantic Productions: RHS definition and example

Element computation (Figure 13) is the last child of the element seman-
ticProds. It represents an hard concept of AGs: the semantic rules.

This element has one attribute, name, used to give a name to the compu-
tation being declared. This attribute, despite being mandatory, is not a unique
identifier: different computations can have equal names.

The structure of computation represents a pure abstraction of what is a
semantic rule in an AG definition: the attribute to which a value is assigned, and
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1 <computat ion name="getTheSum">
2 <ass ignedA t t r i bu te a t t ="students.sum" p o s i t i o n ="0" />
3 <opera t ion returnType="int">
4 <argument a t t ="student.age" p o s i t i o n ="1" />
5 <argument a t t ="students.sum" p o s i t i o n ="2" />
6 <modus> $1 + $2 </ modus>
7 </ opera t ion>
8 </ computat ion>

Fig. 13. XAGra Schema – Element Semantic Productions: Computation definition
and example

the operation that computes this value. Thus, the element computation has
two children: the elements assignedAttribute and operation.

Element assignedAttribute is composed of two mandatory attributes:
att, which is used to refer to an attribute; and position, which is a number
that identifies the position of the symbol associated to the attribute in the list
of elements of the production. That is, if the attribute is connected to the LHS,
then the value for position must be 0. If the associated symbol belongs to the
RHS, then its value should correspond to the position that the symbol occupies
in the RHS sequence of symbols, starting with 1.

The element operation aggregates a sequence of zero or more elements
argument and a single element modus. In addition to the elements, it has an
attribute, returnType, used to store the data type of the value returned by the
operation.

Elements argument are, in all aspects, equal to the assignedAttribute
element. Each one has two attributes with the same name and the same se-
mantic value underlaying, therefore they are used to refer to previous declared
attributes. The difference is on the fact that this time, the attributes referenced
are those used to compute the value in the operation.

The last element, modus4, which is a simple text field to write the expression
used to compute the value. Somehow, in this element’s text, a reference to the
argument attributes should be made. An example (and the convention estab-
lished) is using $x, where x > 0 is the position of the attribute in the sequence
of arguments.

4 modus is a latin expression for way (of computing something, in our case)
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Aside the importations and the functions parts, the XAGra’s schema is now
completely defined and explained, revealing the universality needed to store
any AG for any AG-based compiler generator.

Next section briefly presents XAGraAl, demonstrating one interesting ap-
plicability of the XAGra dialect.

10. Conclusion

After many years working in specification and implementation of compilers sup-
ported by Attribute Grammars, it became clear that a modular and reusable
approach to AG development is highly recommendable and necessary. On the
other hand, the work on program comprehension tools emphasized the impor-
tance of software/data visualization. The combination of those two areas of R&D
with a third one, the development of Visual Languages, gave rise to the proposal
of creating a VL for AGs, since there are no other tools allowing it, according to
our knowledge. The obligation to write text-based AG specifications imposed by
several compiler generator tools and the habitual way of sketching AGs on paper
in the form of a decorated tree, shortening the gap to the mental representation
of an AG, reinforced the appropriateness of that proposal.

In this paper we introduced VisualLISA, a new Domain Specific Visual
Language, which enables the specification of AGs in a visual manner and the
translation of that visual AG into LISA or XAGra (an XML notation to support
generic AG specifications). XAGra allows us to use this visual editor with other
compiler-compiler tools.

We were mainly concerned with the design of the language, its formal and
automatic implementation. In this phase of our project we neither focused on
the usability of the language nor on its scalability. We focused on the spec-
ification, aiming at showing the formal work behind the visual outcome, and
on the implementation of the underlying environment to specify AGs. At this
point we highlighted the use of DEViL in order to create the desired environ-
ment, through a systematic approach of development. Also, an example was
presented to show the steps to build an AG with VisualLISA.

In the future, it is our objective to perform at least, two experimental studies
involving VisualLISA: one to assess the usability of the language regarding
the visual vs textual approaches for developing AGs; and another one to test
the scalability of the language and environment, regarding the hypothesis that
it was created to cope with small AGs. We are also interested in assessing
the comprehension of AGs; maybe VisualLISA would be very handy on this
matter, working as AGs visualizer.

Concerning the applicability of XAGra, we can translate it into the specific
notation of any compiler generator tool. We call XAGra loader to the pro-
gram that performs this translation. As future work, the following translators
are planed: XAGra into LISA (a traditional LR parser generator); XAGra into
AntLR (an LL parser generator, based on an extended BNF grammar); XAGra
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into Eli (an LR parser generator with special constructors). Finally, a translator
from XAGra to Yacc could be a challenging project.

Also, we developed a Grammar Analyzer and Transformation tool, XAGraAl.
that takes as input an AG written in XAGra. Thus, the implementation of this tool
shows the applicability of XAGra as a universal and multi-purpose AG specifi-
cation language.

References

1. Pereira, M.J.V., Mernik, M., da Cruz, D., Henriques, P.R.: VisualLISA: a visual inter-
face for an attribute grammar based compiler-compiler (short paper). In: CoRTA08
— Compilers, Related Technologies and Applications, Bragança, Portugal. (July
2008)

2. Boshernitsan, M., Downes, M.: Visual programming languages: A survey. Technical
report, University of California, Berkeley, California 94720 (December 2004)

3. Kastens, U., Schmidt, C.: VL-Eli: A generator for visual languages - system demon-
stration. Electr. Notes Theor. Comput. Sci. 65(3) (2002)

4. Costagliola, G., Tortora, G., Orefice, S., De Lucia, A.: Automatic generation of visual
programming environments. Computer 28(3) (1995) 56–66
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A. XAGraAl: A grammar analyzer based on XAGra

In this section we give a brief introduction to XAGraAl, a Grammar Analyzer
and Transformation tool that computes dependencies among symbols, gram-
mar metrics, and grammar slices for a given criterion; moreover, XAGraAl can
also derive, from the original, shorter grammars combining slices or removing
unitary productions (similar to re-factoring a program). XAGraAl takes as input
an AG written in XAGra.

XAGraAl is a platform independent tool, developed using Java. Java Archi-
tecture for XML Binding (JAXB) [23] and Java API for XML Processing (JAXP) [24]
were used to process the input.

While parsing a XAGra grammar using JAXB, XAGraAl builds the identi-
fiers table (IdTab) where it collects all grammar symbols and attributes; each
identifier is associated with all its characteristics extracted or inferred from the
source document. The identifiers table — that can be pretty-printed in HTML —
complemented by the dependence graph (DG) — also printable using Dot and
GraphViz — constitute the core of the tool. Traversing those internal represen-
tation structures, it is possible to implement the other XAGraAl functionalities:

– Metrics, to assess grammar quality;
– Slicing, to ease the analysis producing sub-grammars focussed in a specific

symbol or attribute;

286 ComSIS Vol. 7, No. 2, Special Issue, April 2010



VisualLISA: A Visual Environment to Develop Attribute Grammars

– Re-factoring, to optimize grammars generating smaller and more efficient
versions.

Metrics are organized in three groups of assessment parameters:

– Size metrics, that measure the number of symbols, productions, and so on
(grammar and parser sizes);

– Form metrics, that describe the recursion pattern and measure the depen-
dencies between symbols (the grammar complexity);

– Lexicographic metrics, that qualify the clearness/readablity of grammar iden-
tifiers, based on a domain ontology.

Slicing operation builds partial grammar with the elements that derive in zero
or more steps on the criterion (backward slicing), or that are reachable from the
criterion (forward slicing). The criterion can be either a symbol or an attribute.
Slices are usually presented as paths over the dependence graphs. Figures 14
(a) and (b) illustrate a forward and a backward slice w.r.t the symbol age.

(a) (b) (c)

Fig. 14. Slices with respect to symbol age: (a) Forward slice; (b) Backward slice and (c)
Combination of Forward and Backward slices

Re-factoring is a not so usual functionality that transforms the original gram-
mar into a minimal one, removing all the useless productions. Another trans-
formation also provided is the generation of a new grammar combining forward
and backward slices with respect to the same symbol (see Figure 14 (c)).

Built in a similar way, GraAL [25] accepts as input a grammar written in
AntLR 3 and produces the same outputs. However, XAGraAl beats GraAL in
terms of generality as it consumes a grammar written in XML.
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Abstract. The paper presents innovative parser construction method 
and parser generator prototype which generates a computer language 
parser directly from a set of annotated classes in contrast to standard 
parser generators which specify concrete syntax of a computer language 
using BNF notation. A language with textual concrete syntax is defined 
upon the abstract syntax definition extended with annotations in the 
presented approach. Annotations define instances of concrete syntax 
patterns in a language. Abstract syntax of a language is inevitable input 
of the parser generator as well as language’s concrete syntax pattern 
definitions. The process of parser implementation is presented on the 
concrete computer language – the Simple Arithmetic Language. The 
paper summarizes results of the studies of implemented parser 
generator and describes its role in the university courses. 

Keywords: parser generator; annotated model; abstract syntax; model 
to grammar transformation. 

1. Introduction 

Computer languages are crucial tools in the development of software 
systems. By using computer languages we define the structure of a system 
and its behavior. Today's common industry practice is to create a software 
system as a composition of software artifacts written in more than one 
computer language. Developers use different languages and paradigms 
throughout the development of a software system according to a nature of 
concrete subproblem and their preferences. Besides the general-purpose 
programming languages (e. g. Java, C#) the domain-specific languages 
(DSL) [1][2] have become popular in the last decade. Nowadays, DSLs have 
their stable position in the development of software systems in many different 
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forms. Concerning abstraction level, it is possible to program closer to a 
domain. Furthermore DSLs enables explicit separation of knowledge in the 
system in natural structured form of domain. The growth of their popularity is 
probably connected with the growth of XML technology and using of 
standardized industry XML document parsers as a preferable option to the 
construction of language specific processors. A developer with minimal 
knowledge about language parsing is able to create a DSL with XML 
compliant concrete syntax using tools like JAXB [3].  

Computer languages come in many flavors – as well known GPLs, DSLs, 
but also as APIs, ontologies [4], and even others. The one of the today’s 
hottest research topics in the field of computer language development is the 
tooling support. In the paper we concentrate on the parser generators for 
DSLs. Even though the research in the field of computer languages has the 
long history and parser generators for a textual language processing like 
YACC [5], Bison [6], JavaCC [7] and ANTLR [8] have their stable position in 
the computer language development the task of developing a computer 
language is still an expert task. Cook et al. [9] conclude that implementing a 
textual DSL by implementing its grammar can be a difficult and error-prone 
task, requiring significant expertise in language design and the use of a 
parser generator. Similarly, Mernik et al. [1] argue that DSL development is 
hard, requiring both domain knowledge and language development expertise. 
We present the novel method of a computer language design and 
implementation in the paper – abstract syntax driven parser generation.

The rest of the paper has the following structure: In the section 2 we 
present main ideas behind our approach to a computer language 
development. The section 3 explains the method on example of simple but 
extensible arithmetic language. Section 4 describes the parser generator 
prototype –YAJCo. Section 5 summarizes the results of our experiments with 
YAJCo parser generator. Section 6 compares our work with the state of the 
art in the field of parser generators. The last section 7 concludes the paper 
and outlines the possibilities for further research in the field of parser 
generators and computer language development in general. 

2. Abstract Syntax Directed Language Definition 

This section sketches the main ideas behind the innovative approach to the 
definition of a concrete syntax for a computer language with textual notation. 
Contrary to traditional methods of parser generation (e. g. YACC, JavaCC), 
we focus on the definition of abstract syntax rather than giving an excessive 
concentration on concrete syntax (see Fig. 1). In our approach the abstract 
syntax of a language is formally defined using standard classes well known 
from object-oriented programming and metamodels. Kleppe argues for 
concentrating on abstract syntax and metamodels when we define a 
computer language in [10]. 
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parser generation 
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Fig. 2. Generating Language Parser using YAJCo’s parser generation approach 

In our approach the language implementation begins with the concept 
formalization in the form of abstract syntax. Language concepts are defined 
as classes and relationships between them. Upon such defined abstract 
syntax a developer defines both the concrete syntax through a set of source 
code annotations and the language semantics through the object methods. 
Annotations (called also attributes [11) are structured way of additional 
knowledge incorporated directly into the source code. During the phase of 
concrete syntax definition the parser generator assists a developer with 
suggestions and hints for making the concrete syntax unambiguous. Fig. 2 
shows the whole process of parser implementation using the described 
approach. If the concrete syntax is unambiguously defined then parser 
generator automatically generates the parser from annotated classes. 

It is quite common to have multiple notations for one language. RELAX NG 
[12] is an example of such a language with two different notations – XML 
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concrete syntax and compact concrete syntax. By using our approach 
different notations of the same language can share both abstract syntax and 
semantics. In some cases the evolution of concrete syntax does not require 
the modification of abstract syntax and semantics at all. This means that other 
notations of the same language are not affected by this type of language 
evolution. For instance, Fig. 3 presents the language with four different 
notations sharing the same abstract syntax and semantics. These notations 
(concrete syntaxes) are textual notation, XML notation, in-memory object 
notation and graphical notation. Concrete notations are interchangeable and 
developer selects among them according to his preferences.

Abstract syntax

Semantics

Concrete syntax
1

textual notation
Concrete syntax

2

graphical notation

Concrete syntax
3

XML notation
Concrete syntax

4

object notation

Fig. 3. Computer language with multiple notations and shared abstract syntax and 
semantics

3. SAL Example 

This section presents our approach to a computer language definition using 
annotated classes on the example of Simple Arithmetic Language (SAL). This 
language expresses the arithmetic expressions with basic arithmetic binary 
operations of addition and multiplication, and unary operation of arithmetic 
negation. The expressions also contain integer numbers. The abstract syntax 
of SAL can be formally defined using BNF as follows. 

e, e1, e2 Expression, n Number
e ::= Number n | UnaryMinus e | Add e1 e2 | Mul e1 e2

Variables e, e1, e2 are metavariables from the Expression syntactical
domain and n is the metavariable from the Number syntactical domain. The 
infix form of arithmetic operation is intentionally omitted to avoid the confusion 
with concrete syntax. Prefix names in productions (e. g. UnaryMinus, Mul) are 
used just to uniquely name the productions for semantic equations.

The semantics of SAL is formally defined using Eval function which maps a 
value from syntactic domain Expression to a value from semantic domain Z
(integers) and Value function which maps a value from syntactic domain 
Number to a value from semantic domain Z.
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Eval : Expression  Z 
Value : Number Z

The semantic function Eval is defined by the following equations.
Eval [|  Number n |]   = Value [|  n |]
Eval [|  UnaryMinus e |]   = – Eval [|  e |]
Eval [|  Add e1 e2 |]    = Eval [|  e1 |]  + Eval [|  e2 |]
Eval [|  Mul e1 e2 |]    = Eval [|  e1 |]  * Eval [|  e2 |]
Certainly we can find many different notations for SAL. For example, we 

can write down a sentence from SAL in the following notation using standard 
symbols and the operator infix form. 

1 + 2 * 7

In the Fig. 4, abstract syntax tree of the sentence above is depicted.

Number

1

Number

2

Number

7

Mul

Add

Number

1

Number

2

Number

7

Mul

Add

Fig. 4. The abstract syntax tree of the expression 1 + 2 * 7

From the Fig. 4 it is apparent that depicted abstract syntax tree contains 
typed nodes corresponding to language concepts. The node types are Add, 
Mul and Number. Add node represents the binary operation of addition. It 
always has two child nodes respecting the nature of the binary operation of 
addition. The Mul node represents multiplicative operation and the leaf node 
Number represents an integer number. The Number node is attributed with 
the notation of a number.

Unlike traditional approach, language definition will not start with the 
definition of SAL’s concrete syntax written in BNF. According to our approach, 
the object classes representing syntactic domains (language concept) are 
created at first. These classes define the abstract syntax of the language and 
also the semantics of the language as stated in the previous formal definition 
of the SAL. The concrete syntax will be specified later using source code 
annotations, expressing the concrete syntax patterns and their 
correspondence to the abstract syntax concepts.

The main concept of the SAL is the Expression. It is pretty 
straightforward because SAL is the language of expressions. On the other 
side it is an abstract concept and it does not have concrete representation. 
From the semantic point of view every expression can be evaluated to a 
single integer value. This fact is denoted by semantic function eval of 
Expression class.
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abstract class Expression { 
  //Semantic function – OOP method 
abstract int eval(); 

}

The Expression class is declared to be abstract because it only defines 
the abstract concept of an expression from SAL and does not represent any 
abstract syntax graph node. Next, the different types of expressions can be 
incorporated into the SAL. The simplest form of an expression is a number 
expression. Number has its notation and the value. Firstly we will focus is on 
its value. The notation will be defined later during the definition of the concrete 
syntax. It needs to be expressed that number is a simple expression as well. 
This is done using “is-a” relationship, denoted with extends keyword in Java. 
Corresponding semantic equations are denoted in the comments above the 
methods. The code snippet below shows the class Number for integer 
numbers.

class Number extends Expression { 
int value;

//Eval [| Number n |] = Value [| n |] 
int eval() { 
return value;

  } 
}

The unary operation of negation is defined in the following snippet of the 
UnaryMinus class. 

class UnaryMinus extends Expression { 
  Expression expression;

//Eval [| UnaryMinus e |] = – Eval [| e |] 
int eval() { 
return -expression.eval(); 

  } 
}

Since the addition is a kind of arithmetic expression in SAL, the binary 
operation of addition is defined in the class Add. Relationship “is-a” is 
therefore used again.

class Add extends Expression { 
  Expression expression1;
  Expression expression2;

//Eval [| Add e1 e2 |] = Eval [| e1 |] + Eval [| e2 |] 
  int eval() {
    return expression1.eval() + expression2.eval();
}

}

Operation of multiplication is defined in the same style as binary operation 
Add.
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The class diagram in the Fig. 5 shows the hierarchy of SAL classes. The 
abstract syntax of arithmetic expression language has already been defined 
as well as the semantic function Eval using the classic OOP notation. The 
next step in the development of SAL is to define the concrete syntax for the 
language. Concrete syntax will be used when expression (sentence) will be 
stored in the textual form. 

-expression1

1

-expression1

1

-expression2

1

-expression2

1
-expression1

1

Fig. 5. Classes and their hierarchy in the simple arithmetic language (SAL) 

The specification of concrete syntax requires some additional information 
about textual representation of the language concepts. In SAL it is:

 a number representation (notation), 
 notation for operations, 

 symbols for the operations of addition, multiplication and negation, 
 the form of the notation, the priority and associativity of all operations.

The operations will be expressed in infix form using standard symbols +
and *. Unary operation of negation will be in the prefix form denoted with the 
symbol -. The priority, associativity and symbols for the operations are listed 
in Table 1. The integer numbers are written using standard decimal notation 
with digits 0, 1, …, 9.

Table 1. Priority and associativity of SAL operators 

Operator Priority Associativity
+ 1

(lowest)
left

* 2 left
- 3

(highest)
right

The class for integer numbers is augmented with concrete syntax source 
annotations in the following code snippet.
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class Number extends Expression {
int value;

  Number(@Token("VALUE") long value) {
this.value = value;

  }

int eval() {
return value;

  }
}

The @Token annotation with VALUE attribute defines the name of a regular 
expression for the number notation. As seen on the snippet the class 
constructor is augmented with the concrete syntax pattern. The regular 
expression can be defined as follows. 

@TokenDef(name = "VALUE", regexp = "[0-9]+")

The format of a regular expression depends on the syntax for definition of 
regular expressions. The annotation @Token("VALUE") can even be 
omitted because the name of token can be derived directly from the name of 
the parameter (value in this case). The domain class for binary operation of 
addition augmented with concrete syntax annotations is shown below.

class Add extends Expression {
  Expression expression1;
  Expression expression2;

  @Operator(
    associativity = Associativity.LEFT,
    priority = 1
  )
  Add(Expression expression1,

@Before("+")
      Expression expression2) {

this.expression1 = expression1;
this.expression2 = expression2;

  }

int eval() {
return expression1.eval() + expression2.eval();

  }
}

Concrete syntax for the operation of addition is defined in the class 
constructor. Parameters of constructor define the rule of composition of the 
operation. In the constructor body it can be observed that addition is 
composed of two expressions in textual form. It is important to notice that 
after the first expression (and before the second expression at the same time) 
token + will follow. 

Binary operation of multiplication is defined accordingly to the definition of 
addition. The domain class for unary operation of arithmetic negation is 
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augmented with concrete syntax annotations as shown in the code snippet 
below.

class UnaryMinus extends Expression {
  Expression expression;

  @Operator(priority = 3)
  UnaryMinus(
      @Before("-")
      Expression expression) {
    this.expression = expression;
  }

  int eval() {
    return -expression.eval();
  }
}

As seen in the constructor the operation is defined as unary prefix 
operation.

The last step in definition of the SAL’s concrete syntax is the definition for 
parentheses. This can be achieved simply by using the annotation on abstract 
class for expressions as shown below.

@Parentheses(left = "(", right = ")")
  abstract class Expression {
    //...
}

Finally the concrete syntax for the language has been defined. The 
implemented YAJCo parser generator generates the language parser from 
annotated classes. The concrete syntax of SAL is automatically derived from 
these classes, their relationships and concrete syntax annotations. In the 
current implementation of the YAJCo it is the following LL(1) context-free 
grammar.

Expr1 ::= Expr2 {"+" Expr2}
Expr2 ::= Expr3 {"*" Expr3}
Expr3 ::= "-" Expr3 | Expr
Expr ::= Number | "(" Expr1 ")"
Number ::= [0-9]+ 

4. YAJCo Parser Generator

The main goal of the approach is not to create a new parsing technology 
based on context-free grammars theory. The main idea is to integrate existing 
technologies into the higher level abstraction in which the language developer 
does not have to concentrate on concrete parsing technology but on the 
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language itself describing the concepts and relationships between them with 
abstract syntax in mind. The main characteristics of the approach are: 

 Orientation on abstract syntax and semantics of the language. 
 Definition of the concrete syntax independent from a parsing technology. 
 Automatic construction of abstract syntax tree from an input sentence. 
 Automatic construction of references between concept instances. 
 Error reporting in terms of language domain concepts. 
 Separation of language concepts on implementation level (concept 

types).
 Tool support for language evolution (concept refactoring). 

As a proof of concept the parser generator YAJCo (Yet Another Java 
Compiler cOmpiler) has been implemented. YAJCo generates language 
parser from annotated classes. It is implemented as a standard Java 
annotation processor which traverses through the source code of classes 
looking for cocnrete syntax pattern annotations. YAJCo discovers relations 
between classes. Two main relationships between classes used in the 
definition of an abstract syntax are: 

 “is-a” relationship, 
 “has-a” relationship. 

Together with corresponding BNF productions they are depicted in the Fig. 
6.

Statement ::= If | While

1

1

While ::= Expression Statement
or
While ::= Statement Expression

A)

B)

Statement ::= If | While

1

1

While ::= Expression Statement
or
While ::= Statement Expression

A)

B)

Fig. 6. Abstract syntax relationships:  A) “is-a” relationship, B) “has-a” relationship 

The “is-a” relationship is used also in the definition of concrete syntax, but 
the “has-a” relationship has following drawbacks when defining the concrete 
syntax:

 Multiple notations for a single concept. 
 Lack of natural ordering for member variables defined in a class (except 

the order in a source code). 
 Data type conversion between concrete and abstract syntax (e. g. 

dropping the quotes from the string literal). 
All these drawbacks can be eliminated by using class constructor notation 

(or factory methods notation) for the definition of concrete syntax. This is the 
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main reason why we annotate constructors and their parameters instead of 
object fields as shown in the following example. 

While(
@Before({"while", "("})
@After(")")

  Expression expr, 
  Statement stmt) {…} 

The previous example corresponds to the following BNF production of a 
concrete syntax. 

While ::= 'while' '('Expression ')' Statement 

To define a transformation from abstract to concrete syntax a set of 
concrete syntax annotation types has been created: 

 Structural annotations – mark the concept as optional or set the 
minimum and maximum number of occurrences - @Optional, @Range

 Token annotations – specify binding of lexical units to abstract syntax 
concepts - @Before, @After, @Token, @Separator

 Language pattern annotations – identify common computer language 
patterns 
 Operators: @Operator, @Parentheses
 Identifiers and references: @Identifier, @References

 Parser configuration annotations - @Parser, @TokenDef, @Skip
Following print statement example presents the usage of some of the 

annotations mentioned above. 

class Print extends Statement { 
@Before("print")
@After(";")

  Print( 
@Separator(",")
@Range(minOccurs = 1) 

    Expression[] expressions) { ... } 
...
}

The corresponding print language concept has the following notation. 

print expr1, ... , exprn;

The next example presents annotated C language if statement. 

class If extends Statement { 
  If( 

@Before({"if", "("}) 
@After(")")

    Expression expression,
    Statement trueStatement,

@Optional
@Before("else")

    Statement falseStatement) {...} 
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...
}

Currently the JavaCC parser generator is used as the underlying parsing 
technology. As an output YAJCo generates JavaCC grammar file augmented 
with actions for constructing abstract syntax tree. Since the annotations are 
independent of concrete parsing technology the output can also be generated 
for other top-down or bottom-up parser generators (e. g. ANTLR [8]).

Finally the parser for SAL with tokens and blank characters is defined using 
@Parser annotation as shown in the code snippet. 

@Parser(
  className = "parser.expr.ExpressionParser", 
  rootNode = "Expression", 
  tokens = { 
    @TokenDef(name = "VALUE", regexp = "[0-9]+")
  }, 
  skips = { 
    @Skip(" "),
    @Skip("\t"),
    @Skip("\n") 
  } 
)
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Fig. 7. Generating parser using YAJCo parser generator – YAJCo architecture 
overview 

Processing of annotated classes with developed parser generator YAJCo
is depicted in the Fig 7. After the generation of parser is complete it can be 
simply embedded in any existing Java application. The following code snippet 
is an example of embedding generated source code parser for SAL. 

String expr = "1 + 2 * 7"; 
Expression expression = new   
 ExpressionParser().parse(expr);
long result = expression.eval(); 
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5. Experiments 

To explore the full potential of the implemented approach and YAJCo parser 
generator we have implemented seven computer languages, each of them 
having a different character: 

 SAL – Simple Arithmetic Language, 
 AL – Arithmetic Language, 
 SIL – Structured Imperative Language, 
 PIL – Procedural Imperative Language, 
 GUIIL – Graphical User Interface Interaction Language, 
 SML – State Machine Language, 
 LAD – Language of Annotation Designator. 

SAL [17] and AL languages are simple computer languages for expressing 
the arithmetic expressions. AL has been created incrementally from the SAL 
in a few evolutionary steps. In every step some new constructs have been 
incorporated into the language. SIL and PIL languages are the 
representatives of general-purpose programming languages. PIL is 
procedural Pascal-like language. These languages are greatly inspired by 
traditional university compiler course languages. On the other hand the last 
three languages GUIIL, SML and LAD are DSL languages oriented to 
concrete domains. GUIIL is the language which describes the recipes for 
graphical user interface task automation. SML is classic DSL for state 
machines description [9]. LAD is DSL language for expressing the annotation 
constraints. All mentioned languages were successfully implemented using 
YAJCo parser generator. During the implementation of these computer 
languages we have also defined some metrics to measure the following 
implementation characteristics: 

 number of language concepts (defined by types - classes, interfaces, 
enumerations),

 number of annotations in the implementation of language concepts 
categorized by annotation types, 

 comparison of annotated and unannotated language concepts, 
 characteristics of generated source code (number of source lines of 

code, number of characters). 
The results of experiments are summarized in Table 2 According to our 

measurements the most complex language is PIL. This language contains the 
largest number of language concepts. From the point of view of the number of 
language concepts the simplest languages are SML and GUIIL. According to 
the results the most common language concept representation is a concrete 
class. Interfaces and abstract classes are interchangeable by the choice of 
language developer. The most common concrete syntax annotation used in 
experimental languages is @Before. This is a reasonable outcome since the 
annotation specifies the lexical symbol preceding a concept. It is natural to 
specify the concept with leading keyword (e.g. if, while, procedure). The 
interesting fact is that approximately 25% of language concept types contain 
no annotation. It is the fulfillment of the one of our aims - to minimize the 
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number of used annotations. The results also show that the SML language is 
considerably verbose. The average number of concrete syntax annotations 
per concept type in SML is 2.5. The following part from the SML sentence 
presents the level of verbosity of the SML language. 

Table 2. Results from the implementation of experimental languages using YAJCo 
parser generator 

Types SAL AL SIL PIL GUIIL SML LAD 

Concrete class 6 11 30 42 4 6 26 

Abstract class 1 3 2 3 1  7 

Interface    2    

Enumeration   1    1 

Total 7 14 33 47 5 6 34 

Annotation SAL AL SIL PIL GUIIL SML LAD 

After  1 9 13 1 1 13 

Before 5 10 28 37 2 8 23 

Operator 5 10 17 27   8 

Optional   1 1 1 1 3 

Parentheses 1 1 1 1   2 

Range   3   2 2 

Separator   3 2 1  5 

Token   2   3 2 

Total 11 22 64 81 5 15 58 

Category SAL AL SIL PIL GUIIL SML LAD 

Number of annotated 
types 6 11 25 39 2 4 23 

Number of types without 
annotation 1 3 8 8 3 2 10 

Average number of 
annotations per type 1.57 1.57 1.94 1.72 1.00 2.50 1.71 

Ratio of unannotated 
types to all types 0.14 0.21 0.24 0.17 0.60 0.33 0.29 

Characteristics SAL AL SIL PIL GUIIL SML LAD 

Number of lexical units 8 16 37 40 7 11 37 

Number of BNF rules 5 7 24 27 5 6 29 

Number of source lines of 
code generated by YAJCo 128 187 570 655 124 168 693 

Number of characters 
generated by YAJCo 2458 3775 15912 17554 2854 4245 19559 

Number of source lines of 
code generated by 

1487 1603 2567 2580 1516 1843 3849 
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JavaCC

Number of characters 
generated by JavaCC 42103 45370 78450 78687 43869 52950 114002 

transition from Ready to Running when water_high 

The average usage of concrete syntax annotation per one concept type in 
all languages is less than 2. The main goal of the metrics definition was the 
measurement of a language complexity based on abstract syntax since 
abstract syntax directly defines concepts from a domain. 

The successful implementation of experimental languages proves the 
viability of YAJCo parser generator. That was the main reason why we 
decided to incorporate the tool in the university master course concerning 
DSL implementation and model driven software development. More than 30 
students have successfully used the YAJCo parser generator as a part of 
their projects. 

6. Related Works 

Currently there are a lot of parser generators for various programming 
languages [5][6]. Classic parser generators like JavaCC [7] generate the 
parser as a single huge class ignoring the concept of composition of language 
concepts and concentrating on the concrete syntax of a language. These 
tools are still greatly inspired by procedural nature of YACC-like tools. The 
concrete syntax is specified in DSL of parser generator. It is usually a 
language for writing the context free grammar enriched with constructs for 
language semantics definition. During language development the developer is 
often dealing with the type of parsing algorithm which is supported by 
selected parser generator (e. g. LL, LR, LALR) and his decisions are forced 
by the type of grammar supported by the tool. Even JJTree, a tool provided by 
JavaCC for generating the abstract syntax tree from the textual 
representation, is still driven by the point of view of concrete syntax grammar 
rather than abstract syntax language concept. Consequently, changes made 
to grammar must be also reflected in the representation of abstract syntax 
nodes in programming languages. The semi-automatic refactoring of 
generator’s DSL is still missing. 

On the other side, there is a notable growth in the field of language 
workbenches [13] on the market. MDSD [14] tools like Microsoft Visual Studio 
DSL Tools (software factories representative [15]) are being incorporated into 
the programming IDEs. The primary orientation of these tools is graphical 
notation of computer languages. However, the special support for textual 
language notation is not provided.

Authors in [16] propose another approach to mapping from abstract syntax 
to concrete and back. Their solution is based on complex language rather 
than concrete syntax patterns. 
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7. Conclusion 

In the paper we have presented solution for generating parsers for textual 
languages. The language itself is specified by a set of annotated classes. 
Annotations extend the classes with additional information required for 
specification of concrete syntax, for example keywords and operator 
notations. The developer can start with the definition of abstract syntax and 
continue with creation of language in incremental way using the standard 
refactoring tools. In proposed solution there is only one form of definition of 
abstract syntax graph nodes – by the classes. The grammar is derived 
directly from the source code of annotated domain classes. Even the 
examples are written in object-oriented programming language Java our 
solution is not strictly connected to Java language and can be easily ported to 
any other object-oriented language supporting the attribute-oriented 
programming. We believe that our solution can simplify the development of 
textual software languages. 
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Abstract. Grammar metrics have been introduced to measure the qual-
ity and the complexity of the formal grammars. The aim of this paper is to
explore the meaning of these notions and to experiment, on several gram-
mars of domain specific languages and of general-purpose languages,
existing grammar metrics together with the new metrics that are based on
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1. Introduction

Grammar metrics were introduced to measure the quality and complexity of a
given grammar in order to orient grammar engineering (grammarware [17]). We
consider that existing metrics [23], more or less deduced from classical pro-
gram metrics or from the structure of the specification, could be upgraded with
new metrics that are specific to grammar behavior and could provide additional
insights about the complexity of the grammar and the language generated by
this grammar. Of course, a single metrics alone cannot capture the quality of
the grammar, however a set of well chosen metrics could give interesting hints
to grammar developers.

In order to complete the existing set of metrics, we propose two different
kinds of metrics3. A first set of metrics is computed from the LR automaton,

3 This work is sponsored by bilateral project “Advanced Topics in Grammar Engineer-
ing” (code BI-FR/08-09-PROTEUS-008) between Slovenia and France.
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generated from the grammar. A second set is more related to the language
recognized, than to the grammar itself. These different kinds of metrics produce
results that are complementary for the grammar developers.

In order to compute these metrics, we have developed a tool. As an input, it
takes ANTLR [22] or Tatoo [4, 5] grammars and computes classical metrics [23]
together with our new metrics. It uses Tatoo engine to construct the LR automa-
ton for these grammars.

Using this tool we have computed the values of these metrics on several
grammars that form a good benchmark of grammars. These grammars cover
domain specific languages (DSL [20]) and general-purpose languages (GPL
[28]). They also cover the evolution of a grammar between different versions of
the language. From these experimentations, we discuss the different values of
the metrics.

The structure of the paper is as follows. Presented in the Section 2 is related
work and existing metrics. In Section 3, the new metrics are defined. Section
4 describes the tool and how it is linked to Tatoo. In Section 5, experimental
results on the grammars are detailed and discussed. In Section 6, some usage
guidelines are presented. Section 7 carries conclusions and remarks. In the
appendix, the computation of the closure application of rules is detailed.

2. Overview of Related Work

In the field of grammar metrics, only a few tools and papers exist. The most
pertinent of these tools is SynC tool by Power and Malloy [23]. In SynC tool,
grammar metrics are divided into size and structural metrics. In the first met-
rics group, an adaptation of standard metrics for programs [13], the following
grammar size metrics are defined [23]:

– term – number of terminals,
– var – number of non-terminals,
– mcc – McCabe cyclomatic complexity,
– avs – average size of right hand side, and
– hal – Halstead effort.

Size metrics feature useful information about the grammars. More maintenance
is expected for grammars with large numbers of non-terminals (var). The mcc
provides the number of alternatives for non-terminals. The mcc value indicates
the effort required for grammar testing and a greater potential for parsing con-
flicts. A big avs value points to less readable grammar as well as it impacts on
the parsers’ performance, because symbols have to be placed on the parser
stack. The hal value evaluates grammar designers’ efforts to understand the
grammar.

Structural metrics for grammars are derived from grammatical levels [8],
where a grammar is represented as a graph. In the graph, the nodes are non-
terminals and the edges represent a successor relationship between a left hand
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side non-terminal and a non-terminal on the right hand side. In order to com-
pute structural metrics, we compute the strongly connected components of the
graph, which leads to a partition of the set of non-terminals into grammatical
levels. We use the following structural metrics, as defined in [23]:

– timp – tree impurity,
– clev – normalized counts of levels,
– nslev – number of non-singleton levels,
– dep – size of largest level, and
– vhei – Varju height metrics.

Tree impurity (timp) measures how much the graph resembles a tree (0% –
graph is a tree, 100% – graph is fully connected). A high timp value for a gram-
mar means that refactoring, the grammar will be complicated, since a change
in one rule may impact many other rules. A normalized count of levels (clev)
is the normalization of the number of grammatical levels by the total number of
non-terminals expressed in percentage. A high clev indicates more opportu-
nities for grammar modularization. Many of the equivalence classes are of size
1, while language concepts such as declarations, expressions, and commands
tend to be represented by larger classes. The (nslev) metrics identifies the
number of such classes. The size of the largest level (dep) metrics measures
the number of non-terminals in the largest grammatical level. A high dep in-
dicates an uneven distribution of the non-terminals among grammatical levels.
The Varju height metrics (vhei) is the maximum distance of any non-terminal
from the start symbol, and is expressed as a percentage of the number of equiv-
alence classes.

Paper [3] presents a methodology for iterative grammar development. Well-
known techniques from software engineering are applied to the development

– version control,
– grammar metrics,
– unit testing, and
– test coverage analysis.

It demonstrates how these techniques can make grammar development a
controlled process. As mentioned above, one of the techniques used involves
grammar metrics. Authors use size and structural metrics defined in [23] and
extend them with disambiguation metrics, which are SDF [15] specific:

– frst – number of follow restrictions,
– rejp – number of reject productions,
– assoc – number of associativity attributes, and
– upp – number of unique productions in priorities.

These metrics merely count the various types of disambiguation in the SDF
notation. Aside from Halstead’s effort metrics, some of the ingredient metrics
and related metrics are presented and used for grammar engineering. In a
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similar manner, as done in this work, we propose new metrics, which brings
additional insights into grammar development.

One of the applications for grammar metrics is also in the field of gram-
mar testing. The concept of grammar testing is explained in [18]. This paper
presents context-dependent branch coverage on parser testing and grammar
recovery; it proposes new tests for checking the accuracy and the complete-
ness of grammars. We believe that our grammars’ metrics could be a valuable
contribution to the field of grammar testing, used as effort estimation in grammar
engineering (i.e., software engineering applied to grammars).

3. Proposed New Metrics

In this section, we describe in detail two new kinds of metrics, LR table-based
metrics and generated-language based metrics.

3.1. LR Table Metrics

The first set of metrics is based on the LR automaton that is used to produce an
efficient bottom-up parsers for the grammar, but could also simulate top-down
parsing [25], comparable to LL parsers. It is surprising that information given by
this automaton has never been used before to qualify grammars.

The LR states are built using the following algorithm. A more detailed de-
scription of this algorithm can be found in [2].

First, the grammar is increased by adding a new production

X → SEOT

where S is the start symbol of the grammar, X a fresh non-terminal which be-
comes the new axiom and EOT, a fresh terminal which symbolizes the end of
input.

E → (E)|E + E|E − E| − E|id

Fig. 1. Grammar G1

States of the LR automaton are defined by a set of items. An item is a
production where an inter-letter space is marked (usually with a dot) on the
right-hand side. The set of items defines all of the productions that can be found
at this stage of the parsing. For instance, for the grammar G1 described in Fig. 1,
after reading «(E+E» (the E means that a word derived from E is recognized)
the state contains:
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E → E ·+E
E → E · −E
E → E + E·

The item E → E + E· indicates that «E + E» has been read and will be
considered as a single E, while the item E → E · −E indicates that the second
E is part of an E − E expression that will be considered as a single E.

Note that the information that a «(» has been read, is kept in the state stack
of the parser, not in the LR state.

Only the initial state contains the item:

X → ·SEOT

States are built by applying a creation rule to existing states, until a new state
cannot be built.

To explain this rule, we first define the closure C(I) of an item I as the small-
est set to verify the following set of equations, where P is the set of productions
of the grammar:

– I ∈ C(I);
– ∀E → α ·Xβ ∈ C(I) and ∀X → γ ∈ P,

then X → ·γ ∈ C(I).
The closure of a state is defined as the union of the closure of its items.

Then, new states are built from a state St by applying the following rule: for
each terminal or non-terminal v such that an item X → α · vβ is in C(St), the
following state is created

{Y → δv · ζ|Y → δ · vζ ∈ C(St)}
If v is a terminal, we say that the state St can shift the terminal v.

The set of LR states for the grammar G1 computed using previous algorithm
is the following:

{X → ·EEOT}
{X → EEOT·}
{E → (·E)}
{E → − · E}
{E → id·}
{E → (E)·}
{X → E · EOT, E → E ·+E, E → E · −E}
{E → E + ·E}
{E → E − ·E}
{E → (E·), E → E ·+E, E → E · −E}
{E → −E·, E → E ·+E, E → E · −E}
{E → E + E·, E → E ·+E, E → E · −E}
{E → E − E·, E → E ·+E, E → E · −E}
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In the last state, for instance, the terminals + and − can be shifted.
From the possible metrics that can be extracted from the LR automaton we

have chosen the following:

– The metrics lrs represents the number of states in the LR automaton. This
number is 13 for the grammar G1. This metrics captures the complexity of
the grammar.

– The lat metrics sums, for each terminal in the grammar, the number of
states in the LR automaton that does not lead to an error when this terminal
is in the lookahead, and it is normalized by the number of terminals. This
metrics gives an idea for each terminal of the probability to accept it during
the parsing.

– Metrics lat can be further normalized by the number of states lrs. Metrics
lat/lrs computes complexity of relations between the terminals and the
states in LR tables.

– The metrics lrtla sums, for each state in the automaton, the number of
terminals that, when they are in the lookahead, do not lead to an error
in this state, and it is normalized by the number of states. It indicates the
complexity of each state in the automaton. If we normalize metrics lrtla
by the number of terminals we get metrics lat/lrs.

– The metrics lcc counts the number of LR conflicts. These conflicts are shift-
reduce or reduce-reduce conflicts found in some of the states. The lcc met-
rics gives an insight into the complexity of the grammar. Indeed, the conflicts
solved by priority/associativity rules could also be solved by rewriting the
grammar instead of introducing unnecessary productions that degrade the
readability of the grammar [2]. Note that conflicts may be implicitly resolved
by many compiler generators. A shift-reduce conflict is resolved implicitly
by choosing to shift over reduce. On the other hand a reduce-reduce con-
flict is resolved implicitly by choosing to reduce the rule that first appears in
the grammar. However, every such conflict should be carefully studied and
checked if default behavior is indeed appropriate. Conflicts certainly raise
the complexity of the grammar and lcc metric captures it.

3.2. Generated Language Metrics

The second set of proposed metrics is based on some of the characteristics of
the language recognized. The following metrics, discussed in more detail below,
are proposed: ss, ssm, ltps, ltpsm, ltpsa, and ltpsn.

The metrics ss builds, for each production, the shortest sample that uses
it and stores the average size of these samples. This metrics provides hints of
the verbosity of the language produced by the grammar. The metrics ssm is the
maximum size of the samples.

The shortest sample for a production is produced using a recursive algo-
rithm. More precisely, the algorithm for computing the shortest sample using a
production in a grammar consists in three steps. The first is the computation,
from each non-terminal, of the shortest word made of terminals derived from
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this non-terminal. The second step is the computation, for any non-terminal N ,
of the shortest word generated by an axiom, that is only made of terminals and
one occurrence of N , which we call the sequel of the shortest word leading to
X. Details of these first two steps can be found in appendix. Once these first two
steps are accomplished, to get the shortest sample using production X → α,
one starts with the word w obtained in step two for non-terminal X, replace X
by α in w and finally replace all remaining non-terminals with the shortest words
computed in step one.

The word produced is still the shortest since, if a shorter one exists, either its
derivation tree would lead to a shortest way to produce a word that contains X
or the shortest words for non-terminals of α. Since the first two steps are done
using a closure operation on rules, if only the shortest sample for one single
production needs to be computed, one can save computation time using a lazy
and dynamic programming style, as it is done in Tatoo.

For instance for grammar G1, the set of the shortest samples produced by
this algorithm is:

{(id), id + id, id− id,−id, id}

The average size of these samples is ss = 2.4, while the maximum size of the
shortest sample is ssm = 3.

The other metrics are only concerned with the sequences of two terminals
(terminal pairs) that may be found in the language recognized by the grammar.

S → L|L.L
L → B|LB

B → 0|1

Fig. 2. Grammar G2

For instance, the grammar for Knuth’s binary numbers, described in Fig. 2,
allows 8 different terminal pairs. Combinations are presented in Table 1, where
the first column and the first row represent all grammar terminals (ter) and
true or false on position (teri, terj) indicate that, there exists a sentence
recognized by this grammar which contains the pair of terminals (teri, terj).

Table 1. Allowed terminal pairs

i/j 0 1 .
0 true true true
1 true true true
. true true false
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From the table of allowed terminal pairs, we have defined four different met-
rics:

– The metrics ltps computes the number of different terminal pairs accept-
able in the language. In case of G2 value of ltps metrics is 8.

– The metrics ltpsm computes the maximum number of different pairs for
one terminal. In case of G2 value of ltpsm metrics is 3, because after
terminal 1 one can find three different terminals (the same as in the case of
terminal 0).

– The metrics ltpsa computes, given a terminal, the average number of ter-
minals that can directly follow this terminal. In case of G2 the value of ltpsa
metrics is (3 + 3 + 2)/3 ≈ 2.666.

– The metrics ltpsn normalizes the metrics ltps, by the number of possible
combinations of terminals and is presented as a percentage. In the case of
G2 the value of ltpsn, the metrics is (3 + 3 + 2)/9 ≈ 88.888%.

Table 1 is calculated directly from the grammar by computing, for all non-
terminal X, the sets of first F (X) = {a|X ⇒∗ aβ} and last L(X) = {a|X ⇒∗

βa} possibly derived terminals, where a is a terminal. From these sets, it is easy
to calculate pairs from the right hand sides of productions. For all occurrences
of two consecutive terminals or non-terminals v1 and v2, one adds all of the
pairs of L(v1)F (v2) where L(a) = F (a) = a in case a is a terminal.

4. Tool Description

In this section, we present the gMetrics tool. This tool extracts information from
grammars and calculates the metrics proposed by Power and Malloy [23] as well
as the new ones, LR-based metrics and generated language-based metrics,
proposed in the previous section. The global activity diagram of gMetrics is
presented in Fig. 3.

The main objective of this tool is to extract from input grammars as much
information as possible and perform as few modifications as possible in relation
to the original grammar. Indeed, we would like to avoid potential metric distur-
bance and to process all metrics from the same specification.

We currently support the formats of compiler construction tools ANTLR ver-
sion 3 [22] (an LL parser generator) and Tatoo [5] (a LR parser generator).
The metrics are divided, as explained before, into four categories: size met-
rics, structural metrics, LR automaton-based metrics and generated language-
based metrics. In practice, to reuse an existing grammar specification, one must
take into account the grammar form (BNF, EBNF, CNF, etc.), the grammar type
(LL, LR, LALR, IELR [9], etc.), the file format (a tool mainly dependent and
potentially customized with semantics and other annotations) and the version
of the tool. In this work, we limited ourselves to grammar specifications used
by ANTLR and Tatoo. Moreover, automata-based metrics are calculated from
LR automaton, despite that a particular grammar can be of different type (e.g.,
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Fig. 3. Activity diagram

LL, LALR, IELR). Although, we report the number of shift-reduce and reduce-
reduce conflicts that indicate that a grammar might not be the LR grammar
(some conflicts are resolved by additional rules in parser generators). Our fu-
ture work lies in identifying the correct type of grammar while calculating the
automata-based metrics, as well to analyze the conflicts, as presented in [9].

Nevertheless, some transformations are unavoidable because the original
input format of the grammars is different and some metrics make use of specific
algorithms that require constrained input. However, gMetrics minimizes such
transformations.

To solve the problem of a unique grammar representation, we have chosen
to use an in-memory intermediate form close to an EBNF notation.

Indeed, even if neither ANTLR nor Tatoo uses complete EBNF form as input,
the input format of each parser generator is close to this notation. Moreover, this
format has the advantage to avoid to choose between left of right recursion in
the specification, since lists may be specified using star (’*’) or plus (’+’) con-
structions.
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The ANTLR format has been selected because it provides a great deal of
interesting existing grammars and Tatoo was chosen because of its open archi-
tecture that facilitates the computation of some of the metrics. Both tools use
priorities or/and associativity rules for solving automata conflicts.

In the future, we plan to broaden our tool to support other input formats (e.g.,
LISA [21]). Meanwhile, users may use this tool as a Java application library. In
this case, users need to implement the IGrammar interface, which describes
grammar in our EBNF internal form.

Because ANTLR and Tatoo are both implemented in Java, the simplest
choice was to implement gMetrics in Java. The first challenge was to create
and to fill internal data structure from ANTLR and Tatoo grammar specification.
More precisely, in Tatoo, we directly used the memory representation exported
by Tatoo. Moreover, since Tatoo supports grammar versioning, one input gram-
mar may include several versions (usually specified in different grammars).

The metrics implementations are divided into four groups: size metrics, struc-
tural metrics, LR-based metrics and language-based metrics.

– To calculate size metrics, we implement a visitor pattern that counts different
grammar properties.

– To compute structural metrics, the call graph is derived from the produc-
tions. It is then used to calculate grammatical levels. The structure met-
rics [8] are deduced from this information.

– To construct the LR automaton, information about the grammar associative-
ness (left or right) is first established. Next, the LR table is computed by the
Tatoo, engine together with the associated LR actions.

– For the language-based metrics, terminal pairs are computed, as explained
in the previous section.

When dealing with metrics implementation, we try to provide as much in-
formation for interpretation as possible. For most of the metrics we provide
histograms, which are used to calculate concrete metrics values. These his-
tograms can also be used for the computation and the analysis of different sta-
tistical values.

For example, in Fig. 4 we present the metric ltps histogram for the ANSI
C grammar. The metric ltps describes, for a given terminal, the number of
different terminals that can follow it. In this histogram one can notice that many
terminals (34 in y axle) have between 11 and 20 (x axle) terminals that can follow
them and only one terminal may be followed by almost all terminals. With this
histogram one can monitor the introduction of a new terminal in the grammar.

The gMetrics tool is an open source project and can be found on the follow-
ing web page http://code.google.com/p/cfgmetrics.

5. Empirical Study on Metrics for GPL and DSL Grammars

The grammar samples used for this experiment come from examples drawn
from the ANTLR [22] samples and from several versions of Java grammars for
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Fig. 4. Metrics ltps histogram for the ANSI C grammar

Tatoo [4, 5]. They cover domain-specific languages and general-purpose lan-
guages. These grammar examples are representative of current practice in
grammar-ware engineering and can be considered as good benchmarks to
evaluate the pertinence of metrics. They result from a collaborative work that
usually involves several developers thereby ensuring their global quality.

More precisely, the DSL grammars studied are:

– EXPR, a grammar for arithmetic expressions [2].
– FDL, a grammar that enables the specification of sets of features [10].
– EBNF, a grammar for grammar specifications in Extended Backus Normal

Form [1].
– CFDG, a grammar of a simple programming language for generating pic-

tures [11].
– GAL, a grammar to describe video devices [26].
– ANTLR V3, a grammar for grammar definitions in ANTLR version 3 for-

mat [22].

General-purpose language grammars studied are those from

– Ruby 1.8.5 [27];
– ANSI C [14];
– Python 2.5 [19], and
– versions of Java [12] from 1.0 to 1.6.

The version 1.6 of the Java grammar comes from ANTLR samples, whereas
the other versions come from Tatoo samples.

The results shown in Table 2 show the outcome of the size metrics for the dif-
ferent kinds of grammars. This table indicates that some of these metrics (e.g.,
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Table 2. Results for classical metrics

Lang term var mcc avs hal
Expr 9 5 1.6 4 1
FDL 14 6 2.17 6.5 2.63
EBNF 12 7 1.71 3.29 1.17
CFG Design 24 13 2.39 6 6.57
GAL 71 74 1.2 3.88 33.36
ANTLR V3 49 45 2.42 4.98 29.55
Ruby 1.8.5 88 83 2.61 4.74 54.44
Java 1.6 98 110 2.46 5.96 122.66
ANSI C 83 66 2.21 5.09 42.34
Python 2.5 85 86 2.22 4.93 63.41
Java 1.5 102 129 1.75 5.85 140.38
Java 1.4 100 116 1.75 5.8 118.21
Java 1.3 99 114 1.76 5.84 116.85
Java 1.2 99 114 1.76 5.84 116.85
Java 1.1 98 114 1.75 5.83 116.98
Java 1.0 98 112 1.63 5.38 98.54

mcc, avg) can not be used to differentiate DSL from GPL grammars. Some
DSLs (e.g., GAL) are comparable to GPLs in relation to the number of termi-
nals, nonterminals, and hal indicates that the size of such DSLs grammars can
be comparable to GPLs.

It is noteworthy that all of the metrics for Java versions are extremely stable,
with the exception of the mcc metrics, which is much larger for Java 1.6. This
is without a doubt because it is an LL grammar, designed for ANTLR, whereas
other versions of Java are LR, designed for Tatoo.

Table 3 provides the results of the structural metrics for the grammars.
Among these results, it is interesting to note that the clev metrics indicates
that the first versions of Java support have better modularization than the newer
versions, probably due to new constructions such as internal classes. However,
it is surprising that DSL, such as Expr, also has large values.

Most of the structural metrics are not very relevant where they concern the
difference between DSL and GPL, with the exception of the dep metrics. How-
ever, there is marked variation between the values of this metrics between GPL,
in particular in Java. This provides a good means for the interweaving of the
grammar. From our point of view, these structural metrics are difficult to under-
stand for grammar developers.

The results of Table 4 show that the values of the metrics lrsmainly depend
on the type of the language. The DSL grammars have smaller values than GPL
grammars, below 1000 states. Second, this metrics is not directly connected to
the size of the grammar since grammars with similar numbers of terminals or
non-terminals produce completely different values (e.g. Ruby vs. Python from
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Table 3. Results for structural metrics

Lang timp clev nslev vhei dep
Expr 56.25 60 1 3 3
FDL 32 83.33 1 1 2
EBNF 69.44 42.86 1 3 5
CFG Design 31.25 100 0 1 1
GAL 14.6 95.95 1 1 4
ANTLR V3 21.69 75.56 2 1 8
Ruby 1.8.5 62.37 37.35 1 1 53
Java 1.6 72.35 25.46 2 1 80
ANSI C 67.93 30.3 3 1 41
Python 2.5 44.39 46.51 3 1 35
Java 1.5 76.53 22.48 2 1 100
Java 1.4 59.59 40.52 2 1 69
Java 1.3 58.98 41.23 2 1 67
Java 1.2 58.98 41.23 2 1 67
Java 1.1 58.98 41.23 2 1 67
Java 1.0 33.29 65.18 3 1 24

Table 4. Results for LR based metrics

Lang lrs lat lrtla lat/lrs lcc
Expr 59 18 3.05 0.31 0
FDL 115 20.13 2.63 0.18 0
EBNF 129 63.08 6.36 0.49 2
CFG Design 151 45.72 7.57 0.32 0
GAL 873 40.31 3.14 0.05 1
ANTLR V3 958 165.92 8.66 0.17 60
Ruby 1.8.5 13474 3509.2 23.18 0.26 7446
Java 1.6 6244 1107.34 17.56 0.18 658
ANSI C 2512 448.04 14.98 0.18 165
Python 2.5 3909 646.98 14.23 0.17 57
Java 1.5 7741 1342.88 17.87 0.17 5715
Java 1.4 7183 1279.29 17.99 0.18 5715
Java 1.3 6698 1189.24 17.76 0.18 5144
Java 1.2 6698 1189.24 17.76 0.18 5144
Java 1.1 6693 1193.28 17.65 0.18 5144
Java 1.0 5611 901.02 15.9 0.16 5144
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Table 2). However, the evolution of this metrics is also directly connected to
the complexity of the different versions of Java, but varies smoothly. Finally, the
metrics value for the Java 1.6 grammar is not comparable to Java 1.5 grammar
value, even if the language is the same. This is due to the fact that Java 1.6
grammar is designed for LL parsing and LL grammars are known to be more
complex than LR ones. It is also probably due to a important use of conflict
resolution mechanism in the Java 1.5 version (measured by the lcc metrics)
that simplifies the grammar. From this result, it would appear that the metrics
lrs is a good measure of the complexity of the grammar.

For each terminal in the grammar the lat metrics sums, the number of
states in the LR automaton that does not lead to an error when this terminal is
in the lookahead, and it is normalized by the number of terminals. Because lat
metrics depends on the number of states, it is also interesting to normalize it by
the number of states (lrs).

Indeed, the value for different versions of Java is very stable. It is also com-
parable to C, Java and Python grammar values. On the contrary, the value for
the language GAL is very low. A low value for this metrics indicates that each
terminal only appears in few of the grammar’s states (5% of the states for GAL)
and thus that the language is very controlled and probably easy to learn. On
the other hand, a high value for this metrics, such as 49% for EBNF, indicates
that the language may accept any terminal in approximately every state.

The results show that the metrics lrtla is closely related to the type of lan-
guage. DSL grammars have smaller values than GPL grammars. Normalizing
this metrics by the number of terminals in the grammar, it produces the same
results as the normalized value of lat. This is to be expected since those two
normalized metrics compute respectively the probability of being able to shift a
given terminal in a given state and the probability of a given state to be able to
shift a given terminal.

Results for the metrics lcc indicate that for most of the tested DSLs we
do not have a LR conflict. Priorities/associativities are expressed in a recursive
manner. If we compare ANTLR grammar for Java 1.6 and Tatoo grammar for
Java 1.5, we can notice big difference in metrics lcc value. Value of Tatoo
Java grammars for metrics lcc is high, because priorities/associativities are
massively used in expressions.

In Table 5, the metrics ss provides results that are not related to the size
of the grammar nor to the expressive power of the language. GPL and DSL
grammars have similar values as well. This metrics evolves moderately with the
different versions of Java. It seems to measure the verbosity of the grammar.
Indeed, C or Python are known to be less verbose than Java. One surprising
result is again, the smaller value of this metrics for the 1.6 version of Java. This
is probably due to the larger number of productions for the LL version. Although
these complementary productions have small sample sizes, the average value
is smaller.

The ltps, lptsm and ltpsa metrics are directly related to the type of lan-
guage. DSL have values below 1000, whereas GPL have values above 1000.
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Table 5. Results for language based metrics

Lang ss ssm ltps ltpsm ltpsa ltpsn
Expr 1.56 4 35 6 4.29 0.43
FDL 2.53 6 47 8 4.34 0.23
EBNF 1.59 3 102 11 5.56 0.70
CFG Design 2.33 7 82 17 12.72 0.14
GAL 2.73 13 349 43 35.34 0.06
ANTLR V3 1.73 8 435 29 24.97 0.18
Ruby 1.8.5 1.47 7 3200 88 44.87 0.41
Java 1.6 2.04 10 2691 92 48.61 0.28
ANSI C 1.73 7 1777 81 41.92 0.25
Python 2.5 1.73 8 1576 61 48.33 0.21
Java 1.5 2.98 14 2370 83 50.06 0.22
Java 1.4 2.94 14 2272 81 49.78 0.22
Java 1.3 2.95 14 2239 80 49.25 0.22
Java 1.2 2.95 14 2239 80 49.25 0.22
Java 1.1 2.96 14 2200 79 48.81 0.22
Java 1.0 2.89 14 1734 78 48.77 0.18

They increase smoothly with the version of Java. The ltpsn value is very com-
parable to lat/lrs, since it measures the constraints on the language. The
only language that gives different results is CDFG: the ltpsn stresses that the
language is moderately constrained (14%) whereas the other metrics indicates
30%, which is quite high. Since, these two metrics are not exactly related, it is
normal, that they produce different results, although large differences probably
indicate an interesting property of the grammar. At this time we are not able to
explain this behavior.

6. Usage Guidelines

There is currently no empirical study for grammar based metrics, which would
ascertain or suggest when and how to use them. But from an in-depth under-
standing of metric design, we can give some useful usage guidelines. To do this
we describe the advantages/disadvantages for each proposed metrics.

Metrics can be used for different purposes and in different stages of the
grammar/language development life-cycle. The importance of metrics and their
resulting interpretation is also dependent on their purpose. This is why it is
important to identify the objective of the use. Three usages of proposed metrics
are discussed in detail below.

Grammar-based Language Comparison

This is most common scenario in which we have different grammars and would
like to compare them. First, we need to be aware that the same language can
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be described with different grammars, and a grammar can be described with
different forms, or it can be specialized for different parsing techniques. The best
way to compare grammars is to compare grammars that are in the same form
and that they use the same parsing technique. In this case, the simplest metrics
to use are lrs, lat and ltpsm. These metrics indicate the size and complexity
of grammars and because of that, they can be used to rank the grammars. For a
precise comparison with common languages we suggest using the results from
Table 4 and Table 5. For quick reference of grammar size and complexity we
propose four different groups.

– Tiny, mainly toy grammars,
– Small, mainly DSL grammars,
– Intermediate, 3rd generation GPL languages grammar,
– Big, modern object-oriented language grammars.

The groups are defined using an analysis of tested grammars. The intent of
these groups is not to classify grammars by size or complexity, but merely for
quick reference in order to have a first impression about the grammar size.

Table 6. Metrics orientation values

Grammar size lrs lat ltpsm
from to from to from to

Tiny 0 100 0 20 0 6
Small 101 1000 21 200 7 50
Intermediate 1001 3000 201 500 51 70
Big 3001 ≥ 3001 501 ≥ 501 71 ≥ 71

Orientation values for each group and metrics are stated in Table 6.
Metrics that are less size-dependent are lrtla and lrpsa. lrtla indi-

cates average complexity of each state and lrpsa indicates complexity of ter-
minal pairs. In the third group we find metrics and normalizations that are not
size-dependent lat/lrs, lcc, ss and ltpsn. In most cases these values are
averaged by size. Because of this, they are less adapted to comparing larger
grammars.

Developing a New Language

In this scenario, we develop a new language from scratch. In practice, this
means that in most cases we develop new DSL (because they are most com-
mon [16, 24]). In order to compare the new language with others, we can use
metrics as suggested in the previous section. In addition, the developer can
monitor metrics after every incremental developing stage to evaluate its influ-
ence on the complexity and the verbosity of grammars. For this purpose, all of
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the suggested metrics are appropriate, but if the developer wants to measure
the verbosity of the language, he/she should look at the lat/lrs, ss or lptsn
metrics, whereas, if the developer is interested in the complexity of the gram-
mar he/she should look at other metrics. For developers it is also interesting to
monitor number of conflicts lcc.

Sample Based Language Comparison

In this case, languages are compared based on samples/sentences. Two sce-
narios are possible: either formal grammar does not exist yet or a sample-based
comparison is carried out in addition to a grammar-based comparison. To be
able to compare or evaluate the language, we calculate the metrics ltpsm,
ltpsa and ltpsn (ltpX). These metrics can be calculated directly from sam-
ples, with the condition that samples involved all allow combinations of termi-
nals. In this scenario, there are two main problems. First, to identify all terminals
and second to get some degree of confidence that our set of samples (S) is
diverse enough. The first problem is lexically-related and solvable. The second
problem can neither be tested nor computed. To overcome this obstacle, we use
the relation between metrics with the unknown grammar G and metrics calcu-
lated from samples S. Value of ltpX(G) is always greater or equal to ltpX(S).
In practice this means that we can compare the language to a language that
has smaller metrics values. If our goal is to infer grammar from samples, met-
rics ltpsn can help to evaluate a number of different non-terminals. Higher
numbers mean fewer constraints in terms of language; this usually means less
differing non-terminals. With this information we have more direct grammar in-
ference search [6, 7].

7. Conclusion and Future Work

This paper explores the usefulness of several new metrics for grammar engi-
neering. It presents experimental results for traditional metrics and for these
new metrics on several grammars. These grammars cover domain-specific lan-
guages and general-purpose languages. Existing metrics are directly computed
from the grammar itself. A first set of new metrics uses the LR automaton pro-
duced from the grammar. A second is related to the language recognized. We
believe that these metrics provide interesting results that are not all covered by
existing metrics. From this point of view, LR-based metrics are probably more
suitable for grammar experts familiar with LR parsing, whereas other metrics
could also be applicable for non-specialists in grammar development.

From experimental results, we see that some metrics are directly linked to
the size or the complexity of the grammar whereas others remain stable even if
the size or complexity of the grammar varies. Our findings show that the metrics
in both cases qualify for evaluating the quality of the grammar. However, we
consider that the quality of the grammar cannot be captured by a single metrics
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but by a range of the metrics explored in this paper. Moreover, this quality is not
an absolute value but is relative to other grammars.

In this paper we only explore the metrics of the grammar portion of the
analyzer, without looking at the lexing portion of the analyzer. However, the
complexity of these two parts is closely related. For instance, one could specify
in the lexer a different token for true and false or establish a generic token for
the booleans. In this case, the grammar would necessarily be different and may
produce different metrics. Therefore, we believe that metrics on token definitions
could also be useful to capture the entire complexity of a language analyzer. An
analyzer with complex lexer and simpler parser may be less maintainable than
a complex parser with a simple lexer.
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Appendix

7.1. Computation of closure application of rules

The first two steps of the computation of the shortest sample for a production
require a same closure mechanism which is already implemented in the parser
generator Tatoo to compute the first and the follow set [2].

The problem this mechanism solves can be formalized in the following way:
we associate to each non-terminal X a mathematical object (a set of termi-
nals for first and follow set, but a word in the process describe below) which
we note M[X]. The process fills the map M starting from some non-terminals
and updates it using rules until the whole map is filled. In particular, an object
associated to a non-terminal can change during the process. For instance, in
the sequel, we try to compute the shortest words; in these cases, a word can
be replaced by a shorter one.

The problem is expressed giving two rules. The first one, the initiation rule,
tells how to initiate the process by giving an answer for some non-terminals
and putting it in the map M. The second one, the iteration rule, gives how to
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construct new objects from others, leading to the construction of dependency
maps which store, for a non-terminal X:

i. the non-terminals Y such that M[Y ] changes when M[X] is updated
ii. the non-terminals Y such that M[Y ] has to be computed in order to get

M[X].

Note that map i. is easily computed from iteration rules and map ii. is the re-
verse of map i. In order to compute the object associated to X, the solver first
recursively uses map ii. to get all the words that have to be computed and then
uses the iteration rule in a loop until no more changes are made into the map
M.

7.2. Computation of a shortest word generated by X

We note this map M1.
The rule for the computation are the following:

– initiation rule : if X → α is a production such that α is the shortest only
made of terminals, X generates α, M1[X] = α.

– iteration rule : if X → α is a production such that α does not contains X,
then, if smaller or not yet defined, M1[X] is replaced by the word obtained
replacing each non-terminals Y of α by M1[Y ].

Note that cycles in dependency map are not a problem since they always
lead to longer words.

7.3. Computation of a shortest word leading to X

We note this map M2.
The rule for the computation are the following:

– if S is an axiom, S is a shortest word leading to S, that is M2[S] = S.
– if X → αY β is a production, then, if smaller or not yet defined, M2[Y ]

is replaced by the word M2[X] where X is replaced by α′Y β′, α′ [resp.
β′] being the word α [resp. β] where all non-terminals Z in this word are
replaced by M1[Z].

Here again, cycles are not a problem for the same reason.
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Abstract. Subtree matching is an important problem in Computer Sci-
ence on which a number of tasks, such as mechanical theorem prov-
ing, term-rewriting, symbolic computation and nonprocedural program-
ming languages are based on. A systematic approach to the construction
of subtree pattern matchers by deterministic pushdown automata, which
read subject trees in prefix and postfix notation, is presented. The method
is analogous to the construction of string pattern matchers: for a given
pattern, a nondeterministic pushdown automaton is created and is then
determinised. In addition, it is shown that the size of the resulting deter-
ministic pushdown automata directly corresponds to the size of the exist-
ing string pattern matchers based on finite automata.

Keywords: subtree, subtree matching, pushdown automata.

1. Introduction

The theory of formal string (or word) languages [2, 16, 24] and the theory of
formal tree languages [6, 8, 14] are important parts of the theory of formal lan-
guages [23]. While the models of computation of the theory of string languages
are finite automata, pushdown automata, linear bounded automata and Turing
machines, the most famous models of computation of the theory of tree lan-
guages are various kinds of tree automata [6, 8, 14]. Trees, however, can also
be seen as strings, for example in their prefix (also called preorder) or postfix
(also called postorder) notation. Recently it has been shown that the determin-
istic pushdown automaton (PDA) is an appropriate model of computation for
labelled, ordered, ranked trees in postfix notation and that the trees in post-
fix notation, acceptable by deterministic PDA, form a proper superclass of the
class of regular tree languages, which are accepted by finite tree automata [18].
� This research has been partially supported by the Ministry of Education, Youth and

Sports under research program MSM 6840770014, and by the Czech Science Foun-
dation as project No. 201/09/0807.
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Trees represent one of the fundamental data structures used in Computer
Science and thus tree pattern matching, the process of finding occurrences
of subtrees in trees, is an important problem with many applications, such as
compiler code selection, interpretation of non-procedural languages or various
tree finding and tree replacement systems.

Tree pattern matching is often declared to be analogous to the problem of
string pattern matching [6]. One of the basic approaches used for string pattern
matching can be represented by finite automata constructed for the pattern,
which means that the pattern is preprocessed. Examples of these automata
are the string matching automata [9, 10, 22, 26]. Given a pattern P of size m,
the string matching automaton can be constructed for the pattern P in time lin-
ear to m. The constructed string matching automaton accepts the set of words
containing pattern P as a suffix, and thus it can find all occurrences of string
P in a given text T . The main advantage of this kind of finite automata is that
the deterministic string matching automaton can be constructed in time linear to
the size of the given pattern P , and the search phase is in time linear to the in-
put text. A generalization of the mentioned string matching problem can be the
string matching problem with multiple patterns [1, 22, 26]. Given a set of pat-
terns P = {p1, p2, . . . , pm}, the string matching automaton can be constructed
in time linear to the number of symbols of patterns in set P . The constructed
string matching automaton accepts the set of words having any of the patterns
in P as a suffix, and thus it can find all occurrences of strings p1, . . . , pm in a
given text T .

Although there are many tree pattern matching methods (see [5–7, 11, 15,
25] for these methods), they fail to present a simple and systematic approach
with a linear time searching phase which would also be directly analogous to
the basic string pattern matching method.

This paper, being an extended version of [12], presents a new kind of PDAs
for trees in prefix and postfix notations called subtree matching PDAs, which are
directly analogous to string matching automata and their properties. A subtree
matching PDA, constructed from a given tree s, can find all occurrences of
subtree s within a given tree t in time O(n), where n is the number of nodes of t.
Subtree matching, as with string matching, can also be generalized to subtree
matching with multiple patterns. Subtree matching PDAs can be constructed
from a set of trees P = {t1, t2, . . . , tm} in the same manner as string matching
automata, retaining their property of linear searching phase O(n), where n is
the number of nodes of the subject tree t.

Moreover, the presented subtree matching PDAs have the following two
other properties. First, they are input–driven PDAs [28], which means that each
pushdown operation is determined only by the input symbol. The input–driven
PDAs can be always determinised [28]. Second, their pushdown symbol alpha-
bets contain just one pushdown symbol and therefore their pushdown store can
be implemented by a single integer counter. This means that the presented
PDAs can be transformed to counter automata [4, 27], which is a weaker and
simpler model of computation than the PDA.
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The rest of the paper is organised as follows. Basic definitions are given in
section 2. Some properties of subtrees in prefix notation are discussed in the
third section. Sections 4 and 5 deal with the subtree matching PDA constructed
over a single and multiple patterns, respectively. Section 6 shows the dual prin-
ciple for the postfix notation and the last section is the conclusion.

2. Basic Notions

2.1. Ranked alphabet, tree, prefix notation, postfix notation, subtree
matching

We define notions on trees similarly as they are defined in [2, 6, 8, 14].
We denote the set of natural numbers by N. A ranked alphabet is a finite,

nonempty set of symbols, each of which has a unique nonnegative arity (or
rank). Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted by
Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are respectively called nullary (constants), unary, binary, . . . , p-ary
symbols. We assume that A contains at least one constant. In the examples
we use numbers at the end of identifiers for a short declaration of symbols with
arity. For instance, a2 is a short declaration of a binary symbol a.

Based on concepts from graph theory (see [2]), a labelled, ordered, ranked
tree over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes
and R is a set of linearly ordered lists of edges such that each element of R is
of the form ((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This
element would indicate that, for node f , there are n edges leaving f , the first
entering node g1, the second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi for
1 ≤ i ≤ n. A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag
(dag stands for Directed Acyclic Graph) is an ordered directed graph that has
no cycle. Labelling of an ordered graph G = (A,R) is a mapping of A into a set
of labels. In the examples we use af for a short declaration of node f , labelled
by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R,
where g ∈ A. By analogy, in-degree of node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.

A labelled, ordered, ranked and rooted tree t over a ranked alphabet A is an
ordered dag t = (N,R) with a special node r ∈ A called the root such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f �= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and out-degree of af is
Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.
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Prefix notation pref(t) of a labelled, ordered, ranked and rooted tree t is
obtained by applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be node af . If af is a leaf, list a and halt.
If af is not a leaf, having direct descendants af1 , af2 , . . . , afn , then list a and
subsequently apply Step to af1 , af2 , . . . , afn in that order.
Postfix notation post(t) of t is formed by changing the last sentence of Step to
read “Apply Step to af1 , af2 , . . . , afn in that order and then list a.”

Example 1. Consider a tree t1 = ( {a21, a22, a03, a14, a05, a16, a07}, R ) over
A = {a2, a1, a0} , where R is a set of the following ordered sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

The prefix and postfix notations of tree t1 are strings pref(t1) = a2 a2 a0 a1
a0 a1 a0 and post(t1) = a0 a0 a1 a2 a0 a1 a2, respectively. Trees can be repre-
sented graphically, and tree t1 is illustrated in Fig. 1. ��

a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Fig. 1. Tree t1 from Example 1 and its prefix notation

The number of nodes of a tree t is denoted by |t|.
The height of a tree t, denoted by Height(t), is defined as the maximal length

of a path from the root of t to a leaf of t.
A subtree p matches an object tree t at node n if p is equal to the subtree of

t rooted at n.

2.2. Alphabet, language, pushdown automaton

We define notions from the theory of string languages similarly as they are
defined in [2, 16].
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Let an alphabet be a finite nonempty set of symbols. A string x over a given
alphabet is a finite, possibly empty sequence of symbols. A language over an
alphabet A is a set of strings over A. Set A∗ denotes the set of all strings over
A including the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \{ε}.
Similarly for string x ∈ A∗, xm, m ≥ 0, denotes the m-fold concatenation of x
with x0 = ε. Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm :
m ≥ 1}.

An (extended) nondeterministic pushdown automaton (nondeterministic
PDA) is a seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of
states, A is the input alphabet, G is the pushdown store alphabet, δ is a map-
ping from Q× (A∪{ε})×G∗ into a set of finite subsets of Q×G∗, q0 ∈ Q is the
initial state, Z0 ∈ G is the initial content of the pushdown store, and F ⊆ Q is
the set of final (accepting) states. The triplet (q, w, x) ∈ Q×A∗×G∗ denotes the
configuration of a pushdown automaton. In this paper we will write the top of the
pushdown store x on its left hand side. The initial configuration of a pushdown
automaton is a triplet (q0, w, Z0) for the input string w ∈ A∗.

The relation 	M⊂ (Q×A∗ ×G∗)× (Q×A∗ ×G∗) is a transition of a push-
down automaton M . It holds that (q, aw, αβ) 	M (p, w, γβ) if (p, γ) ∈ δ(q, a, α).
The k-th power, transitive closure, and transitive and reflexive closure of the re-
lation 	M is denoted 	kM , 	+M , 	∗M , respectively. A pushdown automaton M is a
deterministic pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) �= ∅, δ(q, a, β) �= ∅ and α �= β then α is not a suffix of β and β is

not a suffix of α.
3. If δ(q, a, α) �= ∅, δ(q, ε, β) �= ∅, then α is not a suffix of β and β is not a suffix

of α.

A pushdown automaton is input–driven if its each pushdown operation is
determined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) 	
∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) 	
∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If a PDA accepts the language by empty pushdown store then the set F of
final states may be the empty set. The subtree PDAs accept the languages by
empty pushdown store.

In the rest of the text, we use the following notation for labelling edges
when illustrating transition diagrams of various PDAs: For each transition rule
δ1(p, a, α) = (q, β) from the transition mapping δ of a PDA, we label its edge
leading from state p to state q by the triplet of the form a|α → β.

For more details on pushdown automata see [2, 16].
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[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2 a2 a0 a1 a0 a1 a0

a0, a1
a2

a1, a0

a2

a1
a0

a1
a0

a1
a1, a0

a2
a2

a2
a2

Fig. 2. Transition diagram of deterministic string matching automaton for pattern x =
a2 a2 a0 a1 a0 a1 a0 from Example 2

2.3. Examples of string matching automaton

Example 2. The transition diagram of the deterministic string matching automa-
ton constructed for string a2 a2 a0 a1 a0 a1 a0 is illustrated in Fig. 2. ��

Example 3. The transition diagram of the deterministic string matching automa-
ton constructed for a set of strings P = {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0} is
illustrated in Fig. 3. ��

See [2, 9, 22] for definitions of finite automata and construction of the deter-
ministic string matching automaton.

3. Properties of subtrees in prefix notation

In this section we describe some general properties of the prefix notation of a
tree and of its subtrees. These properties are important for the construction of
the subtree matching PDA, which is described in the next two sections.

Example 4. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees
shown in Fig. 4.

Generally, for any tree, the following theorem holds.

Theorem 1. Given a tree t and its prefix notation pref(t), all subtrees of t in
prefix notation are substrings of pref(t).

Proof. By induction on the height of the subtree.
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0 0, 1

0, 1, 2 0, 3, 9 0, 4, 10 0, 5

0, 6 0, 7 0, 8

0, 9 0, 10

a2

a2

a0 a0 b0

b1

a0 a0

a0

a0

a0, b0, b1

b0

a2

b0

b1

b0, b1

a2

a0, b1

a2

a0, b0, b1

a2

a2

b0, b1

a2

b0, b1

a2

a0, b0, b1

b0, b1

a2
a0, b0, b1

a2

Fig. 3. Transition diagram of deterministic string matching automaton (Aho-Corasick) for
patterns {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0}

1. If a subtree t′ has just one node a, where Arity(a) = 0, then Height(t′) = 0,
pref(t′) = a and the claim holds for that subtree.

2. Assume that the claim holds for subtrees t1, t2, . . . , tp, where p ≥ 1 and
Height(t1) ≤ m, Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0. We have
to prove that the claim holds also for each subtree t′ = at1t2 . . . tp, where
Arity(a) = p and Height(t′) = m+ 1:
As pref(t′) = a pref(t1) pref(t2) . . .pref(tp), the claim holds for the subtree
t′.

Thus, the theorem holds. ��

However, not every substring of a tree in prefix notation is its subtree in
prefix notation. This can be easily seen on the fact that for a given tree with n
nodes in prefix notation, there can be O(n2) distinct substrings but there is just
n subtrees – each node of the tree is the root of just one subtree. Just those
substrings which themselves are trees in prefix notation are those which are the
subtrees in prefix notation. This property is formalised by the following definition
and theorem.
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a0

a0 a1 a0

a2 a1

a2

pref(t) = a2 a2 a0 a1 a0 a1 a0

post(t) = a0 a0 a1 a2 a0 a1 a2

a0

a0 a1

a2

pref(t) = a2 a0 a1 a0

post(t) = a0 a0 a1 a2

a0

a1

pref(t) = a1 a0

post(t) = a0 a1

a0

pref(t) = a0

post(t) = a0

Fig. 4. All subtrees of tree t1 from Example 1, and their prefix and postfix notations

Definition 1. Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = Arity(a1)+Arity(a2)+ . . .+Arity(am)−m+1=∑m

i=1 Arity(ai)−m+ 1.

Theorem 2. Let pref(t) and w be a tree t in prefix notation and a substring of
pref(t), respectively. Then, w is the prefix notation of a subtree of t, if and only
if ac(w) = 0, and ac(w1) ≥ 1 for each w1, where w = w1x, x �= ε.

Proof. It is easy to see that for any two subtrees st1 and st2 it holds that pref(st1)
and pref(st2) are either two different strings or one is a substring of the other.
The former case occurs if the subtrees st1 and st2 are two different trees with
no shared part and the latter case occurs if one tree is a subtree of the other
tree. No partial overlapping of subtrees is possible in ranked ordered trees.
Moreover, for any two neighbouring subtrees it holds that their prefix notations
are two adjacent substrings.

– If: By induction on the height of a subtree st, where w = pref(st):
1. We assume that Heigth(st) = 1, which means we consider the case

w = a, where Arity(a) = 0. Then, ac(w) = 0. Thus, the claim holds for
the case Height(st) = 1.

2. Assume that the claim holds for the subtrees st1, st2, . . . , stp where
p ≥ 1, Height(st1) ≤ m, Height(st2) ≤ m, . . ., Height(stp) ≤ m and
ac(pref(st1)) = 0, ac(pref(st2)) = 0, . . ., ac(pref(stp)) = 0.
We are to prove that it holds also for a subtree of height m+1. Assume
w = a pref(st1) pref(st2) . . . pref(stp), where Arity(a) = p. Then
ac(w) = p+ac(pref(st1))+ac(pref(st2))+. . .+ac(pref(stp))−(p+1)+1 =
0 and ac(w1) ≥ 1 for each w1 , where w = w1x, x �= ε.
Thus, the claim holds for the case Height(st) = m+ 1.

– Only if : Assume ac(w) = 0, and w = a1a2 . . . ak, where k ≥ 1, Arity(a1) = p.
Since ac(w1) ≥ 1 for each w1, where w = w1x, x �= ε, none of the substrings
w1 can be a subtree in prefix notation. This means that the only possibility
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for ac(w) = 0 is that w is of the form w = a pref(t1) pref(t2) . . . pref(tp),
where p ≥ 0, and t1, t2 . . . tp are neighbouring subtrees. In such case,
ac(w) = p+ 0− (p+ 1) + 1 = 0.
No other possibility of the form of w for ac(w) = 0 is possible. Thus, the
claim holds.

Thus, the theorem holds. ��

We note that in subtree matching PDAs, the arity checksum is computed by
pushdown operations, where the contents of the pushdown store represents the
corresponding arity checksum. For example, the empty pushdown store means
that the corresponding arity checksum is equal to 0.

4. Subtree Matching pushdown automaton

This section deals with the subtree matching PDA for trees in prefix notation:
algorithms and theorems are given and the subtree matching PDA and its con-
struction are demonstrated with an example.

Problem 1 (Subtree Matching). Given two trees s and t, find all occurrences of
tree s in tree t.

Definition 2. Let s and pref(s) be a tree and its prefix notation, respectively.
Given an input tree t, a subtree pushdown automaton constructed over pref(s)
accepts all matches of tree s in the input tree t by final state.

First, we start with a PDA which accepts the whole subject tree in prefix
notation. The construction of the PDA accepting a tree in prefix notation is de-
scribed by Alg. 1. The constructed PDA is deterministic.

Algorithm 1. Construction of a PDA accepting a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n}).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) =
(i, SArity(ai)), where S0 = ε. ��

Example 5. The PDA constructed by Alg. 1, accepting the prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from Example 1, is the deterministic
PDA Mp(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, {n})), where the mapping δ1
is a set of the following transitions:
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0 1 2 3 4 5 6 7
a2|S �→ SS a2|S �→ SS a0|S �→ ε a1|S �→ S a0|S �→ ε a1|S �→ S a0|S �→ ε

Fig. 5. Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix notation
pref(t1) = a2 a0 a2 a0 a0 a0 from Example 5

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 5.
Fig. 6 shows the sequence of transitions (trace) performed by deterministic PDA
Mp(t1) for tree t1 in prefix notation. ��

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S

1 a2 a0 a1 a0 a1 a0 S S

2 a0 a1 a0 a1 a0 S S S

3 a1 a0 a1 a0 S S

4 a0 a1 a0 S S

5 a1 a0 S

6 a0 S

7 ε ε

accept

Fig. 6. Trace of deterministic PDA Mp(t1) from Example 5 for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 3. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = Arity(a).
Then, if (q3, w, S) 	+M (q4, ε, S

j), then j = ac(w).

Proof. By induction on the length of w:

1. Assume w = a. Then, (q3, a, S) 	M (q4, ε, S
j), where j = Arity(a) = ac(a).

Thus, the claim holds for the case w = a.
2. Assume that the claim holds for a string w = a1a2 . . . ak, where k ≥ 1. This

means that (q3, a1a2 . . . ak, S) 	kM (q4, ε, S
j), where j = ac(a1a2 . . . ak). We

have to prove that the claim holds also for w = a1a2 . . . ak a.
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It holds that (q3, a1a2 . . . aka, S) 	kM (q4, a, S
j) 	M (q5, ε, S

l), where l =
j+Arity(a)−1 = ac(w)+Arity(a)−1 = Arity(a1)+Arity(a2)+. . .+Arity(ak)−
k + 1 + Arity(a)− 1 = ac(a1a2 . . . aka).
Thus, the claim holds for the case w = a1a2 . . . ak a.

Thus, the theorem holds. ��

The correctness of the deterministic PDA constructed by Alg. 1, which ac-
cepts trees in prefix notation, is described by the following lemma.

Lemma 1. Given a tree t and its prefix notation pref(t), the PDA Mp(t) =
({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where n = |t|, constructed by Alg. 1, accepts
pref(t).

Proof. By induction on the height of the tree t:

1. If tree t has just one node a, where Arity(a) = 0, then Height(t) = 0,
pref(t) = a, δ(0, a, S) = (1, ε) ∈ δ, (0, a, S) 	Mp(t) (1, ε, ε) and the claim
holds for that tree.

2. Assume that claim holds for trees t1, t2, . . . , tp, where p ≥ 1, Height(t1) ≤ m,
Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0.
We have to prove that the claim holds also for each tree t such that
pref(t) = a pref(t1)pref(t2) . . . pref(tp), Arity(a) = p, and Height(t) ≥ m+ 1:
Since δ(0, a, S) = (1, Sp) ∈ δ, and (0, a pref(t1)pref(t2) . . . pref(tp), S)
	Mp(t) (1, pref(t1)pref(t2) . . . pref(tp), Sp)
	∗Mp(t)

(i, pref(t2) . . .pref(tp), Sp−1)

	∗
Mp(t)

. . .

	∗
Mp(t)

(j, pref(tp), S)
	∗
Mp(t)

(k, ε, ε),
the claim holds for that tree.

Thus, the lemma holds. ��

We present the construction of the deterministic subtree matching PDA for
trees in prefix notation. The construction consists of two steps. First, a nondeter-
ministic subtree matching PDA is constructed by Alg. 2. This nondeterministic
subtree matching PDA is an extension of the PDA accepting trees in prefix nota-
tion, which is constructed by Alg. 1. Second, the constructed nondeterministic
subtree matching PDA is transformed to the equivalent deterministic subtree
matching PDA. In spite of the fact that the determinisation of a nondeterministic
PDA is not possible generally, the constructed nondeterministic subtree match-
ing PDA is an input–driven PDA and therefore can be determinised [28].

Algorithm 2. Construction of a nondeterministic subtree matching PDA for a
tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
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0 1 2 3 4 5 6 7

a0|S �→ ε
a1|S �→ S
a2|S �→ SS

a2|S �→ SS a2|S �→ SS a0|S �→ ε a1|S �→ S a0|S �→ ε a1|S �→ S a0|S �→ ε

Fig. 7. Transition diagram of nondeterministic subtree matching PDA Mp(t1) for tree t1
in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 6

Output: Nondeterministic subtree matching PDA Mnps(t) = ({0, 1, 2, . . . , n},A,
{S}, δ, 0, S, {n}).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε.

Example 6. The subtree matching PDA, constructed by Alg. 2 from tree t1 hav-
ing prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0, is the nondeterministic PDA
Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, {7})), where mapping δ2 is a
set of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a1, S) = (0, S)
δ2(3, a1, S) = (4, S) δ2(0, a0, S) = (0, ε)
δ2(4, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε)

The transition diagram of the nondeterministic PDA Mnps(t1) is illustrated in
Fig. 7. ��

Theorem 4. Given a tree t and its prefix notation pref(t), the PDA Mnps(t) con-
structed by Alg. 2 is a subtree matching PDA for pref(t).

Proof. According to Theorem 2, given an input tree t, each subtree in prefix
notation is a substring of pref(t). Since the PDA Mnps(s) has just states and
transitions equivalent to the states and transitions, respectively, of the string
matching automaton, the PDA Mnps(t) accepts all matches of subtree s in tree
t by final state. ��

For the construction of deterministic subtree PDA, we use the transformation
described by Alg. 3. This transformation is based on the well known transfor-
mation of nondeterministic finite automaton to an equivalent deterministic one,
which constructs the states of the deterministic automaton as subsets of states

342 ComSIS Vol. 7, No. 2, Special Issue, April 2010



Subtree Matching by Pushdown Automata

of the nondeterministic automaton and selects only a set of accessible states
(i.e. subsets) [16]. Again, states of the resulting deterministic PDA correspond
to subsets of states of the original nondeterministic PDA.

Algorithm 3. Transformation of an input–driven nondeterministic PDA to an
equivalent deterministic PDA.
Input: Input–driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A, {S}, δ,
0, S, F )
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, F ′).
Method:

1. Initially, Q′ = {{0}}, qI = {0} and {0} is an unmarked state.
2. (a) Select an unmarked state q′ from Q′.

(b) For each input symbol a ∈ A:
i. q′′ = {q : δ(p, a, α) = (q, β) for all p ∈ q′}.
ii. Add transition δ′(q′, a, S) = (q′′, SArity(a)).
iii. If q′′ /∈ Q then add q′′ to Q and set it as unmarked state.

(c) Set state q′ as marked.
3. Repeat step 2 until all states in Q′ are marked.
4. F ′ = { q′ | q′ ∈ Q′ ∧ q′ ∩ F �= ∅ }. ��

The deterministic subtree matching automaton Mdps(t) for a tree t with prefix
notation pref(t) is demonstrated by the following example.

Example 7. The deterministic subtree matching PDA for tree t1 in prefix nota-
tion pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1 , which has been con-
structed by Alg. 3 from nondeterministic subtree matching PDA Mnps(t1) from
Example 6, is the deterministic PDA Mdps(t1) = ({[0], [0, 1], [0, 1, 2], [0, 3], [0, 4],
[0, 5], [0, 6], [0, 7]},A, {S}, δ3, [0], S, {[0, 7]}), where its transition diagram is illus-
trated in Fig. 9.

We note that the deterministic subtree matching PDA Mdps(t1) has a very
similar transition diagram to the deterministic string matching automaton con-
structed for pref(t1) [9, 22], as can be seen by comparing Figs. 2 and 9. The
only difference between the two types of automata are the pushdown opera-
tions appearing in the subtree matching PDA, which ensure the validity of the
input tree. The input tree is valid only if the pushdown store of the subtree PDA
is emptied after the last symbol from the prefix notation of the input tree is read.

Fig. 8 shows the sequence of transitions (trace) performed by the deter-
ministic subtree PDA Mdps(t1) for an input tree t2 in prefix notation pref(t2) =
a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0. The accepting state is {0, 7}. Fig. 10
depicts the pattern subtree t1 and input tree t2. ��

Theorem 5. Given a nondeterministic input–driven PDA Mnx(t) = (Q,A, {S},
δ, q0, S, F ), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, F ′) which is
constructed by Alg. 3 is equivalent to PDA Mnx(t).
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State Input PDS
{0} a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 S

{0, 1} a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SS

{0, 1, 2} a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 1, 2} a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSSS

{0, 3} a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 4} a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 5} a1 a0 a1 a1 a2 a0 a0 SS

{0, 6} a0 a1 a1 a2 a0 a0 SS

{0, 7} a1 a1 a2 a0 a0 match S

{0} a1 a2 a0 a0 S

{0} a2 a0 a0 S

{0, 1} a0 a0 SS

{0} a0 S

{0} ε ε

Fig. 8. Trace of deterministic subtree PDA Mdps(t1) from Example 7 for an input subtree
t2 in prefix notation pref(t2) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2|S �→ SS a2|S �→ SS a0|S �→ ε a1|S �→ S a0|S �→ ε a1|S �→ S a0|S �→ ε

a0|S �→ ε
a1|S �→ S a2|S �→ SS

a2|S �→ SS

a1|S �→ S
a0|S �→ ε

a1|S �→ S

a0|S �→ ε

a1|S �→ S

a0|S �→ ε

a1|S �→ S

a1|S �→ S
a0|S �→ ε

a2|S �→ SS
a2|S �→ SS

a2|S �→ SS
a2|S �→ SS

Fig. 9. Transition diagram of deterministic PDA Mdps(t1) for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7
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Proof. First, we prove the following claim by induction on i:
(*): (q′1, w, S) 	

i
Mdx(t)

(q′2, ε, S
j) if and only if

q′2 = {p : (q, w, S) 	iMnx(t)
(p, ε, Sj) for some q ∈ q′1}.

1. Assume i=1.
– if : if (q′1, a, S) 	Mdx(t) (q

′
2, ε, S

j), then there exists a state q ∈ q′1, where
(q, a, S) 	Mnx(t) (p, ε, S

j), p ∈ q′2.
– only if : if (q, a, S) 	Mnx(t) (p, ε, β), then for each q′1 ∈ Q′, where q ∈ q′1,

it holds that (q′1, a, S) 	Mdx(t) (q
′
2, ε, S

j), where p ∈ q′2.
2. Assume that claim (*) holds for i = 1, 2, . . . , k, k ≥ 1.

This means that (q′1, w, S) 	
k
Mdx(t)

(q′2, ε, S
j) if and only if

q′2 = {p : (q, S, w) 	k
Mnx(t)

(p, ε, Sj) for some q ∈ q′1}. We have to prove that
claim (*) holds also for i = k + 1.

– if : if (q′1, w, S) 	
k
Mdx(t)

(q′2, a, S
l) 	Mdx(t) (q′3, ε, S

j) , then there exists a

state q ∈ q′2, where (q, a, Sl) 	Mnx(t) (p, ε, S
j), p ∈ q′3.

– only if : if (q0, pref(t), S) 	kMnx(t)
(q, a, Sl) 	Mnx(t) (p, ε, Sj), then for

each q′1 ∈ Q′, where q ∈ q′1, it holds that (q′1, a, S
l) 	Mdx(t) (q′2, ε, S

j),
where p ∈ q′2.

As a special case of claim (*), ({q0}, pref(t), S) 	iMdx(t)
(q′, ε, ε) if and only

if (q0, S, pref(t)) 	iMnx(t)
(q1, ε, ε). Thus, the theorem holds.

a0

a0 a1 a0

a2 a1

a2

pref(t1) = a2 a2 a0 a1 a0 a1 a0

post(t1) = a0 a0 a1 a2 a0 a1 a2

a0 a0 a0

a0 a1 a0 a2

a2 a1 a1

a2 a1

a2

pref(t2) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

post(t2) = a0 a0 a1 a2 a0 a1 a2 a0 a0 a2 a1 a1 a2

Fig. 10. Trees t1 and t2 from Example 7 along with their prefix and postfix notations

Theorem 6. Given a tree t with n nodes in its prefix or postfix notation, the
deterministic subtree matching PDA Mpds(t) constructed by Alg. 2 and 3 is
made of exactly n+ 1 states, one pushdown symbol and |A|(n+ 1) transitions.
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Proof. Let Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n} be an automaton con-
structed from tree t with a prefix notation pref(t) = a1 a2 . . . an over ranked
alphabet A by Alg. 2. We will prove that this automaton is directly analogous to
the string matching automaton and accepts the same language if we ignore the
pushdown operations, which actually do not affect the process of determinisa-
tion as Mpds is an input–driven automaton. From Alg 2 and 3, Mnps(t) has tran-
sitions δ(0, a, S) = (0, SArity(a)) for all a ∈ A and δ(i − 1, ai, S) = (i, ε, SArity(ai)).
The proof is a mutual induction of the following n+ 1 statements:
(1) δ∗(0, w, S) = (0, ε, Sac(w)), w ∈ A∗.
(2) δ∗(0, w, S) = (1, ε, Sac(w)) if and only if w = w1a1, w1 ∈ A∗

(i) δ∗(0, w, S) = (i− 1, ε, Sac(w)) if and only if w = w1a1a2 . . . ai−1 , w1 ∈ A∗

1. Assume that |w| = 0, which means w = ε. Statement (1) holds, since
δ∗(0, ε, S) = (0, ε, S). Statements (i), 1 < i ≤ n+1, do not hold as δ∗(0, ε, S)
contains, from its basic definition, only (0, ε, S).

2. Assume w = w1a, where w1 ∈ Ak, that is |w1| = k and a ∈ A. We may
assume that statements (i) 1 < i ≤ n+ 1 hold for w1, and we need to prove
them for w. We assume the inductive hypothesis for k and prove it for k+1.
(a) There exists a series of transitions (0, w1, S) 	∗ (0, ε, Sac(w1)), since

δ(0, a, S) = (0, ε, SArity(a)) are transitions of automaton Mnps.Thus state-
ment (1) is proved for w.

(b) We now prove statements i, where 1 < i ≤ n+ 1:
– If: Assume that w1 = w2a1a2 . . . ai−2, where w2 ∈ A∗ and a =

ai−1. By statement (i − 1) applied to w1, we know from our induc-
tion hypothesis that there exists a series of transitions (0, w1, S) 	∗

(i − 2, ε, Sac(w1)). Since for all 1 ≤ j ≤ n there exists a transi-
tion δ(j − 1, aj, S) = (j, SArity(aj)), we conclude that δ∗(0, w, S) =
(i − 1, ε, Sac(w)).

– Only if: Suppose there exists a series of transitions (0, w, S) 	∗

(i− 1, ε, Sac(w)). From the inductive assumption we know that there
exists a series of transitions (0, w1, S) 	∗ (i− 2, ε, Sac(w1)). By state-
ment (i− 1) applied to w1, we know that w1 = w2a1a2 . . . ai−2. Thus
w = w2a1a2 . . . ai−1, and we have proved statement (i).

Thus, from statements 1, . . . , n+1, if we ignore the pushdown operations, Mpds

accepts the language L = {w.pref(t)}, where w ∈ A∗. Since the subtree match-
ing PDA is directly analogous to the string matching automaton, we can use the
proof from [10, 22] for space and time complexities. ��

Theorem 7. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 isO(n).

Proof. The searching phase consists of reading tree t once, symbol by symbol
from left to right. The appropriate transition is taken each time a symbol is read,
resulting in exactly n transitions. Each transition consumes a constant time be-
cause the time of each pushdown operation is limited by the maximal arity of
nodes. Occurrences of the subtree to find are matched by transitions leading to
the final states. ��
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Finally, we note that trees having structure pref(t) = (a1)n−1a0 represent
strings. The deterministic subtree matching PDA for such trees has the same
number of states and transitions as the deterministic string matching automaton
constructed for pref(t) and accepts the same language.

5. Multiple subtree matching

In this section we present a generalization of Problem 1. We deal with the con-
struction of subtree matching PDA over a finite set of trees. The whole concept
is demonstrated with an example.

Problem 2 (Multiple Subtree Matching). Given a tree t and a set of m trees
P = {t1, t2, . . . , tm}, find all occurrences of trees t1, t2, . . . , tm in tree t.

Definition 3. Let P = {t1, t2, . . . , tm} be a set of m trees and pref(ti), 1 ≤ i ≤ m
be the prefix notation of the i-th tree in P . Given an input tree t, a subtree
pushdown automaton constructed over set P accepts all matches of subtrees
t1, t2, . . . , tm in the input tree t by final state.

Similarly as in Section 4, our method begins with a PDA which accepts trees
t1, t2, . . . , tm in their prefix notation. The construction of this PDA is described
by Alg. 4

Algorithm 4. Construction of a PDA accepting a set of trees P = {t1, t2, . . . , tm}
in their prefix notation.
Input: A set of trees P = {t1, t2, . . . , tm} over a ranked alphabet A; prefix nota-
tion pref(ti) = a1a2 . . . ani

, 1 ≤ i ≤ m, ni ≥ 1.
Output: PDA Mp(P ) = ({0, 1, 2, . . . , q},A, {S}, δ, 0, S, F ).
Method:

1. Let q ← 0 and F ← ∅
2. For each tree ti = ai1 ai2 . . . ai|ti|, 1 ≤ i ≤ m, do

(a) Let l← 0
(b) For j = 1 to |ti| do

i. If the transition δ(l, aij , S) is not defined then
A. Let q ← q + 1

B. Create a transition δ(l, aij , S)← (q, SArity(ai
j))

C. Let l ← q
ii. Else if transition δ(l, aij, S) is defined

A. l← p where (p, γ)← δ(l, aj , S)
(c) F ← F ∪ {l}

Example 8. Consider a set of trees P = {t1, t2, t3}, with their prefix notations
being pref(t1) = a2 a2 a0 a0 b0, pref(t2) = a2 b1 a0 a0 and pref(t3) = a2 a0 a0.
The deterministic PDA constructed by Alg. 4 accepting the prefix notation of
trees in P is Mp(P ) = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A, {S}, δ1, 0, S, {5, 8, 10})),
where mapping δ1 is a set of the following transitions:
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0 1

2 3 4 5

6 7 8

9 10

a2|S �→ SS

a2|S �→ SS
a0|S �→ ε a0|S �→ ε b0|S �→ ε

b1|S �→ S

a0|S �→ ε a0|S �→ ε

a0|S �→ ε

a0|S �→ ε

Fig. 11. Transition diagram of deterministic PDA Mp(P ) accepting the trees with prefix
notation {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0} from Example 8

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a0, S) = (4, ε)
δ1(4, b0, S) = (5, ε)
δ1(1, b1, S) = (6, S)
δ1(6, a0, S) = (7, ε)
δ1(7, a0, S) = (8, ε)
δ1(1, a0, S) = (9, ε)
δ1(9, a0, S) = (10, ε)

The transition diagram of deterministic PDA Mp(P ) is illustrated in Fig. 11.
Fig. 12 shows the sequence of transitions (trace) performed by deterministic

PDA Mp(P ) for trees t1, t2, t3 ∈ P in prefix notation. ��

The correctness of the deterministic PDA constructed by Alg. 4, which ac-
cepts trees in prefix notation, is described by the following lemma.

Lemma 2. Given a set of k trees P = {t1, t2, . . . , tm} and their prefix notation
pref(ti), 1 ≤ i ≤ m, the PDA Mp(P ) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where
1 + min(|t1|, |t2|, . . . , |tm|) ≤ n ≤ 1 +

∑k

j=1 |tj |, constructed by Alg. 4 accepts
pref(ti), where 1 ≤ ti ≤ m.

Proof. By induction on the height of trees t1, t2, . . . , tm:

1. If trees t1, t2, . . . , tm have just one node, a1, a2, . . . , ak respectively, where
Arity(ai) = 0, for all 1 ≤ i ≤ k, then Height(ti) = 0, pref(ti) = ai, δ(0, ai, S) =
(i, ε) ∈ δ, (0, ai, S) 	Mp(P ) (i, ε, ε) for all 1 ≤ i ≤ k and the claim holds.
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State Input Pushdown Store
0 a2 a2 a0 a0 b0 S

1 a2 a0 a0 b0 S S

2 a0 a0 b0 S S S

3 a0 b0 S S

4 b0 S

5 ε ε

accept
0 a2 b1 a0 a0 S

1 b1 a0 a0 S S

6 a0 a0 S S

7 a0 S

8 ε ε

accept
0 a2 a0 a0 S

1 a0 a0 S S

9 a0 S

10 ε ε

accept

Fig. 12. Trace of deterministic PDA Mp(P ) from Example 8 for trees in prefix notation
{a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0}

2. Assume that the claim holds for trees t11, t
1
2, . . . , t

1
p1
, t21, t

2
2, . . . , t

2
p2
, . . . , tk1 , t

k
2 ,

. . . , tkpk
where pi ≥ 1 for all 1 ≤ i ≤ k, Height(ti1) ≤ m, Height(ti2) ≤ m, . . .,

Height(tip) ≤ m, m ≥ 0, for all 1 ≤ i ≤ k.
We have to prove that the claim holds also for each tree ti, 1 ≤ i ≤ k, such
that
pref(ti) = ai pref(ti1)pref(ti2) . . .pref(tipi

), Arity(ai) = pi, and Height(ti) ≥
m+ 1:
Since δ(0, ai, S) = (i, Sp) ∈ δ, and (0, a pref(ti1)pref(ti2) . . . pref(tipi

), S)

	Mp(ti) (i, pref(ti1)pref(ti2) . . . pref(tipi
), Sp)

	∗Mp(ti)
(ji, pref(ti2) . . . pref(tipi

), Spi−1)

	∗
Mp(ti)

. . .

	∗
Mp(ti)

(�i, pref(tipi
), S)

	∗
Mp(ti)

(f i, ε, ε)

the claim holds for that tree.

Thus, the lemma holds. ��

The deterministic subtree matching PDA for multiple tree patterns in prefix
notation can be constructed in a similar fashion to the subtree matching PDA for
a single pattern. First, the PDA accepting a set of trees in their prefix notations,
constructed by Alg. 4, is used to construct a nondeterministic subtree matching
PDA by Alg. 5. The constructed nondeterministic subtree matching PDA is then
transformed to the equivalent deterministic subtree matching PDA.
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0 1

2 3 4 5

6 7 8

9 10

a2|S �→ SS

a2|S �→ SS
a0|S �→ ε a0|S �→ ε b0|S �→ ε

b1|S �→ S

a0|S �→ ε a0|S �→ ε

a0|S �→ ε

a0|S �→ ε

a2|S �→ SS
b1|S �→ S
b0|S �→ ε
a0|S �→ ε

Fig. 13. Transition diagram of nondeterministic subtree matching PDA Mp(P ) con-
structed over trees in set P from Example 9

Algorithm 5. Construction of a nondeterministic subtree matching PDA for a
set of trees P = {t1, t2, . . . , tm} in their prefix notation.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = (Q,A, {S}, δ, 0, S,
F ).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) = (Q,A, {S}, δ, 0, S, F ) by Alg. 4.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε.
��

Example 9. The subtree matching PDA constructed by Alg. 2 over the set of
trees P from Example 8 is the nondeterministic PDA Mnps(P ) = ({0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10},A, {S}, δ2, 0, S, {5, 8, 10})), where mapping δ2 is a set of the follow-
ing transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, b1, S) = (0, S)
δ2(3, a0, S) = (4, ε) δ2(0, b0, S) = (0, ε)
δ2(4, b0, S) = (5, ε) δ2(0, a0, S) = (0, ε)
δ2(1, b1, S) = (6, S)
δ2(6, a0, S) = (7, ε)
δ2(7, a0, S) = (8, ε)
δ2(1, a0, S) = (9, ε)
δ2(9, a0, S) = (10, ε)
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0 0, 1

0, 1, 2 0, 3, 9 0, 4, 10 0, 5

0, 6 0, 7 0, 8

0, 9 0, 10

a2|S �→ SS

a2|S �→ SS

a0|S �→ ε a0|S �→ ε b0|S �→ ε

b1|S �→ S

a0|S �→ ε a0|S �→ ε

a0|S �→ ε

a0|S �→ ε

a0|S �→ ε
b0|S �→ ε
b1|S �→ S

b0|S �→ ε

a2|S �→ SS

b0|S �→ ε

b1|S �→ S

b0|S �→ ε
b1|S �→ S

a2|S �→ SS

a0|S �→ ε
b1|S �→ S

a2|S �→ SS

a0|S �→ ε
b0|S �→ ε
b1|S �→ S

a2|S �→ SS

a2|S �→ SS

b0|S �→ ε
b1|S �→ S

a2|S �→ SS

b0|S �→ ε
b1|S �→ S

a2|S �→ SS

a0|S �→ ε
b0|S �→ ε
b1|S �→ S

b0|S �→ ε
b1|S �→ S

a2|S �→ SSa0|S �→ ε
b0|S �→ ε
b1|S �→ S

a2|S �→ SS

Fig. 14. Transition diagram of deterministic PDA Mdps(P ) constructed over trees in set
P from Example 10

The transition diagram of nondeterministic PDA Mnps(P ) is illustrated in
Fig. 13. ��

Theorem 8. Given a set of m trees P = {t1, t2, . . . , tm} and their prefix nota-
tion pref(ti), 1 ≤ i ≤ m, the PDA Mnps(P ) constructed by Alg. 5 is a subtree
matching PDA for tree patterns t1, t2, . . . , tm.

Proof. According to Theorem 2, given an input tree t, each subtree in prefix no-
tation is a substring of pref(t). Since the PDA Mnps(P ) has just states and tran-
sitions equivalent to the states and transitions, respectively, of the Aho-Corasick
string matching automaton , the PDA Mnps(P ) accepts all matches of subtrees
t1, t2, . . . , tm in tree t by final state. ��

For the construction of deterministic subtree PDA, we use the transformation
described by Alg. 3 from Section 4.

The deterministic subtree matching automaton Mdps(P ) for a set of trees
P = {t1, t2, . . . , tm} with prefix notations pref(ti), 1 ≤ i ≤ k is demonstrated by
the following example.

Example 10. The deterministic subtree matching PDA for the set of trees P
from Example 8, constructed by Alg. 3 from the nondeterministic subtree match-
ing PDA Mnps(P ) from Example 9, is Mdps(P ) = ({[0], [0, 1], [0, 1, 2], [0, 3, 9],
[0, 4, 10], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10]},A, {S}, δ3, [0], S, {[0, 4, 10], [0, 5],
[0, 8], [0, 10]}), with its transition diagram illustrated in Fig. 14.
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We note that the deterministic subtree matching PDA Mdps(P ) has a very
similar transition diagram to the Aho-Corasick string matching automaton con-
structed for the strings representing the prefix notations of trees in set P from
Example 8 (see also [1, 9, 22]), as can be seen by comparing Figs. 4 and 14.

Fig. 15 shows the sequence of transitions (trace) performed by the de-
terministic subtree PDA Mdps(P ) for the input tree t having prefix notation
pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0. The final states are
{[0, 4, 10], [0, 5], [0, 8], [0, 10]}. Fig. 16 depicts the pattern subtrees from set P
and the input tree t. ��

State Input PDS
{0} a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 S

{0, 1} a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SS

{0, 1, 2} a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSS

{0, 1, 2} a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSSS

{0, 3, 9} a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSS

{0, 4, 10} a2 a2 a0 a0 b0 a2 b1 a0 a0 match SS

{0, 1} a2 a0 a0 b0 a2 b1 a0 a0 SSS

{0, 1, 2} a0 a0 b0 a2 b1 a0 a0 SSSS

{0, 3, 9} a0 b0 a2 b1 a0 a0 SSS

{0, 4, 10} b0 a2 b1 a0 a0 match SS

{0, 5} a2 b1 a0 a0 match S

{0, 1} b1 a0 a0 SS

{0, 6} a0 a0 SS

{0, 7} a0 S

{0, 8} ε match ε

Fig. 15. Trace of deterministic subtree PDA Mdps(P ) from Example 10 for tree t2 in prefix
notation pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0.

Theorem 9. Given a set of m trees P = {t1, t2, . . . , tm} over a ranked alphabet
A, the deterministic subtree matching PDA Mpds(P ) is constructed by Alg. 5
and 3 in time Θ(|A|s), requires Θ(|A|s) storage, where s =

∑m

i=1 |ti|, and its
pushdown store alphabet consists of one symbol.

Proof. Since the subtree matching PDA for multiple patterns is directly analo-
gous to the Aho-Corasick string matching automaton (this can be proved from
proof of Theorem 6), we can use the proof from [1] and [26]. ��

Theorem 10. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 over a
set of m trees P is O(n).

Proof. The searching phase consists of reading tree t once, symbol by symbol
from left to right. The appropriate transition is taken each time a symbol is read,
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a0 a0

a2 b0

a2

pref(t) = a2 a2 a0 a0 b0

post(t) = a0 a0 a2 b0 a2

a0

b1 a0

a2

pref(t) = a2 b1 a0 a0

post(t) = a0 b1 a0 a2

a0 a0

a2

pref(t) = a2 a0 a0

post(t) = a0 a0 a2

a0 a0

a0 a0 a2 b0 a0

a2 a2 b1 a0

a2 a2

a2

pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0

post(t) = a0 a0 a2 a0 a0 a2 b0 a2 a2 a0 b1 a0 a2 a2

Fig. 16. Pattern subtrees from set P and the input tree from Example 10 along with their
prefix and postfix notations

resulting in exactly n transitions. Each transition consumes a constant time be-
cause the time of each pushdown operation is limited by the maximal arity of
nodes. Occurrences of the subtree to find are matched by transitions leading to
the final states. ��

6. Subtree matching in postfix notation

In this section we show the dual principle for the postfix notation. Theorems
11 and 12 present the direct analogy of properties of the prefix and postfix
notations. Theorem 13 is analogous to Theorem 3.

Theorem 11. Given a tree t and its postfix notation post(t), all subtrees of t in
postfix notation are substrings of post(t).

Theorem 12. Let post(t) and w be a tree t in postfix notation and a substring
of post(t), respectively. Then, w is the postfix notation of a subtree of t, if and
only if ac(w) = 0, and ac(w1) ≤ −1 for each w1, where w = xw1, x �= ε.
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0 1 2 3 4 5 6 7

a0|ε �→ S
a1|S �→ S
a2|SS �→ S

a0|ε �→ S a0|ε �→ S a1|S �→ S a2|SS �→ S a0|ε �→ S a1|S �→ S a2|SS �→ S

Fig. 17. Transition diagram of nondeterministic subtree matching PDA Mp(t1) for tree t1
in postfix notation post(t1) = a0 a0 a1 a2 a0 a1 a2 from Example 6

Theorem 13. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S

i) = (q2, S), where i = Arity(a).
Then, if (q3, w, ε) 	+M (q4, ε, S

j), then j = −ac(w) + 1.

From the above Theorems, we can easily transform Algorithms 1-5 to work
with the postfix notation of trees. The only change required is in the pushdown
operations. All transitions of the form δ(q, a, S) = (p, SArity(ai)) must be changed
to the form δ(q, a, SArity(ai)) = (p, S). The subtree matching PDA also requires
no initial pushdown store symbol, while after processing a valid tree in postfix
notation, the pushdown store contains a single symbol ’S’.

Fig. 17 illustrates the nondeterministic subtree matching PDA Mp(t1) con-
structed from the postfix notation of the tree from Example 6.

Fig. 18 illustrates the deterministic subtree matching PDA Mdps(t1) con-
structed from the postfix notation of the tree from Example 6.

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a0|ε �→ S a0|ε �→ S a1|S �→ S a2|SS �→ S a0|ε �→ S a1|S �→ S a2|SS �→ S

a0|ε �→ S
a1|S �→ S a2|SS �→ S

a2|SS �→ S

a1|S �→ S
a0|ε �→ S

a1|S �→ S

a0|ε �→ S

a1|S �→ S

a0|ε �→ S

a1|S �→ S

a1|S �→ S
a0|ε �→ S

a2|SS �→ S
a2|SS �→ S

a2|SS �→ S
a2|SS �→ S

Fig. 18. Transition diagram of deterministic PDA Mdps(t1) for tree t1 in postfix notation
post(t1) = a0 a0 a1 a2 a0 a1 a2 from Example 7
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7. Conclusion

We have introduced a new kind of pushdown automata: subtree matching PDAs
for trees in prefix and postfix notations. These pushdown automata are in their
properties analogous to string matching automata, which are widely used in
stringology [9, 10, 22, 26].

Regarding specific tree algorithms whose model of computation is the stan-
dard deterministic pushdown automaton, we have recently introduced princi-
ples of other three new algorithms. First, the tree pattern matching PDA [13,
21] which is an extension of the subtree matching PDA presented in this paper.
Second, the subtree and tree pattern PDAs, which represent a complete index
of a given tree by preprocessing it. Searching for all occurrences of a subtree or
a tree pattern of size m is then performed in time linear to m and not depending
on the size of the preprocessed tree [17, 19, 21]. These automata representing
indexes of trees are analogous in their properties to the string suffix and factor
automata [9, 10, 22, 26]. Third, a method on how to find all repeats of connected
subgraphs in trees with the use of subtree or tree pattern PDAs [21, 20]. More
details on these results and related information can also be found on [3].
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Abstract. IIS*Case is a software tool that provides information system 
modeling and prototypes generation. At the level of platform 
independent model specifications, IIS*Case provides conceptual 
modeling of database schemas that include specifications of various 
database constraints, such as domain, not null, key and unique 
constraints, as well as various kinds of inclusion dependencies. It also 
provides conceptual modeling of business applications. In the paper, we 
present new concepts and a tool embedded into IIS*Case, that is aimed 
at supporting specification of check constraints. We present a domain 
specific language for specifying check constraints and a tool that 
enables visually oriented design and parsing check constraints. Also, we 
present concepts and a tool that is aimed at supporting specification of 
complex (i.e. "nonstandard") functionalities of business applications. It is 
provided visually oriented and platform independent specification of 
business application functions. 

Keywords: Information system design; Platform Independent Models 
and Model Driven Software Development; Check constraint 
specification; Function specification. 

1. Introduction 

Integrated Information Systems CASE Tool (IIS*Case) is a software tool 
aimed at assisting the information system (IS) design and at generating 
executable application prototypes. Currently, IIS*Case provides: 

 Conceptual modeling of database schemas, transaction programs, and 
business applications of an IS; 

 Automated design of  relational database subschemas in the 3rd normal 
form (3NF); 
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 Automated integration of subschemas into a unified database schema in 
the 3NF; 

 Automated generation of SQL/DDL code for various database management 
systems (DBMSs); 

 Conceptual design of common user-interface (UI) models; and 
 Automated generation of executable prototypes of business applications. 

Apart from the tool, we also define a methodological approach to the 
application of IIS*Case in the software development process. By this 
approach, the software development process provided by IIS*Case is, in 
general, evolutive and incremental. We believe that it enables an efficient and 
continuous development of a software system, as well as an early delivery of 
software prototypes that can be easily upgraded or amended according to the 
new or changed users' requirements. 

In the paper [11] we considered the application of the model-driven 
software engineering (MDSE) principles in IIS*Case. In our approach we 
strictly differentiate between the specification of a system and its 
implementation on a particular platform. Therefore, modeling is performed at 
the high abstraction level, because a designer creates an IS model without 
specifying any implementation details. Such a model may be classified as a 
Platform-Independent Model (PIM) of the MDA pattern ([9], [16], [17], [21], 
[22], [23]). Besides, IIS*Case provides some model-to-model transformations 
from PIM to Platform-Specific Models (PSM) and model-to-code 
transformations from PSMs to the executable program code. 

In the paper [1] we argued that IIS*Case and our approach are suitable for 
end-user development (EUD), as it was considered in [3], [4], [20], and [25]. 
Besides, there are many EUD approaches and tools that provide the assistance 
to designers and end-users in creating IS specifications. One of them is 
presented in [24]. We also considered IIS*Case as a tool from the class of 
domain oriented design environments (DODE), as it is defined in [20]. In [1] we 
also present basic features of SQL Generator that are already implemented into 
IIS*Case, and aspects of its application. We also present methods for 
implementation of a selected database constraint, using mechanisms provided 
by a relational DBMS. 

A case study illustrating main features of IIS*Case and the methodological 
aspects of its usage is given in [10], and accordingly we do not repeat the 
same explanations here. Apart from [1], [10] and [11], detailed information 
about IIS*Case may be found in several authors' references, as well as in [15] 
and [19]. The methodological approach to the application of IIS*Case is 
presented in more details in [13], while an approach to the formal specification 
of database constraints provided by IIS*Case is presented in [12]. 

At the abstraction level of PIMs, IIS*Case provides conceptual modeling of 
database schemas that include specifications of various database constraints, 
such as domain, not null, key and unique constraints, as well as various kinds 
of inclusion dependencies. Such a model is automatically transformed into a 
model of relational database schema, which is still technology independent 
specification. An SQL generator is embedded into IIS*Case. It provides further 
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transformation of database schema into the platform specific SQL/DDL code, 
for various target DBMS platforms [1]. It is an example of model-to-code 
transformations provided by IIS*Case. Apart from the generation of key, 
unique, not null, and native referential integrity constraints, SQL Generator 
also provides the implementation of the default, partial and full referential 
integrity constraints, and the selection of an appropriate action from the set 
{No Action, Cascade, Set Default, Set Null}. It also provides the 
implementation of the inverse referential integrity constraints [1]. 

Previous versions of IIS*Case did not provide formal specification of check 
constraints, at all. Research efforts presented in this paper were directed 
toward introducing new concepts and a tool that enable a designer to formally 
specify and validate such constraints. An important expectation was to 
introduce new concepts that are platform independent, so as to provide formal 
specification of check constraints at the abstraction level of PIMs. 

In the paper we present a domain specific language (DSL) aimed at 
defining check constraints at the level of PIMs. By means of this language, a 
designer may specify logical expressions of an arbitrary complexity for 
validating attribute values. The language provides a recognition and usage of 
other necessary PIM concepts embedded into IIS*Case, and therefore helps a 
designer in specifying expressions using problem domain concepts, as it is 
considered in [6], [8] and [14]. Besides, the language does not comprise any 
platform specific concepts, so check expressions are created at high 
abstraction level. In the paper we also present a tool aimed at specifying and 
parsing check constraints in a visually oriented way. 

By this, in the process of database constraint design, we provide designers 
a possibility to concentrate mainly on the constraint semantics in a problem 
domain, instead of wasting time on their formal specification and validation. 
To achieve this goal, we need the appropriate DSLs and PIM concepts 
embedded into IIS*Case that are mostly problem oriented, instead of using 
relational data model concepts that are more technology specific, or even 
SQL DDL syntax, which is fully technology oriented programming language. 
Therefore, SQL DDL normally may be used to implement database schema 
specifications under a DBMS, but should not be directly used in the design of 
IS specifications, particularly at the conceptual level, i.e. at the abstraction 
level of PIMs. 

At the abstraction level of PIMs, IIS*Case also provides conceptual 
modeling of business applications that include specifications of: (i) UI, (ii) 
structures of transaction programs aimed to execute over a database, and (iii) 
basic application functionality that includes the following "standard" 
operations: data retrieval, inserts, updates, and deletes. Also, a PIM model of 
business applications is automatically transformed into a program code of 
business applications. In this way, fully executable application prototypes are 
generated. For these purposes, User Interface Markup Language (UIML) and 
Java Render by Harmonia Incorporation® are chosen programming and run-
time environment [19]. Such a generator is also an example of model-to-code 
transformations provided by IIS*Case and its development is almost finished. 
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Transaction programs of business applications may often comprise not only 
basic operations, but also more complex functionalities that cannot be 
expressed by a sole retrieve, insert, update, or delete operation. Such 
functionality may comprise complex calculations, as well as series of 
database operations. Therefore, such functionality we call specific, complex, 
or "nonstandard" application functionality. Besides, specifications of check 
constraints may reference various complex functions that should be specified 
also formally, i.e. in the same way as complex application functionality. 

Basic data operations such as retrieve, insert, update and delete are 
common for various problem domains and can be easily specified by means 
of IIS*Case concepts. However, business applications from various problem 
domains usually comprise complex functionalities. If such functionalities would 
not be embedded into the PIM of a software system being designed, a 
programmer has to create latter a program code of such functionalities, or at 
least has to amend a generated program code, "by hand". In this way, 
complex functionalities are modeled at the lowest level of abstraction, by 
means of a target programming language which is always platform specific. 
As a rule, such created program code becomes unsynchronized with the initial 
PIM models of the system during the time. As a consequence, the operational 
maintenance of such systems becomes more difficult, with a lot of problems 
arising during the software exploitation. 

Previous versions of IIS*Case did not provide formal specification of 
complex application functionalities or functions referenced in check 
constraints, at the level of PIMs. Research efforts presented in this paper 
were directed toward introducing new concepts and a tool that enable a 
designer to formally specify complex functionalities. An important expectation 
was to introduce new concepts that are platform independent, so as to 
provide formal specification of complex functionalities at the abstraction level 
of PIMs.  

In the paper we also present concepts and a repository oriented tool aimed 
at the specification of functions at the level of PIMs. The name of the tool is 
Function Specification Editor or Function Editor for short. By means of 
Function Editor a designer may specify functions of an arbitrary complexity. It 
provides usage of necessary PIM concepts embedded into IIS*Case, and 
helps a designer in specifying functions using not only programming language 
concepts, but also problem domain concepts in a certain extent. Besides, 
Function Editor does not comprise any platform specific concepts, so 
functions are specified at high abstraction level. Also, it provides specifying 
functions completely in a visually oriented way. On the basis of Function
Editor and the appropriate repository definitions used by Function Editor as a 
part of IIS*Case, it is possible to create a Domain Specific Language (DSL) 
for specifying business functions at the level of PIMs, as it is considered in [6], 
[8] and [14]. 

Apart from Introduction and Conclusion, the paper consists of six sections. 
In Section 2 we briefly describe main concepts of the IIS*Case tool that are 
important for specification of check constraints and function specifications. 
Check constraint expressions are introduced in Section 3, where grammar 
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rules are presented. The main features and functionalities of the Expression 
Editor tool are presented in Section 4, while the implementation details 
concerning parsing of check expressions are presented in Section 5. Function 
specifications and related concepts are introduced in Section 6, while the 
main features and functionalities of the Function Editor tool are presented in 
Section 7. 

2. Preliminaries 

At the abstraction level of PIMs, IIS*Case currently provides conceptual 
modeling of database schemas and software applications of an IS. Starting 
from such PIM models as a source, a chain of transformations is performed 
so as to obtain executable program code of software applications and 
database SQL/DDL scripts for a selected target platform. The similar idea 
may be found also in [2]. For the purpose of readability, in this section we 
briefly describe main modeling concepts of IIS*Case that are used at the 
abstraction level of PIMs and have an influence on the specification of check 
constraints, as well as on the specification and referencing of functions 
defined in IIS*Case repository. 

A form type is the main modeling concept in IIS*Case ([10], [12], [15]). It 
generalizes document types, i.e. screen forms that users utilize to 
communicate with an information system. The similar concept of the form type 
may be found in [5] and [7], as well as in many other references. Using the 
form type concept in IIS*Case, a designer specifies screen or report forms of 
transaction programs and, indirectly, specifies (i) an initial set of attributes and 
constraints, (ii) basic functionalities of future transaction programs and (iii) 
components of their UI. Each particular business document is observed as an 
instance of a form type. A form type concept, as well as related concepts of a 
domain and attribute, is platform independent. Here, we use a notion of the 
form type instead of a document type, because it is always a structure defined 
at the abstraction level of schema. It represents not only a layout structure 
(i.e. screen or a report form) of a document, but also a set of database 
schema attributes and constraints embedded into a future screen or a report 
form of an IS transaction program. 

A form type is a named tree structure, whose nodes are called component 
types. Each component type is identified by its name in the scope of the form 
type, and has nonempty sets of attributes and keys, and a set of unique 
constraints that may be empty. Besides, to each component type must be 
associated a set of allowed database operations. It must be a nonempty 
subset of the set of "standard" operations {retrieve, insert, update, delete}. 
Each attribute of a component type is chosen from the set of all information 
system attributes. 

Attributes are globally identified only by their names. IIS*Case imposes 
strict rules for specifying attributes and their domains. Attributes in IIS*Case 
are classified as elementary or derived. An attribute is elementary if it 
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represents values given by end-users directly. Otherwise, it is derived. Values 
of a derived attribute are generated (i.e. calculated) from the values of the 
other attributes, by applying some algorithm. Such algorithms in IIS*Case are 
expressed by a concept of function. Therefore, a specification of a derived 
attribute must reference at least one previously defined (elementary or 
derived) attribute, and at least one function that is used for calculating its 
values.

Domains in IIS*Case are also globally identified only by their names. They 
are classified as primitive and user-defined. Primitive domains are defined 
"per se" as primitive data types. They are predefined into the repository of 
IIS*Case. An initial collection of primitive domains stored in the repository may 
be customized by adding, changing, or even removing specifications of 
primitive domains. Each user-defined domain in IIS*Case is created by 
referencing a primitive domain, or an already existing user-defined domain. In 
this way, user-defined domains are derived from primitive or previously 
created user-defined domains.  There are four derivation rules that may be 
applied to create a user-defined domain from the existing domains: a) 
inheritance rule, b) tuple rule, c) set rule, and d) choice rule. A domain 
obtained by one of the aforementioned rules is called inherited, tuple, set, or 
choice domain, respectively. Tuple, set, or choice domains are also called 
complex domains. Recursive multiple application of the aforementioned rules 
is allowed. 

Inherited domain inherits all the properties from its source (parent) domain. 
If a domain D is defined by the inheritance rule from the parent domain Ds, we 
denote it by D = Inherits(Ds). Besides, a separate check expression is to be 
assigned to an inherited domain. Therefore, it is more or at least equally 
restrictive as its parent domain. If check expressions are defined for both 
inherited and its parent domain, in evaluation they are connected by the 
logical AND operator. Consequently, in a recursive application of the 
inheritance rule, all the domain check expressions in a hierarchy are 
connected by the logical AND operators. 

Tuple domain represents tuples (records) of values over source domains. 
Therefore, it is defined as a structure D = Tuple(A1 : D1,..., An : Dn), where D is 
a tuple domain, and for each i  {1,...,n}, (Ai : Di) is a tuple item, i.e. a 
member, where Ai is an attribute with an associated source domain Di.

Set domain represents values that are sets, each over the same source 
domain. Therefore, it is defined as a structure D = Set{Ds}, where D is a set 
domain, and Ds is a source domain. 

Choice domain represents values over exactly one of the source domains. 
Therefore, it is defined as a structure D = Choice(A1 : D1,..., An : Dn), where D
is a choice domain, and for each i  {1,...,n}, (Ai : Di) is a choice item, i.e. a 
member, where Ai is an attribute with an associated source domain Di.

Check constraints in IIS*Case may be specified at the level of a domain, 
attribute or a component type of a form type. A check constraint associated to 
a domain or attribute is used to specify a logical condition constraining 
allowable values of a sole attribute. A check constraint associated to a 
component type is used to specify a logical condition constraining some 
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values of each component type instance. Logical conditions of the check 
constraints may also reference functions, defined in IIS*Case repository. 

3. Check Expressions 

The quality of a whole database schema is substantially influenced by the 
quality of constraint specifications. It is very important to define these 
specifications at early stages of database schema design process, at 
abstraction level of PIMs, if possible. IIS*Case provides specification of 
various types of constraints, such as domain, not null, key and unique 
constraints, as well as various kinds of inclusion dependencies, at the 
abstraction level of PIMs. 

Commercial CASE tools that provide modeling conceptual database 
schema specifications by means of Entity-Relationship (ER) data model and 
their transforming into the relational data model either provide only partial 
specifications of check constraints at the conceptual level, and/or provide a 
usage of standard SQL syntax for that purposes. Accordingly, check 
constraints may be fully defined only at the level of an implementation 
database schema specification, expressed commonly by relational data model 
and SQL syntax. For example, Oracle Designer does not allow all kind of 
check constraints to be formally defined at the level of an ER database 
schema. Sybase Power Designer provides a usage of SQL syntax for that 
purposes. On the contrary, check constraints in the IIS*Case tool are defined 
at the level of a conceptual database schema as a PIM model, which is 
expressed by a set of created form types. For these purposes, we developed 
a DSL to create check expressions of various complexity, in a platform 
independent way. Such a DSL and a tool embedded into IIS*Case enable a 
designer to specify check constraints using problem domain concepts, in a 
visually oriented way. 

A check expression is a logical expression. In general, it may include 
attribute references, arithmetic, comparison and logical operators, as well as 
function calls. As implemented at the level of a target DBMS, it is usually 
evaluated in a ternary logic as a value from the set {true, false, unknown},
where true means that an expression is valid, false that it is violated, and 
unknown that it is neither valid nor violated. The value unknown is possible to 
obtain whenever there are null (missing) values of attributes in the evaluation 
of an expression. 

By means of the DSL embedded into IIS*Case, check expressions may be 
specified at the level of a (i) domain, (ii) attribute or (iii) component type of a 
form type, in a similar way. 
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3.1. Domain Check Expressions 

IIS*Case provides a "universal" set of all domains of a project as a whole. 
Domains in IIS*Case are used to express domain constraints, as it is 
proposed in [12]. Each specification of a user-defined domain allows defining 
a check expression, as a property of the domain specification. Such check 
expressions are named domain check expressions. 

A formal specification of the grammar for domain check expressions is 
shown in Table 1, in the Extended Backus-Naur Form (EBNF) notation. 

Table 1. Specification of the grammar for domain check expressions 

Exp = Exp bin_operator Exp | un_operator Exp | Primary_Exp; 

Primary_Exp = constant | value ['.' fieldName] |  function_name 

'(' [Exp_List] ')' | '(' Exp ')'; 

Exp_List = Exp { ',' Exp_List}; 

The list of standard operators includes the following ones: 

 Additive (+, -), 
 Multiplicative (*, /), 
 Comparison (<, <=, >, =>), 
 Equality (==, !=), 
 Concatenation (||), 
 Boolean (NOT, AND, OR, XOR, =>), 
 Inclusion (IN), and 
 Pattern matching (LIKE). 

All the operators and parentheses are introduced with the common meaning 
and priorities when applying the rules for evaluation of expressions. 

Apart from introducing standard arithmetic, string, comparison and logical 
operators existing in all general-purpose languages, we decided also to 
introduce the operators LIKE and IN, which are common in database 
languages, like SQL. In this way, the language for check expressions 
becomes more problem oriented. 

The grammar in Table 1 also provides function calls by referencing the 
appropriate function names. It is allowed to reference only the functions 
existing in the IIS*Case repository. It is supposed that both built-in and user-
defined functions are stored in the repository. IIS*Case also provides a 
specialized DSL and a visually oriented tool for specifying various functions in a 
project. By this, it is possible to specify function header, a list of formal 
parameters, return value, all local declarations, function body and the exception 
handler in a structural way. Functions are specified by means of the technology 
independent concepts, at the abstraction level of PIMs, as it is presented in 
Sections 6 and 7. 

The grammar in Table 1 allows the use of constants in check expressions. 
The common rules for specification and interpretation of constants are 
applied, and accordingly we do not describe them in more detail. 
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The only variable symbol allowed in domain check expression is value
symbol (VALUE). VALUE denotes any value for which a domain check 
expression is validated. 

Only in check expressions associated to a tuple or choice domain it is 
possible to qualify VALUE by the attribute name of an item. Therefore, 
VALUE.Ai denotes a value of a tuple or choice member (Ai : Di), while 
nonqualified VALUE denotes a complete tuple or a choice value. 

Example 1. A domain check expression for a numeric domain DGRADE is 
given:

VALUE >= 5 AND VALUE <= 10.

It constrains allowable values of DGRADE to the interval from 5 to 10. 

Example 2. A domain check expression for a string domain DPHONE is
given:

VALUE LIKE '5%' AND StrLen(VALUE) = = 7.

It constrains allowable values of DPHONE to exactly the 7 character long 
strings, beginning with '5'. StrLen is a function call that references a function 
already specified in the IIS*Case repository. 

Example 3. A domain check expression for a string domain DSEMESTER is
given:

VALUE IN {'I', 'II','III','IV','V','VI','VII','VIII','IX', 'X'}.

It constrains allowable values of DSEMESTER to the list of string values 
specified after the inclusion operator IN. 

Example 4. A tuple domain DDATE is defined as DATE = Tuple(DAY : 
INTEGER, MONTH : INTEGER, YEAR : INTEGER), where INTEGER is 
primitive domain. A domain check expression for a tuple domain DDATE is
given:

VALUE.DAY <= 31 AND VALUE.DAY >= 1.

It constrains allowable values of DAY member to the interval from 1 to 31. 

3.2. Attribute Check Expressions 

IIS*Case provides a "universal" set of all attributes of a project as a whole. 
According to the universal relationship existence assumption (URSA) adopted 
from the relational data model, each attribute in IIS*Case is uniquely identified 
only by its name. Exactly one domain must be associated to each attribute in 
a project. In this way, allowable values of an attribute are constrained by the 
appropriate domain constraint. 

IIS*Case allows defining a check expression as a property of the attribute 
specification. Such check expressions are named attribute check expressions. 
Our DSL has the appropriate grammar rules for specification of attribute 
check expressions. 
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Suppose that we have an attribute A to which a domain D is associated. 
We denote it as (A : D). If a domain check expression is associated to D, then 
each attribute A with the associated domain D inherits its domain check 
expression. Besides, if we have an attribute check expression assigned to an 
attribute A, and a domain check constraint assigned to D, where (A : D) holds, 
in evaluation they are connected by the logical AND operator. Obviously, if we 
have (possibly a recursive) application of the inheritance rule for the domain 
D, all the domain check expressions in a hierarchy are connected alongside 
with the attribute check expression by the logical AND operators. 

A formal specification of the grammar for attribute check expressions is 
shown in Table 2, in EBNF notation. It is almost identical to the grammar 
specification for domain check constraints given in Table 1. The only 
difference is in the following. If we specify the attribute check expression for 
an attribute with the name A, the only variable symbol allowed in attribute 
check constraints, which may replace attName, is A. It is with the same 
meaning as it is the symbol VALUE in domain check expressions. Analo-
gously to the domain check constraints, we may additionally qualify A in the 
case of a tuple or choice domain associated to A. Therefore, A.Ai denotes a 
value of a tuple or choice member (Ai : Di), while nonqualified A denotes a 
complete tuple or a choice value. 

Table 2. Specification of the grammar for attribute check expressions 

Exp = Exp bin_operator Exp | un_operator Exp | Primary_Exp; 

Primary_Exp = constant | attName ['.' fieldName] | 

function_name '(' [Exp_List] ')' | '(' Exp ')'; 

Exp_List = Exp { ',' Exp_List}; 

Example 5. An attribute check expression for a numeric attribute GRADE is 
given:

GRADE >= 6.

It constrains allowable values of GRADE to be greater or equal 6. If 
(GRADE : DGRADE) holds, where DGRADE is a domain from Example 1, 
then this check expression is connected to the one from Example 1 by the 
operator AND. Consequently, allowable values of GRADE are constrained to 
the interval from 6 to 10. 

3.3. Component Type Check Expressions 

In IIS*Case, a form type is a hierarchical tree structure of component types, 
each of them having nonempty sets of attributes and keys, and a possibly 
empty set of unique constraints. Each attribute of a component type is 
selected from the set of all attributes of a project, i.e. from the IIS*Case 
repository. Therefore, it inherits all its constraints defined at the levels of the 
appropriate attribute and domain specifications. 
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IIS*Case also allows defining a check expression as a property of the 
component type specification. Such check expressions are named component 
type check expressions. Our DSL has the appropriate grammar rules for 
specification of component type check expressions. 

The main purpose of domain and attribute check expressions is to 
constrain allowable values of a sole attribute. On the contrary, component 
type check constraints are used to specify logical conditions that constrain a 
tuple of values representing each component type instance. 

A formal specification of the grammar for component type check 
expressions is shown in Table 3, in EBNF notation. It is almost identical to the 
grammar specification for attribute check constraints given in Table 2. The 
only difference is in the following. If we specify the component type check 
constraint for a component type N, we may use as variable symbols that are 
to replace cmpattName, any of attributes from the component type N, as well 
as any of attributes from any superordinated component type in a form type 
hierarchy. 

Table 3. Specification of the grammar for component type check expressions 

Exp = Exp bin_operator Exp | un_operator Exp | Primary_Exp; 

Primary_Exp = constant | cmpattName ['.' fieldName] | 

function_name '(' [Exp_List] ')' | '(' Exp ')'; 

Exp_List = Exp { ',' Exp_List}; 

Analogously to the attribute check constraints, we may additionally qualify 
variable A in the case of a tuple or choice domain associated to A. Therefore, 
A.Ai denotes a value of a tuple or choice member (Ai : Di), while nonqualified 
A denotes a complete tuple or a choice value. 

Example 6. In Fig. 1 it is presented a form type Student Records. The form 
type is structured as a tree having two component types, STUDENT and 
GRADES, which are graphically represented by rectangles. The component 
type attributes are shown in italic letters. The key attribute of each component 
type is underlined by a solid line, whereas the attribute of a uniqueness 
constraint is underlined by a dashed line. Allowed operations for both 
component types are shown in small rectangles in the upper-right corners. 

Fig. 1. A representation of the form type Student Records.

STUDENT

GRADE

StudentId, Year

CourseId, Date, Grade

Student Records r

r, i, u, d
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A check expression for the GRADES component type is given: 
(Year IN {1, 2, 3} => Grade IN {1, 2, 3, 4})

AND (Year IN {4, 5} => Grade IN {4, 5}).

It constrains the possible combinations of values for Year and Grade. If 
Year is 1, 2, or 3, Grade must be 1, 2, 3, or 4, and if Year is 4 or 5, Grade 
must be 4 or 5. 

4. Check Expression Editor 

Check Expression Editor, or Expression Editor for short, is a tool that we 
developed and embedded into IIS*Case. It is aimed at specification and 
validation of check expressions. It may be called from the 

 Domain specification form of IIS*Case, if a domain check constraint need to 
be defined; 

 Attribute specification form of IIS*Case, if an attribute check constraint need 
to be defined; or 

 Component type specification form of IIS*Case, if a component type check 
constraint need to be defined. 

By this, Expression Editor will support the appropriate check expression 
grammar, in a context-sensitive way. 

Expression Editor provides two options for specification of check 
expressions: (i) guided, by means of a Visual Editor, and (ii) "free form", by 
means of a Text Editor. The first option is more suitable for less experienced 
users, not knowing the precise grammar rules and therefore needing a guide 
in specifying check expressions. The second one is more suitable for more 
experienced users, well knowing the precise grammar rules, and wishing to 
be as fast as possible in specifying check expressions. The main screen form 
of Check Expression Editor is presented in Fig. 2. Visual Editor is positioned 
in the center, while Text Editor is positioned in the bottom of the main form of 
Expression Editor.

Text Editor provides direct writing check expressions in a free form way. 
Besides, it supports context-sensitive syntax highlighting, as well as standard 
text processing commands such as: cut, copy, undo, etc. These commands 
are included in the Edit submenu of the main menu, and also in the toolbar 
positioned on the left hand side of the main form. Also, the toolbar comprises 
a command for performing expression validation. 

By means of Visual Editor, check expressions are modeled by building the 
expression trees. Expression tree navigator, as a part of Visual Editor, is 
positioned on the left hand side of the main form from Fig. 2. Each node of an 
expression tree represents a subexpression, while the root node represents 
the main expression. Non-leaf nodes are named complex nodes, because 
they represent complex expressions, for example the expressions enclosed 
by parentheses, or operator inclusions. Leaf nodes are named simple nodes, 
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because they correspond to simple, i.e. primary expressions, like constants, 
variables (such as VALUE or attribute names), or function calls. 

Fig. 2. Main screen form of Expression Editor 

Visual Editor provides all common functions for editing an expression tree. 
These are: inserting, deleting, moving, and editing a node. The last function is 
available only for leaf nodes, representing simple expressions. 

When a user wants to insert a complex node, he or she has to select a 
language operator or the parentheses symbol from the main toolbar. Each 
operator of the language is represented by an appropriate iconic button in the 
main toolbar. 

Inserting a simple node into the expression tree is performed by selecting 
the exp command from the main toolbar. After selecting the exp command, a 
node is inserted and a textbox for specifying the simple expression appears 
within the node. According to grammar rules, simple expressions may be 
constants from a domain, variables, or function calls. A combo box positioned 
on the upper-right corner is aimed to assist a user to select an appropriate 
attribute, or a function from the IIS*Case repository. 

Example 7. Suppose the following domain complex expression has to be 
specified by means of Visual Editor:

VALUE >= 5 AND VALUE <= 10.

A user needs first to insert a complex node for AND operator, and then two 
descendant complex nodes, one for ">=" and the other for "<=" operators. 
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Below the ">=" complex node, he or she needs to insert two simple nodes, 
one for variable VALUE, and the other for a constant 5. In a similar way, two 
simple nodes are to be defined below the "<=" complex node, one for VALUE, 
and the other for 10. 

Expression Editor always keeps Visual Editor and Text Editor
synchronized. When a user creates and validates an expression by means of 
Visual Editor, the expression will be also shown in its full syntax in Text Editor.
Also, when a user creates and validates an expression by means of Text 
Editor, the corresponding expression tree will be shown in Visual Editor
automatically.

5. Validation of Check Expressions 

Expression Editor provides validation of check expressions. Parser is created 
by means of the ANTRL 4.0 tool. ANTRL enables a user to formally specify 
grammar. Furthermore, it supports transformation of grammar specifications 
into the program code of a parser for target programming environment. As a 
result, it is obtained a recursive-descent parser expressed in a program code 
that is human-readable and easily customizable. [18]. 

According to the specified language definition presented in Section 3, 
ANTLR is used to generate Java program code of a parser that checks 
whether sentences created by Expression Editor conform to the language 
specification. 

ANTLR generally provides amending grammar rules by adding source 
program code, i.e. code snippets to the grammar definition. Then, such code 
snippets are inserted into the program code of a generated parser, "as is". In 
our case, grammar rules for check expressions are amended by inserting 
code snippets that translate input sentences into an XML specification, and 
perform some semantic analysis, at the same time. In this way, apart from 
syntax validation, Expression Editor provides some semantic analysis. For 
example, check constraints may contain variables that reference members of 
a tuple or choice domain. The semantic analyzer verifies if reference to a 
tuple or choice member is valid, by seeking the appropriate domain 
specifications from the IIS*Case repository. Currently, type checking is not 
supported, at all. It is because the domain specification in our repository 
model still does not provide specification of allowed operators over a domain. 

Example 8. In Table 4 two grammar rules for domain check expressions are 
presented. These rules contain code snippets that provide performing 
semantic analysis and creating a node in the appropriate XML specification. 
The grammar rules are specified in ANTLR notation. 
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Table 4. Grammar rules for domain check expressions containing code snippets 

sentence returns [String val] 

@init{ tmp = "";} 

:

tmp = expression 

{val="<block name=\"Expression\" group=\"1\">"+ tmp+"</block>"; 

val = val.replaceAll("><",">\n<") + "\n\n";} 

;

domain_ref

@init{ tmp = "";} 

: value ( '.' tmp = memberName )? 

{checkMember(tmp);}

;

A code snippet that provides creating a node in the XML specification of a 
check expression is included in the sentence grammar rule in Table 4. It is 
given as follows: 
{val = "<block name=\"Expression\" group=\"-1\">" + tmp + 

"</block>";

val = val.replaceAll("><",">\n<") + "\n\n";} 

A code snippet that provides performing semantic analysis is included in 
the domain_ref grammar rule in Table 4. It is given as follows: 

{checkMember(tmp);}

When member name is identified, the snippet verifies if a reference to a 
tuple or choice member is valid, by seeking the appropriate tuple or choice 
domain specifications from the IIS*Case repository. 

Apart from being used for a semantic analysis, XML specifications of check 
expressions may also be used to provide further necessary transformations of 
check constraints. Our future research work is oriented towards providing a 
chain of transformations that result in PSM specifications of check constraints, 
expressed as the SQL/DDL program code. 

The main idea how to design the transformation process from check 
expressions specified at the level of PIMs to the SQL/DDL program code is as 
follows. The process should be generally organized in two phases. By our 
methodology ([10], [13]), in the first phase, a set of form types representing a 
PIM model of a conceptual database schema is transformed into a relational 
database schema. Accordingly, all the constraints specified at the conceptual 
PIM level should be transformed into the equivalent relational database 
schema constraints. Therefore, each component type check expression 
specified at the level of a PIM, should be transformed into the one or more 
appropriate check or extended check expressions ([12]) defined at the level of 
the corresponding relation schemes. It is an issue how to create and 
implement an algorithm that will (i) provide inference problem solving for 
check expressions and (ii) preserve logical equivalency during 
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transformations of component type check constraints. In this phase, domain 
and attribute check expressions remain unchanged. 

A relational database schema generated in the first phase is still technology 
independent of any particular DBMS. Therefore, in the second phase, it is 
transformed into the SQL/DDL specification justified to the syntax of a chosen 
DBMS or ANSI SQL standard ([1]). Accordingly, each check expression 
defined at the level of a sole domain, attribute or a relation scheme, should be 
transformed into a corresponding SQL/DDL check constraint. Such a transfor-
mation is easily possible because of using a syntax for our check expressions 
that is very similar to the syntax for expressions in SQL check constraints. It is 
an issue here how to transform check expressions that contain references to 
the members of tuple or choice domains if a target DBMS does not support 
necessary object-relational concepts. On the other hand, with respect to the 
current level of supporting ANSI SQL standard by commercial DBMSs, 
extended check constraints in a relational database schema may only be 
transformed into the SQL code of a target DBMS that includes triggers and 
stored procedures. 

6. Modeling Complex Functionalities in IIS*Case 

Software development in IIS*Case is organized through projects. Each project 
in IIS*Case is further organized trough application systems and represented 
by a project tree. A set of fundamental specifications, comprising domains, 
attributes, inclusion dependencies, and program units is associated to each 
project. Fundamental specifications are independent of any application 
system given in a project. IIS*Case provides the following program unit 
concepts from the class of fundamental concepts necessary to express 
complex application functionalities at the level of PIMs: (i) Function; (ii) 
Package; and (iii) Event. A part of IIS*Case project tree representing these 
concepts is presented in Fig. 3. 

A concept of a function is used to specify complex functionalities. Functions 
in IIS*Case are defined at the level of a project, and may be referenced from 
various IIS*Case specifications. A concept of a function is presented in the 
following text in more details. 

A package is a collection of arbitrary selected functions defined in IIS*Case 
repository. Usually, packages are organized in a "thematic" way. Depending 
on a selected layer for the package deployment in multi-tier distributed 
software architecture, at the level of PIMs, we differentiate between database 
server, application server and client packages. Database server packages are 
to be deployed at the database server layer. The analogous is for application 
server and client packages. 
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Fig. 3. A part of IIS*Case Project Tree. 

A concept of event is used at the level of PIMs, to represent any software 
event that may trigger some action under a specified condition. We also 
differentiate between database server, application server and client events. 
Database server events may be database triggers or exceptions. Application 
server and client events may be: keyboard events, mouse events, or 
exceptions. Each event should be associated to a PIM specification. For 
example, a database trigger should be associated to a relation scheme. A 
keyboard event may be associated to a form type, component type, or an 
attribute of a component type. A concept of event is not fully implemented in 
IIS*Case yet. Its full implementation is a matter of further research. 

A formal specification of a function in IIS*Case includes the following: 

 Function name that is unique in the IIS*Case project; 
 List of formal parameters (i.e. arguments); 
 Return value type; and 
 Function body. 

In Fig. 4 it is presented the IIS*Case screen form for specifying a function with 
the list of formal parameters and the return value type. The "Specification" 
button invokes the Function Editor tool aimed at formal specification of the 
function body. Function Editor is presented in the next section. 

For each function, an arbitrary number of formal parameters may be 
defined. Each formal parameter is specified by the following properties: (i) 
sequence number defining a position of the parameter in the list; (ii) name; (iii) 
reference to IIS*Case domain defining a data type of a parameter; (iv) default 
value; and (v) type, where possible parameter types are: input (In), output 
(Out) and input/output (InOut), with a usual meaning inherited from various 
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programming languages. Return value type is a reference to the domain 
previously defined in IIS*Case repository. 

Fig. 4. A screen form for specification of a function, its formal parameters and a return 
type. 

Function body is specified by means of PIM concepts that are mostly 
inherited from the third generation languages, particularly database 
procedural languages, and structural programming paradigm. Function body 
is a tree structure comprising blocks, declarations, statements, and 
comments. We differentiate between execution blocks and declaration blocks. 
Execution blocks may include nested declaration and execution blocks. In this 
way, multi-level nesting of blocks is provided. The following concepts are 
provided for specifying a function body: 

 Sequential structures defining sequences of statements, declarations or 
comments; 

 Declaration blocks that represent sequences of various declarations and 
comments; 

 Declarations of local types, variables, constants, functions, cursors and 
exceptions; 

 Execution blocks that represent sequences of embedded blocks, various 
statements and comments; 

 Iteration structures with FOR, DO-WHILE, and WHILE-DO statements; 
 Selection structures with IF-THEN-ELSE and ELSEIF-THEN-ELSE 

statements; 
 Exception handler structure with TRY, CATCH, and FINALLY statements; 
 Simple statements, like various kind of expressions and assignment 

statements; and 
 Single-line comments denoted as /* */. 
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Despite that these concepts are mostly inherited from the third generation 
languages, they are syntactically independent of any particular programming 
language. Therefore, function specifications in IIS*Case are platform 
independent. 

A specified function may be referenced many times in the same IIS*Case 
project. Currently, a function may be referenced in: 

 Declarations and expressions of other IIS*Case functions; 
 Packages, to express an inclusion of the function into a package; 
 Events, to express the activity of an event associated to a PIM 

specification; 
 Logical expressions of domain check constraints, attribute check 

constraints and component type check constraints; or 
 Specifications of derived attributes. 

7. The Function Editor Tool 

Function Editor is the IIS*Case tool that provides repository based 
specification of a function body in a visually oriented way. The main screen 
form of Function Editor is presented in Fig. 5. 

Fig. 5. The main screen form of Function Specification Editor.
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By means of Function Editor, a function body is represented as a tree, 
whose nodes represent blocks, declarations, statements, or comments. Tree 
Structure Navigator is placed on the left hand side of the Function Editor
screen form from Fig. 5, while the complete specification of a function body is 
represented in a panel placed in the central part of the screen form from Fig. 
5. At the bottom of the screen form a message panel is placed. 

Function Editor provides common tree operations, like creating a new node, 
removing an existing node, or reconnecting (cut & paste) a node in the tree. A 
notion of a current node in Tree Structure Navigator is recognized and all the 
tree operations are performed in the context of the current node. The current 
node is marked by a different color. Tree operations are available from the 
main menu, horizontal and vertical toolbars, as well as from the right-mouse-
click context menu. 

Creating a new node is a context sensitive operation. It is performed by 
selecting an appropriate toolbar option or "Blocks & Statements" menu option. 
A designer may select only one of the options that are available in the context 
of the current node. In this way, he or she specifies the type of the node being 
created. A list of all possible node types with their descriptions is given in 
Table 5 included in Section 10, Appendix. 

By a context sensitive selection of options for node types that are available 
in the context of current node, Function Editor assists a designer in creating 
valid function specifications. For example, if the current node represents a 
FOR statement, a creation of ELSE descendant node is unavailable.
According to common structural programming rules imposed by general 
purpose procedural languages, Function Editor only allows the combinations 
of node types that make sense in specifying a function body. In this way, 
Function Editor just allows building valid structures of a function body. 

Besides, Function Editor also provides a syntax and semantic analysis tool. 
A designer may use the tool during the whole process of creating function 
specifications, just by selecting an appropriate toolbar option. The syntax 
analysis also checks validity of the structure of function body specification. As 
it concerns semantic analysis, currently Function Editor only checks variable 
and constant declarations, if specified data type is a reference to a domain 
specification from the IIS*Case repository. Type checking is not supported, at 
all. It is because the domain specification in our repository model still does not 
provide specification of allowed operators over a domain. 

8. Conclusion 

Commercial CASE tools that provide modeling conceptual database schema 
specifications by means of ER data model and their transforming into a re-
lational data model either provide only partial specifications of check 
constraints at the conceptual level, and/or provide a usage of standard SQL 
syntax for that purposes. Therefore, check constraints are usually fully defined 
at the level of an implementation database schema. On the contrary, in our 
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approach, check constraints in the IIS*Case tool are defined at the level of a 
conceptual database schema as a PIM model. For these purposes, we 
developed a DSL and the Check Expression Editor tool to create and parse 
check expressions defined in a platform independent way. In this way, a 
designer may specify check constraints using problem domain concepts, in a 
visually oriented way. 

Besides, by our approach, function specifications, which may be referenced 
from check constraint expressions as well as from the other IIS*Case 
specifications, are defined at the level of a conceptual specification of an IS, 
as a PIM model. For these purposes, we developed a specialized tool, named
Function Editor, by means of it is possible to create and analyze function 
specifications defined in a platform independent way. In this way, a designer 
may specify functions using not only programming concepts, but also problem 
domain concepts, in a visually oriented way. 

Among all, our current or future research and development efforts are 
oriented towards the following: 

 Development of the algorithms providing transformations of check 
constraint specifications created at the level of form types as PIMs, to the 
equivalent specifications at the level of an implementation database 
schema (usually expressed by the relational data model), and then to the 
executable PSM specifications expressed as the SQL/DDL program code; 

 Development of a DSL for an equivalent representation of the current 
repository based function specifications at the level of PIMs; 

 Extensions of the IIS*Case repository definition and the appropriate 
specifications (like event specifications) by new concepts, so as to make 
better foundation for (i) semantic analysis of check constraint expressions; 
and (ii) using function specifications in specifying business application logic, 
as well as their syntax and semantic analysis; 

 Development of the algorithms providing transformations of function 
specifications created at the level of PIMs, to the equivalent executable 
PSM specifications expressed in a target programming environment and in 
the context of generated business applications; and 

 Using the Meta-Object Facility Specification (MOF) in order to raise our 
repository based DSL specifications at meta-meta abstraction level. 
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Appendix

In Table 5 it is presented a list of all possible Function Editor node types with 
their descriptions. 

Table 5. A list of node types available when creating a new node. 

Node Type Description

Execution Block 

A new execution block as a sequence of statements, 
blocks and comments is created. The node is named 
EXECUTION_BLOCK. In its context, it is possible to 
create new subordinated nodes, and therefore such a 
node is called the complex node. 

FOR structure 

A new node named FOR and representing the 
counting FOR structure is created. Four new 
subordinated nodes are automatically created, 
denoted as: (i) Begin, (ii) Condition, (iii) Step, and (iv) 
FOR_BODY. The first three are text items that define: 
start value, end value and the step of a FOR program 
counter. These are the simple nodes, because they 
cannot have any subordinated nodes. FOR_BODY is 
a complex node. It represents a sequence of state-
ments and blocks defining the body of a FOR 
structure. 
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WHILE-DO structure 

A new node named WHILE and representing the 
WHILE-DO structure is created. Two new 
subordinated nodes are automatically created, 
denoted as: (i) Condition and (ii) WHILE_BODY. 
Condition is a text item that defines "pre-while" test 
condition. It is a simple node. WHILE_BODY is a 
complex node. It represents a sequence of statements 
and blocks defining the body of a WHILE-DO 
structure. 

DO-WHILE structure 

A new node named DO_WHILE and representing the 
DO-WHILE structure is created. Two new 
subordinated nodes are automatically created, 
denoted as: (i) DO_WHILE_BODY and (ii) Condition. 
Condition is a text item that defines "post-while" test 
condition. It is a simple node. DO_WHILE_BODY is a 
complex node. It represents a sequence of statements 
and blocks defining the body of a DO-WHILE 
structure. 

IF-THEN-ELSE 
structure 

A new node named IF and representing the IF 
selection structure is created. Three new subordinated 
nodes are automatically created, denoted as: (i) 
Condition, (ii) THEN, and (iii) ELSE, as an optional 
node. Condition is a text item that defines IF test 
condition. It is a simple node. THEN and ELSE are 
complex nodes. They represent sequences of 
statements and blocks defining the main body and the 
alternative body of an IF structure. 

ELSE clause A new node named ELSE in the context of an IF 
selection structure is created, with the same role as it 
would be created initially trough an IF-THEN-ELSE 
structure. 

ELSEIF structure 

A new node named ELSEIF in the context of an IF 
selection structure is created with a usual meaning. 
Three new subordinated nodes are automatically 
created, denoted as: (i) Condition, (ii) THEN, and (iii) 
ELSE, as an optional node. Condition is a text item that 
defines ELSEIF test condition. It is a simple node. THEN 
and ELSE are complex nodes. They represent 
sequences of statements and blocks defining the main 
body and the alternative body of an ELSEIF structure. 
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TRY-CATCH-
FINALLY
structure 

Three complex nodes named TRY, CATCH and FINAL-
LY are automatically created to specify an exception 
handler structure. CATCH and FINALLY nodes are the 
optional ones. They represent sequences of statements 
and blocks defining the exception handler. In the scope 
of CATCH, two new subordinated nodes are 
automatically created, denoted as: (i) Exception and (ii) 
CATCH_BLOCK. Exception is a simple node. It is a text 
item that references a previously declared exception. 
CATCH_BLOCK is a complex node. It represents a 
sequence of statements and blocks aimed to handle a 
raised exception. Multiple nesting of TRY nodes is 
allowed. In the scope of a current TRY node it is possible 
to create many CATCH or FINALLY nodes. 

Statement A new node representing a simple statement is 
created in the context of a block. It is a simple node 
structured as a text item. Currently, there are two 
types of simple statements: assignments and 
expressions. In the future research, we also plan to 
embed SQL statements. 

Declaration Block 

A new declaration block as a sequence of 
declarations and comments is created. The node is 
named DECLARATION. It is a complex node. In its 
context, it is possible to create new declarations of 
types, variables, constants, cursors, exceptions, and 
local functions. 

Declaration 
A new declaration is created in the context of a 
declaration block. A declaration is a simple node. It 
represents a text item that defines particular 
declaration of a type, variable, constant, cursor, 
exception or function inclusion. 

LOCAL_FUNCTION 
declaration 

A new node named LOCAL_FUNCTION is created in 
the scope of a declaration block. It represents a 
declaration of a local function. Three new subordinated 
nodes are automatically created, denoted as: (i) Function 
Name, (ii) ARGUMENTS, and (iii) 
LOCAL_FUNCTION_BODY. Function Name is a simple 
node. It is a text item that defines local function name. 
ARGUMENTS is a complex node. It comprises 
declarations of local function arguments only. LOCAL_-
FUNCTION_BODY is a complex node. It represents a 
whole function body of a local function being declared. 
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Local Function 
Argument 

A new node in the context of an ARGUMENTS node 
in a LOCAL_FUNCTION declaration is created. It is a 
simple node structured as a text item. It represents a 
formal argument of a local function given with the 
name and an association to a domain from the 
repository. 

Comment 
A new node in the context of a block is created. It is a 
simple node structured as a text item. It represents a 
single-line comment. 
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