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Abstract. The operating voltage in the substation must be maintained at its rated
voltage within the specified standard because a voltage outside the specified range
may cause a malfunction of the power facility and interfere with the stable power
supply. Therefore, the voltage regulation process to maintain the rated voltage of the
substation is essential for the stability of the power system. However, the voltage
regulation process is currently performed manually by resident staff. Voltage regu-
lation based on human judgment increases the uncertainty of voltage stabilization
and makes efficient operation in consideration of the economic feasibility of power
facilities difficult. Therefore, this paper proposes an automatic voltage stabilization
system that can automatically perform voltage regulation. Instead of predicting the
electrical load or overvoltage conditions studied so far, we focus on more direct,
scalable input capacity prediction for an automatic voltage stabilization system.
First, the proposed system predicts the input capacity required for a given situa-
tion through a trained stacked LSTM model. Second, an optimal regulation plan is
derived through an optimization process that considers the economic feasibility of
power facility operation. Additionally, the development of the user interface makes
it possible to visualize the operation of algorithms and effectively communicate the
models’ predictions to the user. Experimental results based on real substation data
show that the proposed system can effectively automate the voltage regulation pro-
cess.

Keywords: automatic voltage stabilization system, energy system, input capacity
prediction, deep learning, optimal regulation plan
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1. Introduction

The operating voltage in the substation must be maintained at its rated voltage within the
specified standard for the stability of the power system. If the voltage exceeds
(overvoltage) or falls below (undervoltage) the rated voltage range, it may cause a mal-
function of the power facility and interfere with the stable power supply. Therefore, the
voltage regulation process to maintain the rated voltage of the substation is essential.
The voltage regulation process is done through a voltage stabilization system (VSS). The
voltage stabilization system refers to a system that can sequentially control the operating
conditions of reactors constituting a substation [16]. A reactor is an absorber of reactive
power, therefore compensating for high voltage transmission [14]. When the reactor is
operated, the voltage decreases due to the consumption of reactive power, and when the
reactor is stopped, the voltage increases.

However, most of existing voltage stabilization systems are manually operated by
resident staff. In other words, various decisions for voltage regulation, such as deciding
whether to operate a reactor, are made solely according to the personal judgment of the
resident staff. There are two main problems with the voltage regulation process performed
by humans. First, continuous monitoring is difficult. In the case of manual work, real-
time response may be difficult due to breaks or shift hours, and inconsistent response
may occur because each employee has a different handling method [24]. Second, efficient
operation considering economic feasibility is difficult. In general, the more a reactor is
used, the more likely it is to fail. When the reactor is operated at a high frequency, very fast
transient overvoltage (VFTO) occurs more frequently, and when the voltage exceeds the
basic impulse insulation level (BIL), it leads to the failure of the reactor [16]. Therefore,
when performing voltage regulation, it is necessary to distribute the frequency of use
of each reactor. Still, if the voltage regulation process is done manually, it isn’t easy to
properly consider this by personal judgment.

In order to solve the above problems, automation of the voltage stabilization system
is required. Therefore, in this paper, we propose a prediction-based automatic voltage
stabilization system using a stacked long-short term memory (stacked LSTM) model.
Beyond statistical or mathematical methods [26,6,2,27], many prediction-based methods
have been proposed for the stability of the power system. Recently, machine learning
or deep learning-based methods have been mainly proposed. The main object of predic-
tion is to predict the overvoltage situation for voltage stabilization [5,4,11,37], electrical
loads [36,19,13], and reactive power [14]. Overvoltage situations, electrical loads, and
reactive power are all important for the stability of a power system. However, develop-
ing an automatic voltage stabilization system requires a different approach. Overvoltage
situations, electrical load, and reactive power can be used as indicators of the stability
of a power system, but in terms of automatic voltage regulation, their purpose is differ-
ent. This is because even with predictions for overvoltage situations, electrical load, and
reactive power, it is not known how to adjust the power facility for a given situation. In
other words, to implement automatic voltage stabilization, an additional prediction pro-
cess is inevitable. In order to automatically regulate the reactors to the situation through
an automatic voltage stabilization system, it is necessary to predict a more direct value
to regulate. Therefore, we developed a model to predict the input capacity required for
a given situation. Input capacity means the maximum amount of reactive power that one
reactor can consume, but it can be used as a standard to regulate the reactor. For example,
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if the model predicts that an input capacity of 400Mvar is needed in a given situation, it
can respond by operating two shunt reactors (Sh.R) with an input capacity of 200Mvar.
Predicting the input capacity indicates information about the level of danger expressed
by overvoltage situations, electrical load, and reactive power. Predicting the input capac-
ity also makes it easy to infer how to adjust the power facility in a given case. This is
because input capacity is the most basic and direct basis for power facility operation.
Therefore, the task of predicting input capacity is more suitable for implementing an au-
tomatic voltage stabilization system than simply predicting overvoltage, reactive power,
and electrical load. In addition, this method does not require a prior definition of the ap-
plied system. This is because the required input capacity is fixed regardless of what kind
of power facility the system consists of or the number of reactors constituting the system.
This means that predicting input capacity is also beneficial for expansion and application.

In this study, we design an input capacity prediction model that is more suitable for
automatic voltage stabilization systems and propose a solution that can be directly applied
to the actual work site. The model was evaluated based on the data extracted from the
actual substation to ensure reliability. We develop not only the algorithm but also the user
interface and integrate them into one system so that it can be applied easily in the actual
field.

2. Related Works

2.1. Prediction-based Methods for Voltage Stabilization

Prediction-based methods for voltage stabilization are mainly aimed at predicting over-
voltage conditions, electrical loads, and reactive power. Various machine learning and
deep learning algorithms were used for prediction.

Bulac et al. [4] proposed a method to perform real-time voltage stabilization monitor-
ing using a multi-layer perceptron (MLP). The target class is divided into stable, unstable,
and dangerous.The proposed MLP model predicts the risk level of overvoltage in a given
situation by receiving voltage-related features as input.

Zhu et al. [37] proposed a method of identifying a class imbalance problem [30] in
which a situation corresponding to ’unstable’ in a voltage stabilization system is very rare
when predicting an overvoltage situation and improving performance using an imbalance
learning. The class imbalance problem was solved by amplifying the unstable situation
class data through the synthetic minority oversampling technique (SMOTE) [7], and the
weighted cost was set to make the model learn more focused on a small number of un-
stable classes. In addition, they tried to improve the model’s generalization performance
and increase its applicability by allowing the model to learn with new data through in-
cremental learning continuously. Similarly, since deep learning-based methods cause a
high dependence on data and annotations for high performance, Li et al. [21] proposed
combining data augmentation methods to lower this dependence.

Gomez et al. [11] tried to predict the overvoltage condition early using one of the pow-
erful classification models, the support vector machine (SVM) [25], based on the idea that
it is important to quickly predict how much the voltage will be affected immediately after
the situation causing the overvoltage. The significant errors that can cause overvoltage
include features such as generator voltage, speed, or rotation angle, and these variables
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are used as inputs for the proposed SVM model. Also, a support vector regressor (SVR),
which applied SVM to a regression problem, was used to predict the electrical load, and
a chaotic genetic algorithm (CGA) [34] was used in the hyperparameter determination
process of SVR [13].

Cao et al. [5] proposed a method combining convolutional neural networks (CNN) [1]
and deep reinforcement learning (DRL) [15] to predict overvoltage stability in the en-
ergy internet. The proposed method predicts overvoltage stability by performing a con-
volution operation on time-series information composed of a two-dimensional matrix and
determines whether the voltage can be stabilized within a given time in the current state
through DRL.

Jiapeng et al. [31] proposed a method for identifying overvoltage types of high-
voltage electrical systems of multiple units based on lightweight ShuffleNet [35]. The six
overvoltage types are mapped to grayscale images by the B2G algorithm, and ShuffleNet
takes them as input and classifies the overvoltage types.

Ko et al. [19] proposed a hybrid model that combines a radial basis function neural
network (RBFNN) [3] and a dual extended Kalman filter (DEKF) [7] with SVR for elec-
trical load prediction. SVR and DEKF are used in the initial value setting and learning
process of RBFNN, respectively.

Zheng et al. [36] used a time-series deep learning model, recurrent neural networks
(RNN) [23], and an improved version, long-short term memory (LSTM) [12], for electri-
cal load prediction. The proposed model proposes a model that predicts the electrical load
of the next 12 steps with the electrical load data of the past 12 steps through the RNN
architecture using the LSTM cell. The LSTM architecture was also used in the reactive
power prediction study and showed better performance as the length of the input sequence
length increased [14].

Like our objective, Yin et al. [32] proposed an automatic voltage stabilization method
using an emotional deep neural network (EDNN) structure and an artificial emotional
Q-learning algorithm. Jiajun et al. [9] proposed GridMind using deep reinforcement for
autonomous voltage control in the power grid. Hanchen et al. [29] proposed the use of
computationally efficient Batch Reinforcement Learning (BRL), along with a formula-
tion strategy using the Markov Decision Process (MDP) for voltage regulation in power
distribution systems.

Our study is similar to that of Yin et al. [32], Jiajun et al. [9] and Hanchen et al. [29] in
that it considers automatic voltage stabilization. However, since these studies are mainly
aimed at minimizing the voltage deviation across the system, they differ from ours, fo-
cusing on solving the overvoltage situation. We also paid attention to practical aspects,
including the user interface. Additionally, our study is similar to that of Hossain et al. [14]
and Zheng et al. [36] in that it uses RNN and LSTM architectures. However, there is a
difference in that the prediction target of our proposed method is input capacity. We pre-
dict the input capacity using RNN and LSTM architectures, given that voltage and input
capacity have time-series characteristics. The following subsection provides a brief intro-
duction to RNN and LSTM.

2.2. Recurrent Neural Networks

LSTM has the architecture of a RNN. RNN is a deep learning architecture specialized for
time series data processing [18,23,32]. The most straightforward architecture of RNN is
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Fig. 1. A simple RNN and LSTM architecture. (a) RNN architecture. (b) LSTM
architecture
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Fig. 2. The internal structure of the LSTM cell
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shown in Fig. 1 (a). Like other deep learning models, the RNN goes through one or more
hidden layers for a given input and returns the output. However, the unique feature of the
RNN architecture is that the output of the hidden layer comes back into the input of the
corresponding hidden layer. This structure considers the characteristic of sequence data
that the data point of each time step is not independent of the data point of the previous
time step. Information of each time step is accumulated, which is is reflected in the next
time step processing to process sequence data.

The LSTM refers to an architecture in which the part corresponding to the hidden layer
in the RNN is replaced with an LSTM cell [12]. A simple LSTM architecture is shown in
Fig. 1 (b). Although the purpose of processing sequence data is the same, LSTM operates
slightly differently from general RNN processing due to this structural change. The inter-
nal structure of the LSTM cell is shown in Fig. 2. Unlike the previous RNN, the LSTM
has a cell state indicated by Ct−1 and Ct. The cell state is the path of information passing
through the entire time step. By not only using the hidden state for information accumu-
lation and reflection but by defining a separate cell state to flow information that can be
utilized in the entire time step, LSTM can process longer sequences than general RNN
structures and has superior performance [20]. In LSTM, the flow of information through
the cell state is controlled by three gates. Forget gate determines how much information
in the cell state to forget. The input gate decides how much to reflect the current input
and hidden state in the cell state. The output gate determines how much of the cell state
to send as the current output and hidden state. We used this LSTM architecture for input
capacity prediction.

3. Proposed Method

Monitoring

Prediction

Visualization

Stacked LSTM Optimization

Input Matrix 

Output Matrix Optimal Adjustment Plan �

Sequence of Input Capacity �

Sequence of Voltage �

Fig. 3. The proposed automatic voltage stabilization system

In this paper, we implemented an automatic voltage stabilization system based on the
input capacity prediction. The overall flow chart of the proposed system is presented in
Fig. 3. First, the proposed system monitors the voltage of the applied substation. At the
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same time, a time-series input matrix X consisting of the monitored voltage and past input
capacity is extracted for input capacity prediction. The stacked LSTM model predicts Ct,
the required input capacity at the current time t, through the X. Based on the predicted
Ct, an optimal regulation plan for whether to operate each reactor is derived through the
optimization process. This information constitutes the output matrix Y. In addition, the
monitored voltage and optimal regulation plan are visualized through the designed user
interface. This process is repeated at fixed time intervals. The voltage regulation process
can be automated through the proposed system, so the problems of existing manual oper-
ation can be solved.

The proposed system is largely divided into two parts: optimal regulation plan predic-
tion (Section 3.1) and visualization (Section 3.2). First, a trained stacked LSTM model
predicts the required input capacity from a given input. Next, a final optimal regulation
plan is derived through the optimization process. Finally, information such as the derived
optimal adjustment plan and voltage is visualized through the user interface.

3.1. Deriving the Optimal Regulation Plan

Input Capacity Prediction

Layer 1

Layer 2

Fig. 4. Proposed input capacity prediction model architecture

The corresponding voltage and input capacity also have a time-series feature because elec-
tricity demand has a time-series characteristic. Therefore, a statistical time series model
using time as a variable can be used to predict the input capacity [6]. However, given
that electricity demand is a non-linear time series, a more robust prediction model than a
statistical model is needed [19]. Additionally, it is also necessary to consider additional
variables such as past voltages rather than using time as the only variable. Therefore, in
this paper, we use the stacked LSTM, a deep learning model specialized in the sequence
data processing. Through this, it is possible to consider the time series characteristics of
input capacity, further improve performance by considering non-linearity, and consider
additional variables other than time.

The proposed input capacity prediction model is shown in Fig. 4. The model has an
LSTM architecture. In addition, by stacking two hidden layers composed of LSTM cells,
more non-linearities can be considered. The stacked LSTM architecture has the advantage
of learning various characteristics of time series data at each time step over the basic
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LSTM architecture [33]. The input is composed of the past voltage and the input capacity
along with the current voltage. In addition, the length of sequence data coming in as input
is 4 (The details of the hyperparameter setting are described in Section 4.2). Therefore,
the input matrix X described in Fig. 3 is composed as follows:

X =


Vt Ct−1

Vt−1 Ct−2

Vt−2 Ct−3

Vt−3 Ct−4

 ∈ IR4×2 (1)

In (1), Vt means the voltage at each time point, and Ct means the input capacity at each
time point. Since the purpose of prediction is Ct, which is the required input capacity at
the current time t, note that C is composed of 4 starting at t − 1 instead of at t like V .
The model predicts the currently required input capacity Ct by sequentially processing
the input matrix X.

Optimization
After predicting the required input capacity through the model, it is necessary to decide

how to regulate the power facilities (i.e., reactors). In this paper, the optimal regulation
plan is derived through the optimization formula. The optimization formula was designed
considering economic feasibility and efficiency. As mentioned in Section 1, the probabil-
ity of failure increases as the number of operations of the power facility increases [16].
Therefore, it is necessary to distribute the number of operations for each power facility,
which can be a basis for deriving an optimal regulation plan.

The defined optimization formula is as follows:
minimizez1,...,zn

∑n
i=1 γizi

subject to
∑n

i=1 Cizi ≥ Ct

subject to
∑n

i=1 Cizi − Ct ≥ Cmin

(3.1) is the objective function of the optimization formula. In (3.1), zi means the oper-
ating state of each power facility of the applied system and has a value of 0 or 1. γi
means the cumulative number of uses of the corresponding power facility. The optimiza-
tion process treats the sum of the cumulative use times of each power facility as a cost,
and aims to determine whether to operate each power facility in which the cost can be
minimized. (3.1) is the first constraint. In (3.1), Ci means the input capacity of the cor-
responding power facility, and Ct means the predicted required input capacity. If there
is no constraint, the optimization process will minimize the cost to zero by disabling all
power facilities. Therefore, (3.1) solves this problem by forcing the optimization process
to input the power equipment as much as the predicted required input capacity. (3.1) is
the second constraint. In (3.1), Cmin means the input capacity of the power facility with
the smallest input capacity among all power facilities. If there is no constraint, the opti-
mization process will try to keep the previous state when the previous input capacity is
greater than the currently needed input capacity. Therefore, (3.1) solves this problem by
forcing the optimization process to change the state within the expressible input capacity
range. In summary, the optimization process means considering economic feasibility and



Automatic Voltage Stabilization System for Substation... 445

efficiency by lowering the power facility management cost and the chance of damage by
forcing the power facility to operate first with the lowest cumulative use frequency.

Through the optimization, an optimal regulation plan is derived. The derived optimal
regulation plan becomes the output matrix Y of Fig. 3, and its composition is as follows:

Y =

z1...
zn

 ∈ IRn (zi ∈ {0, 1}) (5)

In (5), Y means the optimal regulation plan and contains information on whether each
optimized power facility operates.

3.2. Visualization

Fig. 5. Designed user interface

The derived optimal regulation plan is visualized through a designed user interface and
information on the recorded voltage sequence. The user interface makes it easy to see how
the system works and its results. The designed user interface is shown in Fig. 5.

In Fig. 5, when the start button at the top right is pressed, the user interface is operated.
The user interface consists of three elements. First, the voltage graph appears at the top.
The voltage at the latest 20-time points is expressed, and the overall flow of the voltage
can be checked. Second, the optimal regulation plan is visualized in the center. Whether
each of the derived power facilities operates and the predicted input capacity value are
simultaneously expressed. The green bar means active, and the red bar means inactive.
Finally, at the bottom is a manual operation button. In addition to the results automati-
cally predicted by the system, it can be applied when a manual operation is required. As
mentioned earlier, the user interface is updated according to a predefined time interval,
and prediction and visualization are executed sequentially.
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4. Experimental Results

In this section, the performance of the proposed system is evaluated. It is divided into the
evaluating input capacity prediction model and the actual operation analysis.

4.1. Experimental Environment and Dataset

345kV #1 BUS

#1 Sh.R #2 Sh.R #3 Sh.R #4 Sh.R #5 Sh.R #1 VSR

Automatic Voltage Stabilization System

Fig. 6. Assumed substation environment

Before evaluation, it is necessary to assume the environment of the substation to which the
system is applied. The considered substation environment is shown in Fig. 6. We assume
that the applied substation consists of one 345 kV bus. Additionally, it consists of five
Sh.R and one variable shunt reactor (VSR), each with an input capacity of 200Mvar.
VSR is a reactor that can control power more delicately through a tap device. The tap of
the VSR consists of a total of 18 stages [16]. Unlike the existing Sh.R, VSR operates on
a tap basis, so the output matrix in (2) should be changed as follows:

Y =


z1
...
z5
ẑ1

 ∈ IR6 (zi ∈ {0, 1}, ẑ1 ∈ {0, ..., 18}) (6)

In (6), ẑ1 means the operating state of the VSR and has a value between 0 and 18.
The experimental data were collected in the real substation environment defined above.

The substation automatically saves various information, including voltage, according to
defined intervals (i.e., one minute). The data contains operation information for each
power facility constituting the substation system between 2019 and 2021. Data features
include uptime, generation load, transmission load, input capacity, and ancillary infor-
mation such as temperature, wind speed, and precipitation. We extracted only informa-
tion about voltage and input capacity required for prediction. The total data size is about
450,000 data points; we used 25% as test data and the rest as training data.
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4.2. Input Capacity Prediction Performance

Table 1. Input capacity prediction model performance (RMSE)

Model
Input Combination

X1 X2 X3 X4 X5 X6

XGBoost 183.13 79.07 182.22 20.57 20.41 14.32

LightGBM 183.12 124.93 179.04 21.13 19.59 14.01

RandomForest 183.13 78.55 182.15 20.60 20.00 14.14

GradientBoost 183.15 148.68 182.08 20.44 19.66 19.72

ElasticNet 184.12 180.35 184.10 67.93 32.63 32.54

DNN 184.90 138.97 183.09 20.53 19.54 13.97

LSTM 183.69 143.28 183.39 20.54 19.25 13.31

Stacked LSTM 183.69 185.30 182.85 20.56 19.30 12.86

First, we evaluated the performance of the input capacity prediction model. The purpose
of the model is to predict the required input capacity given the appropriate inputs. Several
models were trained and evaluated to find the optimal model and input combinations.
Root mean squared error (RMSE) was used as the evaluation metric.

The overall result is shown in Table 1. A total of eight machine learning and deep
learning models were trained and evaluated. XGBoost [8], LightGBM [17], and Gradient-
Boost [22] are machine learning algorithms that show strong performance as tree boosting
ensemble methods. RandomForest [10] is an ensemble model using the bagging method,
and it is a model that reinforces the randomness of data and features. ElasticNet [38] is
a regulated regression model that combines L1 and L2 regulation into linear regression.
DNN is a structure in which several hidden layers are stacked in general artificial neu-
ral networks (ANN) [28], and we constructed a model with four hidden layers. As input
combinations, six combinations were evaluated. X1 means only the current voltage at t is
used as an input. X2 means using input time information such as a month, day, hour, etc.,
considering seasonal characteristics along with the current voltage at t. X3 means using
the voltage sequence of the past time as an input together with the current voltage of time
t. X4 means that only the input capacity at t − 1 is used as input. X5 means that the past
input capacity of the same length as X3 is used as input. X6 means to use a sequence com-
posed of the input capacity of the past time as an input together with the voltage sequence
of X3.

All models achieved the best performance when X6 was used as the input combi-
nation. As can be seen when X4 and X5 are used as inputs, the model’s performance
is significantly improved when it can explore the past input capacity or input capacity
sequence rather than when voltage alone is used. However, the performance is further en-
hanced when the past voltage and the current voltage are used together with the past input
capacity sequence (X6). Additionally, the model performance of the RNN architecture
specialized for sequence data processing was the best among all models, and the perfor-
mance of the stacked LSTM model was the best with RMSE 12.86. Therefore, stacked
LSTM was selected as the final model, and it was decided to use current voltage, past
voltage, and past input capacity together as the input combination.
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Fig. 7. Performance of the stacked LSTM model by the length of the input sequence

When using a sequence of voltage and input capacity as input, additional evaluation
was performed to select the optimal length of the sequence, that is, to what point in the past
voltage and input capacity information will be used. The results are shown in Fig. 7. In
Fig. 7, the model showed significant performance improvement until the sequence length
reached 4. After this, there was no significant performance improvement thereafter, so we
set the optimal sequence length to 4.

4.3. Operation Analysis

Table 2. Operational Analysis Results

Item
Time Point

t t+ 1 t+ 2 t+ 3 t+ 4

Voltage (kV ) 353.8 349.8 354.5 349.7 345.5

Predicted Input Capacity (Mvar) 735 697 897 697 497

#1 Sh.R 1 1 1 1 1
#2 Sh.R 0 0 0 0 0

#3 Sh.R 0 0 1 1 1
#4 Sh.R 1 1 1 1 0

#5 Sh.R 1 1 1 0 0

#1 VSR (Tap Position) 9 1 1 1 1

Second, we conducted an operational analysis to see if the system actually works well.
The results are shown in Table 2. In addition, Table 3 shows the assumed cumulative
numbers of uses for each reactor in the optimization process.
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Table 3. Assumed Cumulative Use Count
#1 Sh.R #2 Sh.R #3 Sh.R #4 Sh.R #5 Sh.R #1 VSR

Cum. Num. of Uses 200 150 100 80 50 20

In Table 2, system operation results for five consecutive time points from t to t + 4
are presented. Additionally, information on items such as voltage, input capacity, and re-
actor operation status at each time point is presented together. In more detail, at time t,
the voltage was observed to be 353.8 kV, and the model predicted that an input capacity
of 735Mvar was required. For the predicted input capacity, the operating state of each
Sh.R and the tap position of the VSR were determined through an optimization process.
After that, the observed voltage at time t+1 is 349.8 kV, which is lower than before. This
is because reactors consumes reactive power equal to previously input capacity to lower
the voltage. Additionally, for the lower voltage, the model predicted that an input capac-
ity of 697Mvar lower than the time t was required. This shows that the input capacity
prediction model predicts the appropriate input capacity considering the level of voltage.
When checking the operation state of each reactor at time t+1, it can be seen that the tap
position of the VSR has changed from 9 to 1. This means that voltage adjustment was per-
formed by changing the tap of the least frequent VSR through the optimization process in
consideration of the number of uses for each reactor assumed in Table 3. In other words,
it can be seen that the optimization process is properly distributing the operation for each
reactor with the number of uses as a cost as intended. These results are also the same at
all time points thereafter, including time t + 2. According to the experimental results, it
can be seen that an automatic voltage regulation system can be effectively implemented
through the designed system, and it can be confirmed that the goal of the study and the
required performance requirements can be met.

5. Conclusion

This paper covered the development of an automatic voltage stabilization system for volt-
age regulation automation. First, a trained stacked LSTM model was designed to predict
the input capacity required for a given situation using actual voltage and input capacity
data. In addition, it was possible to derive the optimal regulation plan considering the eco-
nomic feasibility of power facility operation by using the optimization method. Finally,
the user interface shows how the model works as intended.

In this paper, only two variables of time-series voltage data and input capacity were
used as inputs when training the model to predict the optimal input capacity. However, in
addition to these two variables, there are other variables that could affect voltage changes,
such as weather, season, temperature, and humidity. It is expected that future studies can
use these variables to improve model performance considering complex voltage environ-
ments.

This automatic voltage stabilization system is more effective and economic than the
conventional voltage control system. This not only enables a stable power supply but also
increases the lifespan of power facilities and reduces the cost burden on the company for
facility failure. Additionally, this paper can also contribute to the goals of informatization
and securing big data in the substation field.
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