

Volume 9, Number 3, 2012
Novi Sad

Computer Science and Information Systems

Special Issue on Advances in Computer Languages,
Modeling and Agents

ISSN: 1820-0214

ComSIS Journal is sponsored by:

Ministry of Education, Science and Technological Development of Republic of Serbia -

http://www.mpn.gov.rs/

Polskie Towarzystwo Informatyczne - PTI (Polish Information Processing Society) -
http://www.pti.gda.pl/

http://www.mpn.gov.rs/

Computer Science and
Information Systems

AIMS AND SCOPE

Computer Science and Information Systems (ComSIS) is an international refereed journal, pub-
lished in Serbia. The objective of ComSIS is to communicate important research and development
results in the areas of computer science, software engineering, and information systems.

We publish original papers of lasting value covering both theoretical foundations of computer

science and commercial, industrial, or educational aspects that provide new insights into design

and implementation of software and information systems. ComSIS also welcomes survey papers
that contribute to the understanding of emerging and important fields of computer science.
Regular columns of the journal cover reviews of newly published books, presentations of selected

PhD and master theses, as well as information on forthcoming professional meetings. In addition
to wide-scope regular issues, ComSIS also includes special issues covering specific topics in all
areas of computer science and information systems.

ComSIS publishes invited and regular papers in English. Papers that pass a strict reviewing
procedure are accepted for publishing. ComSIS is published semiannually.

Indexing Information

ComSIS is covered or selected for coverage in the following:

۰ Science Citation Index (also known as SciSearch) and Journal Citation Reports / Science

Edition by Thomson Reuters, with 2011 two-year impact factor 0.625,

۰ Computer Science Bibliography, University of Trier (DBLP),

۰ EMBASE (Elsevier),

۰ Scopus (Elsevier),
۰ Summon (Serials Solutions),

۰ EBSCO bibliographic databases,

۰ IET bibliographic database Inspec,

۰ FIZ Karlsruhe bibliographic database io-port,

۰ Index of Information Systems Journals (Deakin University, Australia),

۰ Directory of Open Access Journals (DOAJ),

۰ Google Scholar,

۰ Journal Bibliometric Report of the Center for Evaluation in Education and Science (CEON/CEES)

in cooperation with the National Library of Serbia, for the Serbian Ministry of Education and
Science,

۰ Serbian Citation Index (SCIndeks),

۰ doiSerbia.

Information for Contributors

The Editors will be pleased to receive contributions from all parts of the world. An electronic
version (MS Word or LaTeX), or three hard-copies of the manuscript written in English, intended
for publication and prepared as described in "Manuscript Requirements" (which may be

downloaded from http://www.comsis.org), along with a cover letter containing the corresponding
author's details should be sent to official Journal e-mail.

Criteria for Acceptance

Criteria for acceptance will be appropriateness to the field of Journal, as described in the Aims
and Scope, taking into account the merit of the content and presentation. The number of pages
of submitted articles is limited to 25 (using the appropriate Word or LaTeX template).

Manuscripts will be refereed in the manner customary with scientific journals before being

accepted for publication.

Copyright and Use Agreement

All authors are requested to sign the "Transfer of Copyright" agreement before the paper may be

published. The copyright transfer covers the exclusive rights to reproduce and distribute the
paper, including reprints, photographic reproductions, microform, electronic form, or any other
reproductions of similar nature and translations. Authors are responsible for obtaining from the
copyright holder permission to reproduce the paper or any part of it, for which copyright exists.

Computer Science and Information Systems

Volume 9, Number 3, Special Issue, September 2012

CONTENTS

Editorial

Regular Papers

983 A Systematic Approach to the Implementation of Attribute

Grammars with Conventional Compiler Construction Tools
Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, José-Luis Sierra

1019 Implementation of EasyTime Formal Semantics using a LISA
Compiler Generator
Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

1045 Using Aspect-Oriented State Machines for Detecting and
Resolving Feature Interactions
Tom Dinkelaker, Mohammed Erradi, Meryeme Ayache

1075 A MOF based Meta-Model and a Concrete DSL Syntax of
IIS*Case PIM Concepts
Milan Čeliković, Ivan Luković, Slavica Aleksić, Vladimir Ivančević

1105 LL Conflict Resolution using the Embedded Left LR Parser

Boštjan Slivnik
1125 Indexing Ordered Trees for (Nonlinear) Tree Pattern

Matching by Pushdown Automata
J. Trávníček, J. Janoušek, B. Melichar

1155 A Programming Language Independent Framework for
Metrics-based Software Evolution and Analysis
Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

1187 High-level Multicore Programming with C++11
Zalán Szűgyi, Márk Török, Norbert Pataki, Tamás Kozsik

1203 Supporting Heterogeneous Agent Mobility with ALAS
Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, Milan Vidaković

1231 Language Engineering for Syntactic Knowledge Transfer
Mihaela Colhon

1249 Implementing an eXAT-based Distributed Monitoring System

Prototype
Gleb Peregud, Julian Zubek, Maria Ganzha, Marcin Paprzycki

1287 Modeling a Holonic Agent based Solution by Petri Nets
Carlos Pascal, Doru Panescu

1307 Information Resource Management in an Agent-based Virtual
Organization — Initial Implementation
Maria Ganzha, Adam Omelczuk, Marcin Paprzycki, Mateusz Wypysiak

1331 Decentralized Management of Building Indoors through
Embedded Software Agents

Giancarlo Fortino, Antonio Guerrieri

ComSIS Vol. 9, No. 3, Special Issue, September 2012 i

EDITORIAL

The interest of authors to publish their contributions in ComSIS Journal is
constantly increasing in recent years. At the same time, there is an evident
interest of conference and workshop organizers to relate their events with
recognized international journals. On the one hand side, we believe that it is a
common trend in a global research community. On the other side, it was an
inspiration for ComSIS editors how to attract contributions of a recognized
quality and also create proper publishing capacities in ComSIS. Facing to the
issue, this year we decided to keep our policy of publishing additional special
issue, apart from two regular ones. The first of them, titled Advances in
Computer Languages, Modeling and Agents, is in front of you.

Editors of this special issue were inspired by several events they organized
during 2011 year in the following, somehow closely related domains:
Advances in Programming Languages; Computer Languages,
Implementations and Tools; Software Technologies for Intelligent
Collaborative Systems; and Applications of Software Agents. These events
included: (i) Workshop on Advances in Programming Languages (WAPL)
organized within the scope of the Federated Conference on Computer
Science and Information Systems (FedCSIS) in Szczecin, Poland; (ii)
Symposium on Computer Languages, Implementations and Tools (SCLIT)
organized within the scope of the International Conference of Numerical
Analysis and Applied Mathematics (ICNAAM) in Kassandra – Halkidiki,
Greece; (iii) Special Session on Software Technologies for Intelligent
Collaborative Systems (STIX) organized within the scope of the International
Conference on System Theory, Control and Computing (ICSTCC) in Sinaia,
Romania; and (iv) Workshop on Applications of Software Agents (WASA)
organized at the University of Novi Sad in Serbia. After an open call to the
prospective authors to submit their papers, we received 54 submissions. After
rigorous reviewing procedure, the same as for regularly submitted papers, we
finally accepted 14 papers presenting both theoretical and practical
contributions in field of Advances in Computer Languages, Modeling and
Agents.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra in
the paper "A Systematic Approach to the Implementation of Attribute
Grammars with Conventional Compiler Construction Tools" present structure-
preserving coding patterns to code arbitrary non-circular attribute grammars
as syntax-directed translation schemes for bottom-up and top-down parser
generation tools. In order to bridge the gap between attribute grammar-based
specifications and final implementations, they propose articulating the

ii ComSIS Vol. 9, No. 3, Special Issue, September 2012

language processor development process as the explicit transformation of the
initial attribute grammar-based specification to the final implementation.

One of often emergent issues in the area of domain specific languages (DSL)
is how to come to a successful implementation of a DSL in some problem
domain. In the paper "Implementation of EasyTime Formal Semantics using a
LISA Compiler Generator" by Iztok Fister Jr., Marjan Mernik, Iztok Fister, and
Dejan Hrnčič, a DSL EasyTime is presented. It enables the controlling of an
agent by writing the events within a database. The EasyTime language is
implemented by a LISA tool that enables the automatic construction of
compilers from language specifications, using Attribute Grammars. Let us
notice that EasyTime was successfully applied for measuring time at the
World Championship for the double ultra triathlon in 2009.

The next paper "Using Aspect-Oriented State Machines for Detecting and
Resolving Feature Interactions", by Tom Dinkelaker, Mohammed Erradi, and
Meryeme Ayache also targets the area of DSL development and
implementation. The authors present an approach to manage feature
interactions. They used a formal model based on the finite state machines
and Aspect-Oriented technology to specify, detect and resolve features
interactions. They also developed a DSL to handle finite state machines using
a pattern matching technique.

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević in the
paper "A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case
PIM Concepts" use a meta modeling approach based on MOF to specify a
meta model and a DSL for creating platform independent models of
information systems. They implemented their meta model in the IIS*Case – a
software tool that provides a model driven approach to information system
design and generating application prototypes.

Boštjan Slivnik in "LL Conflict Resolution using the Embedded Left LR Parser"
starts from the fact that choosing the right parsing method is an important
issue in a design of a modern compiler. He presented a method for resolving
LL(k) conflicts using small LR(k) parsers and also proposed the use of an
embedded left LR(k) parser within an LL(k) parser, instead of a deterministic
finite automation. As it produces the left parse it does not require rescanning
of tokens already scanned or backtracking, and thus guarantees the linear
parsing time for all LR(k) grammars.

Jan Trávníček, Jan Janoušek, and Borivoj Melichar in the paper "Indexing
Ordered Trees for (Nonlinear) Tree Pattern Matching by Pushdown Automata"
address finding occurrences of tree patterns in trees as one of the important
problems with many applications. The authors presented a new kind of acyclic
pushdown automata, the tree pattern pushdown automaton and the nonlinear
tree pattern pushdown automaton, constructed for an ordered tree. These
automata accept all tree patterns and nonlinear tree patterns, respectively,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 iii

which match the tree and represent a full index of the tree for such patterns.
They analyzed timings of their implementation and showed that for a given
tree the running time is linear to the size of the input pattern.

Črt Gerlec, Gordana Rakić, Zoran Budimac and Marjan Heričko in the paper
“A Programming Language Independent Framework For Metrics-Based
Software Evolution And Analysis” provide a framework for evaluating software
metrics and analyzing software structure during software development. The
main contribution of the framework is a programming language independency
based on universal representation of the source code by the enriched
Concrete Syntax Tree (eCST). This universality leads to consistency in
change analysis and quality control during the software evolution. This
characteristic gets additional value today when software projects are complex
and heterogonous consisting of numerous components developed in broad
spectra of languages.

Paper High-level Multi-core Programming with C++11 by Zalan Szugyi, Mark
Torok, Norbert Pataki and Tamas Kozsik proposes extensions of the C++
Standard Template Library based on the features of C++11. These extensions
provide enhancement of the standard library to be more powerful in the field
of the multi-core programming. Approach of the authors is based on functors
and lambda expressions. The contribution of the paper is illustrated by three
case studies.

Developing an agent that can operate in heterogeneous network of multi-
agent systems requires regeneration of the agent’s executable code, as well
as modifications in the way it communicates with the environment. The main
goal of the paper “Supporting Heterogeneous Agent Mobility with ALAS” is
providing an effective solution to the heterogeneous agent mobility problem.
Following this goal a novel agent-oriented programming language, named
ALAS, is proposed. Authors (Dejan Mitrović, Mirjana Ivanović, Zoran Budimac
and Milan Vidaković) provide the design of the ALAS platform and an
experiment to illustrate that an agent written in ALAS is able to work in truly
heterogeneous networks of multi-agent systems.

In the paper “Language Engineering for Syntactic Knowledge Transfer,”
Mihaela Colhon presents an English-Romanian parallel treebank construction
method. The method relies on a bilingual, word-aligned corpus with
morphosyntactic annotations, in order to construct a syntactic annotated
parallel corpus. An important fact is that the presented algorithm is defined at
the abstract level of syntactic components, and is therefore language
independent.

Gleb Peregud, Julian Zubek, Maria Ganzha and Marcin Paprzycki, in
“Implementing an eXAT-based distributed monitoring system prototype,”
introduce a prototype system for monitoring resource consumption in
distributed networks, such as LAN, Grid, and Cloud. A special care is

iv ComSIS Vol. 9, No. 3, Special Issue, September 2012

dedicated to maintaining fault-tolerance of dynamic networks, in which nodes
may “disappear” at any given moment. The prototype is developed in Erlang,
which proved to be a good implementation platform.

In the article “Modeling a Holonic Agent based Solution by Petri Nets,” Carlos
Pascal and Doru Panescu use Petri nets to highlight certain problems in
holonic manufacturing execution systems. Namely, the inadequate resource
allocation and its negative consequence on agent planning are first shown by
Petri net models, and then experimentally proven. The authors consider a
solution based on a staff holon, in charge of conflict detection and resolution.

Next, a prototype system for resource management is proposed by Maria
Ganzha, Adam Omelczuk, Marcin Paprzycki and Mateusz Wypysiak, in the
paper “Information resource management in an agent-based virtual
organization – initial implementation.” Their system operates in virtual
organizations, matching entities in need of information resources with entities
that can provide those resources in an adequate manner. The virtual
organizations themselves are modeled in terms of different roles played by
intelligent agents, with the roles being hierarchical ordered.

Finally, in “Decentralized Management of Building Indoors through Embedded
Software Agents,” Giancarlo Fortino and Antonio Guerrieri deal with
decentralized, agent-based management of smart buildings. The proposed
architecture relies on wireless sensors and actuator networks for monitoring
and control, and can be easily configured with any existing building. Their
system has been tested in computer laboratories used by students, and was
able to detect significant energy waste of idle workstations.

On behalf of the ComSIS Consortium and Editorial Board, let us express our
great thanks to the reviewers and all the authors for their high-quality work
and extraordinary enthusiasm. We are convinced that all of their work
significantly contributes in meeting the high quality standards aiming ComSIS
to a recognized international journal.

Mirjana Ivanović,
Ivan Luković,
Zoran Budimac,
Editors of the special issue

DOI:10.2298/CSIS111223022R

A Systematic Approach to the Implementation of
Attribute Grammars with Conventional Compiler

Construction Tools

Daniel Rodríguez-Cerezo1, Antonio Sarasa-Cabezuelo1, and
José-Luis Sierra1

1 Computer Science School,
Complutense University of Madrid

Calle Profesor José García Santesmases, s/n
28040 Madrid, Spain

{drcerezo, asarasa, jlsierra}@fdi.ucm.es

Abstract. This article describes structure-preserving coding patterns to
code arbitrary non-circular attribute grammars as syntax-directed
translation schemes for bottom-up and top-down parser generation
tools. In these translation schemes, semantic actions are written in
terms of a small repertory of primitive attribution operations. By
providing alternative implementations for these attribution operations, it
is possible to plug in different semantic evaluation strategies in a
seamlessly way (e.g., a demand-driven strategy, or a data-driven one).
The pattern makes possible the direct implementation of attribute
grammar-based specifications with widely-used translation scheme-
driven tools for the development of both bottom-up (e.g. YACC,
BISON, CUP) and top-down (e.g., JavaCC, ANTLR) language
translators. As a consequence, initial translation schemes can be
successively refined to yield final efficient implementations. Since these
implementations still preserve the ability to be extended with new
features described at the attribute grammar level, the advantages from
the point of view of development and maintenance become apparent.

Keywords: Attribute Grammars, Parser Generators, Language
Processor Development Method, Grammarware

1. Introduction

Attribute grammars were introduced by Donald E. Knuth [25] as an extension
of context-free grammars for describing the syntax and semantics of context-
free languages, and are widely used as a high-level specification method for
the first stages of the design and implementation of a computer language
[2][35].

In order to make an attribute grammar-based specification executable, it is
possible to use one of the many specialized tools that support the formalism

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 984

(see, for instance,[12][17][31][33][35]). However, regardless the recognized
advantages of these tools, in practice, traditional implementations of
language processors are rarely based on artifacts directly generated from
attribute grammars. On the contrary, attribute grammars are taken as initial
specifications of the tasks to carry out, while final implementations are
usually achieved by using scanner and parser generators (e.g., ANTLR, CUP,
Flex, Bison…), general-purpose programming languages, or a suitable
combination of the two techniques [2]. The process of transforming the initial
specification into a final implementation is usually ill-defined, and typically
depends solely on the programmer's art –a programmer who many times
discards formal specifications while he or she directly hacks the final
implementation. It seriously hinders the systematic development and
maintenance of language processors.

In order to bridge the gap between attribute grammar-based specifications
and final implementations, we propose articulating the language processor
development process as the explicit transformation of the initial attribute
grammar-based specification to the final implementation. According to our
proposal, the first step to convey during the implementation stage is to
explicitly code the attribute grammar in the input language of the
development tool (usually, a parser generator like Bison, CUP, JavaCC or
ANTLR). This will make it possible to yield an initial running implementation,
which subsequently could be refined to achieve greater efficiency. In
addition, since the refined implementation still supports the explicit
incorporation and subsequent refinement of attribute grammar-based
features, the incremental development and subsequent maintenance of the
language processor can be greatly facilitated. Therefore, it is important to
notice that the rationale of the present work is not to provide new methods to
automatically generate language processors from attribute grammars (in this
case, undoubtedly the best choice would be one of the pre-existing tools
based on attribute grammars). Instead, the rationale is to start from an
attribute grammar specification and then to systematically refine it across
several stages, finishing with a final, highly efficient implementation in a
conventional compiler construction tool -a process which is not the aim of any
typical attribute grammar tool.

This paper is mainly focused on the first step of our proposal, i.e. how to
code an attribute grammar in terms of the input language supported by a
conventional parser generation tool, although we also illustrate some aspects
of the latter refinement. In order to cover the most widely used parser
generation tools, we address both bottom-up parser generators of the YACC
and CUP type and top-down parser generators of the JavaCC or ANTLR
style. Unlike works in L-attributed [28] or LR-attributed grammars [4] and
similar approaches (e.g., [23]), our approach will support the implementation
of arbitrary non-circular attribute grammars. In addition, the coding pattern
will be independent of the final evaluation style chosen. Indeed, attribute
grammars will be coded by using a small repertory of attribution operations.
Finally, by providing alternative implementations for these operations, it will
be possible to set up the semantic evaluation style that will finally be used.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 985

The structure of the rest of the paper is as follows: section 2 introduces
some preliminaries. Section 3 details the dependency description operations
and outlines two alternative implementations, which makes apparent how to
plug in different evaluation styles. Section 4 describes the coding pattern for
bottom-up parser generation tools. Section 5 describes the pattern for top-
down ones. Section 6 presents some work related to ours. Finally, section 7
concludes the paper and outlines some lines of future work. A preliminary
version of this work, which only deals with a former pattern for bottom-up
translation schemes, can be found in [41].

2. Preliminaries

In this section we introduce some basic concepts concerning the two main
language-processing specification tools addressed in this paper: attribute
grammars (subsection 2.1) and translation schemes (subsection 2.2).

2.1. Attribute grammars

The formalism of attribute grammars was initially proposed by Donald E.
Knuth at the end of the 1960s to characterize the semantics of context-free
languages [25]. Attribute grammars introduce a syntax-directed, dependency-
driven language processing style. This processing style is syntax-directed
because the processing of each sentence is driven by its syntactic structure,
and it is dependency-driven because it is directed by the dependencies
among the computations involved. Figure 1 shows an example of an attribute
grammar that models the evaluation of simple arithmetic expressions,
followed by declarations of constants. In the formalized process, declarations
are used to build an environment (a set of variable-value pairs), which is
subsequently used to determine the value of variables. For the sake of
conciseness, only the addition operator is considered.

Attribute grammars extend context-free grammars with semantic attributes
and semantic equations. Indeed, context-free grammars are standard
mechanisms to define the syntax of computer languages. In a context-free
grammar:
- Syntax is defined by means of syntax rules (or productions), which

determine the structure of syntactic constructions in terms of sequences
of simpler constructions. For instance, in Figure 1 Sent::= Exp where
Decs is a syntax rule that describes the top-level structure of the kind of
sentences considered in this example.

- Syntactic constructions are represented by means of syntax symbols:
composite structures by non-terminal symbols and simple structures by
terminal symbols. For instance, in Figure 1 Sent, Exp and Decs are
non-terminal symbols that represent, respectively, sentences,

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 986

expressions and declarations. In turn, where, var or num are terminal
symbols (these symbols represent, respectively, the where reserved
word, variables and numbers in the language considered).

- For each non-terminal there are one or several rules defining its
structure. Each rule is made up of a left-hand side rule (LHS; the non-
terminal whose structure is defined) and of a right-hand side rule (RHS;
the sequence of symbols which define such a structure). For instance, the
previously referred to rule established that a sentence (Sent, the rule’s
LHS) maybe (the rule’s RHS): an expression (Exp), followed by the
where reserved word, and followed by a block of declarations (Dec).

- There is also a distinct non-terminal (the grammar’s initial symbol or the
grammar’s axiom), which represents the language’s highest level
structure. In Figure 1, the grammar’s initial symbol is Sent.

 Sent ::= Exp where Decs

 Exp.env = Decs.env

 Sent.val = Exp.val
Exp ::= Exp + Opnd

 Exp1.env = Exp0.env

 Opnd.env = Exp0.env

 Exp0.val = Exp1.val + Opnd.val
Exp ::= Opnd

 Opnd.env = Exp.env

 Exp.val = Opnd.val
Opnd ::= num

 Opnd.val = toNum(num.lex)

Opnd ::= var

 Opnd.val = valOf(var.lex,Opnd.env)

Opnd ::= (Exp)

 Exp.env = Opnd.env

 Opnd.val = Exp.val
Decs ::= Decs , Dec

 Decs0.env = extendWith(Dec.env,Decs1.env)
Decs ::= Dec

 Decs.env = Dec.env
Dec ::= var = num

 Dec.env = {(var.lex,toNum(num.lex))}

Figure 1. An example of attribute grammar

In a context-free grammar, syntax rules enable the description of the
structure of each language’s sentence in terms of a tree, which is called the
parse tree of the sentence. Inner nodes are non-terminals, while leaves are
terminals. Each parent node, together with its ordered sequence of child
nodes, corresponds to the application of a syntax rule. Finally, the root node
corresponds to the grammar’s axiom. Figure 2a shows an example of
sentence in the language considered in Figure 1, and Figure 2b shows the
parse tree for this sentence. Notice how this tree makes the structure of the
sentence explicit. Thus, subsequent processes can be driven by this
structure.

As indicated before, an attribute grammar adds a set of semantic attributes
to the symbols of an underlying context-free grammar. These attributes will
take values in the corresponding nodes of the parse trees. Attributes can be
of two types:
- Synthesized attributes: their values are computed from synthesized

attributes in the owner node’s child nodes and from the inherited
attributes of this owner node. Thus, the value of a synthesized attribute
represents (part of) the meaning of the symbol(s) to which this attribute is

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 987

associated. In the grammar of Figure 1, synthetized attributes are
terminated with . Thus, val is an example of synthetized attribute in
this grammar, which is used to contain the values of operands (Opnd
non-terminal), expressions (Exp non terminal) and sentences (Sent non-
terminal). In turn, the synthesized attribute env is used to build the
aforementioned environment from declarations. Finally, notice that
terminal symbols can also have synthesized attributes; these synthesized
attributes are called lexical attributes, and they should be set during
lexical analysis. For instance, in the grammar of Figure 1 we use a lexical
attribute, lex, which contains the actual string (the lexeme) of each
token (e.g., for num it will contain the actual number, for var the actual
variable, …).
 (a) x+y+5 where x=5,y=6

(b) Sent

 Exp where Decs

 Exp + Opnd Decs , Dec

Exp + Opnd num Dec var = num

Opnd var var = num

var

Figure 2. (a) A sentence of the language defined by the context-free grammar behind
Figure 1, (b) Parse tree for the sentence in (a)

- Inherited attributes: their values are computed from inherited attributes in
the parent and/or from synthesized attributes in the siblings. Thus,
inherited attributes provide additional contextual information needed to
determine the meanings of the symbols to which they are associated. In
the grammar of Figure 1, we use an env inherited attribute to propagate
the environment to the expression part of the input sentence, since this
information is necessary to correctly determine the value of the constant
appearing in such an expression part.

The attribute grammar will also add a set of semantic equations to each
syntax rule. These equations will indicate how to compute the values of
synthesized attributes in the rule’s LHS, as well as the inherited attributes in
the RHS symbols. More precisely:
- There will be exactly one semantic equation for each synthetized attribute

on the LHS, and another one for each inherited attribute on the RHS.
- Each equation will apply semantic functions to other attributes in the rule.

We will assume that, in the computation expressed by each equation, it

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 988

will only be possible to use inherited attributes from the LHS and
synthesized attributes from the RHS (i.e., we will consider attribute
grammars in Bochmann’s normal form [9]).

 For instance, the semantic equation Exp0.val = Exp1.val +

Opnd.val for the syntax rule Exp ::= Exp + Opnd in the grammar of
Figure 1 establishes that, in order to compute the value of a sum
(Exp0.val)1, it is necessary to add the value of the first operand
(Exp1.val) to the value of the second operand (Opnd.val).

Attribute grammars enable semantic evaluation on attributed parse trees
(i.e., parse trees along with the semantic attributes for each node). Semantic
evaluation is dependency-driven, since it is solely constrained by the
dependencies that exist among these semantic attributes (i.e., to compute the
value of an attribute, the only rule that must be obeyed is to have the values
available of all the other attributes required by this computation according to
a suitable semantic equation). Aside from this basic constraint, evaluation
order does not matter. In consequence, attribute grammars result in a high-
level specification formalism, since it is possible to specify language-
processing tasks by focusing on the meaning of the syntax structures, without
being distracted by lower-level implementation details, like the exact order in
which attribute instances must finally be evaluated. In addition, the formalism
is highly modular: it facilitates the addition of new attributes and semantic
equations without affecting the existing ones, since the dependencies among
attribute instances will be responsible for automatically rearranging the order
in which to carry out the evaluation.

A convenient way of describing dependencies between attributes in an
attributed parse tree is by means of a dependency graph. Nodes in this graph
are the attributes in the symbols on the tree. Each arc denotes that the
source attribute must be used to compute the value of the target one. Figure
3 shows the attributed parse tree and the dependency graph for the sentence
in Figure 2a.

An attribute grammar is non-circular when it is not possible to find an
attribute instance in a parse tree depending (directly or indirectly) on itself.
For the contrary, the grammar is called a circular attribute grammar. Although
semantic evaluation can be extended to manage circular attribute grammars
(see, for instance [19]), for translation purposes non-circular attribute
grammars usually suffice. Therefore, in this paper we will deal with non-
circular attribute grammars. Semantic evaluation in these grammars can be
meaningfully explained as follows [2]:
- First, find a topological order of the nodes in the dependency graph for

the sentence being processed (since the grammar is non-circular, the

1 Notice that, in order to refer to particular occurrences of a non-terminal symbol in

a rule, it is possible to use subscripts: thus, Exp0 refers to the first occurrence of Exp,
Exp1 to the second occurrence, etc.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 989

dependency graph will be acyclical). In this order, each attribute instance
will precede all the attribute instances depending upon it.

- Then, evaluate the attribute instances according to this order:

 Sent val

 env Exp val where Decs env

 env Exp val + env Opnd val Decs env , Dec env

env Exp val + env Opnd val num lex Dec env var lex = num lex

env Opnd val var lex var lex = num lex

 var lex

Figure 3. Attributed parse tree and dependency graph for the sentence in Figure 2a

However, it is only a conceptual execution model. In practice, semantic
evaluation can be carried out by following different strategies which are only
constrained by dependencies among attributes. Also, a particular evaluation
strategy may not require the explicit construction of a parse tree. In fact, for
remarkable subclasses of attribute grammars (many s-attributed grammars,
which only involve synthesized attributes, and some classes of l-attributed
grammars, in which inherited attributes of symbols only depend on the
inherited attributes of their parents and synthesized attributes of their
preceding siblings), it is possible to yield implementations that evaluate the
attributes on-the-fly during parsing of the input sentence, without requiring the
explicit construction of the syntax tree. Notice the grammar in Figure 1 is not
s-attributed (it is needed to propagate the environment to the expression in
order to evaluate it), nor l-attributed (because declarations are placed after
the expression, and constant values are required to compute the value of
such an expression).

2.2. Translation schemes

Translation schemes constitute another formalism that extends context-free
grammar to allow the specification of syntax-directed processing [2]. For this
purpose:
- Translation schemes adopt explicit visit orders for the nodes of the parse

trees. Although many others are possible, two well-known visit orders are
left-to-right bottom-up and top-down ones. In both of them child nodes
are visited from left-to-right. However, in a bottom-up visit, nodes are
visited in post-order, while in a top-down visit are visited in pre-order. In

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 990

addition, in a bottom-up visit order the visit to each node has only one
significant point, once all its children have been visited. On the other
hand, in a top-down one there are many significant points: (i) when the
node is entered the first time, (ii) after a child has been exited and before
the next one is entered, and (iii) when the node itself is exited.

- Translation schemes also adopt explicit ways of storing computed
semantic information. For this purpose, it can be stored in semantic
attributes, as in the case of attribute grammars, but also by using other
means. For instance, typical execution models for bottom-up translation
schemes use stacks for storing semantic information, while typical
execution models for top-down ones assume implementations based on
mutually recursive subprograms and use subprogram parameters and the
runtime stack as a semantic storage mechanism. In addition, both
bottom-up and top-down translation schemes can use global variables to
facilitate some translation tasks.

- These artifacts conceive of the syntax rules as visit plans. For this
purpose, they introduce a semantic reference mechanism to consult and
update semantic information, as well as interleave chunks of code
(semantic actions) at those points of the rule’s RHS corresponding to
significant visit points. Semantic actions will be executed each time the
corresponding significant visit point is reached during the translation
process. In particular, in bottom-up translators it will be possible to place
a semantic action at the end of each syntax rule, while in top-down ones
it will be possible to place semantic actions in any point of the rules’
RHSs. In consequence, the latter will allow more natural translation
patterns than the former. This is particularly true for the managing of
inherited semantic information.

Although, in principle, translation schemes are independent of parser
generation tools, as they can be conceived of as artifacts for processing
parse trees, they are usually used as input specification formalisms for these
tools. The resulting tree processors are then coupled with the parsing
algorithms, and the explicit construction of the parse trees is definitively
avoided. In particular:
- Bottom-up translation schemes are used as input to shift-reduce, LR

parser generation tools of the YACC type (e.g., YACC, Bison, CUP, …).
The resulting parsers use a stack to attach a semantic value to each
syntax symbol, and they can also use global variables to manage
additional semantic information. These tools constrain underlying
context-free grammars to the LR type (usually, LALR(1) grammars) [2],
although there are tools accepting more general grammars (e.g.,30).

- Top-down translation schemes are used as input to predictive descent
parser generation tools of the JavaCC or ANTLR type. Since these tools

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 991

usually generate recursive descent parsers2, semantic information is
managed as parameters and return values of the subprograms
generated, as well as in global variables, and the explicit construction of
the parse tree is also avoided. These tools usually impose stronger
constraints on the underlying context-free grammars: LL grammars.
Although modern generation tools like ANTLR provide many useful
extensions to basic LL(k) grammars (in particular, it supports the so-
called LL(*) parsing method, which provides unbounded look-ahead
enabled by finite-state predictors [37][38]), they are unable to manage
features like left-recursion. However, as indicated before, they enable
more natural mechanisms for dealing with inherited information.

Figure 4a shows an example of a bottom-up translation scheme. The
language processed is the classical language of binary numbers proposed by
Knuth in [25] to illustrate basic concepts in attribute grammars, and the
processing task is to compute the values of the numbers. As in the other
bottom-up translation schemes in this paper, we do not commit to any
particular generation tool, and we do use a YACC-like notation [2] to refer to
semantic values of symbols in the parse stack. Figure 4b shows a top-down,
predictive-recursive translation scheme for this task. The underlying grammar
is changed to LL(1), and the semantic actions are changed in consequence.
Therefore, it will allow its implementation by using any of the mentioned top-
down parser generation tools. As in the case of bottom-up translation
schemes, we will not commit to particular generators. In addition, we will use
 to annotate input parameters and to annotate output ones.
 (b)
Num ::= Num Bit {$$:= $1*2+$2}

Num ::= Bit {$$:= $1}

Bit ::= 0 {$$:=0}

Bit ::= 1 {$$:=1}

N(v) ::= Num(0,v)
Num(cv,v) ::= Bit(vb) RNum(vb,v)

RNum(cv,v) ::= Bit(vb) RNum(cv*2+vb,v)

RNum(cv,v) ::= {v := cv}

Bit(v) ::= 0 {v := 0}

Bit(v) ::= 1 {v := 1}

(a)

Figure 4. (a) An example of bottom-up translation scheme

3. The Attribute Evaluation Framework

Our coding pattern is largely based on the explicit description of the
attribution structure of each grammar rule. For this purpose, we needed to
develop an attribute evaluation framework, to be used in the semantic actions
of the translation schemes. In this section we describe such a framework. For
this purpose:

2 It is also possible to generate non-recursive, table-driven descent parsers [2], but

the mainstream in top-down parser generators is geared to the recursive model.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 992

- Subsection 3.1 describes the set of basic attribution operations used in
the translation schemes. These attribution operations make it possible to
describe, for each syntax rule: (i) the dependencies between attribute
occurrences in the symbols of this rule, and (ii) the functions to be used
in order to compute the value of the attributes. They also make it possible
to build semantic contexts for syntax rules (i.e., tables of references to
attributes), to consult and set the value of individual attributes, and to
control garbage collection.

- Subsection 3.2 introduces semantic function managers as the main
extension points of the framework. Semantic function managers are the
components used to execute semantic functions.

- Finally, subsections 3.3 and 3.4 describe two alternative implementations
of the attribution operations, each based on a different evaluation style (a
demand-driven style in subsection 3.3, and a data-driven one in
subsection 3.4). In the demand-driven evaluation style, the values of
attributes are computed in a lazy way, as they are required. On the other
hand, in the data-driven style, values of attributes are computed in an
eager way, as soon as the values of the attributes on which they depend
become available. These implementations can be interchanged in a
transparent way, without further changes in the translation schemes.

3.1. Attribution Operations

Table 1 outlines the repertory of basic attribution operations along with their
intended meanings. As such a description makes apparent, the purpose of
these operations is to provide the developer with the tools necessary to
describe how the attribute dependency graph associated with a sentence can
be built as this sentence is analyzed by the parser. In addition, it also lets the
developer indicate the semantic functions for computing each attribute
instance. It does not necessarily mean the graph must be fully stored in
memory: depending on the actual implementation of the attribution
operations, it will be possible to optimize, to a greater or lesser extent, the
heap footprint, as the following subsections make apparent.

Table 1. Attribution operations
Operation Intended Meaning

mkCtx(n) It creates and initializes a semantic context: the list of attribute instances for a
syntax symbol.

mkDep (a0, a1) It sets a dependency between two attribute instances. Indeed, it declares that the
attribute instance a0 depends on the attribute instance a1.

inst(a,f) It instruments the attribute instance a by establishing f as the semantic function to
be applied during evaluation (f is actually an integer identifier of such a semantic
function)

release(as) It invokes garbage collection on the attribute instance list as.
release(a) It invokes garbage collection on the attribute instance a
set(a,val) It fixes the value of the attribute instance a to val.
val(a) It retrieves the value of the attribute instance a.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 993

3.2. Semantic Function Managers

Before proceeding with the implementation of the attribution operations, it is
convenient to introduce the concept of semantic function manager. In our
approach, given a particular attribute grammar, the semantic function
manager is an auxiliary component that supports the execution of semantic
functions. Therefore, it is the main extension point of the evaluation
framework, since it makes it possible to tailor it to each particular attribute
grammar.

A semantic function manager can be conceived as a procedure that, taking
the semantic function’s identifier and the sequence of attribute instances as
input, returns the result of applying the function to the attribute instances. It is
important to remark that this component must be provided for each particular
attribute grammar. Nevertheless, in our minimalistic conceptualization, we
will assume this manager has the pre-established name exec. The
implementation of this exec procedure will be changed from coding to
coding3.

As an example, Figure 5 depicts the pseudo-code for a semantic function
manager for the grammar in Figure 1. Notice that, for each equation it is
necessary to: (i) substitute attribute references in the equation’s RHS for
values of the semantic function manager’s attribute arguments (e.g.,
Exp1.val + Opnd.val becomes val(ARGS[0])+ val(ARGS[1]),
and (ii) associate a suitable integer number to the underlying semantic
function (e,g., the ADD constant in Figure 4).

 def IDEN=0; def ADD=1; def TONUM=2; def VALOF=3;
def EXTEND=4; def SINGLEENV=5;

procedure exec(FUN,ARGS) {

case FUN of

 IDEN

 return val(ARGS[0]);

 ADD

 return val(ARGS[0])+ val(ARGS[1]);

 TONUM

 return toNum(val(ARGS[0]));

 VALOF

 return valOf(val(ARGS[0]),val(ARGS[1]));

 SINGLEENV

 return {(val(ARGS[0]), toNum(val(ARGS[1]))) }

 EXTEND

 return extendsWith(val(ARGS[0],val(ARGS[1]))

end case

}

 Figure 5. Semantic function manager for the attribute grammar in Figure 1

3 Although it is possible to achieve more elegant solutions by using a programming language with

minimal higher-order support (e.g., a conventional object-oriented language), our conceptualization
is deliberately maintained as simple as possible to preserve the essence of the evaluation
approaches.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 994

3.3. Demand-Driven Evaluation

According to the demand-driven evaluation style, semantic evaluation starts
once the sentence has been completely parsed (see, for instance [18][29]). At
this point, there is an in-memory representation of the part of the dependency
graph required for performing semantic evaluation. During evaluation, the
values of the attribute instances will be calculated only when they are
required. For the sake of simplicity, we will ignore the detection of potential
circularities in the underlying dependency graphs, although it would not be
difficult to extend the framework to support it.

The first step in setting this implementation is to decide how to represent
semantic attributes. For this purpose, the instances of the semantic attributes
can be conceived as records. Table 2 outlines the fields required together
with their intended purposes. Thus, this representation makes it possible to
build a dependency structure in which:

Table 2. Structure of attribute instances in the demand-driven evaluation framework.

Field Purpose Initial value

value It keeps the value of the instance of the semantic attribute.
available A boolean flag that indicates whether the value is available. false

deps It keeps the links to those attribute instances required to compute the value. The empty
list

semFun It stores the integer code of the semantic function required to compute the
value.

refcount A counter of references to this attribute instance (used to enable garbage
collection).

1

- Each attribute instance points to those attribute instances required to

compute it (in a similar way to the reversed dependency graph used in
[18]).

- In addition, it explicitly stores the identifier of the semantic function to be
used in this computation.
Once this representation is decided, it is possible to proceed with the

coding of the operations themselves. Table 3 outlines it using pseudo-code.
In this pseudo-code, references are intended to work as in Java, although we
do not assume automatic garbage collection (instead, a delete primitive is
explicitly invoked). Indeed, this is why we explicitly include release
attribution operations.

The different operations behave as follows:
- mkCtx collects, in a list, as many fresh attribute instances as needed. This

list actually represents a semantic context for a syntax symbol, since it
gives access to all its semantic attributes.

- mkDep adds the second attribute instance in the deps list of the first one.
- inst stores the semantic function code in the semFun field.
- release, when applied to a list of semantic attribute instances, releases

each instance and de-allocates the list itself.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 995

- On the other hand, when release is applied to an attribute instance, it
decreases its reference count by 1. If this count reaches 0, the instances
on which it depends are released; finally, the original instance itself is de-
allocated.

- set sets the value field and records its availability.
- val recovers the value of an attribute instance as follows: (i) if the value is

available, it returns such a value, (ii) otherwise, it calls the semantic
function manager to compute such a value and sets and returns it.

Table 3. Implementation of the attribution operations to allow a demand-driven
evaluation style

Operation Implementation Operation Implementation

mkCtx(n) as := new list
for i := 1 to n do

 add(as, new attribute)
end for
return as

release(a) a.refcount:= a.refcount-1
if a.refcount = 0 then
 foreach a’ in a.deps do
 release(a’)
 end foreach
 delete a.deps
 delete a

end if

mkDep (a0, a1) add (a0.deps, a1)
a1.refcount := a1.refcount + 1

set(a,val) a.value := val
a.available := true

inst(a,f) a.semFun := f val(a) if a.available then

 set(a,
 exec(a.semFun,a.deps))
 release(a.deps)
end if
return a.value

release(as) foreach a in as do
 release(a)
end foreach
delete as

Thus, the demand-driven evaluation process arises from the interplay of

the val attribution operation and the semantic function manager. Also notice
how explicit garbage collection can be readily interleaved in the
implementation of the attribution operation by appropriately managing the
reference counters and by de-allocating lists and records as soon as they
become unreachable. Although in this evaluation style, most of the
dependency graph remains in memory until parsing is finished, automatic
garbage collection makes it possible to de-allocate useless parts of the graph
when they become unreachable. This can be due to attribute instances that
are not ultimately required in any computation, or to successive evolutions of
the implementation, combining pure attribute grammar features with
implementation-oriented optimizations (e.g., global variables, on-the-fly
evaluation of semantic attributes, …).

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 996

3.4. Data-Driven Evaluation

In the data-driven evaluation style, attribute instances are scheduled to be
evaluated as soon as the values for all the instances on which it depends are
available (see, for instance, [24]). Thus, this method can shorten the duration
of attribute instances. Additionally, it can interleave evaluation with parsing.
These features can be of interest while processing very long sentences, or
sentences made available asynchronously (e.g., on a network communication
channel). However, this method can do useless evaluations on attribute
instances not required to yield the final results.

Table 4 outlines the representation of attribute instances in this case.
Notice that, in addition to the list of instances on which an instance depends,
the reverse relationship needs to be maintained (i.e., each attribute instance
must refer to those instances which depend on it). Indeed, this representation
is similar to that used by networks of observables-observers in the observer
object-oriented pattern [14]4.

Table 4. Structure of attribute instances in the data-driven evaluation framework

Field Purpose Initial
value

value It keeps the value of the instance of the semantic attribute.
available A boolean flag that indicates whether the value is available. false

deps It keeps the links to those attribute instances required to compute the
value.

The empty list

obs It keeps the links to those attribute instances observing it (i.e., which
depend on it to compute their values).

The empty list

required Counter which records the number of attribute instances in deps
whose values have not yet been determined.

0

semFun It stores the integer code of the semantic function required to compute
the value.

instrumented True if semFun was set, false otherwise. false
refcount A counter of references to this attribute instance (used to enable

garbage collection).
1

Table 5 outlines the pseudo-code of the attribution operations whose

implementation differs from those in the demand-driven style. This way, we
only need to redefine mkDep, inst, set and val:
- In addition to updating deps in the first instance, mkDep must test whether

the second instance has already been computed. If it is not available, the
first instance must be added to its obs list, since such an instance depends
on its value, which is not yet available.

- Note inst must take care of whether the value can be computed. Indeed,
if the corresponding attribute instance has all the instances on which it
depends computed, it can thereby be computed. It assumes the

4 As with the demand-driven style, this representation could be simplified by inferring the values of

flags (in this case, available and instrumented) from the other fields. However, we prefer to
explicitly preserve these flags to increase the readability of pseudo-code.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 997

establishment of all the required dependencies before instrumentation,
which is ensured by our coding pattern.

- Set must take care to decrement the required counters in all the
instances depending on the current one. In addition, if a counter reaches 0,
it must force the evaluation of the corresponding instance.

- Finally, val immediately computes the value, unless the instance has not
yet been instrumented.
Notice how, in this case, evaluation can be interleaved with parsing.

Indeed, evaluation is fired when the values of attribute instances are explicitly
set, and also when attributes are instrumented. In consequence, garbage
collection also interplays with parsing, and, therefore, this method can mean
less heap usage. However, this method assumes all the semantic functions
used are strict, in the sense that all their arguments must be evaluated before
they are applied. On the contrary, the demand-driven method described in
the previous subsection also supports non-strict functions, in which the way of
evaluating the arguments can differ from function to function.

Table 5. Implementation of the attribution operations to allow a data-driven
evaluation style (only those implementations differing from Table 3 are presented)

Operation Implementation Operation

mkDep (a0, a1) add (a0.deps, a1)
a1.refcount := a1.refcount + 1
if a1.available then
 add (a1.obs, a0)
 a0.required := a0.required + 1
 a0.refcount := a0.refcount + 1
end if

set(a,val) a.value := val
a.available := true

foreach a’ in a.obs do
 a’.required := a’.required – 1
 if a’.required = 0 then
 val(a’)
 end if
end foreach
release(a.obs)

inst(a,f) a.semFun := f
a.instrumented := true
if a.required = 0 then

 val(a)
end if

val(a) if a.available
 a.instrumented then

 set(a, exec(a.semFun,a.deps))
 a.available := true

 release(a.deps)
end if
return a.value

4. A Coding Pattern for Bottom-up Parser Generation
Tools

In this section we introduce a coding pattern for bottom-up parser generation
tools. In this way:
- In order to keep the translation scheme as independent as possible of

changes in the attribute grammar’s semantic part, we will promote an
intermediary representation of the attribute grammar based on attribution
functions (subsection 4.1). For this purpose, with each rule will be assigned
a function that takes the semantic contexts of the rule’s RHS as arguments
and builds and returns the semantic context for the rule’s LHS. In addition,

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 998

using the basic attribution operations introduced in the previous section,
attribution functions establish dependencies among attributes, associate
semantic functions with attributes as necessary, and control garbage
collection.

- Then, these functions will be used in the actions of the resulting bottom-up
translation scheme (subsection 4.2). More precisely, the semantic action
associated with each rule will invoke the attribution function for this rule
with the suitable set of arguments.

- The analysis of the memory footprint required by the overall method will be
depicted in subsection 4.3 by considering both the demand-driven and the
data-driven evaluation styles.

- Finally, subsection 4.4 briefly illustrates some potential refinements of the
initial implementation. These refinements will be oriented to anticipate the
computation of inherited attributes by using marker non-terminals (i.e., new
non-terminals defined by rules with empty RHS), and to simplify
implementation by means of global variables.

4.1. The attribution functions

The implementation of the attribute grammar using a bottom-up parser
generation tool can be naturally thought of as the bottom-up construction of
the attribute dependency graph for each processed sentence using basic
attribution operations. In this construction, the dependency graph for a
syntactic structure is built by taking the dependency graphs of the
substructures as building components. Thus, the process can be facilitated by
introducing a set of attribution functions, which, for each rule in the grammar,
take cares of this construction. These attribution functions will be used to set
up the semantic actions of the bottom-up translation scheme that feeds the
parser generation tool. Therefore, the set of attribution functions can be
conceived of as the implementation of a sort of abstract version of the
attribute grammar, which subsequently can be attached to a concrete syntax
by using a suitable translation scheme.

Each attribution function takes the semantic contexts of the symbols in the
rule’s RHS as input, and it outputs the semantic context for the LHS non-
terminal using basic attribution operations. In order to do so, it is possible to
apply the following guidelines:
- First at all, we need to create the semantic context for the LHS. This is

done by using an mkCtx operation. We only need to indicate the number
of semantic attributes for the LHS non-terminal.

- Next, we need to describe the dependencies among the attribute
instances. Such dependencies are directly determined by examining the
semantic equations, and they must be stated by using the mkDep
operation.

- Once this has been done, it is necessary to instrument the synthesized
attribute instances in the rule’s LHS, as well as the inherited attribute

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 999

instances of the RHS symbols. Once more, the code is straightforward: an
inst operation for each equation. Notice we need to code the semantic
functions with integer identifiers, which can be interpreted by the semantic
function manager.

- Finally, we need to release the attribute instance lists for the symbols in
the rule’s RHS.
This process can be further facilitated by using a procedure establishing

the corresponding dependencies for each attribute as well as the
instrumentation. This procedure, which will be called eq (since it actually
serves to represent semantic equations), is sketched in Figure 6. Finally,
notice that, although we need to provide an attribution function for each rule
in the grammar, the same function can be shared by several rules. Therefore,
in addition to contributing to more readable translation schemes, attribution
functions also make it possible to reuse common attribution patterns. Indeed,
it is possible to provide attribution functions with additional parameters in
order to increase the reuse degree.

 procedure eq(lhsAtr,rhsAtrs,semFun) {

 foreach rhsAtr in rhsAtrs

 mkDep(lhsAtr,rhsAtr)

 end foreach

 inst(lhsAtr,semFun)

}

 Figure 6. The eq procedure

As an example, Figure 7 depicts the attribution functions for the attribute
grammar in Figure 1. For instance, the addition function codes the
attribution for the rule Exp ::= Exp + Opnd in the grammar of Figure 1 as
follows:
- Since Exp, the rule’s LHS, has two semantic attributes (env and val), we

need to invoke mkCtx with 2 as the number of attributes to be allocated.
- From the first equation, we get Exp1.env depends on Exp0.env. In

addition, the semantic function to be applied is the identity. Therefore, the
equation is coded by eq(Exp1[env], (Exp0[env]),IDEN).

- The other equations are coded in a similar manner. For instance, the
equation Exp0.val = Exp1.val + Opnd.val is coded by
eq(Exp0[val], (Exp1[val],Opnd[val]),ADD). Notice that, for
each equation, it is important to establish the dependencies in the order in
which the attribute references appear in its RHS, and therefore it must be
taken into account in the coding of each equation.

- Finally, we include a release action for each symbol in the rule’s RHS
having semantic attributes.
Concerning the allocation of lexical attribute instances, it must be

performed by the scanner, which will return the corresponding attribute
instance list using a suitable field in the token.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1000

 def env=0; def val=1; def vs=0; def lex=0;
function init(Exp,Decs) {

 Sent := mkCtx(1)

 eq(Sent[vs], (Exp[val]),IDEN)

 eq(Exp[env],(Decs[env]),IDEN)

 release(Exp)

 release(Decs)

 return Sent

}

function addition(Exp1,Opnd){

 Exp0 := mkCtx(2)

 eq(Exp1[env], (Exp0[env]),IDEN)

 eq(Opnd[env], (Exp0[env]),IDEN)

 eq(Exp0[val],

 (Exp1[val],Opnd[val]),ADD)

 release(Exp1)

 release(Opnd)

 return Exp0

 }

function chain(Child) {

 Parent := mkCtx(2)

 eq(Child[env],(Parent[env]),IDEN)

 eq(Parent[val],(Child[val]),IDEN)

 release(Child)

 return Parent

}

function num(num) {

 Opnd := mkCtx(2)

 eq(Opnd[val], (num[lex]),TONUM)

 release(num)

 return Opnd

 }

function var(var) {

 Opnd := mkCtx(2)

 eq(Opnd[val],

 (var[lex],Opnd[env]),VALOF)

 release(var)

 return Opnd

 }

function mutiEnv(Dec,Decs1) {

 Decs0 = mkCtx(1)

 eq(Decs0[env],

 (Dec[env],Decs1[env]),EXTEND)

 release(Dec)

 release(Decs1)

 return Decs0

}

function singleEnv(Dec) {

 Decs = mkCtx(1)

 eq(Decs[env],(Dec[env]),IDEN)

 release(Dec)

 return Decs

}

function entry(var,num) {

 Dec = mkCtx(1)

 eq(Dec[env],

 (var[lex],num[lex]),SINGLEENV)

 release(var)

 release(num)

 return Dec

}

 Figure 7. Attribution functions for the attribute grammar in Figure 1

4.2. The bottom-up translation scheme

In order to finish the coding, it is necessary to provide a suitable translation
scheme. It can be done in a straightforward way, by using the attribution
function that corresponds to each rule. Indeed, for each syntax rule A ::= in
the grammar, we only need to add a rule A::= {$$:= ($)} to the translation
scheme. Here, is the attribution function for A::= , and $ denotes the list
of RHS semantic contexts. This pattern makes further advantages to using
attribution functions apparent, instead of directly coding the semantic
equations in the rule’s actions (like we did in our previous work [41]): the
concrete syntax can be readily changed without changing the attribution
functions (which, as indicated before, are actually the implementation of an
abstract version of the original attribute grammar).

Figure 8 exemplifies the coding pattern by showing the bottom-up
translation scheme that implements the attribute grammar of Figure 1. Coded
in the input language of a tool like YACC, Bison or CUP, and with a suitable
implementation of the attribution functions and the basic attribution
operations, it can be automatically turned onto a running implementation.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1001

 Sent ::= Exp where Decs {$$:= init($1,$3)}

Exp ::= Exp + Opnd {$$:= addition($1,$3)}

Exp ::= Opnd {$$:= chain($1)}

Opnd ::= num {$$:= num($1) }

Opnd ::= var {$$:= var($1) }

Opnd ::= (Exp) {$$:= chain($2) }

Decs ::= Dec, Decs {$$:= multiEnv($1,$3)}

Decs ::= Dec {$$:= singleEnv($1)}

Dec ::= var = num {$$:= entry($1,$3)}

Figure 8. Bottom-up translation scheme for the attribute grammar in Figure 1

4.3. Analysis of the method

The efficiency of the language processor generated will be manifested in the
memory footprint of the recognition and evaluation process, which will in turn
depend on the evaluation strategy used and on the kind of the initial attribute
grammar:
- If the implementation uses the demand-driven evaluation style, it will incur

in the highest amount of auxiliary memory required by the method. Indeed,
the memory usage will be rather independent of the kind of the grammar,
and proportional to the length of the input sentences. Indeed, the
dependency graph will be almost entirely built before evaluation is
initiated, and the process will be divided into two well differentiated phases:
(i) a first one in which the input sentence is recognized and the
dependency graph is built, and (ii) a second one in which the attribute
values are computed.

- If the implementation uses the data-driven evaluation style, the
performance will be optimal for s-attributed grammars. Indeed, the values
of the attributes will be computed as soon as they are instrumented, and
the amount of additional memory required for semantic evaluation will
remain constant. However, in the presence of inherited information, the
evaluation will be delayed until this information is injected into the process.
The worst case happens when the overall evaluation process depends on
inherited information to be set up in the grammar’s initial symbol. In this
case, most of the dependency graph must be built before initiating
evaluation, and thus the method becomes equivalent to using a demand-
driven strategy.
This analysis does not mean the method does not provide good (even

nearly optimal) solutions for non s-attributed attribute grammars, since
inheritance is not required to be global. For instance, for grammars like that
of the example, the method, in combination with a data-driven evaluation
style, yields not only nearly optimal, but also elegant implementations.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1002

4.4. Refinements

Once the initial coding is available, the initial implementation can be
systematically refined in an efficient implementation by using well-known
techniques for dealing with inherited information during bottom-up parsing. In
particular:

(b)

(a)
Sent ::= Mo Exp where Decs {$$:= init($1,$2,$4) }

Mo ::= {$$:= mkEnv() }

Exp ::= Exp + Opnd {$$:= addition($1,$3)}

Exp ::= Opnd {$$:= chain($1)}

Opnd ::= num {$$:= num($1) }

Opnd ::= var {$$:= var($1,$0) }

Opnd ::= (M1 Exp) {$$:= chain($3) }

M1 ::= {$$ = $-1}

Decs ::= Dec, Decs {$$:= multiEnv($1,$3)}

Decs ::= Dec {$$:= singleEnv($1)}

Dec ::= var = num {$$:= entry($1,$3)}

…
function mkEnv() {

 return mkCtx(1)

}

...

function init(ExpEnv,Exp,Decs) {

 Sent := mkCtx(1)

 eq(Sent[vs], (Exp[val]),IDEN)

 eq(Exp ExpEnv[env],(Decs[env]),IDEN)

 release(ExpEnv)

 release(Exp)

 release(Decs)

 return Sent

}

...

function addition(Exp1,Opnd){

 Exp0 := mkCtx(2 1)

 eq(Exp1[env], (Exp0[env]),IDEN)

 eq(Opnd[env], (Exp1[env]),IDEN)

 eq(Exp0[val],

 (Exp1[val],Opnd[val]),ADD)

 release(Exp1)

 release(Opnd)

 return Exp0

 }

...

function var(var, Env) {

 Opnd := mkCtx(2 1)

 eq(Opnd[val],

 (var[lex],Opnd Env[env]),VALOF)

 release(var)

 return Opnd

 }

...

Figure 9. (a) Refinement of the translation scheme in Figure 8 by means of marker
non-terminals; (b) modification of some attribution functions and the addition of a
new one (erased code appears in strikethrough light-gray text, and new added coded
appears shaded)

- Use of marker non-terminals (i.e., new non-terminal symbols defined by
empty rules [2]) to mark the beginning of left spines (i.e., chains of
elements generated by left-recursion). These non-terminals can store
inherited attributes to which can be accessed from any point of the left
spines without requiring explicit propagation. Using this technique, it is
possible to deal with many l-attributed grammars with bounded memory
footprint. The technique can be applied to the implementation exemplified
before, yielding the translation scheme of Figure 9a. In this refinement it is
possible to eliminate the inherited environment, since it can be remotely
stored in the marker symbol Mo and referred from the marker symbol M1.
In addition, the marker contexts can be passed on as an additional
argument to the var attribution function. In Figure 9b we show the new
attribution function mkEnv and how the old attribution functions init,

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1003

addition and var must be modified to fit in the new refinement. The
other attribution functions can be modified in an analogous way, and
therefore they will be omitted here.

- Use of global state. In order to integrate this global state in the evaluation
machinery, it is possible to create views of this state as semantic
attributes. The technique can be illustrated with the example discussed
above, since the environment can be completely managed as a global
variable. Thus, all the machinery concerning propagation of environments
can be completely eliminated. Figure 10a shows the resulting translation
scheme. Notice how the environment is managed as a global variable, and
is also exposed as a globally accessible semantic attribute. With the
exception of init (see Figure 10b), the attribution functions coincide with
those used in the refinement sketched in Figure 9

(b)

(a) global env =
global aenv = mkCtx(1)

procedure addEntry(env,Var,Num) {

 env := extendWith({(val(var[lex]),

 toNum(val(Num[lex])))},env)

}

Sent ::= Exp where Decs {set(aenv[env],env); $$:= init($1); release(aenv); }

Exp ::= Exp + Opnd {$$:= addition($1,$3)}

Exp ::= Opnd {$$:= chain($1)}

Opnd ::= num {$$:= num($1) }

Opnd ::= var {$$:= var($1,aenv) }

Opnd ::= (Exp) {$$:= chain($2) }

Decs ::= Dec, Decs {}

Decs ::= Dec {}

Dec ::= var = num {addEntry(env,$1,$3)}

function init(Exp) {

 Sent := mkCtx(1)

 eq(Sent[vs], (Exp[val]),IDEN)

 release(Exp)

 return Sent

}

Figure 10. (a) Use of a global environment to simplify the translation scheme in
Figure 8; (b) the init attribution function in this refinement.

5. A Coding Pattern for Top-Down Parser Generation
Tools

This section describes the coding pattern for top-down parser generation
tools. For this purpose, it follows a similar structure to that of the previous
one:
- Subsection 5.1 describes the structure of attribution functions in this

pattern. In one sense, these attribution functions arose by reversing the
bottom-up ones. Now, each attribution function takes the semantic context

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1004

of the LHS as argument, and it builds and returns the semantic contexts for
each symbol in the RHS. As in the bottom-up cases, they also use the
basic attribution operations to set up all the attribute evaluation machinery.

- Subsection 5.2 describes the general guidelines to code the translation
scheme. As in the bottom-up case, it is carried out by placing attribution
functions at strategic points in the syntax rules.

- Subsection 5.3 describes how to deal with underlying non-LL grammars.
Indeed, bottom-up parser generation tools usually deal with predictive
grammars of the LL-type, in which it is possible to determine which rule to
expand by using a finite amount of input look-ahead. However, some
grammatical features (e.g., left-recursion, common left-factors) destroy this
capability to predict the rule to be applied. Fortunately, many of these
grammars can be systematically transformed to forms suitable for top-
down parsing. These transformations must be accompanied by the
transformation of the semantic part, however. Thus, we researched how to
perform these transformations for the case of our encoding scheme.

- As in the bottom-up case, subsection 5.4 briefly analyzes the method, and
subsection 5.5 describes some subsequent refinements (the most
prominent one deals with the systematic replacement of recursion by
iteration in the resulting translation schemes).

5.1. The attribution functions

Although it is possible to undertake implementation by thinking of the bottom-
up construction of the attribute dependency graph, as in the bottom-up case,
it is possible to obtain more advantages if we think of the top-down
construction of this graph. In particular, it will facilitate the propagation of
inherited information during parsing.

 function addition(Exp0){
 Exp1 := mkCtx(2)

 Opnd := mkCtx(2)

 eq(Exp1[env], (Exp0[env]),IDEN)

 eq(Opnd[env], (Exp0[env]),IDEN)

 eq(Exp0[val],

 (Exp1[val],Opnd[val]),ADD)

 release(Exp0)

 return (Exp1,Opnd)

 }

 Figure 11. Top-down geared version of the attribution function addition

To enable the top-down construction of the dependency graph, we need to
reverse the flow of semantic contexts in the attribution functions. Now, these
functions will take the LHS context as input and it will return the RHS
contexts as output. Thus, a typical attribution function begins by creating the
RHSs contexts. Then it establishes the dependencies between attributes and
instruments the attributes as in the bottom-up case. Finally, it releases the
LHS context. Figure 11 exemplifies it by showing the top-down geared

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1005

version of the addition attribution function. The other attribution functions
can be adapted in a similar way, and therefore they will be not detailed here.

5.2. The top-down translation scheme

As in the bottom-up case, the coding of the translation scheme is carried out
in terms of the attribution functions. In addition, due to the inversion of the
flow of semantic contexts in the attribution functions, it is necessary to
connect the terminal contexts created in these functions to the contexts
created by the scanner. This can be done by using the conn procedure
sketched in Figure 12 (the name is an abbreviation for connect).

Figure 12. Procedure for connecting terminal contexts.

Thus, for each syntax rule A::=X0 .. Xn in the grammar, we need to add a
rule A(ctxA)::={(ctx0,…,ctxn):=(ctxA) } I0 … In where: (i) is the rule’s
attribution function, (ii) (ctx0,…,ctxn) collects the RHS contexts (this
assignment is optional; it can be omitted if the attribution function does not
return any context), and (iii) each Ii is Xi(ctxi) if Xi is a non-terminal, Xi(lexctxi)
{conn(ctxi,lexctxi)} if it is a terminal with semantic charge, or Xi if it is a
terminal without semantic charge (a keyword, a punctuation symbol, etc.).
These guidelines are illustrated in Figure 13, which shows the top-down
translation scheme for the grammar in Figure 1.
 Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)

Exp(co) ::= {(c1,c2) := addition(co)} Exp(c1) + Opnd(c2)

Exp(co) ::= {c1 := chain(co)} Opnd(c1)

Opnd(co) ::= {c1 := num(co) } num(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := var(co) } var(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := chain(co) } (Exp(c1))

Decs(co) ::= {(c1,c2) := multiEnv(co)} Dec(c1) , Decs(c2)

Decs(co) ::= {c1 := singleEnv(co)} Dec(c1)

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}

Figure 13. Top-down translation scheme for the attribute grammar in Figure 1
(warning: this translation scheme is not yet implementable with a top-down parser
generator!)

Unfortunately, since top-down translators usually require LL underlying
context-free grammars, translation schemes obtained according to the stated
guidelines can require further transformation before allowing their
implementation during parsing. In particular, the context-free grammar of the
translation scheme in Figure 1 exhibits left-recursion, which make this coding

procedure conn(termCtx,lexCtx) {

 eq(termCtx[lex],(lexCtx[lex]),IDEN)

 release(termCtx); release(lexCtx)

}

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1006

unsuitable for top-down parser generation. Next subsection deals with this
problem.

5.3. Factoring and immediate left-recursion elimination

In many cases the problematic top-down translation schemes and the
associated attribution functions can be systematically tuned by applying
similar patterns to the well-known factoring and left-recursion elimination
transformations presented in any compiler construction textbook [2]. In
particular:
- Figure 14a sketches a transformation pattern for removing common factors

in a rule-set. Notice this transformation supposes the explicit construction
of the common factor’s semantic context. It will be carried out by a context-
construction function (denoted by mkCtx in Figure 14a). In addition, it is
necessary to keep this context alive, regardless whether it will be released
in the common factor. For this purpose, we need to create another twin
context (cp in Figure 14a), and to connect it to the actual common factor’s
semantic context. This connection is achieved with a context connection
procedure, denoted by conn in Figure 14a. Finally, it will require explicitly
modifying the attribution functions for each rule affected. The modified
attribution functions (denoted by ’i in Figure 14a) do not need to create the
semantic context for the common factor; instead, they will take it as a
parameter.

- Figure 14b shows a transformation pattern for removing immediate left-
recursion. The pattern requires the explicit construction of the context for
the recursive non-terminal, which is achieved by using a context-
construction function (mkCtxA in Figure 14b). As usual, the chain
generated by left-recursion in the original grammar is generated by using
right-recursion in the transformed one. Each stage of this right-recursive
process can be associated with a stage in the bottom-up construction of
the parse tree in the original grammar. Therefore, it is possible to take the
context associated to the root of the already constructed sub-tree as input,
and then to modify the corresponding attribution function to take this as an
additional argument instead of creating it (the modified functions are noted
’i in Figure 14b, and they must take care of releasing the semantic
context once they are not necessary). In addition, it is necessary to provide
a context connection procedure for performing the connection between the
input and the last context created once the right-recursion is finished (it is
denoted by connA in Figure 14b).
Figure 15 illustrates the application of these patterns to the translation

scheme of Figure 13. The grammar of the transformed scheme is LL(1) and,
therefore, suitable for its implementation in any of the top-down parser
generation tools mentioned.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1007

A(clhs) ::= {(c,co) := 0(clhs)}(c)o(co)

A(clhs) ::= {(c,c1) := 1(clhs)} (c)1(c1)
…

A(clhs) ::= {(c,cn) := n(clhs)} (c)n(cn)

A(clhs) ::= {c := mkCtx(); cp := mkCtx();

 conn(cp, c) }(c)RA(clhs,cp)

RA(clhs,c) ::= {co := ’0(clhs,c)} o(co)

RA(clhs,c) ::= {c1 := ’1(clhs,c)} 1(c1)
...

RA(clhs,c) ::= {cn := ’n(clhs,c)} n(cn)

A(clhs) ::= {(cA,co) := 0(clhs)} A(cA)o(co)
…

A(clhs) ::= {(cA,cn) := n(clhs)} A(cA)n(cn)

A(clhs) ::= {co := 0(clhs)}0(co)
…

A(clhs) ::= {cm := m(clhs)} m(cm)

A(iclhs) ::= {clhs := mkCtxA();co := 0(clhs)}0(co)RA(iclhs,clhs)
…

A(iclhs) ::= {clhs := mkCtxA();cm := m(clhs)}m(cm)RA(iclhs,clhs)

RA(iclhs, cA) ::= {clhs := mkCtxA();co := ’0(clhs, cA)}

o(co)RA(iclhs,clhs)
...

RA(iclhs, cA) ::= {clhs := mkCtxA();cn := ’n(clhs, cA)}

n(cn)RA(iclhs,clhs)

RA(iclhs, cA) ::= {connA(iclhs, cA)}

(a) (b)

Figure 14. (a) Factoring pattern; (b) Immediate left-recursion elimination pattern

 function mkCtxExp() {return mkCtx(2)}

function mkCtxDec() {return mkCtx(1)}

procedure connExp(ic,c) {eq(c[env],(ic[env),IDEN); eq(ic[val],(c[val]),IDEN) }

procedure connDecs(cp,c) {eq(cp[env],(c[env),IDEN);}

Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)

Exp(ic) ::= {co := mkCtxExp(); c1 := opnd(co)} Opnd(c1) RExp(ic,co)

RExp(ic, c1) ::= {co := mkCtxExp(); c2 := addition(co,c1)} + Opnd(c2) RExp(ic,co)

RExp(ic, co) ::= {connExp(ic,co)}

Opnd(co) ::= {c1 := num(co) } num(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := var(co) } var(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := chain(co) } (Exp(c1))

Decs(co) ::= {c1 := mkCtxDec(); c1p := mkCtxDec(); connDecs(c1p,c1) }
 Dec(c1) RDecs(co,c1p)

RDecs(co, c1) ::= {c2 := multiEnv(co,c1)} , Decs(c2)

RDecs(co, c1) ::= {singleEnv(co,c1)}

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}

Figure 15. Result of eliminating common factors and immediate left-recursion in the
top-down translation scheme of Figure 13 (the transformed parts are shadowed) in
order to obtain an artifact implementable with a top-down parser generator.

5.4. Analysis of the method

As in the bottom-up case, the use of a demand-driven evaluation style will
imply explicitly constructing dependency graphs, and therefore the highest
memory overhead. As in bottom-up implementations, it can be alleviated by
using data-driven evaluation. In this case, the method will incur in the lowest
auxiliary evaluation memory overhead for l-attributed grammars. Indeed, for
these grammars, data-driven evaluation will yield a behavior equivalent to a
one-pass, on-the-fly translation process.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1008

Finally, since the initial coding encourages the explicit coding of the plain,
BNF grammar, the resulting translators will be highly recursive, which should
be taken into account if the final implementation language does not support
tail recursion optimization. Fortunately, as will be indicated in the next
section, by using EBNF notation in the underlying context-free grammars, it
will be possible to easily turn many right-recursions into iteration.

5.5. Refinements

As in the bottom-up case, it is possible to use global state to simplify the
propagation of context. Nevertheless, due to the nature of top-down
translators, this refinement is less critical from a performance perspective.
Concerning the use of marker non-terminals, it is nonsense in this scenario.

However, as indicated in the previous subsection, an interesting
refinement would be to exploit the support of EBNF notation provided by
typical predictive recursive parser generation tools in order to overcome the
potential stack overflow problem associated with the recursive
implementation of genuinely iterative processes5. Indeed, it is equivalent to
performing a tail-recursion optimization process by hand6.

In addition, it is possible to carry out several simplifications oriented to
minimizing the use of temporary variables (e.g., by passing complex
expressions as parameters to non-terminal symbols).

 Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)

Exp(ico) ::= {co := mkCtxExp()} Opnd(chain(co)) RExp(ico,co)

RExp(ic, c1) ::= ({co := mkCtxExp()} + Opnd(addition(co,c1)) {c1:=co})*
 {connExp(ic,c1)}

Opnd(co) ::= num(lc1) {conn(num(co),lc1)}

Opnd(co) ::= var(lc1) {conn(var(co),lc1)}

Opnd(co) ::= (Exp(chain(co)))

Decs(co) ::= {c1 := mkCtxDec(); c1p := mkCtxDec(); connDecs(c1p,c1) }
 Dec(c1) RDecs(co,c1p)

RDecs(co, c1) ::= ({co := multiEnv(co,c1)} ,
 {c2 := mkCtxDec(); c1 := mkCtxDec(); connDecs(c1,c2) }

 Dec(c2))* {singleEnv(co,c1)}

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}

Figure 16. Refinement of the translation scheme in Figure 15

Figure 16 exemplifies the result of applying these refinements on the
translation scheme of Figure 15. The resulting scheme can be readily
implemented on any typical recursive predictive parser generation tool (e.g.,
JavaCC or ANTLR), or directly by hand in a general-purpose programming
language. As this example makes apparent, after applying this refinement,

5 Notice this problem does not affect bottom-up parsers, provided sequences are

represented by means of left-recursion.
6 Indeed, it could be possible to directly formulate the immediate left-recursion

elimination pattern in iterative terms.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1009

recursion will only be used to express nesting (in the example, it is due to the
use of parenthesis in expressions), which constitutes the most natural use of
this grammar feature.

6. Related Work

As indicated in the introduction, the standard way of implementing an
attribute grammar is to use one of the tools that directly supports the
formalism. Indeed, as [35] makes apparent, since its invention by Knuth at
the end of the sixties of the past century, the computer language community
has proposed many of these tools, starting with classical systems like GAG
[22], FNC-2 [20], ELI [15] or Elegant [7], and ending with recent proposals like
LISA [17][31][33], Silver [51] or JastAdd [29]. These tools take attribute
grammars as input, and generate operative language processors as output. In
addition, they support metalanguages by adding many extensions to the
basic formalism (e.g., modules [21], generics [42], higher-order [48], object
[16] and aspect orientation [39][40], etc.), which facilitate the production and
maintenance of complex specifications.

Attribute grammar-based systems as the abovementioned promote
orchestrating the development entirely in terms of attribute grammars, and, in
particular, in terms of the metalanguages supported. On the contrary, the
goal of our approach is not to provide yet another attribute grammar system,
but to propose systematic ways of integrating attribute grammars in
conventional language implementation processes, by using conventional
parser generation tools. In this way, in our approach attribute grammars are
used at the initial stages of the development process, as a formal
specification tool. In addition, our work promotes an initial design-preserving
coding in a conventional parser generation tool, in the form of a suitable
translation scheme. Beyond this point, the development process proceeds
through several refinements, making use of the parser generation tool
facilities and the tool’s target implementation language.

In consequence, our approach promotes straightforward coding patterns,
which can be applied by hand to get initial codings, and which make it
possible to identify the different pieces of the original attribute grammar in
these codings. On the other hand, the code generated by an attribute
grammar-based tool is usually a highly optimized artifact, usually generated
following a static approach in which evaluation and storage strategies are
determined as the result of a static analysis of the input grammar [1], and
which is not intended to be inspected and modified by humans.

In addition, our approach is oriented to converge with conventional
development processes. Because of it, on one hand we encourage the use of
semantic evaluation methods that can be easily coupled with parsing. This is
not necessarily true for attribute grammar-based tools, many of which
promote final implementations that operate on (concrete or abstract) syntax
trees. Of course the patterns described in this paper could be automated in

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1010

the form of attribute-grammar based tools. Indeed, tools for the processing of
XML based on attribute grammars like those described in [43] are inspired by
these patterns (in particular, these tools use the data-driven evaluation
strategy to make the stream-oriented, asynchronous, processing of very wide
XML documents possible). These tools could be used as a sort of CASE
support during the development process model promoted in this paper, which
in turn could imply the provision of some roundtrip support (see the future
work description in the next section).

The coupling of attribute evaluation and parsing has been extensively
addressed as a way of implementing restricted classes of attribute grammars
(see, for instance, [3] for a tutorial introduction). The works in [2][3] show how
l-attributed grammars with underlying LL grammars can be implemented
during top-down predictive descent parsing. In addition, different classes of
LR-attributed grammars have been identified, which allow semantic
evaluation to be implemented using straightforward extensions of LR parsers
[4]. In the marriage of attribute grammars and logic programming, the class
of logical one-pass logical attribute grammars shows how some kinds of right
dependencies can also be managed during conventional top-down parsing
[34][36]. Contrary to the work presented in this paper, all these approaches
constrain the classes of allowed grammars to strict subclasses of non-circular
attribute grammars. In contrast, our approach is able to deal with arbitrary
non-circular attribute grammars. If the grammars are of certain types (e.g., l-
attributed grammars with an LL(1) underlying context-free grammar), and a
suitable semantic evaluation approach is used (e.g., a data-driven strategy),
our implementations produce artifacts comparable in performance and
memory footprint to those promoted by the abovementioned works. In other
cases, the approach is still able to produce running implementations, which
can adapt the memory footprint to that required for performing semantic
evaluation.

The development of some attribute grammar-based systems has exploited
the marriage between attribute grammars and parser generation tools. A
common strategy is to build a preprocessor by translating an attribute
grammar-based specification language into a running implementation written
in terms of a parser generator. In [23] one of these systems is described,
which takes an attribute grammar-like specification as input, and it turns it
into a YACC implementation. However, since the resulting implementation
evaluates attributes during parsing, the class of supported grammars is
restricted to a subset of the LR-attributed ones. The Ox system [8] follows a
similar approach, but it supports arbitrary non-circular attribute grammars.
For this purpose, the processors generated decouple parsing and semantic
evaluation by using an optimized implementation of the processing models
behind attribute grammars (i.e., to build the parse tree, to arrange attribute
instances in topological order, and then to perform evaluation according to
this order). XLOP [43], a system developed by us to describe XML processing
tasks as attribute grammars, also translates attribute grammar specifications
into inputs to a parser generation tool (in this case, CUP). RIE [44], a system
that supports a very general class of LR-attributed grammars (ECLR-

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1011

attributed grammars [4]) adopts a different implementation approach, by
basing the metagenerator on an explicit modification of the Bison parser
generation tool. Regardless of the implementation strategy followed (in these
examples, based on preprocessors for / extensions to parser generation
tools), they ultimately fall in the category of attribute grammar-based tools.
Therefore, the general considerations made above concerning the
relationships between our approach and attribute grammar – based tools also
applies here.

Concerning parser generators, there is a plethora of systems available that
can be used during the development of a language processor. A basic feature
differentiating them is whether they generate top-down parsers (e.g., the
aforementioned tools JavaCC [26] and ANTLR [38], as well as classic tools
like COCO/R [32]), or bottom-up ones (e.g., the aformentioned YACC
[45],Bison [27] and CUP [5], as well as tools like Tatoo [11], SableCC [13],
Beaver7, Copper [49] or YaJco8). Also, these tools differ in the class of
grammars allowed (e.g., JavaCC supports LL(k) grammars, while ANTLR
supports the aforementioned LL(*) parsing method, able to deal with
unbounded look-ahead; additionally tools like Elkhound [30], SDF [10] or,
under certain settings, Bison, provide support to arbitrary context-free
grammars via the GLR parsing method [46]), by the expressiveness of its
specification language (e.g., ANTLR or Tatoo support very sophisticated
features, like grammar modularization, rule inheritance, etc.), by whether they
include support for lexical specification (e.g., JavaCC, ANTLR) or whether it
must be made by using a separating tool (e.g., CUP), and by many other
features whose detailed analysis is beyond the scope of the present work. As
was indicated, the patterns presented in this paper are applicable to most of
these parser generators (in particular in those tools that support deterministic
grammars; in tools like SDF, whose outcome is parse forests that must be
subsequently disambiguated, the applicability of these patterns vanishes).
Also, it is important to notice that, while many of these parser generation
tools support the concept of semantic attribute, like attribute grammars (e.g.,
this terminology is explicitly included in ANTLR), it does not mean that these
tools give direct support for attribute grammars. Indeed, in addition to
managing semantic attributes, the essential aspect of attribute grammars is
the support for a dependency-driven execution style: semantic evaluation is
not necessarily coupled with parsing, but emerges as a consequence of the
dependencies among attributes. In this way, the patterns introduced in this
work make it possible to incorporate this computation style into specifications
for parser generation tools, and, in consequence, to facilitate the subsequent
refinement into more efficient implementations.

 Finally, as the implementations of our attribution operations make
apparent, we avoid the explicit construction of the parse tree. While this
construction is necessary in order to support more sophisticated evaluation

7 http://beaver.sourceforge.net/
8 http://code.google.com/p/yajco/

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1012

strategies (see, for instance [1]), our simple coding patterns make it
unnecessary, since it is centered directly on the construction of dependency
graph-like structures. A similar technique is followed in [6], an implementation
of circular attribute grammars in Prolog whose semantic equations are
described by using -expressions. The execution model of the resulting
artifact works in two stages: (i) construction of -expressions for the root’s
synthetized attributes, and (ii) interpretation of these expressions according to
a least fixpoint semantics to yield the final values. Thus, the resulting
approach resembles our demand-driven implementation. In [50], Prolog is
also used to implement attribute grammars, and two evaluation strategies are
proposed. The first one supposes building terms representing semantic
expressions for the root’s synthetized attributes, which are subsequently
interpreted with a separate interpreter. The second one promotes the use of
Prolog co-routine facilities to delay evaluation of arguments until they are
instantiated. Thus, the first strategy is analogous to our demand-driven
implementation (nevertheless, our implementation is optimized to avoid
duplicated evaluations; see [47] for a similar implementation in Prolog that
also avoids redundant evaluations). The second one is a Prolog
implementation of a data-driven strategy.

7. Conclusions and future work

This paper has shown how to systematically code arbitrary non-circular
attribute grammars in the input languages of bottom-up, LALR(1) parser
generation tools like YACC, BISON or CUP, as well as top-down, LL parser
generation tools like JavaCC or ANTLR. It is done by using a small set of
attribution operations. These operations, in turn, can be implemented in
different ways in order to enable different semantic evaluation styles. In
particular, this paper has illustrated two alternative implementations: one
supporting a demand-driven style, and another supporting a data-driven one.
The results of this work can be useful to promote a systematic method of
using conventional parser generation tools to yield final implementations.
This method starts with the initial coding of an attribute grammar-based
specification, and then it evolves it in a final implementation by applying
systematic implementation patterns and techniques. Thus, by applying and
documenting systematic refinements, it is possible, on one hand, to yield
efficient implementations and, on the other hand, to track the refinement
chain from these final implementations to the original attribute grammar-
based specifications. Besides, the method facilitates the incremental
introduction of new language features, since they can be described according
to attribute grammar conventions, then readily coded in the implementation,
and finally optimized according to implementation-dependent criteria.
Therefore, the method transports the attribute grammar amenability to doing
modular and extensible specifications incrementally to an implementation
process based on parser generation tools.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1013

Currently we have successfully tested our method with several small
examples, and we are applying it to the development of a non-trivial
translator for a Pascal-like language. From these experiences, we have
realized how the encoding patterns are simple enough to being applied
without specific tooling support (although, of course, this support could be a
very valuable facility in our methodology). Also, we have gained further
evidence on the feasibility and usefulness of our method with its application
in an introductory compiler construction course during the first period of the
2011-2012 academic year at the Complutense University. Indeed, we
proposed that our students produce initial implementations of language
processors by taking attribute grammar specifications as a guide, and using
the method described in this paper. We observed that they didn’t find it more
difficult to apply than students of previous courses found while hand-coding
conventional recursive descent translators. In addition, the quality of the final
programs was substantially better than in previous years, since the method
encouraged rigorous adherence to the original specification. Thus, we plan to
further apply it as a systematic learning method in future editions of the
course. Also, as future work, we plan to provide the aforementioned tooling
support in order to facilitate the application of the method: automatic
application of the coding patterns to produce the initial translation schemes,
support for some of the transformations and refinements described in this
paper, roundtrip support and support for tracking successive refinements, and
support for profiling and debugging the semantic evaluation processes.

Acknowledgements. Thanks are due to project grants TIN2010-21288-C02-01 and
Santander-UCM GR 42/10, group reference 962022. Also, Daniel Rodriguez-
Cerezo was supported by the Spanish University Teacher Training Program
(EDU/3445/2011).

References

1. Ablas, H. Attribute Evaluation Methods. In Ablas, H., Melichar, B (eds.).:
Attribute Grammars, Applications and Systems, Lecture Notes in Computer
Science Vol. 545, Springer, 48-113. (1991)

2. Aho A.V, Lam M.S, Sethi R, Ullman J.D.: Compilers: principles, techniques and
tools (2nd Edition). Addison-Wesley. (2006)

3. Akker, R., Melichar, B., Tarhio, J. Attribute Evaluation and Parsing. In Ablas, H.,
Melichar, B (eds.).: Attribute Grammars, Applications and Systems, Lecture
Notes in Computer Science 545, Springer, 187-214. (1991)

4. Akker, R., Melichar, B., Tarhio, J.: The Hierarchy of LR-attributed grammars. In
Deransart, P., Jourdan, M (eds.): Attribute Grammars and their Applications –
Proceedings of the International Workshop on Attribute Grammars and their
Applications (WAGA’90), Paris, France, Lecture Notes in Computer Science 461,
Springer, 13-28. (1990)

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1014

5. Appel, A.W. Modern Compiler Implementation in Java. Cambridge University
Press. (2002)

6. Arbab, B. Compiling Circular Attribute Grammars into Prolog. IBM Journal of
Research and Development, Vol. 30, No. 3, 294-309. 1986

7. Augusteijn, L. The Elegant Compiler Generator System. In Deransart, P.,
Jourdan, M (eds.): Attribute Grammars and their Applications – Proceedings of
the International Workshop on Attribute Grammars and their Applications
(WAGA’90), Paris, France, Lecture Notes in Computer Science 461, Springer,
238-254. (1990)

8. Bischoff, K.M. Design, Implementation, Use and Evaluation of Ox: An Attribute-
Grammar Compiling System based on Yacc, Lex and C. TR #92-31, Dp. Of
Computer Science, Iowa State University, (1992)

9. Bochmann, G.V.: Semantic Evaluation from Left to Right. Communications of
the ACM, Vol. 19, No. 2, 55-62. (1976)

10. Brand, M.G.J v.d., Deursen, A, v., Heering, J., Jong, H.A.d., Jonge, M.d.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, JJ., Visser,
E., Visser, J. The Asf +Sdf Meta-environment: A Component-Based Language
Development Environment. In Wilhelm, R (ed.): Compiler Construction -
Proceedings of the 10th International Conference on Compiler Construction
CC’01, Genova, Italy, Lecture Notes in Computer Science, 2027, Springer, 365-
370. (2001)

11. Cervelle, J., Forax, R., Roussel, G. Tatoo: an innovative parser generator. 4th
International Symposium on Principles and Practice of Programming in Java
PPPJ’06, Mannheim, Germany, ACM, 13-20. (2006)

12. Ekman, T., Hedin, G. The JastAdd system - modular extensible compiler
construction. Science of Computer Programming, Vol. 69, No. 1-3, 14-26. (2007)

13. Gagnon, E.M., Hendren, L.J. SableCC, an Object-Oriented Compiler
Framework. International Conference on Technology of Object-Oriented
Languages TOOLS’98, Sta Barbara, CA, USA, IEEE, 140-154. (1998)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley. (1995)

15. Gray, R.W., Heuring, V.P., Levi, S.P., Sloane, A.M., Waite, W.M.: Eli: A
Complete, Flexible Compiler Construction System. Communications of the ACM,
Vol. 35, 121-131. (1992)

16. Hedin, G. An Object-Oriented Notation for Attribute Grammars. 3rd European
Conference on Object-Oriented Programming, Nottingham, UK, Cambridge
University Press, 329-345. (1989)

17. Henriques, P.R., Varanda-Pereira, M.J., Mernik, M., Lenic, M., Gray, J.G., Wu,
H. Automatic Generation of Language-Based Tools using the LISA System. IEE
Proceedings – Software, Vol. 152, No. 2, 54-69. (2005)

18. Jalili, F.: A general linear-time evaluator for attribute grammars. ACM SIGPLAN
Notices, Vol. 18, No. 9, 35-44. (1983)

19. Jones, L.G.: Efficient Evaluation of Circular Attribute Grammars. ACM
Transactions on Programming Languages and Systems, Vol. 12, No. 3, 429-
462. (1990)

20. Jourdan, M., Parigot, D.: Internals and Externals of the FNC-2 Attribute
Grammar System. In Ablas, H., Melichar, B (eds.).: Attribute Grammars,
Applications and Systems, Lecture Notes in Computer Science 545, Springer,
485-504. (1991)

21. Kastens, U., Waite, W.M.: Modularity and Reusability in Attribute Grammars.
Acta Informatica, Vol. 31, No. 7, 601-627. (1994)

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1015

22. Kastens, U.: GAG: A Practical Compiler Generator. Lecture Notes in Computer
Science 141, Springer. (1982)

23. Katwijk, J.: A preprocessor for YACC or a poor man's approach to parsing
attributed grammar. ACM SIGPLAN Notices, Vol. 18, No. 10, 12-15. (1983)

24. Kennedy, K., Ramanathan, J.: A Deterministic Attribute Grammar Evaluator
Based on Dynamic Sequencing. ACM Transaction of Programming Languages
and Systems, Vol. 1, No. 1, 142-160. (1979)

25. Knuth, D. E.: Semantics of Context-free Languages. Mathematical System
Theory, Vol. 2, No. 2, 127–145. (1968). See also the correction published in
Mathematical System Theory, Vol. 5, No. 1, 95–96.

26. Kodaganallur, V. Incorporating language processing into Java applications: a
JavaCC tutorial. IEEE Software, Vol. 21, No. 4, 70-77. (2004)

27. Levine, J. Flex & Bison: Text Processing Tools. O'Reilly Media. (2009)
28. Lewis, P.M., Rosenkrantz, D.J., Stearns, R.E.: Attributed Translations. Journal of

Computer and System Sciences, Vol. 9, No. 3, 279-307. (1974)
29. Magnusson, E. Hedin, G.: Circular Reference Attributed Grammars—Their

Evaluation and Applications. Science of Computer Programming, Vol. 68, No. 1,
21-37. (2007)

30. McPeak, S., Necula, G.C. Elkhound: A Fast, Practical GLR Parser Generator.
International Conference on Compiler Construction (CC’04), Barcelona, Spain,
Lecture Notes in Computer Science, Vol. 2985, 73-88. (2005)

31. Mernik, M., Lenic, M., Acdicausevic, E., Zumer, V.: LISA: An Interactive
Environment for Programming Language Development. 11th International
Conference on Compiler Construction (CC’02), Grenoble, France, Lecture Notes
in Computer Science, Vol. 2304, Springer, 1-4. (2002)

32. Mössenböck, H. A Generator for Production Quality Compilers. 3rd intl.
workshop on Compiler Compilers (CC'90), Schwerin, Lecture Notes in Computer
Science Vol. 477, 42–55. (1990)

33. Oliveira, N., Varanda-Pereira, M.J., Henriques, P.R., da Cruz, D., Cramer, B.:
VisualLISA: A Visual Environment to Develop Attribute Grammars. Computer
Science and Information Systems Journal, Vol. 7, No. 2, 266-289. (2010)

34. Paakki, J. Prolog in Practical Compiler Writing. Computer Journal, Vol. 34, No.
1, 64-72. (1991)

35. Paakki, J.: Attribute Grammar Paradigms – A High-Level Methodology in
Language Implementation. ACM Computing Surveys, Vol. 27, No. 2, 196-255.
(1995)

36. Paakki, J.: PROFIT: A System Integrating Logic Programming and Attribute
Grammars. 3rd International Symposium on Programming Language
Implementation and Logic Programming (PLILP’91), Passau, Germany, Lecture
Notes in Computer Science Vol. 528, 243-254. (1991)

37. Parr, T., Fisher, K. LL(*): the Foundation of the ANTLR Parser Generator. ACM
SIGPLAN Notices - PLDI '11, Vol. 46, No. 6, 425-436. (2011)

38. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf. (2007)

39. Rebernak, D., Mernik, M., Henriques, P.R., Carneiro, D., Varanda-Pereira, M.J.
Specifying Languages Using Aspect-oriented Approach: AspectLISA. Journal of
Computing and Information Technology, Vol. 4, 343-350. (2006)

40. Rebernak, D., Mernik, M., Henriques, P.R., Varanda-Pereira, M.J.: AspectLISA:
An Aspect-oriented Compiler Construction System Based on Attribute
Grammars. Electronics Notes in Theoretical Computer Science – LDTA’06, Vol.
164, 37-53. (2006)

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1016

41. Rodriguez-Cerezo, D., Sarasa, A., Sierra, J.L.: Implementing Attribute
Grammars Using Conventional Compiler Construction Tools. 3rd Workshop on
Advances in Programming Languages (WAPL'11), Szczezin, Poland, IEEE, 855-
862. (2011)

42. Saraiva, J., Swiestra, D.: Generic Attribute Grammars. 2nd Workshop on
Attribute Grammars and Their Applications (WAGA’99), Amsterdam, The
Netherlands. (1999)

43. Sarasa, A., Temprado-Battad, B., Sierra, J.L, Fernández-Valmayor, A.: XML
Language-Oriented Processing with XLOP. 5th International Symposium on Web
and Mobile Information Services, Bradford, UK, Proceedings of AINA’09
Workshops, IEEE, 322-327. (2009)

44. Sassa, M., Ishizuka, H., Nakata, I. Rie, a compiler generator based on a one-
pass-type attribute grammar. Software – Practice & Experience, Vol. 25, No. 3,
229-250, (1995)

45. Schreiner, A.T., Friedman, H.G. Introduction to Compiler Construction with Unix.
Prentice-Hall. (1985)

46. Scott, E., Johnstone, A. Right nulled GLR parsers. ACM Transactions on
Programming Languages and Systems, Vol. 28, No. 4, 577-618. (2006)

47. Sierra, J.L., Fernández-Valmayor, A. A Prolog Framework for the Rapid
Prototyping of Language Processors with Attribute Grammars. Electronics Notes
in Theoretical Computer Science – LDTA’06, Vol. 164, 19-36. (2006)

48. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher-Order Attribute Grammars.
ACM SIGPLAN Notices Vol. 24, No. 7. (1989)

49. Vyk, E.R.v., Schwerdfeger, A.C. Context-aware scanning for Parsing Extensible
Languages. 6th International Conference on Generative Programming and
Component Engineering GPCE’06, Portland, Oregon, USA, ACM, 63-72. (2006)

50. Walsteijn, M.J., Kuiper, M.F.: Attribute Grammars in Prolog. Technical Report,
RU-CS-86-14, Utrecht University. (1986)

51. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An Extensible Attribute
Grammar System. Science of Computer Programming, Vol. 75, No. 1-2, 39-54.
(2010)

Daniel Rodríguez-Cerezo is a PhD student in the Computer Science School
at UCM, and a member of the research group ILSA (Implementation of
Language-Driven Software and Applications: http://ilsa.fdi.ucm.es). His
research is focused on the use of several e-Learning techniques (simulations,
interactive prototyping tools, recommendation systems for learning object
repositories, etc.) to improve teaching and learning of the Software Language
Engineering discipline. Besides, he is interested in the development and
improvement of software language engineering techniques.

Antonio Sarasa-Cabezuelo is a full-time Lecturer in the Computer Science
School at Complutense University of Madrid, Spain (UCM). His research is
focused on the language-oriented development of XML-processing
applications, and on the development of applications in the fields of digital
humanities and e-Learning. He was one of the developers of the Agrega
project on digital repositories (a pioneer project in this field in Spain). He is a
member of ILSA. He has participated in several research projects in the fields

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1017

of software language engineering, digital humanities and e-learning, and he
has published over 50 research papers in national and international
conferences.

José-Luis Sierra is an Associate Professor at the UCM's Computer Science
School, where he leads the ILSA Research Group. His research is focused on
the development and practical uses of computer language description tools
and on the language-oriented development of interactive and web
applications in the fields of digital humanities and e-Learning. Prof. Sierra has
leaded and participated in several research projects in the fields of digital
humanities, e-learning and software language engineering, the results of
which have been published in over 100 research papers in international
journals, conferences and book chapters. He serves regularly as reviewer /
PC Member for several international reputed journals and conferences.

Received: December 23, 2011 Accepted: June 1, 2012.

DOI: 10.2298/CSIS111110021F

Implementation of EasyTime Formal Semantics
using a LISA Compiler Generator

Iztok Fister Jr.1, Marjan Mernik1, Iztok Fister1, Dejan Hrnčič1

University of Maribor
Faculty of electrical engineering and computer science

Smetanova 17
2000 Maribor

Slovenia
iztok.fister@guest.arnes.si,
marjan.mernik@uni-mb.si,

iztok.fister@uni-mb.si,
dejan.hrncic@uni-mb.si

Abstract. A manual measuring time tool in mass sporting competitions
would not be imaginable nowadays, because many modern disciplines,
such as IRONMAN, last a long-time and, therefore, demand additional re-
liability. Moreover, automatic timing-devices based on RFID technology,
have become cheaper. However, these devices cannot operate as stand-
alone because they need a computer measuring system that is capa-
ble of processing incoming events, encoding the results, assigning them
to the correct competitor, sorting the results according to the achieved
times, and then providing a printout of the results. This article presents
the domain-specific language EasyTime, which enables the controlling of
an agent by writing the events within a database. It focuses, in particu-
lar, on the implementation of EasyTime with a LISA tool that enables the
automatic construction of compilers from language specifications, using
Attribute Grammars.

Keywords: domain-specific language, compiler, code generator, measur-
ing time.

1. Introduction

In the past, timekeepers measured the time manually. The time given by a timer
was assigned to competitors based on their starting number, and these com-
petitors were then placed in order according to their achieved results and cate-
gory. Later, manual timers were replaced by timers with automatic time-registers
capable of capturing and printing out registered times. However, assigning the
times to competitors based on their starting numbers, was still done manually.
This work could be avoided by using electronic-measuring technology which,
in addition to registering the time, also enables the registering of competitors’
starting numbers. An expansion of RFID (Radio Frequency Identification) tech-
nology has helped this measuring-technology to become less expensive ([4,

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

23]), and accessible to a wider-range of users (e.g., sports clubs, organizers
of sporting competitions). Moreover, they were also able to compete with time-
measuring monopolies at smaller competitions.

In addition to measuring technology, a flexible computer system is also
needed to monitor the results. The proposed computer system enables the
monitoring of different sporting competitions using a various number of mea-
suring devices and measuring points, the online recording of events, the writing
of results, as well as efficiency and security. This measuring device is dedi-
cated to the registration of events and is triggered either automatically, when
the competitor crosses the measuring point that acts as an electromagnetic
antenna fields with an appropriate RFID tag, or manually, when an operator
presses the suitable button on a personal computer that acts as a timer. The
control point is the place where the organizers want to monitor the results. Until
now, each control point has required its own measuring device. However, mod-
ern electronic-measuring devices now allow for the handling of multiple control
points, simultaneously. Moreover, each registered event can have a different
meaning, depending on the situation within which it is generated. Therefore, an
event is handled by the measuring system according to those rules that are valid
for the control point. As a result, the number of control points (and measuring
devices) can be reduced by using more complex measurements. Fortunately,
the rules controlling events can be described easily with the use of a domain-
specific language (DSL) [11, 17]. When using this DSL, measurements at dif-
ferent sporting competitions can be accomplished by an easy pre-configuration
of the rules.

A DSL is suited to an application domain and has certain advantages over
general-purpose languages (GPL) within a specific domain [17]. The GPL is
dedicated to writing software over a wider-range of application domains. Gen-
eral problems are usually solved using these languages. However, a program-
mer is necessary for changing the behavior of a program written in a GPL. On
the other hand, the advantages of DSL are reflected in its greater expressive
power in a particular domain and, hence, increased productivity [14] , ease of
use (even for those domain experts who are not programmers), and easier veri-
fication and optimization [17]. This article presents a DSL called EasyTime, and
its implementation. EasyTime is intended for controlling those agents respon-
sible for recording events from the measuring devices, into a database. There-
fore, the agents are crucial elements of the proposed measuring system. To the
best of the author’s knowledge there is no comparable DSL of time measuring
for sport events, whilst some DSLs for performance measurement of computer
systems [2, 21] as well as on general measurement systems do indeed already
exist [13]. Finally, EasyTime has been successfully employed in practice, as
well. For instance, it measured times at the World Championship for the double
ultra triathlon in 2009 [9], and at a National Championship in the time-trials for
bicycle in 2010 [9].

The structure of the remaining article is as follows; In the second section,
those problems are illustrated that accompany time-measuring at sporting com-

1020 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

petitions. Focus is directed primarily on triathlon competitions, because they
contain three disciplines that need to be measured, and also because of their
lengthy durations. The design of DSL EasyTime is briefly shown in section
three. The implementation of the EasyTime compiler is described in the fourth
section, whilst the fifth section explains the execution of the program written
in EasyTime. Finally, the article is concluded with a short analysis of the work
performed, and a look at future work. This paper extends a previous workshop
paper [10] by providing general guidelines on how to transform formal language
specifications using denotational semantics into attribute grammars. The con-
creteness of these guidelines is shown on EasyTime DSL.

2. Measuring Time in Sporting Competitions

In practice, the measuring time in sporting competitions can be performed man-
ually (classically or with a computer timer) or automatically (with a measuring
device). The computer timer is a program that usually runs on a workstation
(personal computer) and measures in real-time. Thereby, the processor tact is
exploited. The processor tact is the velocity with which the processor’s instruc-
tions are interpreted. A computer timer enables the recording of events that are
generated by the competitor crossing those measure points (MP) in line with
the measuring device. In that case, however, the event is triggered by an oper-
ator pressing the appropriate button on the computer. The operator generates
events in the form of ⟨#,MP,TIME⟩, where # denotes the starting number
of a competitor, MP is the measuring point, and TIME is the number of sec-
onds since 1.1.1970 at 0:0:0 (timestamp). One computer timer represents one
measuring-point.

Today, the measuring device is usually based on RFID technology [6], where
identification is performed using electromagnetic waves within a range of radio
frequencies, and consists of the following elements:

– readers of RFID tags,
– primary memory,
– LCD monitor,
– numerical keyboard, and
– antenna fields.

More antenna fields can be connected on to the measuring device. One an-
tenna field represents one measuring point. Each competitor generates an
event by crossing the antenna field using passive RFID tags that include an
identification number. This number is unique and differs from the starting num-
ber of the competitor. The event from the measuring device is represented in the
form of ⟨#,RFID,MP,TIME⟩, where the identification number of the RFID
tag is added to the previously mentioned triplet.

The measuring devices and workstations running the computer timer can be
connected to the local area network. Communication with devices is performed
by a monitoring program, i.e. an agent, that runs on the database server. This

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1021

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

agent communicates with the measuring device via the TCP/IP sockets, and
appropriate protocol. Usually, the measuring devices support a Telnet protocol
that is character-stream oriented and, therefore, easy to implement. The agent
employs the file transfer protocol (ftp) to communicate with the computer timer.

2.1. Example: Measuring Time in Triathlons

Special conditions apply for triathlon competitions, where one competition con-
sists of three disciplines. This article, therefore, devotes most of its attention to
this problem.

The triathlon competition is performed as follows: first, the athletes swim,
then they ride a bicycle and finally run. In practice, all these activities are per-
formed consecutively. However, the transition times, i.e. the time that elapses
when a competitor shifts from swimming to bicycling, and from bicycling to run-
ning, are added to the summary result. There are various types of triathlon
competitions that differ according to the lengths of various courses. In order to
make things easier, organizers often employ round courses (laps) of shorter
lengths instead of one long course. Therefore, the difficulty of measuring time
is increased because the time for each lap needs to be measured.

Measuring time in triathlon competitions can be divided into nine control
points (Fig. 1). The control point (CP) is a location on the triathlon course, where
the organizers need to check the measured time. This can be intermediate or
final. When dealing with a double triathlon there are 7.6 km of swimming, 360
km of bicycling, and 84 km of running. Hence the swimming course of 380
meters consists of 20 laps, the bicycling course of 3.4 kilometers contains 105
laps, and the running course of 1.5 kilometers has 55 laps (Fig. 1).

Fig. 1. Definition of control points in the triathlon

Therefore, the final result for each competitor in a triathlon competition (CP8)
consists of five final results: the swimming time SWIM (CP2-CP0), the time for
the first transition TA1 (CP3-CP2), the time spent bicycling BIKE (CP5-CP3),
the time for the second transition TA2 (CP6-CP5), the time spent running RUN
(CP8-CP6), and three intermediate results: the intermediate time for swimming

1022 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

(CP1), the intermediate time for bicycling (CP4) and the intermediate time for
running (CP7). However, the current time INTER x and the number of remain-
ing laps LAPS x are measured by the intermediate results, where x = {1,2,3}
denotes the appropriate discipline (1=SWIM, 2=BIKE and 3=RUN).

The DSL EasyTime was developed in order to achieve this goal, and has
been employed in practice by conducting measurements at the World Cham-
pionship in the Double Triathlon in 2009. Note that the measurements were
realized according to Fig. 1. The next sections presents the design, implemen-
tation, and operation of EasyTime.

3. The Design of the EasyTime Domain-Specific Language

Typically, the development of a DSL consists of the following phases [17]:

– a domain analysis,
– a definition of an abstract syntax,
– a definition of a concrete syntax,
– a definition of formal semantics, and
– an implementation of the DSL.

Domain analysis provides an analysis of the application domain, i.e. measuring
time in sporting competitions. The results of this analysis define those con-
cepts of EasyTime that are typically represented within a feature diagram [5,
25]. The feature diagram also describes dependencies between the concepts
of DSL. Thus, each concept can be broken-down into features and sub-features.
In the case of EasyTime, the concept race consists of sub-features: events
(e.g., swimming, bicycling, and running), control points, measuring time,
transition area, and agents. Each control point is described by its starting
and finish line and at least one lap. In addition, the feature transition area
can be introduced as the difference between the finish and start times. Both
updating time and decrementing laps are sub-features of measuring time.
However, an agent is needed for the processing of events received from the
measuring device. It can act either automatically or manually. Note that dur-
ing domain analysis not all the identified concepts are useful for solving actual
problem. Hence, the identified concepts can be further classified into [16]:

– irrelevant concepts, those which are irrelevant to the actual problem;
– variable concepts, those which actually need to be described in the DSL

program; and
– fixed concepts, those which can be built into the DSL execution environ-

ment.

Domain analysis identifies several variable and fixed concepts within the
application domain that needs to be mapped into EasyTime syntax and se-
mantics [17]. At first, the abstract syntax is defined (context-free grammar).
Each variable concept obtained from the domain analysis is mapped to a non-
terminal in the context-free grammar; additionally, some new non-terminal and

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1023

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

terminal symbols are defined. The translations of the EasyTime domain con-
cepts to non-terminals are presented and explained in Table 1, whilst an ab-
stract syntax is presented in Table 2. Note that, the concepts Events and Tran-
sition are irrelevant for solving actual problem and are not mapped into non-
terminals’ symbols (denoted as none in Table 1). Interestingly, a description of
agents and measuring places cannot be found in other DSLs or GPLs. Whilst
attribute declaration is similar to variable declaration in many other program-
ming languages. However, note that there is the distinction that variables are
actually database attributes allocated for every competitor. Some statements,
such as assignment, conditional statement, and compound statement can be
found in many other programming languages, whilst decrement attributes and
update attributes are domain-specific constructs.

Table 1. Translation of the application domain concepts into a context-free grammar

Application domain concepts Non-terminal Formal sem. Description
Race P CP Description of agents; control points; measuring

places.
Events (swimming, cycling, none none Measuring time is independent from the type of an
running) event. However, good attribute’s identifier in control

points description will resemble the type of an event.
Transition area times none none Can be computed as difference between events final

and starting times.
Control points (start, number D D Description of attributes where start and finish time
of laps, finish) will be stored as well as remaining laps.
Measuring places (update time, M CM Measuring place id; agent id, which will control this
decrement lap) measuring place; specific actions (presented

with new non-terminal S) which will be performed
at this measuring place (e.g., decrement lap).

Agents (automatic, manual) A A Agent id; agent type (automatic, manual); agent sour-
ce (file, ip).

Table 2. The abstract syntax of EasyTime

P ∈ Pgm A ∈ Adec
D ∈ Dec M ∈ MeasPlace
S ∈ Stm b ∈ Bexp
a ∈ Aexp n ∈ Num
x ∈ Var file ∈ FileSpec
ip ∈ IpAddress

P ::= A D M
A ::= n manual file | n auto ip | A1;A2

D ::= var x ∶= a | D1;D2

M ::= mp[n1] → agnt[n2] S | M1;M2

S ::= dec x | upd x | x ∶= a | (b)→ S | S1;S2

b ::= true | false | a1 == a2 | a1! = a2

a ::= n | x

1024 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Although a language designer can proceed after domain analysis with infor-
mal or formal design patterns [17] the formal design step is preferred since it
can identify problems before the DSL is actually implemented [27]. Moreover,
formal specifications can be implemented automatically by language develop-
ment systems, thus significantly reducing the implementation effort [17]. The
meaning of the EasyTime language constructs is prescribed during the formal
semantics phase. Each language construct, belonging to the syntax domain, is
mapped into an appropriate semantic domain (Table 3) by semantic functions
CP, A, D, CM, CS, CB, and CA (Table 4).

Table 3. Semantic domains

Integer={. . . − 3,−2,−1,0,1,2,3 . . .} n ∈ Integer
Truth-Value={true, false}
State=Var→Integer s ∈ State
AType={manual, auto}
Agents=Integer→AType × (FileSpec ∪ IpAddress) ag ∈Agents
Runners=(Id ×RFID ×LastName × FirstName)∗ r ∈ Runners
DataBase=(Id × V ar1 × V ar2 × . . . × V arn)∗ db ∈ DataBase
Code=String c ∈ Code

These semantic functions translate EasyTime constructs into the instruc-
tions of the simple virtual machine. The meaning of virtual machine instructions
has been formally defined using operational semantics (Table 5) as the transi-
tion of configurations < c, e, db, j >, where c is a sequence of instructions, e is
the evaluation stack to evaluate arithmetic and boolean expressions, db is the
database, and j is the starting number of a competitor. More details of Easy-
Time syntax and semantics are presented in [9]. This article focuses on the
implementation phase, as presented in the next section.

The sample program written in EasyTime that covers the measuring time in
the double ultra triathlon is presented by Algorithm 1. In lines 1-2 two agents
are defined. Agent no. 1 is manual and agent no. 2 is automatic. In lines 4-
14 several variables, attributes in a database for each competitor, are defined
and initialized appropriately. For example, from Figure 1 it can be seen that
20 laps are needed for the swimming course and ROUND1 is set to 20, 105
laps are needed for the bicycling course and ROUND2 is set to 105, and 55
laps are needed for the running course and ROUND3 is set to 55. Lines 16-
19 define the first measuring place which is controlled by manual agent no.
1. At this measuring place the intermediate swimming time must be updated
in the database (upd SWIM) and the number of laps must be decremented
(dec ROUND1). Lines 20-22 define the second measuring place which is also
controlled by manual agent no. 1. At this measuring place only transition time
must be stored in the database (upd TRANS1). Lines 23-27 define the third
measuring place which is controlled by automatic agent no. 2. At this measur-
ing place we must update the intermediate result for bicycling (upd INTER2)
and decrement the number of laps (dec ROUND2). If a competitor finished

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1025

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Table 4. EasyTime formal semantics

CP ∶ Pgm→ Runners → Code × Integer × DataBase
CP⟦A D M⟧r = let s = D⟦D⟧Ø:

db =create&insertDB(s, r)
in (CM⟦M⟧(A⟦A⟧Ø), db)

A : Adec → Agents → Agents
A⟦n manual file⟧ag = ag[n→ (manual, file)]
A⟦n auto ip⟧ag = ag[n→ (auto, ip)]
A⟦A1;A2⟧ag = A⟦A2⟧(A⟦A1⟧ag)

D : Dec→State → State
D⟦var x ∶= a⟧s = s[x→ a]
D⟦D1,D2⟧s = D⟦D2⟧(D⟦D1⟧s)

CM : MeasPlace → Agents → Code × Integer
CM⟦mp[n1]→ agnt[n2]S⟧ag = (WAIT i ∶ CS⟦S⟧(ag,n2), n1)
CM⟦M1;M2⟧ag = CM⟦M1⟧ag ∶ CM⟦M2⟧ag

CS : Stm→ Agents × Integer → Code
CS⟦ dec x⟧(ag,n) = FETCH x:DEC:STORE x
CS⟦ upd x⟧(ag,n) = FETCH y:STORE x where

y = {accessfile(ag(n) ↓ 2) if ag(n) ↓ 1 =manual
connect(ag(n) ↓ 2) if ag(n) ↓ 1 = automatic

CS⟦x ∶= a⟧(ag,n) = CA⟦a⟧:STORE x
CS⟦(b)→ S⟧(ag,n) = CB⟦b⟧:BRANCH(CS⟦S⟧(ag,n),NOOP)
CS⟦S1;S2⟧(ag,n) = CS⟦S1⟧(ag,n) ∶ CS⟦S2⟧(ag,n)

CB : Bexp → Code
CB⟦true⟧ = TRUE
CB⟦false⟧ = FALSE
CB⟦a1 == a2⟧ = CA⟦a2⟧ ∶ CA⟦a1⟧:EQ
CB⟦a1! = a2⟧ = CA⟦a2⟧ ∶ CA⟦a1⟧:NEQ

CA : Aexp → Code
CA⟦n⟧ = PUSH n
CA⟦x⟧ = FETCH x

all the requested 105 laps (ROUND2 == 0) then time spent on the bicycle
must be stored in the database (upd BIKE). Lines 28-33 define the fourth
measuring place which is also controlled by automatic agent no. 2. At this
measuring place we must first check if a competitor has just started running
(ROUND3 == 55). If this is the case, we must record the transition time between
bicycling and running (upd TRANS2). At this measuring place we also must up-
date the intermediate result for running (upd INTER3) and decremented num-
ber of laps (dec ROUND3). If a competitor finished all the requested 55 laps
(ROUND3 == 0) then the final time must be stored in the database (upd RUN).

1026 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Algorithm 1 EasyTime program for measuring time in a triathlon competition
as illustrated in Fig. 1
1: 1 manual ”abc.res”;
2: 2 auto 192.168.225.100;
3:
4: var ROUND1 := 20;
5: var INTER1 := 0;
6: var SWIM := 0;
7: var TRANS1 :=0;
8: var ROUND2 := 105;
9: var INTER2 :=0;
10: var BIKE := 0;
11: var TRANS2 :=0;
12: var ROUND3 := 55;
13: var INTER3 := 0;
14: var RUN := 0;
15:
16: mp[1] → agnt[1] {
17: (true) → upd SWIM;
18: (true) → dec ROUND1;
19: }
20: mp[2] → agnt[1] {
21: (true) → upd TRANS1;
22: }
23: mp[3] → agnt[2] {
24: (true) → upd INTER2;
25: (true) → dec ROUND2;
26: (ROUND2 == 0) → upd BIKE;
27: }
28: mp[4] → agnt[2] {
29: (ROUND3 == 55) → upd TRANS2;
30: (true) → upd INTER3;
31: (true) → dec ROUND3;
32: (ROUND3 == 0) → upd RUN;
33: }

4. Implementation of the Domain-Specific Language
EasyTime

4.1. A LISA Compiler-Generator

One of the benefits of formal language specifications is the unique possibil-
ity for automatic language implementation. Although some compiler generators
accept denotational semantics [22], the generated compilers are mostly inef-
ficient. Although many compiler-generators based on attribute grammars [12,
20] exist today, we selected a LISA compiler-compiler that was developed at
the University of Maribor in the late 1990s [18]. The LISA tool produces a highly
efficient source code for: the scanner, parser, interpreter or compiler, in Java.
The lexical and syntactical parts of the language specification in LISA supports
various well-known formal methods, such as regular expressions and BNF [1].
LISA provides two kinds of user interfaces:

– a graphic user interface (GUI) (Fig. 2), and
– a Web-Service user interface.

The main features of LISA are as follows:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1027

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Table 5. The virtual machine specification

⟨PUSH n ∶ c, e, db, j⟩ ▷ ⟨c,n ∶ e, db, j⟩
⟨TRUE ∶ c, e, db, j⟩ ▷ ⟨c, true ∶ e, db, j⟩
⟨FALSE ∶ c, e, db, j⟩ ▷ ⟨c, false ∶ e, db, j⟩
⟨EQ ∶ c, z1 ∶ z2 ∶ e, db, j⟩ ▷ ⟨c, (z1 == z2) ∶ e, db, j⟩ if z1, z2 ∈ Int
⟨NEQ ∶ c, z1 ∶ z2 ∶ e, db, j⟩ ▷ ⟨c, (z1! = z2) ∶ e, db, j⟩ if z1, z2 ∈ Int
⟨DEC ∶ c, z ∶ e, db, j⟩ ▷ ⟨c, (z − 1) ∶ e, db, j⟩ if z ∈ Int
⟨WAIT i ∶ c, e, db, j⟩ ▷ ⟨c, e, db, i⟩
⟨FETCH x ∶ c, e, db, j⟩ ▷ ⟨c, select x from db where Id = j ∶ e, db, j⟩
⟨FETCH accessfile(fn) ∶ c, e, db, j⟩ ▷ ⟨c, time ∶ e, db, j⟩
⟨FETCH connect(ip) ∶ c, e, db, j⟩ ▷ ⟨c, time ∶ e, db, j⟩
⟨STORE x ∶ c, z ∶ e, db, j⟩ ▷ ⟨c, e,update db set x = z where Id = j, j⟩ if z ∈ Int
⟨NOOP ∶ c, e, db, j⟩ ▷ ⟨c, e, db, j⟩

⟨BRANCH(c1, c2) ∶ c, t ∶ e, db, j⟩ ▷ {
⟨c1 ∶ c, e, db, j⟩
⟨c2 ∶ c, e, db, j⟩

if t = true
otherwise

– since it is written in Java, LISA works on all Java platforms,
– a textual or a visual environment,
– an Integrated Development Environment (IDE), where users can specify,

generate, compile and execute programs on the fly,
– visual presentations of different structures, such as finite-state-automata,

BNF, a dependency graph, a syntax tree, etc.,
– modular and incremental language development [19].

LISA specifications are based on Attribute Grammar (AG) [20] as introduced
by D.E. Knuth [12]. The attribute grammar is a triple AG = ⟨G,A,R⟩, where G
denotes a context-free grammar, A a finite set of attributes, and R a finite set of
semantic rules. In line with this, the LISA specifications (Table 6) include:

– lexical regular definitions (lexicon part in Table 6),
– attribute definitions (attributes part in Table 6),
– syntax rules (rule part before compute in Table 6),
– semantic rules, (rule part after compute in Table 6) and
– operations on semantic domains (method part in Table 6).

Lexical specifications for EasyTime in LISA (Fig. 2) are similar to those used
in other compiler-generators, and are obtained from EasyTime concrete syntax
(Table 7). Note that in the rule part of LISA specifications the terminal sym-
bols that are defined by regular expressions in the lexical part are denoted with
symbol # (e.g., #Id, #Int). EasyTime concrete syntax is derived from EasyTime
abstract syntax (Table 2). The process of transforming abstract syntax into con-
crete syntax is straightforward, and presented in [9]. Semantic rules are written
in LISA as regular Java assignment statements and are attached to a particular
syntax rule. Hence, the rule part in LISA (Table 6) specifies the BNF produc-
tion as well as the attribute computations attached to this production. Since the
theory about attribute grammars is a standard topic of compiler science, it is
assumed that a reader has a basic knowledge about attribute grammars [12,
20].

1028 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Fig. 2. LISA GUI

4.2. Translation scheme from denotational semantics to attribute
grammars

The most difficult part of transforming formal EasyTime specifications into LISA
specifications, consists of mapping denotational semantics into attribute gram-
mars. This mapping can be described in a systematic manner, and can also be
used for the implementation of other DSLs (e.g., [15]). It consist of the follow-
ing steps similar to the translation scheme from natural semantics into attribute
grammars [3]:

1. Identification of syntactic and semantic domains in each semantic func-
tion of denotational semantics. Identified syntactic domains must have their
counterparts in non-terminals of concrete syntax. Identified semantic do-
mains must be represented appropriately, with suitable data structures (ty-
pes) in chosen programming language.

2. Identification of inherited and synthesized attributes for each non-terminal
derived in step 1. Semantic argument, which is an input parameter in se-
mantic function, is represented as inherited attribute, while an output param-
eter is represented as synthesized attribute. According to [12], the starting

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1029

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Table 6. LISA specifications

language L1 [extends L2, ..., LN] {
lexicon {
[[P] overrides ∣ [P] extends] R regular expr.
⋮

}
attributes type A1, ..., AM
⋮

rule [[Y] extends ∣ [Y] overrides] Z {
X ::= X11 X12 ... X1p compute {

semantic functions }
⋮

∣
Xr1 Xr2 ... Xrt compute {

semantic functions }
;
}
⋮

method [[N] overrides ∣ [N] extends] M {
operations on semantic domains
}
⋮

}

non-terminal should not have inherited attributes. Whilst LISA automatically
infers whether an attribute is inherited or synthesized [12], the type of at-
tribute must be specified (Fig. 2).

3. For all identified attributes attached to a particular non-terminal’s, semantic
equations need to be developed that are in conformance to semantic equa-
tions from denotational semantics. In particular, semantic equations need to
be written for each synthesized attribute of the left-hand side non-terminal
and for each inherited attribute attached to non-terminals of the right-hand
side. This rule is applied to every production of a concrete syntax. In this
step the whole semantic equation is not yet written, only the existence of
such an equation is identified.

4. In the productions of concrete syntax certain new non-terminals appear,
which are consequences of transformation of abstract syntax into concrete
syntax. These non-terminals also carry information that are needed for com-
putations. In this step such non-terminals are identified and attached at-
tributes are classified into inherited and synthesized.

5. Finalizing semantics for all identified semantic equations. These semantic
equations need to be in conformance to denotational semantics, and require
careful examination of semantic functions of denotational semantics (e.g.,
CP,A, D, CM, CS, CB, and CA from Table 4). This step is most demanding.

6. In code generation, certain additional tests are usually performed, which are
sometimes non-described in formal semantics, in order to be on a proper
abstraction level. For example, only declared variables can be used in ex-

1030 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 7. The concrete syntax of EasyTime

PROGRAM ::= AGENTS DECS MES PLACES
AGENTS ::= AGENTS AGENT | ε
AGENT ::= #Int auto #ip ; | #Int manual #file ;
DECS ::= DECS DEC | ε
DEC ::= var #Id ∶= #Int ;
MES PLACES ::= MES PLACE MES PLACES | MES PLACE
MES PLACE ::= mp[#Int] − > agnt [#Int] { STMTS }
STMTS ::= STMT STMTS | STMT
STMT ::= dec #Id ; | upd #Id ; | #Id ∶= EXPR ; | (LEXPR) − > STMT
LEXPR ::= true | false | EXPR == EXPR | EXPR != EXPR
EXPR ::= #Int | #Id

pressions and commands of a language under development. Such addi-
tional tests require that new attributes are defined to carry the results of
tests, as well as existing attributes being propagated to appropriate con-
structs (e.g., expressions, commands). An attribute grammar is finalized
during this step.

Note that the presented guidelines are general and not restricted to a par-
ticular class of attribute grammars [12, 20] (e.g., S-attributed, L-attributed, or-
dered attribute grammar, absolutely non-circular attribute grammar). Actually,
the class of obtained attribute grammar can be identified only after the transla-
tion has been completely performed.

4.3. Translation scheme from EasyTime formal semantics to LISA

When applying the aforementioned rules to EasyTime, the following results are
obtained after each step.

Step 1:
The following non-terminals from Table 7 represent syntactic domains (Ta-

ble 2): PROGRAM ∈ Pgm, MES PLACES ∈ MeasPlace, DECS ∈ Dec, AGENTS
∈ Adec, STMTS ∈ Stm, etc. Semantic domains (Table 3) such as Integer, Truth-
Value, Code have direct counterparts with Java types: int, boolean, and String.
While semantic domains which are functions (e.g., State, Agents) can be mod-
eled with Java Hashtable type. For example, from Figure 2 we can notice that
attribute inState, which represents function State, is of type Hashtable. Using
methods such as put(), get(), and containsKey() we can respectively insert
a new variable, obtain a variable’s value, and check if the variable is declared.
Other semantic domains (e.g., cartesian product) can be modeled easily with
a Java rich type system. Hence, in LISA the type of attributes regarding an
attribute grammar can be any valid pre-defined or user-defined Java type. An
example of auxiliary operations on semantic domains (e.g., Hashtable), is pre-
sented in [10].

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1031

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Step 2:
From CP ∶ Pgm → Runners → Code × Integer × DataBase (Table 4) it

can be concluded that to non-terminal PROGRAM one inherited (representing
a parameter of type Runners) and three synthesized attributes (representing
parameters of Code, Integer, and DataBase) need to be attached. However,
the starting non-terminal should not have inherited attributes [12, 20]. From the
definition of semantic function CP (Table 4) it can be noticed that the input pa-
rameter of type Runners are only needed to create a database. Hence, both
parameters (of type Runners and DataBase) can be omitted from LISA speci-
fications, and its functionality can be externally implemented. Moreover, it was
decided to represent both the generated code and the identification number of
the virtual machine, where the code is going to be executed, as a string ”(Code,
Integer)”. Hence, only one synthesized attribute, PROGRAM.code, is attached
to starting non-terminal PROGRAM.
From A ∶ Adec → Agents → Agents (Table 4) it can be concluded that one
inherited and one synthesized attribute need to be attached to non-terminal
AGENTS. For this purpose AGENTS.inAG is an inherited attribute, and AGEN-
TS.outAG a synthesized attribute. Both attributes are of type Hashtable since
semantic domain Agents is a function, which can be modeled as a Hashtable.
From D ∶ Dec → State → State (Table 4) it can be concluded that one inher-
ited and one synthesized attributes need to be attached to non-terminal DECS.
For this purpose DECS.inState is inherited attribute, and DECS.outState a syn-
thesized attribute. Both attributes are of type Hashtable since semantic domain
State is a function, which can be modeled as a Hashtable.
From CM ∶ MeasPlace → Agents → Code × Integer (Table 4) it can be con-
cluded that one inherited and two synthesized attributes need to be attached to
non-terminal MES PLACES. Again, it was decided to represent both, a gener-
ated code and the identification number of virtual machine, as a string. For this
purpose MES PLACES.inAG is an inherited attribute and MES PLACES.code
is a synthesized attribute.
From CS ∶ Stm → Agents × Integer → Code (Table 4) it can be concluded
that two inherited and one synthesized attribute need to be attached to non-
terminal STMTS. For this purpose STMTS.inAG and STMTS.n are inherited
attributes of type Hashtable and int, respectively. The attribute STMTS.code is
a synthesized attribute of type String. The attributes, inherited and synthesized,
attached to the appropriate non-terminals are collated in Table 8.

Table 8. Attributes of non-terminals representing syntactic domains from EasyTime for-
mal semantics

X Inherited(X) Synthesized(X)
PROGRAM code
AGENTS inAG outAG
DECS inState outState
MES PLACES inAG code
STMTS inAG, n code

1032 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Step 3:
In this step semantic equations are given for each synthesized attribute of

the left-hand side non-terminal, and for each inherited attribute for the right-
hand side non-terminal. This procedure is applied to each production in the
context-free grammar (Table 7). The LISA specification fragment as illustrated
in Table 9 indicates, which semantic equations need to be developed. Let us
explain the process for the first production. Since the non-terminal PROGRAM,
left-hand side non-terminal, has only one synthesized attribute code (Table 8)
only one semantic equation must be defined (PROGRAM.code = ...;). Other
non-terminals (AGENTS, DECS, MES PLACES) in the first production are on
the right hand side and hence only inherited attributes attached to those non-
terminals must be defined (AGENTS.inAG = ...; DECS.inState = ...; MES -
PLACES.inAG = ..;). Note that the order of these semantic equations is irrel-
evant [12, 20].

Table 9. Semantic equations under development that are obtained after Step 3

PROGRAM ::= AGENTS DECS MES PLACES compute {
AGENTS.inAG = ...;
DECS.inState = ...;
MES PLACES.inAG = ...;
PROGRAM.code = ...; };

AGENTS ::= AGENTS AGENT compute {
AGENTS[1].inAG = ...;
AGENTS[0].outAG = ...; };

DECS ::= DECS DEC compute {
DECS[1].inState = ...;
DECS[0].outState = ...; };

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACES[1].inAG = ...;
MES PLACES[0].code = ...; };

STMTS ::= STMT STMTS compute {
STMTS[1].n = ...;
STMTS[1].inAG = ...;
STMTS[0].code = ...; };

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1033

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Step 4:
From step 3, it can be identified the following non-terminals, which appears

in concrete syntax (Table 7) and were unidentified in steps 1 - 3: AGENT, DEC,
MES PLACE, and STMT (Table 10). If the structure of these non-terminals is
simple (e.g., AGENT, DEC) then attributes attached to these non-terminals car-
ried only synthesized attributes representing mostly lexical values (Table 11).
Semantic equations can be derived immediately for those attributes. On the
other hand, some non-terminals might be complex (e.g., MES PLACE, STMT)
and inherited attributes attached to these non-terminals are also needed. The
attributes might be similar to those attributes attached to other non-terminals
in productions, where new non-terminals appear (Table 8). Moreover, semantic
equations may no longer be simple (Table 11). For example, attributes attached
to non-terminals MES PLACE and STMT (Table 10) are the same as those
attached to non-terminals STMTS and MES PLACES, respectively (Table 8).
However, due to the semantics of the update statement (Table 4) another at-
tribute y is attached to the non-terminal STMT (Table 10).

Table 10. Attributes for additional non-terminals

X Inherited(X) Synthesized(X)
AGENT number, type, file ip
DEC name, value
MES PLACE inAG code
STMT inAG, n code, y

Step 5:
The reasoning of this step is only explained for semantic functions A and

CM (Table 4), which are translated into attributes for non-terminals AGENTS,
AGENT, MES PLACES, and MES PLACE (Tables 8 and 10). For other se-
mantic functions the reasoning is similar. The semantic equation A⟦A1;A2⟧ag
= A⟦A2⟧ (A⟦A1⟧ag) (Table 4) constructs ag ∈ Agents, which is a function from
an integer, denoting an agent, into an agent’s type (manual or auto), and an
agent’s ip or agent’s file. This function is described in LISA as presented in
Table 12. From Table 12 it can be noticed how the attribute outAG, which rep-
resents the ag ∈ Agents, is constructed simply by the calling method insert().
The method insert() will insert a new agent with a particular number, type, and
file ip into the Hashtable. Note also, how the missing equations from Step 3
have been developed. The net effect is that we are constructing a list, more
precisely a hash table, of agents where we are recording the agent’s number
(AGENT.number), the agents’s type (AGENT.type), and the agent’s ip or file
(AGENT.file ip) (see Step 4). The complete LISA specifications for semantic
function A, is shown in Algorithm 2.

The reasoning for the semantic function CM is done in a similar man-
ner. The semantic equation CM⟦M1;M2⟧ag = CM⟦M1⟧ag ∶ CM⟦M2⟧ag (Ta-
ble 4) translates the first construct M1 into code before performing the transla-
tion of the second construct M2. This function is described in LISA, as repre-

1034 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 11. Semantic equations for additional non-terminals

AGENT ::= #Int auto #ip compute {
AGENT.number = Integer.valueOf(#Int[0].value()).intValue();
AGENT.type = ”auto”;
AGENT.file ip = #ip.value(); };

DEC ::= var #Id #̄Int compute {
DEC.name = #Id.value();
DEC.value = Integer.valueOf(#Int.value()).intValue(); };

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACE.inAG = ...; };

MES PLACE ::= mp [#Int] − > agnt [#Int] { STMTS } compute {
MES PLACE.code= ...; };

STMTS ::= STMT STMTS compute {
STMT.n = ...;
STMT.inAG = ...; };

STMT ::= upd #Id compute {
STMT.y = ...;
STMT.code = ...; };

Table 12. Semantic equation for AGENTS

AGENTS ::= AGENTS AGENT compute {
AGENTS[1].inAG = AGENTS[0].inAG;
AGENTS[0].outAG = insert(AGENTS[1].outAG,
new Agent(AGENT.number, AGENT.type, AGENT.file ip));
}

∣ epsilon compute {
AGENTS.outAG = AGENTS.inAG;
};

sented in Table 13, with the following meaning: The code for the first construct
MES PLACE is simply concatenated with the code from the second construct
MES PLACES[1].

The semantic equation CM⟦mp[n1] → agnt[n2]S⟧ag = (WAIT i ∶ CS⟦S⟧

(ag,n2), n1) (Table 4) is described in LISA, as presented in Table 14.
However, in this step the undefined semantic equations from steps 3 and

4 also need to be developed (Table 15). For example, a list of agents (inAG)
needs to be propagated.

Step 6:
Easytime also uses variables in statements, and additional checks must be

performed if only declared variables appear in expressions and statements. For
this reason an additional attribute ok of type boolean has been introduced into
the specifications. Moreover, to be able to check if a variable is declared, it

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1035

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Algorithm 2 Translation of Agents into LISA specifications
1: rule Agents {
2: AGENTS ::= AGENTS AGENT compute {
3: AGENTS[1].inAG = AGENTS[0].inAG;
4: AGENTS[0].outAG = insert(AGENTS[1].outAG,
5: new Agent(AGENT.number, AGENT.type, AGENT.file ip));
6: }
7: ∣ epsilon compute {
8: AGENTS.outAG = AGENTS.inAG;
9: };
10: }
11: rule AGENT {
12: AGENT ::= #Int manual #file compute {
13: AGENT.number = Integer.valueOf(#Int[0].value()).intValue();
14: AGENT.type = ”manual”;
15: AGENT.file ip = #file.value();
16: };
17: AGENT ::= #Int auto #ip compute {
18: AGENT.number = Integer.valueOf(#Int[0].value()).intValue();
19: AGENT.type = ”auto”;
20: AGENT.file ip = #ip.value();
21: };
22: }

Table 13. Semantic equation for MES PLACES

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACES[0].code = MES PLACE.code +
”/ n” + MES PLACES[1].code; };

MES PLACES ::= MES PLACE compute {
MES PLACES.code = MES PLACE.code };

is necessary to propagate attribute inState into the measuring places, state-
ments, and expressions. The complete LISA specifications for MES PLACE are
shown in Algorithm 3 also using attributes ok and inState.

Semantic equations for other production are obtained in a similar manner.
Let us conclude this example by finalizing semantic equations for the starting
production (see also Table 9). The initial hash table for agents (AGENTS.inAG)
and declarations (DECS.inState) are empty (Table 16). Agents and declara-
tions are constructed after visiting the subtrees represented by the non-terminals
AGENTS and DECS, and stored into attributes AGENTS.outAG and DECS.
outState, that are passed to the subtree represented by the non-terminal MES
PLACES. If all the syntactic constraints are satisfied (MES PLACES.ok ==

true), then the generated code is equal to a code produced by the subtree
represented by the non-terminal MES PLACES.

Table 14. Semantic equation for MES PLACE

MES PLACE ::= mp [#Int] − > agnt [#Int] { STMTS } compute {
MES PLACE.code= ”(WAIT i ” + STMTS.code +
”, ” + #Int[0].value() + ”)”; };

1036 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 15. Developing undefined semantic equations for MES PLACES

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACE.inAG = MES PLACES[0].inAG;
MES PLACES[1].inAG = MES PLACES[0].inAG;
... };

MES PLACES ::= MES PLACE compute {
MES PLACE.inAG = MES PLACES.inAG;
... };

Table 16. Semantic equations for the starting production

PROGRAM ::= AGENTS DECS MES PLACES compute {
AGENTS.inAG = new Hashtable();
DECS.inState = new Hashtable();
MES PLACES.inAG = AGENTS.outAG;
MES PLACES.inState = DECS.outState;
PROGRAM.code = MES PLACES.ok ? ”/ n” +
MES PLACES.code + ”/ n” : ”ERROR”; };

5. Operation

Local organizers of sporting competitions were faced with two possibilities be-
fore developing EasyTime:

– to rent a specialized company to measure time,
– to measure time manually.

The former possibility is expensive, whilst the latter can be very unreliable. How-
ever, both objectives (i.e. inexpensiveness and reliability), can be fulfilled by
EasyTime. On the other hand, producers of measuring devices usually deliver
their units with software for the collecting of events into a database. Then these
events need to be post-processed (batch processed) to get the final results of
the competitors. Although this batch-processing can be executed whenever the
organizer desires, each real-time application requests online processing. For-
tunately, EasyTime enables both kinds of event processing.

In order to use the source program written in EasyTime by the measuring
system, it needs to be compiled. Note that the code generation [1] of a program
in EasyTime is performed only if the parsing is finished successfully. Otherwise
the compiler prints out an error message and stops. For each of measuring
places individually, the code is automatically generated by strictly following the
rules, as defined in Section 3. An example of the generated code from the
Algorithm 1 for the controlling of measurements, as illustrated by Fig. 1, is pre-
sented in Table 17. Note that the generated code is saved into a database. The
meaning of the particular instructions of virtual machine (e.g., WAIT, FETCH,
STORE), is explained in Table 5.

As a matter of fact, the generated code is dedicated to the control of an
agent by writing the events received from the measuring devices, into the data-
base. Normally, the program code is loaded from the database only once. That

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1037

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Algorithm 3 Translation of MES PLACE into LISA specifications
1: rule Mes places {
2: MES PLACES ::= MES PLACE MES PLACES compute {
3: MES PLACE.inAG = MES PLACES[0].inAG;
4: MES PLACES[1].inAG = MES PLACES[0].inAG;
5: MES PLACE.inState = MES PLACES[0].inState;
6: MES PLACES[1].inState = MES PLACES[0].inState;
7: MES PLACES[0].ok = MES PLACE.ok && MES PLACES[1].ok;
8: MES PLACES[0].code = MES PLACE.code + ”/n” + MES PLACES[1].code;
9: };
10: MES PLACES ::= MES PLACE compute {
11: MES PLACE.inAG = MES PLACES.inAG;
12: MES PLACE.inState = MES PLACES.inState;
13: MES PLACES.ok = MES PLACE.ok;
14: MES PLACES.code = MES PLACE.code;
15: };
16: }
17: rule MES PLACE {
18: MES PLACE ::= mp /[#Int /] / − / > agnt /[#Int /] /{ STMTS /} compute {
19: STMTS.inAG = MES PLACE.inAG;
20: STMTS.inState = MES PLACE.inState;
21: STMTS.n = Integer.valueOf(#Int[1].value()).intValue();
22: MES PLACE.ok = STMTS.ok;
23: MES PLACE.code = ”(WAIT i ” + STMTS.code + ”, ” + #Int[0].value() + ”)”;
24: };
25: }

is, only an interpretation of the code could have any impact on the performance
of a measuring system. Because this interpretation is not time consuming, it
cannot degrade the performance of the system. On the other hand, the preci-
sion of measuring time is handled by the measuring device and is not changed
by the processing of events. In fact, the events can be processed as follows:

– batch: manual mode of processing, and
– online: automatic mode of processing.

The agent reads and writes the events that are collected in a text file, when the
first mode of processing is assumed. Typically, events captured by a computer
timer are processed in this mode. Here, the agent looks for an existence of the
event text file that is configured in the agent statement. If it exists, the batch pro-
cessing is started. When the processing is finished, the text file is archived and
then deleted. The online processing is event oriented, i.e. each event generated
by the measuring device is processed in time. In both modes of processing, the
agent works with the program PGM, the runner table RUNNERS, and the re-
sults table DATABASE, as can be seen in Fig. 3. An initialization of the virtual
machine is performed when the agent starts. The initialization consists of load-
ing the program code from PGM. That is, the code is loaded only once. At the
same time, the variables are initialized on starting values.

In order to ensure the reliability of Easytime in practice, competitors are
not allowed to go directly from swimming to running, because the course is
complex and the competitor must to go through both transition areas. In the
case that a competitor skips over the next discipline, the referees disqualify

1038 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 17. Translated code for the EasyTime program in Algorithm 1

(WAIT i FETCH accessfile(”abc.res”) STORE SWIM
FETCH ROUND1 DEC STORE ROUND1, 1)

(WAIT i FETCH accessfile(”abc.res”) STORE TRANS1, 2)

(WAIT i FETCH connect(192.168.225.100) STORE INTER2
FETCH ROUND2 DEC STORE ROUND2
PUSH 0 FETCH ROUND2 EQ BRANCH(FETCH
connect(192.168.225.100) STORE BIKE, NOOP), 3)

(WAIT i FETCH connect(192.168.225.100) STORE INTER3
PUSH 55 FETCH ROUND3 EQ BRANCH(FETCH
connect(192.168.225.100) STORE TRANS2, NOOP)
FETCH ROUND3 DEC STORE ROUND3
PUSH 0 FETCH ROUND3 EQ BRANCH(FETCH
connect(192.168.225.100) STORE RUN, NOOP), 4)

him/her immediately. Actually, EasyTime is only of assistance to referees. All
misuses of the triathlons rules do not have any impact on its operation.

Fig. 3. Executable environment of a program in EasyTime

After the development of EasyTime another demand has arisen - drafting
detection in triathlons. This problem is especially expressive in cycling, where
competitors wishing to improve their results ride their cycles within close-knit
groups. In this way, competitors achieve a higher speed and save energy for
later efforts. Typically, within such groups of competitors the hardest work is per-
formed by the leading competitor because he needs to overcome on air resis-
tance. At the same time, other competitors may take a rest. Actually, the drafting
violation arises when one competitor rides behind the other closer than 7 me-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1039

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

ters for more than 20 seconds. Interestingly, this phenomenon is only pursued
during long-distance triathlons, whilst drafting is allowed over short-distances.
Any competitor who violates this drafting rule is punished by the referees with 5
minutes of elimination from the cycling race. The referees observe the race from
motorcycles and determine the drafting violations according to their feelings. In
this sense only, this assessment is very subjective. On the other hand, the ref-
erees can control one competitor a time. Consequently, an automatic system
is needed for detecting drafting violations during triathlons. A drafting detec-
tion system is proposed in order to track this violation. This system is based
on smart-phones because these incorporate the following features: informa-
tion access via wireless networks and GPS navigation. Smart-phones need to
be borne by competitors on their bicycles (Fig. 4). These determine informa-
tion about competitor current GPS positions and transmit these over wireless
modems to a web-service. From the positions of all competitors the web-service
calculates whether a particular competitor is violating the drafting rule. In ad-
dition, these violations can be tackled by the referees on motorcycles using
smart-phones.

Fig. 4. Proposed system for drafting detection in triathlons

Normally, the organizers of triathlons demand the integration of EasyTime
within the system for drafting violation. At a glance, this integration can be per-
formed at the computer-system level, i.e., the mobile agent is added to the
existing EasyTime agents. This mobile agent acts as a web-service and runs
on an application server. Like EasyTime, it uses its own database. Each record
in this database represents a competitor’s current GPS position that can be de-
fined as tuple ⟨#, x, y, z, t, l⟩, where # denotes the competitor’s starting number,
x, y, z his current position within the coordinate system UTM, t the registration
time in the mobile device, and l the calculated path-length. This length l is ob-

1040 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

tained by projecting the current position of the #-th competitor on the line that
connects the points gained by tracking the cycling course with a precise GPS
device, at each second. This has an impact on the competitor’s current posi-
tion, from which the distance is calculated to the competitor in front of him. At
the moment, both systems run on the same server separately. However, further
development of a wireless technology and pervasive computing [29] indicates
that EasyTime should have the ability to run on an application server as well.

Interestingly, the measuring time in biathlons represents another great chal-
lenge for EasyTime. Here, competitors ski on cross-country skiis and stop at
certain places to shoot at targets with rifles carried by them. In order to measure
time during biathlons, EasyTime needs to be modified slightly. In line with this,
two measuring devices are need, and a special measuring device for counting
hits. The first measuring device is dedicated to measuring the four laps of ski-
ing, whilst the second is applied for counting the penalty laps. Each missed shot
attracts one additional penalty lap. The measuring device for counting hits is de-
scribed in EasyTime as a new agent. This agent is responsible for setting the
number of additional penalty laps to be measured using the second measuring
device. In contrast to the static initialization of the laps counter in EasyTime, a
new request is demanded, i.e, a dynamic initialization of this laps counter needs
to be implemented.

EasyTime could also be extended and used in some other application do-
mains. For example, EasyTime could be employed as an electric shepherd for
tracking livestock (cows, sheep, etc.) in the mountains. In this case, each animal
would be labeled with a RFID tag that is controlled by crossing the measuring
place twice a day. First, in the morning, when the animals go from their stalls
and, second, in the evening, when they return to their stalls. Each crossing of
the measuring place by the animal decrements a counter of herd-size for one.
Essentially, the EasyTime tracking system reports an error, when the counter
is not decreased to zero within a specified time interval. In order for this track-
ing system to work properly, the herd-size counter has to be initialized twice a
day (for example, at 12:00 am and 12:00 pm). Additionally, EasyTime could be
used in the clothing industry for tracking cloth through the production. Clothing
production consists of the following phases: preparing, sewing, ironing, adjust-
ing, quality-control and packing [7, 8]. The particular cloth origins during the
preparation stage, where the parts of cutting patterns are collected into bun-
dles, labeled with the RFID tags, and delivered for sewing. This transition of
the bundle into the sewing room presents a starting point for the EasyTime
tracking system. The other control points are, as follows: transition from sewing
room into ironing, transition from ironing into adjusting, transition from adjusting
into quality-control, and transition from quality-control into packing room that
represents the finishing point of the cloth production. Note that these transi-
tions act similarly to those transition areas in Ironman competitions. Usually,
the cloth does not traverse through the production in any one-way because
quality-control can return it to any of the past production phases. In this case,
EasyTime could be used for tracking errors during clothing production.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1041

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

6. Conclusion

The flexibility of the measuring system is a crucial objective in the development
of universal software for measuring time in sporting competitions. Therefore, the
domain-specific language EasyTime was formally designed, which enables the
quick adaptation of a measuring system to the new requests of different sporting
competitions. Preparing the measuring system for a new sporting competition
with EasyTime requires the following: changing a program’s source code that
controls the processing of an agent, compiling a source code and restarting the
agent. Using EasyTime in the real-world has shown that when measuring times
in small sporting competitions, the organizers do not need to employ specialized
and expensive companies any more. On the other hand, EasyTime can reduce
the heavy configuration tasks of a measuring system for larger competitions,
as well. In this paper, we explained how the formal semantics of EasyTime
are mapped into LISA specifications from which a compiler is automatically
generated. Despite the fact that mapping is not difficult, it is not trivial either,
as some additional rules must be defined for attribute propagation. Moreover,
we need to take care of error reporting (e.g., multiple declarations of variables).
In future work, EasyTime could be replaced by the domain-specific modeling
language (DSML) [24, 26, 28] that could additionally simplify the programming
of a measuring system.

References

1. A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1972.

2. P. Arpaia, L. Fiscarelli, G. La Commara, and C. Petrone. A model-driven domain-
specific scripting language for measurement-system frameworks. IEEE Transac-
tions on Instrumentation and Measurement, 60(12):3756–3766, 2011.

3. I. Attali and D. Parigot. Integrating natural semantics and attribute grammars: the
minotaur system. Technical Report 2339, INRIA, 1994.

4. Championchip website, 2010.
5. A. van Deursen and P. Klint. Domain-specific language design requires feature

descriptions. Journal of Computing and Information Technology, 10:1–17, 2002.
6. K. Finkenzeller. RFID Handbook. John Wiley & Sons, Chichester, UK, 2010.
7. I. Fister, M. Mernik, and B. Filipič. Optimization of markers in clothing industry.

Engineering Application of Artificial Intelligence, 21(4):669–678, 2008.
8. I. Fister, M. Mernik, and B. Filipič. A hybrid self-adaptive evolutionary algorithm for

marker optimization in the clothing industry. Applied Soft Computing, 10(2):409–
422, 2010.

9. I. Jr. Fister, I. Fister, M. Mernik, and J. Brest. Design and implementation of
domain-specific language Easytime. Computer Languages, Systems & Structures,
37(4):276–304, 2011.

10. I. Jr. Fister, M. Mernik, I. Fister, and D. Hrnčič. Implementation of the domain-
specific language easy time using a LISA compiler generator. In Proceedings of
the Federated Conference on Computer Science and Information Systems, pages
809–816, Szczecin, Poland, 2011.

1042 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

11. P. Hudak. Building domain-specific embedded languages. ACM computing surveys,
28, 1996.

12. D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

13. T. Kos, T. Kosar, and M. Mernik. Development of data acquisition systems by using
a domain-specific modeling language. Computers in industry, 63(3):181–192, 2012.

14. T. Kosar, M. Mernik, and J.C. Carver. Program comprehension of domain-specific
and general-purpose languages: comparison using a family of experiments. Empir-
ical software engineering, 17(3):276–304, 2012.

15. I. Lukovič, M.J. Varanda Pereira, N. Oliveira, D. da Cruz, and P.R. Henriques. A
DSL for PIM specifications: Design and attribute grammar based implementation.
Computer Science and Information Systems, 8(2):379–403, 2011.

16. S. Mauw, W. Wiersma, and T. Willemse. Language-driven system design. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 14:1–39, 2004.

17. M. Mernik, J. Heering, and A. Sloane. When and how to develop domain-specific
languages. ACM computing surveys, 37(4):316–344, 2005.

18. M. Mernik, M. Lenič, E. Avdičauševič, and V. Žumer. Lisa: an interactive environment
for programming language development. In 11th International Conference Compiler
Construction, volume 2304 of Lecture Notes in Computer Science, pages 1–4, 2002.

19. M. Mernik and V. Žumer. Incremental programming language development. Com-
puter Languages, Systems and Structures, 31(1):1–16, 2005.

20. J. Paakki. Attribute grammar paradigms - a high-level methodology in language
implementation. ACM Computing Surveys, 27(2):196–255, 1995.

21. S. Pakin. The design and implementation of a domain-specific language for net-
work performance testing. IEEE Transactions on Parallel and Distributed Systems,
18(10):1436–1449, 2007.

22. L. Paulson. A semantics-directed compiler generator. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 224–233, 1982.

23. Rfid timing system website, 2010.

24. J. Sprinkle, M. Mernik, J-P. Tolvanen, and D. Spinellis. What kinds of nails need a
domain-specific hammer? IEEE Software, 26(4):15–18, 2009.

25. V. Štuikys and R. Damaševicius. Measuring complexity of domain models repre-
sented by feature diagrams. Information Technology And Control, Kaunas, Tech-
nologija, 38(3):179–187, 2009.

26. V. Štuikys, R. Damaševicius, and A. Targamadze. A model-driven view to meta-
program development process. Information Technology And Control, Kaunas, Tech-
nologija, 39(3):89–99, 2010.

27. M. Viroli, J. Beal, and M. Casadei. Core operational semantics of proto. In Pro-
ceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages
1325–1332, New York, NY, USA, 2011. ACM.

28. R. Vitiutinas, D. Silingas, and L. Telksnys. Model-driven plug-in development for
uml based modeling systems. Information Technology And Control, Kaunas, Tech-
nologija, 40(3):191–201, 2011.

29. M. Weiser. The computer for the 21st century. Scientific American, 3:94–104, 1991.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1043

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Iztok Fister Jr. is a first-year post-graduate student in Computer Science and
Information Technologies at the Faculty of Electrical Engineering and Computer
Science, University of Maribor. Besides his study and research activities, espe-
cially in the field of web-oriented programming, he is an enthusiastic competitor
in triathlons. He is a student member of IEEE.

Mernik Marjan received his M.Sc., and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently
a professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of Alabama
in Birmingham, Department of Computer and Information Sciences, and at
the University of Novi Sad, Faculty of Technical Sciences. His research inter-
ests include programming languages, compilers, domain-specific (modeling)
languages, grammar-based systems, grammatical inference, and evolutionary
computations. He is a member of the IEEE, ACM and EAPLS.

Iztok Fister graduated in computer science from the University of Ljubljana in
1983. In 2007, he received his Ph.D. degree from the Faculty of Electrical En-
gineering and Computer Science, University of Maribor. Since 2010, he has
worked as a Teaching Assistant in the Computer Architecture and Languages
Laboratory at the same faculty. His research interests include computer archi-
tectures, program languages, operational research, artificial intelligence, and
evolutionary algorithms. He is a member of IEEE.

Dejan Hrnčič received his B.Sc. degree from the Faculty of Electrical Engi-
neering and Computer Science, University of Maribor, in 2007. Currently he is
working on his Ph.D. thesis in computer science. His research interests include
evolutionary computation, grammatical inference, and optimization techniques.

Received: November 10, 2011; Accepted: March 6, 2012.

1044 ComSIS Vol. 9, No. 3, Special Issue, September 2012

DOI:10.2298/CSIS111216033D

Using Aspect-Oriented State Machines for
Detecting and Resolving Feature Interactions

Tom Dinkelaker1, Mohammed Erradi2, and Meryeme Ayache2

1 Ericsson R&D, Frankfurt, Germany
tom.dinkelaker@ericsson.com

2 Networking & Distributed Systems Research Group, TIES, SIME Lab, ENSIAS,
Mohammed V-Souissi University, Rabat, Morocco
erradi@ensias.ma, meryemeayache@gmail.com

Abstract. Composing different features in a software system may lead
to conflicting situations. The presence of one feature may interfere with
the correct functionality of another feature, resulting in an incorrect be-
havior of the system. In this work we present an approach to manage
feature interactions. A formal model, using Finite State Machines
(FSM) and Aspect-Oriented (AO) technology, is used to specify, detect
and resolve features interactions. In fact aspects can resolve interac-
tions by intercepting the events which causes troubleshoot. Also a Do-
main-Specific Language (DSL) was developed to handle Finite State
Machines using a pattern matching technique.

Keywords: feature interactions, aspect interactions, aspect-oriented
programming, state machines, conflict detection, conflict resolution,
object-oriented programming, formal methods, domain-specific aspect
languages.

1. Introduction

An important problem in modeling and programming languages is handling
Feature Interactions. When composing different features in a software
system, these may interact with each other. This can lead to a conflicting
situation, where the presence of one feature may interfere with the correct
functionality of another feature, resulting in an incorrect behavior of the
system. Various techniques have been explored to overcome this problem.
Among them, formal approaches have received much attention as a means
for detecting feature interactions in communication service specifications.

In Software Product-Line (SPL) engineering [1], [2], the designer
decomposes a software system into functional features by creating a feature
model [1], [3]. But a feature model can only define a set of features and
known interactions between them. Feature models do not help, when the
designer overlooks a feature interaction – especially at the implementation
level.

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1046

Aspect-Oriented Programming (AOP) [4] uses a special kind of modules
called aspects that supports localization of code from crosscutting features.
AOP has been extended with special language concepts for controlling
aspect interactions [5], [6], but AOP does not support controlling feature
interactions with modules that are not aspects in particular objects.

To address the above problems, in this work we propose a formal ap-
proach which uses an extension to finite state machines as the formalism for
behavioral specification. The central idea behind using finite state machines
as specification models is to have a strong mean to envision feature interac-
tions. The formalism defines a process, which consists of the following steps:
First, the developer gives a formal specification of each feature that extends
the system’s core feature, even partial specifications are allowed. Second,
using a suitable composition mechanism for FSMs (e.g., the FSM’s synchro-
nized cross-product [7]), the developer makes a parallel composition of the
selected feature specifications and analyzes this composition. Third, the de-
veloper can identify conflicting states by analyzing the composed specifica-
tion of the global system. Forth, to resolve feature interactions, the approach
uses aspect-oriented state machines to intercept, prevent, and manipulate
events that cause conflicts. We suggest a new formalism for aspect oriented
state machines (AO-FSM) where pointcut and advice are used to adopt Do-
main-Specific Language (DSL) [8] state machine artifacts. The advice de-
fines a state and transition pattern that it applies at the selected points, i.e. it
may insert new states and transitions as well as it may delete existing ones.

2. Case Study: Telecommunication Systems

2.1. Plain Old Telephone Service (POTS)

Features in Telecommunication systems are packages providing services to
subscribers. The Plain Old Telephone System (POTS) is considered as a
feature providing basic means to set up a conversation between subscribers.
In the following we provide the design and the specification of the basic ser-
vice of a telephone system (POTS). We assume that a phone is identified by
a unique number, and it can be either calling or being called.

In this specification, there are three objects that constitute the telephone
system: the "user", the "agent" and the "call" as shown in Fig. 1. According to
our semantics, the instantiation of these objects provides three objects run-
ning in parallel. The communication between objects is based on operation
calls using a rendezvous mechanism. Note that the behavior part of these
objects is specified using a finite state machine model.

Fig. 1 partially specifies the behavior of the system using finite state ma-
chines (see section 4 for a more detailed presentation of the formalism). This
system works as follows: Once the caller (user-1, an instance of the User

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1047

behavior of Fig. 1) picks up (offhook) his phone (Agent-1, an instance of the
Agent automaton), the network (designated by the object "call") responds by
sending a tone. This user is then ready to dial the telephone number of the
called party (using the operation "dial") using a standard telephone interface
(Fig. 2). Then the network sends back a signal (operation "Ring") which caus-
es a ring on the called phone (Agent-2, another instance of Agent). An
Echo_ring is then sent to the caller (operation Echo_ring). We assume that
the called user is always ready to answer a call. When the called user picks
up (offhook) his phone, the ring is then interrupted and the two users engage
in a conversation.

Fig. 1. Partial automata specifying the three objects

Fig. 2. Standard telephone interface with a flash-hook button (labeled with “R”)

Flash-hook button

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1048

2.2. Features available for User Selection (User Services)

According to the definition provided by Pamela Zave [9]: “in a software sys-
tem, a feature is an increment of functionality, usually with a coherent pur-
pose. If a system description is organized by features, then it probably takes
the form B + F1 + F2 + F3 . . ., where B is a base description, each Fi is a
feature module, and + denotes some feature-composition operation”. There-
fore, telecommunication software systems have been designed in terms of
features. So different customers can subscribe to the features they need.
Many features can be enabled or disabled dynamically by their subscribers.
Among the telecommunications features provided by a telephone system we
found: Call Waiting, Three Way Calling, Call Forwarding, and Originating Call
Screening.

2.2.1 Call Waiting (CW)

A Call Waiting feature (CW) is a service added to the basic service POTS
described earlier. It allows a subscriber A (having the service CW) already
engaged in a communication with a user B to be informed if another user C
tries to reach him. A can either ignore the call of C, or press a flash_hook
button to get connected to C. In other words, if C makes a call to A, while A is
in communication with B, then C receives an Echo_ring, as if A was availa-
ble, and A receives an “on hold” signal. Then A could switch between B and
C by pressing the flash_hook button. If B or C hangs up, then A will be in
communication with the user still on line. The basic service POTS to which is
added the Call Waiting feature is symbolically designated by POTS + CW.

2.2.2 Three Way Calling (TWC)

The Three Way Calling is a service which extends the basic service POTS. It
allows three users A, B and C to communicate in the following way: Consider
a subscriber A (having the TWC feature) who is communicating with B. A can
then add C in the conversation. To reach this goal, A put first B on hold by
pressing a button flash hook button. Then, establish a communication with C.
And finally, press the flash hook button again, to get, A, B and C connected.
A can remove C from the conversation by pressing the flash hook button. If A
hangs up, B and C remain in communication. The basic service POTS to
which is added the Three Way Calling feature is symbolically designated by
POTS + TWC.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1049

2.2.3 Call Forwarding on Busy (CFB)

Call forwarding on busy is a feature on some telephone networks that allows
an incoming call to a called party, which would be otherwise unavailable, to
be redirected to another telephone number where the desired called party is
situated.

2.2.4 Originating Call Screening (OCS)

The OCS Feature allows a user to define a list of subscribers hoping to
screen outgoing calls made to any number in this screening list. A
user A (with the OCS feature) who registered user B on the list will no
longer make a call to B, but B could call A.

2.3. Feature Interactions

Feature interactions could be considered as all interactions that interfere with
the desired operation of a feature and that may occur between a feature and
its environment, including other features. Therefore, a feature interaction may
refer to situations where a combination of different services behaves
differently than expected.

For instance, pressing a “tap” button can mean different things depending
on which feature is anticipated. This is the case of a flash-hook signal
(generated by pressing such button) issued by a busy party could mean
adding a third party to an established call (Three Way Calling) or to accept a
connection attempt from a new caller while putting the current conversation
on hold (Call Waiting). Should the flash hook be considered the response of
Call Waiting, or an initiation signal for Three-Way Calling?

Another feature interaction may occur if we consider a situation where a
user A has subscribed to the Originating Call Screening (OCS) feature and
screens calls to user C. Suppose that a user B has activated the service Call
Forwarding (CF) to user C. In this situation, if A calls B, the intention of OCS
not to be connected to C will be violated since the call will be established to C
by way of B.

Usually, the causes of interactions may be due to the violation of
assumptions related to the feature functionality, to the lack of a technical
support from the network, or to problems related to the distributed
implementation of a feature. Despite the lack of a formal definition of a
feature interaction due to the diversity of the interactions types, the reader
will find a detailed taxonomy of the features interactions in [10].

Our approach to process the feature interaction problem consists in two
methods based on formal techniques. The first method is used to detect the
interactions while the second resolves them. In the context of formal
techniques, interactions are considered as "conflicting statements". This may

http://en.wikipedia.org/wiki/Called_party
http://en.wikipedia.org/wiki/Telephone_number

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1050

be a deadlock, a non-determinism, or constraints violation which may result
from states incompatibility between two interacting features. The
incompatibility between states can be detected using a “Model-Checking”
technique.

3. Problem Statement

Feature interaction is considered a major obstacle to the introduction of new
features and the provision of reliable services. In practical service
development, the analysis of interactions has often been conducted in an ad
hoc manner.

However, the feature interactions problem is not limited to the
telecommunications domain. The phenomenon of undesirable interactions
between components of a system can occur in any software system that is
subject to changes. This is certainly the case for service-oriented
architectures. First, we can observe that interaction is at the very basis of the
web services concept. Web services need to interact, and useful web
services will emerge from the interaction of more specialized services.
Second, as the number of web services increases, their interactions will
become more complex. Many of these interactions will be desirable, but
others may be unexpected and undesirable, and we need to prevent their
consequences from occurring.

There is a broad body of research that addresses the problem of feature
interactions. However, as elaborated in the following, there are important
limitations how the state of the art can detect and resolve feature
interactions.

3.1. OOP cannot localize crosscutting Code of Features

Object-oriented programming (OOP) enables a hierarchical decomposition of
the system into classes that can be extended by other classes. Using an OO
language, developers can completely describe the system behavior in form of
an implementation that can be executed. However, standard OO languages
(such as Java or C++) do not provide special means to control feature
interactions at the implementation level.

Furthermore, there are certain features for which OOP does not allow a
good Separation of Concerns [12] because their implementation is scattered
over several classes and tangled with the implementation of other features
[4]. Examples for such features are non-functional components like tracing,
billing calls, or feature interaction resolution.

Because OO languages do not have the right means to implement features
and manage interactions among them, developers are left alone with
implementing the logic that handles crosscutting and feature interactions,
which results in code that is hard to understand and maintain.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1051

3.2. Feature Models can only detect anticipated Feature Interactions

Feature models (FMs) [3] are a well-known technique to model the
functionality of a system. They also allow prevent interactions between
features that the developer is already aware of.

For example, Fig. 3 shows an FM for the telephone system, which does
not only model features selected by the user, but choices made by the
vendor. The telephone system has abstract features, such as a platform, a
user interface, a receiving call indicator, and a set of user services, which can
be implemented by a choice of features. The telephone platform can be
either analog or digital (exclusive-or). If it is analog, then there can be a
digital display. It must have a bell (mandatory feature), and in addition, it may
have a LED (optional feature) that indicates receiving calls e.g. when the
volume of the bell is low. The user may choose from the set of services from
Section 2.2 (inclusive-or).

To model constraints of valid configurations that cannot be expressed
using exclusive or inclusive or, the developer uses feature constraints. For
example, the feature model in Fig. 3 defines that the features CW and TWC
requires a flash_hook button has to be selected as well. In contrast, when
selecting an analog platform, this excludes selecting a digital display.

Digit a l
Display TW CCW

User
Services

CFB

POTS

User
Int erface

OCS
Flash-hook

But t on
Volum e
But t ons

Receiving Call
Indicat or

BellLED

requires

m andat ory
opt ional

exclusive or

or

const ra int

requires

Plat form

Analog Digit a l

excludes
Fig. 3. A feature model of the telephone system (POTS)

An FM allows checking a particular selection of features, which is called a
configuration, whereby a tool validates that all modeled feature constraints
are met. However, an FM cannot guarantee that there is no feature
interaction at the implementation-level. In case, the developer overlooks an
interaction and does not model it correctly in the FM. In FMs, there is no
support for formal behavioral modeling. Consequently, with FMs, developers
cannot analyze the combined behavior of the features and for possible
interactions between them.

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1052

3.3. AOP can only detect Aspect Interactions

Aspect-oriented programming (AOP) enables developers to modularize such
non-functional concerns in OO languages. Important AOP concepts are
pointcut, join point model, and advice. Pointcuts are predicates over program
execution actions called join points. That is, a pointcut defines a set of join
points related by some property; a pointcut is said to be triggered or to match
at a join point, if the join point is in that set. It is also common to speak about
join points intercepted by a pointcut. Such a join-point model (JPM)
characterizes the kinds of execution actions and the information about them
exposed to pointcuts (e.g. a method call). An Advice is a piece of code
associated with a pointcut, it is executed whenever the pointcut is triggered,
thus implementing crosscutting functionality. There are three types of advice,
before, after, and around; relating the execution of advice to that of the action
that triggered the pointcut the advice is associated with. The code of an
around advice may trigger the execution of the intercepted action by calling
the special method proceed.

However, there is a lack of a general approach to weave on code
fragments of DSLs. The problem is that current AOP tools support only one
JPM at a time, which is for most aspect-oriented (AO) languages one JPM for
the events in the execution of an OO language [4]. Only for some DSLs,
there is a domain-specific aspect language with a domain-specific JPM [13]
(e.g. encompassing join points like a state transition in a state machine). Still,
current AOP tools do not provide support for special quantifications for
weaving aspects into programs written in several languages that have
different kinds of join-point models.

For example, consider implementing a logging feature as an aspect that
needs to be woven into the code of several languages for debugging, such as
it need to be woven into code in Java with an Aspect-like JPM, code in SDL1
that defines a JPM for FSMs, and code in LOTOS2 that defines a JPM on top
of protocols as communicating processes.

4. Characterization of Aspect-Oriented FSMs

In this paper, we propose a new formalism for aspect-oriented state machines
(AO-FSM) which is based on finite-state machines and the Essential
Behavioral Model. An AO-FSM defines a set of states and transitions like a
FSM, but states and transitions do not need to be completely specified.
Developers can selectively omit states, transitions, and labels, and therefore

1 SDL: Specification and Definition Language: http://www.sdl-

forum.org/SDL/index.htm
2 LOTOS: Language Of Temporal Ordering Specification: http://language-of-

temporal-ordering-specification.co.tv/

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1053

constitutes a partial FSM in which parts are missing so that it can be used as
a pattern for matching against other FSMs and for manipulating them.

4.1. The Basic Finite State Machines (FSMs) Model

An automaton with a set of states, and its “control” moves from state to state
in response to external “inputs” is called a Finite State Machine (FSM). A
Finite State Machine provides the simplest model of a computing device. It
has a central processor of finite capacity and it is based on the concept of
state. It can also be given a formal mathematical definition. Finite State
Machines are used for pattern matching in text editors, for compiler lexical
analysis, for communication protocols specifications [15]. Another useful
notion is the notion of the non-deterministic automaton. We can prove that
deterministic finite State Machine, DFSM, recognize the same class of
languages as Non-Deterministic Finite State Machine (NDFSM), i.e. they are
equivalent formalisms.

Definition 1: A non-deterministic Finite State Machine is defined by a quad-
ruplet Q, Σ, δ, q0 where Q is a set of states, Σ is an alphabet, δ is the transi-
tion function, and q0 is the initial state. The transition function is δ: Q× Σ → 2Q
where 2Q is the set of subsets of Q.

An event σ ∈ Σ is accepted out from a state q ∈ Q if the occurrence of σ is
possible from the state q, i.e. if δ(q,σ) is not empty, we denote this by δ(q,σ)!
When δ(q,σ) is empty, we write δ(q,σ)¬!. We consider a blocking state q
(deadlock) if no transition is possible from this state. Formally: q is blocking
⇐⇒ ∀σ ∈ Σ, δ(q σ)¬!.

Definition 2: A deterministic finite state machine is defined by a quadruplet
Q, Σ, δ, q0 and corresponds to a particular case of the non-deterministic
finite state machine where for any q and for any event σ, δ(q,σ) is either the
empty set or a singleton. When δ(q,σ) is not empty, δ(q,σ) = {r} will be simply
noted δ(q, σ) = r.

The definitions introduced above refer to the basic formal model, but the

actual notations used in our system modeling extend this model with other
features in order to make it more practical and to support the requirements of
our approach. Among these extensions we find: nested states, dependencies
between states, and propositions. Therefore nested states, as shown in Fig.4,
will be used to allow for partial automata modeling that hide parts of an
automaton. Such partial specification hides the states and transitions which
are not concerned by the composition and will not lead to an interaction. The
dependencies between states allow indicating the order of occurrence of a
given transition within different features. The propositions could be used as

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1054

guards to characterize a given state according to the value of defined
variables within such state.

Fig.1 gave an example of FSM. In addition, we give here additional exam-
ples concerning the partial finite state machines corresponding to the Call
Waiting (CW) and Three Way Calling (TWC) features:

A partial formal specification of POTS+CW is a FSM FCW shown in Fig. 4.
The shown states Qi, for i=1 to 5, have the following semantics:
 Q1: A and B are connected and start communicating.
 Q2: A and B are communicating, then a call from C occurs on the switch

of A.
 Q3: A and B are communicating, and A receives the signal call-waiting

indicating that someone is calling.
 Q4: B is waiting, A and C are communicating.
 Q5: C is waiting, A and B are communicating.

The events Ei, for i=1 to 3, have the following semantics:
 E1: a call from C arrived on the switch of A.
 E2: A receives the signal call-waiting indicating that someone else is call-

ing.
 E3: A pushes the flash_hook button.

A partial formal specification of POTS+TWC is the FSM FTWC shown in
Fig. 4. The states Ri, for i=1 to 4, have the following semantics:
 R1: A and B are communicating.
 R2: B is waiting.
 R3: B is waiting, A and C are communicating.
 R4: A, B and C are communicating.

The event E3 has already been defined for the specification POTS + CW.
The event E4 has as its semantics:
 E4: A is communicating with C.

Note that the states “in bold” Q1 and R1 represent nested FSM. For in-
stance this means that the state Q1 corresponds to a FSM which is a portion
of the global specification, nested in this state Q1.

Fig. 4. Specification FCW (left) and specification FTWC (right)

FC

W
FT

WC

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1055

4.2. Aspect-Oriented Finite State Machines (AO-FSM)

In an AO-FSM aspect, there are two parts: a pointcut and advice – like in
other aspect-oriented languages for GPLs, but our pointcut and advice adapt
DSL state machine artifacts. There is a composition model that defines how
aspects at the meta-level are composed with base-level state machines,
which is elaborated in the following.

An AO-FSM pointcut defines a state and transition pattern that selects all
FSMs that the advice adapts. This pattern (at the meta-level) describes a
model that needs to be observed on the execution of other (base-level) state
machines. When the first part of the pattern is observed, in other words when
a base-level state machine enters the initial state of the pointcut’s state
machine, our execution model creates a new meta-level instance of the state
machine that describes the pattern and monitors the further execution of the
base state machine. When observing new events at the base level, our
composition model updates the meta-level instance in parallel to executing
and updating the base-level instance. Finally, when the meta-level instance
enters a final state, this means that the pattern has been recognized. In
contrast, whenever the pointcut state machine does not define a matching
transition for one of the observed events, the meta-level instance is deleted
and garbage collected, since the pattern can no longer be fulfilled.

The advice defines a state and transition pattern that it applies at the
selected points in the base-level state machine, i.e. it may insert new states
and transitions as well as it may delete existing ones. As long as the meta-
level instance remains in the final state, the advice is active, i.e. the changes
are applied.

Fig. 5 shows visual models of all types of AO-FSMs. The upper row
enumerates all pointcut types (alphabetic indices), in which only the shown
parts define the pattern and omitted parts match like wildcards. The lower row
enumerates all advice types (roman indices), in which only the bold parts
adapt the corresponding parts of an FSM. When constructing an AO-FSM
aspect, the different types of pointcut and advice types can be composed.

There are 6 different kinds of pointcuts: a) matches states with a particular
label Sp, b) matches any state regardless of its label, c) matches a state in
which a certain preposition p1 is true, d) matches a state that has an incoming
transition with label Eo, e) matches a state with an outgoing transition with a
label Eq, and f) matches a sequence of two states with a transition that has
the label Er.

There are 8 different kinds of advice: i) inserts a new transition for event
Es, ii) inserts a new state St, iii) adds a new proposition p2 to a state, iv)
defines a dependency constraint c2 between two states or two transitions, v)
deletes the transition for event Eu, vi) deletes the state Sv, vii) deletes the
property p3, and finally, viii) defines a conflicting composition that results in
an error message.

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1056

Fig. 5. Pointcut and advice types in aspect-oriented finite state machines

Usually, pointcut and advice compose the above basic patterns to more
complex ones. For example, if we need a composite pointcut that matches a
particular state Sp with an incoming transition with label Eo, then we would
combine the basic patterns a) and f). For example, if we need a composite
advice that adapts an existing state Sp by adding new transition Es to a new
state St, then we would combine the basic patterns a), i) and ii). With these
compositional semantics, rich adaption scenarios can be modeled.

To weave an aspect, we match all pointcuts and apply all advice for all
FSMs. For a single FSM, the pointcut matches at every point in the FSM and
applies the advice at each of these points. The adapted FSMs are then used
for execution.

5. Resolving Feature Interactions with AO-FSMs

To control feature interactions, developers uses aspects to analyze and
manipulate the behavior of a system that they compose from a set of
modular feature specifications. In a nutshell, they compose specifications into
a global behavior which we call an Essential Behavioral Model (EBM) of the
system. The EBM consists of nested state machines that describe the
composition of all features in the system. In the beginning, the EBM may
expose feature interactions. To achieve a conflict-free composition of the
features, developers use AO-FSM aspects to detect interactions that manifest
singularities in the composed specification. There are three possible

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1057

singularities: 1) the composed EBM is non-deterministic, 2) the composed
EBM has contradicting prepositions, or 3) the composed EBM has blocking
states. The main advantage of our approach is that feature interactions can
be directly identified from the model. Finally, the developer can resolve
feature interactions by eliminating singularities using AO-FSM aspect.

5.1. The Composition Mechanisms

A composition mechanism models the way in which features are composed
together to yield a single FSM model of the system. In this section we present
two possible composition mechanisms: the synchronized product and the
exclusive sum. Such operations are defined as follows3:

Definition 4: Consider two FSMs A=QA, ΣA, δA, qA0 and B=QB, ΣB, δB, qB0.
Let Ω be a subset of ΣA and ΣB, in other words Ω ⊆ ΣA∩ΣB. The Synchro-

nized Product of A and B, according to Ω, is a FSM represented by A∗B[Ω]
= Q, Σ, δ, q0 defined formally as follows:
 Q ⊆ QA×QB , Σ = ΣA∪ΣB , q0 = (qA0,qB0)
 ∀q=qA,qB∈ Q, ∀σ∈Ω:

(δ(q,σ)!) ⇐⇒ (δA(qA,σA)! ∧ δB(qB,σB)!)
(δ(q,σ)!) ⇒ (δ(q,σ)) = (δA(qA,σ) × δB(qB,σ))

 ∀q =qA, qB∈ Q, ∀σΩ:
(δ(q,σ)!) ⇐⇒ (δA(qA,σA)! ∨ δB (qB,σB)!)
(δ(q,σ)!) ⇒ (δ(q,σ) = (δA(qA,σ)×{qB}) ∪ ({qA}×δB(qB,σ))

Intuitively, if A and B specifies two processes, then A∗B[Ω] is the global
specification of the two processes composed in parallel and have to
synchronize on Ω’s actions. By AB[] we will note the product of the
automaton A and B obtained by removing the blocking states from the
Synchronized Product A∗B[Ω]. When Ω is empty, the two processes are said
to be independent and their product is called the cross-product of A and B. It
is denoted by A∗B[]. When Ω = ΣA∩ΣB , their product is denoted A∗B.

Definition 5: (Sum of two FSMs, the Extension Relationship)

Consider two FSMs A=QA,A,A,qA0 and B=QB,B,B,qB0. The extension
relation of A and B is a FSM defined formally as follows:
Q ⊆ (QA×QB) ∪ QA ∪ QB, Σ = ΣA∪ΣB , q0 = (qA0,qB0)

3 Recall that a negated exclamation mark (δi (qi, σ)¬!) means that there is no

transition defined, while an exclamation mark (δi (qi, σ)!) means that there is a
transition defined.

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1058

 ∀q=qA,qB∈ Q ∩ (QA×QB), ∀σ ∈ Σ:
 (δ(q,σ)!) ⇐⇒ (δA(qA,σ)! ∨ δB(qB,σ)!)
 (δA(qA,σ)! ∧ δB(qB,σ)!) ⇒ δ(q,σ) = δA(qA,σ)

 (δA(qA,σ)! ∧ δB(qB,σ)!) ⇒ δ(q,σ) = δB(qB,σ)
 (δA(qA,σ)! ∧ δB(qB,σ)!) ⇒ (δ(q,σ)) = (δA(qA,σ) × δB(qB,σ))

 ∀q=qA ∈ Q ∩ QA, ∀σ ∈ Σ:
 (δ(q,σ)!) ⇐⇒ (δA(qA,σ)!)
 (δ(q,σ)!) ⇒ δ(q,σ) = δA(qA,σ)

 ∀q=qB ∈ Q ∩ QB, ∀σ ∈ Σ:

 (δ(q,σ)!) ⇐⇒ (δB(qB,σ)!)
 (δ(q,σ)!) ⇒ δ(q,σ) = δB(qB,σ)

Intuitively, if A and B specify two processes, then AB is the global speci-

fication of the two processes behaving exclusively.

Fig. 6. Cross product of FCW and FTWC

As an example of a composition, Fig. 6 shows the result of the cross prod-
uct of the FSMs corresponding to the features Call Waiting and Three Way
Calling (shown in Fig. 4). We can observe the presence of non-determinism
at index i for i=1,2,3,4,5,6,7,8, which is illustrated by having at least two tran-
sitions for one event going out from the same state and leading to two differ-
ent states. There are 8 cases of non-determinism in Fig. 6, which are indexed

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1059

and high-lighted with the ellipses. For example, the state(R3,Q3) has two tran-
sitions to (R3,Q4) and to (R4,Q4) but using the same event E3. This non de-
terminism reflects the presence of an interaction between the composed fea-
tures (CW and TWC in this case).

5.2. The Essential Behavioral Model (EBM)

Recall that the principle of our method for managing feature interactions
consists in three phases: the global behavior specification, the interaction
detection and the interaction resolution. Interactions can be presented by
states called conflicting states. This can be a deadlock (blocking) situation, a
non-determinism or a constraints violation that is presented as an
incompatibility between two states of features in interaction.

There are two steps that are necessary in order to design a global behavior

specification for a system with a set of features:

 Step 1: Specify formally each feature (involved in the interaction) with
the basic system service (i.e. POTS in the case of a telecommunication
system). This specification can possibly be partial.

 Step 2: Make a composition of the features, using a suitable composition

mechanism (e.g., synchronized product, a cross-product, a sum, …),
leading to the global behavior defined by the EBM, which then is subject
to further analysis. For instance, if the synchronized product is used, it
implies making a synchronized automaton product (as shown in definition
4) of the behaviors of the composed features. Note that the synchroniza-
tion alphabet could be possibly empty.

5.3. Interaction Detection

Interaction Detection consists in the identification of the conflicting states by
analyzing the EBM automaton produced in Step 2 (see Section 5.2 above).
Such states could be either a state where a given transition can lead to two
distinct states (this is the case of non-determinism which is defined in
definition 1), to a deadlock state (where one can execute no transition) or to a
state constraints violation (i.e. a state belonging to the product of two features
specifications, and that results from two incompatible states). Formally, this
violation means that two incompatible states allocate different “logical” values
to the same variable.

For example, there is a feature interaction when we compose the two
feature specifications Call Waiting (CW) and Three Way Calling (TWC) using
a cross-product operation. For instance, when A is in communication with B

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1060

and A gets an incoming call from C, will the CW feature or the TWC feature
be invoked?

m)

ExEx

o)

pz py
py pz

p)

Si

(Si,)!

Fig. 7. Three detection aspects checking for composition singularities

When composing the aspects, a set of so-called detection aspects check
the composition for possible conflicts. A detection aspect detects a singularity
using a pointcut and its advice always declares a conflict, which makes the
composition fail as long as the singularity is not corrected. Fig. 7 shows three
detection aspects that detect the three aforementioned singularities: m)
matches any state if there are more than one transition with the same event
Ex, o) matches any state with contradicting prepositions py and pz, and p)
matches every blocking state Si for which there is no outgoing transition.
When necessary, developers can define their own detection aspects.
Whenever one of the detection aspect’ pointcuts matches in a composed
system, its advice will report a conflict.

Detection aspects are in particular useful when composing many models
and aspects that manipulate those models. Detecting composition
singularities prevents any further incorrect processing of the system in a
potentially undefined state. The above three detection aspects help
automatically detecting the most important composition singularities.
Therefore, the developer does no longer have to worry about them. Similar to
related work on aspects interaction [5], [16], automatic feature interaction
detection is enabled. However, automatic feature conflict resolution is not
possible in general [5].

5.4. Interaction Resolution

In order to solve feature interactions, a resolution aspect can implement
different resolution strategies. For instance, in our previous works we used
the following ones:

 Strategy 1: Make a composition using an exclusive choice of the two

features specifications involved in an interaction. The designer could use

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1061

existing merge algorithms [15] for LTS (Labeled Transition Systems)
based specifications. Such algorithm produces a specification where its
behavior extends the merged ones. The definition of the “extension” re-
lation was given in Definition 5.

 Strategy 2: Solve the interaction by making a precedence order upon the
occurrence of certain events of the features in interaction. This allows a
feature to hide some events from the other feature.

 Strategy 3: Establish a protocol between features involved in an interac-

tion. This protocol consists in exchanging the necessary information to
avoid the interaction. This approach is more adapted in the case where
the features are dedicated to be implemented on distant sites.

However, these strategies are largely based on pre-established and rigid

conventions. Therefore, in this paper we propose a more flexible and
customizable approach: to use aspects also as an interaction resolution
mechanism. According to this proposal, for resolving the conflict, the
developer needs to specify a set of resolution aspects. Each aspect
intercepts the reception of events, and removes one or more singularities
(e.g. cases of non-determinism) from the composed specification. Depending
on corresponding context (e.g. the path to the current state and the received
events), the aspect can make a choice concerning which of the conflicting
features should be active and which not. Therefore, a resolution aspect
defines a pointcut and advice for the corresponding conflict resolution, which
may have been detected using a detection aspect. Its pointcut matches the
conflict situation. Further, its advice declares what states and transitions to
remove from the composition such that it becomes deterministic. In the
following we explain the suggested method in the case where an interaction
occurs between the call waiting (CW) feature and the Three Way Calling
(TWC) Feature specified in Section 2, when they are composed using the
cross-product operation (see Fig. 6).

First, the detection aspect, in Fig. 7 at index m, identifies this non-
determinism singularity. Second, the developer specifies the resolution as-
pect in Fig. 8. The figure illustrates the pointcut as the thin solid lines that are
used as pattern to be recognized on some automaton. It illustrates two pieces
of advice as the bold solid lines that indicate what will be added to the au-
tomaton. In this case, there are pointcuts that matches the paths E1;CW.E3
and E3;TWC.E3. In both cases, the advice inserts a precedence constraint
over the non-deterministic transition labeled with the E3 event, depending
from which FSM this transition originates from CW.E3 or TWC.E3. In other
words, the resolution aspect resolves the interaction of the CW and TWC
features by defining precedence between those features that depends on the
sequence of previous events. Intuitively, if a call of C arrives on agent A
(event E1) before A presses the flash_back button (event E3), the CW fea-
ture will be active. In this case, the left pointcut in Fig. 8 will match and tem-
porarily remove the transition TWC.E3. Conversely, if E3 takes place before

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1062

E1, then the TWC feature will be active. In this case, the right pointcut in Fig.
8 will match and temporarily remove the transition CW.E3.

TWC.E3

E3

CW.E3TWC.E3

E1

preceeds
CW.E3 preceeds

Fig. 8. A resolution aspect that resolves the CW/TWC interaction

In this way, these aspects can be applied to the cross-product in Fig. 6 in
order to eliminate the non-determinism from index 1 and 2. In particular, in
these indexes the left pointcut in Fig. 8 applies, while the corresponding a
vice gives precedence to CW E3 transition with respect to TCW one. Thus,
the interaction is resolved in favor of CW.

6. Implementation

This section describes the proof-of-concept implementation of the AO-FSM
approach proposed in the previous sections. The proof-of-concept is provided
as a domain-specific aspect language AO4FSM. On the one hand, we have
implemented composition operators for state machines. On the other hand,
we are using the implementation of AO4FSM to detect and to resolve feature
interactions.

With this implementation, concrete solutions for feature interactions can be
implemented by using aspects whose pointcuts detect conflict situations and
advices to handle those situations.

We have implemented a prototype of AO4FSM in the Groovy language
[18] using the POPART framework [17] that allows embedding DSLs and
developing aspect-oriented extensions for those DSLs in form of plug-ins.
Further, we have implemented the examples presented in [7] and which were
used as a running example in this paper as a case study.

The implementation of AO4FSM is structured into four parts: the Embed-
ded DSL, the Domain-Specific Join Point Model, the Domain-Specific
Pointcut Language, and the Domain-Specific Advice Language. Each part will
be elaborated in the following.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1063

6.1. Embedded FSM DSL

The implementation of AO4FSM is based on an embedding of a small
FSM DSL for describing finite state machines. The idea of embedding a lan-
guage is to describe its syntax and semantics using an existing language –
the host language – which is in our case Groovy. Basically, a language is
implemented as a library, instead of implementing it with a parser and a
compiler. Then the DSL programs are evaluated by invoking this library. Note
that it is out of the scope of this paper to completely present the embedding
of the FSM DSL. We therefore refer the reader who is interested in the gen-
eral approach to [17].

The following excerpt in Lst. 1 gives a rough idea of how we embed
FSMDSL into a Groovy class called FSMDSL. For the keyword in FSMDSL’s
syntax, the class defines methods, such as fsm, state, transition, and
when.

Lst. 1. Groovy Code for embedding FSMDSL

Our host language is Groovy. Indeed we chose Groovy because it allows
embedding DSLs (such as FSM DSL). Furthermore, Groovy is lightweight,
dynamic, and provides a higher level of abstraction, but at the same time,
you can mix Groovy code with Java. If one needs to extend a DSL with As-
pects, like in our FSM DSL, one can do so by exploiting the dynamicity of
Groovy provided by its Meta-Object Protocol (MOP) [17]. Despite the addi-
tional flexibility provided by using Groovy’s MOP, Groovy only enhances
Java instead of replacing it. Hence, our implementation runs on every stand-
ard JVM.

6.2. Domain-Specific Join Point Model

From a design point of view, Fig. 9 shows the join point types defined for
AO4FSM. There are five join point types that represent points in the execu-

public class FSMDSL {

 private State currentState;

 public StateMachine fsm(Map params, Closure body) {

 StateMachine stateMachine = new StateMachine(…);

 body.delegate = this; body.call();

 return stateMachine;}

 public State state(Map params, Closure stateDefinition){

 public void transitions(Closure transitionDefinitions) {…}

 public void when(Map params) {State from = currentState;

 def t = new Transition(from, params.to, params.event);

 from.addTransition(t);

…

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1064

tion of a FSM program. The joinpoint stargingStateMachine is triggered when
a state machine is started. The EntringState joinpoint could be reified once a
FSM enters into a given state. And when it exits the given state, ExitingState
joinpoint is then reified. The ResetStateMachine joinpoint is reified when
moving back to the starting state. As far as concerned, the EventReceiving
joinpoint, it is reified when the FSM receives an event.

Fig. 9. The Join point types of AO-FSM

Lst. 2. Groovy Code for reifying an EntringStateJoinPoint instance

As shown in the Lst. 2, each join point holds a set of parameters that de-
fines its context. For instance, the context of the EntringState join point refers
to the name of the FSM and to the targeted State as parameters. To reify a
join point at runtime, the POPART framework will execute this code, which
creates an instance of the class EntringStateJoinPoint.

6.3. Domain-Specific Pointcut Language

The other important components of our implementation design are the
pointcuts. In POPART, each pointcuts is implemented as a class which inher-
its the Pointcut class. In FSMDSL, pointcut sub-classes match the current
state parameters with the context of a corresponding join point. It returns
“true” if the pointcut matches – and “false” if not. All pointcuts implement a

joinPointContext = new HashMap();

State thisTargetState =

(State)instrumentationContext.receiver;

joinPointContext.thisFSM = thisTargetState.getOwningFsm();

joinPointContext.thisTargetState = thisTargetState;

def joinPoint = new EntringStateJoinPoint(joinPointContext);

joinPointContext.thisJoinPoint = joinPoint;

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1065

similar pattern, as shown in Lst. 3 for the EventReceivingPointcut. This
pointcut only matches EventReceivingJoinPoint with an event name
given by expectedEvent.

In addition to join point types mentioned in the Fig. 9, we added a more
history-based pointcut to AO4FSM: the Stateful pointcut. This pointcut uses a
state machine as a pattern that should match the execution trace of an ob-
served state machine. The pattern state machine is only internally visible for
the pointcut, to keep track of the events received by an observed state ma-
chine.

Lst. 3. Excerpt of EventReceivingPointcut which matches reifications of
EventReceivingJoinPoint

One can use the StatefulPointcut shown in Lst. 4 to detect the occur-
rence of patterns in FSMs, such as non-determinism. The first thing that the
pointcut will do is that it makes sure that the EventReceiving joinpoints is
triggered. Then it verifies that the current event matches the event and the
name of the current State are the same once in the context of the join points
(respectively: esjp.getEvent() and esjp.getCurrentState()). If the
first state matches, we have to check the event that leads us to get out that
the state does match as well and so on until we arrive to the final state in our
pattern. Then we have to check if the current state in the pattern is final or
not, if it is the case then the pointcut matches, and then its corresponding
advice is applied.

public class EventReceivingPointcut extends Pointcut {

 String expectedEvent; //given by constructor

 public boolean match(JoinPoint jp) {

 if (jp instanceof EventReceivingJoinPoint) {

 EventReceivingJoinPoint esjp =

 (EventReceivingJoinPoint)jp;

 if (esjp.event.euqals(expectedEvent))

 return true;

 else

 return false;

 }

 }

}

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1066

Lst. 4. Excerpt of StatefulPointcut to track an execution history

6.4. Domain-Specific Advice Language

The last part of the implementation is the advice language. This language
deals with making changes to FSMs to which pointcuts have been matched.
When implementing an advice using this language, developers can avoid the
problem of non-determinism as mentioned earlier in this paper. For example,
to resolve a non-determinism, the advice can remove one of the non-
deterministic outgoing edges as suggested by the resolution aspect in Fig. 8.

In the implementation of the advice language, we heavily exploit the
Groovy language features. We use closures and aspects that advise the
FSMDSL language implementation in order to embed the semantics of the
advice languages. One can think of the advice language of AO4FSM as a
DSL that produces aspects for Groovy that change the implementation of the
embedded FSMDSL. As the FSMDSL is changed by aspects, the evaluation
of FSMDSL programs is adapted as well.

To implement the keywords in the advice language, we use aspect tem-
plates, which are closures whose evaluation returns a Groovy aspect that
changes the behavior of some methods in FSMDSL. Such changes will re-
main dynamic, they do not change the static structure of the state machine,

public class StatefulPointcut extends Pointcut {

 StateMachine stateMachinePattern;

 public boolean match(JoinPoint jp) {

 State pCurrentState = stateMachinePattern.

 getCurrentState();

 String pCurrentStateName = pCurrentState.getName();

 if (jp instanceof EventReceivingJoinPoint) {

 EventReceivingJoinPoint esjp = (…)jp;

 String jpCurrentStateName =

 esjp.getCurrentState().getName();

 if (((jpCurrentStateName == pCurrentStateName)) &&

 (pCurrentState.getEvents().

 contains(esjp.getEvent()))) {

 stateMachinePattern.receiveEvent(esjp.getEvent());

 } else if((jpCurrentStateName == "*") &&

 pCurrentState.getEvents().contains(esjp.getEvent())){

 stateMachinePattern.receiveEvent(esjp.getEvent());

 }

 if(jpCurrentStateName.equals(

 stateMachinePattern.getFinalState().getName())) {

 return true;

 }

 }

 else

 return false;

 }

}

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1067

because there will be no changes conducted in the real FSM instance, but
they will be only applied by the aspects. Hence, we can consider those
changes as if they were applied to a “copy” of the real FSM. This part of the
implementation refers to the patterns described in Fig. 8. Indeed each advice
tries to change the behavior of an existing method in the State class.

For instance, the removeTransitionAdvice is the keyword that rep-
resents the advice type at index v) from Fig. 5, whose implementation is
shown in Lst. 5. The removeTransitionAdvice changes the behavior of a
method called State.handleEvent, which is responsible for looking up
the transition from the current to the next state. The advice eventually
changes the behavior of the handleEvent method. If for the current state
an event is received, that matches the event name passed in the advice
template’s arguments, and if it finds a corresponding transition in the cur-
rent state, then it will do nothing but it will proceed as if the transition does
not exist. Otherwise, the advice calls proceed, which will execute the
handleEvent as normal, i.e. without the change.

Lst. 5. Implementation of the AddTransitionAdvice

7. Discussion

To validate the approach, we use the AO4FSM prototype to automatically
detect the interactions, and we have developed a resolution aspect to revolve
these interactions. We could achieve the objectives stated in our introduction,
namely the support of the separation of concerns (in particular crosscutting
features), the formalization of the behavior, and how to deal with interactions.
With the current prototype, conflicts can be successfully detected and
resolved. However, correct results depend on whether the developer
completely specifies the model and correctly implements aspects with the
AO-FSM tool.

In the remainder of this section, we discuss the details about generality and
limitations of our approach with respect to our model (Section 7.1) and the
current prototype implementation (7.2).

removeTransitionAdvice = { current, next, event ->

 aspect(name:"generatedName_" +

 "removeTransitionAdvice\$instante\$" +

 current+"\$"+next+"\$"+event, perInstance:current) {

 around(method_execution("handleEvent")){

 if(matchesRemovedTransition(current,next,event)){
 //omitting proceed ignores the transition

 else {

 return proceed() //proceeds the transition }

…

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1068

7.1. Discussion about the Model

When using aspects for feature interaction detection and resolution, the de-
veloper has to decide case by case what are all encountered interaction sin-
gularities in a composed global behavior, which may have combinations of
the basic singularities shown in Fig. 7. For example, there can be a non-
deterministic transition with the same label (instance of index m) to a state
which has two contradicting prepositions (instance of index o) within a com-
position. Another example is the case where there are more than one block-
ing states (instance of index p). The compositionality can lead to complex
scenarios of interactions. Still, the detections aspects will seek all instances
of the three kinds of interactions and combinations thereof.

Regarding the totality of feature interaction detection, also detecting other
kinds of singularities is conceivable. Possible singularities can be derived
from properties observed by the theory of finite state machine and graph
theory. There are properties like connectivity and cycles. Some of these
properties could indicate a singularity of a possible interaction. Other proper-
ties are not relevant for interactions in our model. For example, with respect
to the connectivity property from graph theory, all FSMs in an EBM are by
definition a connected graph, i.e., there is a path from any node to any other
node in the graph. It is trivial to conclude that all synchronized cross-product
are connected. Therefore, this property does not need to be observed in our
model.

An example of a property which could be relevant is the presence of cy-
cles. A cycle in a directed graph is a path from one node back to the same
node, which in our EBMs could indicate whether the execution of a feature’s
behavior will not terminate. For instance, if there is no cycle, the behavior will
terminate (i.e. there are only finite sequences of input that are recognized by
the FSMs), or it stays alive (liveness property, i.e., something good can hap-
pen). It can be interesting in certain domains, such as security or safety,
whether an EBM has such a property or not. If there are two EBMs that are
free of cycles, still there may be composition that has cycles, i.e., the com-
posed behavior may not terminate or a liveness property is violated, which
indicates a feature interaction.

The current three detection aspects do not consider these more complicat-
ed scenarios. They are out of scope of the paper because for the time being
we found no interesting situation in the software product-line scenarios we
focus on. Still, at the current stage, we cannot draw universally valid conclu-
sions from the case study. A larger case would be more convincing. At the
end, only a formalization proof of the formalism in a proof assistant (like Isa-
belle or Coq) would give absolute guarantees.

With respect generality, the detection capabilities of our three detection
aspects are limited. But, if it is needed, researchers and developers can de-
fine new kind of detection aspects. Since our pointcut language is based on
finite state machines and from automata theory, we can derive that interac-
tion detection for all properties of the composed automaton in an EBM (the
global behavior) that can be recognized by another finite state machine (the

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1069

pointcut). The class of properties that can be recognized by finite state ma-
chines is well known: it can recognize properties expressed by regular ex-
pressions over the input alphabet, Linear-Time Temporal Logic (LTL), and
similar classes. With respect to generality, it can be considered as an ad-
vantage that the approach is based on formal methods of Automata Theory,
which allows us to draw such conclusions from a large body of theoretic re-
search.

The resolution capabilities in our model are complete with respect to finite
state machine, because developers can add and remove all elements in an
FSM, which are accessible as first-class objects in our aspect language. De-
veloper can insert and delete both states and transitions. Developer can ma-
nipulate transitions by changing the incoming and outgoing state. We did not
impose any restrictions with respect to the model into the aspect language
about what could be manipulated in AO4FSM advice.

7.2. Discussion about the Implementation

Our prototype implementation only covers feature detection and resolution at
design time. For save feature implementation, our approach could easily be
integrated with a code generator from state machines to C or Java code.

Various practicable limitations need to be addressed by future work; the
expressiveness of the model is confined by state machines and therefore
systems whose behavior can be formalized as a regular language. The ap-
proach could be extended for models with richer semantics, which conse-
quently would make it more complicated. Because we build the synchronized
product of FSMs, the approach suffers from the well-known state explosion
problem when using FSMs for modeling. Therefore, the prototype can only be
used to analyze small models. In future work, we want to reduce synchro-
nized products by finding equivalent states. Another limitation is that it cur-
rently does not nicely integrate with standard modeling notations, such as
UML. In future work, we would like to support for importing UML state charts
and let the developer enhance them to EBMs.

8. Related Work

Our work is related to the works in the field of FOP, AO modeling, and model
driven development.

FOP [11] provides language support for implementing modular features
that encapsulate basic functionality. Similar to FOP, our EBM and AO-FSM
allow modular specification of features. While FOP uses so called lifters for
inheriting features into a composition, we build on the sum for inheriting
FSMs and the synchronized product for composing them. While FOP is an
approach at the implementation level, we focus on the specification of
features. FOP allows defining known interactions. In contrast, EBM and AO-

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1070

FSM allow automatic detecting of interactions that the developer is not aware
of.

Aspect-oriented modeling has come up with various modeling notations
into which aspects are woven. There are AO state machines [13] and other
AO models available. However, they have been little explored in the context
of detecting feature interactions in behavioral models. AO models can only
detect conflicts involving aspects, but they cannot detect interactions
between base features as we do.

An ongoing trend in language research is to extend more and more base
languages with aspects, like we did for our state machine base language
(FsmDSL). Recently, aspects for Petri nets have been proposed [20].

There are also a number of other extensible compilers and language
workbenches that can be used for extending existing base languages with
aspects, namely the Aspect SandBox [25], Reflex [22], JAsCo [21], the
AspectBench Compiler [23], JAMI [24], and AspectASF [26]. These
extensible language infrastructures mostly support only extensions to
general-purpose language, but not to DSLs.

Achieving better modularization of language implementations in language
engineering is a central subject of research in recent years. There are parser
generators, such as ANTLR [28] and compiler-compilers, such as
SableCC [29] that enable modular and extensible language implementations.
In their specification languages, they use language constructs, such as inher-
itance, that enable better modularity in the language’s specifications and their
implementations. Aspect-oriented modularization itself has been proposed to
be used in language engineering to improve modularity in language specifica-
tions [26], [30] and implementations [23]. Such special specification language
constructs can be used to implement aspect-oriented language extensions in
a modular way [27].

All above mentioned language implementation approaches use an external
tool e.g. compiler that generates from the specification language (meta-
language) the executable code in a particular target language. In contract to
these approaches, we embed the DSL and aspects as internal DSLs. There is
no external tool because DSL programs are processed with the same compil-
er as host programs. This fact allows us to use the extension constructs of the
host language (inheritance and meta-object protocol) to extend the state ma-
chine DSL with aspect-oriented syntax and semantics using a modular AO
language implementation.

Model-driven development proposes various kinds of models – not only
FSMs. Life-Sequence Charts [19] are similar to AO-FSM. Such models are
often used for code generation. While standard model notations do not ade-
quately consider interactions, there are a few special models that allow ex-
pressing such constraints for a restricted set of domains, such as telecom-
munications for which special DSLs are available. Currently, developers are
left alone to encode constraints on the modeled feature using constraint lan-
guages for which often there is no complete support for code generation. In
contrast to this, possible domains for EBM and AO-FSM are not limited.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1071

9. Conclusion

In this paper, we suggested a formal approach to detect and resolve feature
interactions within a distributed software system. The approach is based on a
new formalism for aspect-oriented state machines (AO-FSM) and language
implementation AO4FSM based on finite-state machines and Essential Be-
havioral Models (EBM). An EBM defines states and transitions as a FSM, but
states and transitions do not need to be completely specified and therefore it
allows defining partial FSM models.

A specific mechanism for interactions detection and a strategy for feature
interaction resolution were presented. The implementation of this mechanism
and its associated strategy were made using the AO-FSM formalism.
Therefore, the pointcut defines a state and transition pattern that selects all
FSMs that the advice adapts, while the advice defines a state and transition
pattern that it applies at the selected points. In fact, the approach uses
aspect-oriented state machines to intercept, prevent, and manipulate events
that cause conflicts.

Acknowledgements. This work was partially supported by the EMERGENT project
(01IC10S01N), Federal Ministry of Education and Research (BMBF), Germany. A
support was also provided by the DAAD (German Academic Exchange Service) and
the Moroccan CSPT Research Program.

The authors would like to thank Professor Mira Mezini and the Software
Technology Groups at the Technische Universität Darmstadt. Two of the co-authors
have worked as part of her group while conducting this research.

The authors would like to thank the anonymous reviewers for their valuable
comments and recommendations.

The authors would also like to thank Yassine Essadraoui who has contributed to
the implementation of the prototype of AO4FSM and the telephone case study as part
of his Master’s thesis.

References

1. Clements, P. and Northrop, L., “Software product lines”, Addison-Wesley, 2001.
2. Pohl, K. and Böckle, G. and Van Der Linden, F., “Software product line engi-

neering: foundations, principles, and techniques”, Springer-Verlag New York Inc,
2005.

3. K. Czarnecki and A. Wasowski. “Feature diagrams and logics: There and back
again” in Proc. 11th Int. Software Product Line Conference (SPLC 2007), Wash-
ington, DC, USA, 2007, pp. 23–34.

4. Kiczales, G. and Lamping, J. and Mendhekar, A. and Maeda, C. and Lopes, C.
and Loingtier, J.M. and Irwin, J.: “Aspect-oriented programming” in Proc. Europ.
Conf. on Object-Oriented Programming, Springer, 1997, pp. 220–242.

5. G. Kniesel, “Detection and Resolution of Weaving Interactions. TAOSD: De-
pendencies and Interactions with Aspects”, In Transactions on Aspect-Oriented

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1072

Software Development V, pp. 135–186, LNCS, vol. 5490, Springer Berlin / Hei-
delberg, 2009.

6. Tanter, E., “Aspects of composition in the Reflex AOP kernel”, Software Com-
position, Springer, 2006, pp. 98–113.

7. M. Erradi and A. Khoumsi, “Une approche pour le traitement des interactions de
fonctionalités des systèmes téléphoniques”, in Proc. Colloque Francophone In-
ternational sur l'Ingénierie des Protocoles (CFIP'95), Rennes, France, 1995.

8. M. Mernik, J. Heering, and A.M. Sloane, “When and how to develop Domain-
Specific Languages” ACM Computing Surveys (CSUR), vol. 37, no. 4, 2005, pp.
316–344.

9. Pamela Zave, “Feature Interaction”, http://www2.research.att.com/~pamela/
fi.html

10. E.J. Cameron, N.D. Griffeth, Y.-J. Lin, M. Nilson, W.K. Schnure, et H.
Vlethuijsen. “A feature Interaction Benchmark for IN and beyond”, Feature Inter-
actions in Telecommunications Systems, Eds. L.G. Bouma and H. Velthuijsen,
IOS Press, Amsterdam, 1994.

11. Prehofer, C.: “Feature-oriented programming: A fresh look at objects” in Proc.
ECOOP, Springer, 1997, pp.419–443.

12. Parnas, D.L., “On the criteria to be used in decomposing systems into mod-
ules”, Communications of the ACM, vol. 15, no. 12, 1972, pp. 1053–1058.

13. M. Mahoney, T. Elrad, “A Pattern Story for Aspect-Oriented State Machines”,
LNCS, Vol. 5770, 2009.

14. G. v. Bochmann, “Finite State Description of Communication Protocols”, Com-
puter Networks, Vol. 2 (1978), pp. 361-372.

15. F. Khendek and G. v. Bochmann, “Merging Behavior specifications”, Proc.
FORTE'1993, Boston, USA.

16. W. Havinga, I. Nagy, L. Bergmans, M. Aksit, "A graph-based approach to mod-
eling and detecting composition conflicts related to introductions". In Proc. In-
ternational Conference on Aspect-Oriented Software Development, ACM, 2007.

17. T. Dinkelaker, M. Eichberg, and M. Mezini, „An Architecture for Composing Em-
bedded Domain-Specific Languages”. In Proc. Aspect-Oriented Software Devel-
opment ACM New York, 2010.

18. D. König, A. Glover, “Groovy in Action”. Manning, 2007.
19. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.

Formal Methods in System Design, vol. 19, no. 1, pp. 45–80, 2001.
20. T. Molderez, B. Meyers, D. Janssens and H. Vangheluwe, “Towards an Aspect-

oriented Language Module: Aspects for Petri Nets”, In Proc. Workshop on Do-
main-specific Aspect Languages, ACM New York, 2012.

21. D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: “An Aspect-Oriented Ap-
proach tailored for Component-based Software Development.” In AOSD, pages
21-29, 2003.

22. E. Tanter. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented
Programming. PhD thesis, Université de Nantes, France, 2004.

23. P. Avgustinov, J. Tibble, A. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O.
Lhoták, O. de Moor, D. Sereni, and G. Sittampalam, “abc: An extensible
AspectJ Compiler.” In AOSD, pages 87-98, 2005.

24. W. Havinga, L. Bergmans, and M. Aksit, “Prototyping and Composing Aspect
Languages using an Aspect Interpreter Framework.” In ECOOP, pages 180-
206, 2008.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1073

25. H. Masuhara, G. Kiczales, and C. Dutchyn, “A Compilation and Optimization
Model for Aspect-Oriented Programs.” In CC 2003, volume 2622 of LNCS, pag-
es 46-60, 2003.

26. P. Klint, T. van der Storm, and J. Vinju, “Term Rewriting Meets Aspect Oriented
Programming.” In Proc. of Processes, Terms and Cycles: Steps on the Road to
Infinity, Springer, LNCS 3838, 2005.

27. E. Van Wyk, “Aspects as modular language extensions.” In Electronic Notes in
Theoretical Computer Science, volume 82(3), pages 555-574, Elsevier, 2003.

28. T. Parr, “The definitive ANTLR reference: building domain-specific languages.”
The Pragmatic Bookshelf, 2007.

29. E.M. Gagnon and L.J. Hendren, “SableCC, an object-oriented compiler frame-
work.” In Proc. Of Technology of Object-Oriented Languages, pages 140-154,
IEEE, 1998.

30. M. Mernik, X. Wu, and B. Bryant, “Object-oriented language specifications: Cur-
rent status and future trends.” In ECOOP Workshop: Evolution and Reuse of
Language Specifications for DSLs (ERLS), 2004.

Tom Dinkelaker holds a PhD and a German Diploma in computer science
from the Technische Universitaet Darmstadt, Germany. His research focuses
on the implementation of embedded domain-specific languages and aspect-
oriented programming languages. To provide support for customizing
language semantics and implementation strategies, in his thesis, he explored
the potentials of using meta-object protocols to enable open language
semantics. Tom has embedded a set of languages that are language product-
lines, i.e., their syntax and semantics can be extended by language
developers or end users in order to customize them for special domains. Tom
is now working at Ericsson R&D in the Customer Care team. At Ericsson, he
develops the next generation of business support systems that delivers
features on top of a flexible architecture that customers adapt for individual
needs.

Mohammed Erradi has been a professor in Computer Science since 1986.
He has been leading the distributed computing and networking research
group since 1994 at ENSIAS (Ecole Nationale d’Informatique et d’Analyse
des Systèmes) of Mohammed V-Souissi University (Rabat Morocco), and
was head and founding member of the Alkhawarizmi Computing Research
laboratory. Before joining ENSIAS, Professor Erradi has been affiliated with
the University of Sherbrooke and the University of Quebec in Canada. His
recent main research interests include Communication Software Engineering,
Distributed Collaborative Applications, and Reflection and Meta-level
Architectures. He obtained his Ph.D. in 1993 at University of Montreal in the
area of Communicating Software Engineering under the supervision
Professor Gregor Von Bochmann. He is currently the Principal Investigator of
a number of research projects grants. Among the topics of these projects we
find: Collaborative environment for Telediagnosis in NeuroScience, Cloud
Computing Security, Security Policies composition, Adaptive Wireless
Sensor Networks, Vertical Handover in Mobile Networks. Professor Erradi

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1074

has published more than 60 papers in international conferences and journals.
He has organized and chaired five international scientific events and has
been a member of the program committee in multiple international
conferences.

Meryeme Ayache is a young security researcher, she graduated in 2012
from ENSIAS (Ecole Nationale Supérieur d’Informatique et d’Analyse des
Systèmes, Rabat, Morocco) specializing in Security of Information Systems.
She participated in the implementation of a project on “Behavioral Modeling
with Aspect-Oriented State Machines” as an internship within the Software
Technology Group of the Technical University of Darmstadt. Her interest is
on mobile computing and security.

Received: December 16, 2011; Accepted: July 18, 2012.

DOI:10.2298/CSIS120203034C

A MOF based Meta-Model and a Concrete DSL
Syntax of IIS*Case PIM Concepts

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

University of Novi Sad, Faculty of Technical Sciences,
Trg D. Obradovića 6, 21000 Novi Sad, Serbia
{milancel, ivan, slavica, dragoman}@uns.ac.rs

Abstract. In this paper, we present a platform independent model (PIM)
of IIS*Case tool for information system (IS) design. IIS*Case is a model
driven software tool that provides generation of executable application
prototypes. The concepts are described by Meta Object Facility (MOF)
specification, one of the commonly used approaches for describing
meta-models. One of the main reasons for having IIS*Case PIM
concepts specified through the meta-model, is to provide software
documentation in a formal way, as well as a domain analysis purposed
at creation a domain specific language to support IS design. Using the
PIM meta-model, we can generate test cases that may assist in software
tool verification. The meta-model may be also a good base for the
process of the concrete syntax generation for some domain specific
language.

Keywords: information system modeling, domain specific languages,
domain specific modelling, platform independent models.

1. Introduction

IIS*Case is a software tool that provides a model driven approach to
information system (IS) design. It supports conceptual modeling of database
schemas and business applications. IIS*Case, as a software tool assisting in
IS design and generating executable application prototypes, currently
provides:
 Conceptual modeling of database schemas, transaction programs, and

business applications of an IS;
 Automated design of relational database subschemas in the 3rd normal

form (3NF);
 Automated integration of subschemas into a unified database schema in

the 3NF;
 Automated generation of SQL/DDL code for various database management

systems (DBMSs);
 Conceptual design of common user-interface (UI) models; and
 Automated generation of executable prototypes of business applications.

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1076

In order to provide design of various platform independent models (PIM) by
IIS*Case, we created a number of modeling, meta-level concepts and formal
rules that are used in the design process. Besides, we have also developed
and embedded into IIS*Case visual and repository based tools that apply
such concepts and rules. They assist designers in creating formally valid
models and their storing as repository definitions in a guided way. Main
features of IIS*Case and the specification of its usage may be found in [1].

There is a strong need to have PIM concepts specified formally in a
platform independent way, i.e. to be fully independent of repository based
specifications that typically may include some implementation details. Our
current research is based on two related approaches to formally describe
IIS*Case PIM Concepts. One of them is based on Meta Object Facility (MOF)
and the other one on a textual Domain Specific Language (DSL). In [2], we
give a specification of the IIS*Case textual modeling language, named
IIS*CDesLang that formalizes IIS*Case PIM concepts and provides modeling
in a formal way. IIS*CDesLang meta-model is developed under a visual
programming environment for attribute grammar specifications named
VisualLISA [3].

In [4] we propose a meta-model of IIS*Case PIM concepts, which is based
on the Meta Object Facility (MOF) 2.0. MOF 2.0 is a common meta-meta-
model proposed by Object Management Group (OMG) where meta-models
are created by the use of UML class diagrams and Object Constraint
Language (OCL) [5]. As we could not find standardized implementation of
MOF, we decided to use Ecore meta-meta-model. Ecore is the Eclipse
implementation of MOF 2.0 in Java programming language which is provided
by Eclipse Modeling Framework (EMF) [6]. Ecore concepts are not always
identical to MOF 2.0 concepts, but they are expressive enough to create our
IIS*Case meta-model. A benefit of such a meta-model is providing software
documentation in a formal way. Besides, created meta-model can be used for
the software tool verification in EMF environment. It also represents a domain
analysis specification necessary to create IIS*CDesLang, as a textual DSL
that supports IS design. In this paper we give an example that illustrates the
process of modeling a part of an IS using IIS*Case PIM concepts. We also
present a small part of a concrete syntax grammar that is based on the
definition of IIS*Case PIM concepts.

In Fig. 1 we illustrate the four layered architecture of our solution, which is
tailored from OMG four–layered architecture standard. Level M3 comprises
meta-meta-model (MOF 2.0) [7] that is used for implementation of the
IIS*Case meta–model (M2). M2 level represents the IIS*Case PIM meta-
model specified by MOF specification and implemented in EMF. Using the
IIS*Case PIM meta-model, a designer specify and implement a conceptual
model of an IS that is placed at the M1 level of the four-layered data
architecture from Fig. 1. By using IS applications generated by IIS*Case, end-
users manipulate real data, i.e. they create and use models of entities from
real world (M0), using the conceptual model (M1).

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1077

Fig. 1. Four layered meta-data architecture

Apart from Introduction and Conclusion, the paper is organized in four
sections. In Section 2, we present a related work. In Section 3 we give a
presentation of IIS*Case PIM concepts specified through the meta-model that
is implemented in EMF environment. In Section 4 we illustrate an example of
IIS*Case PIM concepts usage, while in Section 5 we give a concrete syntax
definition of main PIM concepts.

2. Related Work

Nowadays, meta-modeling is widely spread area of research and there is a
huge number of references covering MOF based meta-models. However, we
could not find papers presenting formal approaches to the specification of
meta-model implementation and design of CASE tools, based on MOF or
Ecore meta-meta-models.

We found a vast number of meta-model specifications and implementations
based on MOF or Ecore specifications. Meta-models based on MOF are also
presented in [8] and [9]. The authors in both papers propose the meta-models
of the Web Modeling Language. The meta-model specification and design is
implemented under EMF environment. Defining W2000 [8] as a MOF meta-
model, the authors specify it as an UML profile. In [9], the authors provide a
solution for the generation of MOF meta-models from document type
definition (DTD) specifications [10]. A formal specification of OCL is given in
[11]. In their meta-model, the authors precisely define the syntax of OCL, as it
is given in [5]. They propose a solution for the presented meta-model
integration with the UML meta-model. In [12], the authors propose the Kernel
MetaMetaModel (KM3) representing a DSL for meta-model definition. In [13],
the authors propose the UML Profile, EUIS, used for the specification of
business applications’ user interfaces. Their solution provides automatic
interface code generation that is based on their own HCI standard. They
developed a DSL specified as UML Profile that offers user interface modeling
and generation. In [14] the authors propose a solution for the kiosk
applications development. They present KAG, a DSL that provides kiosk
applications development in a more rapid way than standard high-level
programming languages. While the presented DSL provides rapid application

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1078

prototyping of new applications, it also simplifies the maintenance process of
existing applications. The DSL has also reduced the number of errors that
were common in the process of programming using standard high level
programming languages. The authors of the paper [15] present the
DOMMLite, a DSL that provides the definition of database applications' static
structures. The language structure has been defined at the level of the meta-
model. The textual syntax has been defined in order to provide creation,
update and persistence of DOMMLite models. They have also developed a
textual Eclipse editor that provides generation of source code for graphical-
user interface forms supporting CRUDS (Create-Read-Update-Delete-Search)
operations. In [16], the authors present a selection of 75 key publications,
covering the area of DSLs. They give an overview of the terminology, DSL
examples, design methodologies, and implementation techniques. In [17], the
authors give an overview of the problems in the decision, analysis, design,
implementation and deployment phases of DSL development. They have
identified patterns for the first four phases that can aid DSL developers. They
have also presented language development systems and frameworks aimed
at facilitating the development process. The authors of the paper [18] present
Sequencer, a domain specific modeling language for programming or
modeling measurement procedures without interacting with programming
engineers. Sequencer provides development of measurement procedures
inside the measurement system DEWESoft using DCOM objects. It is a DSL
that provides textual or visual mode, customized for the application
development in the measurement domain. Similar to the papers discussed in
this section, we base our research on the development of the DSL in the
domain of IS development. In this paper we focus on the meta-model
specification of IIS*Case PIM concepts and the generation of concrete syntax.

There are various meta-modeling tools that are generally based on their
own meta-meta-model specifications. One of them is Generic Modeling
Environment (GME) [19], a configurable toolkit for domain specific modeling
and program synthesis based on UML meta-models. MetaEdit+ [20], [21] and
[22] allows creation and design of meta-models by the use of a graphical
editor providing the Graph-Object-Property-Port-Role-Relationship data
model. All of these tools may also be used for the IIS*Case PIM meta-model
description in a formal way.

3. IIS*Case Meta-Model

IIS*Case provides a definition of several concepts embedded into IIS*Case
repository, that typically may include some implementation details. In this
paper, we present only IIS*Case PIM meta-model concepts specified by
Ecore meta-meta-model. Hereby we overview here the following main
IIS*Case PIM concepts: Project, Domain and Attribute as Fundamental
concepts, Program unit, Application system, Application type, Form type and
Component type. A model of the IIS*Case main concepts with their properties

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1079

and relationships is presented latter on, in Fig. 2. More information about
these concepts may be found in [1] and [23], as well as in many other authors'
references.

3.1. Project

In IIS*Case, modeling process is organized through one or more projects.
Therefore, the central concept in our meta-model from Fig. 2 is Project. For
each project, a designer defines the project name as its mandatory property.
All existing elements in the repository of IIS*Case are always created in the
context of a project. Fundamental concepts and Application systems are
subunits of a Project. Fundamental concepts are formally independent of any
application system. Fundamental concept instances can be used in more than
one application system, because they are defined at the level of a project.
Fundamental concepts comprise zero or more:
 Attributes,
 Domains,
 Program units and
 Inclusion dependencies.

Each project is organized through application systems and fundamental
concepts. For each project, we can define zero, or more instances of the
Application system concept. An IS designer may create application systems of
various types. By the Application type concept, a designer may introduce
various application system types and then associate each instance of an
application system to exactly one application type.

At the level of a project, IIS*Case provides generation of various types of
repository reports. As the Report is not a real modeling concept, it does not
belong the IIS*Case PIM concepts. However, the IIS*Case repository contains
Report concept. It is used by the IIS*Case reporting tools.

3.2. Domain

Domains specify allowed values of database attributes. They are classified as:
 Primitive and
 User defined.

Therefore, in our meta-model, there are two classes: PrimitiveDomain and
UserDefinedDomain that are subclasses of a Domain class.

Primitive domains represent primitive data types that exist in formal
languages, such as string, integer, char, etc. The reason behind the existence
of user defined domain concept is to allow designers to create their own data
types in order to raise the expressivity of their models. Each domain has its
name, description and default value. At the level of a primitive domain, a
designer may specify length required item value. It denotes if a numeric
length: must be, may be, or is not to be given. For user defined domains, a

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1080

designer needs to define a domain type and a check condition. IIS*Case
supports two classes of user defined domains:

Fig. 2. A meta-model of IIS*Case main PIM concepts

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1081

 Domains created by the inheritance rule and
 Complex domains.

A domain created by the inheritance rule references a specification of some
primitive or user defined domain. We call it a child domain, while the
referenced domain is also called a superordinated or parent domain. By using
the inheritance, all the rules defined at the level of a parent domain also hold
for the child domain.

Complex domains may be created by the tuple rule, set rule, or choice rule.
A domain created by the tuple rule we simply call the tuple domain, because it
represents a tuple of values. The items of such a tuple structure are some of
already created attributes. A domain created by the choice rule we call a
choice domain. It is specified in almost the same way as a tuple domain. The
choice domain concept is the same as the choice type of XML Schema
Language. Each value of a choice domain corresponds to exactly one
attribute. A set domain represents sets of allowed values over a specified
domain.

Check condition is a regular expression that additionally constrains
possible values of a domain created by a designer.

Domain concept allows definition of display properties of screen items that
correspond to attributes and their domains. Each domain corresponds to
exactly one element of the Display type. The Display concept specifies rules,
later used by the application generator to generate screen or report items.
Generated screen or report items correspond to some of the attributes, and
attributes correspond to some of domains. Technical aspects of the display
properties implementation may be found in [24] and [25].

3.3. Attribute

In Fig. 3, we present a meta-model of the Attribute concept. Each attribute in
a project is identified by its name. It also has a description and a Boolean
property specifying if it belongs to the database schema. In practice, the most
of created attributes belong to the database schema. For attributes
representing derived (calculated) values in reports or screen forms a designer
may decide if they are to be included in the database schema. By this, we
classify attributes as: a) included or b) non-included in a database schema.

According to the way how an attribute gains a value, we classify attributes
as: a) non-derived or b) derived. A value of a non-derived attribute is created
by an end-user. A value of derived attribute is always calculated from the
values of other attributes, by applying some function, i.e. a calculation
formula. There is a rule that any non-included attribute must be specified as
derived one.

A function that is used to calculate a derived attribute value is formally
specified in the IIS*Case repository. Additionally, a designer may specify
parameters that are passed to the function. The Function concept will be
presented in the next subsection, Program Units. If an attribute is non-
included in a database schema, the function is referenced as a query function.

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1082

Only derived attributes that are included in a database schema may
additionally reference three IIS*Case repository functions specifying how to
calculate the attribute values on the following database operations: insert,
update and delete.

An attribute may be specified as a) elementary or b) renamed. A renamed
attribute references a previously defined attribute. The source of such an
attribute is the referenced attribute, but with the different semantics. The
renamed attribute needs to be included in database schema. Renaming is a
concept that also exists in the Entity-Relationship and relational data models.
By means of renaming, a designer may differentiate between semantics of
"similar" attributes. If a designer introduces a new attribute A1 and specifies it
as a renamed from the existing attribute A, he or she actually specifies an
inclusion dependency of the form [A1] [A] at the level of a universal relation
scheme. More information about the use of renaming concept in the context of
IIS*Case tool may be found in [1]. Inclusion dependency is modeled in Fig. 2
in our meta-model as the class InclusionDependency inheriting
Fundamentals. It is also related with class Attribute over two relationships,
that actually represent left and right side of the inclusion dependency.

To each attribute a domain must be associated. This association allows
defining a default value and a check condition. If the attribute value is not
specified, the default value is assigned to it. Check condition is the attribute
check expression that represents the regular expression that additionally
constrains the value of the attribute.

At the level of an attribute, we can specify the display properties. The
concept of the Display properties is same as the one at the level of the
Domain concept. Values of display properties, specified at the level of the
associated domain, may be inherited or overridden according to the
requirements of an IS project.

3.4. Program Units

The Program unit concept is used to express complex application
functionalities. We classify program units as: a) Functions, b) Packages and
c) Events.

The Function concept is used to specify any complex functionality that later
may be used in other specifications. Each function has its name and return
type that are mandatory properties, as well as a formal specification of a
function body and a description that are optional. The return type is a
reference to a domain. A function specification may include a list of formal
parameters. Each formal parameter of a function is specified by its name and
a sequence number, as mandatory properties. Exactly one domain is
associated with each formal parameter. Any parameter may also have a
default value specified. With respect to the ways of exchanging values
between the function and its calling environment, we classify formal
parameters as: a) In, b) Out and c) In-Out, with a usual meaning as it is in
many general purpose programming languages.

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1083

Fig. 3. A meta-model of the IIS*Case Attribute concept

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1084

IIS*Case provides grouping of created functions into packages. Each
function may be included into one or more packages, or may stay as a stand-
alone object. By the location of the deployment in a multi-layer architecture,
the packages are classified as: a) Database server packages, b) Application
server packages and c) Client packages. A package is identified by its name,
and may have an optional description.

The Package concept is modeled by the inheritance rule. We have the
abstract class named Package. It is superordinated to the classes:
DBServerPackage, ApplicationServerPackage and ClientPackage. For each
instance of the Package class, there may be zero or more references to the
instances of the Function class.

The Event concept is used to represent any software event that may trigger
some action under a specified condition. Each event is identified by its name,
and may have an optional description. Similar to the packages, by the location
of the deployment in a multi-layer architecture, we also classify events as: a)
Database server events, b) Application server events and c) Client events.
The Event concept is modeled in the similar way like Package, by applying
the inheritance rule.

3.5. Application System

The Application System concept is used to model organizational parts of each
Project. Each application system has its name and a description as
mandatory properties. Besides, it may reference other, subordinated
application systems that we call child application systems. By this, a designer
may create a hierarchy of application systems in a project. Application system
hierarchy is modeled by a recursive reference.

Various kinds of IIS*Case repository objects may be created at the level of
an application system, but in this paper we focus on two of them only, as PIM
concepts: a) Form type and b) Business Application.

3.6. Form type

Form type is the main concept in IIS*Case. The meta-model of this concept is
presented in Fig. 4. It abstracts document types, screen forms, or reports that
end-users of an information system may use in a daily job. By means of the
Form type concept, designers indirectly specify at the level of PIMs a model of
a database schema with attributes and constraints included. At the same time,
they also specify a model of transaction programs and applications of an
information system.

Apart from creating form types in application systems, designers may
include into their application systems form types created in other application
systems being modeled. Therefore, we classify form types as: a) owned and
b) referenced. A form type is owned if it is created in an application system. It

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1085

Fig. 4. A meta-model of the IIS*Case Form Type concept

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1086

may be modified later on through the same application system without any
restrictions. A referenced form type is created in another application system
and then included into the application system being considered. All the
referenced form types in an application system are read-only.

Each form type has a name that identifies it in the scope of a project, a title,
frequency of usage, response time and usage type. Frequency is an optional
property that represents the number of executions of a corresponding
transaction program per time unit. Response time is also an optional property
specifying expected response time of a program execution. By the usage type
property, we classify form types as: a) menus and b) programs.
Menu form types are used to model menus without data items. Program form
types model transaction programs providing data operations over a database.
They may represent either screen forms for data retrievals and updates, or
just reports for data retrievals. As a rule, a user interface of such programs is
rather complex. A program form type may be designated as considered in
database schema design or not considered in database schema design. Form
types considered in database schema design are used later as the input into
the database schema generation process. Form types not considered in
database schema design are not used in the database schema generation
process. They may represent reports for data retrievals only.Each program
form type is a tree of component types. A component type has a name, title,
number of occurrences, allowed operations and a reference to the parent
component type, if it is not a root component type. Name is the component
type identifier. All the subordinated component types of the same parent must
have different names.

Each instance of the superordinated component type in a tree may have
more than one related instance of the corresponding subordinated component
type. The number of occurrences constrains the allowed minimal number of
instances of a subordinated component type related to the same instance of a
superordinated component type in the tree. It may have one of two values: 0-
N or 1-N. The 0-N value means that an instance of a superordinated
component type may exist while not having any related instance of the
corresponding subordinated component type. The 1-N value means that each
instance of a superordinated component type must have at least one related
instance of the subordinated component type.

The allowed operations of a component type denote database operations
that can be performed on instances of the component type. They are selected
from the set {read, insert, update, delete}.

A designer can also define component type display properties that are used
by the program generator. The concept of component type display is defined
by properties: window layout, data layout, relative order, layout relative
position, window relative position, search functionality, massive delete
functionality and retain last inserted record.

Window layout has two possible values: “New window” and “Same window”
and specifies if the component type is to be placed in a new window or in the
same window as the parent component type. Data layout specifies the way of
component type representation in a screen form. Two values are possible:

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1087

“Field layout” or “Table layout”. By the “Field layout”, only one record at a time
is displayed in a form. By the “Table layout”, a set of records at a time is
displayed in a screen form, in a form of a table. The relative order is a
sequence number representing the order of a component type relative to the
other sibling component types of the same parent in a form type tree. The
layout relative position represents the component type relative position to the
parent component type. We may select “Bottom to parent” value if we want to
place the component type below the layout of the parent component type in a
generated screen form, or “Right to parent” value if it is to be placed right to
the parent one. Window relative position is to be specified only when “New
window” layout is selected. A designer may specify one of the three possible
values: “Center”, “Left on top”, or “Custom”. The “Center” value denotes that
the center of a new window is positioned to match the center of the parent
window. “Left on top” specifies that the top left corner of the new window will
match the top left corner of the parent window. By selecting the “Custom”
value, a relative position of the new window top left corner to the top left
corner of the parent window is explicitly specified by giving X and Y relative
positions.

“Search functionality” represents the Boolean property that enables
generation of the filter for data selection. If search functionality is enabled,
end-users are allowed to refine the WHERE clause of a SQL SELECT
statement. If checked, “massive delete functionality” provides a generation of
a delete option next to each record in a table layout. The “retain last inserted
record” property specifies if the last inserted record is to be retained on the
screen for future use.

Each component type includes one or more attributes. A component type
attribute is a reference to a project attribute from the Fundamentals category.
It has a title that will appear in the generated screen form. Also, it may be dec-
lared as mandatory or optional on the screen form. The allowed operations of
a component type attribute denote database operations that can be performed
on the attribute, by means of the corresponding screen item. They are
selected from the set {query, insert, update, nullify}. For a component type
attribute a designer may also specify display properties and by this define its
presentation details in the screen form. The display properties are specified in
the same way as it is for attribute specifications. Values of the display
properties may be inherited from the attribute specification or overridden.

So as to unify the layout formatting rules of selected component type
attributes, a designer may group them into items groups. Each item group
may include one or more component type attributes or other item groups from
the same component type. Any item group has its name, title, context and
overflow properties. The name and title are mandatory properties. Context
and overflow are Boolean properties, specifying if an item group is to be used
for presenting layout contextual information or as a layout overflow area.

Each component type attribute provides defining a “List of values” (LOV)
functionality. To do that, a designer needs to reference a form type that will
serve as a LOV form type. He or she should also define how an end-user can
edit attributes: “Only via LOV” or “Directly & via LOV”. “Only via LOV” property

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1088

means that attribute value may not be inserted or edited using a keyboard, but
only using the LOV. “Directly & via LOV” means that inserting or editing
attribute values is provided both via keyboard and LOV. “Filter value by LOV”
property specifies if all values from LOV will be displayed, or only those
filtered according to the pattern given by an end-user. Restrict expression
represents the where clause that is concatenated to the rest of where clause
in the SQL statement supporting the LOV.

Each component type has one or more keys. Each component type key
comprises one or more component type attributes. It represents the unique
identification of a component type instance but only in the scope of its
superordinated component instance. Uniqueness constraints may be defined
for each component type also. Each component type uniqueness constraint
comprises at least one component type attribute, but may have more than
one. If uniqueness constraint attributes have non-null values, it is possible to
uniquely identify a component type instance but only in the scope of the
superordinated component instance.

3.7. Business Application

Business Application concept represents the way to formally describe an IS
functionality and is organized through a structure of form types. Each
business application has a name and a description. One of the form types
included into the structure must be declared as the entry form type of the
application. It represents the first transaction program invoked upon the
launching of the application. Each business application must have the entry
form type. To create the form type structure of an application, a concept of the
form type call is used. By the form type calls, designers model execution of
calls between generated transaction programs. They are also used to model
parameters and passing the values between two transaction programs during
the call executions. The concept of a form type call comprises two form types:
a calling form type and a called form type.

Any form type may have formal parameters defined. Each formal
parameter has a mandatory name as the identifier. It must be related to
exactly one domain. In the specification of a form type call, it is possible to
associate each parameter to a called form type attribute. By this, a designer
specifies to which attributes real parameter values will be passed during the
call execution.

For a called form type in a call we need to specify Binding and Options
properties. Binding property comprises formal parameters of a called form
type. For each parameter a designer specifies how a real argument value is to
be passed to the parameter. There are three possible options: “value”,
“attribute reference”, or “parameter reference”. The value is a constant that
will be passed during a call execution. The “attribute reference” provides a
relation to a calling form type attribute that gives a value to be passed to the
parameter during a call execution. The “parameter reference” provides a

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1089

relation to a calling form type parameter that gives a value to be passed to the
parameter during a call execution.

The Options properties comprise: calling method, calling mode, and UI
position. Calling method comprises two Boolean properties: a) “Select on
open” and b) ”Restricted select”. “Select on open” means that the called form
type is opened with an automatic data selection. “Restricted select” allows the
data selection in the called form type restricted just to the values of passed
parameters. Calling mode specifies a general behavior of the calling form type
during the call execution. Three possibilities are allowed: “Modal”, “Non-
modal” or “Close calling form”. “Modal” means that a user cannot activate the
calling form type while the called form type is opened. “Non-modal” means
that both the calling and the called form type are simultaneously active in the
screen. “Close calling form” is used to cause the closing of the calling form
type during the call execution. UI position specifies how a call will be provided
at the level of UI: as a menu item or as a button item.

4. IIS*Case PIM Concepts Usage

For many years, IIS*Case provides visually oriented tools for the IS
specification in a formal way. In this section we present a different approach
where an IS is modeled using the IIS*Case PIM concepts specified at the
level of meta-model in EMF. EMF is not only the framework that provides
modeling at the level of meta-models, but also supports model
implementations based on the created meta-models. In this section, by an
example we illustrate the usage of some PIM concepts belonging to our meta-
model trough EMF.

In Fig. 5 we present a part of the project Student Service IS. It represents a
form type Student_Grades that refers to information about students’ grades.
In the following text the project and its main parts are explained in more
details.

Using the Eclipse Modeling Framework (EMF), end-users are able to
specify the model of Student Service IS using the IIS*Case PIM concepts. In
Fig. 6, we present a part of the formal specification of Student Service IS in a
form of a tree structure, created by means of the PIM concepts modeled in
EMF. It represents the form type from Fig. 5. In the following text we also
explain the model from Fig. 6 in more details.

Modeled IS consists of two application systems: Student Service and
Faculty Organization. Student Service application system, referenced in Fig. 5
in the upper left rectangle, is a child application system of the parent
application system Faculty Organization that is referenced in the upper right
corner of Fig. 5. In Fig. 6 we have defined the Project, where a value of the
Name property is FacultyIS. We have also defined at the level of the Project
two kinds of application types: a) System and b) Subsystem. Further, we
classified application system Faculty Organization as the System and Student
Service as the Subsystem application type. In Fig. 6, at the level of the Project

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1090

Fig. 5. Application system Student Service

FacultyIS, we have also created a set of attributes, including: StudentID,
StudentName, Year, CourseShortName, Date and Grade. The set of these
attributes is defined in the Fundamentals category. The attributes defined in
the Fundamentals category are later used in the specification of other IS
components.

Further, we illustrate the usage of the Form Type concept. We have the
form type Student_Grades, placed inside the main area of Fig. 5. It has two
component types: Students and Grades. Student_Grades form type is
presented in Fig. 6 as the Owned Form Type STG – Student Grades at the
level of the application System Student Service. It refers to the information
about student grades.

The rectangles that represent Student and Grades component types are
located inside the rectangle representing the form type Student_grades. While
Student component type represents instances of students, Grades component
type represents instances of grades for each student. Student component
type is the parent to the Grades component type. Student and Grades
component types are modeled in Fig. 6 at the level of the Owned Form Type
STG – Student Grades.

Allowed database operations for the component type are: read, update,
insert and delete. They are presented in Fig. 5 with the abbreviations: r, u, i, d,
respectively. The only allowed database operation for Student is read, while
the allowed operations for Grades are read, insert, update and delete. The
allowed database operations for the component types are specified in our
Project modeled in EMF, although they could not be seen in Fig. 6. End-users
of the generated transaction program specified by the form type
Student_Grades will be able to read data about student instances. They may
read, update and delete existing grades for each student, as well as insert
new instances of the grades.

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1091

Fig. 6. Model of the Application System Student Service

For each of the Student component type attributes, a designer needs to
specify its Name, Title, if it is mandatory or optional for entering values on the

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1092

screen form, Behaviour, and the list of the Allowed operations on the screen
form. A set of display and LOV properties may also be given. In Fig. 6, at the
level of the component type attribute StudentID, we presented the properties:
Allowed operations, Display and LOV.

In a similar way a designer creates a specification of the Grades
component type with attributes CourseShortName, Date and Grade.
CourseShortName is a key of the Grades component type.

In this section we have presented an approach to IS conceptual modeling
in EMF using IIS*Case PIM concepts. Such approach is valuable not only to
create concrete IS models but also to check and validate if IIS*Case PIM
concepts are specified correctly and completely. A designer may also use it
for fast specification of some IS characteristics. On the other hand, IIS*Case
provides specialized, visually oriented and repository based tools supporting
the same modeling approach. In general, it is expected to be more convenient
for the practical usage, since EMF does not have specialized functionalities
and tools to make the IS development process easier for designers.

5. A Concrete Syntax Generation

Generation of the concrete syntax is one of the important steps in the process
of the implementation of some DSL. One of our research goals is an
implementation of the DSL that will assist in the IS design process. We need
to specify the grammar that defines the structure and semantics of the
concepts at the meta-level. Such specification actually represents a DSL that
could be used in the process of conceptual IS modeling.

A concrete syntax definition is based on the abstract syntax. While
concrete syntax expresses a user's perception of a language, the abstract
syntax expresses a viewpoint close to the compiler. A DSL implemented for
the IIS*Case tool may be used by IS designers. Our plan is to develop a
model checker using the abstract syntax specified by EMF. By this, we create
a possibility of checking the formal correctness of models, during the whole
process of the IS modeling. It is an important feature of each modeling
environment aimed at providing IS development in a formal way.

There are different tools for the DSL development. They provide different
approaches and techniques to the DSL implementation process. A meta-
model specified by Ecore meta-meta-model in EMF may be used as the
abstract syntax specification in Eclipse plug-in named EMF text. As we have
already developed the meta-model under the EMF using Ecore meta-meta-
model, we have decided to use EMF text plug-in and test if the IIS*Case
meta-model as the abstract syntax specification may be transformed to the
equivalent concrete syntax.

In this section we present only a small part of the concrete syntax
grammar, successfully generated by the EMF text plug-in. The IIS*Case
meta-model specified by the Ecore meta-meta-model was the input
specification for the generation process. The concrete syntax is the output

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1093

specification. It is expressed in Human Usable Textual Notation (HUTN) [26]
that provides concrete textual language representations for any MOF model.
In the following text we present the concrete syntax rules only for the main
IIS*Case PIM concepts.

Production rule for defining a Project is:

Project ::= "Project" "{" "ProjectName" ":"

ProjectName['"','"'] ("NewApplicationType" ":"

NewApplicationType | "NewFundamentalConcept" ":"

NewFundamentalConcept | "NewApplicationSystem" ":"

NewApplicationSystem)* "}";

It specifies a name of a project (ProjectName), possible types of application

systems (NewApplicationType), different fundamental concepts
(NewFundamentalConcept) and application systems (NewApplicationSystem)
created in the context of the project.

The rule for specification of an Application System is:

ApplicationSystem ::= "ApplicationSystem" "{"

"AppSystemName" ":" AppSystemName['"','"']

"AppSystemDescription" ":" AppSystemDescription['"','"']

"AppSystemType" ":" AppSystemType[]

("ParentAppSystem" ":" ParentAppSystem[])?

("JoinDependency" ":" JoinDependency[] |

"ClosureGraph" ":" ClosureGraph['"','"'] | "BA" ":" BA |

"NewFormType" ":" NewFormType |

"RelationScheme" ":" RelationScheme[])* "}";

It requires specifying the application system name (AppSystemName),

description (AppSystemDescription), a type of the application system
(AppSystemType), parent application system (ParentAppSystem) created join
dependencies (JoinDependecy), a closure graph (ClosureGraph), business
applications (BA), form type categories (NewFormType), and generated
relation schemes (RelationScheme).

The generated rule for defining Primitive domain is:

PrimitiveDomain ::= "PrimitiveDomain" "{"

"DomainName" ":" DomainName['"','"']

"Description" ":" Description['"','"']

("DefaultValue" ":" DefaultValue['"','"'])?

("Comment" ":" Comment['"','"'])?

("DecimalPlaces" ":" DecimalPlaces[INTEGER])?

"LenReq" ":" LenReq[] "}";

It describes a domain name (DomainName), a description (Description)

and a comment (Comment) for the domain, a default value (DefaultValue),
decimal places value (DecimalPlaces) and a required length (LenReq).

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1094

Production rule for specification a User defined domain is:

UserDefinedDomain ::= "UserDefinedDomain" "{"

"DomainName" ":" DomainName['"','"']

"Description" ":" Description['"','"']

("DefaultValue" ":" DefaultValue['"','"'])?

("Comment" ":" Comment['"','"'])?

("CheckCondition" ":" CheckCondition['"','"'])?

"USDDT" ":" USDDT[]

"DomainDisplay" ":" DomainDisplay "}";

Similar to the previous definition PrimitiveDomain we have DomainName,

Description, Comment and DefaultValue. The UserDefinedDomain is also
specified by the check condition (CheckCondition), a type of the domain
(USDDT) and the specification of how the attributes corresponding to the
domain will be displayed (DomainDisplay).

Production rule for defining the Attribute that is incuded in DB is:

AttributeIncludedInDB ::= "AttributeIncludedInDB" "{"

"AttDomain" ":" AttDomain

"AttributeName" ":" AttributeName['"','"']

"Description" ":" Description['"','"']

"AttDisplay" ":" AttDisplay

"AttIncludedDef" ":" AttIncludedDef

"AttTypeIncluded" ":" AttTypeIncluded "}";

The attribute is specified by its name (AttributeName), the attribute domain

(AttDomain), a description (Description), the specification of how the attribute
is displayed (AttDisplay), a definition of the attribute (AttIncludedDef) and a
type of the attribute.

Production rule for the specification of the Attribute that is not incuded in
DB is similar to the previous one:

AttributeNonIncludedInDB ::= "AttributeNonIncludedInDB"

"{" "AttDomain" ":" AttDomain

"AttributeName" ":" AttributeName['"','"']

"Description" ":" Description['"','"']

"AttDisplay" ":" AttDisplay

"AttTypeNonIcluded" ":" AttTypeNonIcluded

"AttNonIncludedDef" ":" AttNonIncludedDef "}";

Production rule for definintion of Function is:

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1095

Function ::= "Function" "{"

"FunctionName" ":" FunctionName['"','"']

("Description" ":" Description['"','"'])?

("FunctionBody" ":" FunctionBody['"','"'])?

("FuncParamList" ":" FuncParamList)*

("FunctionReturnType" ":" FunctionReturnType[])? "}";

Each function is described by its name (FunctionName), a description

(Description), body (FunctionBody), a set of the parameters (FuncParamList)
and the function return type (FunctionReturnType).

The specification rule of the Parameter is:

Parameter ::= "Parameter" "{"

"ParameterSeqNo" ":" ParameterSeqNo[INTEGER]

"ParameterName" ":" ParameterName['"','"']

("ParameterDefValue" ":" ParameterDefValue['"','"'])?

"ParamInOut" ":" ParamInOut

"ParamDomain" ":" ParamDomain[] "}";

It requires the definition of a sequence number in the list

(ParameterSeqNo), a parameter name (ParameterName), a default value
(ParameterDefValue), a type (ParamInOut), and a domain the parameter is
corresponding to (ParamDomain)

Production rule for specification of a Business application is:

BussinesApplication ::= "BussinesApplication" "{"

"BussinesAppName" ":" BussinesAppName['"','"']

"BussinesAppDescription" ":"

BussinesAppDescription['"','"']

("BAEntryFT" ":" BAEntryFT[])* "}";

It describes a business application by its name (BussinesAppName),

description (BussinesAppDescription), and the entry form type (BAEntryFT).
ReferencedFormType production rule is:

ReferencedFormType ::= "ReferencedFormType" "{"

"FormTypeName" ":" FormTypeName['"','"']

("FTCalledFT" ":" FTCalledFT[]

"RefFTAppSys" ":" RefFTAppSys[])* "}";

Each referenced form type has its name (FormTypeName), the reference

to the called form type (FTCalledFT), and the application system
(RefFTAppSys).

Production rule for the definition of an OwnedFormType is:

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1096

OwnedFormType ::= "OwnedFormType" "{"

"FormTypeName" ":" FormTypeName['"','"']

("FTCalledFT" ":" FTCalledFT[])*

"FormTypeTitle" ":" FormTypeTitle['"','"']

("FormTypeFrequency" ":" FormTypeFrequency[INTEGER])?

("FormTypeResponseTime" ":"

FormTypeResponseTime[INTEGER])?

("FTParam" ":" FTParam)*

"DefineFormTypeUsage" ":" DefineFormTypeUsage "}";

It requires the definition of a form type specifying its name

(FormTypeName), title (FormTypeTitle), the form type that is called
(FTCalledFT), frequency (FormTypeFrequency), usage
(DefineFormTypeUsage), and the response time (FormTypeResponseTime)
of the form type, and the list of the form type parameters (FTParam).

Production rule that represents Program definition is:

Program ::= selectedFormTypeUsage

["selectedFormTypeUsage" : ""] "Program" "{"

"ConsideredINDBSchDesign" ":" ConsideredINDBSchDesign[]

("NewComponentType" ":" NewComponentType)* "}";

The production rule specifies the program by the component type tree

structure that consists of a set of component types.
Production rule for the definition of a Component type is:

ComponentType ::= "ComponentType" "{"

"CompTypeName" ":" CompTypeName ['"','"']

"NoOfOccurrences" ":" NoOfOccurrences['"','"']

"CompTypeTitle" ":" CompTypeTitle['"','"']

"AO" ":" AO ("IG" ":" IG[])*

("CTU" ":" CTU)*

("CompTypeKey" ":" CompTypeKey)*

("CompTypeCheckConstraint" ":"

CompTypeCheckConstraint['"','"'])?

"CompTypeCompDisplay" ":" CompTypeCompDisplay

("CompTypeParent" ":" CompTypeParent [])?

("CTAttrib" ":" CTAttrib)* "}";

ComponentType rule describes a component type specifying its name

(CompTypeName), number of occurrences (NoOfOccurrences), a title
(CompTypeTitle), allowed operations for the component type (AO), the item
group (IG), the unique constraint (CTU) and the key (CompTypeKey).

Production rule for the definition for the Component type attribute is:

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1097

ComponentTypeAttribute ::= CompTypeAttribMandatory

["CompTypeAttribMandatory " : ""]

"ComponentTypeAttribute" "{"

"CompTypeAttribTitle" ":" CompTypeAttribTitle ['"','"']

("CompTypeAttribBehavior" ":" CompTypeAttribBehavior

['"','"'])?

("CTADeafultValue" ":" CTADeafultValue['"','"'])?

"CompTypeAttribName" ":" CompTypeAttribName []

("CTAttribFunction" ":" CTAttribFunction[])?

"CTAttribAO" ":" CTAttribAO "CTAttribLov" ":" CTAttribLov

"CTAttribDisplay" ":" CTAttribDisplay "}";

Each component type attribute has its title (CompTypeAttribTitle), behavior

specification (CompTypeAttribBehavior), a default value (CTADeafultValue), a
reference to the attribute (CompTypeAttribName), a reference to the function
(CTAttribFunction), allowed operations for the component type attribute
(CTAttribAO), list of values (CTAttribLov), and the set of display properties
(CTAttribDisplay).

In Fig. 7 we present a fragment of the program that corresponds to the
example specified in Fig. 5.

Firstly, we have created an instance of the project concept, named Faculty
IS. After that we have specified attributes (AttributeIncludedInDB) with their
AttributeName values. New attributes are presented in a form of a new
fundamental concept instances. Before the specification of an application
system, we need to specify one or more application types at the level of the
project. In the example shown in Fig. 7, Project Faculty IS comprises two
application systems (ApplcationSystem). While the first one is a specification
of the Faculty Organization application system, the other one represents
Student Service application system. For each instance of the
ApplicationSystem concept it is necessary to define its name
(AppSystemName), description (AppSystemDescription) and type
(AppSystemType). In Fig. 7, FacultyOrganization is a parent
(ParentAppSystem) application system for the StudentService.

At this stage, in the example in Fig. 7, we define a set of the form types
(NewFormType) for each application system. For each form type, we specify
the name (FormTypeName), title (FormTypeTitle) and the form type usage.
Each form type in Fig 7., has the property values for frequency
(FormTypeFrequency) and response time (FormTypeResponseTime). It also
includes a list of component type specifications (NewComponentType). Form
type STG – Student Grades comprises two component types, a parent
component type (CompTypeParent) STUDENT and its child component type
GRADES.

For each component type, in the example presented in Fig. 7, we define
the name (CompTypeName), title (CompTypeTitle) and the set of display
properties (CompTypeCompDisplay). For STUDENT component type search
functionality (SearchFuncionality) is enabled. The component type STUDENT
is to be positioned in a new window (CompDisplayPosition) and the data need

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1098

to be displayed in a field data layout (CompDispplayDataLayout). For each
component type, we also define component type attributes
(CompTypeAttribute). The definition of component type attributes requires the
name (CompTypeAttribName) and the title (CompTypeAttribTitle) to be
specified.

After the list of component type attributes, the list of component type
constraints is given. We may give specifications of key, uniqueness and check
constraints. In the example shown in Fig. 7, only component type keys are
specified for STUDENT by the property CompTypeKey.

Project {

 ProjectName : "Faculty IS"

 //definition of the fundamental concepts

 NewFundamentalConcept :

 AttributeIncludedInDB {

 AttributeName : "StudentID"

 }

 NewFundamentalConcept :

 AttributeIncludedInDB {

 AttributeName : "StudentName"

 }

 NewFundamentalConcept :

 AttributeIncludedInDB {

 AttributeName : "Year"

 }

 NewFundamentalConcept :

 AttributeIncludedInDB {

 AttributeName : "CourseShortName"

 }

 NewFundamentalConcept :

 AttributeIncludedInDB {

 AttributeName : "Date"

 }

 NewFundamentalConcept :

 AttributeIncludedInDB {

 AttributeName : "Grade"

 }

 //definition of the applicaiton types

 NewApplicationType :

 ApplicationType {

 ApplicationTypeName : "ProjectSubsystem"

 }

 //definition of the applicaiton systems

 NewApplicationSystem :

 ApplicationSystem {

 AppSystemName : "FacultyOrganization"

 AppSystemDescription : "A unit of a Faculty IS"

 AppSystemType : ProjectSubsystem

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1099

 }

 NewApplicationSystem :

 ApplicationSystem {

 AppSystemName : "StudentService"

 AppSystemDescription : "A unit of a FacultyOrgan."

 AppSystemType : ProjectSubsystem

 ParentAppSystem : FacultyOrganization

 //definition of the new form type

 NewFormType :

 OwnedFormType {

 FormTypeName : "STG-StudentGrades"

 FormTypeTitle : "Catalogue of student grades"

 DefineFormTypeUsage :

 Program {

 ConsideredINDBSchDesign : true

 //definition of the new component type

 NewComponentType :

 ComponentType {

 CompTypeName : "STUDENT"

 CompTypeTitle : "Student Records"

 CompTypeCompDisplay :

 SearchFuncionality

 ComponentDisplay {

 CompDisplayPosition : NewWindow { }

 CompDispplayDataLayout :FieldLayout { }

 }

 CompTypeAttribute :

 ComponentTypeAttribute {

 CompTypeAttribName : StudentID

 CompTypeAttribTitle : "StudentId"

 CompTypeAttribBehavior : "queryOnly"

 }

 CompTypeAttribute :

 ComponentTypeAttribute {

 CompTypeAttribName : StudentName

 }

 CompTypeAttribute :

 ComponentTypeAttribute {

 CompTypeAttribName : Year

 }

 CompTypeKey :

 ComponentTypeKey {

 CompTypeKeyAttribute : StudentId

 }

 }

 //definition of the new component type

 NewComponentType :

 ComponentType {

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1100

 CompTypeName : "GRADES"

 CompTypeParent : STUDENT

 CompTypeCompDisplay :

 ComponentDisplay {

 CompDisplayLayoutRelativePosition :

 BottomToParent { }

 CompDispplayDataLayout:TableLayout { }

 }

 //definition of the new component type continues

 }

 }

 FormTypeFrequency : 1

 FormTypeResponseTime : 1

 }
 }
}

Fig. 7. A fragment of program that corresponds to the example in Fig. 5

In this section we presented only a small part of the concrete syntax of a
DSL that assists in the process of an IS development. As the process of
concrete syntax generation is automatic, we can easily produce a new
language based on the whole IIS*Case meta-model. Generated language
provides the syntax and semantics for creating the PIM specifications of an
IS, which is one of the most important activities in our approach to IS
development process.

6. Conclusion

In this paper we presented a part of the IIS*Case PIM meta-model, created by
the use of the MOF 2.0 meta-meta model specification. Our intention was not
to present all the elements of our meta-model in detail. Instead, we tried to
focus just on those meta-model details that are necessary to give a general
picture of the model. We believe that the formal specification of our meta-
model is not for documentation purposes only. It is also a necessary step in
creating a textual DSL to support IS design and give another view of the IS
description. In this paper we have presented only one part of the concrete
syntax generated from the IIS*Case PIM meta-model. The syntax of such a
DSL is not simple. It is a consequence of the complexity of our IIS*Case PIM
meta-model. One of the further steps is to generate the whole concrete syntax
of the DSL. The concrete syntax should be developed for the textual DSL,
although we plan to support the visual approach, too.

The abstract syntax specified by the MOF model is the input specification
for the development of the model checker. We may use the IIS*Case PIM
meta-model in the verification of generated relational database schemas.
Currently, IIS*Case supports an assistance to designers in detecting formal

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1101

conflicts at the level of relational database model. By this, the algorithms for
detection and resolving constraint collisions at the level of relational data
model has already been implemented in IIS*Case. In our future research, we
may extend this support so as to assist designers at the level of created PIM
models in searching for the appropriate solutions of detected problems. In this
way, the process of collision resolving will be raised to the PIM level of
abstraction.

Our further research will include experiments with other technologies that
rely on MOF. The presented meta-model is a good base for a research in the
area of Query View Transform (QVT) set of languages. Our intention is to
embed into IIS*Case transformations between different data models.
Providing data model transformations may play an important role in the IS
design process. In the course of data reengineering process, our plan is to
provide the data integration from various sources based on different data
models. Data transformation rules specified by QVT could be applied at the
level of meta-models specified by various data-models, all expressed in a
unified manner in MOF. Our intention is to provide transformations of the
models specified in IIS*Case to the UML models. Providing such
transformations we allow designers to have models specified in UML standard
with OCL constraints.

Acknowledgment. The research presented in this paper was supported by Ministry of
Education and Science of Republic of Serbia, Grant III-44010: Intelligent Systems for
Software Product Development and Business Support based on Models.

References

1. I. Luković, P. Mogin, J. Pavićević, S. Ristić, “An Approach to Developing Complex
Database Schemas Using Form Types”, Software: Practice and Experience, 2007,
DOI: 10.1002/spe.820, Vol. 37, No. 15, pp. 1621-1656.

2. I. Luković, M. J. Varanda Pereira, N. Oliveira, D. Cruz, P. R. Henriques, “A DSL for
PIM Specifications: Design and Attribute Grammar based Implementation”,
Computer Science and Information Systems (ComSIS), ISSN: 1820-0214, DOI:
10.2298/CSIS101229018L, Vol. 8, No. 2, 2011, pp. 379-403.

3. N. Oliveira, M. J. Varanda Pereira, P. R. Henriques, D. Cruz, B. Cramer,
“VisualLISA: A Visual Environment to Develop Attribute Grammars”, Computer
Science an Information Systems, (ComSIS), ISSN:1820-0214, Vol. 7, No. 2, 2010,
pp. 265-289.

4. M. Čeliković, I. Luković, S. Aleksić, V. Ivančević, "A MOF based Meta-Model of
IIS*Case PIM Concepts", Federated Conference on Computer Science and
Information Systems (FedCSIS), 3rd Workshop on Advances in Programming
Languages (WAPL 2011), September 18-21, 2011, Szczecin, Poland,
Proceedings, IEEE Computer Society Press and Polish Information Processing
Society, ISBN 978-83-60810-39-2, pp. 833-840.

5. Object Management Group (OMG), OCL SpecificationVersion 2.0, [Online]
Available: http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

6. Eclipse Modeling Framework, [Online] Available: http://www.eclipse.org/
modeling/emf/.

http://www.eclipse.org/%20modeling/emf/
http://www.eclipse.org/%20modeling/emf/

Milan Čeliković, Ivan Luković, Slavica Aleksić, and Vladimir Ivančević

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1102

7. Meta-Object Facilty, [Online] Available: http://www.omg.org/mof/.
8. L. Baresi, F. Garzotto, M. Maritati, “W2000 as a MOF Metamodel.” In Proc. of the

6th World Multiconference on Systemics, Cybernetics and Informatics - Web
Engineering track. Orlando, USA, 2002.

9. A. Schauerhuber, M. Wimmer, E. Kapsammer, “Bridging existing web modeling
languages to model-driven engineering: A metamodel for webML”, International
Workshop on Model Driven Web Engineering (2nd), Palo Alto, CA, 2006.

10. Document Type definition (DTD), [Online] Available: http://www.w3.org/TR/html4/
sgml/dtd.html.

11. M. Richters, M. Gogolla, “A meta-model for OCL” In Proc. of the 2nd international
conference on The unified modeling language beyond the standard, ISBN:3-540-
66712-1, 1999.

12. F. Jouault, J. Bézivin, “KM3: a DSL for Metamodel Specification”, In Proc. of 8th
IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems, Bologna, Italy, 2006, Springer LNCS 4037, pp. 171-185.

13. B. Perišić, G. Milosavljević, I. Dejanović, B. Milosavljević, “UML Profile for
Specifying User Interfaces of Business Applications”, Computer Science and
Information Systems (ComSIS), ISSN: 1820-0214, DOI:
10.2298/CSIS110112010P, Vol. 8, No. 2, 2011, pp. 405-426.

14. Živanov Ž., Rakić P., Hajduković M.: “Using Code Generation Approach in
Developing Kiosk Applications“, Computer Science and Information Systems,
(ComSIS), ISSN:1820-0214, Vol. 5, No. 1, 2008, pp. 41-59.

15. Dejanović I., Milosavljević G., Perišić B., Tumbas M.: A Domain-Specific
Language for Defining Static Structure of Database Applications, Computer
Science and Information Systems, (ComSIS), ISSN:1820-0214, Vol. 7, No. 3,
2010, pp. 409-440.

16. Van Deursen A, Klint P, Visser J: Domain-specific languages: an annotated
bibliography, ACM SIGPLAN Not 35(6), 2000, pp. 26–36.

17. Mernik M., Heering J., Sloane A.M.: When and how to develop domain-specific
languages, ACM Computing Surveys, 2005, Vol. 37, No. 4, pp. 316–344.

18. Kos, T., Kosar, T., Knez, J., Mernik, M.: From DCOM interfaces to domain-specific
modeling language: A case study on the Sequencer. , Computer Science and
Information Systems, (ComSIS), ISSN:1820-0214, Vol. 8, No. 2, 2011, pp. 361-
378.

19. GME: Generic Modeling Environment, [Online] Available: http://www.isis.
vanderbilt.edu/Projects/gme/.

20. MetaCase Metaedit+, [Online] Available: http://www.metacase.com/.
21. Kelly, S. Lyytinen, K. Rossi,M.: MetaEdit+: a fully configurable multi-user and

multi-tool CASE and CAME environment, Advanced Information Systems
Engineering 1080, 1996, pp. 1–2.

22. Kelly, S. Tolvanen,J.-P. Domain-Specific Modeling: Enabling Full Code
Generation, Wiley–IEEE Computer Society Press, 2008.

23. I. Luković, S. Ristić, P. Mogin, J. Pavićević, “Database Schema Integration
Process – A Methodology and Aspects of Its Applying”, Novi Sad Journal of
Mathematics, Serbia, ISSN: 1450-5444, Vol. 36, No. 1, 2006, pp. 115-150.

24. J. Banović, “An Approach to Generating Executable Software Specifications of an
Information System”, Ph.D. Thesis, University of Novi Sad, Faculty of Technical
Sciences, Novi Sad, 2010.

25. A. Popović, “A Specification of Visual Attributes and Business Application
Structures in the IIS*Case Tool”, Mr (M.Sc.) Thesis, University of Novi Sad,
Faculty of Technical Sciences, 2008.

http://www.omg.org/mof/
http://www.w3.org/TR/html4/%20sgml/dtd.html
http://www.w3.org/TR/html4/%20sgml/dtd.html
http://www.metacase.com/

A MOF based Meta-Model and a Concrete DSL Syntax of IIS*Case PIM Concepts

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1103

26. Human Usable Textual Notation (HUTN) [Online] Available http://www.omg.org/
spec/HUTN/.

Milan Čeliković graduated in 2009 at the Faculty of Technical Sciences, Novi
Sad, at the Department of Computing and Control. Since 2009 he has worked
as a teaching assistant at the Faculty of Technical Sciences, Novi Sad, at the
Chair for Applied Computer Science. In 2010, he started his Ph.D. studies at
the Faculty of Technical Sciences, Novi Sad. His main research interests are
focused on: Domain specific modeling, Domain specific languages,
Databases and Database management systems. At the moment, he is
involved in the projects concerning application of DSLs in the field of software
engineering.

Ivan Luković received his M.Sc. (5 year, former Diploma) degree in
Informatics from the Faculty of Military and Technical Sciences in Zagreb in
1990. He completed his Mr (2 year) degree at the University of Belgrade,
Faculty of Electrical Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a
Full Professor at the Faculty of Technical Sciences at the University of Novi
Sad, where he lectures in several Computer Science and Informatics courses.
His research interests are related to Database Systems and Software
Engineering. He is the author or coauthor of over 90 papers, 4 books, and 30
industry projects and software solutions in the area.

Slavica Aleksić received her M.Sc. (5 year, former Diploma) degree from
Faculty of Technical Sciences in Novi Sad. She completed her Mr (2 year)
degree at the University of Novi Sad, Faculty of Technical Sciences.
Currently, she works as a teaching assistant at the Faculty of Technical
Sciences at the University of Novi Sad, where she assists in teaching several
Computer Science and Informatics courses. Her research interests are related
to Database Systems, Theory of Data Models, System Design, Logical and
Physical Database Design, Development and Usage of MDSE / CASE tools in
Software Engineering and System Design, Reengineering of Information
Systems and Model Transformations in MDA.

Vladimir Ivančević is a PhD student in Applied Computer Science and
Informatics and a teaching assistant at the Faculty of Technical Sciences,
University of Novi Sad (Serbia), where he also gained his BSc and MSc in
Electrical Engineering and Computing. His research interests include domain
specific languages (DSLs), data mining (DM), and databases. At the moment,
he is involved in several projects concerning application of DSLs and DM in
the fields of software engineering, education, and public health.

Received: February 03, 2012; Accepted: August 17, 2012.

http://www.omg.org/%20spec/HUTN/
http://www.omg.org/%20spec/HUTN/

DOI: 10.2298/CSIS111216023S

LL conflict resolution
using the embedded left LR parser

Boštjan Slivnik

University of Ljubljana
Faculty of Computer and Information Science

Tržaška cesta 25, 1000 Ljubljana, Slovenia
bostjan.slivnik@fri.uni-lj.si

Abstract. A method for resolving LL(k) conflicts using small LR(k) par-
sers (called embedded left LR(k) parsers) is described. An embedded
left LR(k) parser is capable of (a) producing the prefix of the left parse
of the input string and (b) stopping not on the end-of-file marker but on
any string from the set of lookahead strings fixed at the parser genera-
tion time. The conditions regarding the termination of the embedded left
LR(k) parser if used within LL(k) (and similar) parsers are defined and
examined in-depth. It is proved that an LL(k) parser augmented with a set
of embedded left LR(k) parsers can parse any deterministic context-free
grammar in the same asymptotic time as LR(k) parser. As the embedded
left LR(k) parser produces the prefix of the left parse, the LL(k) parser
augmented with embedded left LR(k) parsers still produces the left parse
and the compiler writer does not need to bother with different parsing
strategies during the compiler implementation.

Keywords: embedded parsing, left LR parsing, LL conflicts.

1. Introduction

Choosing the right parsing method is an important issue in a design of a mod-
ern compiler for at least two reasons. First, the parser represents the backbone
of the compiler’s front-end as the syntax-directed translation of the source pro-
gram to the (intermediate) code is based upon it. And second, syntax errors
cannot be scrupulously reported without the appropriate support of the parser.

As the study of available open-source compilers reveal [18], nearly all of
the most popular parsing methods nowadays belong to one of the two large
classes, namely LL and LR [16, 17]. LR parsing, the most popular bottom-up
parsing method, is generally praised for its power while LL parsing, the principal
top-down method, is credited for being simpler to implement and debug, and
better for error recovery and the incorporation of semantic actions [14].

Many variations of the original LL and LR parsing methods [7, 8] have been
devised since their discovery decades ago. Some methods, e.g., SLL, SLR and
LALR [16, 17], focus on reducing the space complexity by producing smaller
parsers (either less code or smaller parsing tables), and some tend to produce

Boštjan Slivnik

faster parsers [1]. Other methods extend the class of languages that can be
parsed by the canonical LL or LR parsers. Methods like GLR and GLL are
able to parse all context-free languages in qubic time (compared with the linear
time achieved by the classical LL and LR methods) [21, 22, 15, 14] while LL(∗)
parsers (produced by the popular ANTLR parser generator) are able to parse
even some context-sensitive languages by resorting to backtracking in some
cases [11]. Finally, some methods modify the behavior of the LR parsing so
that by producing the left parse of the program being compiled instead of the
right parse, they behave as if the top-down, e.g., LL, was used [13, 20].

The discourse on whether LL or LR parsing is more suitable either in gen-
eral or in some particular case still goes on. It has been reignited lately by the
online paper entitled “Yacc is dead” [10] and two issues have been made clear
(again): first, parser generators are appreciated, and second, both methods, LR
and LL, remain attractive [18].

To combine the advantages of both bottom-up and top-down parsing, left
corner parsing was introduced [12, 3]. Basically it uses the top-down parsing
and switches to bottom-up parsing to parse the left corner of each derivation
subtree. However, modern variations switch to bottom-up parsing only when
bottom-up parsing is needed indeed [6, 2]. Left corner parsing never gained
much popularity, most likely because it produces a mixed order parse which
makes incorporating semantic actions tricky.

As described, left corner parsing uses bottom-up parsing to resolve the
problems arising during the top-down parsing while LL(∗) parser uses DFAs
for LL conflict resolution. The former produces a tricky parse and the latter
must always rescan the symbols already scanned by a DFA. In this paper an
embedded left LR(k) parser which can be used within an LL(k) parser instead
of a DFA, is proposed. As it produces the left parse it does not require rescan-
ning of tokens already scanned or backtracking, and thus guarantees the linear
parsing time for all LR(k) grammars.

Another method, namely packrat parsing [4], could perhaps have been used
to resolve LL(k) conflicts, but there are two obstacles. First, packrat parsers are
made for parsing expression grammars where the productions are ordered —
the conversion of a context-free grammar to a parsing expression grammar is
tricky even for the human and cannot be made by the parser generator. Second,
packrat parsers do not handle left recursion well — something in particular that
the embedded left LR(k) parser must handle instead of LL(k) parser.

The problem, i.e., the requirements for embedding an LR(k) parser into the
LL(k) parser, is formulated in Section 2. The solution is described in Sections
3 and 4: the former contains the solution of correct termination of the embed-
ded left LR(k) parser while the latter contains how the parser can produce the
shortest prefix of the left parse as soon as possible. The evaluation of the em-
bedded left LR(k) parser is given in Section 5 together with a brief evaluation
of the new parser.

An intermediate knowledge of LL and LR parsing is presumed. The notation
used in [16] and [17] is adopted except in two cases. First, a single parser

1106 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

step is not described by relation =⇒ (as if a pushdown automaton is defined
as one particular kind of a rewriting system [16]) but by relation ` among the
instantaneous descriptions of a pushdown automaton [5]. Second, the notation
[A → α•β, x] where S =⇒∗rm γ′Av =⇒rm γ′αβv = γβv and x ∈ FIRSTk(z),
denotes the LR(k) item valid for γ.

Finally, it is assumed that the result the parser produces is the left (right)
parse of the input string, i.e., the (reversed) list of productions needed to derive
the input string from the initial grammar symbol using the leftmost (rightmost)
derivation.

2. On resolving LL(k) conflicts

Consider an LR(k) but non-LL(k) grammar G = 〈N,T, P, S〉, i.e., G ∈ LR(k) \
LL(k). If the input string w ∈ L(G) is derived by a derivation

S =⇒πu

G,lm uAδ =⇒πv′
G,lm uv′δ =⇒πv′′

G,lm uv′v′′ = uv = w , (1)

the expected result of parsing it with an LL(k) parser is the left parse

πw = πuπv′ πv′′ ∈ P ∗ . (2)

Since G 6∈ LL(k), an LL(k) conflict is likely to occur and must therefore be
resolved. LL(∗) parsing [11], for instance, tries to determine the next production
using a set of DFAs: if A causes an LL(1) conflict in the derivation (1), a DFA
for A determines the next production by scanning the first few (but sometimes
more) tokens of the string v = v′v′′; afterwards the LL(∗) parser continues
parsing by reading the entire string v again (not just the unscanned suffix of
it). While LL(∗) parser produces the left parse (2), it reads some tokens more
than once and in some cases it must even resort to backtracking (if the DFA
cannot determine the next production). Furthermore, LL(∗) parsing prohibits
left-recursive productions.

To produce the left parse but to avoid rescanning, backtracking and pro-
hibiting left-recursive productions, small LR(k) parsers can be used instead of
DFAs. However, these small LR(k) parsers must differ from the classical LR(k)
parsers in two regards:

1. LR(k) parsers used within an LL(k) parser cannot rely on the end-of-
input symbol $ to terminate (unlike the standard LR(k) parsers can).
More precisely, if an LR(k) parser is to be used for parsing the substring v′

of the stringw derived by the derivation (1), it must be capable of terminating
with any string x ∈ FIRSTGk (δ$) in its lookahead buffer (instead of $).

2. LR(k) parsers used within an LL(k) parser must produce the left
parse of its input (instead of the right parse as the standard LR(k) parsers
do).
More precisely, a standard LR(k) parser for A produces the right parse of
v′, but if used within an LL(k) parser, it should produce the left parse πv′ .

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1107

Boštjan Slivnik

If an LR(k) parser fulfills both conditions, it is called the embedded left LR(k)
parser : embedded as it can be used within the backbone LL(k) parser, and
left as it produces the left parse and thus guarantees that the overall result of
parsing is also the left parse.

3. Termination of the embedded LR(k) parser

The main problem regarding the termination of the embedded LR(k) parser can
be explained most conveniently by the following example.

Example 1. Consider the grammar Gex1 with the start symbol S and produc-
tions

S −→ aAb | bAab and A −→ Aa | a .

As A is a left-recursive nonterminal, it causes the LL(1) conflict whenever a is
in the lookahead buffer of the LL(1) parser.

If the input string starts with aa, then after the first two steps, namely

$S aa . . . $
L̀L

$bAa aa . . . $
L̀L

$bA a . . . $,

the backbone LL(1) parser reaches the configuration $bA a . . . $ (the strings
on the left side and on the right side of represent the stack contents and the
remaining (yet unscanned) part of the input, respectively; the topmost stack
symbol and the contents of the lookahead buffer are close to). The configu-
ration $bA a . . . $ exhibits an LL(1) conflict on A a. At this point, an embedded
LR(1) parser for A should be used: as b is never derived from A, it can function
as the end-of-input marker.

If the input string starts with baa, then LL(1) parsing starts as

$S baa . . . $
L̀L

$baAb baa . . . $
L̀L

$baA aa . . . $.

The backbone LL(1) parser reaches the configuration $baA aa . . . $ where the
embedded LR(1) parser must be used. This time the embedded LR(1) parser
for A cannot be used as it cannot stop on a that follows A in the production
S −→ bAab. More precisely, after shifting the first a on the stack and reducing it
to A, i.e.,

$[ε] aa . . . $
L̀R

$[ε][a] a . . . $
L̀R

$[ε][A] a . . . $,

the embedded LR(1) parser faces the second a in its lookahead buffer, but it
cannot determine whether it should be shifted or not. If the entire input is baab,
the embedded LR(1) parser should terminate and handle the control back to the
backbone LL(1) parser, otherwise it should continue by shifting and reducing
using A −→ Aa. Therefore, the embedded LR(1) parser for Aa, i.e., one that
can terminate on b for the same reason as above, must be used instead of the
one for A.

(Modifying the problem to any k is left as an exercise.)

Two conclusions follow from Example 1:

1108 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

1. The embedded LR(k) parser must sometimes parse substrings de-
rived from a sentential form starting with the LL(k)-conflicting non-
terminal instead of from that nonterminal only. More precisely, if the first
part of the derivation (1) is rewritten as

S =⇒πu′
G′lm u′Bδ′ =⇒G′lm u′β1Aβ2δ

′ =⇒πu′′
G′lm u′u′′Aβ2δ

′ = uAδ , (3)

the parser for Aβ′2, where β2 = β′2β
′′
2 in B −→ β1Aβ2, might be needed

instead of the parser for A. In Example 1 a parser for Aa is needed in
production S −→ bAab instead of a parser for A.

2. The right context of the left sentential form the embedded LR(k) par-
ser is made for, is important. More precisely, the right context is the prefix
of the string that comes after the string derived from the sentential form the
embedded parser is made for, i.e., in the derivation (3) the termination of
the embedded LR(k) parser for Aβ′2 depends on the contents of the set
FIRSTGk (β′′2 δ

′).

Hence, in general an embedded LR(k) parser for Aβ′2 capable of termination
on any string from FIRSTGk (β′′2 δ

′) is needed.
The easiest way to resolve the right context of the embedded LR(k) parser

is to transform grammar G = 〈N,T, P, S〉 into grammar Ḡ = 〈N̄ , T, P̄ , S̄〉 by
applying the transformation of an LL(k) grammar to an SLL(k) grammar [17]:
in the transformed grammar Ḡ each nonterminal occurs in exactly one right
context. More precisely, the start symbol becomes S̄ = 〈S, {ε}〉 and the set N̄
of nonterminals is defined as

N̄ = {〈A,FA〉; S =⇒∗lm uAδ ∧ FA = FIRSTGk (δ)} .

For any nonterminal 〈A,FA〉 the new set P̄ of productions includes productions

〈A,FA〉 −→ X̄1X̄2 . . . X̄n

where, for any i = 1, 2, . . . , n,

X̄i =

{
Xi Xi ∈ T
〈Xi,FIRSTGk (Xi+1Xi+2 . . . XnFA)〉 Xi ∈ N

provided that A −→ X1X2 . . . Xn ∈ P . (This transformation does not introduce
any new LL(k) conflicts; in fact, if k > 1, it even reduces the number of LL(k)
conflicts for some non-SLL(k) grammars [17].)

Example 2. If the grammar Gex1 is transformed, a grammar Ḡex1

〈S, {ε}〉 −→ a〈A, {b}〉b | b〈A, {a}〉ab
〈A, {a}〉 −→ 〈A, {a}〉a | a
〈A, {b}〉 −→ 〈A, {a}〉a | a

is obtained. Two embedded LR(1) parsers are needed: 〈A, {b}〉 and 〈Aa, {b}〉:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1109

Boštjan Slivnik

1. The parser for 〈A, {b}〉 results from production 〈S, {ε}〉 −→ a〈A, {b}〉b: the
parser’s right context is {b} = FIRSTGk (b{ε}): b follows 〈A, {b}〉 in production
〈S, {ε}〉 −→ a〈A, {b}〉b and {ε} (from 〈S, {ε}〉) determines the right context
of the entire production 〈S, {ε}〉 −→ a〈A, {b}〉b.

2. The parser for 〈Aa, {b}〉 results from production 〈S, {ε}〉 −→ b〈A, {a}〉ab,
again with the right context {b} = FIRSTGk (b{ε}): b follows the sentential
form 〈A, {a}〉a in production 〈S, {ε}〉 −→ b〈A, {a}〉ab and {ε} (from 〈S, {ε}〉)
determines the right context of the entire production.

After the LR(1) parsers are embedded, productions for 〈A, {a}〉 and 〈A, {a}〉
are eliminated as they are no longer needed — the embedded LR(k) parsers
are based on the original grammar Gex1.

To resolve conflicts during LL(k) parsing based on the grammar Ḡ, every
production

〈B,FB〉 −→ β1〈A,FA〉β2 ∈ P̄ (4)

with an LL(k)-conflicting nonterminal 〈A,FA〉 is supposed to be replaced with a
production

〈B,FB〉 −→ β1〈〈Aβ′2,FAβ′
2
〉〉β′′2

where β2 = β′2β
′′
2 and FAβ′

2
= FIRSTḠk (β′′2FB). The new symbol 〈〈Aβ′2,FAβ′

2
〉〉 6∈

N̄ acts as a trigger for the embedded LR(k) parser for Aβ′2 capable of termina-
tion on any string from FAβ′

2
.

As the amount of LR parsing is to be minimal, β′2 should be as short as
possible, i.e., ε in the best case. If, on the other hand, not even β′2 = β2 and
β′′2 = ε suffices for the safe termination of the embedded LR(k) parser, 〈B,FB〉
must be declared a conflicting nonterminal.

Finally, if marker 〈〈β,F〉〉 is introduced into the grammar Ḡ = 〈N̄ , T, P̄ , S̄〉
(based on G = 〈N,T, P, S〉), an embedded LR(k) parser for β that terminates
on any lookahead string x ∈ F , is needed. The easiest way to achieve this is to
build the LR(k) parser for the embedded grammar

Ĝβ,F = 〈N̂ , T, P̂ , S1〉

where N̂ = N ∪ {S1, S2} for S1, S2 6∈ N and

P̂ = P ∪ {S1 −→ S2x, S2 −→ β ; x ∈ F} .

The trick is obvious: the embedded LR(k) parser for Ĝβ,F must accept its input
no later than when the reduction on S2 −→ β is due. In other words, if the
reduce on S2 −→ β is replaced with the accept action, the parser never pushes
any symbol of any string x ∈ F onto the stack. If the reduce on S2 −→ β cannot
be determined (because of the LR(k) conflict), the embedded LR(k) parser for
〈〈β,F〉〉 cannot be used.

Determining whether the embedded LR(k) parser does not contain any
LR(k) conflicts is time consuming if a brute-force approach of using testing
whether Ĝβ,F ∈ LR(k) is used. However, the method based on the follow-
ing theorem significantly reduces the time complexity of testing the embedded
LR(k) parser for LR(k) conflicts.

1110 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

Theorem 1. Let G = 〈N,T, P, S〉 be an LR(k) grammar with the derivation

S =⇒∗G,lm uBδ =⇒G,lm uβ1β
′
2β
′′
2 δ .

Grammar Ĝ = 〈N̂ , T, P̂ , S1〉 where

N̂ =N ∪ {S1, S2} for S1, S2 6∈ N and
P̂ = P ∪ {S1 −→ S2x, S2 −→ β′2 ; x ∈ FIRSTGk (β′′2 δ)} ,

is not an LR(k) grammar if and only if

– either β′′2 = ε and [S → β′2•, x′], [B → β′2•, x′] ∈ [$β′2]Ĝ
– or β′′2 6= ε and [S2 → β′2•, x′], [A→ α•α′, y′] ∈ [$β′2]Ĝ

where α′ 6= ε and x′ ∈ FIRSTGk (α′y′).

Proof. The idea the proof is based on is rather simple. Because of the leftmost
derivation specified by this theorem, there is a state of the LR(k) machine for G
that includes all [B → β1•β′2β′′2 , y] where y ∈ FIRSTGk (δ). This state corresponds
to the initial state of the LR(k) machine for Ĝ. By careful examination of all
possibilities only those possibilities permitting LR(k) conflicts in Ĝ are singled
out. The formal proof follows.

First, the structure of the grammar Ĝ implies that items

[S1 → •S2x, $] and [S2 → •β′2, x′] ,

where x ∈ FIRSTGk (β′′2 δ) and x′ ∈ FIRSTGk (β′′2 δ$), appear only in the initial state
[$]Ĝ of the canonical LR(k) parser for the ($-augmented version of) grammar
Ĝ. Likewise, items

[S1 → ψ1•ψ2, $] and [S2 → ψ1•ψ2, x
′] ,

where x′ ∈ FIRSTGk (β′′2 δ$), appear only in [$ψ1]Ĝ. Furthermore, states [$S2ψ]Ĝ,
for various ψ, contain only items based on productions S1 −→ S2x.

Second, as G ∈ LR(k) and is thus unambiguous, the leftmost derivation

S =⇒∗G,lm uBδ =⇒∗G,lm w

implies the existence of the rightmost derivation

S =⇒∗G,rm γBv′′ =⇒G,rm γβ1β
′
2β
′′
2 v
′′ =⇒∗G,rm w .

Moreover, if δ =⇒∗G v′′, then the viable prefix γ depends only on the left senten-
tial form uBδ, i.e., it is unique for all w. Therefore,

{[B → β1•β′2β′′2 , y′]; y′ ∈ FIRSTGk (δ$)} ⊆ [$γβ1]G

where [$γβ1]G is the state [$γβ1]G of the canonical LR(k) machine for the ($-
augmented version of) grammar G.

Consider any two items i1 and i2 (except items based on the production
S′ −→ $S1$ as these items are never involved in an LR(k) conflict) in any state
[$γ̂]Ĝ of the canonical LR(k) machine for Ĝ, i.e., i1, i2 ∈ [$γ̂]Ĝ:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1111

Boštjan Slivnik

1. If i1 and i2 are based on productions in P , then i1, i2 ∈ [$γβ1γ̂]G and there
is no LR(k) conflict between i1 and i2 since G ∈ LR(k).

2. If i1 and i2 are based on productions in P̂ \ P , the following three cases
must be considered:
(a) i1 = [S1 → γ̂•α, $] and i2 = [S1 → γ̂•α′, $]:

If γ̂ = ε, then i1 and i2 imply no actions because α and α′ start with S2.
Otherwise they imply no reduce action (if α 6= ε and α′ 6= ε), imply the
same action (as i1 = i2 if α = ε and α′ = ε), or imply the reduce on $
and shift on non-$ (if α = ε and α′ 6= ε; or vise versa).

(b) i1 = [S1 → γ̂•α, $] and i2 = [S2 → γ̂•α′, y′] (or vice-versa):
i1 implies no action if γ̂ = ε as α starts with S2. The other case, if γ̂ 6= ε,
is impossible: γ̂ starts with S2 in i1 and does not start with S2 in i2.

(c) i1 = [S2 → γ̂•α, y] and i2 = [S2 → γ̂•α′, y′]:
α = α′ and both items imply either the same action or imply no action.

3. If i1 is based on a production in P̂ \ P and i2 is based on a production in P
(or vice versa), the following two cases must be considered:
(a) i1 = [S1 → γ̂1γ̂2•α, $] and i2 = [A→ γ̂2•α′, y′]:

If γ̂1γ̂2 = ε, then i1 implies no action as α starts with S2. The other case,
if γ̂1γ̂2 6= ε, is impossible: i1 ∈ [$γ̂1γ̂2]Ĝ while i2 6∈ [$γ̂1γ̂2]Ĝ.

(b) i1 = [S2 → γ̂1γ̂2•α, y] and i2 = [A→ γ̂2•α′, y′]:
As i1, i2 ∈ [$γ̂1γ̂2]Ĝ, so does

[B → β1γ1γ̂2•αβ′′2 , y′′], [A→ γ̂2•α′, y′] ∈ [$γβ1γ̂1γ̂2]G

where y ∈ FIRSTGk (β′′2 y
′′
2).

– If α 6= ε and α′ 6= ε, then neither i1 nor i2 implies a reduce action.
– If α 6= ε and α′ = ε, then

[S2 → γ̂1γ̂2•α, y], [A→ γ̂2•, y′] ∈ [$γ̂1γ̂2]Ĝ

exhibit a shift-reduce conflict if and only if y′ ∈ FIRSTGk (αy). But
then items

[B → β1γ̂1γ̂2•αβ′′2 , y′′], [A→ γ̂2•, y′] ∈ [$γβ1γ̂1γ̂2]G

exhibit a conflict. This is not possible as G ∈ LR(k) and therefore
items i1 and i2 do not exhibit a conflict in Ĝ.

– If α = ε and α′ 6= ε, then

[S2 → γ̂1γ̂2•, y], [A→ γ̂2•α′, y′] ∈ [$γ̂1γ̂2]Ĝ

exhibit a shift-reduce conflict if y ∈ FIRSTGk (α′y′). But

[B → β1γ̂1γ̂2•β′′2 , y′′], [A→ γ̂2•α′, y′] ∈ [$γβ1γ̂1γ̂2]G

and the only possibility of a shift-reduce conflict in [$γ̂1γ̂2]Ĝ without
the conflict in [$γβ1γ̂1γ̂2]G is that β′2 = γ̂1γ̂2 and β′′2 6= ε.

1112 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

– If α = ε and α′ = ε, then

[S2 → γ̂1γ̂2•, y], [A→ γ̂2•, y′] ∈ [$γ̂1γ̂2]Ĝ

exhibit a reduce-reduce conflict if y = y′. But

[B → β1γ̂1γ̂2•β′′2 , y′′], [A→ γ̂2•, y] ∈ [$γβ1γ̂1γ̂2]G

and the only possibility of a reduce-reduce conflict in [$γ̂1γ̂2]Ĝ with-
out the conflict in [$γβ1γ̂1γ̂2]G is that β1γ1 = ε, β′2 = γ̂2 and β′′2 = ε.

Finally, proving the theorem in the opposite direction is trivial — if the canon-
ical LR(k) machine for the grammar Ĝ contains an LR(k) conflict, then clearly
Ĝ 6∈ LR(k).

Corollary 1. Let G = 〈N,T, P, S〉 be an LR(k) grammar with the derivation

S =⇒∗G,lm uBδ =⇒G,lm uβ1β
′
2δ .

Grammar Ĝ = 〈N̂ , T, P̂ , S1〉 where N̂ = N ∪ {S1, S2} for S1, S2 6∈ N and P̂ =
P ∪ {S1 −→ S2x, S2 −→ β′2 ; x ∈ FIRSTGk (δ)} is not an LR(k) grammar if and
only if

[S2 → •β′2, x′] desc∗ [B → •β′2, x′]
where B 6= S2 and x′ ∈ FIRSTGk (δ$) [18].

To conclude this section, Algorithm 1 is given. It is based on Theorem 1 and
is (to be) used for computing the shortest prefix of 〈A,FA〉β2 in production

〈B,FB〉 −→ β1〈A,FA〉β2

where the embedded LR(k) parser must be employed to resolve the LL(k)
conflict caused by 〈A,FA〉. Once Theorem 1 is digested, the algorithm comes
out relatively simple: it just checks both conditions exposed by Theorem 1, one
for β′′2 = ε and the other for β′′2 6= ε.

4. Terminating while producing the left parse

As mentioned in Section 2, the embedded LR(k) parser must produce the left
parse instead of the right parse. To achieve this, the left LR(k) parser [20]
(based on the Schmeiser-Barnard LR(k) parser [13]) is taken as the starting
point.

Consider an LR(k) grammar G = 〈N,T, P, S〉 and the input string w = uv
derived by the rightmost derivation

S =⇒∗G,rm γv =⇒∗G,rm uv . (5)

After reading the prefix u, the canonical LR(k) parser for grammar G reaches
the configuration

$[$][$X1][$X1X2] . . . [$X1X2 . . . Xn] v$ (6)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1113

Boštjan Slivnik

Algorithm 1 Computing the shortest prefix β′ of the sentential form β = β′β′′ so
that the embedded LR(k) grammar Ĝβ′,F ′ ∈ LR(k) where F ′ = FIRSTGk (β′′F).
INPUT: The sentential form β = X1X2 . . . Xn and the right context F .
OUTPUT: The prefix β′ (or ⊥ if the prefix does not exist).
1: for i← 1 . . . (n− 1) do
2: β′ = X1X2 . . . Xi and β′′ = Xi+1Xi+2 . . . Xn

3: if ¬(∃[A→ α•α′, y′] ∈ [$β′]Ĝ : FIRSTĜk (α
′y′) ∩ FIRSTĜk (β

′′F$) 6= ∅) then
4: return β′

5: end if
6: end for
7: β′ = X1X2 . . . Xn and β′′ = ε

8: if ¬(∃[A→ α•, x′] ∈ [$β′]Ĝ : x′ ∩ FIRSTĜk (F$) 6= ∅) then
9: return β′

10: end if
11: return ⊥

where X1X2 . . . Xn = γ, [$X1X2 . . . Xn] is the current parser state and x =
k: v$ is the contents of the lookahead buffer. ([$X1X2 . . . Xj], for j = 0, 1, . . . , n,
denotes the state of the canonical LR(k) machine MG reachable from the state
[$] by string X1X2 . . . Xj where MG is based on the $-augmented grammar G′

obtained by adding the new start symbol S′ with production S′ −→ S to G).
The Schmeiser-Barnard LR(k) parser augments each nonterminal pushed

on the stack with the left parse of the substring derived from that nonterminal
and thus reaches the configuration

$〈[$]; ε〉〈[$X1];π(X1)〉〈[$X1X2];π(X2)〉 〈[$X1X2 . . . Xn];π(Xn)〉 v$ (7)

instead. π(Xj) denotes the left parse of the substring derived from Xj and thus

X1X2 . . . Xn =⇒π(X1)π(X2)...π(Xn)
G,lm u .

To accumulate left parses on the stack, the actions are modified as follows:

– If the parser performs the shift action, no production is pushed on the stack,
i.e., the terminal pushed is augmented with the empty left parse ε.

– If the parser performs the reduce action, the left parses accumulated in
states removed from the stack are concatenated, and prefixed by the pro-
duction the reduction is made on. The resulting left parse is pushed on the
stack together with the new nonterminal.

Note that if this method is used, the first production of the left parse is produced
only at the very end of parsing.

Example 3. Consider the embedded grammar Gex3 with productions

S1 −→ S2c , S2 −→ A , A −→ aa | aB | bBa | bBaa , B −→ Bb | ε .

1114 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

Table 1. Parsing the string bbbaac ∈ L(Gex3) using the Schmeiser-Barnard LR(1) parser.

STACK INPUT

1 $ 〈[$]; ε〉 bbbaac$
2 $ 〈[$]; ε〉 〈[$b]; ε〉 bbaac$
3 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π1 = B→ε〉 bbaac$
4 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π1 = B→ε〉 〈[$bBb]; ε〉 baac$
5 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π2 = B→Bb·π1〉 〈[$bBb]; ε〉 aac$
6 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π3 = B→Bb·π2〉 aac$
7 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π3 = B→Bb·π2〉 〈[$bBa]; ε〉 ac$
8 $. . . 〈[$bB];π3 = B→Bb·π2〉 〈[$bBa]; ε〉 〈[$bBaa]; ε〉 c$
9 $ 〈[$]; ε〉 〈[$A];π4 = A→bBaa·π3〉 c$

10 $ 〈[$]; ε〉 〈[$S2];π5 = S2→A·π4〉 c$
11 $ 〈[$]; ε〉 〈[$S2];π6 = S2→A·π5〉 〈[$S2c], ε〉 $

12 $ 〈[$]; ε〉 〈[$S1];π7 = S1→S2c·π6〉 $

where π7 = S1→S2c·S2→A·A→bBaa·B→Bb·B→Bb·B→ε

Parsing of the input string bbbaac using the Schmeiser-Barnard LR(1) parser
is shown in Table 1. Note that the first production of the resulting left parse,
namely S1 −→ S2c, is not known until the end of parsing.

The left LR(k) parser [20] is able to compute the prefix of the left parse of
the substring corresponding to the prefix of the input string read so far during
parsing (although this is not possible in every parser configuration). In other
words, if corresponding to the derivation (5) the input string w = uv is derived
by the leftmost derivation

S =⇒π(u)
G,lm uδ =⇒∗G,lm uv , (8)

then the left LR(k) parser can compute the left parse π(u) in configuration (7)
provided that certain conditions specified later on are met. As this part of the
left LR(k) parser is modified, it deserves more attention.

By theory [17], configurations (6) and (7) imply that machine MG contains
at least one sequence of valid k-items

[A0 → •α0A1β0, x0] · . . . · [A0 → α0•A1β0, x0] ·
· [A1 → •α1A2β1, x1] · . . . · [A1 → α1•A2β1, x1] ·

...
· [A` → •α`A`+1β`, x`] · . . . · [A` → α`•A`+1β`, x`]

(9)

where [A0 → •α0A1β0, x0] = [S′ → • S, ε], γ = α0α1 . . . α` and k: v$ ∈
FIRSTG

′

k (A`+1β`x`) (and A`+1 = ε); the horizontal dots denote repetitive appli-
cation of operation passes (or GOTO) while the vertical dots denote the appli-
cation of desc (or CLOSURE).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1115

Boštjan Slivnik

Sequence (9) induces the (induced) central derivation

S′ = A0 =⇒G α0A1β0 =⇒G α0α1A2β1β0 =⇒G . . . =⇒G

=⇒G α0α1 . . . α`A`+1β`β`−1 . . . β0 ;

the name “central” becomes obvious if the corresponding derivation tree pre-
sented in Figure 1(a) is observed.

A1

A2

A3

A4

...

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

(a) The derivation tree of the induced cen-
tral derivation.

A1

A2

A3

A4

...

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

u1 u2 u3
. . . u!−1 u!

(b) The derivation tree of the induced left-
most derivation (the left parses παj must
be provided).

Fig. 1. The derivation trees corresponding to various kinds of induced derivations; re-
member that A`+1 = ε in all three cases.

However, if the left parses π(α0), π(α1), . . . , π(α`), where αj =⇒π(αj)
G′,lm uj

for j = 0, 1, . . . , `, are provided, sequence (9) induces the (induced) leftmost
derivation

S′ = A0 =⇒G,lm α0A1β0 =⇒π(α0)
G,lm u0A1β0

=⇒G,lm u0α1A2β1β0 =⇒π(α1)
G,lm u0u1A2β1β0

...
=⇒G,lm u0u1 . . . u`−1α`A`+1β`β`−1 . . . β0

=⇒π(α`)
G,lm u0u1 . . . u`A`+1β`β`−1 . . . β0

where u = u0u1 . . . u` and k: v$ ∈ FIRSTG
′

k (β`β`−1 . . . β0$). The corresponding
derivation tree is shown in Figure 1(b) and the left parse of the induced leftmost

1116 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

derivation is therefore

π(u) =A0 −→ α0A1β0 · π(α0) ·A1 −→ α1A2β1 · π(α1) · . . . ·
·A` −→ α`A`+1β`] · π(α`) .

(10)

(Likewise, if the right parses π(β1), π(β2), . . . , π(β`) are known, then sequence
(9) induces the (induced) rightmost derivation.)

Subparses π(αj) of the left parse (10) are available on the parser stack
because α0α1 . . . α` = γ = X1X2 . . . Xn, but productions Aj −→ αjAj+1βj are
not. However, if sequence (9) is known, the missing productions and in fact the
entire prefix of the left parse can be computed [20]. Starting with π = ε and
i = [A` → α`•A`+1β`, x`], the stack is traversed downwards:

– If i = [A → •β, x], then (a) i expands the nonterminal A by production
A −→ β and (b) i′, the item that precedes i in sequence (9), is in the same
state. Hence, let π := A −→ β · π and i := i′.

– If i = [A → αX •β, x] ∈ [$γX] for some γ, then (a) the left parse π(X) is
available on the stack and (b) i′ is in the state [$γ] (which is found beneath
[$γX]). Hence, let π := π(X) · π and i := i′; furthermore, proceed one step
downwards along the stack, i.e., to the state [$γ].

The downward traversal stops when the item [S2 → •β, x] ∈ [$], for some
β ∈ (N ∪ T)∗ and x ∈ (T ∪ {$})∗k, is reached (the production S2 −→ β is not
added to the resulting left parse).

This method can be upgraded to compute the prefix of the left parse and
the viable suffix δR in derivation (8) as well since δ = A`+1β`β`−1 . . . β0 — see
Figure 1(b). Hence, start with δ = A`+1β` and whenever i = [A → •β, x], let
δ := δ · β′ where i′ = [A′ → α′•Aβ′, x′] is the item preceding i in sequence (9).

Example 4. Consider again the grammar Gex3 and the input string bbbaac ∈
L(Gex3) from Example 3. After the prefix bbba of the input string has been read,
the parser reaches the configuration shown in the 7th line of Table 1. But as
illustrated in Figure 2, there is only one item active for the current lookahead
string a in state [$bBa], namely [A→ bBa•a, $]. Furthermore, there exist exactly
one sequence of LR(1) items starting with [S′ → •$S1$, ε] ∈ [ε] and ending with
[A→ bBa•a, $] ∈ [$bS2a]:

[S′ → •$S1$, ε] · [S′ → $•S1$, ε] · [S1 → •S2c, $] · [S2 → •A, c] ·
· [A→ •bBaa, $] · [A→ b•Baa, $] · . . . · [A→ bB•aa, $] · [A→ bBa•a, $]

Hence, the prefix of the left parse and the corresponding viable suffix can be
computed as shown in Figure 3 using the method outlined above.

In general, cases where exactly one sequence (9) exists (as in Example 4)
are extremely rare, but all sequences (9) that differ only in lookahead strings xj ,
where j = 1, 2, . . . , `, induce the same (leftmost) derivation. In other words, the
lookahead strings xj are not needed for computing the prefix of the left parse
and the viable suffix.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1117

Boštjan Slivnik

S′→•$S1$, ε S′→$•S1$, ε
S1→•S2c, $
S2→•A, c
A→•aa, c
A→•aB, c
A→•bBa, c
A→•bBaa, c

S′→$S1•$, ε S′→$S1$•, ε

S2→A•, c

A→a•a, c
A→a•B, c
B→•Bb, c
B→•, c
B→•Bb, b
B→•, b

A→aB•, c
B→B•b, c
B→B•b, b

B→Bb•, c
B→Bb•, b

A→aa•, c

A→b•Ba, c
A→b•Baa, c
B→•Bb, a
B→•, a
B→•Bb, b
B→•, b

A→bB•a, c
A→bB•aa, c
B→B•b, a
B→B•b, b

A→bBa•, c
A→bBa•a, cA→bBaa•, c

B→Bb•, a
B→Bb•, b

S1→S2•c, $ S1→S2c•, $

$ S1

A

a b

S2

$

B

a

b

B

a

b

a

c

Fig. 2. The canonical LR(1) machine for Gex3 — items that end multiple sequences
starting with [S′ → •S, ε] ∈ [ε] are shown in bold face.

The left LR(k) parser uses an additional parsing table called LEFT to estab-
lish whether the prefix of the left parse can be computed in some state [$γ] for
some lookahead string x, and the left-parse-prefix automaton (LPP) to actually
compute sequence (9) with the lookahead strings omitted.

The LEFT table implements mapping

LEFT: QGk × (T ∪ {$})∗k −→ (IG0 ∪ {⊥})

where QGk and IG0 denote the set of LR(k) states and the set of LR(0) items
for grammar G′, respectively. It maps LR(k) state [$γ] and the contents x of the
lookahead buffer to either

– [A` → α`•A`+1β`], where α` 6= ε, if all sequences (9) that are active for x,
i.e., they end with some some LR(k) item [A` → α`•A`+1β`, x`] (for different
x`) where x ∈ FIRSTG

′

k (A`+1β`x`), differ in lookahead strings only, or
– ⊥ otherwise.

Hence, the parser can produce the prefix of the left parse and compute the
viable suffix if and only if LEFT([$γ], x) 6= ⊥.

The above definition of LEFT works well for the left LR(k) parser [20]. But as

[$] = desc∗({[S′ → $•S1$, ε]})

(note that the embedded grammar is being used) and there is only one path to
{[S′ → $•S1$, ε]} ∈ [$], the value of LEFT([$], x) is set to [S′ → $•S1$] for all
x ∈ FIRSTG

′

k (S1$) if the definition suitable for the let LR(k) parser is used. It
is valid but useless because if the method outlined in Example 4 is used, the
embedded left LR(k) parser would print ε and stop before ever producing any
production of the left parse.

Thus, an exception must be made in state [$]. Provided that the grammar
includes the productions S1 −→ S2y and S2 −→ Aβ, the value of LEFT([$], x)
must be set to either

1118 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

$〈[$]; ε〉〈[$b]; ε〉〈[$bB];B −→ Bb ·B −→ Bb ·B −→ ε〉〈[$bBa]; ε〉 ac$

[A→ bBa•a, c] ∈ [$bBa]
[A→ bB•aa, c] ∈ [$bB] π1 = ε · π0

π2 = B → Bb ·B → Bb ·B → ε · π1 δ1 = δ0
δ2 = δ1

[A→ b•Baa, c] ∈ [$b], π3 = ε · π2, δ3 = δ2

[A→ •bBaa, c] ∈ [$], π4 = A→ bBaa · π3, δ4 = δ3
[S2 → •A, c] ∈ [$], π5 = S2 → A · π4, δ5 = δ4

The result: π = S2 → A ·A→ bBaa ·B → Bb ·B → Bb ·B → ε and δ = a

Fig. 3. Computing the prefix of the left parse of the string bbbaac ∈ L(Gex3)
and the corresponding viable suffix after bbba has been read: the computation
starts at the top of the stack (right side of the figure) with π0 = ε and δ0 = a,
and traverses the stack downwards (towards the left side of the figure, and then
downwards).

– [A` → •A`+1β`] if all sequences (9) that are active for x, i.e., they end
with some some LR(k) item [A` → •A`+1β`, x`] (for different x`) where
x ∈ FIRSTG

′

k (A`+1β`x`), differ in lookahead strings only and

[S2 → •A`β, y] desc [A` → •A`+1β`, x`] ,

or
– ⊥ otherwise.

The left-parse-prefix automaton represents mapping

LPP: IG0 ×QGk −→ IG0

which is a compact representation of all possible sequences (9) with lookahead
strings stripped off. Hence, LPP(i0, [$γ]) = i′0 if and only if there exists some
sequence (9) with two consecutive LR(k) items i′k, ik, where ik ∈ [$γ], so that
i0 (i′0) is equal to ik (i′k) without the lookahead string.

Example 5. The left-parse-prefix automaton for the grammar Gex3 is shown in
Figure 4. (In this example, the left-parse-prefix automaton is trivial, i.e., without
any loop, but if the grammar is bigger and describes a more complex language,
the corresponding LPP gets more complicated — see [20].)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1119

Boštjan Slivnik

S′→•$S1$ S′→$•S1$ S′→$S1•$ S′→$S1$•

S1→•S2c S1→S2•c S1→S2c•

S2→•AS2→A•

A→•aa

A→a•a

A→aa•

A→•aB

A→a•B

A→aB•

A→•bBa

A→b•Ba

A→bB•a

A→bBa•

A→•bBaa

A→b•Baa

A→bB•aa

A→bBa•a

A→bBaa•

[$] [$S1] [$S1$]

[$]
[$S2] [$S2c]

[$]
[$A]

[$]

[$a]

[$aa]

[$]

[$a]

[$aB]

[$]

[$b]

[$bB]

[$bBa]

[$]

[$b]

[$bB]

[$bBa]

[$bBaa]

Fig. 4. The left-parse-prefix automaton for Gex3 — items that are not needed during
embedded left LR(1) parsing are shown in bold face.

Mapping LEFT for Gex3 is defined as

LEFT([$S2], c) = [S2 → A•c]
LEFT([$a], a) = [A→ a•a]
LEFT([$a], b) = [A→ a•B]

LEFT([$bBa], $) = [A→ bBa•]
LEFT([$bBa], b) = [A→ bBa•a]

(in all other cases, the value of LEFT equals ⊥). Note that LEFT([$], a) = ⊥ and
LEFT([$], b) = ⊥ because of A −→ aa|aB and A −→ bBa|bBaa, respectively.

The algorithms for computing LEFT and LPP can be found in [20]. Once
mappings LEFT and LPP are available, the method for computing the prefix of
the left parse and the viable suffix as outlined above and illustrated by Example
4 can be formalized as Algorithm 2. It is basically an algorithm which performs
a long reduction: a sequence of reductions on productions whose right sides
have been only partially pushed on the stack.

Algorithm 2 Computing the prefix of the left parse and the viable suffix.
INPUT: Stack contents of the left LR(k) parser and a state of LPP automaton.
OUTPUT:The prefix of the left parse and the corresponding viable suffix.
long-reduction (Γ, [A→ α•β]) = 〈π, β · δ〉 where
〈π, δ〉 = long-reduction′ (Γ, [A→ α•β])
long-reduction′ (Γ, [S′ → $•S$]) = 〈ε, ε〉
long-reduction′ (Γ · 〈[$γX], π(X)〉, [A→ •β]) = 〈A −→ β · π, δ · β′〉

where [A′ → α′•Aβ′] = LPP([A→ •β], [$γX])
〈π, δ〉 = long-reduction′ (Γ · 〈[$γX], π(X)〉, [A′ → α′•Aβ′])

long-reduction′ (Γ · 〈[$γX ′], π(X ′)〉 · 〈[$γX ′X], π(X)〉, [A→ α•β]) = 〈π(X) · π, δ〉
where 〈π, δ〉 = long-reduction′ (Γ · 〈[$γX ′], π(X ′)〉, LPP([A→ α•β], [$γX]))

1120 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

Algorithm 3 Embedded left LR(k) parsing.
1: let q ∈ QGk denote the topmost state
2: let x ∈ (T ∪ {$})∗k denote the LA buffer contents
3: while (i← LEFT(q, x)) = ⊥ do
4: perform a step of the Schmeiser-Barnard LR(k) parser
5: end while
6: 〈π, δ〉 ← long-reduction (stack, i)

7: PRINT π

8: return δ

If compared with the similar method used by the left LR(k) parser [20], this
one is not only augmented to compute the viable suffix but also simplified in that
it does not leave any markers on the stack about which subparses accumulated
on the stack have already been printed out. It does not need to do this as after
the first long reduction the LR parsing stops, the LR stack is cleared, and the
control is given back to the backbone LL(k) parser.

Finally, for the sake of completeness, the sketch of the embedded left LR(k)
parser is given as Algorithm 3: in essence, it is a Schmeiser-Barnard LR(k)
parser [13] with the option of (a) premature termination and (b) computing the
viable suffix.

Algorithm 3 always terminates: if not sooner (including cases where it de-
tects a syntax error), the parser eventually reaches the (final) state [$S2] =
{[S1 → S2•x, $]} where LEFT([$S2], $) = [S1 → S2•x] causing it to exit the loop
in lines 3–5.

5. The embedded left LR(k) parser

The embedded left LR(k) parser is the left LR(k) parser for the embedded
grammar (with a modified mapping LEFT) which (a) produces the left parse of
the substring parsed and the remaining viable suffix, and (b) terminates after
the first (simplified) long reduction.

Below, the first theorem establishes that the combination of LL(k) parsing
and LR(k) parsing is asymptotically as fast as LR(k) parsing, and the second
states that it is just as powerful as LR(k) parsing.

Theorem 2. A backbone LL(k) parser augmented with embedded left LR(k)
parsers can parse the input string w derived by the derivation S =⇒π w in time
O(|w|) +O(|π|).

Proof. Each symbol of w is shifted only once, either by the backbone LL(k)
parser or one of the embedded left LR(k) parsers, hence the O(|w|) part.

Each production in π is either produced by the backbone LL(k) parser or
reduced upon by one of the embedded left LR(k) parsers. There are two differ-
ent kinds of reductions: reductions performed during the long reduction require

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1121

Boštjan Slivnik

time k1|α| and ordinary “left” reductions require time k2|α| for a reduction on
A −→ α (but |α| is bounded by a constant depending on the grammar only).
Hence the O(|π|) part.

Theorem 3. A backbone LL(k) parser augmented with embedded left LR(k)
parsers can parse any deterministic context-free language.

Proof. If L is DCFL, then there exists an LR(k) grammar G so that L(G) = L.
For each LL(k)-conflicting nonterminal A of Ḡ (the “SLL(k)” variant of G)

– either an embedded left LR(k) parser can be constructed
– or a nonterminal on the left side of the production where A appear on the

right side can be declared LL(k)-conflicting nonterminal.

By repeatedly applying this trick all LL(k) conflicts get resolved — if not other-
wise, when the initial symbol of Ḡ is declared to be an LL(k)-conflicting symbol
(note that the embedded left LR(k) parser for G with the terminating set {$}
can always be constructed).

It must be admitted that Theorem 3 should be taken with a grain of salt.
While its proof is technically correct, it exposes the true nature of resolving
LL(k) conflicts with embedded left LR(k) parsers. Namely, if embedded left
LR(k) parsers are triggered for LL(k) conflicting nonterminals deriving relatively
short substrings, then employing embedded left LR(k) parsers makes sense
as the amount of a hidden bottom-up parsing is kept within some reasonable
limits. Otherwise, if the grammar requires that an embedded left LR(k) parser
is triggered relatively close to the root of the derivation tree, then a large part of
the input string is going to be parsed by the embedded LR(k) parser and the
method loses much of its appeal (to the point that perhaps the left LR(k) parser
is more suitable [20]).

6. Conclusion

The embedded left LR(k) parser has been obtained by modifying the left LR(k)
parser in two ways. First, the left LR(k) parser was made capable of comput-
ing the viable suffix which the unread part of the input string is derived from.
Second, if was simplified not to leave any markers on the stack about which
subparses accumulated on the stack have been printed out already — as the
parser stops after the first “long” reduction anyway. However, the algorithm for
minimizing the embedded left LR(k) parser, i.e., for removing states that are not
reachable before the first long reduction is performed, is still to be formalized.

At present, both, the backbone LL parser and the embedded left LR parsers,
need to use the lookahead buffer of the same length. However, if the LL parser
was built around LA(k)LL(`) parser (where k ≥ `) as defined in [17], then the
combined parsing could most probably be formulated as the combination of
LL(`) and LR(k) parsing (note that LL(`) ⊆ LA(`′)LL(`) for any `′ ≥ `). This
would make the combined parser even more memory efficient.

1122 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

The left LR(k) parser could be based on the LA(k)LR(`) parser (most likely
for ` = 0) instead of on the canonical LR(k) parser. This would further reduce
the parsing tables while the strength of the resulting combined parser would be
reduced from LR(k) to LA(k)LR(`): not a significant issue as today LA(1)LR(0)
is used instead of LR(1) whenever LR parsing is applied.

By using an LL(k) parser augmented by the embedded left LR(k) parsers
instead of the left LR(k) parser the error recovery can be made much better
— especially if the error recovery of the embedded left LR(k) parsers is made
using the method described in [19].

Finally, apart from using the embedded left LR(k) parser for LL(k) conflict
resolution, the embedded left LR(k) parser can be a convenient method for
parsing the embedded domain-specific languages [9]. Furthermore, the termi-
nation condition formulated in Section 3 can be considered as a guideline for
designing an embedded domain-specific language which fits gently into the en-
closing (usually general-purpose) programming language, i.e., without explicit
markers denoting the border between the embedded and the enclosing lan-
guage; the termination condition also provides an efficient automatic method
for detecting any syntactic problems arising from the embedding itself.

References

1. Aycock, J., Horspool, N., Janoušek, J., Melichar, B.: Even faster generalized LR
parsing. Acta Informatica 37(9), 633–651 (2001)

2. Boyland, J., Spiewak, D.: TOOL PAPER: ScalaBison recursive ascent-descent
parser generator. Electronic Notes in Theoretical Computer Science 253(7), 65–74
(2010)

3. Demers, A.J.: Generalized left corner parsing. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages POPL’77.
pp. 170–182. ACM, ACM, Los Angeles, CA, USA (1977)

4. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proceedings of the 31st ACM SIGACT-SIGPLAN symposium on Principles of
programming languages POPL’04. pp. 111–122. ACM, ACM, Venice, Italy (2004)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, USA (1979)

6. Horspool, R.N.: Recursive ascent-descent parsers. In: Hammer, D. (ed.) Compiler
Compilers, Third International Workshop CC ’90, Schwerin, FRG, Lecture Notes in
Computer Science, vol. 477, pp. 1–10. Springer-Verlag (1990)

7. Knuth, D.E.: On the translation of languages from left to right. Information and Con-
trol 8(6), 607–639 (1965)

8. Lewis II, P.M., Stearns, R.E.: Syntax directed transduction. In: Proceedings of the
7th Annual Symposion on Switching and Automata Theory (SWAT’66). pp. 21–35.
IEEE Computer Society Press, Berkeley, CA, USA (1966)

9. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

10. Might, M., Darais, D.: Yacc is dead. Available online at Cornell University Library
(arXiv.org:1010.5023) (2010)

11. Parr, T., Fischer, K.: LL(*): The foundation of the ANTLR parser generator. ACM
SIGPLAN Notices - PLDI’10 46(6), 425–436 (2011)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1123

Boštjan Slivnik

12. Rosenkrantz, D.J., Lewis, P.M.: Deterministic left corner parsing. In: Proceedings of
the 11th Annual Symposium on Switching and Automata Theory (SWAT 1970). pp.
139–152. IEEE Computer Society, Washington, DC, USA (1970)

13. Schmeiser, J.P., Barnard, D.T.: Producing a top-down parse order with bottom-up
parsing. Information Processing Letters 54(6), 323–326 (1995)

14. Scott, E., Johnstone, A.: GLL parsing. Electronic Notes in Theoretical Computer
Science 253(7), 177–189 (2010)

15. Scott, E., Johnstone, A., Economopoulos, R.: BRNGLR: a cubic Tomita-style GLR
parsing algorithm. Acta Informatica 44(6), 427–461 (2007)

16. Sippu, S., Soisalon-Soininen, E.: Parsing Theory, Volume I: Languages and Parsing,
EATCS Monographs on Theoretical Computer Science, vol. 15. Springer-Verlag,
Berlin, Germany (1988)

17. Sippu, S., Soisalon-Soininen, E.: Parsing Theory, Volume II: LR(k) and LL(k) Pars-
ing, EATCS Monographs on Theoretical Computer Science, vol. 20. Springer-
Verlag, Berlin, Germany (1990)

18. Slivnik, B.: The embedded left LR parser. In: Proceedings of the Federated Confer-
ence on Computer Science and Information Systems. pp. 871–878. IEEE Computer
Society Press, Szczecin, Poland (2011)

19. Slivnik, B., Vilfan, B.: Improved error recovery in generated LR parsers. Informatica
28(3), 257–263 (2004)

20. Slivnik, B., Vilfan, B.: Producing the left parse during bottom-up parsing. Information
Processing Letters 96(6), 220–224 (2005)

21. Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic Publisher,
Boston, MA, USA (1985)

22. Tomita, M. (ed.): Generalized LR Parsing. Springer-Verlag, Berlin, Germany (1991)

Boštjan Slivnik received the M.Sc. and Ph.D. degrees in computer science
from the University of Ljubljana in 1996 and 2003 respectively. He is currently
at the University of Ljubljana, Faculty of Computer and Information Science. His
research interests include parsing algorithms, compilers, formal languages, and
distributed algorithms. He has been a member of the ACM since 1996.

Received: December 16, 2011; Accepted: April 2, 2012.

1124 ComSIS Vol. 9, No. 3, Special Issue, September 2012

DOI: 10.2298/CSIS111220024T

Indexing Ordered Trees for (Nonlinear) Tree
Pattern Matching by Pushdown Automata

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

Faculty of Information Technology
Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic
{Jan.Travnicek, Jan.Janousek, melichar}@fit.cvut.cz

Abstract. Trees are one of the fundamental data structures used in Com-
puter Science. We present a new kind of acyclic pushdown automata, the
tree pattern pushdown automaton and the nonlinear tree pattern push-
down automaton, constructed for an ordered tree. These automata accept
all tree patterns and nonlinear tree patterns, respectively, which match the
tree and represent a full index of the tree for such patterns. Given a tree
with n nodes, the numbers of these distinct tree patterns and nonlinear
tree patterns can be at most 2n−1+n and at most (2+ v)n−1+2, respec-
tively, where v is the maximal number of nonlinear variables allowed in
nonlinear tree patterns. The total sizes of nondeterministic versions of the
two pushdown automata are O(n) and O(n2), respectively. We discuss
the time complexities and show timings of our implementations using the
bit-parallelism technique. The timings show that for a given tree the run-
ning time is linear to the size of the input pattern.

Keywords: Tree pattern matching, nonlinear tree pattern matching, index-
ing trees, pushdown automata

1. Introduction

Trees are one of the fundamental data structures used in Computer Science.
Finding occurrences of tree patterns in trees is an important problem with many
applications such as compiler code selection, interpretation of nonprocedural
languages, implementation of rewriting systems, or various tree finding and
tree replacement systems. Tree patterns are trees in which leaves can be la-
belled also by a special linear variable S, which serves as a placeholder for any
subtree. Nonlinear tree patterns can further contain leaves labelled by specific
nonlinear variables, where each of nonlinear variables represents a specific
subtree. Nonlinear tree pattern matching is used especially in the implementa-
tion of term rewriting systems, in which the terms can be represented as tree
structures with nonlinear variables.

Generally, there exist two basic approaches to pattern matching problems.
The first approach is represented by the use of a pattern matcher which is con-
structed for patterns. In other words, the patterns are preprocessed. Given a

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

tree of size n, such tree pattern matcher typically perform the search phase
in time linear in n [15, 6, 12, 24]. This approach is suitable for cases when one
wants look for occurrences of a given pattern in input subject structures. The
second basic approach is represented by the use of an indexing data struc-
ture constructed for the subject in which we search. In other words, the sub-
ject is preprocessed. Examples of such indexing structures are suffix or factor
automata [9, 10, 22, 25] in the area of string processing or subtree pushdown
automaton [18], which represents a complete index of an ordered tree for sub-
trees. This approach is suitable especially for cases when one wants look for
occurrences of different input patterns in a given subject structure.

The theory of formal tree languages have been extensively studied and de-
veloped since the 1960s and its main models of computation are various kinds
of tree automata [14, 6, 8]. However, trees can also be represented as strings,
for example in their prefix (also called preorder) or postfix (also called pos-
torder) notation. A linear notation of a tree can be obtained by the corresponding
traversing of the tree. Moreover, every sequential algorithm on a tree traverses
nodes of the tree in a sequential order and so follows a linear notation of the
tree. [20] proves that the deterministic pushdown automaton (PDA) is an appro-
priate model of computation for labelled ordered trees in linear notation and that
the trees in postfix notation acceptable by deterministic PDA form a proper su-
perclass of the class of regular tree languages [14], which are accepted by finite
tree automata. Recently, pushdown automata gain a popularity in solving prac-
tical problems of processing trees, for example in processing XML documents
[13].

In this paper we present a new kind of acyclic pushdown automata for an
ordered tree. The tree pattern pushdown automaton and the nonlinear tree pat-
tern pushdown automaton represent a complete index of the tree for tree pat-
terns and nonlinear tree patterns, respectively, and accept all tree patterns and
nonlinear tree patterns, respectively, which match the tree. Given a tree with n

nodes, the numbers of distinct tree patterns and nonlinear tree patterns which
match the tree can be at most 2n−1+n and at most (2+ v)n−1+2, respectively,
where v is the maximal number of distinct nonlinear variables allowed in nonlin-
ear tree patterns. We describe the construction of nondeterministic (nonlinear)
tree pattern pushdown automata and discuss their time and space complexi-
ties. We are not aware of any other existing pushdown automaton which would
represent such an index. The presented nondeterministic pushdown automata
are input–driven and therefore can be determinised.

The presented (nonlinear) tree pattern pushdown automata have two kinds
of transitions. First, transitions reading symbols of the alphabet of labels of tree
nodes. Second, transitions reading the variables in (nonlinear) tree patterns. If
our pushdown automata have only the former transitions, they would be anal-
ogous to string nondeterministic suffix or factor automata. Efficient methods
of implementing nondeterministic string suffix automata by the bit–parallelism
technique are well-known [23]. The bit–parallelism technique can be also used
for the latter transitions efficiently. We describe our implementations using the

1126 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

bit-parallel technique and show their timings. The timings show that the running
time is for a given tree linear to the size of the input (nonlinear) tree patterns,
which is a result similar to the result described in [23].

We note that the presented PDAs have only one pushdown symbol and
therefore can be easily transformed to counter automata, which are a weaker
and simpler model of computation than the PDA. We present the automata in
this paper as PDAs because the PDA is a more fundamental and more widely-
used model of computation than the counter automaton.

Since our pushdown automata accept finite languages, which correspond to
finite sets of various connected subgraphs of the tree, a finite automaton could
also be used instead of a pushdown automaton. However, such finite automaton
would have significantly more states than the PDA, in which the underlying tree
structure is efficiently processed by the pushdown store.

Early presentations of the tree pattern pushdown automaton and the non-
linear tree pattern pushdown automaton can be found in [21, 19] and [26], re-
spectively. This paper can be considered as an extended version of these pub-
lications.

The paper is organised as follows. The second section discusses related
works of existing (nonlinear) tree pattern matching algorithms. The third section
contains basic definitions. The fourth section is devoted to indexing trees for tree
pattern matching by pushdown automata. The fifth section describes indexing
trees for nonlinear tree pattern matching by pushdown automata. Section 6
deals with nonlinear tree pattern matching for more than one nonlinear variable
in nonlinear tree patterns. The seventh section describes our implementations
and show experimental results. The last section is a conclusion.

2. Related Works

Some algorithms for (nonlinear) tree pattern matching are known. All of them
use the approach which is represented by the preprocessing of the (nonlinear)
tree pattern. For tree pattern matching algorithms see [15, 6, 12].

Nonlinear tree pattern matching algorithm described in [24] reads the Euler
linear notation of both a subject tree and a nonlinear tree pattern. Euler notation
is a tree linear notation, which contains a node each time it is visited during the
preorder traversing of the tree. This means that every node appears exactly
1 + arity(node)-times in Euler notation. Our method presented in this paper
uses a standard tree prefix notation, which contains every node just once.

In [24] factors which represent some subtrees in a subject tree in Euler no-
tation are constructed. The standard Aho-Corasick automaton [1] is then con-
structed for these factors. The subject tree in Euler notation is processed by the
constructed Aho-Corasick automaton and a binary array is constructed for each
factor of the nonlinear tree pattern. Locations of factors of the input subject tree
in Euler notation are then transformed to arrays of ones and zeros, which de-
scribes locations of this factor in the subject tree in Euler notation. In this way
the nonlinear variables are matched.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1127

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

3. Basic notions

We define notions on trees similarly as they are defined in [2, 14, 15].

3.1. Alphabet

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a fi-
nite nonempty set of symbols each of which has a unique nonnegative arity
(or rank). Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted
Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are respectively called nullary (constants), unary, binary, . . ., p-ary
symbols. We assume that A contains at least one constant. In the examples
we use numbers at the end of identifiers for a short declaration of symbols with
arity. For instance, a2 is a short declaration of a binary symbol a.

3.2. Tree, tree pattern, nonlinear tree pattern

Based on concepts from graph theory (see [2]), a tree over an alphabet A can
be defined as follows:

An graph G is a pair (N,R), where N is a set of nodes and R is a set of
edges such that each element of R is of the form (f, g), where f, g ∈ N . This
element will indicate that, for node f , there is an edge between node f and
node g.

A directed graph G is a graph, where each element of R of the form (f, g)
indicates that, there is an edge leaving node f and entering node g. This edge
is ordered from f to g. An undirected graph G is a graph in which no such
ordering of edges is given.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi
for 1 ≤ i ≤ n. A labelling of an ordered graph G = (N,R) is a mapping of N
into a set of labels. In the examples we use af for a short declaration of node f

labelled by symbol a.
A directed graph is connected if there exists a path from fu to fv for each

pair of nodes (fu, fv), u 6= v, of the graph.
A cycle is a path (f0, f1, . . . , fn) in which f0 = fn.
Given a node f of a directed graph, its out-degree is the number of distinct

pairs (f, g) ∈ R, where g ∈ N . By analogy, the in-degree of node f is the
number of distinct pairs (g, f) ∈ R, where g ∈ N .

A tree is a connected graph without any cycle. In this paper we assume that
the tree has at least one node. Any node of a tree can be selected as a root of
the tree. A tree with a root is called rooted tree.

A tree can be directed. A rooted and directed tree t is an acyclic connected
directed graph t = (N,R) with a special node r ∈ N , called the root, such that
(1) r has in-degree 0, (2) all other nodes of t have in-degree 1, (3) there is just
one path from the root r to every f ∈ N , where f 6= r.

Nodes of a directed tree with out-degree 0 are called leaves.

1128 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

A labelled, (rooted, directed) tree is a tree having the following property: (4)
every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.

A ranked, (labelled, rooted, directed) tree is a tree labelled by symbols from
a ranked alphabet and out-degree of a node f labelled by symbol a ∈ A equals
to Arity(a). Nodes labelled by nullary symbols (constants) are leaves.

An ordered, (ranked, labelled, rooted, directed) tree is a tree where direct
descendants af1, af2, . . . , afn of a node af having an Arity(af) = n are or-
dered.

Example 1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an ordered,
ranked, labelled, rooted, and directed tree t1 = ({a21, a22, a03, a14, a05, a16,
a07}, R1) over A, where R1 is a set of the following ordered pairs:

R1 = {(a21, a22), (a21, a16), (a22, a03), (a22, a14), (a14, a05), (a16, a07)}.

Tree t1 in prefix notation is pref(t1) = a2 a2 a0 a1 a0 a1 a0.
Trees can be represented graphically, and tree t1 is illustrated in Figure 1.

a05

a03 a14 a07

a22 a16

a21

Fig. 1. Tree t1 from Example 1

A subtree of a tree t = (N,R) is any tree t′ = (N ′, R′) such that: (1) N ′ is
nonempty and contained in N , (2) R′ = A′ ×A′ ∩R, and (3) No node of A \A′

is a descendant of a node in A′.
The height of a tree t, denoted by Height(t), is defined as the length of the

longest path leading from the root of t to a leaf of t.
To define a tree pattern, we use a special nullary symbol S, not in alpha-

bet A, Arity(S) = 0, which is a variable and serves as a placeholder for any
subtree. A tree pattern is defined as a labelled ordered tree over an alphabet
A ∪ {S}. We will assume that the tree pattern contains at least one node la-
belled by a symbol from A. A tree pattern containing at least one symbol S will
be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches a subject
tree t at node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of
the tree t such that the tree p′, obtained from p by substituting the subtree ti for
the i-th occurrence of S in p, i = 1, 2, . . . , k, is equal to the subtree of t rooted
at n.

The nonlinear tree pattern can contain also other special nullary symbols –
nonlinear variables, not in alphabet A. These symbols serve as placeholders for

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1129

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

specific subtrees. Every occurrence of a symbol X in a nonlinear tree pattern is
matched with the same subtree. A nonlinear tree pattern has to contain at least
one symbol from A. A nonlinear tree pattern which contains at least two equal
nonlinear variables will be called a nonlinear tree template.

A nonlinear tree pattern np with k ≥ 2 occurrences of a nonlinear variable
X matches a subject tree t at node n if there exists a subtree tX of the tree t

and subtrees t1, t2, . . . , tm (not necessarily the same) of the tree t such that the
tree np′, obtained from np by substituting the subtree tX for the i-th, 1 ≤ i ≤ k,
occurrences of X in np, and by substituting the subtree ti for the i-th occurrence
of S in p, i = 1, 2, . . . ,m, is equal to the subtree of t rooted at n.

Example 2. Consider a tree t1 = ({a21, a22, a03, a14, a05, a16, a07}, R1) from
Example 1, which is illustrated in Figure 1.

Consider a tree pattern p1 over A, p1 = ({a21, a02, a13, a04}, Rp1). Tree pat-
tern p1 in prefix notation os pref(p1) = a2 a0 a1 a0.

Rp1 = {((a21, a02), (a21, a13)), ((a13, a04))}

Consider a tree pattern p2 over A∪{S}, p2 = ({a21, S2, a13, S4}, Rp2). Tree
pattern p2 in prefix notation is pref(p2) = a2 S a1 S. Note that symbol S can
occur in a nonlinear tree pattern and it serves as a linear variable.

Rp2 = {(a21, S2), (a21, a13), (a13, S4)}

Consider a nonlinear tree pattern p3 over A ∪ {S,X}, p3 = ({a21, X2, a13,
X4}, Rp3). Nonlinear tree pattern p3 in prefix notation is pref(p3) = a2 X a1 X .

Rp3 = {(a21, X2), (a21, a13), (a13, X4)}

Tree patterns p1, p2 and p3 are illustrated in Figure 2. Tree pattern p1 has
one occurrence in tree t1 – it matches at node 2 of t1. Tree pattern p2 has two
occurrences in tree t1 – it matches at nodes 1 and 2 of t1. Nonlinear tree pattern
p3 has one occurrence in tree t1 – it matches at node 2 of t1.

a04

a02 a13

a21

S4

S2 a13

a21

X4

X2 a13

a21

Fig. 2. Tree pattern p1 (left), tree template p2 (center) and nonlinear tree template p3
(right) from Example 2

1130 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

3.3. Language, finite and pushdown automata

We define notions from the theory of string languages similarly as they are
defined in [2, 16].

A language over an alphabet A is a set of strings over A. Symbol A∗ denotes
the set of all strings over A including the empty string, denoted by ε. Set A+

is defined as A+ = A∗ \ {ε}. Similarly, for string x ∈ A∗, symbol xm, m ≥ 0,
denotes the m-fold concatenation of x with x0 = ε. Set x∗ is defined as x∗ =
{xm : m ≥ 0}, x+ = {xm : m ≥ 1} and x∗ = x+ ∪ {ε}.

A nondeterministic pushdown automaton (nondeterministic PDA) is a seven-
tuple M = (Q,A, G, δ, q0, Z0, F), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q×(A∪{ε})×G

into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the
initial pushdown store symbol, and F ⊆ Q is the set of final (accepting) states.

Triple (q, w, x) ∈ Q × A∗ × G∗ denotes the configuration of a pushdown
automaton. We will write the top of the pushdown store x on its left hand side.
The initial configuration of a pushdown automaton is a triple (q0, w, Z0) for the
input string w ∈ A∗. The relation ⊢M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗) is a
transition of a pushdown automaton M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if
(p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive
closure of the relation ⊢M is denoted ⊢k

M , ⊢+
M , ⊢∗

M , respectively.
A pushdown automaton is input–driven if each of its pushdown operations

is determined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state: L(M) = {x : (q0, x, Z0) ⊢∗

M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈
G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store: Lε(M) = {x : (q0, x, Z0) ⊢
∗

M (q, ε, ε) ∧
x ∈ A∗ ∧ q ∈ Q}.

If the pushdown automaton accepts the language by empty pushdown store,
then the set F of final states is the empty set.

Unreachable states are states p ∈ Q from automaton M = (Q, A, G, δ,

q0, Z0, F) which are not reachable from the initial state because there is no
sequence of transitions from the initial state to that particular state p. Formally,
there are no transitions that allow (q0, kw, Z0) ⊢

+
M (p, w, γ).

Unnecessary states are states p ∈ Q from automaton M = (Q, A, G, δ, q0,

Z0, F) which are not connected to any final state f ∈ F if automaton accepts by
final states, or not connected to any state, where γ ∈ G∗ may be ε, if automaton
accepts by empty pushdown store.

Pushdown automaton M = (Q,A, G, δ, q0, Z0, F) is acyclic if it does not
contain transitions (q, x1, γ1) ⊢

+
M (q, x2, γ2), where xx2 = x1, x 6= ε and q ∈ Q.

3.4. String suffix and factor automata

String suffix and factor automata are finite automata that were introduced in
[4, 7] as a mechanism for eliminating redundancy in string suffix trees [9, 10,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1131

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

22, 25]. Given a string s ∈ A∗, the suffix and factor automaton constructed for
the string s accepts all suffixes and substrings, respectively, of the string s in
time linear to the length of the input suffix and the input substring, respectively,
and not depending on the length of the string s. In [9, 10, 25], suffix and factor
automata are defined as such minimal deterministic finite automata. In [23, 22],
their basic nondeterministic versions are also presented. In some literature, the
deterministic suffix automaton is also called the directed acyclic word graph
(DAWG).

Example 3. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1 from Example 1, the corresponding nondeterministic suffix
automaton is FMnsuf (pref(t1)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7}), where its
transition diagram is illustrated in Figure 3. For the construction of the nonde-
terministic suffix automaton, see [22].

0 1 2 3 4 5 6 7
a2 a2 a0 a1 a0 a1 a0

a2
a0 a1 a0 a1 a0

Fig. 3. Transition diagram of the nondeterministic string suffix automaton
FMnsuf (pref(t1)) for prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1
from Example 1

4. Indexing trees for tree pattern matching

In this section, algorithms and theorems regarding tree pattern PDAs for trees
in prefix notation are given, and the tree pattern PDAs and their construction
are demonstrated on an example. A tree pattern can be either a subtree or a
tree template, which contains at least one special nullary symbol S representing
a subtree. Tree pattern PDAs are an extension of subtree PDAs, introduced in
[18]. A subtree PDA is analogous to the string suffix automaton and it accepts
a linear notation of all subtrees of a given tree. The pushdown operations are
used to process the tree structure. New states and transitions, which are used
for processing the special nullary symbols S in tree templates, are additionally
present in the tree pattern PDA. The pushdown operations are the same.

Definition 1. Let t and pref(t) be a tree and its prefix notation, respectively. A
tree pattern pushdown automaton for pref(t) accepts all tree patterns in prefix
notation which match the tree t.

1132 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

Given a subject tree, first we construct a so-called deterministic treetop PDA
for this tree in prefix notation, which accepts all tree patterns that match the
subject tree and contain the root of the subject tree. The deterministic treetop
PDA is defined by the following definition. States and transitions of the treetop
pushdown automaton are computed by Algorithm 1. Finally, the correctness
Algorithm 1 is proved by Theorem 1.

Definition 2. Let t, r and pref(t) be a tree, its root and its prefix notation, re-
spectively. A treetop pushdown automaton Mpt(t) = (0, 1, 2, ..., n, A∪S, S, δ, 0, S,
∅) for pref(t) accepts all tree patterns in prefix notation which have the root r
and match the tree t.

The construction of the treetop PDA is described by the following algorithm.
The treetop PDA is deterministic.

Algorithm 1 Construction of a treetop PDA for a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A∪ {S}, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i − 1, ai, S) = (i, SArity(ai)), where S0 = ε.

2. Create a set srms = { i : 1 ≤ i ≤ n, δ(i − 1, a, S) = (i, ε), a ∈ A0}. The
abbreviation srms stands for Subtree Right Most States.

3. For each state i, where i = n−1, n−2, . . . , 1, δ(i, a, S) = (i+1, Sp), a ∈ Ap,
create a new transition δ(i, S, S) = (l, ε) such that (i, xy, S) ⊢+

Mp(t)
(l, y, ε)

as follows:
If p = 0, create a new transition δ(i, S, S) = (i+ 1, ε).
Otherwise, if p ≥ 1, create a new transition δ(i, S, S) = (l, ε), where l is the
p-th smallest integer such that l ∈ srms and l > i. Remove all j, where
j ∈ srms, and i < j < l, from srms. ⊓⊔

The treetop PDA is similar to the prefix string finite automaton. Moreover,
there exists additional transitions reading symbol S, which represents a subtree,
and these transitions skip over parts which are subtrees of the tree in prefix
notation. The automaton uses the pushdown store for computing a checksum
so that the input would be a valid prefix notation of a tree.

The construction of treetop PDA by Algorithm 1 is illustrated in the following
example.

Example 4. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Figure 1. The deterministic treetop PDA,
constructed by Algorithm 1, is deterministic PDA Mpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},
A, {S}, δ1, 0, S, ∅)), where mapping δ1 is a set of the following transitions:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1133

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS) δ1(1, S, S) = (5, ε)
δ1(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε)
δ1(3, a1, S) = (4, S) δ1(3, S, S) = (5, ε)
δ1(4, a0, S) = (5, ε) δ1(4, S, S) = (5, ε)
δ1(5, a1, S) = (6, S) δ1(5, S, S) = (6, ε)
δ1(6, a0, S) = (7, ε) δ1(6, S, S) = (7, ε)

The transition diagram of deterministic treetop PDA Mpt(t1) is illustrated in
Figure 4. In this figure for each transition rule δ(p, a, α) = (q, β) from δ the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.

Deterministic treetop PDA Mpt(t1) has been constructed by Algorithm 1 as
follows. We can see that the initial set srms = {3, 5, 7}. Then, new transitions,
which read symbol S, are created in the following order: δ4(6, S, S) = (7, ε),
δ4(5, S, S) = (7, ε), δ4(4, S, S) = (5, ε), δ4(3, S, S) = (5, ε), δ4(2, S, S) = (3, ε),
and δ4(1, S, S) = (5, ε). ⊓⊔

0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Fig. 4. Transition diagram of deterministic treetop pushdown automaton Mpt(t1) for tree
in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 4

Theorem 1. Given a tree t and its prefix notation pref(t), the PDA Mpt(t) con-
structed by Algorithm 1 is a treetop PDA for pref(t).

Proof. Let r be the root of t. The PDA Mpt(t) is a simple extension of the PDA,
which is constructed by step 1 and accepts the tree t in prefix notation. It holds
for new transitions added by step 3, which read the special nullary symbol S,
that δ(q1, S, S) = (q2, ε) if and only if (q1, w, S) ⊢

+
Mpt(t)

(q2, ε, ε) and q1 is not the
initial state 0. This means that the new added transitions reading S correspond
just to subtrees not containing the root r. Thus, the PDA Mpt(t) accepts all tree
patterns in prefix notation which contain the root r and match the tree t. ⊓⊔

The nondeterministic tree pattern PDA for trees in prefix notation is con-
structed as an extension of the deterministic treetop PDA: for each state of the
treetop PDA with an incoming transition which reads a symbol a ∈ A we add
the same transition from the starting state to that state. This construction is
described by the following algorithm.

1134 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

Algorithm 2 Construction of a nondeterministic tree pattern PDA for a tree t in
prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n},A∪{S},
{S}, δ, 0, S, ∅).
Method:

1. Create Mnpt(t) as Mpt(t) by Algorithm 1.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

The tree pattern PDA is similar to the string factor finite automaton. Its con-
struction is based on the treetop PDA and the extension is that the tree pattern
accepted by the automaton can be matched on any node of the tree. For this
reason, additional transitions are created.

Example 5. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Figure 1. The nondeterministic tree pat-
tern PDA accepting all tree patterns matching tree t1, which has been con-
structed by Algorithm 2, is nondeterministic PDA
Mnpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)), where mapping δ2 is a set
of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(1, S, S) = (5, ε) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(3, S, S) = (5, ε) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(4, S, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(5, S, S) = (6, ε) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(6, S, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic tree pattern PDA Mnpt(t1) is illus-
trated in Figure 5. Again, in this figure for each transition rule δ(p, a, α) = (q, β)
from δ the edge leading from state p to state q is labelled by the triple of the
form a|α 7→ β. ⊓⊔

In the following theorem we prove the correctness of the constructed tree
pattern PDA.

Theorem 2. Given a tree t and its prefix notation pref(t), the PDA Mnpt(t)
constructed by Algorithm 2 is a tree pattern PDA for pref(t).

Proof. The PDA Mnpt(t) is a simple extension of the PDA Mpt(t), which is con-
structed by Algorithm 1 and accepts all tree patterns in prefix notation which
contain the root r of the tree t and match the tree t by empty pushdown store.
The PDA Mnpt(t) contains new added transitions of the form δ(0, ai, S) =
(i, SArity(ai)). These transitions correspond just to the possibility that the first

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1135

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS
a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Fig. 5. Transition diagram of nondeterministic tree pattern pushdown automaton Mnpt

(t1) from Example 5 for tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

symbol of a tree pattern to be accepted can be any node of the tree t. Thus, the
PDA Mnpt(t) accepts all tree patterns in prefix notation which match the tree
t. ⊓⊔

Lemma 1. Given a tree t with n nodes, the number of distinct tree patterns
which match the tree t can be at most 2n−1 + n.

Proof. First, subtrees of any subtree of the tree t can be replaced by the spe-
cial nullary symbol S and the tree template resulting from such a replacement
is a tree pattern which matches the tree. Given a tree with n nodes, the maxi-
mal number of subsets of subtrees that can be replaced by the special nullary
symbol S occurs for the case of a tree t2 whose structure is given by the prefix
notation pref(t2) = a(n− 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illus-
trated in Figure 6. In this tree, each of the nullary symbols a10, a20, . . . , an−10
can be replaced by nullary symbol S, and therefore we can create 2n−1 distinct
tree templates which are tree patterns matching the tree t2.

a(n− 1)1

a102 a203 an−10n. . .

pref(t2) = a(n− 1) a10 a20 . . . an−10

Fig. 6. A tree t2 with 2n−1 + n distinct tree patterns matching the tree t3 and its prefix
notation

1136 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

Second, the tree t itself and all its subtrees not containing the root are tree
patterns which match the tree, which gives n other distinct tree patterns (pro-
vided all the subtrees are unique).

Thus, the total number of distinct tree patterns matching the tree t can be at
most 2n−1 + n. ⊓⊔

Lemma 2. The number of states of a nondeterministic tree pattern pushdown
automaton Mntp is m+ 1, where m is the number of nodes of a subject tree.

Proof. There is one state for each symbol in pref(t) plus and the initial state.
Thus, the number of states is m+ 1. ⊓⊔

Lemma 3. The number of transitions of a nondeterministic tree pattern push-
down automaton Mntp is 3m− 2, where m is the number of nodes of a subject
tree.

Proof. There is one transition for each symbol in pref(t), which forms the “back-
bone” of the automaton. There are exactly m−1 transitions from the initial state
to every other state. Finally, there is one transition for symbol S leading from ev-
ery state except the initial state. Thus, the number of states is then 3m− 2. ⊓⊔

5. Indexing trees for nonlinear tree pattern matching

Definition 3. Let t and pref(t) be a tree and its prefix notation, respectively.
A nonlinear tree pattern pushdown automaton for pref(t) accepts all nonlinear
tree patterns in prefix notation which have at most one nonlinear variable and
match the tree t.

5.1. Basic nonlinear tree pattern pushdown automaton

In our indexing pushdown automata for nonlinear tree pattern matching we con-
struct new parts called tails, which represent parts of the pushdown automaton
after reading nonlinear variables.

Definition 4. Given a tree pattern pushdown automaton M = (Q,A, G, δ, q0,

Z0, F) and a state qt ∈ Q, the tail(M, qt) = (Qt,A, G, δt, qt, S, F). Qt = QrQus,
Qus is a set of unreachable states from qt, δt = δrδus, δus are transitions leading
from or to state qn ∈ Qus.

Example 6. Consider a tree pattern pushdown automaton Mnpt(t1) from Ex-
ample 5, which is an index of tree t1 from Example 1. The tail of automaton with
initial state qt = 3 is tail(Mnpt(t1), 3) = (Q,A ∪ {S}, {S}, δ, 3, S,∅) constructed
from tree pattern pushdown automaton shown in Figure 5. The corresponding
transition diagram is illustrated in Figure 7. ⊓⊔

We note that every node of a tree t is the root of just one subtree, which
is represented by symbol S. The prefix notation of such subtree is a factor
of pref(t1). These factors are in the tree pushdown automaton ”skipped” by
transitions for input symbol S.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1137

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

3 4 5 6 7
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Fig. 7. Tail of tree pattern pushdown automaton tail(Mnpt(t1), 3) from Example 6

Definition 5. Given a tree pattern pushdown automaton Mnpt(t) = (Q,A, G,

δ, q0, Z0, F) and a state q ∈ Q, the subtree skipped by transition sst(q) =
b1b2 . . . bm, where b1, b2, . . . , bm ∈ A, is given by a labelled path b1, b2, . . . , bm in
the PDA Mnpt(t) between states q and qt, where (qt, ε) ∈ δ(q, S, S).

Informally, sst(q) is the prefix notation of the subtree which is skipped by
transition S leading from the state q. sst(q) is used in Algorithm 3 to determine
which subtree of the subject tree was ”assigned” to a particular automaton tail.

Example 7. Consider a tree pattern pushdown automaton Mnpt(t1) from Ex-
ample 5, which is an index of tree t1 from Example 1. The subtree skipped by
transition sst(1) = a2 a0 a1 a0. ⊓⊔

The construction of basic nonlinear tree pattern PDA consists of two algo-
rithms. Algorithm 3 constructs tails from the original tree pattern pushdown au-
tomaton. Algorithm 4 recursively connects these created tails to the pushdown
automaton being created.

Algorithm 3 Recursive construction of tail of nondeterministic basic nonlinear
tree pattern automaton.
Input: Tail of nondeterministic tree pattern pushdown automaton Mtnpt, string
representing subtree skipped by transition x = sst(q).
Output: Recursively created tail nta(Mtnpt, x).
Method:

1. For each transition (qt, ε) ∈ δ(q, S, S) in automaton Mtnpt where sst(q) = x

do:
1.1. Create Mtmp = nta(tail(Mtnpt, qt), x) using Algorithm 3.
1.2. Add new state qid to Mtnpt where qid is copy of state qt.
1.3. Add new transition (qid, ε) ∈ δ(q,X, S) to Mtnpt.
1.4. Add Mtmp to Mtnpt and merge initial state of Mtmp with qid.

2. nta(Mtnpt, x) is Mtnpt.

Algorithm 4 Construction of nondeterministic basic nonlinear tree pattern push-
down automaton.
Input: Nondeterministic tree pattern pushdown automaton Mnpt(t).
Output: Nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t).
Method:

1. For each transition (qt, ε) ∈ δ(q, S, S) in automaton Mnpt(t) do:

1138 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

1.1. Create Mtmp = nta(tail(Mnpt(t), qt), sst(q)) using Algorithm 3.
1.2. Add new state qid to Mnpt(t) where qid is copy of state qt.
1.3. Add new transition (qid, ε) ∈ δ(q,X, S) to Mnpt(t).
1.4. Add Mtmp to Mnpt(t) and merge initial state of Mtmp with qid.

2. Mb(t) is Mnpt(t).

The nonlinear tree pattern PDA is similar to the tree pattern PDA. The dif-
ference between Algorithm 3 and Algorithm 4 is that Algorithm 3 calls itself
only when processing transition for symbol S leading from state q, where sst(q)
equals its subtree parameter. On the other hand, Algorithm 4 calls Algorithm 3
for each transition for symbol S.

Example 8. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is a prefix
notation of tree t1 from Example 1, the corresponding nondeterministic basic
nonlinear tree pattern pushdown automaton is
Mb(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), where its transition diagram is illus-
trated in Figure 8. ⊓⊔

5.2. Nonlinear tree pattern pushdown automaton

Some states of the pushdown automaton constructed by Algorithm 4 can be
merged so that states in nondeterministic nonlinear tree pattern pushdown au-
tomaton Mnntp for a subject tree t Mnntp(t) = ({0, 1, 2, . . . , n, x1, . . . , n1,

y2, . . . , n2, . . . , zm, . . . , nm}, A ∪ {S,X}, {S}, δ, 0, S, ∅) would still track both
assigned subtree and the same number of nonlinear variables read from the
pattern. Merged states are those from tails with the same assigned subtree and
the same number of nonlinear variables read.

Definition 6. Let Mb(t) = (Q,A ∪ {S,X}, {S}, δ, q0, S,∅) be a basic nondeter-
ministic nonlinear tree pattern PDA constructed by Algorithm 4. Let x be the
longest string over alphabet A, where (q, x, α) ⊢∗

Mb (qf , ε, β). The tree node
state label tnsl(q) is defined tnsl(q) = |pref(t)| − |x|.

Algorithm 5 Algorithm for counting the tnsl.
Input: Nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t) and state q for which the tnsl is counted.
Output: Number representing tnsl.
Variables: Temporary number n, State initial.
Method:

1. n = 0. initial is the starting state of Mb(t).
2. Do:

2.1. If exists transition (q, Sarity(a)) ∈ δ(qprev, a, S) where a ∈ A and
qpref 6= initial do:

2.1.1. n = n+ 1, q = qprev.
2.1.2. Goto step [2.].

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1139

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS
a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε 71

X|S 7→ ε

72

X|S 7→ ε

56 66 76

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

75

X|S 7→ ε

54 64 74
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

73

X|S 7→ ε

38 48 58 68 78
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

X|S 7→ ε

77

X|S 7→ ε

510 610 710
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

79

X|S 7→ ε

511 611 711
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

Fig. 8. Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t1) from
Example 8 constructed for tree t1 shown in Figure 1

1140 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

2.2. If exists transition (q, ε) ∈ δ(qprev, X, S) where X is nonlinear variable
do:

2.2.1. n = n+ |sst(qprev)|, q = qprev.
2.2.2. Goto step [2.].

2.4. Output n+ 1.

Example 9. Given a basic nondeterministic nonlinear tree pattern pushdown
automaton is Mb(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), its transition diagram is
shown in Figure 8.

Then, tnsl(3) = 3, tnsl(54) = 5, tnsl(711) = 7, tnsl(79) = 7. ⊓⊔

Definition 7. Given a basic nondeterministic nonlinear tree pattern pushdown
automaton Mb(t) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅) created by Algorithm 4, the
number of nonlinear variable transitions nnv(q,X) is the number of transitions
reading nonlinear variable X on the path from the initial state q0 to state q,
where q and q0 ∈ Q.

Algorithm 6 Algorithm for counting the nnv.
Input: Basic nondeterministic nonlinear tree pattern pushdown automaton
Mb(t) and state q for which the tnsl is counted.
Output: Number representing nnv.
Variables: Temporary number n, State initial.
Method:

1. n = 0. initial is the starting state of Mb(t).
2. Do:

2.1. If exists transition (q, Sarity(a)) ∈ δ(qprev, a, S) where a ∈ A and
qpref 6= initial do:

2.1.1. q = qprev.
2.1.2. Goto with step [2.].

2.2. If exists transition (q, ε) ∈ δ(qprev, X, S) where X is nonlinear variable
do:

2.2.1. n = n+ 1, q = qprev.
2.2.2. Goto with step [2.].

2.3 Output n.

Definition 8. Given a nondeterministic basic nonlinear tree pattern pushdown
automaton Mb(t) created by Algorithm 4, the mergeable states
ms(Mb(t)) is a collection of pairs (key, value), where key is a triplet (sst(q),
nnv(u,X), tnsl(u)) and value is a set of states. ms(Mb(t)) stores sets of states
with the same number of transitions reading nonlinear variable X nnv(q,X) and
subtree skipped by transition sst(q).
ms(Mb(t)) = {(sst(qx), nnv(sa1, X), tnsl(sa1)), {sa1, sa2, . . .}),
(sst(qy), nnv(sb1, X), tnsl(sb2)), {sb1, sb2, . . .}), . . .}, where the first state s1 from
each set is the main state. State v is sst(v) denoting state for state s1 given
by (v,Xω, Sγ) ⊢ (s1, ω, γ), where ω = (A ∪ {S,X})∗. All states from that set
are given by following: {∀s : nnv(s,X) = nnv(s1, X) and sst(v) = sst(u) and
tnsl(s) = tnsl(s1); s, s1, u, v ∈ Q}, where state u is sst(u) denoting state for
state s given by (u,X(A∪ {S})∗ω, Sα) ⊢∗ (s, ω, Sβ), where ω = (A ∪ {S,X})∗.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1141

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

Each set from the collection of sets of mergeable states ms(Mb(t)) defines
states from nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t) that can be merged and the resulting automaton is called nondetermin-
istic nonlinear tree pattern pushdown automaton Mnntp(t). All states from each
set defines the start of a merging process so that states that are reachable by
the same sequence of transitions are also merged.

Example 10. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is the
prefix notation of tree t1 from Example 1. The corresponding nondetermin-
istic basic nonlinear tree pattern pushdown automaton is Mb(t1) = (Q,A ∪
{S,X}, {S}, δ, 0, S,∅), where its transition diagram and states are illustrated in
Figure 8.

All states that occur in one of the set in the collection ms(Mb(t1)) are target
states from all transitions for a symbol X and the transitions for a symbol S
which shares the source state.

ms(Mb(t1)) = {((a0, 1, 5), {54, 58}), ((a0, 1, 7), {71, 74, 78}),

((a0, 2, 7), {73, 77, 710}), ((a1a0, 1, 7), {72, 76})}.

Algorithm 7 Construction of the nondeterministic nonlinear tree pattern push-
down automaton.
Input: Nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t).
Output: Nondeterministic nonlinear tree pattern pushdown automaton
Mnntp(t).
Variables: Collection of sets of states ms(Mb(t)).
Method:

1. For all transitions (u1, ε) ∈ δ(q,X, S) do:
1.1. If the collection ms(Mb(t)) does not contain a set on a key (sst(q),

nnv(u1, X), tnsl(u1)) create that set as an empty set.
1.2. Add u1 to the collection ms(Mb(t)) to the set on the key

(sst(q), nnv(u1, X), tnsl(u1)).
2. For all transitions (u2, ε) ∈ δ(q, S, S), where exists a transition

(u1, ε) ∈ δ(q,X, S) do:
2.1. If nnv(u2, X) 6= 0 and the collection ms(Mb(t)) does not contain a set

on a key (sst(q), nnv(u2, X), tnsl(u2)) create that set as an empty set.
2.2. Add u2 to the collection ms(Mb(t)) to the set on the key

(sst(q), nnv(u2, X), tnsl(u2)).
3. For each set in the collection ms(Mb(t)) do:

3.1. Merge all states in this set, along with all states that follows-up.

Example 11. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1 from Example 1, the corresponding nondeterministic nonlin-
ear tree pattern pushdown automaton is
Mnntp(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), where merged states are in Exam-
ple 10 and its transition diagram and states are illustrated in Figure 9. ⊓⊔

1142 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

38 48 58,4 68,4 78,4,1
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

510 610 710,7,3
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

79

56 66 76,2
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

75

511 611 711
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε X|S 7→ ε X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε X|S 7→ ε

X|S 7→ ε

Fig. 9. Nondeterministic nonlinear tree pattern pushdown automatonMnntp(t1) from Ex-
ample 11 constructed by Algorithm 7 for subject tree shown in Figure 1

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1143

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

The nondeterministic nonlinear tree pattern pushdown automaton can be
even minimalised by omitting the nnv(q,X) part of the key value pairs of the
collection ms(Mb(t)). The resulting automaton would represent an index of the
subject tree for nonlinear tree pattern matching but would not be able to say
how many nonlinear variables has been read during processing the nonlinear
tree pattern.

5.3. Time and Space Complexity Analysis

Lemma 4. Time complexity of accepting the nonlinear tree template by au-
tomaton created by Algorithm 7 is O(

∑
K ki), where K is the set of all prefixes

except ε, and ki is the number of distinct sequences of transitions in automaton
Mnntp(t) for ki ∈ K which ends in a state of automaton Mnntp.

Proof. Automata have to try all possible sequences of transitions according to
tree template which occur in the nondeterministic nonlinear tree pattern au-
tomaton. Sequences of symbols of these transitions form a prefix of tree tem-
plate. Prefix of the size of one symbol from tree template is handled by exactly
n steps, where n is the number of all possible sequences of transitions in the
automaton for that prefix. Prefix of the size of two symbols is handled by n+m

steps, where m is the number of all possible sequences of transitions in the
automaton for that prefix. Note that handling two symbols prefix requires two
transitions to be processed, however the first transition is already accounted by
prefix of size of one symbol.

Exact time complexity is then the sum of all possible sequences of tran-
sitions in the automaton for all prefixes of nonlinear tree template, which is
O(

∑
S rsi). ⊓⊔

Lemma 5. The number of states of nondeterministic nonlinear tree pattern
pushdown automaton Mnntp(t) created by Algorithm 7 is
O(n(

∑s

i=0 ri)) = O(n2), where n is the number of nodes of a subject tree and∑s

i=0 ri, where s is the number of distinct subtrees, and ri is the number of
repetitions of each subtree.

Proof. Each occurrence of each unique subtree in tree increments the num-
ber of automaton tails, that were created for this subtree. The exact number of
tails created for particular subtree is then ri, where ri is the number of repeti-
tions of that subtree. Then the total number of tails for one nonlinear variable
in automaton is the number of tails created for each unique subtree of indexed
tree which is

∑s

i=0 ri. The total number of tails does not count original automa-
ton. The exact number of states of the automaton for one nonlinear variable is
O(n(

∑s

i=0 ri + 1)) = O(n(
∑s

i=0 ri)). ⊓⊔

Lemma 6. The number of transitions of nondeterministic nonlinear tree pattern
pushdown automaton Mnntp(t) created by Algorithm 7 is

O(n2 +n+
∑s

i=0(
r2i+ri

2)) = O(n2), where n is the number of nodes of a subject
tree, s is the number of distinct subtrees and ri is the number of repetitions of
each unique subtree.

1144 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

Proof. For all tails for one nonlinear variable, there are transitions reading sym-
bol X between these tails. There is one transition heading to the last tail. There
are two transitions heading to the previous tail, and so on. The number of tran-

sitions reading symbol X is
∑s

i=0(
r2i+ri

2).
Using Lemma 5 the number of transitions for symbol S is 1

2n
2 and the num-

ber of transitions for symbol a ∈ A is 1
2n

2 + n.

The number of transitions then is O(
∑s

i=0(
r2i+ri

2) + n2 + n). ⊓⊔

Lemma 7. Given a tree t with n nodes, the number of distinct nonlinear tree
patterns which match the tree t can be at most 3n−1 + 2.

Proof. First, subtrees of any subtree of the tree t can be replaced by the spe-
cial nullary symbol S and the tree template resulting from such a replacement
is a tree pattern which matches the tree. Second, subtrees of any subtree of
the tree t can be replaced by the special nullary symbol X and the nonlin-
ear tree template resulting from such replacement is a nonlinear tree pattern
which matches the tree. Given a tree with n nodes, the maximal number of
subsets of subtrees that can be replaced by the special nullary symbol S, X
occurs for the case of a tree t3 whose structure is given by the prefix notation
pref(t3) = a(n − 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illustrated
in Figure 6. In this tree, each of the nullary symbols a10, a20, . . . , an−10 can be
replaced by nullary symbol S or X , and therefore we can create 3n−1 distinct
tree templates which are tree patterns matching the tree t3.

Third, the tree t itself and all its subtrees not containing the root are tree
patterns which match the tree. Subtrees of the tree t must be the same so that
the nonlinear tree pattern matched the tree in the first place. These gives 2
other distinct tree patterns.

Thus, the total number of distinct tree patterns matching the tree t can be at
most 3n−1 + 2. ⊓⊔

6. Processing more nonlinear variables in nonlinear tree
patterns

Indexing for nonlinear tree pattern matching with more than one nonlinear vari-
able can be done by a pushdown automaton created as a pushdown automaton
for the intersection of languages. Automaton for two nonlinear variables would
be constructed on the basis of two automata – each of them for one nonlinear
variable. The disadvantage of this approach would be increasing space com-
plexity.

Another approach is represented by a nondeterministic nonlinear tree pat-
tern pushdown automaton Mnntp(t) for one nonlinear variable that can be used
as an indexing data structure also for nonlinear tree patterns with more vari-
ables. The idea is to compare which transitions of more runs of this single au-
tomaton were used to match the pattern. The input pattern needs to be modified
because it contains symbols representing the nonlinear variables that the non-
deterministic nonlinear tree pattern pushdown automaton can’t handle.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1145

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

Example 12. Consider a ranked alphabet A = {a4, a3, a2, a1, a0}. Consider a
nonlinear tree template p4 over A ∪ {S, Y, Z} p4 = ({a41, X2, X3, Y4, Y5}, Rp4)
over A, where Rp4 is a set of the following ordered pairs:

Rp4 = {(a41, X2), (a41, X3), (a41, Y4), (a41, Y5)}.

Nonlinear tree template p4 is illustrated in Figure 10.

a41

Z2 Z3 Y4 Y5

Fig. 10. Nonlinear tree template p4 from Example 12

Nonlinear tree template p4 can be decomposed to nonlinear tree templates
for one nonlinear variable. These nonlinear tree templates will be over alphabet
A ∪ {S,X} and are illustrated in Figure 11. ⊓⊔

a41

X2 X3 S4 S5

a41

S2 S3 X4 X5

Fig. 11. Decomposition of nonlinear tree template p4 from Example 12

In the beginning the algorithm decomposes a given nonlinear tree template
to nonlinear tree templates of one nonlinear variable. Then, the accepting se-
quences of transitions are computed using nondeterministic nonlinear tree pat-
tern pushdown automaton Mnntp(t) and each decomposed nonlinear tree pat-
tern. These accepting sequences of transitions can be used for filtering real
occurrences out of the original tree template for more nonlinear variables.

Algorithm 8 Algorithm of nonlinear tree pattern matching with more nonlinear
variables using nondeterministic nonlinear tree pattern pushdown automaton
Mnntp(t)
Input: Nondeterministic nonlinear tree pattern pushdown automaton
Mnntp(t). Nonlinear tree pattern with more variables p, set vars of variables
used in the template p.

Output: Occurrences of the pattern.
Method:

1146 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

1. Collection of nonlinear templates for one variable po is an empty collection.
2. For each variable var in vars do:

2.1. pd is a clone of nonlinear tree template p.
2.2. Change a symbol in leaf nodes to nullary symbol S, where node label

l ∈ (vars \ var).
2.3. Change a symbol in leaf nodes to nullary symbol of nonlinear variable

X , where node label l = var.
2.4. Add pd to po.

3. Set Occ contains {0, 1, . . . , n} where n is the size of the tree t.
4. For each nonlinear tree template pd in po do:

4.1. Determine accepting sequences of transitions ts of tree template t using
Mnntp(t).

4.2. Compute a set Occpd as set of tnsl(q), where q is a target state of the
first transition from all ts.

4.2. Remove all items in Occ which are not in Occpd.
5. Output Occ.

6.1. Time and Space Complexity Analysis

Lemma 8. Time complexity of accepting the nonlinear tree template for more
nonlinear variables by nondeterministic nonlinear tree pattern pushdown au-
tomaton is O(v × m +

∑
run(pd) +

∑
Occpd), where v is the number of non-

linear variables, m is the size of the nonlinear template, run(pd) is the time of
locating all accepting transition sequences of each of decomposed templates
pd in automaton Mnntp(t) and Occpd is the size of occurrences of decomposed
template pd.

Proof. The nonlinear tree template needs to be decomposed to nonlinear tree
templates for one nonlinear variable. This takes v ×m time.

Occurrences of each nonlinear tree template from decomposed nonlinear
tree template p are computed in time

∑
run(pd).

Composition of partial occurrences Occpd to Occ can be done in
∑

Occpd
time. ⊓⊔

Lemma 9. Given a tree t with n nodes, the number of distinct nonlinear tree
patterns (with more nonlinear variables) which match the tree t can be at most
(2 + v)n−1 + 2.

Proof. First, subtrees of any subtree of the tree t can be replaced by the special
nullary symbol S and the tree template resulting from such a replacement is a
tree pattern which matches the tree. Second, subtrees of any subtree of the tree
t can be replaced by the special nullary symbols of variables and the nonlinear
tree template resulting from such replacement is a nonlinear tree pattern which
matches the tree. Given a tree with n nodes, the maximal number of subsets
of subtrees that can be replaced by the special nullary symbols of variables
occurs for the case of a tree t3 whose structure is given by the prefix notation
pref(t3) = a(n − 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illustrated

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1147

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

in Figure 6. In this tree, each of the nullary symbols a10, a20, . . . , an−10 can be
replaced by nullary symbol of variables and therefore we can create (2 + v)n−1

distinct tree templates which are tree patterns matching the tree t3.
Third, the tree t itself and all its subtrees not containing the root are tree

patterns which match the tree. Subtrees of the tree t must be the same so that
the nonlinear tree pattern matched the tree in the first place. These gives 2
other distinct tree patterns.

Thus, the total number of distinct tree patterns matching the tree t can be at
most (2 + v)n−1 + 2. ⊓⊔

7. Some empirical results

We have implemented the nondeterministic tree pattern pushdown automaton
and the nonlinear tree pattern pushdown automaton using the bit-parallelism
technique, which was introduced in [27]. For our implementations of transitions
reading symbols from A we use the same approach as it is used in the im-
plementation of nondeterministic string suffix automata in [23]. The transitions
reading the special variable nullary symbols must be treated in a special way.
When processing these nullary symbols the algorithm takes indexes of each
one in configuration bit vector of the bit–parallelism simulation and recompute
these indexes according to transitions reading variable symbols in the simulated
automaton. A unique id of subtree is stored for each location in the bit vector so
that the matching of nonlinear tree patterns is possible.

Our implementations were written in Java programming language; all tim-
ings were conducted on a 2 GHz Intel Core i7 with 8 GB of RAM running Open-
SUSE GNU/Linux version 12.1 and Java 1.6.0. In Figures 12, 13, and 14, it
is shown that the running time for a given tree is linear with the size of the
input (nonlinear) tree pattern. In Figures 15, 16, and 17, it is shown that the
running time for binary trees is also linear in general but for very small input
patterns there is a slowdown caused by recomputing the configuration vector of
bit–parallelism for nullary variable symbols.

8. Conclusion

We have presented the tree pattern pushdown automaton and the nonlinear
tree pattern pushdown automaton, a new kind of pushdown automata which
represent a complete index of a given ordered tree for tree patterns and non-
linear tree patterns, respectively. We have discussed the time and space com-
plexities and have shown timings of our implementations using the bit-parallel
technique. The timings are similar to those for the existing bit-parallel imple-
mentation of nondeterministic string suffix automata.

Since the presented pushdown automata are input–driven, they can be de-
terminised. However, the space complexities of their deterministic versions are
open problems.

1148 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
at

ch
in

g
tim

e
[s

]

(Nonlinear) tree pattern size [-]

Random tree with 49576 nodes

Without variables

A half of leaves are variables

All leaves are variables

Fig. 12. Random tree with 49576 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20000 40000 60000 80000 100000 120000

M
at

ch
in

g
tim

e
[s

]

(Nonlinear) tree pattern size [-]

Random tree with 107732 nodes

Without variables

A half of leaves are variables

All leaves are variables

Fig. 13. Random tree with 107732 nodes

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1149

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

 0

 1

 2

 3

 4

 5

 6

 0 20000 40000 60000 80000 100000 120000 140000 160000

M
at

ch
in

g
tim

e
[s

]

(Nonlinear) tree pattern size [-]

Random tree with 146074 nodes

Without variables

A half of leaves are variables

All leaves are variables

Fig. 14. Random tree with 146074 nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5000 10000 15000 20000 25000 30000 35000

M
at

ch
in

g
tim

e
[s

]

(Nonlinear) tree pattern size [-]

Full binary tree with 32767 nodes

Without variables

A half of leaves are variables

All leaves are variables

Fig. 15. Full binary tree tree with 32767 nodes

1150 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10000 20000 30000 40000 50000 60000 70000

M
at

ch
in

g
tim

e
[s

]

(Nonlinear) tree pattern size [-]

Full binary tree with 65535 nodes

Without variables

A half of leaves are variables

All leaves are variables

Fig. 16. Full binary tree tree with 65535 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10000 20000 30000 40000 50000 60000 70000

M
at

ch
in

g
tim

e
[s

]

(Nonlinear) tree pattern size [-]

Full binary tree with 131071 nodes

Without variables

A half of leaves are variables

All leaves are variables

Fig. 17. Full binary tree tree with 131071 nodes

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1151

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

References

1. Aho, Alfred V.; Margaret J. Corasick: Efficient string matching: An aid to bibliographic
search. In: Communications of the ACM, 18 (6), pp. 333340, 1975.

2. Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compil-
ing. Prentice-Hall Englewood Cliffs, N.J., 1972.

3. Arbology www pages, Available at: http://www.arbology.org, June 2012.
4. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M. T., Seiferas, J. I.,

1985. The smallest automaton recognizing the subwords of a text. Theor. Comput.
Sci. 40, 31–55.

5. Christou, M., Crochemore, M., et al., 2011. Computing All Subtree Repeats in Or-
dered Ranked Trees. In String Processing and Information Retrieval, Vol. 7024, pp.
338-343.

6. L.G.W.A. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit. PhD Thesis,
Department of Mathematics and Computer Science, Eindhoven University of Tech-
nology, Eindhoven, April 2008.

7. Crochemore, M., 1986. Transducers and repetitions. Theor. Comput. Sci. 45 (1),
63–86.

8. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

9. Crochemore, M., Hancart, C., 1997. Automata for matching patterns. In: Rozenberg,
G., Salomaa, A. (Eds.), Handbook of Formal Languages. Vol. 2 Linear Modeling:
Background and Application. Springer–Verlag, Berlin, Ch. 9, pp. 399–462.

10. Crochemore, M., Rytter, W., 1994. Jewels of Stringology. World Scientific, New Jer-
sey.

11. Domenico Cantone, Simone Faro and Emanuele Giaquinta: A Compact Represen-
tation of Nondeterministic (Suffix) Automata for the Bit-Parallel Approach, In: CPM
2010, LNCS 6129, Springer, Berlin, 2010.

12. Toms Flouri, Jan Janousek, Borivoj Melichar, Costas S. Iliopoulos, Solon P. Pissis:
Tree Template Matching in Ranked Ordered Trees by Pushdown Automata. In: CIAA
2011, LNCS 6807, Springer, Berlin, pp. 273-281, 2011.

13. Olivier Gauwin, Joachim Niehren: Streamable Fragments of Forward XPath. In:
CIAA 2011, LNCS 6807, Springer, Berlin, pp. 3-15, 2011.

14. F Gecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, volume 3 Beyond Words. Handbook of For-
mal Languages, pages 1–68. Springer–Verlag, Berlin, 1997.

15. Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982.

16. Hopcroft, J. E., Motwani, R., Ullman, J. D., 2001. Introduction to automata theory,
languages, and computation, 2nd Edition. Addison-Wesley, Boston.

17. J. W. Klop. Term Rewriting Systems, Handbook of Logic in Computer Science, 1992.
18. Janousek, J. String Suffix Automata and Subtree Pushdown Automata. In: Proceed-

ings of the Prague Stringology Conference 2009, pp. 160–172, Czech Technical
University in Prague, Prague, 2009.

19. Janousek, J.: Arbology: Algorithms on Trees and Pushdown Automata. Habilitation
thesis, TU FIT, Brno, 2010.

20. Janousek, J., Melichar, B. On Regular Tree Languages and Deterministic Pushdown
Automata. In Acta Informatica, Vol. 46, No. 7, pp. 533-547, Springer, 2009.

1152 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Indexing Trees for Nonlinear Tree Pattern Matching

21. Melichar, B. Arbology: Trees and pushdown automata. In: LATA 2010 (LNCS 6031),
invited paper, pp. 32-49, Springer, 2010.

22. Melichar, B., Holub, J., Polcar, J., 2005. Text searching algorithms. Available at:
http://stringology.org/athens/, release November 2005.

23. Gonzalo Navarro, Mathieu Raffinot: A Bit-Parallel Approach to Suffix Automata: Fast
Extended String Matching. In: CPM, LNCS 1448, Springer, Berlin, pp. 14-33, 1998.

24. R. Ramesh, I. V. Ramakrishnan. Nonlinear Pattern Matching in Trees, Journal of the
Association for Computing Machinery, Vol 39, No 2, April 1992.

25. Smyth, B., 2003. Computing Patterns in Strings. Addison-Wesley-Pearson Educa-
tion Limited, Essex, England.

26. Travnicek, J. , Janousek, J., Melichar, B. Nonlinear Tree Pattern Pushdown Au-
tomata. InProceedings of the FEDCSIS 2011, IEEE Computer Society Press, pp.
871-878, 2011.

27. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In: Commun.
ACM, 35(10), pp. 7482, 1992.

Jan Tr ávnı́ ček has been a PhD student at the Department of Theoretical Com-
puter Science, Czech Technical University in Prague, Faculty of Information
Technology. His research interests are focused on algorithms on trees (Arbol-
ogy).

Jan Janou šek has been an associate professor at the Department of Theoret-
ical Computer Science, Czech Technical University in Prague, Faculty of Infor-
mation Technology. His research interests include algorithms on trees (Arbol-
ogy), parsing algorithms, compiler construction, attribute grammars and formal
languages and automata theory.

Borivoj Melichar has been a full professor at the Department of Theoretical
Computer Science, Czech Technical University in Prague, Faculty of Informa-
tion Technology. His research interests include algorithms on strings (Stringol-
ogy), algorithms on trees (Arbology), parsing algorithms and compiler construc-
tion.

Received: December 20, 2011; Accepted: June 4, 2012.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1153

DOI: 10.2298/CSIS120104026G

A Programming Language Independent
Framework for Metrics-based Software Evolution

and Analysis

Črt Gerlec1, Gordana Rakić2, Zoran Budimac2, Marjan Heričko1

1 Institute of Informatics
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova ulica 17, 2000 Maribor, Slovenia

{crt.gerlec,marjan.hericko}@uni-mb.si
2 Department of Mathematics and informatics

Faculty of Science
University of Novi Sad

Trg Dositeja Obradovića 4, 2100 Novi Sad, Serbia
{goca,zjb}@dmi.uns.ac.rs

Abstract. Knowledge about different aspects of software quality during
software evolution can be valuable information for developers and project
managers. It helps to reduce the number of defects and improves the in-
ternal structure of software. However, determining software’s quality and
structure in heterogeneous systems is a difficult task. In this paper, a pro-
gramming language independent framework for evaluating software met-
rics and analyzing software structure during software development and its
evolution will be presented. The framework consists of the SMIILE tool
for calculation of software metrics, extended with an analysis of software
structure. The data are stored in a central repository via enriched Con-
crete Syntax Tree (eCST) for universal source code representation. The
framework is demonstrated in a case study. The development of such a
framework is a step forward to consistent support for software evolution by
providing a change analysis and quality control. The significance of this
consistency is growing today, when software projects are more complex,
consisting of components developed in diverse programming languages.

Keywords: Software evolution, software development, software quality,
software structure, software metrics, syntax tree

1. Introduction

From the beginning of the application of software engineering, engineers have
been striving to develop quality and maintainable software products. Therefore,
software evolution and its quality have become an important research discipline.
Early versioning systems like the Source Code Control System made it possi-
ble to record the sequential versions of software products [41]. Such software

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

history has been important to understand what, where and when a change was
applied. Beside versioning systems, software quality measures have been re-
searched. The first published book that describe software metrics appeared in
1976 [20] but the first attempts at applying software metrics had already taken
place in the late 1960s [17]. With the spread of software metrics, a need for
the appropriate storage of such data grew. In 1993, Pfleeger described the im-
portance of data collecting and determined their success in a metrics program
[37].

Various approaches have been used to analyze software evolution. The ma-
jority of them are programming language specific. Their meta-models are not
general and do not enable a structural software comparison between different
systems. Thus, making a comparison between the structural software evolution
of two systems or of two components with the same system that are written in
different programming languages (e.g. Java and C#), is not possible. A simi-
lar problem can be found in the field of software metrics. Existing approaches
that define the metrics and its algorithms are programming language specific.
Furthermore, the algorithms usually differ between the tools. Thus, a software
metric comparison in heterogeneous systems is not accurate.

The purpose of this study is to deal with the problems surrounding program-
ming language dependent frameworks and approaches that describe software
metrics and software structure. Thus, a general framework that allows a pro-
gramming language independent representation and evaluation of software ar-
tifacts has been developed. It consists of three major components. The first
component of the framework is a language independent meta-model for repre-
senting a source code structure. The main purpose is to provide sufficient data
for a further evolutionary analysis based on software structures (e.g. detecting
structural source code changes between sequential software versions). The
second one is the SMIILE (Software Metrics Independent of Input LanguagE)
tool. Its main advantage is to define an universal implementation of metric algo-
rithms (e.g. algorithm for the cyclomatic complexity) built upon the meta-model.
Both components are based on the enriched Concrete Syntax Tree (eCST)
that represents an internal representation of source code. The eCST is built on
”universal” nodes that are common for all programming languages. However,
in order to store the software artifacts and conduct a deeper analysis, an ap-
propriate repository is needed. To fulfill this demand, a specific repository was
build and integrated as the third component in the framework.

In our case study, the application of the framework will be shown. Its goal
is to apply the framework (i.e. meta-models) in practice by using the SMIILE
tool for defining and calculating software metric values and by using structural
source code representation from different programming languages.

The contribution of this paper is the development of a programming lan-
guage independent framework for metrics-based software evolution and anal-
ysis. This goal was achieved by (1) adjusting the eCST concept in order to
support a language-independent source code structure representation that en-

1156 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

ables evolutionary analysis based on software structure and by (2) integrating
the SMIILE tool with a central repository that supports eCST.

This paper is organized as follows: The background, needed for understand-
ing the study, and the motivation are described in section 2. Then, the prelim-
inary works are introduced in section 3. The programming language indepen-
dent framework for metrics and structural analysis in software evolution is briefly
described in section 4. In the section 5, the framework application is presented
with a case study. The validity and limitations of this research are stated in
section 6. In the section 7, state-of-the-art tools and approaches for analyzing
software metrics and software structure are introduced. In the last section, the
conclusion and ideas for future work are provided.

2. Background and motivation

This section describes three important notions of the study (i.e. software evolu-
tion, software metrics and software repository) and the motivation.

2.1. Software evolution

The field of software evolution has become an interesting area over the last
decade, leading to an increase in the amount of research on the subject [14].
Lehman et al. [31] describes two perspectives on software evolution. The first
perspective focuses on the questions of ”what and why” and describes the na-
ture of software evolution and its properties. On the other hand, the second
perspective is focused on the word ”how” and covers areas like the theories,
abstractions, languages, activities, methods and tools required to evolve soft-
ware.

Software evolution could also be understood as continuous adaptation. Soft-
ware changes, that are caused by an adaptation process, are usually partitioned
into three general classes [33]. The first class includes corrections that tend to
be fixes of source code errors. However, there are also some other error fixes
that are related to software design, architecture and requirements. The next
class consists of improvements. They tend to include things like increases in
performance, usability, maintainability, etc. The last class comprises enhance-
ments that represent new features or functions that are visible to the users of
the end system.

Software systems evolve continuously in order to satisfy all users’ needs and
requirements. The research in [26] showed that the software history is a good
indicator for its quality. Therefore, it is vital for companies to ensure mechanism
that tracks the changes during the development in order to minimize the risk for
potential new bugs.

Software changes are part of software evolution. Thus, it is important to
analyze these changes from a structural and qualitative point of view and then
compare the results.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1157

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Structural source code changes are constant during software development.
They are usually made when new functionality is added to the existing software
product or during the updates. Moreover, changes are also made in refactoring
and debugging processes. In this paper, a structural source code change is de-
fined as an object-oriented change on a class (e.g. the add/remove method) be-
tween two sequential versions. The examples of structural source code changes
are:

– add parameter, field and method,
– remove parameter, field and method,
– hide and unhide method,
– rename method,
– move attribute, method and class,
– extract superclass, interface and class,
– pull up field and method,
– push down field and method, and
– inline class.

In the sense of software evolution, our study focuses on defining a program-
ming language independent meta-model that is based on the time (i.e. version)
component. Its intent is to collect sufficient data about software structure and
its quality properties. Such a meta-model enables further evolutionary analysis
upon the collected data. However, the change detection process uses several
rules in order to identify structural changes between two source code versions.
Each rule represents one change type (e.g. add method) and usually accepts
two parameters. For example, the first parameter is metadata for a class in ver-
sion n and the second parameter represents the same class in the next version
(i.e. n+1). If the metadata for the same class in two sequential versions fulfills
the demands of the rules, the change type that the rule represents, was used
on the class. Even though the change detection process has already been im-
plemented, it is out of the scope of this paper.

2.2. Software product metrics

The measuring and continual monitoring of a software product is crucial for
success in the software development process. From this perspective, software
metrics, the software metrics tool and the software metrics repository are crucial
notions.

Software metrics can be defined as numerical values that reflect the proper-
ties of a software development processes and software products [34]. There are
numerous categorizations of software metrics but when considering the mea-
surements, target metrics can be divided into three main categories: product
metrics, process metrics and project metrics [29]. In the rest of the paper, we
will deal with product metrics and especially code metrics as a sub-category of
product metrics. First, we will specify some of the product metrics used in the
rest of the paper:

1158 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

– Cyclomatic Complexity (CC) - reflects structure complexity based on control-
flow structures in the program.

– Halstead Metrics (H) - reflects the complexity of the program based on num-
ber of operators and operands.

– Lines of Code (LOC) - represents the length of the source code expressed
in the number of lines of source code. It is common to differentiate between
the number of lines of comment (CLOC), source code (SLOC), etc.

– Object Oriented metrics (OO) - the family of metrics related to the object
orientation of software. On the other hand, the term design metrics is of-
ten used and usually describes metrics related to characteristics of object
oriented development and design. However, some examples of the metrics
used in this paper are:
• Number of Classes (NOC) - reflects the number of classes contained in

the package, namespace, project, etc.
• Number of Interfaces (NOI) - reflects the number of interfaces contained

in the package, namespace, project, etc.
• Number of Methods (NOM) - reflects the number of methods declared

in the unit (class, interface, etc).
• Number of Properties (NOP) - reflects the number of properties de-

clared in the unit (class, interface, etc).
• Number of Attributes (NOA) - reflects the number of attributes declared

in the unit (class, interface, etc).

Nowadays, various software metrics tools are used for automatic calcula-
tions of software metrics. However, achieveing accuracy of the gathered metric
values and the appropriate interpretation of extracted data is often the hardest
step.

In section 7, problems in the area of consistent and systematic application
of software metrics will be presented. During the exploration, the strong depen-
dency of the applicability of software metrics on an input programming language
was recognized as one of the main weaknesses in this field. Introducing an
enriched Concrete Syntax Tree (eCST) for intermediate representation of the
source code resulted in a step towards programming language independence.

2.3. Software repositories

In order to perform a detailed measurement and analysis and interpretation of
numerous software metric values, a repository is needed. Its aim is to collect
[24], store and enable access to a wide range of metric values (e.g. product,
process and resource metric values) collected from software products, software
development processes and project management tools. The collected data, ex-
tracted with different tools, helps project leaders and development teams get a
better overview of a project.

Software repositories have been recognized as an important tool in the past.
Carnegie et al. [27] suggested that software organizations should implement
systems to define, collect, store, analyze and use process data. Furthermore,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1159

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Basili [12] suggested that data analysis routines should be implemented in or-
der to extract derived data from the row data. Then, all collected data should
be stored in a computerized database. In the study conducted by Goeminne
et al. [22] the term ”repository” is defined as follows: ”A data source containing
information that is relevant to the software product or process, and that can be
accessed and modified by different persons by using their identity.” Repositories
collect various properties of software systems (e.g the version of the source
code). As mentioned earlier, metrics repositories store data about a software
product (i.e. software metrics) while other repositories store different data (e.g.
properties of software processes). However, with historical insight over the soft-
ware properties, users become familiar with changes that were made over time.
With such knowledge, users are able to predict changes in the future and act if
the negative trend is detected. Thus, the establishment of software repositories
is sensible in organizations.

2.4. Motivation

Related research has also shown that there is no fully consistent tool support
for measurement and analysis during software development and maintenance.
The tools used for these purposes have some limitations (e.g. limited program-
ming language support, weak and inconsistent usage of metrics and/or testing
techniques, etc).

Large software systems are written in several programming languages. In
order to ensure a high level of software quality, we have to know the condition
of every part of a system. Furthermore, in order to evaluate such systems, dif-
ferent tools have to be used. However, these tools usually provide inconsistent
values for software metrics [36], [32], [43] and therefore, a comparison between
different parts of a system, written in different programming languages, is not
applicable.

In the field of software evolution, which enforces techniques such as advis-
ing, recommending and the automating of refactoring and reengineering, solu-
tions that are based on a common intermediate structure can be a key support-
ing element. This support could be based on metrics, testing and deeper static
and structure analysis. The development of such support would introduce new
values into the field of software engineering. For all of these reasons, a pro-
posed universal tree could be an appropriate internal representation applicable
toward all stated goals. Universality of internal structure is important for meeting
consistency in all fields.

By realization of this idea a key benefit could be made from language inde-
pendence of eCST and its universality and broad applicability.

3. Preliminary work

In this section, the preliminary work for developing a tool for change analysis
during software evolution will be described. Furthermore, a description of eCST

1160 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

and the original idea of an application of underlying trees in the development of
the SMIILE tool will be presented.

3.1. A tool for mining software repositories

The tool for identifying structural source code changes was presented in [19].
Its aim is to extract data from software repositories (e.g. subversion) and store
them into the meta-model in order to identify structural source code changes
between sequential versions. The change identification process is based on a
set of change rules. They are applied between different versions represented
by the meta-models. If demands of the rule are fulfilled, the change type is
found. In this study, 26 different rules for detecting change types were used.
The results showed that the tool could be used to analyze source code changes
in software repositories. On the other hand, the tool also has some limitations.
The main weakness is a programming language dependency. The current tool
only supports C# and VisualBasic programming language. The main problem is
direct relation between source-code and the meta-model. In order to overcome
this limitation, a universal intermediate representation of source code is needed.

3.2. Introducing of eCST

The motivation for introducing eCST as a new intermediate representation of
the source code is described in section 2.4.

Originally, tools used a Concrete Syntax Tree (CST) for the representation of
source code. This tree is usually an intermediate product of a parser generator.
It takes language grammar as an input and returns a language scanner and
parser as output. The grammar rules determine the manner in which the syntax
tree, as an intermediate structure, will be generated [23].

A CST represents concrete source code elements attached to a correspond-
ing construction in a language syntax. Although this tree is quite rich, it is still
unaware of sophisticated details about the meaning of syntax elements and
their role in certain problems (e.g. algorithms for the calculation of software
metrics). We enriched CST by adding universal nodes to mark elements to be-
come a recognizable independent for input programming language. The catalog
of universal nodes used in the prototype can be found in the appendix, in table
8.

To illustrate this technique and to achieve the independence of a program-
ming language, we provide the following simple example [38]. It illustrates the
problems in the calculation of a CC metric via the predicate counting method.

The simple loop statement (REPEAT), written in Modula-2, and the corre-
sponding one (do-while), written in Java, are stated as in table 1.

Although the given statements have different syntax, they express the same
functionality: some statements in the code will be repeated until parameter i
becomes greater than parameter j. In addition to the different syntax, a condition
for leaving the loop is oppositely stated. First, the condition expresses what

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1161

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Table 1. Loop statements

REPEAT
... Some statements ...

UNTIL(i > j);

do{
...Some statements...
}while(i <= j);

(a) REPEAT (Modula-2) (b) do-while (Java)

condition should be fulfilled to leave the loop, while the second one states the
condition to continue looping.

Simplified syntax trees representing these given statements are illustrated
in Figure 1.

Fig. 1. Simplified CST for REAPEAT-UNTIL (left) and do-while (right) statements

For the implementation of a CC algorithm, a REPEAT and a WHILE loop
have to be recognized and then increment the current CC value by 1. It is clear
that by using CST for source code representation, two implementations or at
least two conditions to recognize these loops in the tree are needed. By adding
universal nodes (i.e. LOOP STATEMENT) as a parent of sub-trees, that repre-
sent these two segments of source code, the goal by only one condition in the
implementation of the CC algorithm is met. A universal node, CONDITION, was
also added in order to mark the condition for leaving the loop repetition (Figure
2).

By adding all the needed universal nodes [40], the algorithms for the CC
metric could be implemented independently of a programming language. The
only requirement is that there is a language grammar to modify and generate
an appropriate parser that is then used for generating eCST.

1162 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Fig. 2. Simplified eCST for REAPEAT-UNTIL (left) and do-while (right) statements

Enriching the CST by adding universal nodes is done at a grammar level.
In the input language grammar, in the corresponding rule, we simply build in
an imaginary node. For example, in the rule where a control structures (e.g. if,
case, switch, etc.) are defined, an appropriate universal node is created. In the
ANTLR [9] (the compiler generator that was used in our study) this is possible
via a simple extension of the appropriate rule in the form of a declaration of
a new node that is automatically added to the syntax tree during its creation
process. The list of universal nodes required for implementing CC algorithm is
given in [40], while a full description of the eCST, generating process and stor-
ing is presented in [39]. The possible broader applicability of eCST in different
software engineering fields is described in [38].

It should be noted that the CC metric was chosen as a characteristic ex-
ample for presenting the usefulness of the eCST in the sense of language in-
dependence. The LOC metric is less sensitive to the syntax of a programming
language. However, a generated eCST is stored in an XML file based on a re-
cursive definition [39]. Each node contains information about the location of the
element in the source code (line and column), its text and node name, an index
of the element and nodes that contain children (i.e. sub-trees). In such a struc-
ture, we can find all the necessary data for calculating the LOC metric. From the
first element in the underlying sub-tree we can identify the starting line number,
and from the last element in the last sub-tree we can identify the ending line
number. Using the first and last line, we can easily calculate the LOC metric for
a certain unit.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1163

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

3.3. The SMIILE Tool

The SMIILE tool is a software metrics tool with the following general goals:

– independence of an input programming language,
– broad set of software metrics supported and
– support of software metrics history.

For an input source code, the SMIILE tool will execute the steps in two
phases (Figure 3).

– Phase 1:
• Recognition of the input programming language based on the input file

extension.
• Reading data about the language.
• Calling an appropriate scanner and parser. Scanner and parser is gen-

erated by an ANTLR parser generator [9] from grammar containing rules
for extending CST to eCST.

• Tree generation that represents the provided source code and trans-
lates it into XML format. This process forms the basis for applying dif-
ferent algorithms (e.g. algorithms for the calculation of software metrics)

– Phase 2:
• Reading the tree structure form XML to eCST.
• Calculating software metric values.
• Storing software metric values in XML.

The SMIILE was used on several different programming languages (object-
oriented Java and C#, procedural Module-2 and Pascal and legacy COBOL).
Furthermore, several metrics were used and implemented. We have chosen
two of them (LOC and CC) in order to demonstrate the universality of the model.
The LOC metric calculation algorithm is executable on a lexical level, while the
CC metric is sensitive to input language syntax (illustrated by the example in the
previous subsection). To implement algorithms for calculating the CC by predi-
cate counting and at the same time to meet the language independence of this
implementation, we introduced universal nodes for each element of language
syntax figuring in the algorithm. However, the eCST is designed in such a way
as to support any programming languages.

The catalog of universal nodes used in the implementation of the CC metric
is specified in [40]. The full catalogue of universal nodes used in the current
prototype of SMIILE tool can be seen in the appendix (in table 8). In the following
table (table 2) we will only introduce those universal nodes referred to in this
paper.

The storage of the SMIILE tool’s source code representation and metrics
history can be divided into two parts. In the first part, the eCST representation
of a source code is stored in an XML file that represents the basis for metric
calculations. In the next part, software metrics are calculated and stored in a
separate XML file that contain metric values. In other words, for each version
of a software the SMIILE tool generates two xml files (i.e. eCST representa-
tion and metric values). However, the aim of this study is to integrate software
metrics history with a repository.

1164 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Fig. 3. SMIILE Tool Architecture

Table 2. Catalog of universal nodes used for integration eCST with the framework.

Universal node coresponding element
of language syntax

PACKAGE DECL package, workspace,. . .
CONCRETE UNIT DECL class, implementation module,. . .
ABSTRACT UNIT DECL abstrat class, etc.
INTERFACE UNIT DECL interface, definition module,. . .
EXTENDED BASE UNITS extended class
IMPLEMENTED INTERFACE UNITS implemented interface,

corresponding definition module,. . .
ATTRIBUTE DECL attribute, field,. . .
PROPERTY DECL property
FUNCTION DECL method, procedure, function
PARAMETERS DECL parameters of the

method, procedure, function,. . .
NAME name of any element

(unit, function, attribute,. . .)
TYPE type of any element

(unit, function, attribute,. . .)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1165

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

4. Framework for analyzing software evolution

In this section, the programming language independent framework for analyzing
software structure and metrics is presented (figure 4). In order to overcome
the existing problems of meta-models and approaches for software evolution
analysis, our framework focuses on the following aspects:

– A programming language independent framework for analyzing software
evolution built on the eCST.
• An eCST-based meta-model that provides sufficient meta-data for ana-

lyzing software structure and its changes.
• An eCTS-based meta-model for representing software syntax that en-

ables metric calculations based on universal nodes.
– A software repository that stores meta-data and enables further analysis.

Metrics

repository

Source code

(version 1)

Source code

(version 2)

The SMIILE Tool

Programming

language

independent

eCST

Software structure analysis

Unified metric

algorithm

Identifying

software

structure

LOC

CC

NOC

NOI

NOA

NOM

...

Metrics

Packages

Classes

Interfaces

Attributes

Functions

...

Structure

Xml file

Xml file

Fig. 4. The programming language independent framework for analyzing software struc-
ture and metrics.

The framework is built upon the eCST that includes ”universal” nodes, which
are common for various programming languages. It consists of three compo-
nents. The first component is responsible for defining time in the software de-
velopment life cycle and is represented with the version entity. The second com-
ponent deals with a software structure. It describes the structure of software at
a certain time in the software development process and is represented in a ded-
icated part of the eCST. The last entity deals with software metrics and provides
a mechanism for the software quality analysis. Similar to a structure definition,

1166 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Independent framework

for software evolution

Version (time) Structure Metrics

Fig. 5. Three fundamental components of the framework.

the properties needed for evaluating software metrics are also defined in the
special part of eCST. All tree core components are shown in Figure 5.

The version entity is a central part of our framework. It determines the cer-
tain state of software in a development life cycle. In order to provide meaningful
data to our meta-model and to enable a reasonable analysis in the future, the
version entity consists of two elements: DateTime for determining the date and
time of the software snapshot and VersionName, which describes the version
with a unique identifier (e.g. version number, release name). The latter is usually
specified by the product owner (e.g. ”my software version 1.5.3”).

4.1. Programming language independent meta-model for describing
software structure

In order to detect structural software changes between software versions, a
special meta-model is needed. However, one of the purposes of this study was
to build a programming language independent meta-model that ensures suffi-
cient data and represents the basis for approaches that deal with techniques
for detecting structural software changes.

The basis for defining this meta-model were changes defined by Fowler et
al. [18]. The authors actually defined refactoring techniques that are similar to
source code changes. By their definition, refactoring improves the internal struc-
ture of a software system via source code changes. On the other hand, new
functionality is not allowed to be added to the end system during the refactoring
process [18]. However, each refactoring is a source code change while the op-
posite relation is not true. Our programming language independent meta-model
is defined to provide sufficient data for detecting the changes below.

– Add parameter, field and method
– Remove parameter, field and method
– Hide and unhide method
– Rename method
– Move attribute, method and class
– Extract superclass, interface and class
– Pull up field and method
– Push down field and method
– Inline class

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1167

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Programming languages differ from each other. Besides object-oriented con-
structs that are similar, they also have some that are unique or different be-
tween languages. For example, Java and C# use properties. In Java, they are
implemented with get and set methods. On the other hand, the C# program-
ming language has a unique construct for the same functionality. However, the
idea behind a source code representation is to take a snapshot of the soft-
ware’s structure as it is. No additional logic is used that could identify, for exam-
ple, properties (i.e. getter and setter methods) in Java code. In order to cover
as many programming languages as possible, additional changes have been
added to the list above. Additional types are written bellow.

– Add property
– Remove property
– Move property
– Pull up property
– Push down property
– Method body change

In order to provide sufficient data for approaches that deal with identifying
code changes, the appropriate extent of data should be extracted from the raw
source files. This extent of data is called the information level and represents the
minimal amount of data that is necessary in order to identify structural changes.
However, changes from the list were analyzed and for each change an informa-
tion level for detecting it from two sequential versions were defined.

For example, figure 6 shows the extract interface change type. In the version
1, the class Employee has 3 methods: getRate, getName and getSurname. Af-
ter the change process in version 2, the Employee class implements a new
interface Billable. The new interface contains a method getRate that was ”trans-
ferred” from the Employee class.

To be able to automatically detect such changes from software history, the
appropriate data (i.e. information level) should be stored into the meta-model.
The information level for the extract interface type is shown in table 3.

Table 3. Information level for extract interface change detection.

Version 1 Version 2 State (Added/Deleted/Updated)
Package x x x
Class x x x
Base class - - -
Interface x x x
Method x x x
Properties - - -
Attributes - - -

The adequate information for detecting the extract interface change type
between version 1 and version 2 are package, class, interface and method.

1168 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Fig. 6. The extract interface change type.

In addition, the information about the state of this construct is also needed.
The state defines if a construct was added, deleted or updated in an observed
version. This information is needed in order to identify parts that were actually
changed.

The information level needed to fulfill all demands of our list of changes are
shown in the table 3. The root element is concrete unit decl which represents
the main entity. From an object-oriented perspective, this element corresponds
to the class construct. The next important elements are unit state, name and
package decl. The first one describes the state of an entity in the observed ver-
sion and identifies if it was added, deleted or updated. For example, if a method
is added to an existing class in a version, the unit state node will be set to up-
dated. On the other hand, the latter two elements identify a name and a package
for a concrete unit decl. Extended base units and implemented interface units
represents the lists of extended classes and implemented interfaces of the ob-
served entity.

An additional set of meta-data elements are attribute decl, property decl
and function decl. The first two elements represent the attributes and proper-
ties of a class. They are composed by two sub-elements that identify their types
(type) and names (name). The last element is function decl, which represents
the functions or methods. It consists of the function name (name), the access
element (access decl), the return type that is represented by type, a list of pa-
rameters (parameters decl) with underlying elements (type, name) and tokens
that describes the function body. However, tokens are represented in the eCST
and therefore they are extracted from it.

Interfaces are described with the interface unit decl node, which is similar to
concrete unit decl. However, the interface declaration has less universal nodes.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1169

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

4.2. Software repository for storing framework meta-data

A software repository is a fundamental tool for analyzing software evolution.
Software products are represented by raw source code that has to be reshaped
in order to achieve a deeper analysis. Special techniques are required to extract
meta-data from software products and store them into central storage. In this
research, a special software repository was built. Its intent is to fully support the
whole process for analyzing the software structure and evaluation of software
metrics. In addition to this, a special mechanism for evaluating software qual-
ity has been added. The mechanism based on a composed metric, called the
Quality index [25].

The repository consists of several modules (Figure 7).

– Basic metrics list
– Composed metrics list
– Defining a Quality index
– Data import
– Metric values presentation through versions

The fundamental module of our repository is a basic metric list. Its role is to
mark each metric with a unique internal identifier. If the metric is not defined, it
is skipped during the data import process. The reason for this is to unify met-
ric names across the repository and to ease further analysis. The next module
is composed metrics list where custom metrics are defined. For example, C
is a composed metric derived from A and B (basic metrics). Furthermore, the
repository enables custom calculations using simple mathematical operations.
Currently, the repository supports all basic arithmetic operations (e.g. addition,
subtraction, multiplication, divisions). However, if we would like to calculate the
ratio between the CC and the LOC, then we can manually define the ratio met-
ric as follows: Ratio = CC/LOC. The repository takes all the necessary metrics’
data from out of storage and then applies mathematical operations on them. Be-
side the composed metrics, the repository supports calculating a quality index
and its underlying parameters.

The data import process transfers data from outer sources into the reposi-
tory. The process uses a special mechanism that transforms the original struc-
ture of a source into the internal (xml notation). For example, meta-data (rep-
resented in meta-models) goes through the process of reshaping its structure
in order to import the data into the repository. On the other hand, the repos-
itory also allows for the importing of data from third-party sources. The only
requirement is to provide the data in an appropriate structure. However, such a
procedure guarantees that the data is always imported in the same way.

The last module is responsible for visualizing metric values. The repository
supports the storage of software metrics for different project versions. Thus, the
metric values could be historically analyzed and shown on a graph. With such
a representation, researchers and project managers can analyze the history of
the metrics and observe their changes between project versions. For example,
if the rise of the cyclomatic complexity is recognized, additional actions may be
required to lower the complexity in the next version.

1170 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Data Import

Data analysis

CBO

CC

QI
LOC

RFC

Data

Basic metrics list

Composed metrics list

Quality Index Analysis

History Defining Quality index Results

Data import

Data representation

Web Server Database

Fig. 7. The metrics repository framework.

5. A case study

In this section, the applicability of the framework is shown. The application is
divided into two parts. In the first part, the programming-language independent
mechanism for extracting meta-data from raw source code files is described.
The mechanism is based on the meta-model that represents a software struc-
ture. In the second part, a general approach for calculating software metrics is
presented. However, the meta-model with universal nodes is the frame for the
software metrics’ evaluation.

5.1. Extracting meta-data from a source code

In the case study, two object-oriented programming languages (Java and C#)
were used in order to show the applicability of the meta-model for representing
software structure. To extract data from raw source code and to fulfill demands
of the meta-model, a special tool was developed. The fundamental part of the
tool is a mechanism for analyzing source code files. It uses the ANTLR lan-
guage tool[9] for language recognition and manipulation. However, Java and
C# grammars were used in order to construct an abstract syntax tree from the
source code. Then, a tree is used to identify meta-data and to fulfill demands of
the meta-model.

The example below shows two classes implemented in C# and Java pro-
gramming language. Both classes (Student) have the same behavior and the
only distinction is the programming language syntax.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1171

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

/* C# example */
namespace CSharpExample
{
using System;
public class Student : Person, IStudent
{

private Mark _mark;
public int StudentNumber { get; set; }
private decimal CalculateAverageMark(int level){
...
}

}
...

}

/* Java example */
package JavaExample;
import java.util.ArrayList;
public class Student extends Person implements IStudent
{
private Mark _mark;
private int studentNumber;
public int getStudentNumber(){
...
}
public void setStudentNumber(int studentNumber){
...
}
private decimal calculateAverageMark(int level){
...
}

}
...

The difference between the classes is the implementation of the student
number property. In the C# programming language, a special construct is used
in order to describe the property. On the other hand, in the Java programming
language, the property is implemented with the attribute studentNumber, which
actually stores a value, and two additional methods. The first method is getStu-
dentNumber that returns the value and the second method is setStudentNum-
ber that sets the value.

The table 4 shows the meta-models for the extracted source files. However,
the meta-models’ elements are similar for both languages. The unit state ele-
ments were set to ’added’ because the analyzed classes were treated as new

1172 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Table 4. The meta-model for classes implemented in C# and Java.

C# class Java class is eCST
node

UNIT STATE Added Added no
PACKAGE DECL CSharpExample JavaExample yes
CONCRETE UNIT DECL x x yes
NAME Student Student yes
EXTENDED BASE UNITS Person Person yes
IMPLEMENTED IStudent IStudent yes
INTERFACE UNITS

ATTRIBUTE DECL x x yes
- TYPE Mark Mark/ int yes
- NAME mark mark/ studentNumber yes
PROPERTY DECL x / yes
- TYPE int / yes
- NAME StudentNumber / yes
FUNCTION DECL x x yes

CalculateAverageMark/
- NAME CalculateAverageMark getStudentNumber/ yes

setStudentNumber
- ACCESS DECL private private/ public/ public yes
- RETURN TYPE x x yes
- - TYPE decimal decimal/ int/ void yes
- PARAMETERS DECL x x yes
- - TYPE int int/ - / int yes
- - NAME level level/ - / studentName yes
- TOKENS / ... / ... no

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1173

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

classes in the case study. Similar to previous elements, the name elements also
have the same value for both languages. On the other hand, the package decl
elements are different and are set to ’CSharpExample’ and ’JavaExample’. The
extended class (base unit decl) and implemented interface (interface unit decl)
have the same values for both meta-models (’Person’ and ’IStudent’). Both
classes have one attribute and therefore the attribute decl elements are set with
the name ’ mark’ and type ’Mark’. As expected, the differences are in the def-
inition of the property decl and function decl elements. The C# programming
language has special constructs for properties. Therefore the property decl el-
ement is set to ’int’ for the type and ’StudentNumber’ for the name sub-element.
In Java, one additional attribute decl and two additional function decl are de-
fined. Besides the ’getStudentNumber’ and ’setStudentNumber’ definitions in
function decl, the ’calculateAverageMark’ method is also defined. It has the
’private’ access modifier (access decl), void return type (return type) and one
method parameter (parameter decl) with the type ’int’ and name ’level’. A similar
method is also defined in the meta-model that is the basis of the C# program-
ming language.

The difference between the languages related to properties are reflected
in the calculated values of the LOC metric. Therefore, the source code writ-
ten in Java is approximately twice as long as one written in C# (tables 5 and
6). Furthermore, the properties in C# account for the difference in the number
of attributes, properties and methods (the so-called functions in the universal
model). These values are presented in table 6. The number of classes (i.e. con-
crete units) and interfaces (i.e. interface units) are the same in both examples
5. In this case study, the CC metric has no importance because the CC values
for all methods are equal to one.

Software metrics have the same relation between different programming lan-
guages. For example, the CC metric counts the branches in a source code. If
the source code consists of more branches, its complexity will be higher. There-
fore, a high complexity will always be indicated with a high CC value in all pro-
gramming languages and the opposite relation does not exist.

Table 5. Metrics related to the workspaces.

C# Java
Number of concrete units 2 2
Number of interface units 1 1
LOC 32 66

When the source files are analyzed, the meta-models and the results are
exported in an xml format. Then, only the final step is required. This step imports
the prepared meta-models into the software repository.

1174 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Table 6. Metrics related to the class Student.

class Student C# Java
Number of attributes 1 2
Number of properties 1 0
Number of functions 1 3
LOC 15 22

6. Validity and limitations

This section is focused on an internal and external validity [28] and on the limita-
tions of the study. In order to guarantee the accuracy of the extracted data from
the raw source files, the ANTLR language tool was used. Furthermore, the C#
and Java grammar, which describes a programming language, were used. The
tool requires a syntactically correct source code in order to build an abstract
syntax tree. However, the tree constitutes the basis for extracting the meta-data
into the meta-models used by framework.

The metrics’ value calculations rely on the nodes defined in the abstract
syntax tree. Therefore, the metrics’ equations are unified and defined only once
in the higher level of abstraction. For example, if the metric for calculating cy-
clomatic complexity is defined upon the universal nodes in a syntax tree then
their values could be easily calculated for C# and Java programming language
without knowing the specifics of the programming language. Furthermore, such
an approach enables the calculation of software metrics in the same way be-
tween programming languages. Thus, comparing the quality of heterogeneous
systems in such an environment is more accurate.

In this research, a programming language independent framework for ana-
lyzing software evolution was successfully applied in a case study and partly
in the preliminary work. In the first part, the source code of two programming
languages (i.e. C# and Java) were used in order to analyze its structure. The
results showed that the meta-model for describing software structure was suc-
cessfully populated with the meta-data. In the second part, the SMIILE tool that
evaluates software metrics was used. Several software metrics were defined
using the eCST and tested with different programming languages.

The metric values were correctly calculated for all cases. This was proven
by using independent and language-specific software metrics tools.

The research showed that the framework is general (i.e. programming lan-
guage independent) and can be used for more programming languages.

The limitation of the framework is the extent of meta-data that are described
in the meta-model for representing software structures. The study has been
limited to the subset of changes defined in Fowler’s book [18]. However, the
book contains numerous refactorings for resolving bad smells in code and de-
sign. From this perspective, this limitation is not a real limitation. Furthermore,
software metrics’ support gives additional value to the framework because the
quality of changes can be tracked.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1175

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Different structural source code changes cannot always be compared among
programming languages. Some of them have special object-oriented constructs
(e.g. properties in C#) or behaviour (e.g. some languages support multiple in-
heritance). Another limitation is that the LOC metric has to be compared with
caution. For example, a high LOC value in a class (e.g. 10,000 lines of code)
will always indicate a large class and vice versa. On the other hand, we cannot
predict that the LOC values of the classes with the same behaviour, written in
C# and Java, will be equal. However, even if we can not strictly compare ev-
ery aspect among languages, we still provide consistent monitoring of software
evolution. Furthermore, adding weights to some metric values (e.g. the LOC
metric) can lead to better comparability among languages. However, such an
approach can improve the framework in the future.

7. Related work

In the last decade, different approaches for evaluating software artifacts have
been used. Therefore, this section will focus on existing tools and approaches
for evaluating software metrics and software structure through the software de-
velopment process. As the analisys of related work will show, the integrated
approach to application of software metrics algorithms and analysis of software
evolution that are independent on programming languages are not existant in
usable form. The first part describes the approaches for evaluating software
metrics, the second part describes the approaches for representing software
structure and the third part is focused on programming language independence.

The majority of problems are related to programming language dependency.
However, the last part of the analysis describes some more or less successful
approaches in order to overcome this issue. To improve existing approaches,
new framework that is based on internal representation of source code with
improved characteristics was developed.

7.1. Software metric approaches

In this section, the findings of current problems in the application of software
metrics in practice are described [39]. Some preliminary observations of the
field show that the main problem lies in the weaknesses of available metric
tools and techniques. These observations are based on numerous reports on
the weaknesses of existing tools in both practice and in the academic world
([30] and [32]).

Our analysis included 20 tools, with six of them being representative exam-
ples. The tools were analyzed with respect to two groups of criteria.

The first group of criteria is related to the usage range of a tool and by
the nature and structure of the software product being measured. However, the
group of criteria consists of: platform independence, input language indepen-
dence and a list of supported metrics. The following metrics were considered:

– the cyclomatic complexity - CC,

1176 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

– the Halstead metrics - H,
– lines of code - LOC (if a tool calculates any of the LOC (SLOC, CLOC,

etc.) metric, then the corresponding cell contains the ’+’ symbol),
– the object-oriented metrics - OO (if a tool supports any of the OO metrics,

then the corresponding cell contains the ’+’ symbol. The mark ’*’ next to the
symbol ’+’ means that a tool only partially satisfied specified criteria) and

– the others (if a metric is supported and it does not belong on the list above,
then the criteria is marked with a ’+’).

The results for six representative tools can be seen in Table 7.

Table 7. Software metric tools and observed criteria

Tool Producer Platform Language Other
[see ref] indep. indep. CC H LOC OO metrics

SLOC D. Wheeler - + - - + - -
[47]

Code Geronesoft - + - - + - -
Counter Pro [2]
Source Monitor Campwood Software - - + - + + -

[8]
Understand ScientificToolworks + - + + + - -

[1]
RSM MSquared + - + + + - -

Technologies [7]
Krakatau Power Software - +* + + + + -

[5], [6]

The important conclusions of this analysis are below.

– The analyzed tools could be divided into two categories.
• The first category includes tools that only calculate simple metrics (i.e.

the LOC metrics) but for a wide set of programming languages.
• The second category of tools is characterized by a wide range of met-

rics but limited to a small set of programming languages. There were
attempts to bridge the gap between these categories, but without suc-
cess. This is a limitation because there are many legacy software sys-
tems written in ancient languages, whereas modern metric tools cannot
be applied uniformly.

– Even if the tools support some object-oriented metrics, the amount of sup-
ported metrics is fairly small. This is especially true when compared to the
broad application of the object-oriented approach within current software
development.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1177

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

However, we have demonstrated on representative languages that the SMI-
ILE is language independent for currently implemented software metrics (sec-
tion 3.3). The process of calculating them can be strictly connected with the
language syntax (e.g. the CC metric) or it can be less sensitive to its syntax
and lexical analysis because we have enough data in the universal nodes (e.g.
the LOC metric with the first and the last line). The object-oriented metrics are
still decently supported in tools. However, we have an internal representation of
the source code and its design. This is the basis for metric calculation and our
next task is to extend the set of algorithms for calculating software metrics[38].

Furthermore, the analysis considered support for processing and interpret-
ing the calculated metric results via the given tools. The criteria were: the history
of the source code, the metric results’ storing facility, a graphical representation
of the calculated values and an interpretation of the calculated values includ-
ing suggestions for improvements based on the calculated values. The general
conclusion was that many techniques and tools compute numerical results with
no real interpretation of their meaning. The only interpretations of numerical re-
sults that can be found are graphical. These results possess little or no value for
practitioners, who need suggestions or advice on how to improve their project
based on the metrics’ results. Recommendations for an improvement, or even
the automation of an improvement based on the obtained metrics results, would
be significantly useful for the way to the real practical usability of software met-
rics.

Today, complex software projects are developed in several programming lan-
guages while available software metric tools are not language independent.
When taking these facts into account, we can conclude that the use of several
software metric tools in one project is required. An additional problem is that
different software tools often provide different values for the same metric, calcu-
lated on the same product or its component [36],[32]. One of the reasons for this
is the fact that the rule for metrics calculations could be differently interpreted
and implemented with different tools [43]. On the other hand, our approach
uses a common internal representation of the source code and meta-model for
all programming languages that represents a basis for metrics calculation. Such
an approach enables the same metrics calculation algorithms across different
programming languages.

7.2. Approaches for analyzing software structure

Software evolution analysis covers different aspects of software development.
¿From the granularity level, two major approaches exists. The version-centered
approach considers versions to be a representation of granularity, while the
history-centered approach considers history to be a representation of granular-
ity [21].

The research conducted by Gı̂rba et al. [21] focused on the set of require-
ments that an evolution meta-model should have. Therefore, they defined a
meta-model where history is modeled as an explicit entity. A time component
was set as the basis for structural information, which thus provides a common

1178 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

infrastructure for expressing and combining evaluation analysis and structural
analysis. The authors also focused on different abstraction and detailed lev-
els, the ability to compare and combine property evolutions and the ability of
history navigation between relations. Our meta-model differs from this study
in three aspects: the meta-model is programming-language independent (sup-
ports object-oriented and procedural languages), it has the ability to represent
software metrics and it provides a sufficient basis for detecting structural code
changes between versions.

Tichelaar et al. [45] investigated similarities between refactorings for Small-
talk and Java programming languages. They derived a language independent
meta-model for object-oriented source code and showed that it is feasible to
build a language independent engine for refactorings on top of this meta-model.
Our study is similar in the context of an independent meta-model and differs in
the ability to provide sufficient data to analyze different structural source code
changes between versions over the software evolution. However, some refac-
torings are composed by one or several structural source code changes.

Studies conducted in [21, 45] are based on a language independent and
extensible model for modeling object oriented software systems, called FAMIX
[44].

7.3. Programming language independence

This section focuses on various universal software tools that strive to achieve
the independence of an input programming language.

The FAMIX meta-model [44] boasts one of the most similar general goals
with our project. Its strength is mainly in language independence. It supports
OO design (at the interface level of abstraction) for various input programming
languages and is supported by separate tools for filling in the meta-model with
sources in different programming languages. Our approach is more general -
it is based on (enriched) syntax trees representing all aspects of source code,
instead of just the design. It is thus equally appropriate for supporting a broader
set of software metrics. However, it also fully supports procedural languages,
including legacy ones (e.g., COBOL).

Arbuckle[11] presented an interesting approach for the measuring evolution
of a multi-language software system. He avoids difficulties related to syntax, se-
mantics and language paradigms by looking directly at relative shared informa-
tion content. His approach measures a relative number of bits of shared binary
information between artifacts of consecutive releases. However, our approach
uses source code changes from software repositories to analyze software evo-
lution.

The ATHENA tool for assessing the quality of software [15] was based on
the parsers that generate abstract syntax trees as a representation of a source
code. The generated trees were structured in such a way that the metric algo-
rithms were easily applied. The final goal of the tool was to generate a report
that describes the quality. However, it was only executable under the UNIX op-
erating system and its official support is not available anymore. Our approach

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1179

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

is also based on usage of specific parser for generating of syntax trees, but our
parers are not manually implemented but generated by a parser generator. This
makes the process of adding support for a new programming language easier.
Furthermore, the eCST has a richer representation than AST. At the end, the
SMIILE tool is implemented in Java and can therefore be used on a broader
range of platforms.

The development of the CodeSquale metrics tool was based on a simi-
lar idea. The early results were published on the project website [3], [4]. The
authors developed a system, based on the representation of a source code
through abstract syntax trees, and implemented one object-oriented metric for
the Java source code. Furthermore, an idea for the additional implementation of
other metrics and opportunities for extending the tree to other programming lan-
guages was described. However, their final goal was programming language in-
dependence. Unfortunately, later results were not published. However, a weak-
ness of the project was the use of an AST to represent source code. By using
the eCST we are able to implement algorithms that are independent of pro-
gramming language.

The Wide Spectrum Language (WSL) [10] is used for the intermediate rep-
resentation of software programs in translating legacy to maintainable code (eg.
assembly code to C/COBOL code). The main characteristics of WSL is a for-
mal background and the application of formal transformations of code internally
represented by using abstract syntax trees. Even the WSL is (by definition) in-
dependent of programming languages. Nevertheless, it still does not support
object-oriented languages. In the process of program transformation, a small
set of software metrics is used to measure the effects of transformations. In
comparison with WSL, our approach supported a broader scope of languages
and metrics (including object-oriented).

Static analysis usually includes some metrics calculation and further analy-
sis of the obtained values. Such a study was presented in [46] where the authors
used a static analysis for student programs written in Java. The study is based
on an abstract syntax tree (AST) to represent the code. The XML format was
used in order to represent the data.

The AST representation of the source code also led to language indepen-
dence in some related areas of software engineering. The tool described in [16]
uses the abstract syntax tree for the representation of source code in a dupli-
cated code analysis. The tree has specific mechanisms designed for the easier
implementation of algorithms and comparisons. A similar approach was de-
scribed in [13] but a more complex algorithm for comparison was implemented.

An approach for detecting similar classes in Java source code was pre-
sented in [42]. Furthermore, ASTs were also used to monitor software changes
[35]. The specified tool was implemented for the analysis of code written in the
C programming language. Its significance is in its ideas for change analysis
based on AST.

1180 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

8. Conclusion and future work

The programming language independent framework for analyzing software struc-
ture and metrics during software development and evolution was presented
in the study. The framework consists of three modules. The first one defines
the meta-model for providing sufficient data, which constitutes the basis for ap-
proaches dealing with software change detection processes. The second mod-
ule uses a mechanism for evaluating software metrics. Both modules are built
on the eCST for the unified representation of a source code. The last mod-
ule contains an approach for collecting evolutionary software artifacts that then
enables further analysis.

The integration of improved characteristics of eCST into a framework for
metrics calculation and the framework for software evolution extended by soft-
ware metrics and the changes repository lead to the following important bene-
fits.

– Usage of the eCST leads to language independence.
– The storing of software metrics in the software metrics repository enables a

better interpretation of acquired data.
– Integration with the repository additionally gives opportunities to extend it in

such a way as to store data about structural software changes.
– Enables the further analysis of stored data (e.g. custom metrics) and pro-

vides the opportunity to give recommendations to users about the improve-
ment of a product and the development process or even the automation
of some of the suggested improvements (e.g. automatic refactoring). The
need for this analysis is examined in the related work. An advanced calcu-
lation on metric values and visualization are enabled by the software metrics
repository and the rest of an intelligent analysis are planned for future work.

These features distinguish the framework from existing techniques and ap-
proaches and provide it with significant prospects in the field of software de-
velopment and evolution. Furthermore, a special engine for detecting structural
source code changes is already being implemented, but it is out of the scope of
this paper.

The framework was successfully presented in the case study. In the first
part, the software structure was analyzed from source code written in two dif-
ferent programming languages (i.e. C# and Java). The data extracted from the
eCST into the meta-model fulfilled all described requirements. However, pro-
gramming language independency of the eCST has been also shown on other
case studies [39] and [40]. Therefore, the extraction is independent of an input
language. In the second part, several software metrics were evaluated based
on the same source code. The algorithms defined upon the universal nodes
correctly calculated the values for lines of code and cyclomatic complexity and
also for some other design metrics (i.e. NOC, NOA, NOM). In the last part, the
results were successfully imported into the software repository for collecting
and storing meta-data.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1181

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

The framework and its components are still on prototype level. In future
work, the framework will be tested with more programming languages and ad-
justments will be made if necessary. Also, support for additional algorithms for
calculating software metrics will be added. Furthermore, all data will be stored in
a repository with the intention of analyzing the correlation between the changes
and software quality and to provide more useful information to the user or even
to develop an automated quality improvement.

Acknowledgments. Work of the second and third author is partially supported by the
Serbian Ministry of Science and Technological Development through project no. OI174023
”Intelligent Techniques and Their Integration into Wide-Spectrum Decision Support”. Bi-
lateral project between Slovenian Research Agency and Serbian Ministry of Science and
Technological Development (Grant BI-SR/10-11-027) enabled the exchange of visits and
ideas between authors of this paper and their institutions.

References

1. Understand 2.0 user guide and reference manual. online (2008),
http://www.scitools.com

2. Code counter pro. online (2010), http://www.geronesoft.com/
3. Codesquale. online (2010), http://code.google.com/p/codesquale/
4. Codesquale. online (2010), http://codesquale.googlepages.com/
5. Krakatau essential pm (kepm)- user guide 1.11.0.0. online (2010),

http://www.powersoftware.com/
6. Krakatau suite management overview. online (2010),

http://www.powersoftware.com/
7. Rsm. online (2010), http://msquaredtechnologies.com/
8. Sourcemonitor,. online (2010), http://www.campwoodsw.com/sourcemonitor.html
9. Antlr - another tool for language recognition (2011), http://www.antlr.org

10. Wsl - wide spectrum language (2012), http://www.smltd.com/wsl.htm
11. Arbuckle, T.: Measuring multi-language software evolution: a case study pp. 91–95

(2011)
12. Basili, V.R.: Data collection, validation and analysis, p. 143160. MIT Press (1981)
13. Baxter, I.D., Yahin, A., de Moura, L.M., Sant’Anna, M., Bier, L.: Clone detection using

abstract syntax trees. In: ICSM. pp. 368–377 (1998)
14. Breivold, H.P., Crnkovic, I., Larsson, M.: A systematic review of software architecture

evolution research. Information and Software Technology 54(1), 16 – 40 (2012)
15. Christodoulakis, D., Tsalidis, C., van Gogh, C., Stinesen, V.: Towards an automated

tool for software certification. In: Tools for Artificial Intelligence, 1989. , IEEE Interna-
tional Workshop on Architectures, Languages and Algorithms. pp. 670–676 (1989)

16. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: ICSM. pp. 109–118 (1999)

17. Fenton, N.E., Neil, M.: Software metrics: successes, failures, and new directions.
Journal of Systems and Software (1999)

18. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Addison-Wesley Professional, 1 edn. (Jul 1999)

19. Črt Gerlec, Andrej Krajnc, M.H.J.B.: Mining source code changes from software
repositories. Central and Eastern European Software Engineering Conference in
Russia (2011)

1182 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

20. Gilb, T.: Software Metrics. Chartwell-Bratt (1976)
21. Gı̂rba, T., Ducasse, S.: Modeling history to analyze software evolution: Research

articles. J. Softw. Maint. Evol. 18, 207–236 (May 2006)
22. Goeminne, M., Mens, T.: A comparison of identity merge algorithms for software

repositories. Science of Computer Programming (2011)
23. Grune, D., Bal, H.E., Jacobs, C.J.H., Langendoen, K.: Modern Compiler Design.

John Wiley (2002)
24. Harrison, W.: A flexible method for maintaining software metrics data: a universal

metrics repository. Journal of Systems and Software 72(2), 225–234 (2004)
25. Heričko, M., Živkovič, A., Porkolb, Z.: A method for calculating acknowledged project

effort using a quality index. Informatica 31(4), 431–436 (2007)
26. Illes-Seifert, T., Paech, B.: Exploring the relationship of a files history and its fault-

proneness: An empirical method and its application to open source programs. Infor-
mation and Software Technology 52(5), 539 – 558 (2010)

27. Institute, C.M.U.S.E., Martin, R., Carey, S., Coticchia, M., Fowler, P., Maher, J.: Pro-
ceedings of the Workshop on Executive Software Issues, August 2-3 and November
18, 1988. Technical report, Carnegie Mellon University, Software Engineering Insti-
tute (1989)

28. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engi-
neering. Guide to advanced empirical software engineering (1), 201–228 (2008)

29. Kan, S.: Metrics and Models in Software Quality Engineering Second Edition
Boston. Addison-Wesley (2003)

30. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice - Using Software Met-
rics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.
Springer (2006)

31. Lehman, M., Ramil, J.F., Kahen, G.: Evolution as a noun and evolution as a verb. In:
Proc. Workshop on Software and Organisation Co-evolution (SOCE) (July 2000)

32. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: ISSTA. pp.
131–142 (2008)

33. Madhavji, N.H., Fernandez-Ramil, J., Perry, D.: Software Evolution and Feedback:
Theory and Practice. John Wiley & Sons (2006)

34. N. Fenton, S.L.P.: Software Metrics: A Rigorous and Practical Approach. Thomson
Computer Press (1996)

35. Neamtiu, I., Foster, J.S., Hicks, M.W.: Understanding source code evolution using
abstract syntax tree matching. In: MSR (2005)

36. Novak, J., Rakić, G.: Comparison of software metrics tools for :net. In: Proc. of 13th
International Multiconference Information Society - IS, Vol A. pp. 231–234 (2010)

37. Pfleeger, S.: Lessons learned in building a corporate metrics program. Software,
IEEE 10(3), 67 –74 (may 1993)

38. Rakić, G., Budimac, Z.: Introducing enriched concrete syntax trees. In: Proc. of 13th
International Multiconference Information Society - IS, Vol A. pp. 211–214 (2011)

39. Rakić, G., Budimac, Z.: Problems in systematic application of software metrics and
possible solution. In: Proc. of The 5th International Conference on Information Tech-
nology (ICIT) (2010)

40. Rakić, G., Budimac, Z.: Smiile prototype. AIP Conference Proceedings 1389(1),
853–856 (2011)

41. Rochkind, M.J.: The source code control system. IEEE Transactions on Software
Engineering 1(4), 364–370 (1975)

42. Sager, T., Bernstein, A., Pinzger, M., Kiefer, C.: Detecting similar java classes using
tree algorithms. In: MSR. pp. 65–71 (2006)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1183

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

43. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. Journal of Systems Architecture 52(11), 668–675 (2006)

44. Tichelaar, S., Ducasse, S., Demeyer, S.: Famix and xmi. In: Reverse Engineering,
2000. Proceedings. Seventh Working Conference on. pp. 296 –298 (2000)

45. Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A meta-model for language-
independent refactoring. In: Principles of Software Evolution, 2000. Proceedings.
International Symposium on. pp. 154 –164 (2000)

46. Truong, N., Roe, P., Bancroft, P.: Static analysis of students’ java programs. In: ACE.
pp. 317–325 (2004)

47. Wheeler, D.A.: Sloccount user’s guide, version 2.26. online (2004),
http://www.dwheeler.com/sloccount/sloccount.html

1184 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Appendix

Table 8. Catalog of universal nodes.

Universal node coresponding element
of language syntax

PACKAGE DECL package, workspace, etc
CONCRETE UNIT DECL class, implementation module, etc
ABSTRACT UNIT DECL abstrat class, etc
INTERFACE UNIT DECL interface, definition module, etc
EXTENDED BASE UNITS extended class
IMPLEMENTED INTERFACE UNITS implemented interface,

corresponding definition module, etc.
INSTANTIATED UNIT instantionation of a new object
IMPORT DECL unit or function import
ATTRIBUTE DECL attribute, field, etc.
PROPERTY DECL property
FUNCTION DECL method, procedure, function, etc
FUNCTION CALL call of a function
PARAMETERS DECL parameters of a function
ARGUMENT LIST parameters passed to a function
VAR DECL local variable defined in functions
MAIN BLOCK main block of program
STATEMENT Any statement
BRANCH STATEMENT Any Branch Statement

(each branch will be additionally marked)
BRANCH Branch in Branch Statement
LOOP STATEMENT Any Loop Statement
JUMP STATEMENT Any Jump Statement
CONDITION Condition (in loop, branch,. . . statements)
CONDITION BRANCH each branch of condition

separated by logical operator
LOGICAL OPERATOR logical operator (in condition)
OPERATOR any operator
OPERAND any operand
NAME name of any element (unit, function,etc.)
TYPE type of any element (unit, function,etc.)

Črt Gerlec is a researcher and PhD student associated with the Faculty of
Electrical Engineering and Computer Science, Institute of Informatics at the
University of Maribor. His research interests are mining software repositories,
software evolution, software quality, software metrics, information systems and

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1185

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

more. He is experienced software developer on Microsoft.NET platform and
expert for software architecture, design patterns and best practices.

Gordana Rakić has received her MSc degree in 2010 from Faculty of Sciences,
University of Novi Sad. Currently she is the PhD student and works as assistant
at Department of Mathematics and Informatics, Faculty of Sciences, University
of Novi Sad. Her fields of interest are Software Engineering, Software Metrics,
Software Maintenance, etc.

Zoran Budimac Since 2004 holds position of full professor at Faculty of Sci-
ences, University of Novi Sad, Serbia. Currently, he is head of Computing labo-
ratory. His fields of research interests involve: Educational Technologies, Agents
and WFMS, Case-Based Reasoning, Programming Languages. He was princi-
pal investigator of more then 20 projects. He is author of 13 textbooks and more
then 220 research papers most of which are published in international journals
and international conferences. He is/was a member of Program Committees of
more then 60 international Conferences and is member of Editorial Board of
Computer Science and Information Systems Journal.

Marjan Heričko is a Full Professor at the University of Maribor, Faculty of
EE&CS, Institute of Informatics. He received his M.Sc. (1993) and Ph.D. (1998)
in computer science from the University of Maribor. His research interests in-
clude all aspects of IS development with emphasis on metrics, software pat-
terns, process models and modeling.

Received: January 04, 2012; Accepted: May 31, 2012.

1186 ComSIS Vol. 9, No. 3, Special Issue, September 2012

DOI: 10.2298/CSIS111231027S

High-level Multicore Programming with C++11

Zalán Szűgyi, Márk Török, Norbert Pataki, and Tamás Kozsik

Department of Programming Languages and Compilers,
Eötvös Loránd University

Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
{lupin,tmark,patakino,kto}@caesar.elte.hu

Abstract. Nowadays, one of the most important challenges in program-
ming is the efficient usage of multicore processors. All modern program-
ming languages support multicore programming at native or library level.
C++11, the next standard of the C++ programming language, also sup-
ports multithreading at a low level. In this paper we argue for some ex-
tensions of the C++ Standard Template Library based on the features of
C++11. These extensions enhance the standard library to be more power-
ful in the multicore realm. Our approach is based on functors and lambda
expressions, which are major extensions in the language. We contribute
three case studies: how to efficiently compose functors in pipelines, how
to evaluate boolean operators in parallel, and how to efficiently accumu-
late over associative functors.

Keywords: multicore programming, C++.

1. Introduction

The new standard of the C++ programming language supports parallel com-
putation. Strictly speaking, it supports only low level constructs [20]. Although
several libraries are available that provide high level parallelization tools for C++,
there are numerous occasions when the usage of these libraries is not bene-
ficial [2, 5, 17]. These libraries are complex and robust, their structure can be
different from that of other ones and they have their own coding styles. Thus,
if the programmer wants to use one of these libraries, first she needs to spend
a lot of time to get familiar with it to be able to use it properly [16]. Our goal
was to extend the standard library of C++ to support high level parallelization
techniques. In our solution we made an effort to extend it only slightly, and to
allow simple usage of our library for a programmer familiar with the STL.

The C++ Standard Template Library (STL) was developed by generic pro-
gramming approach [3]. In this way containers are defined as class templates,
and many algorithms can be implemented as function templates. Furthermore,
algorithms are implemented in a container-independent way, so one can use
them with different containers [14]. C++ STL is widely-used inasmuch as it is a
very handy, standard C++ library that contains useful containers (like list, vec-
tor, map etc.), a large number of algorithms (like sort, find, count etc.) among
other utilities.

Zalán Szűgyi et al.

The STL was designed to be extensible [4]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can ex-
tend the set of algorithms with a new one which can work together with the exist-
ing containers. Iterators bridge the gap between containers and algorithms [11].
The expression problem [21] is solved with this approach. STL also includes
adaptor types which transform standard elements of the library for a different
functionality [12]. Adaptors can modify the interface of a container, transform
streams into iterators, modify the behavior of functors etc.

Functor objects make STL more flexible as they enable the execution of
user-defined code parts inside the library [13]. Basically, functors are usually
simple classes with an operator(). Inside the library operator()s are called
to execute user-defined code snippets. This can call a function via pointer to
functions or an actual operator() in a class. Functors are widely used in the
STL inasmuch as they can be inlined by the compilers and they cause no run-
time overhead in contrast to function pointers. Moreover, in case of functors
extra parameters can be passed to the code snippets via constructor calls.

Functors can be used in various roles: they can define predicates when
searching or counting elements, they can define comparison for sorting ele-
ments and property searching, they can define operations to be executed on
elements of collections.

C++11, the next standard of C++, includes a new feature called lambda
functions or lambda expressions [9]. Lambda expressions are able to express
the functionality of a function call operator without writing explicit functor types.
The call of an algorithm and the inner logic is not separated with this technique.
Lambda expressions can be considered as locally defined functors. The experi-
mental compilers generate functor types from lambda expressions. Our solution
also supports lambda expressions.

It is frequently advised that one should prefer standard library to other ones.
C++ programmers are familiar with the STL. Unfortunately, whereas the STL is
preeminent in a sequential realm, it is not aware of multicore environment [19].

In this paper we present our results to provide high level parallelization by
extending the STL. In our research we made an effort to highly reuse the ex-
isting utilities of the STL. Different functor-related techniques are implemented
to make STL a more advanced, multicore supporting library. Using our library
those programmers who are familiar with STL can easily adopt our extensions,
without the need to spend much time to learn it. The source code of the library
can be downloaded from the http://kp.elte.hu/STLpar URL.

The rest of this paper is organized as follows. Section 2 shows how a pipeline
can be effectively implemented with functors. Section 3 describes the evalua-
tion of composite predicates in a multithreaded way. A solution which is able
to select a faster evaluation technique if we use an associative computation on
huge amount of data is presented in section 4. Finally, section 5 concludes the
paper.

1188 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

2. Pipeline

The algorithm for each of STL applies a functor to each element in a given
range. If the functor is defined in a special way, it is able to represent the stages
of a pipeline, while the algorithm for each itself feeds it with data.

We extended the STL with a new functor adaptor to help the program-
mer create this kind of special functor called parallel compose. This functor
adapts two unary functors to a functor composition, and processes them in the
following way. Assume that parallel compose adapts the functors f and g,
and the input parameter is x. The result of the computation is g(f(x)). How-
ever, after f(x) is processed, the result value is passed to the functor g in a
new thread. Hereby while the functor g computes its result, the functor f can
start to process the next input data.

One input of parallel compose can be an another parallel compose
thus it is possible to create arbitrary long functor composition.

This way the algorithm for each acts as a pipeline. The simple functors
in a functor composition act as a stages of the pipeline, while the algorithm
for each feeds it with data defined by the input range.

2.1. Implementation details

The core of our implementation is the parallel compose functor adaptor.
Its constructor receives two unary functors that are playing role on a functor
composition. Then it wraps the second argument by a thread wrapper class
(described later) and starts it to run in a new thread. However, the algorithms
of STL can freely copy functors, by definition. This behavior is ineligible for us
because we do not want to copy a thread. To avoid this situation we allocate the
thread dynamically, and store it in a type shared ptr, which is a smart pointer,
provided by the new standard of C++ [15]. This ensures that all the temporarily
copied parallel compose functors refer to the same thread, and the memory
will be deallocated automatically.

The operator() of parallel compose invokes its first unary functor to
compute the first member of the composition, and sends the result to the thread
wrapper.

The member function join blocks the execution until the last element is
applied on all the stages. After that it destructs the pipeline. When there is
more than two stages in the pipeline, – i.e. parallel compose functors are
composed in a chain –, join must be invoked for all parallel compose func-
tors recursively. The naive method that invokes the join member function of
the second argument does not work because the second argument of the last
parallel compose is a different unary functor, see the example in subsec-
tion 2.2, and hence it would cause a compilation error.

We applied the SFINAE (Substitution Failure Is Not An Error) technique [22]
to solve this problem. We defined a new type trait to check whether the given
type is a parallel compose. Because type traits define a compile-time template-
based interface to query or modify the properties of types [10], we can cus-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1189

Zalán Szűgyi et al.

tomize our code for a given type without any run-time overhead. Then we cre-
ated two auxiliary join functions that can be seen below:

template<typename T>
void join_aux(T& t,

typename std::enable_if<
is_parallel_compose<T>::value,
int>::type n = 0)

{
t.join();

}

template<typename T>
void join_aux(const T&)
{
}

The enable if is a template metafunction provided by the new standard. If
its first template argument is true, it has a public member typedef type, equal
to its second template argument; otherwise, there is no member typedef. This
metafunction is used to conditionally remove the first function join aux from
overload resolution based on type traits.

We invoke this join aux function in the following way:

void join()
{
join_aux(second_argument);

}

If the second argument itself is a parallel compose functor, then our
type trait returns with true, and the metafunction enable if has typedef type,
thus both definitions of join aux are valid. Since the second argument is
not a constant, the first join aux will be selected by the compiler, thus the
join is invoked on the next parallel compose functor in a chain. However,
if the second argument is a different functor, then there is no typedef type
inside of enable if. This means the definition of the first join aux is invalid,
thus it is removed from the overload resolution. In this case only the second
join aux is left – the one which does not invoke any join –, thus that one will
be selected.

The thread wrapper class wraps a unary functor, and runs it in a new thread.
It has two main member functions: the receive and the operator(). The
parallel compose sends the data to a thread via member function receive,
and the operator() performs the computation in the new thread. The key
parts of these two member functions can be seen below:

void receive(const argument_type& a)
{

1190 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

//...
data_lock();
data = a;
data_ready=true;
//...

}

void operator()()
{
//...
while(run)
{
wait_for(data_ready);
if(run) stored_functor(data);
data_ready = false;
data_unlock();

}
//...

}

The data lock is used to prevent the previous stage to overwrite the data
before it is computed. It will be only unlocked when the computation of current
data is finished. The main loop of operator() runs while the logical variable
run is true. It waits for the data, then performs the computation, and finally
unlocks the semaphore to be able to receive the next one.

This class has a kill method, which terminates the thread. First it sets run
to false, and data ready to true. The second one is necessary because the
operator() may be waiting for data ready. But, because run is false, there
will be no false computation.

2.2. Example

The example below illustrates the way to apply our pipeline solution in a clas-
sical image processing task [6]. The image processing contains three steps:
transformation, rasterization and pixel processing. These steps will be the stages
of the pipeline, and the input data is a range of triangles. The hereinafter exam-
ple demonstrates our approach, but it highly simplifies the problem. In real life
image processing is a more complex process, and the stages can be split into
more substages to improve performance [23].

struct transformation
{
triangle operator()(const triangle& value)
{
// ...

}

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1191

Zalán Szűgyi et al.

};

struct rasterization
{
triangle operator()(const triangle& value)
{
// ...

}
};

struct pixel_processing
{
triangle operator()(const triangle& value)
{
// ...

}
};

for_each(input_iterator_begin,
input_iterator_end,
pcompose(transformation(),

pcompose(rasterization(),
pixel_processing()))

).join();

The input iterator begin and input iterator end are two iterators
defining the input range of triangles. The stages are functors, thus they have to
overload the operator(), which performs the computation. The pcompose is
a helper function that creates a parallel compose functor object by its ar-
guments and returns it. Helper functions simplify the creation of functors, thus
they are very common in the STL, because the C++ compiler can deduce the
template arguments by the type of actual parameters (e.g. std::make pair).
The algorithm for each returns with the functor. Thus the last function invo-
cation calls the join method of the functor. This synchronization step waits for
the pipeline to finish the computation.

3. Speculative Functors

There are several algorithms in the STL that take a predicate functor as ar-
gument to decide whether an element must be processed. The predicate is
a unary functor (its operator() has exactly one argument) that returns a
boolean value. If the predicate returns true for a given element, the algorithm
will deal with that element. The names of these algorithms have an if postfix,
such as: find if, count if, remove if, replace if etc.

1192 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

In many cases the predicates are very complex. As the predicate is a logical
condition, it is often constructed from functors composed by logical and or
logical or.

If the subexpressions composed by logical and are complex, it might
worth to evaluate them in parallel. The more complex the subexpression is, the
more speed-up we can achieve.

We introduce a new functor adaptor called speculative logical and,
which can evaluate the subexpressions in separate threads. If one thread com-
putes the result of its subexpression, we check whether it is false. If so, we
got the result – thus, we kill the other thread, or drop its result if it is termi-
nated already. Otherwise we wait for the result of the other thread and use both
results.

3.1. Implementation details

Technically the speculative logical and is a unary functor that composes
the predicates f and g in the following way: f(x)&&g(x), where x is the input
parameter.

The speculative logical and receives the predicates in its constructor,
which wraps them with a thread wrapper class to ensure they run in separate
threads.

The work is done by the operator(). The core of its implementation can
be seen below:

return_type operator()(const argument_type& a)
{
compute_in_new_thread(f,a);
compute_in_new_thread(g,a);

wait_for(impl->has_result_f || impl->has_result_g);

if(impl->has_result_f)
{
if(impl->result_f == false)
{
kill(g);
return false;

}
else
{
wait_for(impl->has_result_g);
return impl->result_g;

}
}
else
{

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1193

Zalán Szűgyi et al.

if(impl->result_g == false)
{
kill(f);
return false;

}
else
{
wait_for(impl->has_result_f);
return impl->result_f;

}
}

}

The members of speculative logical and functor are put into an im-
plementation class and the variable impl – a shared pointer pointing to it. This
solution ensures that the functor can be copied by the STL, and that all the
copies refer to the same implementation. impl is added to the thread wrappers,
thus the threads can store their results into that. After one thread computes the
result it sets its has result variable to true, indicating to the main thread that
the data is ready.

The speculative logical andwaits until one thread is ready and checks
the result. If it is false, the whole result is false, thus the other thread can
be killed, and false will be returned. Otherwise speculative logical and
waits for the result of the other thread, that value will be returned. (That way
the first argument of logical and is true, thus the result depends on the second
argument.)

In practice, speculative logical or behaves similarly. The only differ-
ence is that it kills the slower thread if the result of the faster one is true.

3.2. Example

The example above shows the usage of our solution. There is a range of log en-
tries which contains several fields, such as: timestamp, priority, user name, log
message. We would like to find those entries which were created on 20.03.2011
and the message fits a given regular expression.

struct log_entry
{
std::string username;
std::string message;
time_t timestamp;
int priority;
// ...

};

struct is_proper_date

1194 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

{
bool operator()(const log_entry& le)
{
/*compute if le is created on 20.03.2011*/

}
};

struct has_proper_message
{
bool operator()(const log_entry& le)
{
/*compute if message fits to a regex*/

}
};

std::find_if(input_iterator_begin, input_iterator_end,
speculative_and(

is_proper_date(), has_proper_message()));

The input iterator begin and input iterator end are two iterators
defining the input range of log entries. The speculative and is a helper
function to create speculative logical and functor. This helper function
behaves similarly to the helper function pcompose described in the previous
section.

This solution is efficient to use when the subexpressions are complex.

4. Associative Functors

In this section we present an approach to compute an associative operation on
a huge amount of data effectively. We improve the accumulate algorithm of
STL to be as effective as possible [8].

By default the algorithm accumulate computes the sum of the elements
of a given range. However, we can customize the algorithm defining an own
operation instead of addition. The operation is defined by a binary functor (it
has two arguments) and it is an argument of accumulate [7]. If the operation
is associative, we can apply the optimized version of the accumulate algorithm.

A technique is presented to overload algorithms on the associativity of their
functor in [19]. This technique includes a trait type called functor traits. This type
is similar to the iterator traits of STL; functor traits consist of some typedefs. It
is possible to overload algorithms on the associativity of the functor based on
these typedefs [18].

Our main goal was to support the new standard proposal, where lambda
expressions can replace functors. However, it is not possible to define functor
traits in lambda expressions. We need to denote that an operation is associative
in a different way.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1195

Zalán Szűgyi et al.

4.1. Implementation details

In our solution an extra argument of a lambda expression, which has a spe-
cial type, called associative, denotes that the operation is associative. Our
implementation of algorithm accumulate is able to detect whether a given
lambda expression has that extra argument or not. If the lambda expression
is associative, the optimized algorithm [19] is chosen – otherwise we take the
original one.

The example below shows the way we determine if the lambda expression
has that extra argument. In this section we suppose that the range is defined by
a pair of random access iterators. STL algorithms can be overloaded on iterator
category easily [18].

template< typename RandomAccesIterator,
typename T,
typename BinFunctor>

T accumulate(RandomAccesIterator first,
RandomAccesIterator last,
T init,
BinFunctor bf)

{
typedef
T (BinFunctor::*funtype) (T, T, associative) const;

if(std::is_same< decltype(&BinFunctor::operator()),
funtype>::value)

{
return associative_accumulate(first, last, init,
std::bind(bf, std::_1, std::_2, associative());

}
else
{
return std::accumulate(first, last, init, bf);

}
}

The BinFunctor template type refers to the lambda expression, while T refers
to the elements of the input range. The static field value of template type
is same is true if the its two template arguments are same. We instantiate
it with a type of the member function pointer of the operator() which has that
extra argument and the type of the member function pointer of operator() of
the current functor. If the lambda expression has the extra argument, the two
types are the same. The value is computed at compile time. As C++ template
metaprograms run during compilation [1], the if statement in the example can
be replaced by a template metaprogram to make our solution more efficient.
That way the selection of the proper algorithm is done at compile-time. When

1196 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

the accumulate is instantiated by an associative functor, that functor techni-
cally is a ternary functor, – its third argument refers to the associativity. That
case we need to transform it into a binary functor. The std::bind does this
work, binding a dummy value to the third arguments. This solution is backward
compatible to the original functor usage.

The more efficient version of the algorithm uses the following functor for the
computation in a distributed way:

template <typename Iterator, typename BinFunctor>
struct Accumulate
{
void operator()(
Iterator first,
Iterator last,
typename
std::iterator_traits<Iterator>::pointer p)

{
typename std::iterator_traits<Iterator>
::difference_type diff =

last - first;

if (2 == diff)
{

*p = BinFunctor()(*p, *first);

*p = BinFunctor()(*p, *(first + 1));
}
else if (1 == diff)
{

*p = BinFunctor()(*p, *first);
}
else
{
typename
std::iterator_traits<Iterator>::pointer p1 =
new std::iterator_traits<Iterator>::value_type;

typename
std::iterator_traits<Iterator>::pointer p2 =
new std::iterator_traits<Iterator>::value_type;

std::thread t1(Accumulate(),first,first+diff/2,p1);
std::thread t2(Accumulate(),first+diff/2,last,p2);
t1.join();
t2.join();

*p = BinFunctor()(*p, *p1);

*p = BinFunctor()(*p, *p2);

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1197

Zalán Szűgyi et al.

delete p1;
delete p2;

}
}

};

If the range has only 1 or 2 elements, the functor calculates the associative
operation, otherwise it divides the input range into two smaller ranges and starts
the calculation of smaller ranges in separate threads.

The associative accumulate initializes the shared data and starts the
parallel computation:

template< typename RandomAccessIterator,
typename T,
typename BinFunctor>

T associative_accumulate(RandomAccessIterator first,
RandomAccessIterator last,
T init,
BinFunctor bf)

{
typename
std::iterator_traits<RandomAccessIterator>::
pointer p = new T(init);

std::thread s(Accumulate<RandomAccessIterator,
BinFunctor>(),

first,
last,
p);

s.join();
T result = *p;
delete p;
return result;

}

4.2. Example

The example below shows the usage of our solution to calculate the product of
the input range of integers.

accumulate(input_iterator_begin, input_iterator_end, 1,
[](int a, int b){return a * b;});

accumulate(input_iterator_begin, input_iterator_end, 1,
[](int a, int b, associative){return a * b;});

The first function call summarizes the input range in conventional way, while
the second one applies the more effective algorithm which exploits the associa-
tivity.

1198 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

4.3. Threshold

A more sophisticated and more effective implementation of the evaluation of
associative operation uses a threshold parameter. This parameter defines how
many elements in the range require the evaluation in a new separate thread.
This parameter highly depends on the characteristic of the problem.

As the previous subsection presents, the user may not know that differ-
ent implementation strategies are available according to the defined operation.
However, the user just states that his own operation is associative. How the
threshold parameter can be defined by user?

Two different approaches are discussed: if the operation is defined by a
functor type or a lambda function.

A functor type can contain special member variables and member function
that can be used by the accumulate. For convenience, an associative oper-
ation base type can be defined. This base type contains the associative
typedef and the default threshold value. The user has to create a subtype, and
he is able to override the threshold value. If the functor type is not subtype of the
associative operation base type, but is an associative operation, the previous
implementation works.

Lambda expressions cannot contain member variables and member func-
tions. The compiler generates a simple functor class from the definition of lambda,
but the generated functor is unavailable for extension. However, the possibility
of lambda-defined threshold needs extensive inspection.

However, the threshold value does not belong to the definition of the as-
sociative operation from the view of modularity. It belongs to the accumulate.
This means that accumulate has an extra parameter which defines the thresh-
old value. This argument may be defined if the operation is associative. Since
associativity is a compile-time information, compilation diagnostics can be emit-
ted if the operation is not associative and threshold parameter is given by the
user. If the operation is associative but no threshold is defined, the previous
code does work. This scenario does not depend on if the operation is defined
by functor or lambda function. Our future work includes the detailed implemen-
tation of this approach.

There are other approaches to solve this problem, but we reject them. One
of them is that the associative type contains the threshold value. This can be
a static value which is problematic from the view of parallelism. In the other one,
the threshold value is a template argument or a member set by its constructor.
Unfortunately, this makes the invocation of algorithm hard to maintain and the
algorithm cannot obtain this value effectively.

5. Conclusion

Multicore programming is an interesting new way of programming. Although
the current C++ programming language contains no constructs to write multi-
threaded programs, extensions and libraries can still be used. The next stan-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1199

Zalán Szűgyi et al.

dard of C++ includes constructs for parallel program execution. Unfortunately,
these constructs are at a low level.

In this paper we argue for higher level constructs – ones at the level of the
widely used C++ Standard Template Library. We implemented special functors
and adaptors which support different kinds of evaluation in a multithreaded way.

– We can build up a pipeline of computations using a functor combinator.
– We can make use of speculative parallelism in the case of complex predi-

cates.
– We can take advantage of associative operations; STL algorithms can be

overloaded on their operation’s associativity, even if the operation is defined
as a lambda expression.

A programmer familiar with the STL can easily adopt our library.

Acknowledgments. The Project is supported by the European Union and co-financed
by the European Social Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-
0003).

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison-Wesley, Reading, MA., USA (2004)

2. Aldinucci, M., Ruggieri, S., Torquati, M.: Porting decision tree algorithms to multi-
core using FastFlow. In: Proceedings of European Conference in Machine Learning
and Knowledge Discovery in Databases (ECML PKDD), Lecture Notes in Computer
Science, vol. 6321, pp. 7–23. Springer-Verlag, Berlin Heidelberg New York (2010)

3. Alexandrescu, A.: Modern C++ Design. Addison-Wesley, Reading, MA., USA (2001)
4. Austern, M.H.: Generic Programming and the STL: Using and Extending the C++

Standard Template Library. Addison–Wesley, Reading, MA., USA (1998)
5. Dagum, L., Menon, R.: Openmp: An industry-standard API for shared-memory pro-

gramming. IEEE Computational Science and Engineering 5, 46–55 (1998)
6. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics, Principles

and Practice. Addison-Wesley, Reading, MA., USA (1990)
7. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other cilk++

hyperobjects. In: Proceedings of Symposium on Parallel Algorithms and Architec-
tures (SPAA). pp. 79–90 (2009)

8. Gottschling, P., Lumsdaine, A.: Integrating semantics and compilation: using C++
concepts to develop robust and efficient reusable libraries. In: Proceedings of the 7th
international conference on Generative programming and component engineering,
GPCE 2008. pp. 67–76 (2008)

9. Järvi, J., Freeman, J.: C++ lambda expressions and closures. Science of Computer
Programming 75(9), 762–772 (2010)

10. Kalev, D.: The type traits library, [Online]. Available:
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=276

11. Kozsik, T., Pataki, N., Szűgyi, Z.: C++ Standard Template Library by infinite iterators.
Annales Mathematicae et Informaticae 38, 75–86 (2011)

1200 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

12. Matsuda, M., Sato, M., Ishikawa, Y.: Parallel array class implementation using C++
STL adaptors. In: Proceedings of the Scientific Computing in Object-Oriented Par-
allel Environments, Lecture Notes in Computer Science, vol. 1343, pp. 113–120.
Springer-Verlag, Berlin Heidelberg New York (1997)

13. Meyers, S.: Effective STL - 50 Specific Specific Ways to Improve Your Use of the
Standard Template Library. Addison-Wesley, Reading, MA., USA (2001)

14. Stroustrup, B.: The C++ Programming Language (Special Edition). Addison-Wesley,
Reading, MA., USA (2000)

15. Stroustrup, B.: The design of C++0x – Reinforcing C++’s proven strengths, while
moving into the future. C/C++ Users Journal 23(5) (May 2005)

16. Szűgyi, Z., Pataki, N.: Generative version of the FastFlow multicore library. Elec-
tronic Notes in Theoretical Computer Science 279(3), 73–84 (2011)

17. Szűgyi, Z., Pataki, N.: A more efficient and type-safe version of FastFlow. In: Pro-
ceedings of Workshop on Generative Programming 2011. pp. 24–37 (2011)

18. Szűgyi, Z., Török, M., Pataki, N.: Multicore C++ Standard Template Library in a
generative way. Electronic Notes in Theoretical Computer Science 279(3), 63–72
(2011)

19. Szűgyi, Z., Török, M., Pataki, N.: Towards a multicore C++ Standard Template Li-
brary. In: Proceedings of Workshop on Generative Programming 2011. pp. 38–48
(2011)

20. Szűgyi, Z., Török, M., Pataki, N., Kozsik, T.: Multicore C++ Standard Template Li-
brary with C++0x. In: NUMERICAL ANALYSIS AND APPLIED MATHEMATICS IC-
NAAM 2011: International Conference on Numerical Analysis and Applied Mathe-
matics, AIP Conference Proceedings, vol. 1389, pp. 857–860. American Institute of
Physics (2011)

21. Torgersen, M.: The expression problem revisited – four new solutions using gener-
ics. In: Proceedings of European Conference on Object-Oriented Programming
(ECOOP) 2004, Lecture Notes in Computer Science, vol. 3086, pp. 123–143.
Springer-Verlag, Berlin Heidelberg New York (2004)

22. Vandevoorde, D., Josuttis, N.M.: C++ Templates – The Complete Guide. Addison–
Wesley, Reading, MA., USA (2002)

23. Wei, H., Yu, J., Li, J.: The design and evaluation of hierarchical multi-level paral-
lelisms for h.264 encoder on multi-core architecture. Computer Science and Infor-
mation Systems 7(1), 189–200 (2010)

Zalán Szűgyi is assistant at Faculty of Informatics, Eötvös Loránd University
(Budapest, Hungary) since 2010. He is teaching C++ programming language.
His research area includes static analysis of programming languages, multicore
programming, and generative programming.

Márk Török is a PhD student at Faculty of Informatics, Eötvös Loránd Uni-
versity (Budapest, Hungary) where he is assistant since 2010. Programming
languages and multicore programming belong to the fields of his interest.

Norbert Pataki is assistant at Faculty of Informatics, Eötvös Loránd University
(Budapest, Hungary) since 2009. His research area includes programming lan-
guages (especially the C++ programming language), multicore programming,
software metrics, and generative programming.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1201

Zalán Szűgyi et al.

Tamás Kozsik received his PhD (summa cum laude) in computer science in
2006 at Eötvös Loránd University (Budapest, Hungary), where he works as as-
sociate professor and vice-dean for scientific affairs and international relations
of Faculty of Informatics. Since 1992 he has been teaching programming lan-
guages, as well as distributed and concurrent programming. His research fields
are program analysis and verification, refactoring, type systems and distributed
systems. His PhD thesis investigated the integration of logic-based and type
system based verification of functional programs.

Received: December 31, 2011; Accepted: May 21, 2012.

1202 ComSIS Vol. 9, No. 3, Special Issue, September 2012

DOI: 10.2298/CSIS120102025M

Supporting heterogeneous agent mobility with
ALAS

Dejan Mitrović1, Mirjana Ivanović1, Zoran Budimac1, and Milan Vidaković2

1 Faculty of Sciences, Department of Mathematics and Informatics
Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia

{dejan, mira, zjb}@dmi.uns.ac.rs
2 Faculty of Technical Sciences

Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
minja@uns.ac.rs

Abstract. Networks of multi-agent systems are considered to be hetero-
geneous if they include systems with different sets of APIs, running on
different virtual machines. Developing an agent that can operate in this
kind of a setting is a difficult task, because the process requires regener-
ation of the agent’s executable code, as well as modifications in the way
it communicates with the environment. With the main goal of providing an
effective solution to the heterogeneous agent mobility problem, a novel
agent-oriented programming language, named ALAS, is proposed. The
new language also provides a set of programming constructs that effec-
tively hide the complexity of the overall agent development process. The
design of the ALAS platform and an experiment presented in this paper
will show that an agent written in ALAS is able to work in truly heteroge-
neous networks of multi-agent systems.

Keywords: agent-oriented programming languages, mobile agents, het-
erogeneous agent mobility, multi-agent systems

1. Introduction

According to the weak notion of agency [39], software agents can be defined
as executable software entities characterized by autonomous behavior, social
interaction with other agents, reactivity to environmental changes, and the abil-
ity to take the initiative and express goal-directed behavior. The strong notion of
agency [40] extends this definition by including human-like behavior and mental
categories, such as beliefs, desires, and intentions (the so-called BDI agents).

Agents usually don’t exist on their own, but are rather situated inside an
environment. This runtime agent environment is often referred to as a multi-
agent system (MAS). Main tasks of a MAS are to control the agent life-cycle,
provide the messaging infrastructure, and offer a service subsystem that ef-
fectively supports agents, giving them the possibility of accessing resources,
executing complex algorithms, etc.

An agent, however, does not have to be confined to a single MAS instance.
A mobile agent is able to physically leave its current MAS and continue pursuing
its goals in another machine in a network.

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

EXtebsible Java EE-based Agent Framework (XJAF) [34, 35] is a multi-
agent system developed by the authors of this paper. The system is designed
as a modular architecture, comprised of a set of managers. Each manager is a
relatively independent module in charge of handling a distinct part of the overall
agent-management process. There are several benefits of the modular design.
For example, the system’s functionality can easily be extended by the addition
of new managers. In addition, each manager is accessible only though its inter-
face, which means that even the behavior of standard managers can be easily
changed.

Over the years, XJAF has been successfully used in several software sys-
tems, such as the virtual central catalogue and a metadata harvesting system
for library records [34]. Recently [16], it has also been proposed as an un-
derlying platform for agent-based harvesting of learning resources needed by
e-learning and tutoring systems. But, despite its successful practical usage,
XJAF had a disadvantage of being ”locked” into a particular development plat-
form. Because it was implemented in Java, only Java-based external clients
were able to use the system and interact with its agents. In order to increase
the interoperability of the system and enable its wide-spread use, XJAF has
been redesigned as a service-oriented architecture (SOA). The new system,
named SOA-based MAS (SOM) [22], retains the manager-based design, but
with managers re-defined in terms of web services. In this way, even regular
web browsers can be used as clients of SOM, since the interaction relies on
the standardized communication protocol (i.e. SOAP [36]).

The SOA-based design of SOM, however, poses another problem. The sys-
tem is (only) an abstract specification of web services, their functionalities and
interactions, and any modern implementation platform can be used. But, devel-
oping an agent that can run on any of these implementations becomes almost
an impossible task. In the literature (e.g. [24]), this issue has been recognized
as an agent-regeneration problem: if a mobile agent migrates across a network
consisting of MASs that offer the same API, but are based on different virtual
machines, its executable code needs to be regenerated for each MAS it visits.

Unfortunately, the lack of MAS interoperability is not specific to different im-
plementations of SOM. Currently, there exists a large number of MASs offered
by different vendors. And although significant efforts have been put into the
standardization of the MAS development process (e.g. the Foundation for In-
telligent Physical Agents, FIPA [11]), agents are often incapable of operating
in these truly heterogeneous environments. This problem arises as a conse-
quence of standards incompliance, usage of different implementation technolo-
gies, different sets of APIs offered to agents, etc. The lack of interoperability is
a severely limiting factor in the agent development, and in the wide-spread use
of the agent technology.

In order to solve the MAS interoperability problem, a new agent-oriented
programming language named Agent LAnguage for SOM (ALAS) is proposed.
Besides providing developers with programming constructs that hide the overall
complexity of the agent-development process, one of the main goals of ALAS is

1204 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

to serve as a tool for writing agents that can execute their tasks regardless of the
underlying MAS. Originally, in [22], ALAS has targeted the agent-regeneration
problem. The idea has since been broadened to support the execution of agents
in heterogeneous environments. The focus of the research presented in this
paper will thus be to demonstrate how ALAS can be used to develop mobile
agents that can migrate across a network consisting of Java EE-based SOM,
Python-based SOM, and JADE [2, 17] instances.

As noted, ALAS belongs to the category of agent-oriented programming
languages (AOPLs) which represent crucial tools of the agent-oriented pro-
gramming (AOP). AOP is a software development paradigm aimed at efficient
development of software agents and multi-agent systems. Its main goals are to
identify, analyze, and offer solutions for the most important theoretical and prac-
tical issues associated with the design and construction of software agents.

The rest of the paper is organized as follows. Section 2 provides an overview
of existing research efforts related to the work presented in this paper. Section
3 describes the architectures of XJAF and SOM, multi-agent systems that form
the basis for this research. Main features of ALAS, its syntax and programming
constructs are given in Section 4. A practical example of an ALAS-based mobile
agent operating in a heterogeneous environment is given in Section 5. Finally,
the overall conclusion and future research directions are outlined in Section 6.

2. Related work

Related research efforts presented in this section are divided into three parts.
The first part includes a general overview of existing multi-agent systems. The
second part outlines the state-of-the-art of AOPLs. The final part deals with the
work dedicated to interoperability multi-agent systems.

2.1. Multi-agent systems

Java Agent DEvelopment Framework (JADE) [2, 17] is a Java-based, FIPA-
compliant MAS. At runtime, the framework consists of one of more agent con-
tainers, runtime environments with full support for agent execution. Individual
containers can be distributed across a network, in which case they are linked to
a designated main container. Each JADE agent has it own thread of control and
exposes its functionalities in terms of behaviors. That is, for each functionality
offered by an agent, developers need to define a separate class which extends
the Behaviour class, or one of its more specialized subclasses. A background
scheduler is then used to schedule execution of each behavior.

The main advantage of XJAF and SOM over JADE is in the use of Java EE,
the de facto standard development platform for building large-scale, scalable,
secure, and reliable software. Java EE includes a large set of standardized li-
braries and technical solutions which simplify the process of MAS development.
More importantly, the use of modern enterprise application servers incorporates
effective runtime agent load-balancing techniques into XJAF and SOM. Finally,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1205

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

the SOA-based design of SOM results in the system with greater interoperabil-
ity.

The SOA design philosophy has been employed in the development of FU-
SION@ [31, 32], a modular, FIPA-compliant MAS. Functionalities of the system
are exposed as services that can be accessed locally, or remotely through web
interfaces. The set of services is not fixed, which means that the system can
easily be extended with new functionalities. Any programming language can be
used for implementing new services, as long as it supports SOAP. FUSION@
also employs several types of specialized, system-level BDI agents. Their main
task is to maintain high quality of service (QoS), by performing runtime load
distribution, monitoring all incoming and outgoing messages, etc.

Many properties of FUSION@, such as the extensible modular architecture,
and the use of low-level services, have been used in XJAF , although several
years earlier. Additionally, XJAF delegates some functionalities of FUSION@’s
system-level agents, such as runtime load-balancing, to an enterprise applica-
tion server, which simplifies the overall development process. Finally, it is not
clear how and if agent mobility is supported in FUSION@, or whether there
is a mechanism for organizing distributed instances of the environment. These
techniques have been built into XJAF and SOM from the start.

NOMADS [4, 30] is one of the few MASs that support strong agent mobility
(e.g. all other systems mentioned in this paper support weak mobility only).
In order to achieve this feature, NOMADS runs on top of a customized, Java-
compatible virtual machine named Aroma. Aroma can transparently capture the
execution state of a single or all running threads, at the fine granularity level,
and in a cross-platform manner. Additionally, it can limit the agent’s access to
resources and enforce similar security-related restrictions.

The use of a custom virtual machine in NOMADS, however, has several
major disadvantages. These include interoperability issues, as well as the large
amount of work that needs to be conducted in order to maintain and update
Aroma for different operating systems and in accordance to new Java virtual
machine specifications. Nonetheless, the system does offer an interesting tech-
nical insight into requirements of strong and safe agent mobility.

Java is by far the most widely used platform for MAS development. However,
there exist notable examples of systems implemented using different technolo-
gies. One such example is Smart Python multi-Agent Development Environ-
ment (SPADE) [1, 29] implemented in Python. SPADE is characterized by the
usage of XMPP/Jabber [41] instant messaging protocol for agent communi-
cation. Benefits of XMPP/Jabber include using [1] ”an existing communication
channel, the concepts of users (agents) and servers (platforms) and an exten-
sible communication protocol based on XML”. The presence feature included in
the protocol also enables the real-time detection of the agent’s state.

SPADE platform is accompanied by a Python-based agent library of classes,
functions, and data structures that simplify the agent development process. The
SPADE agent development process is heavily inspired by that used in JADE :
functionalities of an agent are expressed in terms of behaviors, there is a sup-

1206 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

port for automatic, pattern-based matching of incoming messages, and so on.
The successful usage of Python as the implementation platform for SPADE has
inspired the development of Python-based SOM (discussed in more details in
Section 5).

2.2. Agent-oriented programming languages

AGENT0 [28] was the first agent-oriented programming language and a direct
implementation of the AOP paradigm. In AGENT0, agents are defined in terms
of capabilities, beliefs, and commitment rules, which consist of message and
mental preconditions and resulting actions. Agents communicate by exchanging
request, unrequest, and inform messages. New features were added to the lan-
guage over time, with the two most notable direct extensions being PLACA [33],
which introduced support for agent planning, and Agent-K [7], which replaced
the custom communication messages with the standardized KQML, improving
the overall interoperability. These three languages, however, mostly served as
prototypes and were not designed for practical use. Their importance lays in the
influence they had on the development of many later AOPLs.

A large family of AOPLs includes languages that use first-order logical for-
mulae for describing agent’s mental state and behavior. Thus, they are specifi-
cally suited for BDI agent architectures. Influential representatives of this family
are 3APL [6], and AgentSpeak(L) [26]. 3APL supports descriptions of goals and
basic and composite plans, as well as ”embedding” actions inside pre-condition
and post-condition rules. These rules, respectively, describe agent’s belief be-
fore and after the action is executed. Another important concept of 3APL are
goal, interaction, and plan rules, which are used generate new and update or
drop existing goals and plans. 3APL has inspired the development of many
other programming languages, most notably 2APL [5] and GOAL [15]. 2APL
increases the expressiveness of 3APL and aims at developing a more prac-
tical language. It makes a clear distinction between declarative concepts for
describing agent’s beliefs and goals, and imperative concepts for developing
plans (unlike 3APL, which mixes both declarative and imperative concepts in
defining goals). GOAL, among other things, introduces the blind commitment
strategy, a built-in goal update mechanism that automatically drops goals that
have been fully achieved, and perception rules which enable agents to respond
to external environmental changes.

AgentSpeak(L) is gaining more and more popularity due to the development
of Jason [3, 18], an interpreter for an extended version of the language. Along
with programming constructs for describing ”common” features of BDI agents,
such as beliefs, goals, rules, and plans, the extended version of AgentSpeak(L)
supports belief annotations. Annotations are programming constructs used to
attach additional details to agent’s beliefs. They do not increase the expressive-
ness of the language, but improve its readability and allow for (semi-)automatic
management of the agent’s belief base.

Although powerful and expressive, these languages suffer from several ma-
jor drawbacks. First of all, their descriptive nature and logical foundation might

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1207

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

make them computationally expensive and complex. Secondly, the languages
were specifically designed for developing BDI-style agents and so are inade-
quate for implementing other types of architectures (e.g. purely reactive agents).
But, most importantly, the logical foundation and highly-abstracted program-
ming constructs used by this family of languages might prove to be their great-
est weakness. To avoid the faith of logic and functional programming languages
that were never widely adopted by the software development industry, AOPLs
should first and foremost be as simple to use as possible, i.e. without too many
high-level abstractions and without requiring a degree in computational logic
to understand their concepts. ALAS was designed to appear as a member of
the OO family of languages – the most widely used programming paradigm of
today – but with clear distinctions between objects and agents. This simplified
approach might turn out to be its main advantage, allowing for a broader accep-
tance of the agent technology.

JACK Intelligent Agents [38] is a robust, light-weight framework for rapid
development of multi-agent systems. It extends the Java programming lan-
guage by introducing new keywords and language constructs. The accompa-
nying compiler produces pure Java code, which allows for each JACK agent to
be used simply as another Java object. Although powerful, this system suffers
from the same drawbacks as the original XJAF : it is locked into a particular
development platform (i.e. Java). The ALAS platform is designed to allow trans-
formation of the original agent source code into a pure source code written in an
arbitrary language (such as Java and Python). With the SOA-based infrastruc-
ture supporting their execution, these agents can work in truly heterogenous
environments and cooperate with any external SOA-enabled entity. In addition,
JACK is a commercial product, while SOM can be freely downloaded and used.

2.3. MAS interoperability

Two MASs are said to be interoperable ”if a mobile agent of one system can
migrate to the second system, the agent can interact and communicate with
other agents (local or even remote agents), the agent can leave this system,
and it can resume its execution on the next interoperable system” [25]. There-
fore, interoperability of MASs can seriously affect the agent’s performance, by
limiting its ability to move across the network or to interact with other agents.

Based on the actual types of MASs that appear in a network, several types
of agent mobility can be distinguished [24]:

– Homogeneous: all MASs in the network offer the same API and are based
on the same virtual machine (VM). This is the easiest type of mobility to
implement, since no modifications of the agent’s code are needed.

– Cross-platform: MASs in the network offer different sets of APIs, but are
based on the same VM. In this scenario, the agent’s executable code re-
mains the same, but the API calls it makes need to be adapted.

– Agent-regeneration: the agent moves across MAS instances that offer the
same API, but are based on different VMs. Therefore, the agent’s exe-
cutable code needs to be regenerated for each instance it visits, although

1208 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

its API calls remain the same. This is the problem that affects different SOM
implementations.

– Heterogeneous: MASs in the network offer different sets of APIs and are
based on different VMs. This is the most difficult type of mobility to achieve,
as it includes both regeneration of the executable code, and the modifica-
tions in API calls.

Cross-platform agent mobility is usually achieved via one or more software
layers, where each layer is responsible for transforming API calls from one form
to another. For example, Grid Mobile-Agent System (GMAS) [13] includes a
Foreign2GMAS layer, which transforms agent’s native API calls into an inter-
mediary GMAS API, and a GMAS2Native, which transforms API calls made to
GMAS API into calls to the native platform. The first layer is required for a MAS
that needs to be able to send its agents to other architectures. Similarly, the
second layer is required for a MAS that needs to be able to accept agents from
other architectures.

Java-based Interoperable Mobile Agent Framework (JIMAF) [12] operates
on the principle of splitting the agent implementation into a platform-independent
(called the head) and a platform-dependent part (called the body). The body is
executed within Platform-dependent Mobile Agent Layer which is implemented
for each supported platform. When compared to GMAS, JIMAF is reported [12]
to introduce significantly less overhead to the agent migration process.

In ALAS, the task of adapting API calls is handled transparently by the com-
piler’s MAS selector component (see Section 4 for more details). The com-
ponent transforms, on-the-fly, the calls made to the ALAS standard library of
functions into native API calls. The main advantage of this approach is that,
once the agent’s executable code is regenerated, all native API calls are made
directly. That is, there is no additional overhead introduced by layering API calls.

Much more work, however, is needed for heterogeneous agent mobility,
since both the executable code and API calls need to be regenerated. Genera-
tive migration [24] is one proposed solution for this problem. Rather than on soft-
ware layering, it relies on a pool of agent building blocks, platform-independent
descriptions of reusable software components. Each building block is charac-
terized solely by a description of its interface, without any details regarding the
implementation. An agent is defined (or, rather, designed) by assembling and
interconnecting these building blocks into an agent blueprint. During the migra-
tion process, the agent’s blueprint is transferred, along with its runtime state.
Using the blueprint, an agent factory tool can rebuild the agent’s executable
code for a specific MAS.

ALAS solves the same problem as generative migration does. However,
ALAS is a programming language, syntactically (and, to a certain degree, con-
ceptually) similar to many popular OO programming languages. Generative mi-
gration, on the other hand, might be formalized as a Model-Driven Architecture
[27]. For a common software developer, this means that ALAS has a flatter
learning curve than generative migration. In addition, ALAS has a wider goal of

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1209

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

simplifying the whole agent-development process, and it’s not focused just on
enabling heterogeneous agent migration.

3. XJAF and SOM: design and functionalities

XJAF was originally designed as a modular architecture. Each module, called
a manager, is responsible for handling a distinct part of the overall agent-
management process. The architecture defines a set of standard managers,
described in the following paragraphs. This set is not fixed, and new managers
(that is, new functionalities) can be added as needed. Additionally, managers
are defined and used solely by their interfaces, so even the standard behavior
can be changed.

AgentManager maintains the directory of agents and controls the agent life-
cycle. Its functionality matches the one defined for the FIPA’s Agent Directory
Service [9]. The directory of agents consists of two lists: local and remote. The
first list keeps a record of agents located in the manager’s host XJAF instance.
The second, remote list is used to support agent mobility. Once an agent leaves
its current host and migrates to another machine in the network, it is removed
from the local, and placed in the remote list (along with the address of its new
host XJAF). So when a message needs to be delivered to the agent, Agent-
Manager will:

– Check the local list and, if the agent is available there, deliver the message
directly.

– Otherwise, check the remote list and, if the agent is available there, forward
the message to AgentManager of the agent’s new host.

These steps are repeated in each XJAF instance in the agent’s migration
path, until the agent is finally located (i.e. until it appears in the AgentManager ’s
local list). This simple, yet effective technique of agent location tracking is known
as the forwarding pointers technique [23].

ConnectionManager is the manager in charge of maintaining a network of
distributed XJAF instances and, in combination with the previously described
agent tracking technique, serves as the support for agent migration. In the ear-
liest implementation [34], each XJAF instance in a network had a single other
XJAF instance to register with, forming a tree-like structure. This organization,
however, was characterized by a single point of failure – if one instance breaks,
the whole tree is divided into two sets of mutually unreachable instances. Re-
cently [20, 21], this organizational structure has been replaced with a fully-
connected graph. A new type of a mobile agent, named ConnectionAgent was
added to the system, with the job of building and maintaining the graph in an
efficient fashion. This new approach of organizing XJAF instances is shown
[21] to be fault-tolerant to unexpected failures, enabling each remaining XJAF
to have the correct overview of the network state, regardless of the number of
failures.

1210 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

MessageManager provides the messaging infrastructure. It supports inter-
agent communication via the exchange of KQML messages [8]. A KQML mes-
sage sent from one agent to another is embedded into a JMS message [14].
MessageManager then broadcasts the message to all XJAF instances that
have previously subscribed to this service, but only the instance containing the
target agent will process the message and extract KQML content from it. In
the ongoing work of increasing the interoperability of XJAF , the KQML-based
messaging system will be replaced by the de facto standard FIPA ACL [10].

An important aspect of each MAS is security. In terms of the agent technol-
ogy, security features are used to protect both agents and the MAS itself from
malicious attacks, to keep the confidentiality of exchanged messages, etc. In
XJAF , these features are offered by SecurityManager. And since often there
is a significant computational overhead associated with security (e.g. encryp-
tion/decryption of messages), the security features are not applied automati-
cally, but can rather be included on-demand, through an API exposed by the
manager.

XJAF includes a service sub-system, where the service is a reusable soft-
ware component managed by ServiceManager. The basic idea is to expose
common tasks, such as file management, in form of services that can be directly
accessed and used by agents. This approach simplifies the agent development
process and supports the development of lighter agents (in terms of size). The
list of services is not fixed and can be expanded as needed.

XJAF agents expose their capabilities in form of tasks. A task includes a
detailed description of a single functionality offered by the agent. It incorporates
types and names of input parameters as well as of the returned value. The list
of tasks offered by the agents is maintained by TaskManager. External clients
of the system can ask for a task execution. In response, TaskManager will find
the most suitable agent for the given task, and then send it an appropriate
message. For interoperability reasons, the format of task descriptions is based
on the standardized and widely-used W3C XML Schema language [37].

The main advantage of XJAF over other existing MAS implementation is in
its use of the Java EE technology. Java EE has been endorsed by large busi-
ness enterprises as the main tool for building large-scale, scalable, secure, and
reliable software. As such, it represents an excellent platform for MAS develop-
ment. Immediate direct benefits of this approach are shorter development time,
standards compliance, and harnessing of advanced programming features. For
example, each XJAF agent is a regular Java object (i.e. a POJO), but wrapped
inside an Enterprise JavaBean (EJB) component. At runtime, the component
is passed to an enterprise application server in order to employ runtime load-
balancing and object pooling features.

The original XJAF had one serious disadvantage – it was ”locked” into a
particular development platform. A consequence of this problems is the lack of
interoperability, in the sense that only Java-based external clients could access
the system and interact with its agents. In order to overcome this issue, a new
system, named SOA-based MAS (SOM) has been developed. SOM follows the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1211

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

manager-based design approach of XJAF , but with managers implemented as
web services. The most important improvement introduced by the ”switch” to
the SOA-based design is increased interoperability: external clients and third-
party tools can interact with SOM and its agents through web service interfaces,
i.e. in a familiar fashion, and using the standardized communication protocol.

Unfortunately, the SOA-based design of SOM introduced a new, major is-
sue. Because the system is a specification of web services, it can be imple-
mented using many modern programming languages. However, developing an
agent that can run on any of these implementations becomes almost an impos-
sible task. In order to solve this problem, a new agent-oriented programming
language, named Agent LAnguage for SOM (ALAS) has been developed. Its
main features and functionalities are described in the following section.

4. Main features of ALAS

Originally, in [22], ALAS and its accompanying set of tools (in further text, the
ALAS platform) were primarily aimed at the development of agents for different
SOM implementations. One of the main characteristics of the ALAS platform is
hot compilation: when an agent arrives to an instance of SOM implemented in
a certain programming language X, its ALAS source code is transformed on-
the-fly into the source code written in X. The generated source code is then
forwarded to the native compiler, if any, to produce the executable code for the
target platform.

Since the original proposal, the functionality of ALAS platform has been
broadened to include support for other MAS implementations, such as JADE .
According to the classification of agent mobility presented in [24] and described
earlier, this means that the ALAS platform has been upgraded from delivering
agent-regeneration to supporting true heterogeneous agent mobility. The main
goal of ALAS is, therefore, to create an agent-oriented programming that hides
the complexity of the overall agent-development process from developers, and,
at the same time, operates regardless of the underlying MAS.

The ALAS platform has been designed ground-up with the idea of hetero-
geneous agent mobility in mind. The entire process of transforming the ALAS
source code into the executable code for the target platform is shown in Fig. 1.
In the first step, the agent source code written in ALAS is parsed to produce an
abstract syntax tree. The tree is then fed into the VM selector which associates
it with the proper ALAS standard library. The standard library includes utility
functions for common operations, such as string processing, file management,
and network connections. To support the idea of heterogeneous agent mobil-
ity, the library was re-implemented for each of the supported target languages
(currently, Java and Python). The output of this step is fed into the MAS selec-
tor which replaces MAS-specific ALAS instructions with native API calls. MAS
selector produces a fully-functional source code of the agent for the target MAS
which is, finally, sent to the native language compiler (if any) to produce the
executable code.

1212 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

Fig. 1. The process of compiling ALAS-based source code of an agent into the exe-
cutable code for the target platform

Protection from malicious attacks is an important issue, especially in sys-
tems that employ agent mobility. To protect the agent code during the migration
process, code certificates can be used [35]. A certificate holds the hash of the
ALAS source code, as well as the digital signature of the agent’s internal state.
The security check is performed before the parsing step, and if it fails, the agent
is discarded for unauthorized modifications.

Common, non agent-specific programming constructs, such as if-then-else
and switch control statements, while, do-while, and for loops, are also sup-
ported. Their syntax is, like in many modern programming languages, based on
the syntax of the C programming language.

In the current stage, ALAS can be used for developing purely reactive agents.
These assume agents that execute actions in response to some external events,
such as messages received from other agents. The support for BDI-style archi-
tecture is planned for a latter stage.

ALAS compiler handles a single compilation unit at a time, which includes
definition of one agent, and an optional package declaration:

CompilationUnit = [Package] AgentDefinition <EOF> ;
Package = "package" Name ";" ;
Name = Identifier { "." Identifier } ;

ALAS packages serve the same purpose as packages (or namespaces)
in traditional procedural and OO programming languages. They provide the
means for distinguishing between agents that have the same name, for logi-
cal grouping of related agents, etc.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1213

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

4.1. Services

The main language construct for exposing agent’s behavior is a service. In
ALAS, a service is a functionality that the agent offers to others, and can be
seen as a counterpart of a public method in OOP. External entities can ask for
a service execution by sending an appropriate message to the agent. A func-
tion, on the other hand, is local and its primary use is to break large service
implementations into smaller logical units. It cannot be accessed by external
entities and is, therefore, a counterpart of a private method in OOP.

Agent definition in ALAS consists of the agent name and the agent body,
which, in turn, is defined as a set of states, services, and functions:

AgentDefinition = "agent" Identifier
"{" { AgentBodyDef } "}" ;

AgentBodyDef = (LookAhead(3) AgentState |
"service" Function |
"services" "{" { Function } "}" |
LookAhead(3) Function) ;

Function = ResultType Identifier ParamList Block ;
ParamList = "(" Param { "," Param } ")" ;
Param = Type Name ;

Agent service definition begins with the keyword service, followed by the
return type, unique name of the service, formal parameter list, and a body. As a
shortcut (i.e. to avoid typing the service keyword for each new service), several
services can grouped under a single services block. When SOM is used as the
target platform, a separate XML-based task description is produced for each
defined service.

An important thing to note about agent services is that method overloading
from OOP languages cannot be applied. That is, an agent cannot expose two or
more services under the same name, even if formal parameters differ. Although
the syntax of a service definition resembles the syntax of a method definition,
services are actually message handlers. In standardized agent communica-
tion, the order of values passed as the message content does not (or, should
not) matter. For example, the following code represents a KQML message that
AgentA sends to AgentB asking for the execution of its service PrintSum. The
message includes values 5 and 6 for the service’s two integer parameters, a
and b, respectively:

(achieve
:sender AgentA
:receiver AgentB
:language XML
:content "<service>

<name>PrintSum</name>
<args>

<arg name="a" type="int"><![CDATA[5]]></arg>
<arg name="b" type="int"><![CDATA[6]]></arg>

1214 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

</args>
</service>")

So even if the order of arg tags changes, the agent is still asked to execute
the same service.

Unlike services, functions can be overloaded.

4.2. Agent runtime state

ALAS is a strongly and statically typed language. In addition to void, the lan-
guage supports byte, short, int, long, float, double, boolean, and char primi-
tive data types. These types match the appropriate primitive data types of the
Java programming language. Currently, the only supported complex data type
is String, while the support other complex data types (e.g. for artifacts modeling)
will be included later.

The runtime state of an ALAS agent is represented by a set of persistent and
temporary properties. During the migration process, values of persistent prop-
erties are automatically saved before the agent leaves its host MAS, and later
automatically restored once it reaches the target MAS. Temporary properties,
on the other hand, should be used only to store values that are not supposed
to be transferred along with the agent.

The syntax for defining runtime state of an ALAS agent is as follows:

AgentState = ("state" "{" { LocalVar ";" } "}" |
LocalVar ";") ;

LocalVar = Type Var { "," Var } ;
Var = Identifier ["=" Expression] ;

Any property defined within the state block will be considered persistent.
Properties defined outside of this block will be considered temporary.

As show, expressions can be used to set initial values of properties along
with declarations. If more complex initialization steps are required, a function
with the following signature can be defined: void initialize(). This special-purpose,
parameterless function is automatically invoked during the agent’s startup, and
before any other function or service. Therefore, it corresponds to a constructor
in traditional OO programming languages (or the init method in Python).

4.3. Support for agent mobility

In order to support agent mobility, ALAS includes two programming instructions:
copy and move. The first instruction makes a clone of the original agent in the
target MAS, which means that the agent continues to operate in the source
MAS. This instruction can appear at any point in a service or function imple-
mentation. The move command, on the other hand, physically moves the agent
to the target MAS, which means that the original agent is disposed. This is why
the move instruction can be only the very last instruction in a service implemen-
tation. The syntax of copy and move instructions is as follows:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1215

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

MoveStatement = ("copy" | "move")
"(" Expression ["," Expression
{ "," MoveArg }] ")" ";" ;

MoveArg = StringLiteral "=" Expression ;

Each instruction accepts at least one parameter, an expression that repre-
sents the target MAS. The value can be the concrete name of the MAS, or the
physical network address of the machine that hosts it, in the format host : port.
The second expression, if specified, is the name of the agent’s service that
should be automatically invoked once the target MAS is reached. Finally, a set
of values that should be passed to the service can be specified, in the form of
ParameterName = V alue.

Once the migration process is initialized, the agent is serialized into an XML
stream. The transferred data includes:

– The original (ALAS) source code of the agent.
– Identifier of the agent’s originating MAS (included for convenience reasons).
– Agent’s persistent properties.
– Name of the service to be automatically invoked.
– The set of arguments for the service.

The presented set of ALAS features already offers the possibility of writing
powerful agents. With the backing of the ALAS platform, these agents are able
to operate in networks consisting of Java EE-based SOM, Python-based SOM,
and JADE instances, as shown in the next section.

5. A mobile TimeSync ALAS agent

The example of using the ALAS platform presented in this section is intended
to serve as a proof of concept. The experiment will demonstrate how an ALAS-
based agent operates and migrates in a truly heterogeneous network environ-
ment.

For the purpose of this experiment, a TimeSync agent was developed. The
agent, upon receiving an appropriate message, visits all MASs in the network
and synchronizes their timers. The message sent to the agent includes a comma-
separated list of network addresses to be visited, and the value of time (of type
double) to be set in each MAS. Once it synchronizes the timers of all systems,
the agent returns to its originating MAS.

The network includes 3 different multi-agent systems:

– A Java EE-based implementation of SOM
– A Python-based implementation of SOM, named PySOM
– JADE version 4.1

Each system features a module that accepts a serialized form of the ALAS
agent, de-serializes it, invokes the ALAS compiler, restores the agent’s runtime
state, and then sends it the message for service execution.

1216 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

Python was chosen as the second implementation platform for SOM in this
experiment because the language itself is very different from Java in many as-
pects, such as the syntax, dynamic vs. static typing, multi-paradigm vs. OO
paradigm, etc. In this way, the experiment will show that the ALAS platform is
not tied to the Java platform.

JADE was included in order to demonstrate the ability of ALAS agents to
operate in heterogeneous environments. The system was extended with an
ALAS platform plug-in that performs the aforementioned steps from accepting
the agent, to requesting service execution.

The full source code of the TimeSync agent written in ALAS is shown in
Listing 5.1.

Listing 5.1. Full source code of the mobile TimeSync ALAS agent, capable of
operating in a network consisting of SOM, PySOM, and JADE instances

1 package example . agents ;
2
3 agent TimeSync {
4 state { S t r i n g start ingHome ; }
5 S t r i n g next , remaining ;
6
7 service void SyncTimers (S t r i n g hosts , double t ime) {
8 i f (start ingHome == nul l)
9 start ingHome = host () ; / / remember the s t a r t i n g po in t

10 else i f (start ingHome . equals (host ())) { / / am I back home?
11 log (” I ’m back ! ”) ;
12 start ingHome = nul l ;
13 return ; }
14 / / apply the t ime
15 log (” Se t t i ng the system time to ” , t ime) ;
16 applySystemTime (t ime) ;
17 / / go to the next host
18 i f (hosts . leng th () == 0) / / no more hosts , go back home
19 next = start ingHome ;
20 else
21 parseHosts (hosts) ;
22 move(next , ” SyncTimers ” , ” hosts ” =remaining , ” t ime ” =t ime) ; }
23
24 void parseHosts (S t r i n g hosts) {
25 i n t n = hosts . indexo f (” , ”) ;
26 i f (n == −1) {
27 next = hosts ;
28 remaining = ” ” ;
29 } else {
30 next = hosts . subs t r i ng (0 , n) ;
31 remaining = hosts . subs t r i ng (n + 1) ; } } }

Line 1 sets the agent’s package to example.agents, and the agent definition
starts at line 3. Lines 4 and 5 define the agent’s runtime state as a set of three

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1217

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

String properties: startingHome, next, and remaining. The first property is per-
sistent. It holds the identifier of the agent’s starting MAS, i.e. the MAS that was
hosting the agent when it received the request to run the time synchronization
process. This value is used by the agent to return home once it finishes the pro-
cess. The latter two properties are temporary, and are used by the parseHosts()
function described later.

TimeSync agent exposes a single service (lines 7–22) called SyncTimers.
The service has no return value, and accepts two parameters: a comma-separa-
ted list of MAS instances the agent needs to visit, and the time value to be set
in each MAS. The starting MAS is stored persistently in lines 8 and 9. As noted
earlier, when a mobile agent arrives to a new MAS, its runtime state is restored
after the initialization, but before any service execution is requested. This means
that the expression startingHome == null will resolve to true only at the agent’s
starting MAS. Lines 10–13 are used to detect if the agent has returned back
home. For this evaluation, the host() library function is invoked, returning the
address of the agent’s current host.

Line 16 invokes a function called applySystemTime(), which is used to set
the system time to the given value. For security purposes, however, this is a
dummy functions. ALAS agents are not actually able to change the system
time.

Lines 18–21 are used to extract the next MAS that needs to visited. Line 18
in particular demonstrates the usage of the ALAS standard library. The hosts
parameter is of ALAS String complex type, which offers a set of functions for
string manipulation, including (among others):

– int length() – returns the length of the string.
– int indexof(String sub) – returns the index of the first occurrence of sub

within the string, or -1 if the parameter does not occur. The first character in
a string has the index of 0.

– String substring(int start [, int end]) – returns the substring of the string,
starting with index start (inclusive), and until the index end (exclusive). If
end is not specified, the call corresponds to str.substring(start, str.length()).

Because the String type is included both in Java and Python, the VM selec-
tor (Fig. 1) replaces these calls with calls to appropriate native string manipula-
tion methods.

The SyncTimers service utilizes a helper function, named parseHosts() (lines
24–31) which extracts the next MAS from the comma-separated list. The next
MAS is stored into the temporary property next, while the updated list (e.g. the
list without the extracted MAS) is stored into the second temporary property,
remaining.

The agent’s final step is to move to the next MAS, and it does so by invoking
the move instruction (line 22). The instruction’s arguments indicate that, once it
reaches the target, the agent should be asked to again execute the SyncTimers
service with parameter values remaining and time.

1218 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

5.1. Running the TimeSync agent

The network used in this experiment consists of three MASs, i.e. a single in-
stance of each of the SOM, PySOM, and JADE . The network addresses of the
systems are, respectively, 192.168.0.1 : 8081, 192.168.0.2 : 8081, and 192.168.0.3 :
8081. Initially, the agent is located in the SOM instance.

A client can ask for the SyncTimer service execution by sending the follow-
ing KQML message to the agent:

(achieve
:sender ALAS_IDE
:receiver TimeSync
:language XML
:content "<service>

<name>SyncTimers</name>
<args>

<arg name="hosts" type="String">
<![CDATA[192.168.0.2:8081,192.168.0.3:8081]]>

</arg>
<arg name="time" type="double">

<![CDATA[40893,639141169]]>
</arg>

</args>
</service>")

The sender of this message is ALAS IDE, which, among common features
such as syntax highlighting, provides the means for specifying the target MAS,
in form of type@address. In this scenarion, the compilation process will auto-
matically load the agent in the specified MAS.

Once the agent executes the service, it will set the time of the current
MAS, extract the network address of the next MAS to visit (PySOM instance
at 192.168.0.2 : 8081), and initiate the migration process. The migration process
will serialize the agent, resulting in the following XML stream:

<?xml version="1.0" encoding="UTF-8"?>
<alas xmlns="http://alasagents.org/SerializedAgent"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://alasagents.org/SerializedAgent

SerializedAgent.xsd ">
<source>

<![CDATA[package example.agents; agent ...]]>
</source>
<home>192.168.0.1:8081</home>
<state>

<property name="startingHome" type="String">
<![CDATA[192.168.0.1:8081]]>

</property>
</state>
<service>SyncTimers</service>

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1219

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

<args>
<arg name="hosts" type="String">

<![CDATA[192.168.0.3:8081]]>
</arg>
<arg name="time" type="double">

<![CDATA[40893,639141169]]>
</arg>

</args>
</alas>

The type information for persistent properties and service arguments may
be redundant, but is included in the stream for convenience reasons.

Running the agent in PySOM The PySOM instance accepts the serialized
stream, extracts the agent source code, and passes it to the ALAS compiler.
The agent’s persistent property is then restored to 192.168.0.1 : 8081. Finally,
the system sends a message to the agent, asking for the execution of the Sync-
Timers service. The generated Python source code of the TimeSync agent is
shown in Listing 5.2 3.

Listing 5.2. Source code of the mobile TimeSync ALAS agent, regenerated for
PySOM

1 class TimeSync :
2 def i n i t (s e l f) :
3 # o r i g i n a l , ALAS source code of the agent
4 s e l f . AGENT SOURCE = ” package example . agents ; . . . ”
5 # comma−separated l i s t o f p e r s i s t e n t p r o p e r t i e s
6 s e l f . PERSISTENT VARS = ” start ingHome ”
7 # agent s t a t e
8 s e l f . start ingHome = None
9 s e l f . next = None

10 s e l f . remaining = None
11
12 # handler o f incoming messages
13 def onMessage (s e l f , se rv i ce) :
14 i f serv i ce . getName () == ” SyncTimers ” :
15 # SyncTimers se rv i ce implementat ion
16 def SyncTimers (hosts , t ime) :
17 # remember the s t a r t i n g po in t
18 i f s e l f . start ingHome == None :
19 s e l f . start ingHome = host ()
20 else : # am I back home?
21 i f s e l f . start ingHome == host () :
22 a las . s t d l i b . pysom . Log . w r i t e (” I ’m back ! ”)
23 start ingHome = None
24 return

3 This and subsequent listings showing transformed source code of the agent have
been manually reformatted to make them more human-readable.

1220 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

25 # apply the t ime
26 alas . s t d l i b . pysom . Log . w r i t e (” Se t t i ng the ” ,
27 ” system time to ” , t ime)
28 alas . s t d l i b . pysom .Dummy. applySystemTime (t ime)
29 # go to the next host
30 i f len (hosts) == 0: # no more hosts , go back home
31 s e l f . next = s e l f . start ingHome
32 else :
33 s e l f . parseHosts (hosts)
34 # prepare serv i ce parameters
35 mv ob j 2 = t ime
36 mv ob j 1 = s e l f . remaining
37 # s t a r t the mig ra t i on process
38 alas . s t d l i b . pysom . PySOMFaci l i ta tor . ins tance () . move(
39 s e l f , s e l f . next , ” SyncTimers ” , ” hosts ” , mv obj 1 ,
40 ” t ime ” , mv ob j 2)
41 # execute the serv i ce
42 SyncTimers (se rv i ce . get (” hosts ”) , se rv i ce . get (” t ime ”))
43 return
44
45 def parseHosts (s e l f , hosts) :
46 n = hosts . f i n d (” , ”)
47 i f n == −1:
48 s e l f . next = hosts
49 s e l f . remaining = ” ”
50 else :
51 s e l f . next = hosts [0 : n]
52 s e l f . remaining = hosts [n + 1 :]

The TimeSync agent is represented by a class which includes a constructor
(lines 2–10), a function for handling incoming messages (lines 13–43), and the
helper parseHosts() function (lines 45–52). The actual code of the SyncTimers
services is inserted as an inner function of onMessage() (lines 16–43), right
under the conditional statement that determines the name of the requested
service. The actual call to this inner function is made in line 42.

Agents that wish to leave a PySOM instance can do so by calling the move
method of PySOMFacilitator. The method relies on Python reflection features
for extracting the necessary runtime information about the agent, such as its
original, ALAS source code stored in line 4, values of persistent properties listed
in line 6, etc.

As it can been seen from the given source code, the ALAS standard library
for PySOM is available under the alas.stdlib.pysom package.

After executing the service here, the agent will move to the JADE instance.

Running the agent in JADE Once the TimeSync agent reaches JADE , its
ALAS source code will be processed to produce JADE behavior class, shown
in Listing 5.3. MyBehavior is defined as an inner class of the TimeSync class,
which represents the actual agent. State properties, original ALAS source code,
and the list of persistent properties are all defined in this agent class.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1221

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

Listing 5.3. Source code of the mobile TimeSync ALAS agent, regenerated for
JADE

1 private class MyBehavior
2 extends jade . core . behaviours . Cyc l icBehav iour {
3 private TimeSync agent ;
4
5 public MyBehavior (TimeSync agent) { th is . agent = ag ; }
6
7 @Override public void ac t i on () {
8 / / wa i t f o r a message
9 jade . lang . ac l . ACLMessage msg = agent . rece ive () ;

10 i f (msg == nul l) { block () ; return ; }
11
12 / / e x t r a c t se rv i ce d e s c r i p t i o n from the msg content
13 alas . s t d l i b . java .common. m ig ra t i on . ServiceDesc content = nul l ;
14 t ry {
15 content = (a las . s t d l i b . java .common. m ig ra t i on . ServiceDesc)
16 msg . getContentObject () ;
17 } catch (jade . lang . ac l . UnreadableException ex) { return ; }
18
19 i f (content . i sSe rv i ce (” SyncTimers ”)) {
20 / / SyncTimers se rv i ce implementat ion
21 class Service SyncTimers {
22 void SyncTimers (S t r i n g hosts , double t ime) {
23 / / remember the s t a r t i n g po in t
24 i f (start ingHome == nul l)
25 start ingHome = alas . s t d l i b . java .common. F a c i l i t a t o r .
26 ins tance () . getHome () ;
27 / / am I back home?
28 else i f (start ingHome . equals (a las . s t d l i b . java .
29 common. F a c i l i t a t o r . ins tance () . getHome ())) {
30 alas . s t d l i b . java .common. Log . w r i t e (” I ’m back ! ”) ;
31 start ingHome = nul l ;
32 return ; }
33 / / apply the t ime
34 alas . s t d l i b . java .common. Log . w r i t e (” Se t t i ng the ” ,
35 ” system time to ” , t ime) ;
36 alas . s t d l i b . java .common.Dummy. applySystemTime (t ime) ;
37 / / go to the next host
38 i f (hosts . leng th () == 0) / / no more , go back home
39 next = start ingHome ;
40 else
41 parseHosts (hosts) ;
42 / / prepare se rv i ce parameters
43 Object mv obj2 = t ime ;
44 Object mv obj1 = remaining ;
45 / / s t a r t the mig ra t i on process
46 alas . s t d l i b . java . jade . JADEFac i l i t a to r . ins tance () .
47 move(this , next , ” SyncTimers ” ,

1222 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

48 ” hosts ” , mv obj1 , ” t ime ” , mv obj2) ; } }
49 / / execute the serv i ce
50 S t r i n g hosts = content . get (” hosts ” , S t r i n g . class) ;
51 double t ime = content . get (” t ime ” , double . class) ;
52 new Service SyncTimers () . SyncTimers (hosts , t ime) ;
53 return ; } }
54
55 private void parseHosts (S t r i n g hosts){
56 i n t n = hosts . indexOf (” , ”) ;
57 i f (n == −1) {
58 next = hosts ;
59 remaining = ” ” ;
60 } else {
61 next = hosts . subs t r i ng (0 , n) ;
62 remaining = hosts . subs t r i ng (n + 1) ; } } }

Inside JADE , the agent will wait for an incoming message (lines 9 and 10),
and then extract the message content (lines 13–17). The content is defined
as a ServiceDesc class, which stores all the information about the service the
agent is asked to execute. The actual source code of the SyncTimers service is
inserted as the inner Service SyncTimers class (lines 21–48), and it’s invoked
using lines 50–52.

Two root packages, alas.stdlib.java.common and alas.stdlib.java.jade, make
up the ALAS standard library for JADE . All classes under the first package
are shared between all Java-based MASs (in this case, SOM and JADE) and
include functionalities that are architecture-independent. The second package
incorporates classes that implement JADE-specific behavior (e.g. JADEFacili-
tator).

Similarly as with PySOM, the move instruction (lines 46–48) relies on Java
reflection API to extract and serialize agent’s runtime properties.

After executing the service in JADE , the agent determines that there are no
more MASs to visit, and returns to its home – the SOM instance.

Running the agent in SOM The TimeSync source code produced for SOM
is shown in Listing 5.4. Again, the agent is defined as a regular Java class
implementing the SOM-specific Agent interface that represents all agents.

Listing 5.4. Source code of the mobile TimeSync ALAS agent, regenerated for
SOM

1 public class TimeSync
2 implements x j a f s . agentmanager . e jb . i n t e r f a c e s . Agent {
3 / / o r i g i n a l , ALAS source code of the agent
4 private f i n a l S t r i n g AGENT SOURCE =
5 ” package example . agents ; . . . ” ;
6 / / comma−separated l i s t o f p e r s i s t e n t p r o p e r t i e s
7 private f i n a l S t r i n g PERSISTENT VARS = ” start ingHome ” ;
8 / / agent s t a te
9 private S t r i n g start ingHome , next , remaining ;

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1223

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

10
11 / / handler o f incoming messages
12 @Override
13 public void onKQMLMessage(S t r i n g kqml , S t r i n g agentID) {
14 / / unmarshal l the KQML message
15 f i n a l x j a f s . agentmanager . e jb . u t i l s . xml . kqml . KqmlMessage msg =
16 x j a f s . agentmanager . e jb . u t i l s . XMLMapper . unmarshallKQML (kqml) ;
17
18 i f (message . getCommand () . equals (” SyncTimers ”)) {
19 / / SyncTimers se rv i ce implementat ion
20 class Service SyncTimers {
21 void SyncTimers (S t r i n g hosts , double t ime) {
22 / / remember the s t a r t i n g po in t
23 i f (start ingHome == nul l)
24 start ingHome = alas . s t d l i b . java .common. F a c i l i t a t o r .
25 ins tance () . getHome () ;
26 / / am I back home?
27 else i f (start ingHome . equals (a las . s t d l i b . java .common.
28 F a c i l i t a t o r . ins tance () . getHome ())) {
29 alas . s t d l i b . java .common. Log . w r i t e (” I ’m back ! ”) ;
30 start ingHome = nul l ;
31 return ; }
32 / / apply the t ime
33 alas . s t d l i b . java .common. Log . w r i t e (” Se t t i ng the ” ,
34 ” system time to ” , t ime) ;
35 alas . s t d l i b . java .common.Dummy. applySystemTime (t ime) ;
36 / / go to the next host
37 i f (hosts . leng th () == 0) / / no more , go back home
38 next = start ingHome ;
39 else
40 parseHosts (hosts) ;
41 / / prepare se rv i ce parameters
42 Object mv obj $2 = (t ime) ;
43 Object mv obj $1 = (remaining) ;
44 / / s t a r t the mig ra t i on process
45 alas . s t d l i b . java . som. SOMFac i l i ta to r . ins tance () . move(
46 this , next , ” SyncTimers ” ,
47 ” hosts ” , mv obj $1 , ” t ime ” , mv obj $2) ; } }
48 / / execute the serv i ce
49 SyncTimers task = XMLMapperSyncTimers .
50 unmarshallSyncTimers (msg . getContent ()) ;
51 new Service SyncTimers () . SyncTimers (task . getHosts () ,
52 task . getTime ()) ;
53 return ; } }
54
55 private void parseHosts (S t r i n g hosts) { . . . ommitted . . . }
56 }

SOM agents communicate by exchanging KQML messages, and the system
relies on JAXB marshalling/unmarshalling [19] for message serialization/dese-

1224 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

rialization (lines 15 and 16). Similarly as with JADE , in this SOM-specific defi-
nition of TimeSync, the SyncTimers service implementation is provided in form
of an inner class (lines 20–47), and is invoked using lines 49–52.

This experiment demonstrates how ALAS can be used to develop agents
in the write once, run anywhere manner. The ALAS-based TimeSync agent is
implemented once to solve a specific problem, and is then able to work in SOM,
PySOM, and JADE instances without any interventions on the developer’s part.
Therefore, the main goal behind the development of ALAS has been achieved.

6. Conclusions and future work

XJAF is FIPA-compliant MAS developed by the authors of this paper. It is de-
signed as a pluggable, manager-based architecture, which allows for easy addi-
tions of new functionalities. The system is implemented in Java EE, today’s lead-
ing development platform for building large-scale, scalable, secure, and reliable
software. In the course of improving its interoperability, XJAF has recently been
redesigned as a service-oriented architecture. The resulting system, named
SOM, follows the manager-based approach of XJAF , but with managers be-
ing implemented as web services. The main advantage of this approach is that
external clients and third-party tools can use SOM and interact with its agents
through SOAP, the standardized communication protocol.

SOM is a conceptual specification of web services, and it can be imple-
mented using many modern programming languages. But, this poses a major
problem: an agent written for, e.g., Java-based implementation of SOM cannot
move to a Python-based implementation. In order to overcome this issue, a new
agent-oriented programming language named ALAS, has been proposed. The
two main goals of ALAS, as originally described in [22], are:

1. To provide developers with programming constructs that simplify the overall
complexity of agent development.

2. To include tools for agent code regeneration, and enable migration across
SOM instances implemented using different programming languages.

Since this original proposal, however, the design goal of ALAS has been
extended. The language itself and its accompanying set of tools have been
upgraded to support true heterogeneous agent mobility. Unlike the agent re-
generation, heterogeneous mobility assumes that agents are able to migrate
across the network consisting of MAS instances that offer different sets of APIs
and are implemented using different programming languages. This, obviously,
is more difficult problem to solve, as it requires both the regeneration of agent’s
executable code and modifications of the code in order to adapt to the API of
the underlying MAS.

As shown in this paper, the desired goal has been achieved. ALAS agents
are able to seamlessly, without any interventions on the developer’s part, op-
erate inside Java-based SOM, Python-based SOM, and JADE instances. The

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1225

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

presented experiment demonstrates how the agent’s executable code is regen-
erated and modified transparently, on-the-fly, to suit the requirements of the
underlying MAS. This enables the developer to focus on solving the concrete
problem, and, in a truly platform-independent manner, disregard information
about the target MAS. To the best of our knowledge, there currently exists no
other agent-oriented programming language that offers this significant benefit.

Future research directions will be concentrated onto improving the expres-
sive power of ALAS and extending its standard library of functions. This will
simplify the agent development process even further.

The support of other MASs is planned as well.
In the long run, the language will be enriched with programming constructs

for defining agent’s beliefs, desires, intentions, and goals, in order to support
the development of BDI-style agents.

Acknowledgments. This work is partially supported by Ministry of Education and Sci-
ence of the Republic of Serbia, through project no. OI174023: ”Intelligent techniques and
their integration into wide-spectrum decision support”.

References

1. Aranda, G., Palanca, J., Criado, N.: SPADE user’s manual. http://spade.gti-
ia.dsic.upv.es/manuals/html-chunk/index.html (October 2007), retrieved on Decem-
ber 7, 2011

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. John Wiley and Sons (2007)

3. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons
(2007)

4. Bradshaw, J., Breedy, M., Groth, P., Hill, G., Jeffers, R., Mitrovich, T., Suri, N.: An
overview of the NOMADS mobile agent system. In: 2nd International Symposium
on Agent Systems and Applications, ASA/MA2000 (September 2000)

5. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

6. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents - goal directed 3APL. In: Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E. (eds.) PROMAS. Lecture Notes in Computer Science, vol. 3067,
pp. 111–130. Springer (2003)

7. Davies, W.H.E., Edwards, P.: Agent-K: An integration of AOP and KQML. In: Pro-
ceedings of the Third International Conference on Information and Knowledge Man-
agement (1994)

8. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication
language. In: Proceedings of the third international conference on Information and
knowledge management. pp. 456–463. CIKM ’94, ACM, New York, NY, USA (1994),
http://doi.acm.org/10.1145/191246.191322

9. FIPA abstract architecture specification. http://www.fipa.org/specs/fipa00001/
SC00001L.pdf (2002), retrieved on December 7, 2011

10. FIPA ACL message structure specification. http://www.fipa.org/specs/fipa00061/
SC00061G.pdf (2002), retrieved on December 7, 2011

1226 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

11. FIPA homepage. http://www.fipa.org/, retrieved on December 7, 2011
12. Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperabil-

ity through software layering. Information and software technology 50(4), 322–341
(2008)

13. Grimstrup, A., Gray, R.S., Kotz, D., Carvalho, M.M., Cowin, T.B., Chacón, D.A., Bar-
ton, J., Garrett, C., Hofmann, M.: Toward interoperability of mobile-agent systems.
In: International symposium on mobile agents. pp. 106–120 (2002)

14. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service
(JMS) specification. http://www.oracle.com/technetwork/java/jms/index.html (April
2002), retrieved on December 7, 2011

15. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni, A.,
Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming:, pp. 119–157.
Springer US (2009)

16. Ivanović, M., Mitrović, D., Budimac, Z., Vidaković, M.: Metadata harvesting learning
resources – an agent-oriented approach. In: Proceedings of the 15th International
Conference on System Theory, Control and Computing (ICSTCC 2011). pp. 306–
311 (October 2011)

17. JADE homepage. http://jade.tilab.com/, retrieved on December 7, 2011
18. Jason homepage. http://jason.sf.net/, retrieved on December 7, 2011
19. Java Architecture for XML Binding (JAXB) homepage.

http://www.oracle.com/technetwork/articles/javase/index-140168.html, retrieved
on December 7, 2011

20. Mitrović, D., Budimac., Z., Ivanović, M., Vidaković, M.: Improving fault-tolerance of
distributed multi-agent systems with mobile network-management agents. In: Pro-
ceedings of the International Multiconference on Computer Science and Information
Technology. vol. 5, pp. 217–222 (October 2010)

21. Mitrović, D., Budimac, Z., Ivanović, M., Vidaković, M.: Agent-based approaches to
managing fault-tolerant networks of distributed multi-agent systems. Multiagent and
Grid Systems 7(6), 203–218 (December 2011)

22. Mitrović, D., Ivanović, M., Vidaković, M.: Introducing ALAS: a novel agent-oriented
programming language. In: Simos, T.E. (ed.) Proceedings of Symposium on Com-
puter Languages, Implementations, and Tools (SCLIT 2011) held within Interna-
tional Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2011).
pp. 861–864. AIP Conf. Proc. 1389 (September 2011), iSBN 978-0-7354-0956-9

23. Moreau, L.: Distributed directory service and message router for mobile agents.
Science of Computer Programming 39(2–3), 249–272 (2001)

24. Overeinder, B.J., Groot, D.R.A.D., Wijngaards, N.J.E., Brazier, F.M.T.: Generative
mobile agent migration in heterogeneous environments. Scalable computing: prac-
tice and experience 7(4), 89–99 (2006)

25. Pinsdorf, U., Roth, V.: Mobile agent interoperability patterns and practice. In: Pro-
ceedings of the 9th IEEE international conference on engineering of computer-
based systems. pp. 238–244 (2002)

26. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) MAAMAW. Lecture Notes in Computer Sci-
ence, vol. 1038, pp. 42–55. Springer (1996)

27. Schmidt, D.C.: Model-driven engineering. Published by IEEE Computer Society
(February 2006)

28. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92 (1993)
29. SPADE homepage. http://code.google.com/p/spade2/, retrieved on December 7,

2011

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1227

Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković

30. Suri, N., Bradshaw, J., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R.: Strong mo-
bility and fine-grained resource control in NOMADS. In: Kotz, D., Mattern, F. (eds.)
Proceedings of the Second international Symposium on Agent Systems and Ap-
plications and Fourth international Symposium on Mobile Agents. Lecture Notes In
Computer Science, vol. 1882, pp. 2–15 (September 2000)

31. Tapia, D.I., Bajo, J., Corchado, J.M.: Distributing functionalities in a SOA-based
multi-agent architecture. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.)
7th International Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS 2009), Advances in Intelligent and Soft Computing, vol. 55, pp.
20–29. Springer Berlin / Heidelberg (2009)

32. Tapia, D.I., Rodrı́guez, S., Bajo, J., Corchado, J.M.: FUSION@, a SOA-based multi-
agent architecture. In: Corchado, J.M., Rodrı́guez, S., Llinas, J., Molina, J. (eds.)
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), Advances in Soft Computing, vol. 50, pp. 99–107. Springer Berlin /
Heidelberg (2009)

33. Thomas, S.R.: The PLACA agent programming language. In: Wooldridge, M., Jen-
nings, N.R. (eds.) ECAI Workshop on Agent Theories, Architectures, and Lan-
guages. Lecture Notes in Computer Science, vol. 890, pp. 355–370. Springer (1994)

34. Vidaković, M.: Extensible Java based agent framework. Ph.D. thesis, Faculty of
Technical Sciences, University of Novi Sad, Serbia (2003)

35. Vidaković, M., Sladić, G., Konjović, Z.: Security management in J2EE based intelli-
gent agent framework. In: Proceedings of the 7th IASTED International Conference
on Software Engineering and Applications (SEA 2003). pp. 128–133 (November
2003)

36. World Wide Web Consortium (W3C) SOAP version 1.2.
http://www.w3.org/TR/soap/, retrieved on December 7, 2011

37. World Wide Web Consortium (W3C) XML Schema.
http://www.w3.org/XML/Schema, retrieved on December 7, 2011

38. Winikoff, M.: JACK Intelligent Agents: an industrial strength platform. In: Bordini,
R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-Agent Program-
ming, Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15,
pp. 175–193. Springer (2005)

39. Wooldridge, M., Jennings, N.: Agent theories, architectures, and languages: A sur-
vey. In: Wooldridge, M., Jennings, N. (eds.) Intelligent Agents, Lecture Notes in
Computer Science, vol. 890, pp. 1–39. Springer Berlin / Heidelberg (1995)

40. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge
Engineering Review 10, 115–152 (1995)

41. XMPP standards foundation homepage. http://xmpp.org/, retrieved on December 7,
2011

Dejan Mitrović is a teaching and research assistant at Faculty of Sciences, Uni-
versity of Novi Sad, Serbia. He graduated in 2006 (Informatics), and received
master’s degree (Computer Science) in 2008, enrolling the PhD studies after-
wards. He published 11 research papers on software agents, multi-agent sys-
tems, and distributed computing. He is a member of several science research
projects.

Mirjana Ivanović holds position of full professor since 2002 at Faculty of Sci-
ences, University of Novi Sad, Serbia. She is head of Chair of Computer Sci-

1228 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

ence. She is author or co-author of 13 textbooks and of more then 230 research
papers on multi-agent systems, e-learning and web-based learning, software
engineering education, intelligent techniques (CBR, data and web mining), most
of which are published in international journals and international conferences.
She is/was a member of Program Committees of more then 80 international
Conferences and is Editor-in-Chief of Computer Science and Information Sys-
tems Journal.

Zoran Budimac holds position of full professor since 2004 at Faculty of Sci-
ences, University of Novi Sad, Serbia. Currently, he is head of Computing labo-
ratory. His fields of research interests involve: Educational Technologies, Agents
and WFMS, Case-Based Reasoning, Programming Languages. He was princi-
pal investigator of more then 20 projects and is author of 13 textbooks and more
then 220 research papers most of which are published in international journals
and international conferences. He is/was a member of Program Committees of
more then 60 international Conferences and is member of Editorial Board of
Computer Science and Information Systems Journal.

Milan Vidaković received the BSc, MSc and PhD degrees in electrical engi-
neering from the Faculty of Technical Sciences, University of Novi Sad, in 1995,
1998 and 2003 respectively. He is a professor at Computing and Control De-
partment, University of Novi Sad. He participated in several science projects
and published more than 60 scientific and professional papers. His research
interest covers web and internet programming, distributed computing, software
agents, embedded systems, and language internationalization and localization.

Received: January 2, 2012; Accepted: Jun 12, 2012.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1229

DOI:10.2298/CSIS120130032C

Language Engineering for Syntactic Knowledge
Transfer

Mihaela Colhon

Departament of Computer Science, A.I.Cuza street 13,
200585 Craiova, Romania1231

mcolhon@inf.ucv.ro

Abstract. In this paper we present a method for an English-Romanian
treebank construction, together with the obtained evaluation results. The
treebank is built upon a parallel English-Romanian corpus word-aligned
and annotated at the morphological and syntactic level. The syntactic
trees of the Romanian texts are generated by considering the syntactic
phrases of the English parallel texts automatically resulted from
syntactic parsing. The method reuses and adjusts existing tools and
algorithms for cross-lingual transfer of syntactic constituents and
syntactic trees alignment.

Keywords: parallel treebank, syntactic phrase alignment, bilingual
corpus, word-alignments.

1. Introduction

Probably the most important trend in linguistics in the last decade is the
massive use of large natural language corpora [7]. In any Natural Language
Processing system (NLP system), corpora is often used to provide empirical
and statistical data [8]. Typically, NLP applications that use corpora as basic
linguistic resource are Word Sense Disambiguation (WSD) programs [19] and
all types of parsers. Machine Translation (MT) represents the usage of
computers as tools for translating texts from a source language to a target
language [35]. The vast majority of current approaches to MT systems are
also corpus-based. Among these, Phrase-Based Statistical MT (PBSMT) are
by far the most dominant paradigm [24]. In this case, the linguistic resource is
in the form of pairs of aligned parallel texts in the Source Language (SL) and
Target Language (TL).

Current practice in phrase-based translation extracts regular phrases and
translation rules from word-aligned parallel texts [13] as it is well-known that
more and more researchers have devoted themselves to syntax-based MT
systems [12], [18], [37]. Parallel treebanks are useful not only for syntax-
based MT or example-based MT but also can be exploited in statistical
approaches of translation. More precisely, by providing alignments between
the syntactic tree of two corresponding sentences on a sub-sentential level

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1232

(word, phrase and/or clause level) automatic derivation of syntactic transfer
rules, very important in any translation study, can be obtained.

The most common type of linguistic annotation is Part-Of-Speech (POS)
tagging or, more accurately, morphosyntactic tagging, that is the procedure of
assigning to each word token appearing in a text its morphosyntactic
description [10]. Many studies consider that POS tags contain enough
syntactical information to support word abstraction in any NLP system
training. For example, the search space of a translation rules database can be
greatly reduced by focusing only on POS tags instead of real words [35]. A
treebank is a corpus that has been grammatically annotated in order to
identify and label different syntactic components [15].

The treebank generation mechanism presented in this article automatically
constructs a syntactic annotated parallel corpus from a bilingual word-aligned
corpus with morphosyntactic annotations. The corpus was manually word
aligned, tokenized, POS-tagged and lemmatized. The English texts were
processed with one of the existing English syntactic parsers1 while, for
Romanian texts, a tree generation algorithm guided by the word-alignments of
the corpus was implemented. As a consequence, the algorithm for Romanian
syntactic tree generation depends greatly on the word-alignments of the
bilingual corpus as will be shown in the following sections.

Parallel treebanks, like the treebank described in the present paper, are
successfully used in various NLP applications but their main scope is to
enhance syntax-based translation performance of the corpora language pairs.
Also, based on the alignment mechanism encoded in the treebank
annotations, rich and robust set of translation rules for the corpus languages
can be identified.

As noted by competent linguists, Romanian language is morphologically
rich and relatively flexible word order language [5]. The term Morphologically
Rich Languages refers to languages in which substantial grammatical
information, i.e., information concerning the arrangement of words into
syntactic units or cues to syntactic relations, are expressed at word level.
Because of its rich morphology, the morphological markers themselves could
serve as strong cues for identifying the syntactic relations between the words
in the sentence. But in languages with free or flexible word-order, such as
Romanian, constituency-based representations are overly constrained, this
fact causing word-order choice to influence the complexity of the syntactic
analysis.

The method we present here is not restricted to the pair of languages
chosen for the current implementation, which are English and Romanian
languages. As it will be shown, the involved methodology for the treebank

1 Some of the well known English syntactic parsers are: Stanford Parser (web page:
http://nlp.stanford.edu/software/lex-parser.shtml), Link Parser (web page:
http://www.link.cs.cmu.edu/link/) or Minipar (web page:
http://webdocs.cs.ualberta.ca/~lindek/minipar.htm).

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1233

generation works on the abstract level of syntactic components and thus, all
the particular information about the two languages lexicon is discarded. Also,
the presented method does not make use of any particular information
regarding the grammatical rules of any of the two involved languages.

The aim of the performed experiment is to test whether it is possible to
reuse the syntactic constituents of one language texts in order to annotate
their translations into another language. A study of this type was successfully
performed for the same pair of languages but with the intention of testing the
import of syntactic relations contracted by verbs [24].

2. Parallel Treebank from Bilingual Corpus

While monolingual treebanks are widely available thanks to large-scale
annotation projects (NEGRA Treebank [28], Penn Treebank [30], Prague
Dependency Treebank [31], Swedish Treebank [32]), bilingual parallel corpora
with syntactic tree-based annotation on both sides, so-called parallel
treebanks, are quite rare.

Despite of their enormous importance, the manually generation of such
linguistic resources usually implies huge efforts. Manual construction is an
expensive, time-consuming and error-prone process which requires linguistic
expertise in both languages in question. For this reason, there has been a lot
of research on automatic generation, basically using tree-to-string MT models,
(e.g. [39]), while the development of tree-to-tree based MT models, despite
their potential, has suffered.

The treebank generation algorithm presented in this paper is guided by the
word alignments existing between the parallel sentences of a bilingual corpus.
For this reason, the generation process is strongly dependent on the quality
and quantity of the word-alignments, as accordingly to the Blinker annotation
guidelines [23]: “if a word is left unaligned on the source side of a sentence
pair, this implies that the meaning it carries was not realized anywhere in the
target side”. From the MT usage point of view, this implies that the meaning
together with all morphosyntactic information of the source word to be lost.
Therefore, the more accurate the word alignments are, the better the quality
of the induced syntax tree for the target part of the resulted treebank will be.

2.1. Treebank Linguistic Resources

Treebanks, as large collections of syntactically parsed sentences, are
considered valuable resources not only for computational tasks such as
grammar induction and automatic parsing, but also for traditional linguistic and
philological pursuits as well [17].

Syntactic annotation is the practice of adding syntactic information to a text
by incorporating into it markers indicating syntactic dependencies relations. In
order to obtain a parallel treebank from the bilingual corpus each sentence

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1234

has to be annotated with POS data. This kind of annotation is usually resulted
with a POS Tagger tool. Another type of syntactic annotations consists of
syntactic phrase labels for the both parts of a bilingual corpus which are
aligned usually by following the word-alignments of the corpus.

English language is the best supported language, at this moment there are
many large corpora, syntactic trees resources and testing language
processing tools.

Although not to the extent of the languages with greater electronic visibility,
efforts have been invested by researchers in different places (Romanian,
Republic of Moldova, Unites States, United Kingdom, Germany, Italy, etc.) to
develop Romanian linguistic resources such as corpora, dictionaries,
wordnets and collections of linguistic data in both symbolic and statistical form
[6].

From the available parallel corpora, the Acquis Communautaire linguistic
resource represents the biggest parallel corpus existent at this moment,
taking into account both its size and the number of covered languages [10].
The corpus includes the total body of European Union (EU) law applicable in
the EU Member States. It is available in 22 official languages (including
Romanian) of the European Union. A significant part of these parallel texts
have been compiled by the Language Technology Group of the European
Commission into an aligned parallel corpus, called JRC-Acquis Multilingual
Parallel Corpus [18]. In most bilingual corpora derived from JRC-Acquis
corpus, we find English paired with a European language.

In order to make a bilingual corpus with POS annotations an appropriate
linguistic resource for the presented treebank generation method, word-
alignments have to be provided (manually or with automatic tools such
GIZA++ [27]).

A great progress has been done in the MT development from manually
crafted linguistic models to empirically learned statistical models, from word-
based models to phrase-based models and from string-based to tree-based
models [21].

Two segments of texts from a bitext which represent reciprocal translations
make a translation unit [39]. A translation unit may contain, in one or both the
paired languages, one or more textual units (paragraph, sentence, phrase,
word). Traditionally, phrases are taken to be syntactic components of a
sentence. These units can be used to generate more complex constructions
in that language and based on them a new phrase-based strategy was
employed in MT: instead of generating translation of individual words from the
source language, generate translations of the phrases and assemble the final
translation by a permutation of these [39].

In literature, there are several translation theories formalized on parallel
corpora with word-level alignments. In [11] is defined a generative process by
means of which a symbol tree over a target language is derived from a string
of source symbols. In order to distinguish between good and bad derivations,
the notion of alignment is implemented. The triples

(source_string, target_tree, word_alignment)

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1235

are depicted in special structures named alignments graphs from which the
set of derivation rules are inferred. Many translation models pay little attention
to the context and to the syntactic structures of the translated phrases. The
theory of alignments, spans and crossings is discussed in [11] where the
phrasal coherence across two languages is studied. It is proved that
incorporating syntactic information into translation models presents several
advantages by the fact that syntactic phrases in one language tend to say
together (i.e. cohere) during translation. Also, several studies have reported
alignment or translation performance for syntactically augmented translation
models.

The mechanism described in this article was designed in order to test the
feasibility of the automatic cross-lingual transfer of syntactic phrases being
built upon an English-Romanian parallel corpus developed at Alexandru Ioan
Cuza University of Iaşi by the Natural Language Processing Group from
Faculty of Computer Science. The corpus is XML encoded obeying a
simplified form of the XCES standard [16]. For the bilingual corpus
construction, the English and Romanian parts of the Acquis-Communitaire
corpus2 were used.

All the words of this English-Romanian corpus are annotated with lemmas,
morphosyntactic information (gender, number, person and case) and Part of
Speech markers. The tagsets used to annotate the words of the English-
Romanian corpus comes from MULTEXT-East morphosyntactic
specifications, version 3 (these specifications can be found at [25]). The latest
version of these specifications, version 4 called “MondiLex”, is available at
[26].

The MULTEXT-East project, developed for a large number of mainly
Central and Eastern European languages (including Romanian) defines
tagsets not only for Part of Speech data (POS data), but also includes the
EAGLES-based morphosyntactic specifications, defining the features that
describe word-level syntactic annotations [9].

The proposed algorithm works only on parallel sentences that are in 1:1
correspondence, meaning that every English sentence is translated into a
single Romanian sentence. Best results are obtained for parallel sentences
that are as closed as possible with respect to the syntactic realization of their
content.

3. The Treebank Generation Algorithm

In this section we describe the Treebank Generation algorithm used to
construct the parallel treebank with syntactic constituents from an English-
Romanian corpus word-aligned and annotated at the morphological and

2 Acquis Communitaire corpus contains about 12,000 Romanian documents and 6,256
parallel English-Romanian documents [6].

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1236

syntactic level. The resulted treebank is intended to set up a MT rule-based
transfer system. Thus, instead of manually designing the rules, we could
derive them from the generated treebank structures.
Because of the intended purpose, the algorithm works in the following
scenario:

 one language of the bilingual corpus, the source language for the MT
system must have a well-known syntactic parser by means of which
the parse trees corresponding to this language texts could be
obtained

 the part of the bilingual corpus corresponding to the target language
of the MT system must have POS annotations or there must be
available a POS tagger for the target language

 the bilingual corpus upon which the treebank is constructed must be
word-aligned.

Following these requirements, the English sentences of the corpus were
processed with Stanford Parser [20] in order to generate the English part of
the treebank.

Stanford Parser is a natural language parser developed by Dan Klein and
Christopher D. Manning from the Stanford Natural Language Processing
Group. By parsing the English sentences with this tool, PENN Treebank parse
trees were generated. As a direct consequence, the English texts are
annotated with PENN Phrasal tags as this is the tagging standard used by
Stanford Parser.

The parse trees labeled with PENN tagsets [30] consist of words in leaves,
POS tags for the preterminal nodes and phrase tags for the next levels. The
inner nodes denote grammatical constituents (for example NP for noun
phrase, VP for verb phrase, etc.). Abstraction of words in syntactic trees
represents almost no informational loss from syntactic point of view.

The implemented method can be summarized as follows: given a parse
tree Ts for a source language sentence noted with s, and its target sentence,
noted with t (that is, the translation of the source sentence in the target
language) together with the word-level alignments, the parse tree of the
sentence t, noted with Tt has to be constructed.

The algorithm generates the target tree Tt in a bottom-up fashion by
mapping constituents of Ts onto contiguous substrings of t via lexical
alignments.

For a lexical alignment, the most frequent alignment category is 1:1 such
that one word in the source text is translated exactly to one word in the target
text. However, there are other alignment categories, such as omissions (0:1
or 1:0), expansions (n:m, with n<m, n,m1), contractions (n:m, with n>m,
n,m1) or unions (n:n, with n >1) [3].

A very popular way for visualization the parse tree of a source language
sentence ending in leaf nodes – the sentence words connected by alignment
links to the target sentence’s words, is the alignment graph. An alignment link
is a function *},,1{)(mnA that maps a source leaf node n of the parse tree
Ts to a set of zero or more of target leaf nodes.

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1237

Based on the lexical alignments and of the source tree structure decoded in
the alignment graph, the corresponding target tree structure is generated. As
it is described in Algorithm 1, the tree structure of Tt created from the source
parse tree Ts following the word-alignments, noted with WA, by means of a
bottom-up mechanism.

Indeed, the algorithm starts by constructing the set of the leaf nodes,
leaf(Tt) together with the set corresponding to the first level of non-terminal
nodes, nonT(Tt, 1), where the POS tags corresponding to the leaf node are
included.

For the next levels, each non-terminal node nt nonT(Tt, level), level≥2, is
considered to be the root of a subtree tree Tt and labeled with the phrase
tag of a non-terminal node ns from Ts if the span of ns is the frontier of the
target subtree tree. The Treebank Generation algorithm is given in the next
section.

3.1. The Algorithm

The alignment of syntactic trees is the process of finding the correspondences
between internal and leaf nodes of two parsing trees representing parallel
sentences in different languages. For example, Prime Factorization and
Alignment (PFA) algorithm assigns prime numbers to terminal nodes and
spreads them to the rest of the tree from the leaf nodes towards to the roots
by assigning the product of child values to their fathers [1].

For two parallel syntactic trees: Ts corresponding to a source language
sentence and Tt for the target language translation, a non-terminal node ns
nonT(Ts, levels) is aligned with a non-terminal node nt nonT(Tt, levelt), levels,
levelt >1, if:

span(ts) = leaf(tree)
where tree is a subtree of Tt, tree Tt and nt = root(tree).

Because the target parse tree Tt is constructed taking into consideration the
structure and the nodes of Ts the Treebank Generation algorithm also
includes the alignments or correspondences between internal and leaf nodes
of the two parallel trees, so it could be also considered as an alignment
algorithm.

Algorithm 1. The Treebank Generation algorithm
Input:

a bilingual source language-target language corpus3,

the word alignments WA, a source language parser4 and POS

annotations for words in the target language

3 An English-Romanian morphosyntactic annotated corpus was used.
4 Stanford Natural Language Processing Group, Stanford Parser,

http://nlp.stanford.edu:8080/parser/

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1238

Output: syntactic trees for target sentences

1. APPLY WA on the corpus C to obtain the word alignments
2. FOR each pair of parallel SL-TL sentences (s, t) of C
3. FOR each word si of s =(s1, ..., sm)
4. FOR each word tj of t = (t1, ..., tn)
5. IF si IS ALIGNED WITH tj
6. aligns(i,j) 1

7. ENDIF
8. APPLY STANFORD PARSER for sentence s
9. LET Ts the parse tree of s
10. LET leaf(Ts) the leaf nodes set of Ts
11. leaf(Ts) {si| 1≤i≤m}

12. LET nonT(Ts,lvl)non-terminal nodes set in Ts,lvl≥2

13. nonT(Ts, 1) {POS(s)| s leaf(Ts)}

14. nonT(Ts, lvl) {parent(n)|n nonT(Ts,lvl-1), lvl≥2}
15. LET Tt the parse tree of t
16. LET leaf(Tt) the leaf nodes set of Tt
17. leaf(Tt) {tj| 1≤j≤n}

18. LET nonT(Tt, lvl) non-terminal nodes set in Tt,lvl≥2

19. nonT(Tt, 1) {POS(n) | n leaf(Tt)}

20. nonT(Tt, lvl) , lvl≥2
21. FOR each node si IN leaf(Ts)
22. span(si) {tj| aligns(i,j)=1}

23. FOR each node N in nonT(Ts, lvl), lvl≥2
24. span(N){span(si)|sileaf(Ts) si descendant(N)}
25. FOR each node tj IN leaf(Tt)
26. parent(tj)POS(tj)

27. lvl 2

28. WHILE (lvl ≤ max_level(Ts))
29. nonT(Tt,lvl)
30. FOR each node tj IN leaf(Tt)
31. IF N nonT(Ts, lvl): tj span(N)
32. parent(last_parent(tj)) N

33. nonT(Tt,lvl) nonT(Tt,lvl){N}

34. ENDIF
35. lvl lvl+1

36. ENDWHILE

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1239

Figure 1. Cross word-alignments generate overlapping phrase-structures5

In any translation process, the one-to-zero lexical alignment is undesirable.
One-to-zero means the lack of equivalent lexical translation in the target
language, this phenomena being called “lexical hole”. The unaligned
Romanian words can be resolved using specific grammatical information
relative to the Romanian language but such a study does not make the
subject of this article.

The time complexity of our algorithm relative to each pair of parallel Source
Language-Target Language sentences (s,t) is O(nmax_level(Ts)) because of the
while loop that includes a linear browsing of the leaf nodes from Tt, where n is
the length of the sentence in the Target Language (this means that sentence t
has n words, property that is given by t = (t1, …, tn) in the algorithm notations).

Algorithm 1 assumes that all the spans of the non-terminal nodes of Ts are
continuous lists of nodes and does not resolve the crossing alignments
between each pair of English-Romanian parallel sentences. These issues will
be discussed in the next section.

5 The treebank alignments are loaded in Stockholm TreeAligner program [36].

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1240

3.2. The Alignments of the Treebank Parallel Components

The most important feature of the developed algorithm consists in finding the
translation equivalence between two syntactic phrases of each bitext.
Basically, translation equivalence rely only on the lexical tokens (words,
phrases) paired by an alignment link. Even if not all the words between the
two phrases are aligned, the phrases can still align very well.

The word alignments were drawn manually between the parallel sentences
of the English-Romanian corpus. Although the syntactic structures in the two
languages are not similar, some alignments can still be identified in order to
support the syntactic equivalences. For all that, aligning two words with the
same meaning but with different part of speech is not desirable from this kind
of study point of view because, in this case, even if the alignment is
semantically correct it can’t help the phrases equivalence.

Crossing alignments

In any translation process, lexical mapping is inevitable. Crossing lexical
alignments between a source sentence and a target sentence happen when
the order between the source words and their translations is not preserved.

In Figure 1 it is shown one crossing among the word-alignments links,
indicating one instance of reversing syntactic constituents during translation
process. This particular crossing involves reversal of the prepositional word
with the noun word. Depending on how often this reversal is encountered, in a
translation process we could consider to invert all the TO constituents that
appear before NP constituents.

Având în vedere propunerea comisiei

Having

regard

to

the

proposal

from

the

commission

NP-1

NP-2

NP-3

NP-1 NP-2 NP-3

PP-4

NP-5

PP-6

VP-7

NP-5

VP-7
Figure 2. The alignment matrix6

6 The crossing alignments are marked with a thick border.

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1241

The crossing alignments can be easily identified using the aligns matrix
constructed in Algorithm 1.

The alignment matrix that corresponds to a pair of English-Romanian
parallel sentences (s, t) from the JRC-Acquis corpus, for:

s = (Having, regard, to, the, proposal, from, the, commission)
t = (Având, în, vedere, propunerea, comisiei)

is illustrated in Figure 2.

Figure 3. Cross word-alignments do not necessarily generate overlapping phrase-
structures7

Usually, the crossing alignment problem implies reordering of the source
tree such that the lexical order of the leaf nodes matches the order of the
target sentence. But resolving this issue implies particular studies that
address the particularities of the target language with respect to the
particularities of the source language. Such studies do not make the subject
of the present article, being left for a future work.

Still, not all crossing word-alignments determine overlapping between the
target tree syntactic components as it is exemplified in Figure 3.

7 The treebank alignments are loaded in Stockholm TreeAligner program [27].

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1242

3.3. Parallel Treebank Annotations

After the parse trees were generated for both parts of the corpus, the
hierarchical language representations for the parse trees have to be flattened
into linear string representations, which can be easily input to many feature-
like probabilistic models. Thus, during model-training, these string
representations together with the alignment information can generate
statistics needed to build translation grammars. Our goal is to extract rich and
robust set of English-Romanian translation rules.

In line with the PENN parse tree format used by the Stanford Parser we
propose a format in which the aligned phrase tags for the inner nodes of the
trees are indexed by the same number. The common notation for the phrase
nodes accompanied by the lexical alignments for the leaf nodes make easier
to find the alignments between the parallel parse trees.

The annotations of the treebank preserve, from the used English-Romanian
corpus, the MULTEXT-EAST words specifications as these data include all
the morpho-syntactic details needed for any syntactic study, while for the
phrasal constituents the PENN Treebank Phrasal Tags are used.

In order to evaluate the Phrasal tags for Romanian sentences resulted from
the Treebank Generation algorithm, the corpus annotations with syntactic
chunks for the Romanian words are compared with the Phrasal tags
sequences “inherited” from the parallel English sentences parse trees.

The chunks annotations of the corpus were generated by means of a
simple regular expression chunker in order to mark the syntactic constituents
that form a given sentence. More precisely, two separate English and
Romanian grammars were implemented for generating PERL regular
expressions over sequences of POS tags for English and Romanian types of
phrases founded in the corpus sentences [24]. Using the languages regular
expressions defined over the tagsets, the chunker accurately recognizes the
(non-recursive) syntactic phrases both for Romanian and English.

The chunk parser detects the chunks of a text, like noun phrases (NPs),
prepositional phrases (PPs) or verb phrases (VPs). Chunks are non-
overlapping spans of text, usually consisting of a head word (such as noun)
and the adjacent modifiers and function words [6]. The chunk annotations are
the references in the evaluation process based on which the performance of
the Treebank Generation algorithm is measured.

4. Experimental Results and Evaluation

The Treebank Generation algorithm for the Romanian sentences was tested
by taking into account the chunker annotations for the Romanian part of the
previously mentioned bilingual corpus. More precisely, for every word of a
Romanian sentence, each syntactic phrase determined by the Treebank
Generation mechanism that correctly matches within the syntactic chunks
annotations of that word adds to the mechanism precision.

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1243

Resuming, we have that the PENN phrase tags identified for the Romanian
words by the Treebank Generation algorithm are compared with the
sequences of syntactic chunks specified for the Romanian words of the
English-Romanian corpus.

Table 1. The corpus annotations and the corresponding PENN Phrasal Tags

Corpus
annotations

Ap
adjective phrase/
adverb phrase

Np
noun
phrase

Pp
prepositional
phrase

Vp
verb
phrase

Corresponding
PENN
Phrasal
Tags

ADJP NP PP VP
ADVP WHNP WHPP
PP
WHADVP

As it is given in Table 1, the NP and WHNP PENN Phrasal tags are

considered the equivalent PENN notations for the Np chunk annotations, a VP
tag matches only with a Vp chunk while the PP and WHPP tags match only
with Pp chunks. In the case of the Ap chunk a discrimination algorithm had to
be implemented in order to correctly evaluate this notation according with its
corresponding meaning.

Table 2. Example of parallel sequences of treebank tags and chunker annotations
together with their matching degrees

Token(word) Treebank tags/
chunker annotations

Number of
matches

vot Ncms-n VP VP NP VP VP S no match8
 Np Pp

de_asemenea Rgp ADVP VP S ROOT one match
 Ap

economic Afpms-n ADJP NP NP VP … two matches
 Ap Np Pp
Ncfp-n NP PP VP S ROOT

dividende

în

 two matches

 three matches

 Np Pp
Spsa PP VP PP S
 Ap Vp Pp

Indeed, because a single Ap notation is used by the chunker for both the

adjectival phrase and the adverbial phrase, the evaluation mechanism has to

8 The Romanian noun “vot” inherits different PENN tags from the alignment
mechanism because it was aligned with a word with different Part of Speech, more
precisely it was aligned with a verb.

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1244

discriminate among the cases when the Ap means ADJP, that is adjectival
phrasal tag or ADVP, the adverbial phrasal tag or WHADVP, wh-adevarb
phrase or even PP prepositional phrase tag. This discrimination is done upon
the part of speech of the annotated token/word.

More precisely, if a Romanian word, annotated with the Ap chunk, is:
 an adjective, then Ap is considered the correspondent of the ADJP

tag in the PENN Phrasal format
 an adverb then its Ap annotation will match only with ADVP or

WHADVP PENN tags
 a preposition then the Ap annotation is considered equivalent with the

PP PENN tag.
The number of matches between the tags of a PENN phrasal sequence of

a Romanian word and the chunks of the corpus annotations for that word is
counted for the transfer precision. In Table 2 we exemplify the manner in
which the transfer precision is determined. Because we evaluate the
knowledge transfer degree, it is obviously that only the sequences of PENN
phrasal tags that correspond to Romanian words with non-null alignments in
the English parallel part of the corpus will be considered.

The performance of the Treebank Generation algorithm is measured in
terms of Precision and Recall, such that:

 Precision is the fraction of correctly identified Phrasal tags with
respect to the total number of generated Phrasal tags

 Recall is the fraction of correctly identified Phrasal tags with respect to
the total number of Phrasal tags specified in the chunker annotation
sequences for the words of the corpus

The resulted scores of the evaluation process are given in Table 3.
Analyzing the numbers of Table 3, one can observe that the scores for
Precision and Recall do not critically depend on the size of the data sets (200
sentences of the first data set vs. 1420 sentences for the second data set).

Table 3. Data sets and the resulted precision and recall numbers

Corpus size Number of
tokens (words)

Precision Recall

200 sentences 3433 0.8691 0.8411
1420 sentences 22345 0.8542 0.8225

5. Conclusions

The proposed mechanism provides a way to generate syntactic
representations for a language without many parsing tools (like Romanian) by
reusing tools of an intense studied language (English) to which word-
alignments could be provided. It is well-known that the lexical alignments
influence greatly the alignment of internal nodes in two parallel syntactic trees.

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1245

From our description it can be easily deduced that wrong or incomplete
alignments can affect greatly the knowledge transfer. Also, the quality of the
source representations has a great impact on the target induced
representations.

Nevertheless, the method has to be improved in order to deal with specific
constructions for the target language, which do not have any correspondence
in the source language. As the authors say in [24], in order to achieve better
results, the target language specific syntactic structures require a pre- and
post- processing of the data.

It is important to say that although the treebank generation mechanism
presented in this paper was carried out on a specific language pair, that is
English and Romanian, it is so far language independent.

Acknowledgements. The author M. Colhon has been funded for this research by the
strategic grant POSDRU/89/1.5/S/61968, Project ID 61986 (2009), co-financed by the
European Social Fund within the Sectorial Operational Program Human Resources
Development 2007-2013.

Also, the author would like to thank the Natural Language Group of Faculty of
Computer Science, Al. I. Cuza University of Iaşi, Romania, for providing the English-
Romanian corpus upon which the presented treebank generation mechanism was
developed and also evaluated.

References

1. J.G. Araújo and H.M. Caseli, “Alignment of Portuguese-English syntactic trees
using part-of-speech filters”. In Workshop on Natural Language Processing and
web-based technologies (IBERAMIA-2010), Bahía Blanca,1-10. (2010)

2. D. Bamman, M. Passarotti, G. Crane, and S. Raynaud, “Guidelines for the
Syntactic Annotation of Latin Treebanks” (v. 1.3), Technical report, Tufts Digital
Library, Medford, 2007, http://nlp.perseus.tufts.edu/syntax/ treebank/1.3/
docs/guidelines.pdf

3. H. de Medeiros Caseli, A. M. de Paz Silva and M. das Graças Volpe Nunes,
“Evaluation of Methods for Sentence and Lexical Alignment of Brazilian,
Portuguese and English Parallel Texts”. In Brazilian Symposium on Artificial
Intelligence - SBIA, 184-193. (2004)

4. A. Ceauşu, “Rich morpho-syntactic description for factored machine translation
with highly inflected languages as target”. In Workshop on Machine Translation
and Morphologically-rich langauges, University of Haifa. (2011)

5. A. Ceauşu, D. Tufiş, “Addressing SMT Data Sparseness when Translating into
Morphologically-Rich Languages”, NLPSC 2011, Special Issue Human-Machine
Interaction in Translation, August 2011, Copenhagen, Denmark. (2011)

6. D. Cristea, C. Forăscu, “Linguistic Resources and Technologies for Romanian
Language”, Computer Science Journal of Moldova, vol. 14, no. 1(40). (2006)

7. J. Cuřín, M. Čmejrek, J. Havelka, V. Kuboň, “Building a Parallel Bilingual
Syntactically Annotated Corpus”, in K.-Y. Su et al. (Eds.): IJCNLP 2004, LNAI
3248, 168–176. (2005)

8. R. Edqvist, “Developing a Core Lexicon for a Corpus-based Machine Translation
System”, Master’s thesis in Computational Linguistics, Uppsala University,
Department of Linguistics and Philology. (2005)

Mihaela Colhon

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1246

9. T. Erjavec, “MULTEXT-East Version 4: Multilingual Morphosyntactic
Specifications, Lexicons and Corpora”, Lexicons and Corpora. (2010)

10. T. Erjavec, B. Sárossy, “Morphosyntactic Tagging of Slovene Legal Language”,
Informatica(30), 483-488. (2006)

11. H. J. Fox. “Phrasal cohesion and statistical machine translation”. In Proceedings
of. EMNLP-02, 304–311. (2002)

12. M. Galley, M. Hopkins, K. Knight and D. Marcu, “What’s in a translation rule?,” In
Proceedings of HLT-NAACL 2004, Publisher: Association for Computational
Linguistics, Boston, USA, 273-280. (2004)

13. M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang, I. Thayer,
“Scalable Inference and Training of Context-Rich Syntactic Translation Models”.
In: ACL, 961–968. (2006)

14. A. de Gispert, J. Pino, W. Byrne, “Hierarchical Phrase-based Translation
Grammars Extracted from Alignment Posterior Probabilities”. In Proceedings of
EMNLP'2010, 545-554. (2010)

15. A. Göhring, “Spanish Expansion of a Parallel Treebank”, Ph.D Thesis, University
of Zürich, Switzerland. (2009)

16. N. Ide, P. Bonhomme and L. Romary, “XCES: An xml-based encoding standard
for linguistic corpora”. In Proceeding of the Second International Language
Resources and Evaluation Conference, Paris: European Language Resources
Association. (2000)

17. E. Irimia, “EBMT Experiments for the English-Romanian Language Pair”. In
Recent Advances in Intelligent Information Systems, ISBN 978-83-60434-59-8,
91-102

18. JRC-Acquis, Available: http://langtech.jrc.it/JRC-Acquis.html
19. E. F. Kelly, Philip J. Stone, “Computer Recognition of English Word Senses”,

North-Holland, Amsterdam. (1975)
20. D. Klein, C. D. Manning, “Accurate Unlexicalized Parsing”, In: Proceedings of the

41st Meeting of the Association for Computational Linguistics, pp. 423-430. (2003)
21. Y. Liu, Y. Huang, Q. Liu, S. Lin, “Forest-to-string statistical translation rules”, in:

ACL, 704–711. (2007)
22. M. P. Marcus, B. Santorini and M. A. Marcinkiewicz, “Building a Large Annotated

Corpus of English: The Penn Treebank”. In COMPUTATIONAL LINGUISTICS,
vol. 19(2), 313-330. (1993)

23. Melamed, I.D.: Manual Annotation of Translational Equivalence: The Blinker
Project. In IRCS Technical Reports Series, University of Pennsylvania. (1998)

24. V.B. Mititelu and R. Ion, “Automatic Import of Verbal Syntactic Relations Using
Parallel Corpora”. In Proceedings of Recent Advances in Natural Language
Processing, Borovets, Bulgaria. (2005)

25. MULTEXT-East version 3 specifications, http://nl.ijs.si/ME/V3/msd
26. MULTEXT-East version 4 specifications, http://nl.ijs.si/ME/V4/
27. S. De Neefe and K. Knight, “Synchronous Tree Adjoining Machine Translation”. In

Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing EMNLP 2009 vol. 2. (2009)

28. NEGRA Treebank, http://www.coli.uni-sb.de/sfb378/negra-corpus/
29. F.J. Och, and H. Ney, A Systematic Comparison of Various Statistical Alignment

Models. Computational Linguistics 29, 19-51. (2003)
30. Penn Treebank, http://www.cis.upenn.edu/~treebank/
31. Prague Dependency Treebank, http://ufal.mff.cuni.cz/pdt2.0/
32. Swedish Treebank: http://stp.ling.uu.se/~nivre/swedish_treebank
33. J. Tinsley, M. Hearne and A. Way, “Exploiting Parallel Treebanks to Improve

Phrase-Based Statistical Machine Translation”. In K. De Smedt, J. Hajič and S.

Language Engineering for Syntactic Knowledge Transfer

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1247

Kübler (Eds.), Proceedings of the Sixth International Workshop on Treebanks and
Linguistic Theories. (2007)

34. D. Tufiş, R. Ion, “Parallel Corpora, Alignment Technologies and Further Prospects
in Multilingual Resources and Technology Infrastructure”, in C. Burileanu and H-N
Teodorescu (Eds.), Proceedings of the 4th Conference on Speech Technology
and Human-Computer Dialogue, SpeD 2007, Iaşi, Romania. (2007)

35. D. Tufiş, S. Koeva, T. Erjavec, M. Gavrilidou, and C. Krstev, “Building Language
Resources and Translation Models for Machine Translation focused on South
Slavic and Balkan Languages”, in M. Tadić, M. Dimitrova-Vulchanova and S.
Koeva (eds.) Proceedings of the Sixth International Conference Formal
Approaches to South Slavic and Balkan Languages (FASSBL 2008), 145-152,
Dubrovnik, Croatia, ISBN 978-953-55375-0-2. (2008)

36. M. Volk, J. Lundborg, and M. Mettler, “Alignment tools for parallel treebanks”, in
Proc. of The Linguistic Annotation Workshop at the Association for Computational
Linguistics (LAW-ACL). (2007)

37. J. Vičič, and A. Broddnik, “Parse Tree Based Machine Translation for Less-used
Languages”, Available: http://mrvar.fdv.uni-lj.si/pub/mz/m25.1/abst/vicic.htm

38. G. Maillette de Buy Wenniger, M. Khalilov and K. Sima’an, “A Toolkit for
Visualizing the Coherence of Tree-based Reordering with Word-Alignments”, in
The Prague Bulletin of Mathematical Linguistics no. 94, 97–106. doi:
10.2478/v10108-010-0024-4. (2010)

39. K. Yamada, K. Knight, “A syntax-based statistical translation model”. In
Proceedings of the 39th Meeting of the Association for Computational Linguistics
ACL 2001, 523-530, Toulouse, France. (2001)

40. D. Zhang, M. Li, C.-h. Li, M. Zhou, “Phrase reordering model integrating syntactic
knowledge for SMT”, in: EMNLP/CoNLL, 533–540. (2007)

Mihaela Colhon (born Mihaela Ghindeanu): Since 2005: Assistant professor
at Departament of Computer Science, University of Craiova, Romania; Since
2009: PhD in Computer Science, Department of Computer Science, Faculty of
Mathematics and Computer Science, University of Pitesti, Romania;
Competence domains: Logic programming (Prolog and Lisp programming
languages), Knowledge Representation, Knowledge Bases, Expert Systems,
Natural Language Processing (syntactic analysis); Teaches: Algorithms and
Data structures at Departament of Computer Science, University of Craiova
and Artificial Intelligence at Departament of Computer Science, University of
Craiova, Romania and Departament of Computer Science, University of
Bucharest, Romania; Representative articles: 1) Florentina Hristea, Mihaela
Colhon, Feeding Syntactic Versus Semantic Knowledge to a Knowledge-lean
Unsupervised Word Sense Disambiguation Algorithm with an Underlying
Naive Bayes Model, FUND INFORM (2012), 2) Ion Iancu, Nicolae
Constantinescu, Mihaela Colhon: Fingerprints Identification using a Fuzzy
Logic System, INT J COMPUT COMMUN (2010), 3) Nicolae Tandareanu,
Mihaela Ghindeanu, Sergiu Nicolescu: Hierarchical Distributed Reasoning
System for Geometric Image Generation , INT J COMPUT COMMUN (2009).

Received: January 30, 2012; Accepted: May 28, 2012.

DOI: 10.2298/CSIS120108028P

Implementing an eXAT-based distributed
monitoring system prototype

Gleb Peregud1, Julian Zubek1, Maria Ganzha2,3, and Marcin Paprzycki3,4

1 Warsaw University of Technology, Warsaw, Poland
2 University of Gdansk, Gdańsk, Poland

3 Systems Research Institute Polish Academy of Sciences
Warsaw, Poland

<firstname>.<lastname>@ibspan.waw.pl
4 Warsaw Management Academy, Warsaw, Poland

Abstract. Monitoring resource utilization in distributed systems remains
of importance. This is especially the case in LAN-based distributed sys-
tems (and, in particular, in global Grid systems), where individual nodes
can be (may need to be) added to and/or removed from the system at
“random” moments. The aim of this paper is to report initial results of the
project that aims at using Erlang-based software agents as a robust and
flexible resource monitoring infrastructure. The implemented prototype is
capable not only of collecting performance data, but can also detect cer-
tain network problems. Furthermore, an assessment of the eXAT agent
platform, based on experiences gathered during prototype implementa-
tion, is included.

Keywords: Grid computing, resource monitoring, Erlang, eXAT, intelligent
agents

1. Introduction

In computing, Grid is a term that typically refers to a group of loosely coupled
computers, working in a dynamically created arrangement to reach a common
goal [37]. Grid technology is used both to solve computationally intensive sci-
entific problems, and/or to deliver needed resources (e.g. computing cycles,
software services, or data) in commercial applications. Such systems, by the
definition, are heterogeneous and geographically dispersed. Here, two types
of Grid systems can be distinguished. First, a Global Grid, somewhat similar
to volunteer computing systems (e.g. the BOINC infrastructure [6]). Second, a
Local/Desktop Grid, which can be characterized, among others, by existence
of designated administrators (for the whole Grid installation, or for each of its
parts). Unfortunately, Grid systems (as well as other LAN-based distributed sys-
tems) are prone to problems originating, for instance, from the network infras-
tructure, configuration, etc. Furthermore, one of the common problems con-
cerning use of Grid infrastructures is load balancing. Hence, the need for soft-
ware tools, which can help system administrators to monitor the state of the
Grid (be it local or global) and efficiently manage its resources.

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

One of the interesting ideas, put forward by leading specialists in the fields
of Grid and agent computing was to combine the strength of both approaches
to deliver the computing fabric of the future (see [36], for more details). In other
words, the idea was to use intelligence of software agents to provide the “brain”
for the computational “muscle” of the Grid infrastructure. While there exists
projects like the Agents in Grid [46,26,45,27,44], which attempt at directly real-
izing this vision, here, we focus our attention on application of software agents
as “intelligent monitors” within the Grid (as well as in other LAN-based dis-
tributed systems, including Cloud infrastructures). In this context, note that a
number of cases of agent-based monitoring systems have been described in
the literature for other application areas. For instance, agents where used to
monitor network traffic [53], an experimental environment in a laboratory [52],
as well as power systems [51].

The aim of our project was two-fold. First, to develop foundations for a ro-
bust, fault tolerant, extensible, agent-based Grid / LAN / Cloud monitoring sys-
tem, capable of working without need for manual configuration. Furthermore,
the proposed system was to be capable of inferring knowledge from gathered
data and acting upon it. Note that, while we focus on the Grid as the main
use case, all results presented here are immediately applicable to the infras-
tructures within the Cloud environments, as well as to standard LAN infras-
tructures. Therefore, in what follows, the term Cloud (or LAN) could have been
used in place of Grid (with proper caution applied, and with reflection on con-
sequences of such interchange). Second, to assess robustness and flexibility
of the eXAT agent framework [63,61,58] applied to the task at hand. Here, the
potential advantages of an Erlang-based, FIPA compliant, agent framework are
to be judged against their actual realization in the eXAT framework.

2. Related work

The proposed system is designed to support Grid / Cloud / LAN administrators
in their routine activities. The two main use cases considered in our work are:
(1) detection of “connectivity problems” (e.g. disappearance of a node or a link),
and (2) monitoring (and reporting) performance metrics of individual nodes (or
their groups). The latter use case can provide foundation for autonomous load
re-balancing.

Task of resource monitoring has been solved by the monitoring software
like Nagios [39] or Ganglia [49]. Both projects are quite mature, ready to use
in complex, real-world situations. They were written without employing agent
model, using traditional programming paradigms.

Nagios is an all-in-one system, which is able to monitor every key part of
an IT infrastructure: system metrics, network protocols, applications, services,
servers, etc. It is a general tool, which can be applied to monitoring Grid in-
frastructures as well. Within the Nagios there is a lot of space for customization
through custom plugins. However, use of the Nagios system requires extensive
manual configuration, which may be inconvenient in a geographically distributed

1250 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

large-scale Grid infrastructures. Furthermore, the fact that ownership of various
fragments of the (global) Grid belongs to different entities, makes any “global
configuration” task much more difficult.

Ganglia is a more specialized software for clusters and Grids (possibly con-
sisting of smaller clusters). It is designed to achieve low per-node overhead,
focuses on gathering performance metric of each machine, and on generat-
ing statistics for the whole cluster. Ganglia requires little configuration to start
working and, like Nagios, supports custom plugins. However, it is not easy to ex-
tend its functionality beyond the assumed one (e.g. add inferencing knowledge
based on collected data, and acting on it).

Furthermore, both these systems depend on the existence of a central server
(or a group of servers), gathering information from remote processes working
on every node. Note that, while in the monitoring system’s nomenclature, those
remote processes are often called agents, they are just clients for a central
server, and they lack typical properties of agents (for a classical definition of
software agents and agent systems, see [40]). Design with a centralized server
leads to potential problems. When the application server (or the machine on
which it is running) fails, data will no longer be gathered. Similar situation oc-
curs when, due to a network failure, some connections are broken. Another
drawback of these approaches, is a need to reconfigure servers, in the case of
adding new nodes to the Grid (or node removal).

Finally, let us recall that we would like to develop a system, which is able not
only to provide information, which can be inferred from metrics gathered from
the LAN, but also to act on it. While it would be possible to develop such system
on top of either Nagios or Ganglia, it would immediately involve problems de-
scribe above. Furthermore, it would add another layer of software into already
crowded Grid system software stack. Therefore, we have decided to build a
system that will use capabilities of software agents, avoid the above mentioned
problems of Nagios and Ganglia, and be capable of providing the additional
needed functionality.

In the multi agent systems world, most of the projects connected with grid
computing focus on goals similar to the Agents in Grid project. Monitoring of
the physical network infrastructure is usually out of their scope. Nevertheless,
some of them use approach similar to the proposed one.

AgentScape [23] is a distributed middleware that supports large-scale agent
systems. It has features of an agent platform, as well as those of a distributed
agent operating system. Among its features it provides decentralized resource
discovery. However, since the focus of the AgentScape system is to develop
agent middleware for large scale distributed systems, this project is much broader
in scope. Furthermore, the last update of the AgentScape software is from April
2011 and it is unclear what is the progress of development of the AgentScape
2.

Similar, but less advanced, project was MAGDA: Mobile Agent Based Grid
Architechture [20]. It was build on top of JADE agent platform and facilitated cre-
ating Grid applications based on mobile agents. Monitoring of agents and sys-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1251

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

tem resources as well as service discovery and load balancing were planned. It
provided support for collective communication and use spanning trees for effec-
tive broadcast over the Grid. The same approach was later used in our project.
Note that, the last published reference to the MAGDA system is from 2006 and
thus we have to assume that it is no longer pursued.

An interesting approach to service discovery is represented by the ARMS [25]
project. It provides an agent-based resource management system for Grid com-
puting. The system consists of homogeneous agents managing local resources
and advertising them through the Grid. A special agent has a global view of the
system and simulates other agents’ performance during runtime. It uses the
PACE performance prediction tool-kit and, based on computed metrics, opti-
mizes the behaviour of other agents. However, according to J. Cao, the devel-
opment of both the PACE tool-kit and the ARMS project stopped in 2002.

3. Proposed approach—overview

Taking into account the above considerations, let us outline the main tenets of
our proposed approach. First, we use software agents to develop a framework
for intelligent monitoring of the state of a distributed system. We envision that a
single agent will be placed at each node the system. Such autonomous agent
will be capable of acting both as a “client” and as a “server.” As a result, it
will be capable not only of monitoring the state of the node, but also of infer-
ring knowledge about the state of the system (or its fragments) and act on this
knowledge. For instance, in the case of load imbalance, it will be capable of ini-
tiating procedures leading to the load re-balancing (see, also [28]). To achieve
these goals, the proposed system will be designed in such a way that informa-
tion about the state of the Grid (nodes of a distributed system) will be spread
among the agents. Therefore, the information will remain available (at least to
some extent) even after network link (or Grid node) failure. Furthermore, adding
new nodes will not require any reconfiguration, because agents will be able to
discover themselves, communicate and share the load of monitoring of whole
system (Grid) evenly between them. Finally, this design of the system will alle-
viate the potential problem of a single point of failure. Let us present now two
simple use cases that we have implemented in the initial system prototype, to
illustrate its features and properties.

The simplest use case is: monitoring basic metrics in a basic LAN environ-
ment, with a star topology. Due to the zero-configuration feature, deployment of
the system in a standard LAN should be very easy to complete. Right after the
system is deployed, its administrator should be able to access his local agent
(via a web interface) and start receiving information about the state of the nodes
in the LAN (e.g. in form of plots).

A more complex use case is: continuous monitoring of a LAN with topol-
ogy different than the simple star. System should be able to detect problems
with network links and distinguish between network link failures, node failures,
and failures of monitoring agents. This functionality requires that the system

1252 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

contains redundant network links, or alternative paths in the network. In most
cases, no manual configuration should be necessary to make the monitoring
system work.

1

1

2

2

2

2

Fig. 1. Sample grid with monitoring agents. An edge from node A to B means that agent
A monitors agent B. Number in circle is the number of agents monitoring agent running
on the specific node.

To illustrate our approach, in Figure 1 we depict a sample network topology
with agents running on every node. As we can see, there is no central node
monitoring the remaining agents – the monitoring obligation is distributed, and
every agent is monitored by at least one other agent. This illustrates how the
robustness of monitoring process is achieved (this system will work correctly
after the failure of a single node), and how the monitoring tasks are distributed
evenly between agents, avoiding saturation of resources.

Recall that the proposed system is aimed primarily at supporting Grid man-
agers (local administrators in the case of a local area network or a local Grid,
as well as local and global administrators in the case of the global Grid). There-
fore, as a starting point (to test the two use case scenarios), we have decided
to implement the following features:

– access to the resource utilization metrics,
– automatic, zero-configuration discovery of agents in the local area network

(or any other network where the multicast UDP is enabled), and
– inferring diagnostic information for basic problems, using a rule-based ap-

proach.

By the resource utilization metrics we understand various, easy to establish,
metrics such as: CPU load, memory usage, running processes and their CPU
usage, etc. Such data is going to be gathered and made available to the user. In

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1253

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

the case of a human user, it will be presented to her as plots showing how the
value of selected parameter changes over time. In the case of an agent user,
data will be presented in an appropriate, machine-understandable format. For
instance, in the case of the AiG project, such format is going to be derived from
the ontology of Grid used there (see, for instance, [29,30]. This feature remains
to be implemented.

For the two use cases, we decided to initially diagnose the following prob-
lems: (a) broken connections, (b) inactive nodes, and (c) inactive agents. Obvi-
ously, these are very basic problems, but they have been selected to illustrate
capabilities of our approach to monitoring (e.g. they will show how a rule based
expert system can be used within an agent to diagnose the nature of the net-
work problem). Obviously, this list can be easily extended (e.g. by adding new
rules to the expert system).

In our case, the zero-configuration means that no special information needs
to be provided (by the user) for the agent to join the system. Therefore, when
system administrator plugs her laptop into the network, her agent will find all
other monitoring agents within it autonomously. As soon as this is done, the
administrator agent can immediately start gathering information about the sta-
tus of the Grid. Note that, the administrator agent, by default, runs the same
code as all other agents with one exception—it is also running a GUI interface
to display the obtained information in a human-readable format (plots via a web
interface; see, section 4 for more details).

3.1. Agent technologies in the system

Agents and actors today Let us start from a brief methodological reflection.
Observe that, recently the actor model of computing has (re)gained popularity.
This due to the increasing complexity of building distributed software systems
using more conventional models. Multiple “older” systems modelled after the ac-
tor model became popular in the industry, while new ones have been developed
recently. Among them we can mention, Scala [50,24], SALSA [67], JavAct [17]
and Kilim [60] in the Java world [42]; E language [56]; Asynchronous Agents
Library [1] and Axum [5] from Microsoft; Act++ [41], Thal [43], libactor [8] and
Theron [11] for the C/C++ languages; Stackless Python [65] and Stage [21] for
Python; and Revactor [18] for Ruby. Some industry leaders have also employed
the actor model, like usage of Scala by Twitter [34], and usage of Erlang by
Facebook [47].

As we can see, the actor model is being adopted by a broad rage of compa-
nies, with at least some degree of success. Therefore, let us briefly discuss the
relationship between actors and agents. According to Gul Agha, actors have
the following properties [14]:

– concurrent computational entities
– independent from other actors (autonomous)
– can communicate with other actors via messages
– reacts to received messages

1254 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

– can create new actors

According to Stan Franklin and Art Graesser, intelligent agents have the
following properties [38]:

– reactive (or sensing; or acting)
– autonomous
– goal–oriented (or pro-active purposefully)
– temporary continuous (or continuous running processes)

Additionally they may display the following properties:

– communicative (or socially–able)
– learning (or adaptive)
– mobile
– flexible (actions not limited to simple script)
– character (referring to “personality” and emotional state)

As we can see, basic properties of agents match well with properties of
actors. Hence we can argue that the agents model is a superset of the ac-
tor model, with addition of intelligence, goal-orientation, adaptiveness, mobility,
proactiveness, etc.

Since Erlang, as a specific implementation of the actor model, has all above
properties of actors build-in, we find it a good and natural foundation to develop
an agent system. This is precisely what underlined the eXAT project [63] that
we will now focus our attention on.

3.2. Erlang, eXAT and ERESYE

As stated above, we have decided to develop our system using the eXAT agent
framework [63]. There were multiple reasons for this choice. First, according to
its author (see [58]), the eXAT provides a FIPA-compliant implementation of an
agent platform that includes:

– FIPA-ACL (Agent Communication Language),
– AMS (Agent Management System),
– support for ontologies,
– messaging using the MTP protocol,
– integration with the ERESYE (ERlang Expert SYstem Engine).

Since this looked quite interesting, we have decided to assess the quality
of eXAT (which is an experimental tool) in practice of agent system develop-
ment. Note also that, according to our vision of agent system design and im-
plementation, Erlang, as an actor-based concurrent language with a distributed
virtual machine, is really promising for implementing agent-based systems. Fur-
thermore, being based on Erlang, could provide eXAT with certain advantages
over other agent frameworks. They include: (i) natural, functional language syn-
tax with declarative elements, suitable for representing knowledge; (ii) efficient

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1255

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

agent communication and concurrency; (iii) easy access to Erlang libraries; and
(iv) availability of a rule-based expert system engine build-in into eXAT.

One of often invoked characteristics of software agents is their intelligence.
In our system this can be facilitated through the use of a rule-based expert
system. We are referring to the ERESYE [62], which is a rule production sys-
tem, written in Erlang and created by the same team that has developed the
eXAT environment [62]. It is similar to other expert systems, like CLIPS [57] or
Jess [13]. However, due to Erlang’s declarative nature, it is possible to repre-
sent rules for the ERESYE using syntax very similar to the Erlang code itself.
This simplifies the learning curve and allows use of the same structures for
both communication between agents, and the reasoning subsystem. As stated
in section 3, the ERESYE is to be used to infer information and provide it to the
users of the system (e.g. system administrators).

Finally, note that, since the eXAT is claimed to be FIPA-compliant, and uses
the FIPA-ACL message format, it should be possible to establish communication
between agents written in eXAT and agents written in other FIPA-compliant
systems, e.g. JADE [22]. This, in turn, should allow one to write systems, which
utilize both agent platforms. For instance, it should be possible to add an eXAT-
based monitoring subsystems to agent teams formed in the above-mentioned
Agents in Grid project. Therefore, one of the auxiliary aims of our work was to
establish that passing messages (bidirectionally) between eXAT and JADE is
possible, without extra development efforts. Note also, that while implementing
the system prototype (and the eXAT-JADE communication), as an extra result,
we managed to made some observations comparing the Erlang/eXAT and the
Java/JADE agent platforms, which we report in section 7.

4. Implementation details

Thus far we have implemented, a somewhat limited in scope, prototype of the
above outlined system. This proof-of-concept implementation works in a LAN,
which can be considered a basic variation of a Grid environment. In the near
future, the system will be extended to support more complex environments.
Let us now look into some details of the implemented prototype; starting from
individual monitoring agents.

There are two basic functions of each agent in the system. First, monitoring
other agent(s), and second, collecting local performance metrics. The third, ex-
tra function, is running a GUI, but it is executed only by those agents that are
used to display data to the system administrators (see, below).

In our solution, to implement the monitoring other agents function, we use a
method similar to that found in [45], and apply periodic pinging with FIPA-ACL
QUERY-REF messages. Let us consider what information is needed for the
agent operation. In our case this is:

– agent’s own name (to provide correct reply address in sent messages),
– system metrics collected for the node,

1256 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

– list of known nodes in the LAN,
– list of other agents which are monitored by given agent.

For an agent to be able to perform its monitoring tasks, it needs to gather
the required information. Since the system assumes the zero-configuration ap-
proach, this has to be done automatically, using mechanisms, which are avail-
able at hand. Since agents are started independently on respective nodes,
there is no pre-existing information about other agents in the system. There-
fore, when choosing the name of the agent, which will be used to identify it in
the system, we need to ensure its uniqueness. To achieve this goal, the name
is generated automatically from the host name of the LAN (Grid) node. Here,
we modified the eXAT code to use the “<nodename>.<hostname>” pattern
for defining it’s platform name. The nodename is the name of the Erlang node
specified with the “-name” or the “-sname” parameter of the Erlang VM, while
the hostname is the FQDN (Fully Qualified Domain Name) hostname of the
system, as detected by the Erlang VM. The Erlang VM (and it’s helper process
epmd) ensure that there are no conflicting node names running locally. This
ensures uniqueness of the “nodename” component of the agent name. The as-
sumption that the host name of the node is correctly configured to be unique in
the LAN, is sufficient guarantee of uniqueness of the agent name. Hence, since
every monitoring node runs a single monitoring agent, we construct agent’s
name as “monitor agent@<platform-name>”. Additionally, a start script of a
monitoring node retrieves list of locally registered Erlang nodes, and automati-
cally selects a locally non-conflicting nodename.

System metrics can be acquired by using a suitable system library. Depend-
ing on the operating system used by the individual nodes, and the environment
of choice, libraries like parfait [2] for Java, glibtop [3] for Linux systems coded
in C/C++, or Performance Counters API [1] for Windows systems can be used.
For the system prototype, we decided to use the os mon ([33]) library, which
comes with the standard Erlang distribution, and thus is a natural choice. Obvi-
ously, any of the above-mentioned libraries could be used, and interfaced with
the monitoring agent. Here, the natural meta-encapsulation of the local infor-
mation, which is the core of agent system development, is the guiding principle
of our design. Additionally the os mon abstracts all cross-platform details and
exposes a consistent API for all platforms supported by Erlang. Therefore, let us
make it explicit that the proposed monitoring system is operating system agnos-
tic and will run also in a heterogeneous environment (consisting of computers
running different OS’es) as long as all of them can run the Erlang VM.

List of all LAN nodes is discovered by using a DNSSD-based mechanism (as
described in section 4.1). The remaining two lists can be built using a diffusion-
based algorithm (described in section 4.3). In the near future, for more complex
setups (e.g. in a distributed Grid), the agent discovery mechanism will be pro-
vided. This has to be done since the current algorithm assumes that multicast
UDP is enabled, which is rarely the case in a non-LAN environment. If the mon-
itoring system is going to be integrated into the project like the Agents in Grid,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1257

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

it can reuse mechanisms of agents discovery used in it (e.g. the Grid middle-
ware).

Users of the monitoring system are provided with the monitoring data, using
a web-base interface. Specifically, the user GUI adds to an agent a built-in web
server. In our implementation, we have selected the Misultin framework [9].
It consists of two parts—a static HTML page, and a JavaScript code, which
governs all logic of the agent’s web UI. The implemented GUI uses Websockets
to receive information from the agent (in real-time). The Misultin provides a
ready implementation of the server-side WebSocket protocol, which we take
advantage of. The web server is integrated into an agent in a form of one (or
more) Erlang process(es), which communicate with agent’s process(es) using
Erlang messaging. This allows for a clean separation between the agent’s logic
and the code, which is responsible for sending this information to the browser.
Here, the JavaScript library Smoothie Charts [10] is used for plotting the near
real-time system utilization metric data in the browser.

Two activities, based on communication with other agents, are used in mon-
itoring a group of neighbours are: (i) periodically pinging, and (ii) broadcast-
ing information about the state of each agent (e.g. performance metrics, node
status, link status, etc.) throughout the agent-Grid. Here, by broadcasting we
understand sending an information to all other agents in the LAN. To accom-
plish this, without over-saturating the network, we propagate messages over the
edges of a spanning tree. Creation and use of the spanning tree are described
in section 4.2.

Last of core activities of each monitoring agent is diagnosing problems with
nodes, links and other monitoring agents (see, also, section 3). This is achieved
by application of the ERESYE expert system, and described in detail in sec-
tion 4.4.

4.1. Agent discovery

Let us now consider how agents can find the list of other agents existing at
any given moment in the system. Perhaps the most obvious solution would be
a central registry (e.g. the AMS provided service), as it is used by default by
many agent platforms including the eXAT. However, the central registry would
be a single point of failure (SPOF) of the system. As a result, failure of the AMS
node would, for all practical purposes, lead to disintegration of the monitoring
system itself. Besides, it would not go well with our policy of zero-configuration
(joining agent would be forced to communicate with the AMS to start working).
Thus we decided to proceed the way that P2P systems collect information about
nodes in the system, and avoid the SPOF [15].

In our system every node runs its own eXAT instance acting as an au-
tonomous agent platform and registering only local agents. Information about
other, external agents is collected and stored explicitly by every agent. To pass
a message to another agent, we need to know the Internet address and the
port number of the destination platform, and the destination agent name.

1258 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

In this way, an agent registers another agent, when it stores the following
information: address, port number and agent name. Obviously, this means that
the amount of locally stored information is of order of the number of nodes in
the Grid, but this is a “fair price” for the zero-configuration and avoiding the
SPOF. Note that, agents entering or leaving the Grid should be registered (or
deregistered) by all other agents running in that Grid. Recall, that since we have
adopted the naming schema described in section 4, full agent name already
encapsulates the platform name and the hostname.

Since, as mentioned earlier, the initial system is designed to work in the
LAN environments (e.g. private Clouds/Grids) we have chosen a well-tested
approach known as the Zeroconf [12], which is based on the UDP multicast
and provides a DNS-like discovery system (multicast DNS—mDNS). The two
most popular implementations of the Zeroconf techniques are Bonjour [16] and
Avahi [4].

Bonjour is an Apple Inc. implementation of zero-configuration networks, in-
cluding address assignment, service discovery and name resolution. It imple-
ments the DNS Service Discovery (DNS-SD), among others.

Avahi is an open source free implementation of the Zeroconf, including the
mDNS and the DNS Service Discovery. Avahi is currently a de facto standard
implementation of the Zeroconf for Linux and *BSD operating systems. Avahi
also implements a source code API compatibility layer for Bonjour. Therefore,
we have decided to use the Bonjour API, since it is available on all operating
systems, where either Bonjour or Avahi are available.

In our implementation, we use the dnssd erlang library, which provides an
Erlang interface for the Bonjour API [66]. Each agent, during its start procedure,
registers itself in the local DNS-SD registry (as a provider of the monitoring ser-
vice) and receives a list of other monitoring agents. At the same time, it spawns
a process, which listens for newly registered agents and adds them to the list.
Note that the Avahi/Bonjour DNS-SD service, running in the operating system,
automatically broadcasts information about all registered services to all com-
puters in the LAN. It also automatically removes from this registry processes,
which have been terminated. In this way, agents that leave the system are au-
tomatically deregistered.

This approach provides a much more flexible way of handling discovery of
agents in the LAN than the eXAT AMS. In fact the eXAT AMS can be, with
relative ease, extended to support the DNS-SD based agents discovery in the
LAN. However, in our case, agent discovery is implemented directly in agents,
without use of the AMS.

Knowing how agents can find information about other agents that are avail-
able in the system at any given moment, let us now describe algorithms that use
this information and provide the monitoring infrastructure. In particular, we will
provide details of broadcasting through the spanning tree, building the spanning
tree, and the neighbour selection.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1259

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

4.2. Broadcasting through the spanning tree

We had to make sure that agents can effectively broadcast information in the
Grid, while the monitoring system is as non-intrusive as possible. In the case
of a system consisting of hundreds of nodes, if a naive broadcast (exchanging
information between every pair of agents) is used, network will become unnec-
essarily loaded. On the other hand, we had to ensure that the system will, with
high probability, survive the failure of a single agent, node or a connection. In
such case, the monitoring system should be able to send messages between
the remaining agents and report accurately where the problem occurred. Fur-
thermore, it should be able to successfully deal with leaving nodes (agents).
Therefore, since we decided to use a spanning tree as the network topology of
the monitoring system, this case should be handled in exactly the same way
as if that node (agent) had crashed. When developing the logical monitoring
network topology, we have taken into account the following issues:

– network saturation with messages exchanged between agents,
– need to detect and handle failures of:
• limited number of nodes (in limited time),
• limited number of links between nodes (in limited time).

The proposed solution consists of two stages. First to build a spanning tree
of agents/nodes and to use it to broadcast messages. This guarantees that
every agent will receive information just once (since the tree is by definition
acyclic). Note that the information will be propagated regardless of broken links
between specific nodes, as long as the network graph is connected (since in ev-
ery connected graph the spanning tree exists). Second, to reasonably increase
the number of agents monitoring each-other. In other words, the agent monitor-
ing process should go beyond the basic spanning tree structure.

To build the spanning tree we use the well-known token-based distributed
depth-first search [48] algorithm. Its core is based on passing a token along the
edges of the graph; where the token contains the following information:

– state (FORWARD or RETURN),
– sender,
– list of visited nodes.

Upon reception of a token an agent undertakes the following actions:

1. If the token is in FORWARD state:
(a) remember sender as parent
(b) add current node to visited list
(c) start children registration

2. If there are no unvisited nodes among the neighbours:
(a) return the token in RETURN state to parent

3. Otherwise:
(a) send token in FORWARD state to first unvisited neighbour
(b) register that neighbour as child

1260 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

One of the visible problems of this approach, when applied to monitoring
of a dynamic system, is the need to rebuild the spanning tree in the case of a
node, or a link, failure, as well as in the case of a node entering5 or leaving the
Grid. We allow the rebuild process to be initiated by any agent in the system.
Such agent will initiate the spanning tree re-build as soon as it discovers that
it no longer can communicate with one of its child nodes in the spanning tree.
To discover it swiftly, an agent always monitors its children in the tree (through
periodic pinging). Since many agents can initiate the tree rebuilding process at
almost the same time (note that processes resulting in the need to rebuild the
spanning tree can happen in multiple locations; e.g. a node failure and a node
leaving the Grid can occur concurrently in various locations within the Grid),
mechanism of breaking ties is needed (so that only a single spanning tree will
result).

To implement such mechanism, we have modified the basic algorithm. Here,
observe that each agent has its own unique identifier and thus it is possible to
compare these identifiers using lexicographical ordering of their names. Thus,
along with the token, we send the identifier of an agent that initiated the span-
ning tree rebuild process. Now, if an agent receives another FORWARD token
before the RETURN token (that it has forwarded earlier), it checks whether the
ID of the agent initiating another tree-rebuild process precedes the ID of the
agent that initiated the previous one. If this is so, the previous FORWARD to-
ken is forgotten, which will lead to the previous rebuild process to time out, and
yield no result, while the new rebuild process will continue, eventually reaching
the previous search initiator. Otherwise the received token is ignored. After the
spanning tree is rebuild, a special FINISHED message is propagated through it.
Only after the reception of that message agents are ready to accept any further
spanning tree search request (FORWARD tokens), regardless of the initiator
ID. Such modification guarantees that in the case where multiple nodes initiate
search concurrently, only one will succeed.

Spanning tree (re)built using this algorithm will be used for broadcasting data
through agent’s network. Current approach does not take into consideration the
physical structure of the network over which agent’s are communicating. This
means that pings sent through agents’ spanning tree may be actually travers-
ing the longest possible paths in physical network and imposing unnecessary
stress over network devices and network links.

We believe that automatic adjustments of a spanning tree based on the
ping times between agents in a cluster (which is a case of an online minimum
weighted spanning tree problem [54,31]) can be implemented and we speculate
that it can be moderately effective for detecting the actual physical structure of
the network for small networks, if proper statistics of ping measurements are
used to determine the weights of edges in the graph. While this is a research
topic in its own right, and is out of scope of the current system prototype, we
plan to experiment with this approach in the future.

5 Currently new agents “appearing” in the Grid are initiating a full tree rebuild, but this
can be optimized in the future by attaching such agent as a leaf of the tree

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1261

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

4.3. Neighbour selection

Obviously, the spanning tree guarantees only that any missing node (or agent)
will be detected immediately, since every agent pings periodically his parent and
all his children, as a part of a standard monitoring procedure. However, it would
be impossible to discover all broken links while monitoring only the edges of the
spanning tree. If there is no direct monitoring between given two nodes, a bro-
ken connection between them would remain undetected; see figure 2. There,
broken link between A and C will be discovered instantly whereas lack of con-
nection between A and B is left undetected with the depicted spanning tree.
Therefore, we have decided to force agents to monitor multiple nodes.

Since we have no “external” / a’priori knowledge about the physical network
topology, we do not know if given two nodes are connected directly or if they
communicate through another node (which may or may not have a monitoring
agent running on it, e.g. a network router). Obviously, to monitor existence of
connections, it is necessary to monitor direct connections between nodes. How-
ever, without information about the actual network topology, we cannot decide,
which other nodes should be monitored by an agent. Therefore, we have de-
cided to employ a probabilistic approach: each agent monitors a set of random
neighbours. Here, we are satisfied that, with certain probability, all physical con-
nections are covered. Obviously, the question remains, how many nodes, not
belonging to the spanning tree, should an agent monitor?

To be absolutely certain that any broken network link will be detected (in the
worse case, when each pair of nodes has distinct physical connection) each
agent should monitor all other agents in the Grid. In some cases this would be
acceptable, however, for larger Grids and sparse network topologies, it would
lead to unnecessary network load (similarly to the naive broadcast considered
in section 4.2). As a solution, we propose a parametrized value k, which defines
a trade-off between the level of robustness we want to achieve, and the level
of network saturation, which is acceptable in the current environment. Here,
k = 0 means that no additional monitoring besides that through the spanning
tree edges takes place, while k = n, where n is the number of nodes in the Grid,
corresponds to the situation when every agent is monitoring all other agents.

To build the actual monitoring dependencies, we proceed as follows. Based
on the list of all Grid nodes (which is available at each node, see section 4), each
agent starts monitoring k random nodes. Choosing the exact value of k depends
on network topology, throughput of it’s links and the desired robustness of the
monitoring (in a sense of ability of the monitoring infrastructure to detect com-
plex network failures, and time needed to detect them). Unfortunately, to the
best of our knowledge, the value of k should be selected experimentally. Higher
k ensures better robustness, but increases bandwidth utilization, resulting from
the monitoring process, and vice versa. At first, some of this monitoring is bi-
directional, which leads to an unbalanced number of connections at each node.
To make it closer to the requested value k, we employ a simple diffusion-based
approach. Whenever two agents ping each other, they exchange information
about the number of “neighbours” each has and compare them. If it turns out

1262 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

B

A

C

1

1

1

2 2

B

A

C

1

1

1

2 2

Fig. 2. Sample Grid with physical network connections. Thick gray edges denotes work-
ing network connections, dotted gray edges denote broken connections. Thin black
edges denotes agents monitoring activity.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1263

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

that one number is higher than the other (with difference larger than one), one
agent will “pass” monitoring a specific node to the other. This will decrease
the number of nodes it is monitoring and increase the number of nodes mon-
itored by the other. To ensure data consistency, each exchange is realized as
an elementary transaction, which has to be confirmed from both sides. After the
diffusion is completed, in most cases monitoring ceases to be bi-directional and
number of monitoring neighbours should be close(r) to the desired k. Our imple-
mentation of monitoring balancing is simplistic, and it may be slow to converge.
Examples of better load-balancing algorithm of this type are well described in
the literature (see, for instance [59]), and we plan to experiment with them in
the future.

Furthermore, in the future versions of the system, this model will be slightly
extended. When the number of neighbours monitored by each agent is stabi-
lized, they will occasionally (after a predefined time) exchange monitoring obli-
gations (pass one monitoring obligation and receive another). This will introduce
neighbours rotation across the network. As a result, broken links that could not
be discovered immediately, will be eventually discovered (after some time).

4.4. Knowledge inferencing

During work of the system, agents exchange information they have obtained
(e.g. detected dead agents, detected dead nodes, performance metrics, etc.),
using the broadcast through the spanning tree. Based on gathered cumulative
information, agents are capable of interfering additional knowledge. Here, infor-
mation gathered from other agents is added to agent’s own knowledge base,
which is used by it’s expert system. These facts are also annotated with the
name of the source agent. This allows to distinguish between information ob-
tained first hand, and information obtained from other agents.

Let’s consider three simple scenarios, which can be easily detected using a
rule-based approach:

1. How to distinguish between a dead agent and a dead node?
2. How to distinguish between a dead node and a dead link?
3. How to detect problems of a specific feature of the system, which is running

in the Grid?

For these scenarios, let us describe an appropriate set of rules, and their
representation in the ERESYE inference engine.

– Case 1: We have an agent which monitors some remote agent R running
on node node(R), we can use the following rule to detect if the agent is
malfunctioning, or it’s the node that is dead.
(agent R does not respond to pings) ∧ (node(R) does respond to ICMP
pings)⇒ (agent R is dead)
a g e n t f a i l u r e (Engine , {agent s ta te , BNode id , a c t i v e} ,

{ l i n k s t a t e , ANode id , BNode id , working} ,
{p ing ing s ta te , ANode id , BNode id , not responding}) −>

eresye : r e t r a c t (Engine , {agent s ta te , BNode id , a c t i v e}) ,
eresye : asser t (Engine , {agent s ta te , BNode id , i n a c t i v e}) .

1264 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

(agent R does not respond to pings) ∧ (node(R) does not respond to ICMP
pings)⇒ (node(R) is unreachable)
node unreachable (Engine ,{ l i n k s t a t e , ANode id , BNode id , broken} ,

{p ing ing s ta te , ANode id , BNode id , not responding})−>
eresye : asser t ({node unreachable , ANode id , BNode id}) .

– Case 2: We have an agent, which monitors node A that stops responding
to pings.
(node A is unreachable)∧(node A is unreachable for other agents too) ⇒
(node A is dead)

node inac t i ve (Engine , {node state , ANode id , a c t i v e })
when not [” { l i n k s t a t e , ANode id , , working} ”] ; true −>
eresye : r e t r a c t (Engine , {node state , ANode id , a c t i v e }) ,
eresye : asser t (Engine , {node state , ANode id , i n a c t i v e }) .

(node A is unreachable)∧(node A is reachable for some other agents) ⇒
(link between A and myself is broken)

l i n k f a i l u r e (Engine , { l i n k s t a t e , ANode id , BNode id , broken} ,
{ l i n k s t a t e , ANode id , , a c t i v e }) −>

eresye : asser t (Engine , { l i n k f a i l u r e , ANode id , BNode id}) .

– Case 3:
For Case 3 let us assume that the system is installed in a heterogeneous
Grid, where each monitored feature is handled by a subset of nodes. For
example, let us assume that the Grid is handling back-end operations of
some medium size web service, which has a search feature, which is being
handled by 3 servers A, B and C. The fact that those specific hosts are
handling some specific feature (in this case it is a search feature), can be
fed to the knowledge base of agents in the monitoring infrastructure. Such
information, would allow to create rules, which would detect that something
is wrong with this specific feature. For example the following rule could be
instantiated:
(all nodes with this feature have high CPU utilization) ∧ (error rates for re-
lated category is elevated)⇒ (the feature is broken)
Coupled with an alerting system, this rule could generate an alert, informing
administrators of the system that the search feature does not work correctly.
As seen from the rule above, this example also needs an additional er-
ror rate metric originating from a monitoring system, which can be easily
obtained by parsing error logs of said search servers. This can be imple-
mented, for instance, by adding an additional agent, which will parse these
logs and feed results to the local monitoring agent. Let us stress that to ex-
tend our existing prototype to handle this case would be relatively easy and
would require only (a) adding appropriate rules to the expert system, and
(b) adding (and integrating with other agents) a log parsing agent.

While these three cases are relatively simple, they were implemented to
illustrate the eXAT ↔ ERESYE integration. Furthermore, these are the func-
tionalities that not only can be helpful in actual day-to-day work of an admin-
istrator of services running on multiple servers in LAN, but also show that the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1265

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

implemented system works as assumed. Obviously, the set of possible rules is
naturally extensible.

5. Monitoring system at work

Fig. 3. Browser window after connecting to an agent.

Working with our system is very straightforward. We have prepared a wrap-
per script for running the agents:

. / s t a r t a g e n t . sh −h t t p p o r t 7778 −ws por t 8080 \
−name platform name

The http port option denotes a port used by the eXAT for communication and
the ws port is the websocket port number used by the web interface. Finally,
the name parameter is mandatory for the platform name. However, it can be
chosen freely, since it has no consequences for the operation of the system.

After the agent was started, the administrator can connect to it with a web
browser and preview the collected information. Currently, only more recent ver-
sions of Internet Explorer, Firefox and Chrome support the WebSocket protocol,
but since this support is likely to remain in these browsers in the future, we do
not see it as a serious drawback. Figure 3 presents the browser window just
after the connection with the administrator agent has been established.

Since the agent immediately starts gathering data, in a relatively short time
user should be presented with animated plots presenting the CPU load of ev-
ery node in the Grid (currently this is the metric, depiction of which has been
implemented). This is illustrated in figure 4.

In the case of discovery of an inactive agent (as described in section 4.4),
it is signaled by a red message appearing under its plot, as can be seen in
figure 5.

Similarly, any link problems are signaled by a red text in the links state col-
umn. Since links are symmetrical, failure of a link from A to B would be always
accompanied by failure of a link from B to A. This situation is depicted in figure 6.

1266 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Fig. 4. Resource load plots for different nodes.

6. Experimenting with the monitoring infrastructure

In addition to the simplistic use cases described in section 5, the monitor-
ing system has been deployed in a network of 4 Ubuntu Linux workstations
at a small company in Warsaw. After the Erlang has been installed (using
apt−get install erlang), the monitoring system was unpacked and started with
a provided startup shell script start .sh. Each node has been detected and was
able to connect into the monitoring system in time below 5 seconds. The initial
spanning tree is depicted in figure 7. To observe the monitoring system at work,
we have implemented an additional monitoring mechanism, which recorded
ping times along the edges of the spanning tree. These times were consistent
with the physical layout of the network, which consisted of multiple 100 Mbps
switches connected in a star topology.

After the system has been started it reported the CPU load of each computer
in the network. Another metric, which has been presented to the user, was the
recorded ping time between agents, which were pinging each other. Due to the
mechanisms of broadcasting most locally harvested information, a user could
look up the state of all nodes in the network at any node. Full knowledge base

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1267

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Fig. 5. Inactive agent discovered.

of one of the agents, including mentioned metrics, in the cluster is presented in
figure 8.

When the root switch has been shut down, agents started to detect ping-
timeouts, which resulted in creation a new spanning tree, as presented in fig-
ure 9. Agents were able complete this task in around 15 seconds, since each at-
tempt of building a spanning tree resulted in multiple timeouts. A full knowledge
base of one of the agents after shutdown of a switch is illustrated in figure 10.

Separately we have collected measurements at the root switch, to estimate
the bandwidth overhead introduced by our monitoring system. With the pinging
interval set to 1 second, the average bandwidth overhead was approximately 70
kbps. Broadcasting overhead was changing linearly depending on the pinging
interval.

After the root switch has been restarted, agents were able to detect their
presence again, and were able to rebuild a new full spanning tree in around 7
seconds.

These experiments, performed in a realistic situation (though admitting, that
the network was somewhat small) show that mechanisms outlined in the pa-
per are working reasonably well and can be useful in practical use cases as a
“smarter” alternative to software like Ganglia. Let us also note, that in the near
future we plan to experiment with much larger network to test the scalability of
the proposed approach.

7. Experiences with eXAT

Since no other projects realized in eXAT are known to us, and no descriptions
of experiences regarding writing agents with this framework could be found in
the literature, we have decided to present some thoughts on working with this
tool.

1268 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Fig. 6. Broken links discovered.

7.1. eXAT-JADE interoperability

Since eXAT uses the FIPA compliant ACL messaging model, it should be pos-
sible to communicate with other agents platforms supporting the standard. We
verified this assumption experimentally, by establishing a bidirectional commu-
nication between an eXAT agent and a JADE agent. The connection proved to
be easy to set and no platform modifications or special syntax were necessary
(see, below). However, the original version of eXAT relied on a custom HTTP
server which was not fully reliable. In our project we switched to an external
solution — the Misultin [9], which helped with handling most of the JADE MTP
messages. We haven’t tested all possible communication types between the
two systems, hence some other interoperability problems can still be present.

Despite possible inconveniences caused by the immaturity of eXAT, it seems
to be feasible to build heterogeneous agents systems based on eXAT and
JADE. Furthermore, using an eXAT agent to create an interface for the existing
Erlang applications is also an option (which, for instance, could be used if eXAT
agents would be incorporated into the AiG project).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1269

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Fig. 7. Initial state of the spanning tree.

We shall now demonstrate how to make eXAT and JADE agents exchange
messages. In the eXAT all ACL-related functions are defined in the module acl.
The basic function for sending a message is acl :sendacl(message), where the
message is the following Erlang record (defined in the acl . hrl header file):

#aclmessage {speechact , sender , rece ive r , ’ rep ly−to ’ , content ,
language , encoding , ontology , p ro toco l , ’ conversat ion−i d ’ ,
’ rep ly−wi th ’ , ’ in−rep ly−to ’ , ’ rep ly−by ’ }

To pass a message between the agents we have to fill correctly the sender
and the receiver fields. Both of them should be records of type:

’ agent− i d e n t i f i e r ’ {name, addresses}

where the name has the form agent name@platform name, while the addresses
is a list of network addresses in the form http :// ip :port /acc. Finally, the #’agent− identifier ’
is defined in the fipa ontology . hrl .

For example a command for sending simple ping message to an agent from
a different platform (another instance of eXAT, or any other FIPA-compliant plat-
form) running on the local host, could look as follows:

ac l : sendacl (# aclmessage{speechact = query , content = ” ping ” ,
sender = # ’ agent− i d e n t i f i e r ’ { john the agent@plat form1 ,
[h t t p : / / l o c a l h o s t :7778/ acc] } ,

1270 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Fig. 8. Initial state of agent’s knowledge base.

rece i ve r = # ’ agent− i d e n t i f i e r ’ { tom the agent@platform2 ,
[h t t p : / / l o c a l h o s t :7779/ acc] }) .

Here, an agent named john the agent sends a message to an agent tom the agent.
These two agents are running on two separate platforms started on the local-
host and distinguished by their port numbers.

Knowing the API of the acl module, we can create two simple agents – an
eXAT agent (see listing 1.1) and a JADE agent (see listing 1.2)—and make
them exchange messages.

Let us now analyse the listing in Figure 1.1. The eXAT code starts with
the necessary header declarations. Next, follows the declaration of the function
extends, which is a part of the eXAT object system syntax—it means that the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1271

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Listing 1.1. eXAT ping agent
−module (exat agent) .
−export ([extends /0]) .
−export ([pa t t e rn /2 , event / 2 , ac t i on /2 , o n s t a r t i n g /1 ,

do request / 4 , s t a r t /0]) .
− i n c l u d e l i b (” exat / i nc lude / ac l . h r l ”) .
− i n c l u d e l i b (” exat / i nc lude / f i p a o n t o l o g y . h r l ”) .

extends ()−> n i l .

pa t t e rn (Sel f , request)−> [#aclmessage{speechact= ’REQUEST ’ }] .

event (Sel f , ev t reques t)−> {acl , request} .

ac t i on (Sel f , s t a r t)−> {ev t reques t , do request} .

f e l l ow agen t ()−> # ’ agent− i d e n t i f i e r ’ {
name = ” jadeagent@jadeplat form ” ,
addresses = [” h t t p : / / l o c a l h o s t :7778/ acc ”] } .

o n s t a r t i n g (Se l f)−>
i o : format (” [Agent : ˜w] S t a r t i n g \n ” , [ob jec t : agentof (Se l f)]) ,
ac l : sendacl (# aclmessage{speechact = ’REQUEST ’ ,

content = ” ping ” , sender = Sel f ,
r ece i ve r = fe l l ow agen t () }) .

do request (Sel f , EventName , Message , ActionName)−>
i o : format (” [Agent : ˜w] Request rece ived from agent ˜ p\n ” ,

[ob jec t : agentof (Se l f) , Message#aclmessage . sender]) ,
ob jec t : do (Sel f , s t a r t) .

s t a r t ()−>
agent : new(the exat agent , [{behaviour , exat agent }]) .

1272 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Fig. 9. Spanning tree after a switch shutdown.

agent class has no explicit parent. The next three definitions are necessary for
the event mapping. The fellow agent definition is a convenient way of storing
the agent address—it is a functional equivalent of a global (class) variable. The
on starting is a function executed by the framework as soon as an agent is
created. It contains the code for sending the message. The do request is exe-
cuted after receiving a REQUEST message. It returns a special construct, the
object :do(Self, start), which informs that an agent is still in the state start .

Let us now take a look into the JADE agent code (in figure 1.2). Functionality
of this agent is exactly the same as that of the eXAT agent, but the structure
is slightly different. The setup is equivalent to the on starting. There are no
events for the message reception, so we have to manually fetch messages
with the receive method. To do this in a loop-like manner, we exploit the JADE
CyclicBehaviour.

7.2. eXAT vs. JADE—implementation details

Let us now take a look at the eXAT and the JADE agent platforms side-by-side.
Since JADE is substantially more mature than eXAT it, obviously, has a much
richer set of features. Nevertheless, their basic FIPA-compliant functionalities
are roughly equivalent.

One of JADE features nonexistent in eXAT is the possibility of sending Java
objects in ACL messages, without special encoding, between agents of the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1273

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Listing 1.2. JADE ping agent
import jade . core . Agent ;
import jade . core . AID ;
import jade . lang . ac l . ACLMessage ;
import jade . core . behaviours . Cyc l icBehav iour ;
import jade . lang . ac l . MessageTemplate ;

public class JADEAgent extends Agent {

private MessageTemplate template =
MessageTemplate . MatchPerformat ive (ACLMessage .REQUEST) ;

protected void setup () {
System . out . p r i n t l n (” [Agent : ” + th is . getLocalName () +

”] S t a r t i n g ”) ;

addBehaviour (new Cycl icBehav iour (th is) {
public void ac t i on () {

ACLMessage msg = myAgent . rece ive (template) ;
i f (msg != nul l) {

System . out . p r i n t l n (” [Agent : ” +
myAgent . getLocalName () +
”] Request rece ived from agent ” +
msg . getSender () . getName ()) ;

}
else {

block () ;
}

}
}) ;

sendMessage () ;
}

private void sendMessage () {
AID r = new AID (” the exat agent@exatp la t form ” , AID . ISGUID) ;
r . addAddresses (” h t t p : / / l o c a l h o s t :7779/ acc ”) ;
ACLMessage aclMessage = new ACLMessage (ACLMessage .REQUEST) ;
aclMessage . addReceiver (r) ;
aclMessage . setContent (” p ing ”) ;
th is . send (aclMessage) ;

}
}

1274 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Fig. 10. Knowledge base of one of agents after a switch shutdown.

same platform. This feature is not FIPA-compliant, but allows to greatly optimize
communication between local agents. In fact one can use it to share persistent
data across local platform. This is impossible to achieve with eXAT and only
partially possible with standard Erlang messages (only one special type of bi-
nary data can be shared). While lack of shared memory is one of foundations of
Erlang concurrency model (processes vs. threads), skipping unnecessary ob-
jects encoding is JADE’s advantage over eXAT. Since this feature is only useful
in local systems, we can assume that eXAT, like the whole Erlang, is designed
to build systems distributed between physically different machines.

Keeping this in mind, and considering the threading model, we can specu-
late about ideal agent size encouraged by the frameworks. JADE authors sug-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1275

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

gest that there should be only a few “bigger agents” running within the platform,
as each of them is connected with its own thread (in most Java implementa-
tions, a native thread) and increasing the number of agents would considerably
increase the resource consumption. All the small-scale multi-tasking needed in
the system should be based on JADE behaviours, which are lightweight and
scheduled by the framework. However one has to remember, that behaviours
of one agent have to be executed on one CPU as they belong to a single thread.

It is quite different in the eXAT, where all multi-tasking is based on the Erlang
processes, running within the Erlang Virtual Machine (Erlang VM). They are
lightweight and can be executed on any CPU (Erlang VM does the scheduling
and workload balancing). This means that the eXAT agents can be as small or
as big as needed, and this should not influence the performance of the system.
Additionally the Erlang VM can handle millions of processes [68], hence there
is no hard limits on the number of agents started in the eXAT.

7.3. Integration with ERESYE

Another topic that needs to be discussed is the ERESYE, and its integration with
the eXAT. As stated above, the ERESYE is a full-feature rule-based inference
engine implementing the RETE algorithm. It allows stating facts and specifying
rules connecting these facts.

Facts are represented with standard Erlang data types, especially tuples.
Rules are written using a normal function declaration form. The general syntax
has been illustrated in section 4.4.

The inference algorithm is similar to an automatic logical inference, known
from Prolog, but is optimized for the situation where asserted facts change dy-
namically, and exploits a form of eager evaluation. As soon as a new fact is
asserted, all rules depending on it, are marked as partially satisfied. If the fact
was the last not asserted prerequisite of a rule, the action is executed immedi-
ately.

It is also possible to synchronously wait for a certain fact to be asserted in
the main code of the agent. This corresponds to an agent behaviour, which can
be expressed as: “do not do a thing until you are sure that A is true.”

This approach makes possible effective reasoning, in real-time, in a dynam-
ically changing environment. It is well-suited for the needs of responsive intel-
ligent agents, as it is possible to use ERESYE as the central decision-making
unit, which controls agent actions—a true equivalent of agent’s “brain.”

However, usage of ERESYE in eXAT goes further than that. Included tool
makes it possible to translate an ontology (as defined by FIPA [55]) expressed
in a simple hierarchical syntax, to a set of Erlang records suitable for stor-
ing as resolution engine facts. This is the basis for the so-called semantic
layer of the eXAT platform. When the fipa semantics simple semantics is en-
abled for the eXAT agent, all “INFORM” speech acts are automatically added to
the knowledge base of a given agent (called “mind” in eXAT). Additionally the
fipa semantics simple is able to automatically check feasibility condition of an
ACL message and perform a rational effect in accordance with the message’s

1276 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

communicative act. For example, a rational effect upon receiving a “CONFIRM”
message is to assert it’s content in the agent’s knowledge base. With the se-
mantic layer it is done automatically without any explicit message process-
ing code [64]. For more information about handling of ontologies in ERESYE,
please refer to [62].

In our opinion, the union between the eXAT and the ERESYE works very
well. However, we found this system to be overly complicated to use. For in-
stance, in our case, it was easier to explicitly use the ERESYE reasoner through
it’s API. However, we find the concept of integrating of eXAT agents with a rea-
soner, which is capable of parsing ontologies and processing ontological con-
cepts, a very promising and interesting solution. Furthermore, integrating rea-
soners directly with the platform is something that should be considered also in
other agent platforms.

7.4. eXAT not eXATly perfect

Unfortunately the eXAT, as an experimental tool, has some serious drawbacks.
Some of them are our subjective opinions, stemming from thoughts on the eXAT
design. This system is based on a custom implemented object-orientated em-
ulation layer, which adds considerable complexity into the project. Constructing
it feels a bit like “swimming against the current,” because Erlang is designed as
a purely functional language, and according to our beliefs, every agent aspect
can be expressed in that fashion. Furthermore, it adds additional, unneces-
sary, overhead to message passing between (at least two) processes, which
are used by a single agent. Finally, it adds an unnecessary learning curve, and
decreases programming efficiency compared to the pure Erlang code, which is
arguably a very efficient language to write in [69].

To clarify our opinion let us analyze a single case in depth. In eXAT, agents
are modelled after the finite-state machine, which allows to bind different actions
as a response to specific events, depending on the agent current state, thus
introducing branching in code execution.

Listing 1.3. eXAT finite state machine description example
pa t t e rn (Sel f , request)−> [#aclmessage{speechact= ’REQUEST ’ }] .

event (Sel f , ev t reques t)−> {acl , request} .

ac t i on (Sel f , s t a r t)−> {ev t reques t , do request} .

ac t i on (Sel f , f i n a l i z i n g)−> {ev t reques t , dec l i ne reques t } .

In 1.3, an agent executes the action do request when in state start , but
upon reception of the REQUEST message in state finalizing , it will respond
with the decline request.

For a finite-state machine, its single state is the only memory it has. In the
case of a computer program, the state is distributed and represented as sepa-
rate states of multiple variables. Each step of execution of a computer program

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1277

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

can be a conditional clause, depending on the value of any stored variable.
Therefore, the eXAT event mapping can be considered “syntactic sugar,” i.e., el-
ement that does not bring new functionality, but makes the code easier to read.
It is an alternative to wrapping event handling in explicit conditional instructions.
However, Erlang has native mechanism for handling such cases, called pattern
matching. It is possible to write multiple variants of the same function with dif-
ferent parameter patterns, and during the execution of the code, the correct ver-
sion will be chosen, depending on the actual parameters. Therefore, the same
goal is achieved, while maintaining brevity and sticking to Erlang’s functional
style.

Listing 1.4. Erlang finite state machine description example
handle request (s t a r t , Request)−>

% do request code
r e t u r n v a l u e ;

handle request (f i n a l i z i n g , Request)−>
% dec l i ne reques t code
r e t u r n v a l u e .

The code in 1.4 handles or declines the request depending on the value
of the first parameter. As we can see, the eXAT obscures this syntax with its
own mechanism. We consider it a drawback, because it does not take full ad-
vantage of Erlang’s strengths and provides a “replacement mechanism,” which
(particularly, for the Erlang programmers) may feel unfamiliar and unnecessar-
ily complicated. To eliminate such complications introduced by the framework,
we have implemented a simple agent OTP behaviour, closely modelled after
the OTP industry-standard gen server behaviour[32]. It simplifies implementing
agents, while following the Erlang coding style, and the OTP standards.

There are also other places where the eXAT was not written according to the
Erlang/OTP coding standards, which are widely accepted in the Erlang com-
munity. Here are a few examples from eXAT source code demonstrating bad
practices:

– Using non-OTP standard indentation style[7] and whitespace usage (spaces
after function names):

i n fo rm (Message) −>
sendacl (Message#aclmessage {speechact = ’INFORM ’ }) .

– Using lists instead of tuples as messages, and not using records for storing
state of long-running processes:

h a n d l e c a l l ([a c l e r l n a t i v e , Acl] , From ,
[AgentName , AclQueue , AgentDict , ProcessQueue]) −>

%%i o : format (” [Agent] Received ACL=˜w\n ” , [Acl]) ,
{AclQueue1 , ProcessQueue1} =

per fo rm re (AgentName , AgentDict ,
Acl , AclQueue , ProcessQueue) ,

{ rep ly , ok , [AgentName , AclQueue1 , AgentDict , ProcessQueue1] } .

1278 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

– Excessive use of if conditional, and using the length function where a sim-
ple case with pattern matching would be much more succinct and efficient:

hand le cast ([getmessage , From] ,
[AgentName , AclQueue , AgentDict , ProcessQueue])−>

i f
length (AclQueue) > 0 −>

ProcessQueue1 = ProcessQueue ,
[Message | AclQueue1] = AclQueue ,
catch (From ! Message) ;

true −>
ProcessQueue1 = ProcessQueue ++ [{ni l , From}] ,
AclQueue1 = AclQueue

end ,
{noreply , [AgentName , AclQueue1 , AgentDict , ProcessQueue1] } ;

– Excessive defensive programming, discouraged by the Erlang Program-
ming Rules and Conventions [35] and research [19]:
get conds ({Module , Func} , Ontology , ClauseID) −>

F i l e = l i s t s : concat ([Module , ’ . e r l ’]) ,
case epp : p a r s e f i l e (F i l e , [” . ”] , []) of
{error , OpenError} −>

i o : format (”>> Errore ! ! ! ˜ n ˜w : ˜w˜ n ” , [{Module , Func} , OpenError]) ,
error ;

{ok , Form} −>
Records = ge t records (Form , []) ,
%%i o : format (”>> Records ˜ p ˜ n ” , [Records]) ,
case search fun (Form , Func , Records) of
{error , Msg} −>

i o : format (”>> Errore ! ! ! ˜ n ˜w : ˜ s ˜ n ” , [{Module , Func} ,Msg]) ,
error ;

{ok , CL} −>
ClauseL is t =

i f
ClauseID > 0 −> [l i s t s : nth (ClauseID , CL)] ;
true −> CL

end ,
%%i o : format (” Clauses ˜ p ˜ n ” , [ClauseL is t]) ,
SolvedClauses =

i f
Ontology == n i l −> ClauseL is t ;
true −> e resye on to logy reso l ve r : reso l ve on to logy (ClauseLis t ,

Ontology)
end ,

%%i o : format (”>>> ˜ p ˜ n ” , [SolvedClauses]) ,
case read c lause (SolvedClauses , [] , Records) of
{error , Msg2} −>

i o : format (”>> Errore ! ! ! ˜ n ˜w : ˜ s ˜ n ” , [{Module , Func} , Msg2]) ,
error ;

CondsList −> CondsList
end

end
end .

– Occasionally implementing features, which are already present in the Er-
lang/OTP standard library. The following code duplicates the features of the
ETS tables.
p rope r t y se rve r (D i c t) −>

receive
{From , get , At t r ibuteName} −>

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1279

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

case catch (d i c t : f e t ch (Attr ibuteName , D i c t)) of
{ ’ EXIT ’ , } −> From ! {ack , undef} ;
Other −> From ! {ack , {value , Other}}

end ,
p rope r t y se rve r (D i c t) ;

{From , set , Attr ibuteName , A t t r i b u t e V a l u e} −>
From ! {ack , ok} ,
p rope r t y se rve r (d i c t : s to re (Attr ibuteName , A t t r i bu teVa lue , D i c t)) ;

{From , l i s t } −>
X = d i c t : f e t ch keys (D i c t) ,
From ! {ack , X} ,
p rope r t y se rve r (D i c t) ;

{From , l i s t v a l u e s } −>
X = d i c t : t o l i s t (D i c t) ,
From ! {ack , X} ,
p rope r t y se rve r (D i c t) ;

{From , ex i t } −>
From ! {ack , ok} ;

Other −>
p rope r t y se rve r (D i c t)

end .

Finally, note that the eXAT project was effectively discontinued by it’s au-
thors, since there were no updates to it since 2005; it has no community sup-
port, and no production systems using the eXAT platform could have been
found. Furthermore, eXAT has a very sparse documentation. Additionally, it
uses some custom libraries for well known tasks like implementing HTTP servers,
when reusing existing libraries would lead to better tested and a more stable
code.

While working on this project we made a number improvements to the eXAT,
which can be found at the github.com/gleber/exat. Among others, we have re-
placed the internal custom-made HTTP server with the well-established Erlang
implementation of the HTTP server called Misultin. As mentioned, we simpli-
fied creation of agents with the simple agent behaviour. We switched to the
rebar-managed compilation process, which is the current de-facto standard in
the Erlang community. Finally, we have updated the eXAT to work with latest
version of the Erlang/OTP distribution.

8. Concluding remarks

In this paper we have introduced an agent-based monitoring system for LAN /
Grid / Cloud infrastructure. The prototype of the system has been implemented
using an Erlang-based eXAT agent platform. After implementing the system,
we found Erlang to be a good fit for the task at hand. Furthermore, the eXAT
agent platform was acceptable as the tool to implement the monitoring system,
though in needed at least some improvements (which we have completed). For
the agent reasoning we have used the ERESYE rule-based expert system, na-
tively integrated with the eXAT. This integration worked very-well and we plan to
use it to cover more extensive cases of reasoning about the state of the system.
In the near future we plan to: (a) fix additional issues with the eXAT, primarily
continue refreshing it to match the state of the art of Erlang today (these im-
provements will be made available to the community); (b) expand the set of

1280 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

network topologies and detected problems; (c) integrate the eXAT monitoring
system with the resource managing agents in the AiG project, and (d) complete
additional research outlined in the paper. We will report the results of our work
in subsequent publications.

References

1. http://msdn.microsoft.com/en-us/library/windows/desktop/
aa373083

2. http://code.google.com/p/parfait/
3. http://developer.gnome.org/libgtop/stable/libgtop-GlibTop.

html
4. Avahi homepage. http://avahi.org/
5. Axum - microsoft’s actor programming language, http://msdn.microsoft.

com/en-us/devlabs/dd795202.aspx
6. Boinc project. http://boinc.berkeley.edu/
7. Erlang: submitting patches. https://github.com/erlang/otp/wiki/

submitting-patches
8. libactor project documentation. http://www.chrismoos.com/
9. Misultin. https://github.com/ostinelli/misultin

10. Smoothie-Charts library. http://smoothiecharts.org/
11. Theron - c++ concurrency library. http://www.theron-library.com/
12. Zero Configuration Networking (Zeroconf). http://www.zeroconf.org/
13. Jess website. http://www.jessrules.com/ (2011), sandia National Laborato-

ries
14. Agha, G., Hewitt, C.: Concurrent programming using actors: Exploiting large-scale

parallelism. In: FSTTCS. pp. 19–41 (1985)
15. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S.: Greic data gather service:

a step towards p2p production grids. In: Proceedings of the 2007 ACM Symposium
on Applied Computing (SAC). pp. 561–565. Seoul, Korea (2007)

16. Apple, I.: Bonjour overview. http://developer.apple.com/library/mac/
documentation/Cocoa/Conceptual/NetServices/Introduction.html#
//apple_ref/doc/uid/10000119i, december, 2011

17. Arcangeli, J., Maurel, C., Migeon, F.: An api for high-level software engineering of
distributed and mobil applications. In: Proceedings of the 8th IEEE Workshop on
Future Trends of Distributed Computing Systems. pp. 155–. IEEE Computer So-
ciety, Washington, DC, USA (2001), http://dl.acm.org/citation.cfm?id=
874065.875773

18. Arcieri, T.: (2008), http://revactor.github.com/
19. Armstrong, J., Helen, T.: Making reliable distributed systems in the presence of soft-

ware errors (2003)
20. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque, S.: Magda: A mobile agent

based grid architecture. Journal of Grid Computing 4, 395–412 (2006)
21. Ayres, J., Eisenbach, S.: Stage: Python with actors. In: Proceedings of the 2009

ICSE Workshop on Multicore Software Engineering. pp. 25–32. IWMSE ’09, IEEE
Computer Society, Washington, DC, USA (2009), http://dx.doi.org/10.
1109/IWMSE.2009.5071380

22. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade—a white paper. Tech. rep.,
Telecom Italia Lab, EXP Online (2003), december 2011

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1281

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

23. Brazier, F.M.T., Mobach, D.G.A., Overeinder, B.J., van Splunter, S., van Steen, M.,
Wijngaards, N.J.E.: Agentscape: Middleware, resource management, and services.
In: Proceedings of the 3rd International SANE Conference (SANE 2002). pp. 403–
404. Maastricht, The Netherlands (May 2002)

24. Bruno, Gibbons, J.: Scala for generic programmers. In: Proceedings of the ACM
SIGPLAN workshop on Generic programming. pp. 25–36. WGP ’08, ACM, New
York, NY, USA (2008), http://dx.doi.org/10.1145/1411318.1411323

25. Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: Arms: An agent-based
resource management system for grid computing. Sci. Program. 10(2), 135–148
(2002)

26. Dominiak, M., Ganzha, M., Gawinecki, M., Kuranowski, W., Paprzycki, M.,
Margenov, S., Lirkov, I.: Utilizing agent teams in grid resource brokering. Interna-
tional Transactions on Systems Science and Applications 3(4), 296–306 (2008)

27. Dominiak, M., Kuranowski, W., Gawinecki, M., Ganzha, M., Paprzycki, M.: Utilizing
agent teams in grid resource management—preliminary considerations. In: Proc. of
the IEEE J. V. Atanasoff Conference. pp. 46–51. IEEE CS Press, Los Alamitos, CA
(2006)

28. Drozdowicz, M., Ganzha, M., Kuranowski, W., Paprzycki, M., Alshabani, I., Olejnik,
R., Taifour, M., Senobari, M., Lirkov, I.: Software agents in adaj: Load balancing
in a distributed environment. In: Todorov, M. (ed.) Applications of Mathematics in
Engineering and Economics’34. AIP Conf. Proc., vol. 1067, pp. 527–540. American
Institute of Physics, College Park, MD (2008)

29. Drozdowicz, M., Ganzha, M., Paprzycki, M., Olejnik, R., Lirkov, I., Telegin, P.,
M.Senobari: Parallel, distributed and grid computing for engineering. chap. Ontolo-
gies, Agents and the Grid: An Overview, pp. 117–140. Saxe-Coburg Publications,
Stirlingshire, UK (2009)

30. Drozdowicz, M., Wasielewska, K., Ganzha, M., Paprzycki, M., Attaui, N., Lirkov, I.,
Olejnik, R., Petcu, D., Badica, C.: Trends in parallel, distributed, grid and cloud com-
puting for engineering. chap. Ontology for Contract Negotiations in Agent-based
Grid Resource Management System. Saxe-Coburg Publications, Stirlingshire, UK
(2011)

31. Dynia, M., Korzeniowski, M., Kutyłowski, J.: Competitive maintenance of minimum
spanning trees in dynamic graphs. In: Proceedings of the 33rd conference on Cur-
rent Trends in Theory and Practice of Computer Science. pp. 260–271. SOFSEM
’07, Springer-Verlag, Berlin, Heidelberg (2007), http://dx.doi.org/10.1007/
978-3-540-69507-3_21

32. Ericsson, A.: Erlang/otp system documentation (2010), http://www.erlang.
org/doc/pdf/otp-system-documentation.pdf

33. Ericsson, A.: Os mon reference manual. http://www.erlang.org/doc/apps/
os_mon/os_mon.pdf (2011)

34. Eriksen, M.: Scaling scala at twitter. In: ACM SIGPLAN Commercial Users of Func-
tional Programming. pp. 8:1–8:1. CUFP ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1900160.1900170

35. Eriksson, K., Williams, M., Armstrong, J.: Program development using er-
lang - programming rules and conventions. http://www.erlang.se/doc/
programming_rules.pdf (1996)

36. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. Autonomous Agents and Multiagent Systems, International Joint
Conference on 1, 8–15 (2004)

37. Foster, I., Kesselman, C. (eds.): The Grid 2, Second Edition: Blueprint for a New
Computing Infrastructure. The Elsevier Series in Grid Computing, Elsevier (2004)

1282 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

38. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for au-
tonomous agents. pp. 21–35. Springer-Verlag (1996)

39. Galstad, E.: Nagios website. http://www.nagios.org/ (2011)
40. Jennings, N., Wooldridge, M.: Agent technology: foundations, applications, and mar-

kets. Springer (1998)
41. Kafura, D., Mukherji, M., Lavender, G.: Act++ 2.0 : A class library for concurrent

programming in c++ using actors (1992)
42. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: A com-

parative analysis. In: PPPJ ’09: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java. pp. 11–20. ACM, New York, NY,
USA (2009)

43. Kim, W.: Thal: An actor system for efficient and scalable concurrent computing
(1997)

44. Kuranowski, W., Ganzha, M., Gawinecki, M., Paprzycki, M., Lirkov, I., Margenov,
S.: Forming and managing agent teams acting as resource brokers in the grid—
preliminary considerations. International Journal of Computational Intelligence Re-
search 4(1), 9–16 (2008)

45. Kuranowski, W., Ganzha, M., Paprzycki, M., Lirkov, I.: Supervising agent team an
agent-based grid resource brokering system—initial solution. In: Xhafa, F., Barolli,
L. (eds.) Proceedings of the Conference on Complex, Intelligent and Software In-
tensive Systems. pp. 321–326. IEEE CS Press, Los Alamitos, CA (2008)

46. Kuranowski, W., Paprzycki, M., Ganzha, M., Gawinecki, M., Lirkov, I., Margenov, S.:
Agents as resource brokers in grids—forming agent teams. In: Proceedings of the
LSSC Meeting. vol. 4818, pp. 472–480. Springer, Berlin (2007)

47. Letuchy, E.: Erlang at facebook: Chat architecture. Presented at the Erlang Factory
2009, San Francisco, CA (2009)

48. Makki, S., Havas, G.: Distributed algorithms for depth-first search. Information Pro-
cessing Letters 60(1), 7–12 (1996)

49. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
Design, implementation and experience. In: Parallel Computing, vol. 30, pp. 817–
840. Elsevier (2004)

50. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc, 2
edn. (Jan 2011), http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0981531644

51. Ponci, F., Cristaldi, L., Monti, A., Ottoboni, R.: Multi-agent based power systems
monitoring platform: a prototype. In: Power Tech Conference Proceedings, IEEE.
vol. 2, p. 5. Bologna, Italy (2003)

52. Ponci, F., Deshmukh, A., Cristaldi, L., Ottoboni, R.: Interface for multi-agent platform
systems. In: IEEE-Instrumentation and Measurement Technical Conference. vol. 3,
pp. 2226–2230. Ottawa, Canada (2005)

53. Rehak, M., Pechoucek, M., Grill, M., Stiborek, J., Bartos, K., Celeda, P.: Adaptive
multiagent system for network traffic monitoring. IEEE Intelligent Systems 24, 16–25
(May 2009)

54. Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly
weighted graphs. Combinatorics, Probability and Computing p. 2005 (2005)

55. Ribičre, M., Charlton, P.: Ontology overview. Motorola Labs, Paris (2002), http:
//www.fipa.org/docs/input/f-in-00045/f-in-00045.pdf

56. Richardson, J.E., Carey, M.J., Schuh, D.T.: The design of the e programming lan-
guage. ACM Transactions on Programming Languages and Systems 15, 494–534
(1993)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1283

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

57. Riley, G.: CLIPS website. http://clipsrules.sourceforge.net/ (2011)
58. Santoro, C.: exat: Software agents in erlang. http://www.erlang.org/euc/

05/ (2005), december 2011
59. Scheurer, C.A., Scheurer, H.K., Kropf, P.G.: Load balancing driven process migra-

tion. Tech. rep., Inst (1995)
60. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for java. In: Proceedings

of the 22nd European conference on Object-Oriented Programming. pp. 104–128.
ECOOP ’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-70592-5_6

61. Stefano, A.D., Santoro, C.: Designing Collaborative Agents with eXAT. Enabling
Technologies, IEEE International Workshops on pp. 15–20 (2004)

62. Stefano, A.D., Gangemi, F., Santoro, C.: Eresye: an erlang expert system engine.
In: Fourth ACM SIGPLAN Erlang Workshop. Tallin, Estony (2005)

63. Stefano, A.D., Santoro, C.: exat: an experimental tool for programming multi-agent
systems in erlang. In: AI*IA/Taboo Joint Workshop on Objects and Agents. Villasim-
ius, Italy (2003)

64. Stefano, A.D., Santoro, C.: Building semantic agents in exat. In: WOA. pp. 28–36
(2005)

65. Tismer, C.: Continuations and stackless python. Tech. rep.
66. Tunnell-Jones, A.: dnssd erlang website. https://github.com/andrewtj/

dnssd_erlang
67. Varela, C.A., Agha, G., Wang, W., Desell, T., Maghraoui, K.E., LaPorte, J., Stephens,

A.: The SALSA programming language: 1.1.2 release tutorial. Tech. Rep. 07-12,
Dept. of Computer Science, R.P.I. (Feb 2007)

68. Vinoski, S.: Concurrency with erlang. IEEE Internet Computing 11(5), 90–93 (2007),
http://doi.ieeecomputersociety.org/10.1109/MIC.2007.104

69. Wiger, U.: Four-fold increase in productivity and quality—industrial-strength
functional programming in telecom-class products. http://www.erlang.se/
publications/Ulf_Wiger.pdf (2001)

Gleb Peregud is an MS student at the Warsaw University of Technology, where
he is researching synergies of agent-oriented programming and the actor model,
in practical applications. He is an Erlang enthusiast, looking for practical appli-
cation of actor model and massive concurrency in commercial and academic
fields.

Julian Zubek is an MS student at the Warsaw University of Technology in
Poland. In his MS thesis, he is developing an experimental Ruby to C com-
piler. His research interests include also artificial intelligence and programming
paradigms (including agent-oriented programming).

Maria Ganzha obtained M.S. and her Ph.D. in Applied Mathematics from the
Moscow State University, Moscow, Russia in 1987 and 1991 respectively. Her
initial research interests were in the area of differential equations, solving mixed
wave equations in space with disappearing obstacles in particular, currently she
works in the areas of software engineering, distributed computing and agent
systems in particular. She has published more than 100 research papers and is

1284 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

on editorial boards of 5 journals and a book series and was invited to Program
Committees of over 100 conferences.

Marcin Paprzycki (Senior Member of the IEEE, Senior Member of the ACM,
Senior Fulbright Lecturer, IEEE CS Distinguished Visitor) has received his M.S.
Degree in 1986 from Adam Mickiewicz University in Poznan, Poland, his Ph.D.
in 1990 from Southern Methodist University in Dallas, Texas and his Doctor
of Science Degree from Bulgarian Academy of Sciences in 2008. His initial
research interests were in high performance computing and parallel computing,
high performance linear algebra in particular. Over time they evolved toward
distributed systems and Internet-based computing; in particular, agent systems.
He has published more than 350 research papers and was invited to Program
Committees of over 400 international conferences. He is on editorial boards of
14 journals and a book series.

Received: January 8, 2012; Accepted: June 7, 2012

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1285

DOI:10.2298/CSIS111223031P

Modeling a Holonic Agent based Solution
by Petri Nets

Carlos Pascal and Doru Panescu

“Gheorghe Asachi” Technical University of Iasi,
Department of Automatic Control and Applied Informatics,

Blvd. Prof. Dr. Doc. Dimitrie Mangeron 27, Iasi 700050, Romania
{cpascal, dorup}@ac.tuiasi.ro

Abstract. One of the key design issues for distributed systems is to
find proper planning and coordination mechanisms when knowledge
and decision capabilities are spread along the system. This
contribution refers holonic manufacturing execution systems and
highlights the way a proper modeling method – Petri nets – makes
evident certain problems that can appear when agents have to
simultaneously treat more goals. According to holonic organization the
planning phase is mainly dependent on finding an appropriate resource
allocation mechanism. The type of weakness is established by means
of the proposed Petri net models and further proved by simulation
experiments. A solution to make the holonic scheme avoid a failure in
resource allocation is mentioned, too.

Keywords: HMES, Petri nets, multiagent systems, planning, resource
allocation.

1. Introduction

Design and implementation of appropriate mechanisms to control
manufacturing execution systems are still open problems, and research in
Artificial Intelligence (AI) has had an important impact for these subjects [2-
4]. With respect to this, an example is the holonic approach, which is
considered in this paper; it combines benefits of hierarchical and
heterarchical manufacturing control architectures. Holonic Manufacturing
Execution Systems (HMESs) are clearly influenced by planning and
coordination mechanisms established in AI, primarily in the field of multi-
agent systems [3-6]. An HMES regards a control scheme for the shop-floor
level of a manufacturing company that is developed around autonomous, co-
operative, intelligent entities, named holons. The most often used holonic

 This is a revised and extended version of a paper originally presented at the

ICSTCC 2011, Sinaia, Romania [1].

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1288

taxonomy is derived from the PROSA reference architecture [7]. This takes
into account four types of holons: product, resource, order and staff.

Without giving all details of the proposed holonic scheme construction, this
paper aims at showing how an appropriate modeling and analysis method
can reveal certain problems for the HMES functioning. Namely, due to the
distributed nature of control within HMES, special coordination mechanisms
are needed. Though some protocols from multi-agent systems can be
considered, these can determine definite drawbacks for manufacturing
control systems, requiring an appropriate tuning.

Regarding our paper organization, after presenting some related works, a
generic structure of a holon and a basic Petri net model for the holonic
decisional component, the holonic agent, are discussed. Then, the Petri nets
modeling the inter-holonic communication are presented. About the internal
holonic agent operation, this comprises two distinct phases: planning and
execution. These are also modeled by Petri nets, which are used to reveal
certain drawbacks possible to appear during the planning stage. The
theoretical points are illustrated through experiments that were conducted by
means of a complex HMES model, obtained as a coloured Petri net. A
solution to eliminate the holonic faulty operation is sketched, too.

2. Related Work

While modeling of automated manufacturing systems by different classes of
Petri nets is described and commented in a great number of papers and
concentrated in some books [8, 9], fewer articles are dedicated to the use of
Petri nets for HMES modeling. Nevertheless, the interest for implying Petri
nets in holonic and multiagent systems modeling is justified, as they
represent a powerful tool for dealing with concurrent processes, which is the
case of HMESs. Thus, in [10] some Petri net models of holons were proposed
in order to explain the holonic interaction mechanism in PROSA. These
models are specific, being provided for certain types of holons (resource,
order) and for different kinds of interactions. They highlight some aspects
regarding cooperation (synchronization of holons, progress of parallel
activities), being restricted to the relation between two holons, mainly
between an order and a resource holon. Some benefits are got by the Petri
nets application, as these can describe the structure of PROSA holonic
components, conducting to logical and temporal analysis of their behavior.
For example, by using Petri nets, it was possible to model and evaluate the
coupling between a reactive scheduler holon and a holon with special tasks,
the on-line manufacturing control holon. In this way an improved adaptability
to disturbances was obtained. It results that the proposed Petri net models of
holons ensure some guiding points for a PROSA based holonic system
design and implementation.

In ADACOR holonic architecture the dynamic behavior of holons is
modeled by Petri nets, too [11]. In the same way as in PROSA, models are

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1289

developed for each kind of holon and for various holonic behaviors in
correspondence with the considered manufacturing environment. The
proposed models catch the coordination process based on the Contract Net
Protocol (CNP), too. As an advanced possibility, a top-down approach is used
in ADACOR. Specifically, some transitions of a Petri net providing a first
abstraction can be replaced by more detailed Petri nets in order to assure the
description of additional aspects, as needed for the holonic system
deployment. Such a successive decomposition in Petri nets and sub-Petri
nets allows the incorporation into holonic models of details concerning the
production plans and resource allocation.

Another methodology involving Petri nets is described in [12-15]. A
formalism on holarchy formation and optimization, as well as on the
management of coordination process is facilitated by the use of Petri nets. As
a main point, an aggregated Petri net model of a holarchy is proposed, which
is augmented with cost functions so that some conditions on holarchy
feasibility could be formulated. Enhancements on handling by Petri nets the
order constraints and reconfiguration abilities of holonic systems are
developed, too. All these aspects are discussed only with regard to the
execution phase, without considering details on the planning process and the
link between planning and execution.

It thus results that Petri nets were already employed in HMES modeling.
Even so, this paper together with the research published in [16, 17], aim at
fulfilling some new, distinct goals: to underline all types of events that appear
during the operation of any type of holon, to obtain a model of holonic
communication so that, in conjunction with the holons’ models, the complete
HMES model should be obtained and to better reveal the dependence
between planning and execution phases.

3. A Petri Net Model of Holonic Agent Operation

As the main operation unit of HMESs, a holon is composed of three
components [18] (see Fig. 1): a decisional part in charge with managing the
received goals and finding solutions for them; this is materialized under the
form of a holonic agent. It has to apply a combination of planning and
coordination procedures, as within HMESs a goal is always solved by the
cooperation of several holons. The holonic agent’s decisions are put into
practice by the holon’s structural component. For a resource holon this is a
proper physical device: a robot or machine tool controller, a PLC
commanding a conveyor, etc. In the case of an order or a product holon the
structural component becomes a holarchy, which is a temporary construction,
namely a group of holons that are conducted by the respective holon in order
to solve a goal by cooperation. It is also possible for a resource holon to
extend its structural component with a holarchy, when the holon asks the
collaboration of other holons. The information is changed between the holonic

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1290

agent and the structural component by means of a proper communication
interface.

The mechanism for formation of holarchies is based on the CNP, the
common coordination method of multi-agent systems [19, 20]. It supposes
that a holon not able to solve a goal by itself becomes a manager, asking the
cooperation of the other holons, by sending appropriate goals/sub-goals.
Those holons able to provide a solution reply with corresponding bids, the
best one being selected by manager. The holon that made the respective
offer receives a contract from the manager holonic agent, to put into practice
the solution it proposed. The common multi-agent CNP has to be adapted
and enhanced for a holonic use, in order to obtain a reliable and near to
optimum HMES operation [21]. Moreover, a further tuning is needed when
the inference mechanism of agents is based on the Belief Desire Intention
(BDI) architecture [22, 23]. Certain details regarding the way planning and
coordination are supported by holonic agent inference process will be
presented in sections 4 and 5.

Fig. 1. Generic structure of a holon

HMES operation is both goal and event driven: it has to solve all the goals
received at the shop floor level, taking into account events happening in the
manufacturing environment (states of various devices, raw parts that are
supplied, etc.). It is clear that the whole system operation is determined by
the behavior of holons, which is dictated by holonic agents. All these conduct
to the necessity of a model for the holonic agent operation and indicate the
Petri net formalism as a good choice [12, 24].

The proposed Petri net basic model is a general one (see Fig. 2), being
applicable independent of the type of holon, be it an order, product or
resource one. The model shows the two main processes that the holonic
agent has to pass through as the decisional component, namely planning
when it finds a plan for solving a goal, and execution when it applies the
decided plan and monitors its carrying out. Besides these, an idle state of

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1291

agent is present, which shows its availability, allowing switching between the
holonic agent’s processes, too.

In this Petri net model the corresponding places are: P0 for the idle state,
P1 for the planning phase and P2 represents the execution one. Transitions
that determine passing to planning are t1 representing a goal receiving and t3
modeling the receipt of a set of bids. This is explained by the way a goal is
solved: besides the easy case when the goal can be worked out by a single
resource holon through its own physical device activity, the other cases imply
cooperation between several holons. Knowing the main steps of CNP, it is
clear that the planning stage is interrupted or finalized at two types of
transitions: t2 regards sending of a goal (sub-goal) and t4 appears when the
agent releases an internal contract allowing the start of execution phase or
when it issues a bid. Because the model aims at being a general one, it
considers the case when the same holonic agent can be contractor and
manager, too. That is way the agent can receive and announce goals, while it
can also propose bids and issue internal contracts. There are two cases when
internal contracts are used: when the holonic agent is only manager, as it can
be for an order holon, and when the holonic agent of a resource holon can
solve a goal by commanding its structural component. Usual contracts, those
sent to other holons, are named external contracts or simply, contracts.

Fig. 2. Basic Petri net model of holonic agent operation

This Petri net model reflects both above mentioned cases, when the agent
is able to solve by itself a goal (the corresponding succession is: P0t1P1t4P0),
and when it has to apply for collaboration, this evolution being modeled by
the succession: P0t1P1{t2P0t3P1}t4P0. The notation within curly brackets means
that the sequence t2P0t3P1 can appear no time, when there is no goal
considered for collaboration, or it can be used one or more times, depending
on the number of goals that the agent issued and for which it is waiting
cooperation.

Execution stage represents the carrying out of a previous holonic agent’s
commitment, represented by a bid it made. This is started from the agent’s
idle state when it receives a contract. The respective event is modeled by the
transition t5. After that, according to the transition t8 the holonic agent sends
the contracts to its sub-contractors or, for a resource holon, commands
towards its physical device. Transition t7 models the feedback from
contractors or from the controlled device regarding the ending (with success
or failure) of a contract or an action.

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1292

When an entire contract is ended, transition t6 designates the finalization of
execution phase. If execution regarded an external contract, according to t6
the holonic agent provides a feedback towards manager, and this includes
the case when the contract could not be accomplished and the respective
holon is not able to solve the failure by itself. When the holon can try a
further solution to a failed contract or action, during transition t6 the holonic
agent issues an internal (that is not sent by another holonic agent) goal, thus
re-starting its planning phase. To conclude, the execution sequence is
reflected in the proposed model as follows: P0t5P2t8P0t7P2{t8P0t7P2}t6P0. It is to
further underline that the proposed model catches (through transitions t1 and
t3, respectively t5 and t7) all the cases when a planning/execution stage is
started or resumed for the holonic agent, thus being a general one. The
devised Petri net model reflects holonic agent behavior, but the whole HMES
activity must be supported by a proper communication mechanism, as shown
in the next section.

4. Model of Holonic Agent Communication

When each holonic agent is represented by the Petri net model of Fig. 2, the
communication between holons can be modeled according to Fig. 3a and b. It
is considered a holonic interaction with three holons, named H1, H2 and H3
(see Fig. 3a). In this example, communication starts when H1, as manager
within the CNP, issues a goal according to the transition t2(H1) (notations of
Fig. 2 are respected, too). The result of this transition, as the agent’s
message, is placed in a buffer represented by the place POUT2 in Fig. 3a.
From here, by means of a communication network, it is transmitted to all the
possible contractor holonic agents, being inputted into their buffers, marked
as the places PIN1. Thus, transition t1 regarding the presence of a new goal
can be fired (in our example, two holons, H2 and H3, activate the
corresponding transitions: t1(H2) and t1(H3)). After that, these contractor holons
start their planning process, which is abstracted at the manager holon level
by the place PW(H1) (see Fig. 3b).

Each contractor enters in the planning phase only when the holonic agent
is freed from other activities. As an example of the proposed model
application, for the holon H3 this means a token is present in the place P0(H3)
(see Fig. 3b). Planning phase will have as result a message containing a bid
(an output buffer is used), corresponding in our model with the placement of
a token in the place POUT4 when the transition t4 (the one for bid’s sending) is
fired (t4(H3) in Fig. 3a, b). From this buffer, the communication network
transfers the message to the buffer (the place PIN3) of the manager agent;
thus, the transition t3 can be fired for this agent (t3(H1) in our example). In Fig.
3b the places P1->3 and P3->1 abstract information (goals and bids) transfer
from one holon to the other by means of their buffers and the communication
network.

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1293

A similar mechanism exists for transmission of contracts and feedbacks
issued at the end of contracts. Agents’ communication buffers should allow
several goals/contracts to be received, and thus it can happen that a holonic
agent has to treat more goals and/or contracts. Therefore, the issue of
treating several goals by the same holon has to be discussed, and also the
case when the solutions provided to a set of goals by some holons interfere;
these issues are discussed in the next sections.

To understand these problems for a BDI based holonic agent (this kind of
agents was used in our approach), it is necessary to be aware of the BDI
mechanism operation principle.

Fig. 3. Model of inter-holonic communication

5. Planning and Execution Processes for a Holonic Agent

As already discussed in section 2, the holonic agent operation covers two
distinct phases: planning and execution. The holonic agent functioning starts
with planning. The use BDI agents determines a certain influence on the way
planning is treated. A specific aspect regards the library of plans that endows

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1294

the BDI holonic agents (see, for example, JACK software platform dedicated
to implementing BDI agents, which allows the definition and use of plans
[23]). For each type of goal the BDI holonic agent must possess a set of plans
that it can try when faced with the respective type. In the proposed approach
these plans are un-instantiated execution workflows. Here, we name as
workflow the whole sequence of actions that a holonic agent uses for an
entire execution phase. An un-instantiated execution workflow specifies the
sequence of actions that can solve a certain goal, but with the actors to carry
out the actions being un-specified. Thus, during the planning process the
holonic agent tries to validate an execution workflow by establishing (mostly
through the means of CNP) which will be the entities (other holons or its own
physical device) to perform the actions of execution workflow. Taking into
account all these aspects, the planning cycle for the holonic agent is
conducted according to a sequence consisting in the following steps:

Step 1. Choose an execution workflow that could solve the goal. If there is

no further choice in the agent’s library of plans, then the cycle is ended by
declining the goal.

Step 2. Try to validate the selected execution workflow (this means to find

resources able to carry out the actions of workflow).

Step 3. If the selected execution workflow has been validated then the

planning phase is successfully ended (the corresponding bid/internal contract
is sent), else the cycle is restarted with the Step 1.

Both planning and execution can be modeled by Petri nets. As an

example, Fig. 4 shows the Petri nets of the execution workflow and the
related planning process for solving a goal g (this appears as superior index
for the entities of models). The execution workflow contains two actions – a1
and a2, for which the holon that received the goal, acting as manager, has to
find actors (contractors). These can be viewed as resources and they are
modeled by the places gPRai added to the basic Petri net model (see Fig. 4a).
The places gPRai abstract the state of contractors; for example, the token in
gPRa1 marks the commitment made at the moment of bidding, regarding the
engagement of achieving the action a1. The execution workflow is chosen at
the beginning of planning process (selection is based on the relevance for a
goal and on certain optimum criteria). By that time, no tokens are present in
the places gPRai.

The planning process can be modeled according to Fig. 4b, where the
same notations of the models of Figs. 2 and 3 are used. The model highlights
the two possible outcomes for planning. When the manager holon receives at
least a bid for an action of the goal g, the appropriate contractor is allocated
and a token will be present in the corresponding place gPRai. If the manager
receives only negative bids for a proposed goal, the planning process is
abandoned; this case is indicated through the transitions gta4(i) in Fig. 4b, and
the manager continues its activity in accordance with the above presented

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1295

cycle. The planning process of Fig. 4b regards a sequential planning of two
actions, and the succession of states and transitions is:
P0t1P1(1)t2(1)P0t3(1)P1(2)t2(2)P0t3(2) P1(3)t4P0, which is in accordance with the
general expression presented in section 2 for solving a goal by cooperation.
By the places gPW(i) in Fig. 4b, the planning process at the level of contractors
is modeled.

After the planning phase, the instantiated execution workflow (tokens are
present in the places gPRa1 and gPRa2) is used to entirely guide the execution
phase, as the model of Fig. 4a shows. One has to notice how this complies
with the Petri model of Fig. 2. During execution no decision points appear,
except for the case of an action failure, when planning phase must be
restarted. The transition gt5 starts a first execution stage (marked as gP2(1) in

Fig. 4. Petri net models of planning and execution processes for a goal to be solved
by cooperation; a) Model of execution workflow; b) Model of planning process

Fig. 4a) as result of contract awarding (see t5 in Fig. 2). According to the
validated workflow, execution continues with awarding a contract towards the
chosen sub-contractor – transition gt8(1). The place gPa1 reflects the execution
of the needed action (a1) by sub-contractor, being ended at the transition
gt7(1), when the holonic agent receives the feedback concerning action end.
The place gP2(2) represents a second execution stage, with the same progress
as the first one. The place gPa2 and transitions gt8(2), gt7(2) have the same
meaning as for the previous execution stage, this time regarding the action
a2. The considered example illustrates the general case of a holon being both
contractor and manager: it is contractor for the received goal g, and it is
manager with respect to finding solutions to achieve the actions a1 and a2.
One has to note that the Figs. 4a and b are to be regarded together. This
means that there is a single place P0 in the holonic model and the places

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1296

gPRai are common for planning and execution. All these models allow the
HMES analysis, as shown in the next section.

6. Holonic Interaction Analysis; Experimental Results

6.1. Possible drawbacks for the holonic agent planning activity

The planning and execution activities are not continuous: after sending a goal
to potential contractors the agent has to wait for bids, after sending a bid the
agent waits for manager’s answer, after sending a contract the agent has to
wait its accomplishing. Thus, it can happen that processes regarding several
activities are interleaved for the same holonic agent. Three types of
combinations are possible: two planning processes are interleaved, two
execution workflows are simultaneously undertaken, or one planning and one
execution process are handled by the holonic agent. The last two cases do
not need a special attention, because as long as an execution workflow was
validated by planning phase it cannot faultily influence another process.

The significant combination is when two planning processes of the same
holon are in progress in the same time. Each planning process is started by a
distinct goal. If the agent has received two goals and their treatment is
interleaved, then the case of Fig. 5 can happen, where the superior indices 1
and 2 refer the two goals (see the index g in Fig. 4). The agent works with two
execution workflows, which it tries to validate for the two goals. With respect
to this, the agent has announced goals (sub-goals) in order to find contractors
for the actions of execution workflows (in our example all these actions need
other holons to carry them out). The problem is that the actions represented
by the places 1Pa1 and 2Pa1 need the same type of resources, the same
condition being true for the places 1Pa2 and 2Pa2. If the contractors managing
the two types of resources happen to make bids for the two execution
workflows as shown by the tokens placed in Fig. 5, both planning processes
fail, as they cannot transform the corresponding execution workflows into live
Petri nets.

The above case happens even the HMES could provide a solution at least
for one goal. This occurs if a single planning process is allowed to start and
only after its finalization the second planning process begins. This rule is not
to be always applied, because it reduces HMES flexibility: it can also be
possible for two planning processes to be treated in the same time without
deadlock. The solution is to restrict the simultaneous activation for validation
(for planning) of more execution workflows that could determine a blockage,
as they refer to common resources. This can be implemented by
correspondingly marking plans (execution workflows) within the agent’s
planning library. The proposed Petri net model can help this marking

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1297

operation, by using it in a simulation developed before the start of holon’s
activity within HMES, during which the interaction of plans can be revealed.

Fig. 5. An example of interaction resulting from the planning process

A similar situation can happen when the two goals that create a conflict are
handled by two distinct holonic agents. The case presented in Fig. 5 reflects
these circumstances too, except for the fact that two places P0 will exist, one
for each holon. A solution for such situations is beyond the product/order
holon possibilities, as they possess local knowledge. There is the need of
another component, and this can be a staff holon in the PROSA architecture,
which is supposed to take the decision on the management of goals [16]. This
type of interaction must be taken into account only between product and
order holons, because for resource holons the solution can be obtained at
their own level, as they can distinguish goals so that deadlock is avoided [24].
When product/order holons need to announce goals towards resource holons,
they should require the acceptance of a dedicated staff holon. This will send
the approval only to one requesting holon and keep in a queue the other
enquiries that refer to the same type of resources. At the moment of planning
finalization, an agent of an order or product holon has to announce the staff
holon about this, so that it can consider the next request. In this way two
planning processes that refer some common resources are never interleaved
and any deadlock is avoided.

In order to conduct significant experiments for proving these theoretical
points, a complex model and a simulation environment able to represent an
entire HMES were developed [17], by the means of Coloured Petri Nets
(CPNs) [25].

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1298

6.2. The HMES developed model

The constructed simulation environment appears as a hierarchical CPN, with
the highest layer abstracting various entities of the HMES in the form of
transitions and places. These are expanded on successive layers, taking into
account the proposed basic Petri net model (the one of Fig. 2), but with
tokens that can carry different information, according with the formalism of
CPNs. An important propriety of CPNs is the way they combine the
capabilities of monochrome Petri nets with the support of a high-level
programming language, such as the Standard ML [26]. So, it was possible to
obtain a highly configurable model-prototype, close to the real HMES
implementation.

The top layer of the HMES model is presented in Fig. 6. It comprises one
product holon and some resource holons; a staff holon was also introduced in
certain experiments. The network necessary to handle the communication
between holons is included, too. These entities are represented by transitions
that hide the models of lower layers; these materialize by the proposed
models for planning and execution (as the ones in Fig. 4). In comparison with
the elements presented in Fig. 3, all the input places of a holon were
integrated in a single input position. One has to understand that the
transitions t1 - t8 (see Fig. 2) have attached either an input or an output place
(buffer). By using CPNs all the input buffers of a model are represented by a
single position, which regards a buffer, marked as In_k in Fig. 6. The same is
true for the output positions, named Out_k. In this way in the CPN model
each transition is fired when its attached condition is satisfied, according to
the information of its buffer. The transfer of information between holons is
achieved through the transition Communication Network. The model that this
transition is substituting is presented in Fig. 7.

Fig. 6. Top layer of HMES model

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1299

Fig. 7. Communication network model

Thus the part regarding the communication network that was not shown in
Fig. 3a is displayed. It is to understand that Out_k in Fig. 6 and In_k in Fig. 7
are the same positions in the constructed model, according to the use of
hierarchical CPNs. The transitions Tlink_k in Fig. 7 transfer information at
their firing, when a message is present in the output buffer of an entity. Such
a buffer is a queue, so that messages are processed in the order they are
received. To model the normal operation when the messages are treated in
the same order as they were sent, the transitions Tlink_k have the greatest
salience. In this way, the influence of the communication network on the
reachability graph is minimized; this is important because the analysis of
HMES performance is obtained by using it.

In principle, a simulation experiment can be used to explore only a finite
number of HMES executions. By using the reachability graph of a Petri net a
possibility to surpass this difficulty is offered. Indeed, this covers the entire
state space of the modeled system, starting from a given initial state [25]. It
means the reachability graph can be a powerful tool for assessing the
properties of HMESs, and that is way it was chosen. More specific, regarding
the problem of establishing the output of holonic agents’ planning process,
the leaf nodes of reachability graph contain information about the results of
resource allocation process. The leaf nodes represent the final or dead
markings of the analyzed Petri net, and by their examination the outcome of
holonic planning process can be understood.

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1300

6.3. Experiments for a holonic system with a product holon

The experiments carried out to prove the above analysis considered the
interaction between two planning processes of the same holon (see the
explanations concerning Figs. 4b and 5). Five distinct cases were evaluated;
the difference between them is given by the availability of resource holons
and the treatment of received goals. In cases 1 and 2, the product holon has
to face a manufacturing environment with limited resources, allowing only
one goal to be fulfilled; this restriction is removed in cases 3 and 4. On the
other hand, the product holon tries similar plans in cases 1 and 3,
respectively 2 and 4 (it attempts to instantiate similar execution workflows).
The final case, the fifth one, regards the HMES operation when a staff holon
is also included into the holonic architecture.

The results of the considered experiments are presented in Tables 1-5.
These contain three data types. The first two rows give the initial HMES
state: the goals received by the product holon, the actions included into the
execution workflows that the product holon uses to solve goals and the
resource holons able to carry out the respective actions. This information is
used to establish the initial marking of the Petri net model. Data on the
reachability graph (number of nodes, arcs and dead markings) are presented
in the next two rows of the tables, while the following rows summarize the
results of planning process. Having two goals to solve, the planning results,
reflected in resource allocation, are classified into three classes. These mean
the planning process succeeded to instantiate two execution workflows, one
of them (with two sub-cases) or none. For each class, the indicated
percentage represents the number of final states (dead markings) that
correspond to the respective class from the total number of final states.

Table 1. An experiment with two goals and reduced resources

Product Holon’s State Goal 1 (a1-a2) Goal 2 (a1-a2)
Resource Holons’ State RH1→a1, RH2→a2
Nodes 13525 Arcs 23030
Dead Markings 80
Goal 1 Goal 2 %
successful successful 0
successful unsuccessful 50
unsuccessful successful 50
unsuccessful unsuccessful 0

When both goals are solved by the same execution workflow (the

succession of actions is a1, a2) and two resource holons (RH1, RH2) are
present in the HMES, only one goal can be fulfilled, as Table 1 shows. In this
first experiment no conflict between the planning processes appears. When
the HMES context is the same, except for the execution workflows used to

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1301

treat the goals, the results of Table 2 are obtained. These indicate that a
conflict is possible: there are 3.23% of the total number of dead markings that
represent cases when neither of the two goals is solved. It means the product
holon fails to accomplish at least one goal, despite the fact that a solution
exists. This is the case of Fig. 5, when during the planning process two
execution workflows are simultaneously treated and it happens that resource
holons make bids for the first action in each workflow; thus, no resource is
available to complete a planning process. This situation does not appear in
the experiment considered in Table 1, because in that case one of the
execution workflows is already abandoned when the product holon does not
receive a bid for its first action, and thus the failure situation is avoided.

Table 2. An experiment with two goals and different execution workflows

Product Holon’s State Goal 1 (a1-a2) Goal 2 (a2-a1)
Resource Holons’ State RH1→a1, RH2→a2
Nodes 55271 Arcs 116622
Dead Markings 186
Goal 1 Goal 2 %
successful successful 0
successful unsuccessful 48.39
unsuccessful successful 48.39
unsuccessful unsuccessful 3.22

Table 3. An experiment with two goals and enough resources

Product Holon’s State Goal 1 (a1-a2) Goal 2 (a1-a2)
Resource Holons’ State RH1→a1,RH2→a2, RH3→a1 RH4→a2
Nodes 63257 Arcs 139552
Dead Markings 164
Goal 1 Goal 2 %
successful successful 39.02
successful unsuccessful 30.49
unsuccessful successful 30.49
unsuccessful unsuccessful 0

The case in Table 3 is similar to the first experiment, but this time there

are dead markings representing the fulfillment of both goals, because more
resource holons exist in the HMES. When the same experiment is made with
different workflows used in planning, the results are worse: the percentage of
23.26% dead markings representing the accomplishment of both goals in
Table 4 is less than the value in Table 3. The explanation for the difference
between the results of Table 3 and Table 4 is the same as for the cases in
Table 1 and Table 2. It is to notice that the number of dead markings is much

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1302

higher than the number of planning results, which is explained by the internal
mechanism that labels with distinct identifiers messages sent between
holonic agents, conducting to different markings in the Petri net. Anyhow, the
proper reading of the results obtained with these simulation experiments
proves the theoretical points.

Table 4. An experiment with enough resources and different execution workflows

Product Holon’s State Goal 1 (a1-a2) Goal 2 (a2-a1)
Resource Holons’ State RH1→a1,RH2→a2, RH3→a1 RH4→a2
Nodes 174575 Arcs 396964
Dead Markings 324
Goal 1 Goal 2 %
successful successful 23.26
successful unsuccessful 38.37
unsuccessful successful 38.37
unsuccessful unsuccessful 0

As already indicated from the theoretical point of view in section 6.1 and

practically by the second case, the HMES can fail in solving both received
goals when these regard common resources. As mentioned, the introduction
of a staff holon can eliminate these drawbacks. Thus, Table 5 presents the
result of a further experiment that is conducted for the same case as in Table
2, but with the presence of the staff holon. The interaction diagram in Fig. 8
shows how the product holon communicates with the staff holon when it has
to solve two distinct goals. The messages labeled CI (Contractor Information)
are those by which the product holon requests from the staff holon the list of
available contractors for the plans it has chosen for the two goals. Because
the staff holon detects a possible conflict between the contractors of the two
plans, it provides a positive answer for one request (the message CI203-401)
and the second answer is given only after the finalization of the first planning

Table 5. An experiment with the staff holon

Product Holon’s State Goal 1 (a1-a2) Goal 2 (a2-a1)
Resource Holons’ State RH1→a1, RH2→a2
Nodes 11243 Arcs 15486
Dead Markings 76
Goal 1 Goal 2 %
successful successful 0
successful unsuccessful 50
unsuccessful successful 50
unsuccessful unsuccessful 0

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1303

process (the message EI401 in Fig. 8). The obtained result (see Table 5)
shows that in this approach the drawback of both goals’ failure is eliminated.
More details and experiments for the operation of an HMES including a staff
holon are presented in [16].

Fig. 8. Interaction diagram for the experiment with the staff holon

7. Conclusion

The work described in this paper addresses modeling and analyzing
techniques capable of revealing certain planning and coordination issues of
multi-agent systems included in HMESs. The proposed Petri net models
describe the internal and external behavior of holons. It is used to construct
the reachability graph, which provides important data on the states the HMES
can pass through. The analysis has shown the necessity of an appropriate
protocol that holonic agents should use for handling of plans, and moreover
the need of a centralized component to manage the possible conflicts among
planning processes of different holons. These results led us to considering
the staff holon as a required entity into an HMES, with the ability to protect
the system against potential conflicts. A general planning cycle appropriate
for resource, product and order holons was settled, while the staff holon
should have a distinct operation, coordinating the other types of holons when

Carlos Pascal and Doru Panescu

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1304

a planning conflict is detected; thus, the whole operation of an HMES is
covered.

The planned future work aims at better formalizing and evaluating the BDI
mechanism when this is involved in the operation of holonic agents. Thus we
are supposed to complete a systematic method for the application of multi-
agent systems in holonic manufacturing control.

References

1. Pascal, C., Panescu, D.: On Resource Allocation in a Holonic Manufacturing
Execution System. In Proceedings of the 15th International Conference on
System Theory, Control, and Computing. Politehnium, Iasi, Romania, 427-432.
(2011)

2. Candido, G., Barata, J.: A Multiagent Control System for Shop Floor Assembly.
In Proceedings of 3nd International Conference on Industrial Application on
Holonic and Multi-Agent Systems. Springer-Verlag, Regensburg, Germany, 293-
302. (2007)

3. Jarvis, J., Jarvis, D., Ronnquist, R., Jain, L. (eds.): Holonic Execution: A BDI
Approach, Studies in Computational Intelligence, Vol. 106. Springer-Verlag,
Berlin, 1-32. (2008)

4. Morel, G., Valckenaers, P., Faure, J. M., Pereira, C., Diedrich, C.: Manufacturing
plant control challenges and issues. Control Engineering Practice, Vol. 15, 1321-
1331. (2007)

5. Giret, A., Botti, V.: Engineering Holonic Manufacturing Systems. Computers in
Industry, Vol. 60, 428-440. (2009)

6. Cheng, F. T., Chang, C. F., Wu, S. L.: Development of holonic manufacturing
execution systems. Journal of Intelligent Manufacturing, Vol. 15, 253-267. (2004)

7. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.:
Reference architecture for holonic manufacturing systems: PROSA. Computers
in Industry, Vol. 37, 255-274. (1998)

8. David, R., Alla, H.: Discrete, continuous, and hybrid Petri nets. Springer Verlag.
(2005)

9. Li, Z. W., Zhou, M. C.: Deadlock resolution in automated manufacturing systems:
a novel Petri net approach. Springer Verlag. (2009)

10. Bongaerts, L.: Integration of scheduling and control in holonic manufacturing
systems. Ph.D. Thesis, Katholieke Universiteit Leuven. (1998)

11. Leitao, P.: An Agile and Adaptive Holonic Architecture for Manufacturing Control.
Ph.D. Thesis, Faculty of Engineering of University of Porto. (2004)

12. Hsieh, F. S.: Holarchy formation and optimization in holonic manufacturing
systems with contract net. Automatica, Vol. 44, 959-970. (2008)

13. Hsieh, F. S.: Model and control holonic manufacturing systems based on fusion
of contract nets and Petri nets. Automatica, Vol. 40, 51-57. (2004)

14. Hsieh, F. S.: Collaborative reconfiguration mechanism for holonic manufacturing
systems. Automatica, Vol 45, 2563-2569. (2009)

15. Hsieh, F. S.: Dynamic composition of holonic processes to satisfy timing
constraints with minimal costs. Engineering Applications of Artificial Intelligence,
Vol. 22, 1117-1126. (2009)

16. Panescu, D., Pascal, C.: HAPBA – a Holonic Adaptive Plan-Based Architecture.
In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.): Service orientation in holonic

Modeling a Holonic Agent based Solution by Petri Nets

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1305

and multi-agent manufacturing control. Studies in Computational Intelligence,
402, Springer, Berlin, 61-74. (2012)

17. Panescu, D., Pascal, C.: On a holonic adaptive plan-based architecture: planning
scheme and holons’ life periods, International Journal of Advanced
Manufacturing Technology, Springer. (2012)

18. Panescu, D., Sutu, M., Pascal, C.: On the Design and Implementation of Holonic
Manufacturing Systems. In Proceedings of the WRI World Congress on
Computer Science and Information Engineering. IEEE, Los Angeles, CA, 456-
461. (2009)

19. Smith, R. G.: The contract net protocol: High level communication and control in
a distributed problem solver. IEEE Transactions on Computers, Vol. C-29, No.
12, 1104-1113. (1980)

20. Hsieh, F. S.: Analysis of contract net in multi-agent systems. Automatica, Vol.
42, 733-740. (2006)

21. Panescu, D., Pascal, C., Sutu, M., Varvara, G.: Collaborative Robotic System
Obtained by Combining Planning and Holonic Architecture. In Proceedings of
Advanced Technologies for Enhanced Quality of Life. IEEE, Iasi, Romania, 138-
143. (2009)

22. Rao, A. S., Georgeff, M. P.: Modeling rational agents within a BDI-architecture.
In: Huhns, M. N., Singh, M. P. (eds.): Readings in agents. Morgan Kaufmann,
317-328. (1997)

23. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.:
Implementing Industrial Multiagent Systems using JACKTM. In: Dastani, M. M.,
Dix, J., Fallah-Seghrouchni, A. E. (eds.): Programming multi-agent systems.
Lecture Notes in Computer Science, Vol. 3067. Springer-Verlag, Berlin
Heidelberg New York, 18-48. (2004)

24. Panescu, D., Pascal, C.: Some Issues on Holonic Systems Analysis, Design and
Implementation. In Proceedings of the 19th International Workshop on Robotics
in Alpe-Adria-Danube Region (RAAD 2010), Budapest, 199-204. (2010)

25. Jensen, K., Kristensen, L.: Coloured Petri Nets: Modeling and Validation of
Concurrent Systems. Springer-Verlag, New York. (2009)

26. Harper, R.: Programming in Standard ML. Carnegie Mellon University. (2005)

Carlos Pascal is a young researcher mainly interested in intelligent
manufacturing systems. As an early adopter, he tries to bring up a new
architecture for manufacturing systems based on autonomous and
cooperative entities, by applying several concepts, like holons, Petri nets and
BDI agents. With respect to this, in 2012, he received a PhD degree in
Systems Engineering at “Gheorghe Asachi” Technical University of Iasi,
Romania.

Doru Panescu is professor within the Department of Automatic Control and
Applied Informatics, “Gheorghe Asachi” Technical University of Iasi,
Romania. He received two master degrees (in Electrical Engineering and in
Computer Science), and a PhD degree in Systems Engineering at “Gheorghe
Asachi” Technical University of Iasi, Romania. His present teaching and
research activities are in the fields of Robotics and Artificial Intelligence, with
a focus on intelligent manufacturing systems.

Received: December 23, 2011; Accepted: April 9, 2012.

DOI: 10.2298/CSIS120117029G

Information resource management in an
agent-based virtual organization—initial

implementation

Maria Ganzha1,2, Adam Omelczuk4, Marcin Paprzycki1,3, and Mateusz
Wypysiak4

1 Systems Research Institute Polish Academy of Sciences,
Warsaw, Poland

Maria.Ganzha, Marcin.Paprzycki@ibspan.waw.pl
2 University of Gdansk, Gdansk, Poland

3 Warsaw Management Academy, Warsaw, Poland
4 Warsaw University of Technology, Poland

omelczuka,wypysiakm@student.mini.pw.edu.pl

Abstract. In this paper we describe an early stage prototype of a system
for information resource management in an agent-based virtual organiza-
tion. We focus our work on support for human resource adaptability (e.g.
knowledge, skills) as a tool for assisting project managers. In the proposed
approach, a virtual organization is functionalized in terms of roles played
by agents, while organization structure and information flow are repre-
sented in terms of agent-agent and agent-human interactions. Finally, all
resources (e.g. workers, skills, training resources, etc.) are ontologically
demarcated, and information is semantically processed. Discussion of or-
ganizational needs is followed by the outline of the system. Finally, basic
capabilities of the implemented prototype are illustrated.

Keywords: agent systems, ontologies, virtual organization, resource man-
agement, Information Resources, e-learning, adaptability.

1. Introduction

Development of new ICT technologies often influences provisioning of informa-
tion needed to support workers in an organization. Among recent promising
technologies, one can identify software agents [22], as well as ontologies and
semantic data processing [13]. In this work, we consider how an organization
can combine them to provide workers with the needed Information Resources
(IR) 5. In the proposed approach a real-world organization is modeled in terms
of identified roles played by various entities within it. These roles are then
represented by software agents. Furthermore, the organizational hierarchy is
mapped into (hierarchical) relationships between agents, while the information

5 Let us remark that the abbreviation IR stands for Information Resource, not for Infor-
mation Retrieval, as it is often used elsewhere

Maria Ganzha et al.

flow within an organization is conceptualized in terms of agent-agent (and, pos-
sibly, agent-human) message exchanges. In this way we follow, conceptually,
the main tenets of the Gaia methodology for agent system development [36].
Furthermore, in the proposed approach, all resources are ontologically demar-
cated (e.g. workers, articles, courses, books, projects, tasks, etc.), and informa-
tion is semantically processed. Although in this paper, we focus only on issues
involved in delivery of a class of Information Resources, presented results can
be naturally extended to involve other resources, by modifying the ontology and
the communication patterns. Note that, first, the proposed approach is in line
with the vision for development of systems combining agents and semantic data
processing, outlined in the seminal paper by J. Hendler [20]. Second, it follows
the guidelines for agent system development proposed in [27]. There, a well
presented argument supports the claim that to achieve progress in use of agent
system in the real world, various approaches have to be tried and practically
experimented with, to be able to gain the necessary experience.

Let us start with an overview of organizational adaptability that provides the
use cases for the system prototype.

1.1. Adaptability in an organization—brief overview

Let us consider a Virtual Organization (VO; [5, 9, 10, 14, 19, 34]), where workers
need to access various Information Resources to complete their tasks/projects.
Obviously, access to resources should be (a) adaptive, matching the specific
projects that the workers are involved in at a given moment, and changing with
the project (as it evolves), and (b) personalized, different workers, depending on
their knowledge, experience, and assigned task(s), require access to different
resources (and their needs also change over time).

For instance, assume that two workers (W1 and W2) are a part of a team
designing and implementing a knowledge management portal, combined with
a dedicated mobile application. Here, worker W1 who is designing and imple-
menting the back-end of the system (which is based on the Oracle database)
needs different resources than her colleague (W2) preparing a dedicated front-
end application geared for mobile operating systems (iOS, Android, and Win-
dows Phone). However, because the new version of the Windows Phone sys-
tem differs considerably from its previous versions, worker W2 needs additional
resources to complete her job (e.g. she may need training modules related to
working with the new Windows Phone API). Separately, if a graphics / Web in-
terface specialist (worker W3) is added to the team, to create an application
layout for the mobile devices (with much smaller screens), he may also need
extra IRs to complete his task (e.g. he may need to extend his knowledge about
most common screen resolution on mobile devices, including some technical
details, like screen contrasts, or just an information about layout usability for the
small screens).

In this example, the following situations of interest can be identified:

1308 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

– Decision, made by the management of the organization, about acceptance /
rejection of a project is based on availability of workers with given skills,
whose schedule is such that they can participate in the project.

– Some workers, who have been selected to participate in the project, need
extra training (access to IR’s) to be ready when the project starts (worker
W2).

– During the project, some workers need extra training (access to IR’s) to
improve their skills (worker W3).

Note that, in this work, we use terms training and Information Resources
rather broadly (and somewhat informally). Specifically, by training we mean ac-
cess to various types of IR’s that can improve knowledge of the worker, while
the term Information Resource includes both e-learning modules and publica-
tions.

The above listed situations represent cases of, broadly understood, adapt-
ability taking place within a system (for more details, see [8, 18]). They can be
divided into two orthogonal groups. First, we can observe institutional and in-
dividual adaptability. Here, if workers with appropriate skills (and/or schedule)
cannot be found, they have to be hired and/or trained, representing the gen-
eral case of institutional adaptability. Obviously, an organization may select to
not to adapt, and reject a possible project. At the same time, worker who is
being trained, or provided with an IR (e.g. a book) learns, and this represents
the case of individual adaptability (i.e. her/his skills change). Second, we can
distinguish reactive and proactive adaptability. Here, the reactive adaptability
means that the IR provisioning occurs in response to a specific situation (e.g.
during a project a need for extra resource(s) is recognized; as in the case of
worker W3, above). At the same time, if we assume that training of worker W2
takes place before the project starts (the organization recognizes the need to
train its developers in the use of the new API of the operating system that they
will work with), this would represent the case of proactive adaptability.

Let us observe that, from the point of view of functionalities planned for the
prototype, the proactive and the reactive adaptability resemble each other very
closely. As soon as it is established that there exists a gap between the needed
and the existing skills, the system should proceed in exactly the same way.
First, the gap has to be assessed, on a case-by-case basis. Second, appro-
priate IRs (assumed to help closing this gap) should be found and delivered
to the worker. Therefore, at this stage, we have concentrated our attention on
the reactive scenario (leaving the proactive one for the future). Let us therefore
describe, in some details, the two use cases that follow from the above gen-
eral example, and provide foundation for the development (and testing) of the
system prototype.

1.2. Use case scenarios

Scenario 1: Project Acceptance Decision. Let us assume that a new project
is considered by an organization. Let us also assume that, after an initial anal-
ysis, this project is specified through: (a) set of required tasks, (b) set of skills

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1309

Maria Ganzha et al.

required by workers to complete these tasks, and (c) time constraints on each
task. To be able to decide whether to accept the project, these requirements
are matched against human resources available in the organization. Here, the
following constraints are considered: (i) “schedule-availability” of workers within
the organization, (ii) their individual skills, and (iii) possibility to hire extra work-
ers (if needed).

After the initial analysis, project specification is send to the selected Project
Manager (PM) who will assess whether it is possible to complete it. For each
task, the PM seeks Workers with appropriate skills and schedule. In our cur-
rent approach, such assessment is based on PM ↔Worker interactions. Here,
Workers assess their own skills and schedule against the proposed task(s) and
send responses to the PM. In the case when the Worker would need additional
knowledge to accomplish a given task, (s)he looks for suitable IR(s). Depend-
ing on their availability and time needed to acquire knowledge, a positive or a
negative response is send to the PM.

Upon receiving responses, the PM checks if all tasks can be covered by the
available Workers. When some tasks cannot be assigned to the Workers avail-
able in the organization, the PM asks the Human Resource Manager (HRM) to
try to hire employees with needed skills and availability. If such Worker(s) can
be hired, the HRM “sends them” to the PM. When all tasks within the project
have assigned Workers, the PM accepts the project. Next, she confirms as-
signed tasks to the selected Workers. In the case when one or more tasks are
left without assigned Worker, the PM is forced to reject the project.

Scenario 2: Employee Support. Let us now assume that a team is working
on a project. At some moment during that time, one of Workers (e.g. W3 in
the example above) faces a problem that she never encountered before. Obvi-
ously, she starts to look for information to solve this problem. She can look for
someone that was dealing with a similar problem (by asking fellow Workers—
W1 and W2, posting request on mailing list/forum, or search in the Internet).
There, she may find solutions that are too complex for her, because they as-
sumed that the person that will use them possessed higher level of knowledge.
Other resources can, in turn, cover the issue on such an introductory level that
they will be a waste of her time (they will cover topics that she is already famil-
iar with). Thus, the need for personalized support for each Worker arises. The
system should be able to provide Workers with needed IR(s) as a reaction to
their needs.

Note that, the proactive scenario is very similar to the one described above.
The only difference is in the fact that the decision to expand knowledge arises
(proactively) on the basis of predicted future needs. Thus the differentiation
between them belongs to a different (meta) level of the worker support system.

1.3. Related work

Information management with utilization of agent technology is not a new idea.
There are many published works related to this topic (see, for instance, [8–10,

1310 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

14, 17, 18, 31]), but most of them focus only on theoretical discussion how such
systems can benefit from agent technology, and provide the initial design of
such system (possibly including some suggestions concerning its implemen-
tation). Specifically, they discuss how organization can be transformed to the
form that actually can be used in agent systems, with ontologically demarcated
Information Resources. They consider how to map the needed resources to the
missing skills. For instance, in [30] authors’ discuss various methods of ontolog-
ical matchmaking (understood as matching instances within a single ontology)
an propose their own approach. However, this novel approach has not been
tested in a realistic application.

In [25] authors present a platform that was designed during the EU project
“Platform for Organizationally Mobile Public Employees” (project Pellucid). Main
goal of this project was to create adaptable platform for assisting organization-
ally mobile employees. Such platform was to improve organization effectiveness
and efficiency by formalizing, recording, and storing information about experi-
ence and knowledge, and allowing easy access to such data in a mobile envi-
ronment. The proposed system was to combine software agents and semantic
data processing. Unfortunately, as in case of so many other similar projects,
after the end of EU-funding the promising research has stopped.

Another approach worthy mentioning was presented in [24]. In his thesis,
author discuses use of ontology based knowledge representation in multi-agent
systems. Author focuses on the issue how to create stronger connection be-
tween those two with utilization of the semantic web. Again, the research does
not seem to be continued after completion of the thesis.

In Poland, between 2005 and 2007, there existed (sponsored by the Polish
government) project called WKUP (eng. Virtual Public Service Consultant; [6]).
The goal of this project was to create interactive, personalized platform to sup-
port citizens in finding assistance how to deal with tasks required by various
administrative processes. The support was to be based on ontological repre-
sentation of knowledge about the Polish legal system. Specifically, the WKUP
system was to be able to understand questions in natural language, use ontolo-
gies describing domain of public administration, and be able to cooperate with a
semantic registry of public services based on the UDDI (Universal Description
Discovery and Integration) specification. Even though the initial prototype has
been developed around 2007, the project has been later abandoned [12].

Overall, while many publications consider the idea of combining software
agents and semantic data processing to support workers in a Virtual Organiza-
tion, in most cases only initial stages of system design have been completed,
and promising prototypes have been abandoned (e.g. due to the lack of contin-
ued funding).

2. System overview

As stated above, the aim of our work was to develop a prototype system sup-
porting autonomous IR provisioning in a Virtual Organization. This system should

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1311

Maria Ganzha et al.

automatically detect Worker needs, and attempt at provisioning targeted IRs.
One of key assumptions is that the system will be agent-based, and will use
semantic data processing. Following the ideas discussed in [31, 17], we have
decided that each Worker in the organization will be supported by her/his per-
sonal Worker Agent, which will represent her/his interests in the system. The
Worker Agent is a form of a Personal Agent, idea of which was proposed for
the first time by P. Maes in [26]. Furthermore, a number of auxiliary, agents will
be added to the system. These agents will facilitate roles that either can be ful-
filled autonomously (without need for human intervention), or will emulate roles
that, in an actual organization, are typically fulfilled by humans supported by
their Worker Agents. Based on these assumptions, in the context of the above
presented example, and the two use case scenarios (that define the scope of
our initial work), in Fig. 1 we present the AML use case of the system (for more
details about AML, see [11]).

Fig. 1. AML Use case—functionality of the system

Let us now describe most important features of the proposed system in
some detail.

2.1. Agents in the system

Let us start with a brief discussion of agents and their roles (see, Fig. 1). For
the initial system prototype, supporting use cases described in section 1.2, we
have designed and implemented the following agents:

– Personal Agent (PA); an artificial meta-name for a group of agents con-
trolled by human user. An instance of such agent is provided to each Worker

1312 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

in the VO. The PA supports: Workers in a form of Worker Agent (WA);
Project Managers, as the Project Manager Agents; and E-learning System
Administrators as the Moodle Administrator Agents.

– Resource Agent (RA); auxiliary autonomous agents that can play the fol-
lowing roles in the system:
• Human Resource Manager Agent (HMRA), which emulates the situa-

tion in which a human HRM would be supported by an extended version
of the WA (prepared to support the HRM activities); in our system, due
to its limited scope, this role is emulated (completed autonomously).
• Publication Resources Manager Agent PRMA), which is interfacing with

the Digital Bibliography and Library Project (DBLP; [32]),
• Training Resource Manager Agent (TRMA), which is responsible for

providing the system-side interface to the e-learning platform,
• E-learning Platform Manager Agent (EPMA), which provides the platform-

side interface to the e-learning platform (here, it is assumed that mul-
tiple e-learning platforms are located “somewhere within the Internet”
and thus both sides—system and platform—have to be represented by
separate agents – rather than having a single platform-side agent that
would be contacted directly from the system).

Let us summarize agents and their roles in the form of the AML Role Dia-
gram, in Fig. 2.

Fig. 2. Agent’s roles hierarchy

2.2. Information Resources

Let us now consider the Information Resources that are needed to complete
the use case scenarios described in section 1.2. In the current system pro-
totype we have introduced two types of resources: (i) training resources, and

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1313

Maria Ganzha et al.

(ii) publication resources. The training resources comprise online courses sup-
plied for the Worker training. The publication resources are publications that
provide the needed information.

As stated above, in addition to software agents, we will use semantic data
processing. Therefore, both types of IRs have been demarcated using a sim-
plistic ontology, which was designed to support selected functionalities of the
prototype. Let us now look in some detail into the use of ontology in our sys-
tem.

2.3. Ontology in the system

When designing our prototype we were faced with decisions concerning devel-
opment and use of ontologies. For instance, we could have used the existing
ontologies, e.g. the Dublin Core [1] for demarcation of publication resources,
and adapt the VO ontology found in [33, 29, 23] to describe the organization.
However, first, this would still leave us us with 0the need to develop an ontology
of training resources. Second, combining the Dublin Core, the VO ontology and
the training resource ontology is a research task in its own right, likely result-
ing in a rather large and complex combined ontology. Third, we were not able
to locate a mainstream e-learning platform that would be ontology enabled.
Overall, focusing on ontologies, would postpone implementation of the system,
which would contradict our main goal—development and experimentation with
a working prototype (see, also [27]). Therefore, we have decided to develop our
own simplistic ontology and use it in the prototype. In Fig. 3 we present the
overall structure of this ontology.

Fig. 3. Ontology design (C - Concept, P - Predicate, A - Action)

1314 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

Here, the central concept is the Resource. For the prototype, we have de-
cided to focus on the field of information technology, as conceptualized by the
Association for Computing Machinery Computing Classification System [7]. The
Skill concept consists of two parts. The name of the discipline, and a value from
the interval (0, 100), which indicates the skill-level. Note that the Skill class is the
only one used in both the Resource and the Worker modules (see, section 3).

The Resource concept describes the Information Resources as well as Hu-
man Resource. It is used mostly in communication between the Worker Agents
and the Resource Module. It contains the main Resource class, the implemen-
tation of the Concept interface, and three child classes: the Training Resource,
the Publication Resource and the Worker. The Worker class stores the informa-
tion about Worker’s skills (implemented as the Skill concept). The Skill concept
establishes connection between the Worker and the Task concepts, as well as
between the Worker concept and the LearningAcion action.

In case of concepts TrainingInformation and PublicationResource these classes
store specific information about those IRs, like author, title and publisher, for the
publication resources, or names, localization and cost for participating in the
course, for the Training Resources. In this structure, thanks to the inheritance,
subclasses could use the Resource class in all messages for all IRs. Note that
the only place where there is a need to distinguish between the different IRs is
when the Worker Agent displays found resources to the Worker. In other words,
within the system both forms of Information Resources are processed exactly
in the same way, only in the user interface they are distinguished.

There exists also an artificial class called Sender. It was created because,
despite the fact that the FIPA message envelope contains information about the
sender of the message, when the request for resources from the Worker Agent
is forwarded (by the Resource Manager Agent) to the Training Resource Man-
ager Agent (or to the Publication Resource Manager Agent), the sender of the
request has to be preserved in order to be able to return the found resources
to the proper Worker Agent. Such requests are implemented using the Agen-
tAction class FindResourceAction. This class contains information about the
sender, and a list of topics that should be covered by the returned resources.
This list is stored as a list of Resource objects, with the skill field assigned. As an
answer to the request, represented by the FindResourcesAction, the Resource
Module sends the ResourceListPredicate class, which implements the Predi-
cate interface. This class is used as a facade for the list of found Resources.
This is done, because the JADE framework does not allow sending the Concept
implementations directly. They have to be wrapped in an Action or a Predicate.

The second part of the ontology is used to describe the Worker. This mod-
ule focuses on the project, by describing Workers, tasks within project, skills
possessed by the Workers and required for tasks, the project itself and ac-
tions that can be performed. Those objects are used mostly in communication
between the Worker Agent and the Project Manager Agent. The two main, sep-
arated, concepts are the Project and the Worker classes. The first describes
the actual project, in terms of name, list of tasks (understood as a “to do” list;

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1315

Maria Ganzha et al.

e.g. creating a database, or designing application layout for a mobile device),
available time (here, we have decided to use the standard man-hours), and
the information if this project is to be considered to be within the scope of a
proactive or a reactive scenario (i.e. if it is a project for the future, or if it is a
project that the organization has committed to). The Worker class stores basic
information about the employee, like: first name, last name, list of skills of the
represented person. This section contains also two implemented Predicates,
called the WorkerPrediacte and the TaskWorkerPredicate. The first predicate
is used in the transport of the Worker concept (for the same reasons as men-
tioned earlier for the ResourceListPredicate). The TaskWorkerPredicate has a
more complex job to do. It contains the Task and the Worker concepts, to be
used in the communication process, and parameters defining how well skills
of a given Worker match skills required for completing a specific Task. Here,
we use simple metrics, based on the assessment of how many skills were on
the exactly right level, how many above, and how many below the required skill
level (for a given task). Additionally, the system stores the number of skill levels
that are above the requirements, and number of those skills that did not fulfill
the requirements.

To send requests, three implementations of the Action interface are used.
The WorkerGenerationAction is used by the Project Manager Agent, when it
decides that a new employee has to be hired. It contains the Task concept,
because such decision is made when some of the tasks, in the specific project,
are not assigned (and cannot be assigned to the currently employed workers).
Thus, a new Worker should be hired to complete this task. The remaining two
actions are connected by the base-child class relation. The base class, called
the LearningAction, stores the list of Skills levels of which the recipient (Worker
Agent) must improve, and/or list of brand new Skill(s) to be acquired. The child
class is called TaskAssignmentAction, and stores the Task that is assigned to
this Worker Agent. We decided to create such relation, because, sometimes,
when the Project Manager Agent assigns a Task to a particular Worker Agent,
a given Worker must learn something new or increase knowledge in one of
already possessed Skills, while at other times learning activities are required
without assigning any task.

3. Implementation details

As a result of the technical requirements analysis, completed in [28], we have
selected the following technologies to implement the initial system prototype.

– All agents within the system are written in Java using the JADE frame-
work [2], with addition of the log4j framework [3], used for the error logging
purpose. During the actual implementation process, we used Java version
1.6.0 22. The runtime environment was provided by the standard Oracle
Java Virtual Machine.

– For storing data used to describe the training resources, the MySQL database
engine was used.

1316 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

– As the e-learning platform we have selected the Moodle Platform [4]. It is
an open source Learning Management System. While Moodle is written in
PHP we decided not to connect with it through its web interface, but created
a dedicated agent connected directly to the Moodle database. Note that
this design decision follows the basic principles of agent system design,
where software agents provide the basic abstraction for design modularity
and component encapsulation (see, also [21]).

– The MySQL server and the Apache server, required to host the Moodle
platform, were provided by the XAMPP version 1.7.3.

– Information retrieved from the Training Resource Database and the DBLP,
for further use by different agents, was described using ontology created
using the Ontology Bean convention (see, section 2.3 for more details).

Lest us make a comment concerning the last decision. One of the weak-
nesses of the JADE agent platform is its limited ability to deal with ontologies.
As a matter of fact, at the time of working on our prototype the only reasonable
way to combine JADE agents and ontologies was by representing ontologies as
Java classes. Therefore, we have decided to implement our simplistic ontology
directly into Java classes using the Ontology Beans (without the OWL demarca-
tion). It is only now that we have developed a JADE add-on that allows agents
communicate using OWL snippets (see, [35] for more details). This will allow us
to actually use OWL ontologies directly, in the next release of the system.

Fig. 4. System modules design

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1317

Maria Ganzha et al.

Let us now look in more details into the overall structure of the system and
the implemented modules, which have been represented in Fig. 4.

3.1. Resource Module

Let us start with the Resource Module. It deals with all aspects of searching and
obtaining different Information Resources, including managing databases, and
e-learning platforms. It was divided into the following sub-modules: the Publica-
tion Resource module, the Training Resource module, and the Connector.

Here, the Connector consists of the Resource Manager Agent, which con-
nects the Resource Module and the Employee Module. On the setup it starts
two cyclic behaviors that are responsible for periodically refreshing the list of
available Publication/Training Resource Manager Agents. This is achieved by
asking the JADE Directory Facilitator (DF) for the list of such agents. All re-
quests from the Worker Agent (to search for the IRs), received by the Re-
source Manager Agent, are copied into identical messages send to the Training
Resource module and the Publication Resource module. Each of these mes-
sages contains added information about the original sender. Next, the Resource
Manager Agent awaits responses from all specialized Resource Managers and
merges answers received from them into a single ResourceList object. Here
the inheritance relation between the Resource and the PublicationResource,
as well as the TrainingResource, is used. The resulting list is forwarded to the
proper Worker Agent (identified through the Sender object included in the mes-
sage). In this way, the Employee Module is not (and does not have to be) aware
about possible sources of Information Resources (which, therefore, can be dy-
namically added/removed, with only localized changes in the systems).

The Training Resource module is responsible for managing content of the e-
learning platform—in our case the Moodle Platform—and searching for courses
matching the requested topics. It is composed of three agents: (i) E-learning
Platform Manager Agent, (ii) Training Resource Manager Agent and, human
controlled, (iii) Moodle Administrator Agent. The E-learning Platform Manager
Agent is directly connected to the database of the Moodle Platform and is re-
sponsible for translating requests received from the Moodle Administrator Agent
to the SQL queries, and executing them. On the startup, in addition of the stan-
dard setup, this agent establishes connection with the database (using data
retrieved from a file). Such solution allows developers to create different config-
uration for different Moodle Platforms by starting multiple instances of the same
agent. Note that, during system development, we used the standard Java JDBC
method to interface the database.

The Moodle Administrator Agent is a user-driven agent. It has two cyclic
behaviors. First, it is responsible for updating the list of available Moodle Plat-
forms (by periodically asking the JADE Directory Facilitator about agents that
advertise themselves as agents interfacing the Moodle Platforms). The second
cyclic behaviour looks for existing Training Resources Manager Agents. The re-
maining behaviors are triggered by user actions and deal with: (1) creating a
new Moodle User Account, (2) selecting a Moodle User Account, (3) updating a

1318 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

Moodle User Account, (4) deleting a Moodle User Account, (5) creating a new
Moodle Course, (6) selecting a Moodle Course, (7) updating a Moodle Course,
and (8) deleting a Moodle Course.

The last agent of the Training Resource module is the Training Resource
Manager Agent. On setup, it connects to an auxiliary course database, created
to speed-up the searching process and to lower the cost of communication
between the system and the Moodle Platform. This course database allows
also for a single Training Resources Manager Agent to handle more than one
e-learning platform and/or different types of them. It contains description sof
available courses in a format corresponding to the ontology of training resources
(see, Fig. 5, for more details).

Fig. 5. Training Resource Database

When searching for the Training Resources concerning a given subject (iden-
tified by the Skill name) the Training Resource Manager Agent looks in the Skill-
Dictionary table for the ID of such Skill and then creates a query that will return
all IR that cover the selected topic(s) and has the Skill level above the received
requirement. This means that, after attending a specific e-course, worker should
obtain the corresponding knowledge. All courses found as a result of the query,
are send back to the Resource Manager (without any knowledge to whom they
will be forwarded to). Next, the Resource Manager Agent forwards them to the
requesting Worker Agent.

In the system prototype, the second source of the Information Resources is
the Publication Resource module. Currently, it contains only one agent, which is
responsible for communicating with the DBLP database. However, in the future,
it is planned (and it is a natural extension of the proposed system design) to add
additional agents that will facilitate information from other / additional sources.
Here, the keywords (Skill names) received from the Worker Agent are trans-
formed into an appropriate query-string, and executed on the DBLP interface.
The received response is parsed from the HTML code, and filtered using the
Skill level parameter (to select these resources that are actually needed). Next,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1319

Maria Ganzha et al.

it is stored in the ResourceList. If required, the ResourceList may be trimmed
to the requested length (note that the query to the DBLP—as well as to any
other data source—may return hundreds of responses). Next, the ResourceList
is send back to the requesting Worker Agent.

3.2. Employee module

The second specialized module is the Employee Module, which is composed
of three agents: (a) Project Manager Agent, (b) Worker Agent, and (c) Human
Resource Manager Agent. The last agent is completely autonomous, while the
first two require human interactions (at least in the current design of the system).

The Human Resource Manager Agent emulates functions of a human HRM,
supported by an appropriate Worker Agent. Its only role is to fetch (from a file)
a list of “not hired workers” and, when requested, search for a workers with
needed skills. This is to emulate situation when the PM finds out that she needs
to hire extra workers to complete the project and requests help from the HRM.

The Worker Agent supports the Worker and represents her/him in the sys-
tem. It stores the Worker profile and, if appropriate, the Task objects repre-
senting tasks currently assigned to its owner. This is the only agent (in this
module) that communicates with the Resource Manager Agent, to ask for Infor-
mation Resources. This behavior can be triggered manually by the Worker, or
autonomously during the project management process. It is facilitated by creat-
ing a list of needed Skills. This list is send to one, or more, Resource Manager
Agents. On demand, this agent can send the list of Skills of its Worker (owner),
to the Project Manager Agent, so that it can be used in the task-worker match-
ing process (using data as actual as possible). Furthermore, the WA responds
to the queries from the Project Manager Agent, asking which tasks, stored in
the Project predicate object, can be completed by the Worker. Second, it ac-
cepts the information that its Worker was assigned a task, and appropriately
modifies her/his profile (availability schedule).

Note that, in the case when a “not hired” employee receives a message con-
taining an information that a task was assigned to it, it changes its registration
type, in the JADE Directory Facilitator, from “not hired” to “hired.”

The last agent in this module is the Project Manager Agent. As a matter
of fact, this is a PA extended with the project management related capabilities
(see, also [15, 17, 16]). This agent is responsible, first, for communication be-
tween the “outside world” and the system. Here, it accepts the Project objects,
representing projects to be dealt with. It also communicates with the Human Re-
source Manager Agent and the Worker Agents (representing potential project
workers). On the startup, it initiates two cyclic behaviors responsible for updat-
ing the list of available Human Resource Manager Agents, and the list of hired
Worker Agents. This is done by cyclically asking the JADE DF for the current list
of such agents. Currently, the Project Manager Agent handles project manage-
ment from the moment of receiving a new project, to sending assigned tasks
to the selected Worker Agents, or to declining its completion (due to the lack of
resources / workers).

1320 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

3.3. Matchmaking in the system

While in [30] a complex method for ontological matchmaking was proposed,
here we decided for a more simplistic approach. As stated above (sections 2.3,
and 3), we have deliberately elected to apply a very simple, Java class-based
ontology; rather than a full blown OWL-based one (similar to that discussed
in [17]). This being the case, at current stage of system design, applying com-
plex ontological matchmaking would make no sense.

The implemented matchmaking aims at minimizing the gap between the
needed and the existing skills. It assigns Workers to Tasks by picking an em-
ployee with the skill-level at least as high as that required by the task. The
assessment of the skill-level is done independently by each Worker Agent, and
is coordinated by the Project Manager Agent. The Workers that do not match
the needed Skill set, can be (self)assigned to the training activities that should
remove the gap and allow them to complete the task. In the process of estab-
lishing if the Worker can complete the task, the current schedule of the Worker,
the time needed to accomplish the task, and (if necessary) the time of comple-
tion of the needed training activities are jointly taken into account. Matchmaking
is also used by the Human Resource Manager Agent to find the best Workers
to be hired, in the case that a project needs them. Agents that use the match-
making engine include: the Project Manager Agent, the Worker Agent, and the
Human Resource Manager Agent.

4. Experimental evaluation

Let us now illustrate work of our prototype, using a sample scenario that matches
the first use case, discussed in section 1.2. Let us assume that the execu-
tion environment contains the followings units: single instances of Project Man-
ager Agent, Resource Manager Agent, Publication Resources Manager Agent,
Training Resource Manager Agent, Human Resource Manager Agent, and five
Worker Agents, three employees (WA1, WA2, WA3), with the following skills:
Oracle back-end developer, front-end mobile platforms developer, and graph-
ics / web designer. Furthermore, we have two workers in the pool managed
by the Human Resource Manager Agent (WA4 and WA5), both graphics /
web designers. Here, recall that the Human Resource Manager Agent emu-
lates the process of hiring additional employees. The Publication Resources
Manager Agent and the Training Resource Manager Agent are connected to
their respective sources of Information Resources (DBLP and Moodle). Fur-
thermore, the Training Resource Manager Agent is connected with the Train-
ing Resource Database storing information about current course offerings. The
sample project under consideration matches the example presented in sec-
tion 1.1. It consists of four tasks: T1—implementation of a back-end that uses
an Oracle database, T2—implementation of a mobile application for the iOS,
Android and Windows Phone, T3—performing functional tests, and T4 - cre-
ation of the layout of the graphic interface for the new application.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1321

Maria Ganzha et al.

Let us now assume that the WA1 and the WA2 have skills connected with
the task T1 (and that the WA1 is a better match—more skills satisfy task re-
quirements); however, the WA2 also can be assigned to complete task T2. Fur-
thermore, worker WA3 may execute either task T3 or task T4, but with a skills
preference favoring execution of task T3. Finally, both workers WA4 and WA5
have skills corresponding to tasks T3 and T4 (however, WA5 is a better match
for either one of them). The fact that a worker has skills connected to the task
does not mean that all of the required skills are present. This can also mean
that some of needed skills are not at the required level, or that some of them
are missing (see, also Fig. 6). We will now discuss what is happening when the
project is introduced to the system, from the “point of view” of each major agent
/ module.

Fig. 6. Skills connected to tasks—without skills levels

4.1. Project Manager Agent

From the perspective of the Project Manager Agent, the scenario begins when
it receives a message containing an ontologically described project to man-
age. As its first activity, the Project Manager Agent refreshes the list of workers
(Worker Agents) available in the organization and, in the considered example,
finds out that these are WA1, WA2 and WA3. Now it can send a call for propos-
als to all of them, seeking task executors. Upon reception of responses (let us
omit the case of non-responsive WAs) the Project Manager Agent matches pro-
posals to tasks, to select the best Worker Agent for each of them. In our situa-
tion, after the matching is completed, the T1 will be preliminarily assigned to the
WA1, T2 to the WA2 and T3 to the WA3; while task T4 will be without a worker
assigned to it. Now, the Project Manager Agent will send a message to the
Human Resource Manager Agent, with a request to hire a new employee that
will match the requirements of task T4. After obtaining information that worker
WA5 should be hired, the Project Manager Agent can change the preliminary
assignment of tasks to the final one (by re-evaluating the available Workers vis-
a-vis the required tasks), and send to appropriate Worker Agents their assigned

1322 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

tasks—T1 to WA1, T2 to WA2, T3 to WA5 and T4 to WA3. In this moment this
scenario is completed for the Project Manager Agent ; see, also Fig. 4.1.

Fig. 7. Task-worker matching

4.2. Worker Agent

Now let’s consider the Worker Agent perspective (here, we will use the WA2 as
the example). Since all Worker Agents execute the same behaviors, the specific
case of W2 represents the general Worker Agent behavior. Here, our discussion
will need a more detailed set of assumptions. Let us, therefore, assume that the
WA2 has the following skills (called Worker Skills WS; see, Fig. 8): WS1, iOS
skill at level 53, WS2, Android skill at level 61, WS3, Oracle skill at level 67.
The WA2 can, of course, have also other skills, but in this example they will by
irrelevant, so we omit them. The specification of the T1 states that the needed
skills are (Task Skills TS, where Sn in WSn and TmSn denote the same skill n):
T1S3 at level 70; and T2: T2S1 at level 69, T2S2 at level 60 and T2S4, Windows
Phone skill, at level 34.

For each Worker Agent this scenario starts when it receives a message with
a request to perform the individual task matching process. This message can
be sent by the Project Manager Agent or the Human Resource Manager Agent.
However, this is inconsequential for the actions undertaken by the Worker Agent.
Each task will be checked against the Worker skills. In this stage the Worker
Agent can observe that it matches all skills needed for task T1, but it needs to
improve one skill by a small amount (T1S3−WS3 = −3). In the case of task T2,
one new skill has to be acquired (S4) and one has to be improved by a signifi-
cant amount (16). To check if it is possible to acquire/improve skills, the Worker
Agent will communicate with the Resource Manager Agent seeking resources
for topics related to S1, S3 and S4. After obtaining the information about appro-
priate resources, the Worker Agent will create suggestions, which tasks can be
assigned to it. In our case, both the T1 (see, Fig. 9) and the T2 (see, Fig. 10)
will be acceptable. Now, the Worker Agent replies to the Project Manager Agent
with its suggestions, and waits for further requests. This scenario can end with

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1323

Maria Ganzha et al.

no task assigned to the worker (here, WA4), or with a reception of a message
containing assigned task(s), and (if required) list of found IRs (see, Fig. 11).

Fig. 8. Worker skills with levels

Fig. 9. Task assigned to worker with none learning activities to perform

4.3. Human Resource Manager Agent

For the Human Resource Manager Agent the scenario starts when it receives
a message-request, from the Project Manager Agent, to hire a new employee
that could work on the task T4. Work of the Human Resource Manager Agent
consists of comparing skills required for the T4 to skills provided by workers

1324 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

Fig. 10. Task assigned to worker with learning activities

Fig. 11. Worker with found resources

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1325

Maria Ganzha et al.

WA4 and WA5. Upon completing such comparison, it decides that WA5 is more
suitable for this task. Therefore, the Human Resource Manager Agent sends a
message with the WA5 contact information and its skills to the Project Manager
Agent.

4.4. Resource Module

Now let us see how this scenario looks from the perspective of the Resource
Module. First, the Resource Manager Agent is contacted by a Worker Agent
(here, agent representing worker WA2) with a request to search for resources
that can improve its skills S1, S3 and S4. It forwards this message to the Training
Resource Manager Agent and to the Publication Resources Manager Agent.
Contact information for both agents is obtained from the JADE Directory Fa-
cilitator. The dispatched message contains the list of Skills and an added in-
formation that it was the WA2 that originated the query. After obtaining both
answers (again, we omit the case of non-responsive entities) theResource Man-
ager Agent forwards the combined ResourceList back to the WA2.

When processing the request, both the Training Resource Manager Agent
and the Publication Resources Manager Agent work in a very similar way. Here,
the Training Resource Manager Agent, after obtaining request to search for
courses concerning S1, S3 and S4, will search the course database. Suppose
that for skills S1 and S3 there was only a single course available for each of
them, but for skill S4 there were 6. Now the the Training Resource Manager
Agent will trim this number, and selects only a predefined number of courses,
say two. Selection of those two courses is based on the skill level, duration,
and cost of each one of them (see, Fig. 13). The ResponseList (consisting of
courses applicable for each of the three skills) will be send back to the Resource
Manager Agent. At the same time, the Publication Resources Manager Agent
will perform similar actions, but instead of searching the course database it will
build a query that will be passed to the DBLP search engine. Next it will parse
the obtained answer (see, Fig. 12). Finally, the resulting (possibly trimmed) list
of publications will be send back to the WA2, as the ResponseList.

Note that this scenario captures characteristics of both use cases described
in section 1.2. Specifically, the individual support case is subsumed by the
above scenario. The Worker Agent could act not only in response to the mes-
sage from the Project Manager Agent. It could also work either on request of
its owner, or autonomously (proactively or reactively); in all cases it would be
searching for the needed resources. Thus the use case 1.2, would simply start
from a message send from the Worker Agent to the Resource Manager Agent.

Let us complete our description by the depiction of an actual communication
between the above described JADE agents. This communication was captured
in a running system using the JADE Sniffer Agent, and is represented in Fig. 14.

1326 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

Fig. 12. Searching in Digital Bibliography and Library Project—none resources found

Fig. 13. Searching in Training Resources Database—resources found

Fig. 14. Communication process—messages sent in the system—captured by JADE
Sniffer Agent

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1327

Maria Ganzha et al.

5. Concluding remarks

The aim of the presented work was to describe a prototype of an agent-based
Information Resources provisioning system, facilitating support for workers in
a virtual organization. The implemented prototype consists of agents directly
supporting workers and project managers (interacting with humans), as well as
autonomous agents that facilitate services needed for functioning of the system.
The implemented prototype has been interfaced with the DBLP library (as an
example of publication resource provisioning), and with the Moodle platform (as
an example of e-learning content provisioning).

While the system works with ontologically demarcated resources and se-
mantic information processing, we have select a restricting ontological repre-
sentation, based on Java classes. This decision was a deliberate one and was
caused by factors outlined in sections 2.3 and 3.

In view of known shortcomings of the initial prototype, we plan to proceed
as follows. First, we will evaluate lessons learned during system development
and testing. Second, we will replace Java class-based ontology by an OWL-
based one, and adapt all needed information processing and communication
procedures. Here, we will use our JADE add-on that allows JADE agents to
communicate by sending OWL snippets (without compiling ontologies into Java
classes, see [35]. We will also introduce a newly designed front-end based on
the Play framework (for more details, see [35]. Furthermore, we will expand the
list of sources of Information Resources (both publication and training), to make
the system truly heterogeneous. We will report on our progress in subsequent
publications.

References

1. Dublin core webpage. http://dublincore.org/
2. Java Agent DEvelopment framework. http://jade.tilab.com/
3. Log4JADE Agent-based Logging Service. http://log4jade.sourceforge.

net/
4. Moodle. http://moodle.org/
5. http://www.businessdictionary.com/definition/

virtual-organization.html (2008)
6. http://www.mwi.pl/badania-i-innowacje/projekty/wkup.html

(2011)
7. The acm computing classification system. http://www.acm.org/about/

class/ccs98-html
8. Badica, C., Popescu, E., Frackowiak, G., Ganzha, M., Paprzycki, M., Szymczak, M.,

Park, M.W.: On human resource adaptability in an agent-based virtual organization.
In: N.T. Nguyen, R.K. (ed.) New Challenges in Applied Intelligence Technologies.
Studies in Computational Intelligence, vol. 134, pp. 111–120. Springer, Heidelberg,
Germany (2008)

9. Barnatt, C.: Office space, cyberspace and virtual organization. Journal of General
Management 20(4), 78–92 (1995)

10. Bleeker, S.: The Virtual Organization. Sage Thousand Oaks (CA) (1998)

1328 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Information Resource management in a VO

11. Cervenka, R., Trencansky, I.: The Agent Modeling Language - AML. Birkhuser Basel
(2007)

12. Czerniejewski, B.: Personal Communication
13. Dieter, F.: Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer-Verlag, New York (2003)
14. Dunbar, R.: Virtual Organizing, pp. 6709–6717. Thomson Learning, London (2001)
15. Frackowiak, G., Ganzha, M., Gawinecki, M., Paprzycki, M., Szymczak, M., Bădică,

C., Han, Y.S., Park, M.W.: Adaptability in an agent-based virtual organization. Inter-
netional Journal Accounting, Auditing and Performance Evaluation (2008), in press

16. Frackowiak, G., Ganzha, M., Paprzycki, M., Szymczak, M., Han, Y.S., Park, M.W.:
Adaptability in an agent-based virtual organization—towards implementation. In:
WEBIST (Selected Papers). pp. 27–39 (2008)

17. Ganzha, M., Gawinecki, M., Szymczak, M., Frackowiak, G., Paprzycki, M., Park,
M.W., Han, Y.S., Sohn, Y.: Generic framework for agent adaptability and utilization
in a virtual organization—preliminary considerations. In: Cordeiro, J., et al. (eds.)
Proceedings of the 2008 WEBIST conference. pp. IS–17–IS–25. INSTICC Press
(2008)

18. Ganzha, M., Paprzycki, M., Gawinecki, M., Szymczak, M., Frackowiak, G., Badica,
C., Popescu, E., Park, M.W.: Adaptive information provisioning in an agent-based
virtual organization—preliminary considerations. In: Nguyen, N. (ed.) Proceedings
of the SYNASC Conference. LNAI, vol. 4953, pp. 235–241. IEEE Press, Los Alami-
tos, CA (2007)

19. Goldman, S., Nagel, R., Preiss, K.: Agile Competitors and Virtual Organizations.
Van Nostrand Reinhold, New York (1995)

20. Hendler, J.: Agents and the semantic web. IEEE Intelligent Systems 16(2), 30–37
21. Jennings, N.: An agent-based approach for building complex software systems.

Commun. ACM 44(4), 35–41 (2001)
22. Jennings, N., Wooldridge, M.: Agent technology: foundations, applications, and mar-

kets. Springer (1998)
23. Kim, H., Fox, M., Gruninger, M.: An ontology for quality management—enabling

quality problem identification and tracing. BT Technology Journal 17(4), 131–140
(1999)

24. Laclavik, M.: Ontology and agent based approach for knowledge management
25. Laclavik, M., Balogh, Z., Hluchy, L., Nguyen, G., Budinska, I., Dang, T.: Pellucid

agent architecture for administration based processes
26. Maes, P.: Agents that reduce work and information overload. Commun. ACM 37(7),

30–40 (1994)
27. Nwana, H.S., Ndumu, D.T.: Software agents: an overview. In: Knowledge Engineer-

ing Review, vol. 11, pp. 205–244. Cambridge University Press (1999)
28. Omelczuk, A., Wypysiak, M.: Managing human resource adaptability in an agent-

based virtual organization (2011)
29. http://ontoweb.aifb.uni-karlsruhe.de/Ontology/index.html
30. Rhee, S.K., Lee, J., Park, M.W., Szymczak, M., Frackowiak, G., Ganzha, M., Pa-

przycki, M.: Measuring semantic closeness of ontologically demarcated resources.
Fundam. Inform. 96(4), 395–418 (2009)

31. Szymczak, M., Frckowiak, G., Ganzha, M., Gawinecki, M., Paprzycki, M., Park,
M.W.: Resource management in an agent-based virtual organization—introducing a
task into the system. In: Proceedings of the MaSeB Workshop. pp. 458–462. IEEE
CS Press, Los Alamitos, CA (2007)

32. http://dblp.uni-trier.de/

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1329

Maria Ganzha et al.

33. http://www.eil.utoronto.ca/enterprise-modelling/index.html
34. Warner, M., Witzel, M.: Zarzadzanie organizacja wirtualna. Oficyna Ekonomiczna

(2005)
35. Wasielewska, K., Drozdowicz, M., Szmeja, P., Paprzycki, M., Ganzha, M., Lirkov, I.,

Petcu, D., Badica, C.: Agents in grid system—design and implementation. Springer
(2011), to appear

36. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312
(2000)

Maria Ganzha obtained M.S. and her Ph.D. in Applied Mathematics from the
Moscow State University, Moscow, Russia in 1987 and 1991 respectively. Her
initial research interests were in the area of differential equations, solving mixed
wave equations in space with disappearing obstacles in particular, currently she
works in the areas of software engineering, distributed computing and agent
systems in particular. She has published more than 100 research papers and is
on editorial boards of 5 journals and a book series and was invited to Program
Committees of over 100 conferences.

Adam Omelczuk is an MS student at the Warsaw University of Technology,
where he is applying agent-oriented programming paradigm to the personalized
information delivery process. His research interests focus on use of ontologies
and semantic data processing.

Marcin Paprzycki (Senior Member of the IEEE, Senior Member of the ACM,
Senior Fulbright Lecturer, IEEE CS Distinguished Visitor) has received his M.S.
Degree in 1986 from Adam Mickiewicz University in Poznan, Poland, his Ph.D.
in 1990 from Southern Methodist University in Dallas, Texas and his Doctor
of Science Degree from Bulgarian Academy of Sciences in 2008. His initial
research interests were in high performance computing and parallel computing,
high performance linear algebra in particular. Over time they evolved toward
distributed systems and Internet-based computing; in particular, agent systems.
He has published more than 350 research papers and was invited to Program
Committees of over 400 international conferences. He is on editorial boards of
14 journals and a book series.

Mateusz Wypysiak is an MS student at the Warsaw University of Technology,
where he is applying agent-oriented programming paradigm to the information
delivery process. His research interests focus on practical aspects of delivering
of personalized information.

Received: January 17, 2012; Accepted: May 25, 2012

1330 ComSIS Vol. 9, No. 3, Special Issue, September 2012

DOI: 10.2298/CSIS120101030F

Decentralized Management of Building Indoors
through Embedded Software Agents

Giancarlo Fortino1 and Antonio Guerrieri2

DEIS - University of Calabria
Via P. Bucci, cubo 41c, Rende (CS), 87036, Italy

1g.fortino@unical.it,2aguerrieri@deis.unical.it

Abstract. In order to support personalized people comfort and building
energy efficiency as well as safety, emergency, and context-aware infor-
mation exchange scenarios, next-generation buildings will be smart. In
this paper we propose an agent-oriented decentralized and embedded
architecture based on wireless sensor and actuator networks (WSANs)
for enabling efficient and effective management of buildings. The main
objective of the proposed architecture is to fully support distributed and
coordinated sensing and actuation operations. The building management
architecture is implemented at the WSAN side through MAPS (Mobile
Agent Platform for Sun SPOTs), an agent-based framework for program-
ming WSN applications based on the Sun SPOT sensor platform, and at
the base station side through an OSGi-based application. The proposed
agent-oriented architecture is demonstrated in a simple yet effective op-
erating scenario related to monitoring workstation usage in computer lab-
oratories/offices. The high modularity of the proposed architecture allows
for easy adaptation of higher-level application-specific agents that can
therefore exploit the architecture to implement intelligent building man-
agement policies.

Keywords: Smart Buildings, Multi-Agent Systems, Wireless Sensor and
Actuator Networks, Building Management Systems.

1. Introduction

Nowadays, due to advances in communication and computing technologies,
the need to have high comfort levels together with an optimization of the en-
ergy consumption is becoming important for inhabitants of buildings. Moreover,
buildings should also support their inhabitants with automatic emergency and
safety procedures as well as context aware information services. To meet all
these requirements, future buildings have to incorporate diversified forms of in-
telligence [7].

We believe that agent-based computing [20] can be exploited to imple-
ment the concept of intelligent buildings due to the agent features of autonomy,
proactiveness, reactiveness, learnability, mobility and social ability. Specifically
agents can continuously monitor building indoors and their living inhabitants to
gather useful data from people and environment and can cooperatively achieve

Giancarlo Fortino and Antonio Guerrieri

even conflicting specific goals such as personalized people comfort and build-
ing energy efficiency.

A few research efforts based on agents have been to date proposed to
design and implement intelligent building systems [25] [17] [8] [28] [27] [23].
However, none of them provide agents embedded in the sensor and actuator
devices that would introduce intelligence decentralization and improve system
efficiency. This is due to the exploitation of conventional sensing and actua-
tion systems that do not offer distributed computing devices for sensing and
actuation. To overcome this limitation, wireless sensor and actuator networks
(WSAN) [26] can be adopted. WSANs represent a viable and more flexible so-
lution to traditional building monitoring and actuating systems (BMAS), which
require retrofitting the whole building and therefore are difficult to implement in
existing structures. In contrast, WSAN-based solutions for monitoring buildings
and controlling equipment, such as electrical devices, heating, ventilation and
cooling (HVAC), can be installed in existing structures with minimal effort. This
should enable monitoring of structure conditions, and space and energy (elec-
tricity, gas, water) usage while facilitating the design of techniques for intelligent
device actuation.

The implementation of the proposed architecture is based on MAPS (Mobile
Agent Platform for Java Sun SPOTs) [3] at sensor/actuator node side and on
Jade [5] OSGi-based application at coordinator side.

The main contribution of this paper is the definition of A-BMF (Agent based
Building Management Framework), a decentralized and embedded agent ori-
ented architecture for the management of intelligent buildings that is based on
WSANs and overcomes the limitations of the aforementioned solutions [25] [17]
[8] [28] [27] [23]. In particular, the aim of our architecture is to optimize and fully
decentralize the sensing and actuation operations through distributed coopera-
tive agents both embedded in sensor/actuator devices and running on more
capable coordinators (PC, plug computers, PDA, smartphones). This would
enable more effectiveness in programming the sensing and actuation opera-
tions and more efficiency in the management of distributed sensor and actua-
tor nodes. Moreover, the proposed architecture can be easily programmed to
support a wide range of building management applications integrating comfort,
energy efficiency, emergency, safety, and context-aware information exchange
aspects.

The rest of this paper is organized as follows. Section 2 describes ap-
proaches related to our work. In Section 3 the proposed agent-based architec-
ture for building management is defined. Section 4 presents the MAPS-based
implementation of the low-level architecture, specifically the sensor/actuator
agents. Section 5 shows the system GUI and a system deployment for mon-
itoring the workstation usage in computer laboratories. Finally, conclusions are
drawn and directions of future work elucidated.

1332 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

2. Related Work

In [25] the authors present the MASBO (Multi-Agent System for Building cOn-
trol) architecture that aims to provide a set of software agents to support both
on-line and off-line applications for intelligent work environments. MASBO is
used to develop a multi-agent system (MAS) able to tradeoff energy saving
and inhabitants’ preferences where preferences can be learnt and predicted
through an unsupervised online real-time learning algorithm (analyzing inhab-
itants’ behavior). MASBO agents reside on a server and constantly monitor
data from sensors and eventually actuate some commands. MASBO works as
an enhancement to an existing building automation system by adding learning,
reasoning and autonomous capabilities. The responsibility of controlling sen-
sors and actuators, and keeping a requested environmental value constant is
not addressed by MASBO.

In [17] the authors propose a working solution to the problem of thermal
resource distribution in a building using a market-based MAS. Computational
agents representing individual temperature controllers bid to buy or sell cool or
warm air. The agents, running in a monolithic process on a workstation, are
able to distribute the thermal resources so that all the building offices have an
equitable temperature distribution. Temperature sensors and air flow actuators
are all accessible directly through distributed hardware modules via a network
connection.

In [8] the authors describe a MAS that monitors and controls an office build-
ing in order to provide added values like energy saving together with the delivery
of energy. The developed system is distributed in the sense that some agents
are located on PDAs and others run on the Bluetooth access points (worksta-
tions) that communicate with the PDAs. The system makes use of the existing
power lines for communication between the agents and the sensing and actua-
tion system controlling lights, heating, ventilation, etc.

In [28] a conceptual framework, namely Cyber-enabled Efficient Building
Energy Management System (CEBEMS), is presented. Its intent is increasing
energy efficiency, lowering dependence on the energy grid, and providing an
economic incentive for the end user. It enables distributed control methodol-
ogy using MAS for efficient management of both electrical and thermal energy
systems for realizing maximum efficiency energy management. MAS aim to
achieve system-wide objectives, which may not be solved using a single agent,
but by coordination and communication among the agents.

In [27] authors do a demonstration of data gathering from a WSN. In the
system proposed, users can query and view the local data in an ad-hoc man-
ner, and possibly remotely configure and manipulate the data capture process.
For the purposes of this demonstration, authors adopted Agent Factory Micro
Edition (AFME) [22]. The Agents, implemented on AFME, are programmed to
answer users’ requests.

In [23] a simulation of a building environment where agents can manage
the allocation of resources and facilitate the residents’ lives is presented. In
the designed system, sensors deployed in a building send their information to

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1333

Giancarlo Fortino and Antonio Guerrieri

agents. Agents, that reside on workstations, process information and send them
to a fuzzy controller [16] that eventually transmits a proper signal to switches,
valves or other actuators.

Differently from the described approaches, our agent-based architecture
embeds agents both into the wireless sensor and actuator network used as
infrastructure for building monitoring and control and on more capable coor-
dinators. This important feature would provide decentralized intelligence and
improve system efficiency.

Table 1 summarizes the characteristics of the works reported above.

3. Agent-based Architecture

The agent-based architecture (see Fig. 1) of A-BMF for decentralized and em-
bedded building management is composed of a building manager agent (BMA),
which is installed in the control workstation, coordinator agents (CAs), which run
in the basestations, and sensor agents (SAs), which are executed in the sen-
sor/actuator nodes. Specifically, the architecture relies on a multi-basestation
approach to allow for large buildings composed of multiple floors and diversi-
fied environments. Thus, the architecture is purposely hybrid: hierarchical and
peer-to-peer. Interaction between CAs is peer-to-peer whereas interactions be-
tween CAs and their related SAs (or SA cluster) and between BMA and CAs
are usually master/slave. Moreover, SAs of the same cluster coordinate to dy-
namically form up a multi-hop ad-hoc network rooted at the master CA.

Fig. 1. Agent-based architecture for decentralized and embedded management of build-
ings based on wireless sensor and actuator networks.

1334 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Table 1. Related Work comparison.

 Aim of the work Agents location WSAN support

MASBO [23]
Tradeoff energy saving
and inhabitants’
preferences

Server NO, but agents can
interface to WSN

Market-based
MAS [15]

Distributing the thermal
resources across a
building

The agents run in a
monolithic process on a
workstation

NO

MAS to
monitor and
control office
building [8]

Providing energy saving
together with the delivery
of energy

Some agents are
located on PDAs and
others run on the
Bluetooth access points.

NO

CEBEMS [26]

Increasing energy
efficiency, lowering
dependence on the
energy grid, and
providing an economic
incentive for the end user

N/A. CEBEMS is still a
conceptual framework N/A

System of
data
gathering on
AFME [25]

Allowing users to query
and view data from a
WSN

Agents are embedded YES

MAS with
fuzzy
approach
[21]

Simulation of an
environment where
agents can manage the
allocation of resources
and facilitate the
residents’ lives

Workstation N/A

A-BMF

Optimizing and fully
decentralizing the
sensing and actuation
operations through
distributed cooperative
agents

Agents are both
embedded in
sensor/actuator devices
and running on more
capable coordinators

YES, our agent-based
architecture embeds
agents into the WSAN
used as infrastructure
for building monitoring
and control

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1335

Giancarlo Fortino and Antonio Guerrieri

In Fig. 2 the main functionalities of BMA, CA and SA are shown according
to a layered organization that is partially derived from the Building Management
Framework (BMF) [15].

BMA's Layers

Monitoring & Control GUI Goal-directed Behaviors

System Programming

CA Communication

(a)

Request Scheduling

Group Organization

CA's Layers

Inter-CA Coordination BMA Communication

WSAN Management

Heterogeneous Platform Support

(b)

Node Management

WSAN Management Sensing and Actuation Management

Hardware Sensor Platform

SA's Layers

Dynamic Group Management In-node Signal Processing Multi Request Scheduling

(c)

Fig. 2. The layered organization of (a) BMA, (b) CA and (c) SA.

The BMA is the top level agent that manages the distributed agent based
architecture. The BMA includes the following layers:

– CA Communication allows the message based communication between
BMA and the CAs.

– System Programming is the layer which allows to program the distributed
agent network (SAs are reached through their CAs).

– Monitoring & Control GUI provides a GUI through which the building man-
ager can issue requests to configure/program the agent-based building net-
work and visualize its status and the monitored data.

– Goal-directed Behaviors permits implementing specific building monitoring
and control strategies to realize specific applications (energy monitoring,
comfort, etc).

1336 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

The CA is the middle level agent which is able to manage a cluster of SAs
which refers to a given area of the intelligent building. The CA includes the
following layers:

– Heterogeneous Platform Support incorporates a set of adapters that allow
interfacing the system with different type of sensor/actuator platforms. An
adapter is linked to a specific hardware device able to communicate with a
specific sensor platform in the network.

– WSAN Management allows to fully manage a WSAN cluster. This layer
supports packet coding/decoding according to the A-BMF application-level
protocol and packet transmission/reception to/from the WSAN cluster. More-
over, this layer supports device discovery within the cluster.

– Group Organization provides group-based programming of sensors and
actuators, tracking of nodes and groups in the system, and management of
node configurations and group compositions. Node organization in groups
is specifically defined to capture the morphology of buildings. Nodes belong
to groups depending on their physical (location) or logical (operation type)
characteristics.

– Request Scheduling allows the support for higher-level application-specific
requests. Through this layer, a CA can ask for the execution of specific tasks
to single or multiple SAs or groups of SAs. Moreover, this layer keeps track
of the requests submitted to the system, waits for data from the nodes and
passes them to the requesting applications. A request is formalized through
the following tuple: R = <Obj, Act, R, LT>, where Obj is a specific sensor
or actuator belonging to a node, Act is the action to be executed on Obj, R
is the frequency of each executed Act, LT is the length of time over which
these actions are to be reiterated. Moreover, a request can target a single
node or a group of nodes having Obj.

– Inter-CA Coordination offers efficient mechanisms for coordination between
CAs. Specifically, CAs cooperate for submitting queries and retrieving data
spanning multiple SA clusters.

– BMA Communication allows the message based communication between
CA and the reference BMA.

The SA is the low level agent running on sensor/actuator nodes to perform
given sensing/actuating operations. The SA is designed around the following
layers:

– Hardware Sensor Platform allows to access the hardware sensor/actuator
platform. In particular, the layer facilitates the configuration of the platform
specific drivers and the use of the radio.

– WSAN Management manages the node communication with the refer-
ence CA according to the A-BMF application protocol and among the cluster
nodes through the network protocol provided by the node sensor platform.

– Sensing and Actuation Management allows to acquire data from sensors
and execute actions on actuators. In particular, this layer allows to address
different types of sensors/actuators in a platform independent way.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1337

Giancarlo Fortino and Antonio Guerrieri

– Node Management is the core of the SA and allows to coordinate all
the layers for task execution. In particular, it handles events from the lower
layers every time that a network packet arrives or data from sensor/actuator
are available, and from the upper layers every time that data are processed
or a stored request has to be executed.

– Dynamic Group Management provides group management functionali-
ties to the SA. A node can belong to several groups at the same time and
its membership can be dynamically updated on the basis of requests from
CAs.

– In-node Signal Processing allows the SA to execute signal processing
functions on data acquired from sensors [4]. It can compute simple aggre-
gation functions (e.g. mean, min, max, variance, R.M.S.) and more complex
user-defined functions on buffers of acquired data.

– Multi Request Scheduling allows the scheduling of sensing and actuation
requests. In particular, it stores the requests from CAs and schedules them
according to their execution rate.

4. MAPS-Based Implementation

The agent-based building management architecture of A-BMF is currently im-
plemented through MAPS [3], our agent-based framework for developing WSN
applications on the Sun SPOT sensor platform. MAPS has been selected as
one of the most representative frameworks for agent oriented programming of
sensor/actuator nodes [2] [11] [12]. Only two other java-based platforms cur-
rently exist: AFME [22] and MASPOT [19]. The former is based on a more
complex programming model and provides basic operations less efficient than
MAPS. The latter is mainly centered on agent mobility and does not provide a
suitable API for programming complex agent behaviors. Thus MAPS has been
adopted as the one fulfilling the needed requirements of effective agent pro-
gramming and efficient operations. Moreover, currently the mobility feature of
MAPS agents is not used in the current implementation of A-BMF. In this sec-
tion we first provide a brief overview of MAPS (more details can be found in [3],
[21]) and, then, present the MAPS-based implementation of the proposed build-
ing management architecture at sensor-node side, specifically behavior and
event-based interactions of the SA.

4.1. MAPS: a brief overview

MAPS [3] [21] [1] is an innovative Java-based framework specifically developed
on Sun SPOT technology for enabling agent-oriented programming of WSN
applications. It has been defined according to the following requirements:

– Component-based lightweight agent server architecture to avoid heavy con-
currency and agents cooperation models.

– Lightweight agent architecture to efficiently execute and migrate agents.

1338 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

– Minimal core services involving agent migration, agent naming, agent com-
munication, timing and sensor node resources access (sensors, actuators,
flash memory, and radio).

– Plug-in-based architecture extensions through which any other service can
be defined in terms of one or more dynamically installable components im-
plemented as single or cooperating (mobile) agents.

– Use of Java language for defining the mobile agent behavior.

The architecture of MAPS (see Fig. 3) is based on several components inter-
acting through events and offering a set of services to mobile agents, including
message transmission, agent creation, agent cloning, agent migration, timer
handling, and an easy access to the sensor node resources. In particular, the
main components are the following:

Fig. 3. The architecture of MAPS.

– Mobile Agent (MA). MAs are the basic high-level component defined by user
for constituting the agent-based applications.

– Mobile Agent Execution Engine (MAEE). It manages the execution of MAs
by means of an event-based scheduler enabling lightweight concurrency.
MAEE also interacts with the other services-provider components to fulfill
service requests (message transmission, sensor reading, timer setting, etc)
issued by MAs.

– Mobile Agent Migration Manager (MAMM). This component supports agents
migration through the Isolate (de)hibernation feature provided by the Sun

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1339

Giancarlo Fortino and Antonio Guerrieri

SPOT environment. The MAs hibernation and serialization involve data and
execution state whereas the code must already reside at the destination
node (this is a current limitation of the Sun SPOTs which do not support
dynamic class loading and code migration).

– Mobile Agent Communication Channel (MACC). It enables inter-agent com-
munications based on asynchronous messages (unicast or broadcast) sup-
ported by the Radiogram protocol.

– Mobile Agent Naming (MAN). MAN provides agent naming based on prox-
ies for supporting MAMM and MACC in their operations. It also manages
the (dynamic) list of the neighbor sensor nodes which is updated through a
beaconing mechanism based on broadcast messages.

– Timer Manager (TM). It manages the timer service for supporting timing of
MA operations.

– Resource Manager (RM). RM allows access to the resources of the Sun
SPOT node: sensors (3-axial accelerometer, temperature, light), switches,
leds, battery, and flash memory.

The dynamic behavior of a mobile agent (MA) is modeled through a multi-
plane state machine (MPSM). Each plane [6] may represent the behavior of
the MA in a specific role so enabling role-based programming. In particular, a
plane is composed of local variables, local functions, and an automaton whose
transitions are labeled by Event-Condition-Action (ECA) rules E[C]/A, where E
is the event name, [C] is a boolean expression evaluated on global and local
variables, and A is the atomic action. Thus, agents interact through events,
which are asynchronously delivered and managed by the MAEE component.

It is worth noting that the MPSM-based agent behavior programming allows
exploiting the benefits deriving from three main paradigms for WSN program-
ming: event-driven programming, state-based programming and mobile agent-
based programming.

MAPS is also interoperable with the JADE framework [5]. Specifically, a
JADE-MAPS gateway [9] has been developed for allowing JADE agents to in-
teract with MAPS agents and vice versa. While both MAPS and JADE are Java-
based, they use a different communication method. JADE sends messages ac-
cording to the FIPA standards (using the ACL specifications), while MAPS cre-
ates its own messages based on events. Therefore, the JADE-MAPS Gateway
facilitates message exchange between MAPS and JADE agents. This inter-
platform communication infrastructure allows rapid prototyping of WSN-based
distributed applications/systems that use JADE at the basestation/coordinator/
host sides and MAPS at the sensor node side.

4.2. MAPS-based sensor agents

MAPS based SA is compliant with the SA architecture discussed in Section 3.
According to MAPS agent programming, the SA is composed of a behavior
and an interaction protocol based on events. In particular, the behavior defines
the logic of the SA through a set of planes representing its functionalities. The

1340 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

interaction protocol allows to interact with the CA to provide the requested ser-
vices. In the following subsections we first describe the event based interaction
protocol between CA and SA which provide a consistent snapshot of the ser-
vices that an SA can offer to a CA and how such services can be exploited;
then we detail the SA’s behavior that shows the SA’s architecture composed of
management and sensing planes defined as finite state machines.

Event-based interaction protocol. The MAPS-based SA (hereafter simply
named SA) interacts with its cluster CA through events as sketched in the se-
quence diagram of Fig. 4. Once the SA is created, it periodically emits the
BM SA ADVERTISEMENT event until the CA sends a configuring event (group
management or request scheduling). Through the BM GROUP MANAGEMENT
event, the CA manages the membership of target SAs (see Section 3). After the
SA processes the received event, it sends the BM ACK event to the CA. The
BM SENSOR SCHEDULE (or BM ACTUATOR SCHEDULE) event allows to
request a specific sensing (or actuation) operation to target SAs. The SA trans-
mits sensed (processed) data to the CA through the BM DATA event. The CA
can unschedule previously scheduled requests through the BM UNSCHEDULE
event. Finally the CA sends out the
BM SA RESET event to reset target SAs.

Fig. 4. Sequence Diagram of the interactions between CA and SA.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1341

Giancarlo Fortino and Antonio Guerrieri

Tables 4 and 5 in Appendix A report the defined MAPS-based building man-
agement events and the predefined values of their parameters. In particular, an
event is defined by its standard parameters: EventSender ID, EventTarget ID,
Event Type, Event Occurrence. The defined events are of two possible super
types: MSG (sent by CA to SA) and MSG TO BASESTATION (sent by SA to
CA). Both types are further specialized in the defined BM events as reported in
the pairs <MSG TYPE, BM event>of the 3rd column of Table 4 in Appendix A.
Moreover, each event type has its own additional parameters, which are de-
scribed in Table 5 in Appendix A. It is worth noting that the ADDRESSEE value
can be set through the regular expression formalized in Eq. 1 where SA is a
sensor agent of the building management architecture, G is an element from
the set of defined groups, STO is a set theory operator (e.g. union, intersection,
difference) and NOT is the negation. Thus, the addressee of an event can be
either one or more SAs, or SAs belonging to groups or complex compositions
of groups.

SA+|([NOT]G[STO[NOT]G]∗) (1)

Sensor Agent behavior. The SA agent behavior consists of two types of
planes: Manager plane and Request plane. While the Manager plane is created
at the SA creation time and handles all node targeting events, a Request plane
is created by the Manager plane every time that a new request schedule is re-
ceived. This type of plane is removed when it completes its task or due to the
reception of an unschedule event. Agent planes receive events from the MAPS
dispatcher component that is programmed to deliver the events fetched from
the agent queue to the plane in charge to process them according to some dis-
patcher rules (DR). Fig. 5 shows the SA behavior architecture. The dispatcher
rules are reported in Table 2.

Table 2. Dispatcher rules.

Event Plane
BM_SENSOR_SCHEDULE MANAGER

BM_ACTUATOR_SCHEDULE MANAGER

BM_UNSCHEDULE MANAGER

BM_GROUP_MANAGEMENT MANAGER

BM_SA_RESET MANAGER

Event.TMR_EXPIRED <ID, ID_MANAGER_PLANE> MANAGER

Event.TMR_EXPIRED <ID, REQUEST_PLANE_ID> REQUEST

Event.SENSOR_CURRENT_READING <ID, REQUEST_PLANE_ID> REQUEST

The Manager plane is reported in Fig. 6. In particular, after agent creation,
the Manager plane starts a periodic timer to advertise the agent presence along

1342 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Fig. 5. The SA behavior architecture.

with its sensor/actuator available functions and waits for an incoming event from
the CA. When it receives the first event, the timer is reset. Each received event
is filtered against the current SA’s group membership. If the filtered event is for
the current SA, it is processed according to its type. A more detailed description
of each action of the Manager plane is provided using both a self-explanatory
pseudocode (see Fig. 7) and the MAPS code (intended for MAPS programmers;
see Fig. 17 in the Appendix B).

In Fig. 8 the Sensing Request plane is portrayed. This plane is created every
time that the agent receives a BM SENSOR SCHEDULE event. In particular,
after the Sensing Request plane creation, the plane creates and submits the
MAPS sensing event formalizing the sensing request. A sensing request can
be either one-shot or periodic with a given lifetime. The request is scheduled
until LIFETIME ELAPSED==true after the expiration of the periodic timer driv-
ing the submission of the sensing event. A more detailed description of each
action of the Sensing Request plane is provided using both a self-explanatory
pseudocode (see Fig. 9) and the MAPS code (intended for MAPS programmers;
see Fig. 18 in the Appendix B).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1343

Giancarlo Fortino and Antonio Guerrieri

Fig. 6. The SA’s Manager plane.

A0: firstProcessedEvent=FALSE;
Start a periodic Event.TMR_EXPIRED to send the BM_SA_ADVERTISEMENT.

A1: Send BM_SA_ADVERTISEMENT to CA
A2: if the MSG is for this SA

firstProcessedEvent=TRUE && resetTimer (ID_TIMER)
A3: msgType = msgEvent.getParam(ParamsLabel.MSG_TYPE)
A4: Create a new Sensor Plane:

PlaneID = ID_REQUEST, the Request as parameter and start it.
A5: Create a new Actuator Plane:

PlaneID = ID_REQUEST, the Request as parameter and start it.
A6: Unschedule the Request deallocating the Plane with ID = ID_REQUEST
A7: Update current SA Group Membership
A8: Reset the SA and deallocate all the Request Planes;

firstProcessedEvent=FALSE
A9: Send BM_ACK to CA

Fig. 7. The SA’s Manager plane pseudocode.

1344 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Fig. 8. The SA’s Sensing Request plane.

A0: Process Request
A1: Create and submint a Sensing Event on the Sensor Requested
A2: Inizialize and Submit a TMR_EXPIRED Event with the Params PERIOD and LIFETIME;

Set dataToStore
A3: Store sensed data and increase the storedDataCounter
A4: if DATA_TYPE.VALUE == "threshold notification"

Send sensed data to CA if the threshold is verified and reset the
storedDataCounter

else Send sensed data to CA and reset the storedDataCounter
A5: Calculate the SYNTHETIC_DATA_TYPE requested,

if DATA_TYPE.VALUE == "threshold notification"
Send synthetic data to CA if the threshold is verified and reset the

storedDataCounter
else Send synthetic data to CA and reset the storedDataCounter

Fig. 9. The SA’s Sensing Request plane pseudocode.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1345

Giancarlo Fortino and Antonio Guerrieri

5. A system deployment: monitoring workstation usage in
computer laboratories

To show the functionality and effectiveness of the proposed architecture for the
management of building indoors, we present an example of system deploy-
ment for the monitoring of workstation usage in a computer laboratory or in
offices. The wireless sensor network consists of heterogeneous sensor nodes
based on Sun SPOTs that are used to collect information about the ambient
light (through the standard Sun SPOT light sensor), the user presence (through
a Wieye IR sensorboard [10]) and the electricity consumed by the workstation
(through a customization of the ACme electricity sensorboard [18]). Every Sun
SPOT holds a SA able to manage a set of requests while the basestation holds
a CA that allows to manage the SAs. The SAs and CA in the system are shown
in Fig. 10. In particular, while the interaction between SAs and CA is logically a
direct interaction, SAs are organized in a multi-hop clusters which implies that
a message sent by an SA may traverse such multi-hop networks before arriving
at the CA.

It’s worth noting that in the implementation of the case study, as one only SA
cluster was defined, the BMA and CA agents were collapsed in one only agent
with the goal of energy monitoring.

In Fig. 11, the main window of the Building Management GUI is shown. It is
organized in five main sections supporting all the functionalities provided by the
system:

Fig. 10. The application Agents.

– Nodes and Groups Management sections allows to visualize the nodes of
the WSAN and configure groups, respectively. By right clicking on the sen-
sors/groups the user can configure sensor/actuator requests to schedule
on the nodes;

1346 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Fig. 11. The Building Management GUI.

– Request section allows to list details of scheduled requests, display data
charts related to the scheduled requests, unschedule and re-schedule re-
quests;

– Maps and Graphs section allows visualizing WSAN deployment maps and
displaying charts of the data coming from the sensors (examples of charts
are shown in Fig. 13, 14 and 15;

– Console section displays the real-time log of the activity of the system;
– File and Saving menu section enables to save data from the system in

structured files and load stored files to display them in the GUI.

In Fig. 12, the graphical window for sensor/actuator request scheduling is
shown. The window allows setting the parameter of a new request: name, des-
tination (specific nodes or group composition), execution period, lifetime, one
shot request or unlimited lifetime flags, action type and related device, possi-
ble actuator parameters, requested sensed data possibly filtered by thresholds
and/or synthetic data is requested and its type (average/max/min) and eventual
threshold parameters can be set.

In the experimental system deployment the following requests were set:

– the average of the ambient temperature value (in C) is collected every 60
seconds from node 1;

– the average of the ambient light value (in lux) is collected every 60 seconds
from node 2;

– the mean electricity data (in watt) are gathered every minute from nodes
101 and 102;

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1347

Giancarlo Fortino and Antonio Guerrieri

Fig. 12. The graphical window for sensor/actuator request scheduling.

– the max IR sensor value is sensed every minute on nodes 11 and 12.

The aim of the experiment was the monitoring of two workstations in a com-
puter laboratory of the Technest incubator at University of Calabria to under-
stand their users’ behavior. Several snapshots of a significant monitoring activ-
ity of the duration of 90 min are shown in Fig. 13, 14 and 15.

In particular, Fig. 13 shows the real-time data of the ambient temperature
and the ambient light. It is clear that while the temperature in the laboratory is
almost constant, the light was switched off when the room was empty.

Fig. 14 shows the activity of the worker at the Desk 1. While in the first 15
minutes he was doing some word processing, before living the workstation, he
started an hard processing task to his PC that ended at the minute 80.

Fig. 15 illustrates the activity of the worker at the Desk 2. He was doing some
word processing till the minute 20 and after the minute 65. In the meanwhile
he was not to his desk, but his PC was left on (and with no processing task
executing). Desk 2 monitoring shows how a waste of energy could be detected
using the A-BMF. In particular, the waste detection can be done only after a
setup phase useful to understand the signature of a particular PC activity. An
example of signature extrapolated for the PC at desk 2, on the basis of 50
runs, is shown in Fig. 16 where four different working activities are displayed.
In particular, subsequent the activities are: (i) active doing word processing (ii)
active doing word processing and downloading stuff, (iii) inactive with the screen
switched off and downloading stuff, and (iv) inactive with the screen switched

1348 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

(a)

(b)

Fig. 13. Real-time data of the (a)ambient temperature and (b) ambient light.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1349

Giancarlo Fortino and Antonio Guerrieri

(a)

(b)

Fig. 14. Real-time data of the Desk 1. (a) workstation consumed power and (b) user
presence.

1350 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

(a)

(b)

Fig. 15. Real-time data of the Desk 2. (a) workstation consumed power and (b) user
presence.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1351

Giancarlo Fortino and Antonio Guerrieri

off. Table 3 shows the mean and the standard deviation of the power consumed
for the activities above.

Fig. 16. The signature of the PC at desk 2.

Table 3. Signature characteristics (Mean and Standard Deviation) per activity.

Mean [W] Standard Deviation [W]

Active 43,96 2,48

Active + Download 50,51 2,84

Inactive + Download 41,74 2,24

Inactive 34,02 3,01

6. Conclusions and Future Work

In this paper we have proposed A-BMF, an agent-based architecture for flexible,
efficient and embedded sensing and actuation in buildings. Specifically, the dis-
tributed software architecture is embedded into both WSANs and more capable
computing devices (e.g. PCs, smartphones, plug computers). The proposed
architecture can be seen as basic middleware for developing intelligent build-
ing management systems to achieve the Smart Building concept. Currently the

1352 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

proposed architecture is exploited to monitor the space occupation and energy
expenditure in computer laboratories for students to analyze energy consump-
tion patterns with respect to users’ behavior so as to semi-automatically imple-
ment behavior policies. In the current implementation, BMA and CA are merged
into a component-based application implemented through OSGi [24]. Moreover,
only one cluster can be deployed. On-going work is aimed at completing the
JADE-based implementation of the multi-cluster architecture founded on the
BMA and on multiple coordinated CAs. Future work will be devoted to: (i) the
design of a higher-level agent-based architecture for Smart Buildings atop the
proposed architecture to trade off inhabitants’ personal comfort and building
energy expenditure; (ii) the support of user mobility in buildings based on the
interoperation between body sensor network worn by users and the intelligent
agent based building infrastructure; (iii) the formalization of the A-BMF system
through communicating real time state machine-based formalisms [14] for verifi-
cation of A-BMF-based application scenarios; (iv) the exploitation of streaming
techniques [13] to enhance sensor data collecting at application and network
level.

Acknowledgments. This work has been partially supported by CONET, the Cooperating
Objects Network of Excellence, funded by the European Commission under FP7 with
contract number FP7-2007-2-224053, and by TETRis - TETRA Innovative Open Source
Services, funded by the Italian Government (PON 01-00451).

References

1. Aiello, F., Bellifemine, F.L., Fortino, G., Galzarano, S., Gravina, R.: An
agent-based signal processing in-node environment for real-time human ac-
tivity monitoring based on wireless body sensor networks. Journal of Engi-
neering Applications of Artificial Intelligence 24, 1147–1161 (October 2011),
http://dx.doi.org/10.1016/j.engappai.2011.06.007

2. Aiello, F., Fortino, G., Galzarano, S., Gravina, R., Guerrieri, A.: An analysis of Java-
based mobile agent platforms for Wireless Sensor Networks. Multi-Agent and GRID
Systems 7(6), 243–267 (2011)

3. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A Java-Based Agent Platform for
Programming Wireless Sensor Networks. The Computer Journal 54(3), 439–454
(2010)

4. Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A.,
Sgroi, M.: SPINE: a domain-specific framework for rapid prototyping of
WBSN applications. Software Practice & Experience 41, 237–265 (03 2011),
http://dx.doi.org/10.1002/spe.998

5. Bellifemine, F., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. Softw. Pract. Exper. 31, 103–128 (February 2001),
http://dx.doi.org/10.1002/1097-024X(200102)31:2¡103::AID-SPE358¿3.0.CO;2-O

6. Bölöni, L., Jun, K., Palacz, K., Sion, R., Marinescu, D.C.: The Bond Agent Sys-
tem and Applications. In: Proceedings of the Second International Symposium
on Agent Systems and Applications and Fourth International Symposium on Mo-
bile Agents. pp. 99–112. ASA/MA 2000, Springer-Verlag, London, UK, UK (2000),
http://dl.acm.org/citation.cfm?id=647629.732585

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1353

Giancarlo Fortino and Antonio Guerrieri

7. Davidsson, P., Boman, M.: A Multi-Agent System for Controlling Intelligent Build-
ings. In: Proceedings of the Fourth International Conference on MultiAgent Sys-
tems (ICMAS-2000). pp. 377–. IEEE Computer Society, Boston, MA, USA (2000),
http://dl.acm.org/citation.cfm?id=518904.878902

8. Davidsson, P., Boman, M.: Distributed monitoring and control of office buildings by
embedded agents. Information Sciences-Informatics and Computer Science: An In-
ternational Journal - Special issue: Intelligent embedded agents 171, 293–307 (05
2005), http://dl.acm.org/citation.cfm?id=1077829.1077831

9. Domanski, J., Dziadkiewicz, R., Ganzha, M., Gab, A., M.M., M.: Implementing Glid-
erAgent - an agent-based decision support system for glider pilots. In: NATO ASI
Book, vol. to appear. IOS press (2012)

10. EasySen LLC: WiEye - Sensor board for wireless surveillance and security (2011),
[Online]. Available: http://www.easysen.com/WiEye.htm (current December 2011)

11. Essaaidi, M., Fortino, G.: Wireless Sensor Networks and Software Agents. In Soft-
ware Agents, Agent Systems and their Applications (M. Essaidi, M. Paprizicky and
M. Ganzha, Eds.), Information and Communication Security Vol. 32., Chapter 3. IOS
press., vol. 32 (2012)

12. Fortino, G., Galzarano, S.: On the development of mobile agent systems for wire-
less sensor networks: issues and solutions. In Multiagent Systems and Applications:
Practice and Experience. Maria Ganzha and Lakhmi Jain Eds. Studies in Computa-
tional Intelligence, Springer-Verlag (2012)

13. Fortino, G., Nigro, L.: Development of virtual data acquisition systems based on
multimedia internetworking. Computer Standards & Interfaces 21, 429–440 (1999)

14. Fortino, G., Nigro, L.: A toolset in Java2 for modelling, prototyping and implementing
communicating real-time state machines. Microprocessors and Microsystems 23,
573–586 (2000)

15. Guerrieri, A., Fortino, G., Ruzzelli, A., O’Hare, G.: A WSN-based Building Man-
agement Framework to Support Energy-Saving Applications in Buildings. In Ad-
vancements in Distributed Computing and Internet Technologies: Trends and Is-
sues, Chapter 12. Hershey, PA, USA: IGI Global (2011)

16. Hagras, H., Callaghan, V., Colley, M., Clarke, G.: A hierarchical fuzzy-
genetic multi-agent architecture for intelligent buildings online learning, adap-
tation and control. Inf. Sci. Inf. Comput. Sci. 150, 33–57 (3 2003),
http://dl.acm.org/citation.cfm?id=763284.763288

17. Huberman, B.A., Clearwater, S.H.: A Multi-Agent System for Controlling Building En-
vironments. In: Lesser, V.R., Gasser, L. (eds.) Proceedings of the International Con-
ference on Multiagent Systems (ICMAS-95). pp. 171–176. The MIT Press (1995)

18. Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implemen-
tation of a high-fidelity AC metering network. In: Proceedings of the 2009
International Conference on Information Processing in Sensor Networks. pp.
253–264. IPSN ’09, IEEE Computer Society, Washington, DC, USA (2009),
http://dl.acm.org/citation.cfm?id=1602165.1602189

19. Lopes, R., Assis, F., Montez, C.: MASPOT: A Mobile Agent System for Sun SPOT.
In: Proceedings of the 2011 Tenth International Symposium on Autonomous Decen-
tralized Systems. pp. 25–31. ISADS ’11, IEEE Computer Society, Washington, DC,
USA (2011), http://dx.doi.org/10.1109/ISADS.2011.10

20. Luck, M., McBurney, P., Preist, C.: A Manifesto for Agent Technology: Towards Next
Generation Computing. Autonomous Agents and Multi-Agent Systems 9, 203–252
(11 2004)

21. Mobile Agent Platform for Sun SPOT: MAPS (2011), [Online]. Available:
http://maps.deis.unical.it (current December 2011)

1354 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

22. Muldoon, C., O’Hare, G.M.P., Collier, R., O’Grady, M.J.: Agent Factory Micro Edi-
tion: A Framework for Ambient Applications. In: Proceedings of Intelligent Agents in
Computing Systems Workshop (held in Conjunction with International Conference
on Computational Science (ICCS)) Reading, UK. Lecture Notes in Computer Sci-
ence (LNCS). pp. 727–734. Springer-Verlag Publishers (2006)

23. Naji, H., Meybodi, M., Falatouri, T.: Intelligent building management systems using
multi agents: Fuzzy approach. International Journal of Computer Applications 14(6),
9–14 (02 2011), published by Foundation of Computer Science

24. OSGi Alliance: Open System Gateway Initiative (OSGi), documents and software
(2011), [Online]. Available: http://www.osgi.org (current December 2011)

25. Qiao, B., Liu, K., Guy, C.: A Multi-Agent System for Building Control. In: Pro-
ceedings of the IEEE/WIC/ACM international conference on Intelligent Agent
Technology. pp. 653–659. IAT ’06, IEEE Computer Society, Hong Kong (2006),
http://dx.doi.org/10.1109/IAT.2006.17

26. Stankovic, J.: When sensor and actuator cover the world. ETRI Journal 30(5), 627–
633 (2008)

27. Tynan, R., Muldoon, C., O’Grady, M.J., O’Hare, G.M.P.: A mobile agent ap-
proach to opportunistic harvesting in wireless sensor networks. In: Proceed-
ings of the 7th international joint conference on Autonomous agents and multi-
agent systems: demo papers. pp. 1691–1692. AAMAS ’08, International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2008),
http://dl.acm.org/citation.cfm?id=1402744.1402768

28. Zhao, P., Simoes, M., Suryanarayanan, S.: A conceptual scheme for cyber-physical
systems based energy management in building structures. In: Proceedings of the
9th IEEE/IAS International Conference on Industry Applications (INDUSCON). pp.
1–6. Sao Paulo, Brazil (11 2010)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1355

Giancarlo Fortino and Antonio Guerrieri

Appendix

A. Building Management Events

Table 4. Defined building management events.

1356 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Table 5. Additional parameters of the building management events.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1357

Giancarlo Fortino and Antonio Guerrieri

B. SA’s MAPS actions

A0: addDispatcherRule(msgTypeList());
firstProcessedEvent=FALSE;
Event timer = new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED,

Event.NOW);
timerID = agent.setTimer(true, advertisementTime(), timer);
addDispatcherRule(timer);

A1: Event msg = new Event(agent.getId(), agent.getCAId(), Event.MSG_TO_BASESTATION,
Event.NOW);

msg.setParam(ParamsLabel.MSG_TYPE, BM_SA_ADVERTISEMENT);
setAdvertisementParams(msg);
agent.send(agent.getId(), agent.getCAId(), msg, true);

A2: if(isMsgForCurrSA(msgEvent.getParam(ParamsLabel.ADDRESSEE),
msgEvent.getParam(ParamsLabel.ADDRESSEE_TYPE)){

firstProcessedEvent=TRUE;
removeDispatcherRule(timer);
agent.resetTimer(agent.getId(), timerID);

}
A3: msgType = msgEvent.getParam(ParamsLabel.MSG_TYPE);
A4: plane = createSensorPlane(msgEvent.getParam(ParamsLabel.REQUEST_ID),

msgEvent);
A5: plane = createActuatorPlane(msgEvent.getParam(ParamsLabel.REQUEST_ID),

msgEvent);
A6: agent.removePlane(msgEvent.getParam(ParamsLabel.REQUEST_ID));
A7: updateMembership(msgEvent);
A8: Iterator i = agent.getPlaneList();

while(i.hasNext()){
plane = (Plane)i.next();
if(plane.getID() != this.getID())

agent.removePlane(plane.getID());
}
firstProcessedEvent=FALSE;
timer = new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED, Event.NOW);
timerID = agent.setTimer(true, advertisementTime(), timer);
addDispatcherRule(timer);

A9: Event msg = new Event(agent.getId(), agent.getCAId(), Event.MSG_TO_BASESTATION,
Event.NOW);

msg.setParam(ParamsLabel.MSG_TYPE, BM_ACK);
setAckParams(msg);
agent.send(agent.getId(), agent.getCAId(), msg, true);

Fig. 17. The MAPS actions of the SA’s Manager plane.

1358 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

A0: storedDataCounter = 0;
isOneShotRequest = isOneShot(request);

A1: Event sensing = new Event(agent.getId(), agent.getId(),
request.getParam(ParamsLabel.SENSOR_TYPE), Event.NOW);

agent.sense(sensing);
addDispatcherRule(sensing);

A2: Event timer = new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED,
Event.NOW);

period = getPeriodTimer(request);
lifetime = getLifetimeTimer(request);
timer.setParam(ParamsLabel.LIFETIME_ELAPSED, "false");
timerID = agent.setTimer(true, period, lifetime, timer);
addDispatcherRule(timer);
dataToStore = getDataToStore(request);

A3: storeData(event.getParam(SENSED_DATA));
storedDataCounter++;

A4: if(request.getParam(ParamsLabel.DATA_TYPE) != "THRESHOLD_NOTIFICATION" ||
isThresholdChecked(request, getStoredData())){
Event msg = new Event(agent.getId(), agent.getCAId(),

Event.MSG_TO_BASESTATION, Event.NOW);
msg.setParam(ParamsLabel.MSG_TYPE, BM_DATA);
setDataParams(msg, getStoredData());
agent.send(agent.getId(), agent.getCAId(), msg, true);

}
storedDataCounter = 0;

A5: syntheticData = calculateSyntheticData(getStoredData(),
request.getParam(ParamsLabel.SYNTHETIC_DATA_TYPE));

if(request.getParam(ParamsLabel.DATA_TYPE) != "THRESHOLD_NOTIFICATION" ||
isThresholdChecked (request.getParams(), syntheticData)){
Event msg = new Event(agent.getId(), agent.getCAId(),

Event.MSG_TO_BASESTATION, Event.NOW);
msg.setParam(ParamsLabel.MSG_TYPE, BM_DATA);
setDataParams(msg, syntheticData);
agent.send(agent.getId(), agent.getCAId(), msg, true);

}
storedDataCounter = 0;

Fig. 18. The MAPS actions of the SA’s Sensing Request plane.

Giancarlo Fortino is an Associate Professor of computer engineering at the
Department of Electronics, Informatics, and Systems of the University of Cal-
abria, Italy. His research interests include distributed computing, wireless sen-
sor networks, agent-based computing, and real-time systems. He is author of
more than 170 papers in international journal, books and conference proceed-
ings. He received a Laurea degree and a PhD in Computer Engineering from
the University of Calabria in 1995 and 2000, respectively.

Antonio Guerrieri is a research fellow in Computer Engineering at the Univer-
sity of Calabria. His research interests include high-level programming methods
for wireless sensor networks with specific focus on methodologies and frame-
works for building sensor networks. He is author of several papers in interna-
tional journal, books and conference proceedings. He received his Bachelor,
Master and PhD in Computer Engineering from the University of Calabria in
2003, 2008, and 2012 respectively.

Received: January 1, 2012; Accepted: May 4, 2012

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1359

 ComSIS Vol. 9, No. 3, Special Issue, September 2012

CIP – Каталогизација у публикацији
Народна библиотека Србије, Београд

004

COMPUTER Science and Information
Systems : the International journal /
Editor-in-Chief Mirjana Ivanović. – Vol. 9,
No 3 (2012) - . – Novi Sad (Trg D. Obradovića
3): ComSIS Consortium, 2012 - (Belgrade
: Sigra star). –30 cm

Polugodišnje. – Tekst na engleskom jeziku

ISSN 1820-0214 = Computer Science and

Information Systems
COBISS.SR-ID 112261644

Cover design: V. Štavljanin
Printed by: Sigra star, Belgrade

