
Computer Science and Information Systems 21(1):335–362 https://doi.org/10.2298/CSIS221210071A

Knowledge Transfer in Multi-Objective
Multi-Agent Reinforcement Learning via

Generalized Policy Improvement

Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, RS, Brazil

{vnalmeida,lnalegre,bazzan}@inf.ufrgs.br

Abstract. Even though many real-world problems are inherently distributed and
multi-objective, most of the reinforcement learning (RL) literature deals with single
agents and single objectives. While some of these problems can be solved using a
single-agent single-objective RL solution (e.g., by specifying preferences over ob-
jectives), there are robustness issues, as well the fact that preferences may change
over time, or it might not even be possible to set such preferences. Therefore, a need
arises for a way to train multiple agents for any given preference distribution over
the objectives. This work thus proposes a multi-objective multi-agent reinforcement
learning (MOMARL) method in which agents build a shared set of policies during
training, in a decentralized way, and then combine these policies using a general-
ization of policy improvement and policy evaluation (fundamental operations of RL
algorithms) to generate effective behaviors for any possible preference distribution,
without requiring any additional training. This method is applied to two different
application scenarios: a multi-agent extension of a domain commonly used in the
related literature, and traffic signal control, which is more complex, inherently dis-
tributed and multi-objective (the flow of both vehicles and pedestrians are consid-
ered). Results show that the approach is able to effectively and efficiently generate
behaviors for the agents, given any preference over the objectives.

Keywords: reinforcement learning, multi-agent systems, multi-objective decision
making, generalized policy improvement, traffic signal control.

1. Introduction

Reinforcement Learning (RL) [33] deals with agents that learn by acting in an environ-
ment and receiving rewards (numerical signals) that guide them toward selecting bet-
ter actions. In recent years, RL has been successfully applied to complex tasks, such as
healthcare [40], robotics [20], game playing [32, 24] and combinatorial optimization [23].

While multi-agent RL (MARL) is a natural framework to model problems that are in-
herently distributed, such formulation adds many challenges to RL. For instance, because
multiple agents interact in a shared environment, their actions are usually highly coupled.
This makes learning harder as agents try to adapt to other agents that are also learning. Be-
sides, several convergence guarantees no longer hold when agents learn in a decentralized
manner [9]. However, in many real-world problems, where the control is decentralized, it
is not always possible, feasible or desirable to avoid a MARL formulation.

336 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

Besides considering multiple agents, RL has also been extended to deal with multi-
ple objectives in the multi-objective RL (MORL) literature [17]. This is of fundamental
practical importance, since many real-world problems are inherently multi-objective (e.g.
in traffic signal control we may need to trade-off the waiting time of the vehicles and
the pedestrians). There are two main ways to formulate a MORL problem: using sepa-
rate reward functions for each objective, or using a single scalar reward that combines the
agent’s preferences with the values received for each objective, thus reducing a MORL
problem into a single-objective RL problem. While the literature argues for both these
formulations, in [29] many scenarios are presented to illustrate the need for having meth-
ods that deal with separate reward functions to solve MORL problems. For instance, the
user may not know a priori what is the more appropriate trade-off among the objectives,
or the underlying user preferences may change over time. To deal with such settings, the
goal is to construct a set of policies such that agents can perform well, given any prefer-
ences or ways of combining the objectives. In this paper, we make the assumption that the
preferences over objectives are expressed as linear combinations of the reward functions.

Recently, Alegre et al. [3] introduced a method that tackles this problem and enables
an RL agent to transfer knowledge from policies specialized to different objectives. Their
method incrementally construct a set of policies that can later be combined to generate
optimal policies for any preference among objectives. However, their proposed method
only addresses single-agent scenarios. To fill this gap, we extend the method presented in
[3] in order to consider multiple agents. Our approach builds a shared set of policies in a
decentralized way during training, and then combine these policies to create new policies
specialized to different preferences over the objectives. The proposed method is applied
to two different environments: a multi-agent extension of the Four-Room environment (a
domain commonly used in the related literature), and a complex, inherently distributed
and multi-objective problem (traffic signal control, where objectives relate to the waiting
time of both vehicles and pedestrians).

In summary, the present method works as follows. During the training phase, agents
are iteratively given different preferences over their objectives, and learn policies based
on these preferences. These policies are shared among all agents, which have the same
observation and action spaces. During the execution phase (after the training is over), by
making use of generalized policy evaluation (GPE) and generalized policy improvement
(GPI), which are generalizations of two key operations of RL algorithms (policy eval-
uation and policy improvement), the agents are able to construct policies for any given
preference over objectives. Therefore, this work proposes a transfer learning (TL) method
for multi-objective multi-agent reinforcement learning (MOMARL). This helps fill a gap
within the literature, since the vast majority of the RL literature focuses on single-agents
with single-objectives, and only a handful of works address MOMARL settings.

The main contributions of this work can be summed up as follows:

– This is the first work (to the authors’ best knowledge) that leverages generalized pol-
icy improvement for settings with multiple agents and objectives.

– We empirically evaluate our method in a multi-objective multi-agent traffic signal
control environment with traffic controllers optimizing for vehicles’ and pedestrians’
objectives, which has rarely been addressed in the traffic signal control literature.

The reader can find a discussion on the main underlying concepts behind this work
and a review of the related literature in Section 2 and in Section 3, respectively. In Sec-

Knowledge Transfer in MOMARL via GPI 337

tion 4, the proposed method is presented and explained in details. Section 5 presents the
experimental settings and discusses the results. Finally, Section 6 concludes this work.

2. Theoretical Background

This section presents underlying concepts on RL, MARL, and MORL, as well as on spe-
cific concepts such as Successor Features (SFs), Generalized Policy Evaluation (GPE)
and Generalized Policy Improvement (GPI).

2.1. Reinforcement Learning

An RL problem can be formulated as a Markov Decision Process (MDP), which is a
mathematical model for sequential decision making. An MDP can be formally defined
as a tuple of the form ⟨S,A, T ,R, γ⟩, where S is a set of states, A is a set of actions,
T : S × A × S → [0, 1] is a state transition function mapping state transitions caused
by actions to probabilities, R : S × A × S → R is a reward function, and γ ∈ [0, 1)
is the discount factor. At each time step t, an agent observes a state St, selects and takes
an action At, receives a reward Rt+1 and transitions to state St+1 according to the state
transition function. A policy π : S 7→ A defines how the agent behaves in the environment
by mapping states in S to actions in A.

As aforementioned, agents aim to maximize the reward received. However, since RL
deals with sequential decision making, at time step t, the best decision may not necessar-
ily be to select an action that will probably lead to the greatest next reward. As the real
objective of an RL agent is to maximize the expected discounted sum of all rewards re-
ceived by the agent, a discount factor γ is used to discount the impact of rewards received
in later time steps, thus determining the present value of a future reward.

The state-value function of a state s under a policy π, which is denoted by V π(s), is
the expected value of all returns received by an agent that starts in state s and follows the
policy π. This function is given by Eq. 1.

V π(s) = Eπ

[∞∑
i=0

γiRt+i+1

∣∣∣∣St = s

]
. (1)

Similarly, the action-value function for a policy π, which is the expected return of
taking action a in state s and then following the policy π, is denoted by Qπ(s, a) and can
be defined by the Bellman equation in Eq. 2.

Qπ(s, a) = Eπ

[
Rt+1 + γQπ(St+1, π(St+1))

∣∣∣∣St = s,At = a

]
. (2)

A policy π is better than or equal to a policy π′ if and only if the state-value function
of any state s under policy π is greater than or equal to the state-value function for the
same state under policy π′. This relation, shown in Eq. 3, induces a complete ordering
over policies.

π ⪰ π′ ⇐⇒ ∀s, V π(s) ≥ V π′
(s). (3)

If a policy is better than or equal to all others, it is an optimal policy, denoted by π∗.
It is important to note that there is always at least one optimal policy. Therefore, solving

338 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

a problem in RL means finding an optimal policy (or at least a policy that sufficiently
approximates an optimal policy).

All optimal policies share the same state-value function (which is the optimal state-
value function, denoted V ∗) and the same action-value function (which is the optimal
action-value function, denoted Q∗). Importantly, if the optimal action-value function is
known, an optimal policy π∗ can be defined as in Eq. 4.

π∗(s) ∈ argmax
a∈A

Q∗(s, a). (4)

An important subset of RL algorithms are based on Dynamic Programming (DP) [7].
These methods convert Bellman equations into update rules [33], and make use of mathe-
matical properties of MDPs to decrease the complexity of searching for optimal policies.
RL methods based on DP rely on two fundamental operations: policy evaluation and pol-
icy improvement. Policy evaluation is the computation of the value function of a policy
π, and policy improvement refers to finding a policy π′ that is better than π.

2.2. Multi-Agent Reinforcement Learning

In order to model multi-agent decision making problems, MDPs are extended to Multi-
Agent Systems (MAS) as Stochastic Games (SG) [30], which can be formally defined as
a tuple ⟨n,S,A1..n, T ,R1..n, γ⟩, where n is the number of agents, S is the state space,
Ai is the set of actions of agent i (A = A1 × ... × An is the joint action space), T :
S ×A×S → [0, 1] is a state transition function, Ri is the reward function of agent i, and
γ ∈ [0, 1) is the discount factor.

Differently than single-agent RL, in MARL each reward received by an agent depends
not only on its own actions, but on the actions of other agents. Thus, as previously men-
tioned, several convergence guarantees that are true in single-agent RL no longer hold.

Not only do other agent’s actions influence the reward received by each agent, but
in fact agents may have opposing objectives, and the action of one agent might nega-
tively impact the rewards received by another. Generally, the nature of a multi-agent task
is classified as being either cooperative, competitive or mixed [9]. In MARL, agents can
be trained in a centralized manner using, for instance, a shared global reward. However,
this approach does not scale due to the curse of dimensionality, as well as because agents
have difficulty understanding and distinguishing their own contribution to the larger sys-
tem [26]. Another option is full decentralization, that is, agents learn and act individually,
in a fully decentralized manner. A third option, is a middle ground between centralized
and fully decentralized, in which agents learn and act in a decentralized manner, but em-
ploy knowledge transfer strategies in order to accelerate learning [31]. In this work, we
follow this approach by allowing agents to share their learned policies, which are further
combined via generalized policy improvement (Section 4.2).

2.3. Multi-Objective Reinforcement Learning

One common approach to enable agents to deal with multiple objectives is to combine
all of the objectives into a single scalar reward function. Unfortunately, this rather simple
solution has many drawbacks, as for instance it reduces drastically the explainability of

Knowledge Transfer in MOMARL via GPI 339

the model (as it will be hard to distinguish which particular objectives prompted a specific
behavior), it is unable to handle many different types of preferences that might be required
by a specific problem, and will require that the agents be retrained if preferences among
objectives change [17].

With these drawbacks in mind, it becomes clear why, in order to deal with multiple
objectives, an explicitly multi-objective approach is preferable over a scalarized reward
approach (which is equivalent to a single-objective approach). Hence, instead of using a
scalar reward, a vector-valued reward function will be used.

To formally describe a multi-objective decision making problem, MDPs are extended
to the multiple objective setting as a Multi-Objective Markov Decision Process (MOMDP).
An MOMDP only differs from an MDP in the reward function, which becomes a vector-
valued function R : S ×A×S → Rd that specifies the immediate reward for each of the
d objectives considered.

Since rewards are now vector-valued, state-value functions and action-value functions
are now vector-valued as well, that is, V π ∈ Rd and Qπ ∈ Rd. For problems with single
objectives, a policy π is either better, equal or worse than policy π′, as value functions
completely order all policies. This is not necessarily the case in multi-objective decision
making problems, as value functions under policy π, when compared to value functions
under policy π′, might have a greater value for some objectives, but a smaller value for
others. Because there is no complete ordering over policies, in MOMDPs value functions
only offer a partial ordering over the policy space. Hence, in this setting, there can exist
several possibly optimal value vectors V and Q. In order to deal with this, a few sets of
possibly optimal policies and value vectors need to be defined.

Before the sets aforementioned are defined, the utility function (or scalarization func-
tion) u : Rd → R needs to be introduced. This function, shown in Eq. 5, maps a multi-
objective state-value vector under a policy π to a scalar value. This function commonly
takes the form of a linear combination.

V π
u (s) = u(V π(s)). (5)

According to a MOMDP problem taxonomy proposed by [29], the three major factors
that classify the nature of an MOMDP problem are: (i) whether the goal is to find one or
multiple policies; (ii) whether the utility function is a linear function or, more generally,
any monotonically increasing function; (iii) whether stochastic policies (instead of only
deterministic policies) are allowed. For the sake of the present discussion, more definitions
will be given regarding factor (ii).

In the more general case, where the utility function is simply monotonically increas-
ing, a set of viable policies commonly used in the literature is the Pareto front PF(Π). A
policy π Pareto-dominates another policy π′ if its value is equal or greater for every ob-
jective, and strictly greater for at least one objective, according to Eq. 6. The Pareto front
set is defined in Eq. 7. It is important to note that the Pareto front set is not necessarily the
undominated set, as the Pareto front may be larger than the undominated set, depending
on the utility function.

V π ≻P V
π′

⇐⇒ ∀i, V π
i ≥ V π′

i ∧ ∃i, V π
i > V π′

i . (6)

PF (Π) = {π ∈ Π | (∄π′ ∈ Π) [V π′
≻P V

π]}. (7)

340 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

A linear utility function, shown in Eq. 8, is the inner product of a value vector V π and
a vector of weights w which adheres to the simplex constraints (that is, ∀i wi ≥ 0 and∑

i wi = 1) [28].
V π
w = w · V π. (8)

If the utility function is linear, the undominated set of policies is a convex hull CH(Π),
defined in Eq. 9. Since this convex hull is an undominated set, it may contain policies in
excess. Thus, a coverage set for the convex hull can be defined. A set CCS(Π) is a convex
coverage set [17] if it is a subset of CH(Π) and if for every w it contains a policy whose
linearly scalarized value is maximal, as defined in Eq. 10.

CH(Π) = {π ∈ Π | ∃w, ∀π′ ∈ Π : w · V π ≥ w · V π′
}. (9)

CCS(Π) ⊆ CH(Π) ∧
(
∀w, ∃π ∈ CCS(Π), ∀π′ ∈ Π : w · V π ≥ w · V π′

)
. (10)

All of the sets defined in this Section are of extreme importance to multi-objective
problems, because MORL algorithms seek to compute the policies contained in these sets
in order to solve multi-objective decision-making problems. In this paper, we consider the
linear utility case, and thus we tackle the problem of constructing an approximate CCS.
In this case, we are inherently unable to identify solutions that lie on the concave region
of the Pareto front [35].

2.4. Successor Features and Generalized Policy Improvement

In [5], it is argued that many complex problems tackled by RL can be broken down into
multiple tasks, encoded by different reward functions. A reward function Rw for a task
is defined as in Eq. 11, where ϕ(s, a, s′) : S × A × S → Rd is an arbitrary function
representing the features of the environment and w ∈ Rd is a vector of weights.

Rw(s, a, s′) = w · ϕ(s, a, s′). (11)

With this reward definition, given a policy π, the action-value function shown in Eq. 2
can be rewritten as in Eq. 12, where ψπ(s, a) are successor features (SFs) [4]. It is impor-
tant to note that SFs satisfy a Bellman equation, so they can be computed using conven-
tional RL algorithms.

Qπ
w(s, a) = E

[∞∑
k=0

γkw · ϕt+k

∣∣∣∣St = s,At = a, π

]

= w · E

[∞∑
k=0

γkϕt+k

∣∣∣∣St = s,At = a, π

]
= w ·ψπ(s, a).

(12)

The definitions given above, combined with a generalization of two fundamental op-
erations of DP methods for RL (policy evaluation and policy improvement, mentioned in
Section 2.1), provide a framework for knowledge transfer among tasks.

Suppose a RL agent, using an arbitrary RL method, has, through training, learned
policies for k tasks (given by k different instances of w). The agent thus knows a set of
policies Π = {πi}ki=1 and a set of corresponding SFs Ψ = {ψπi}ki=1.

Knowledge Transfer in MOMARL via GPI 341

Using Eq. 12, it is possible to compute the value-function of a policy π on the k tasks
by simply computing a dot-product between the SFs, ψπ , and each weight vectorw. This
is called generalized policy evaluation (GPE). Also, given a new task, generalized policy
improvement (GPI) refers to finding a policy that is better than all of the policies in Π .
Note that GPE and GPI generalize policy evaluation and policy improvement to multiple
policies and tasks, so if k = 1, GPE and GPI are equivalent to the standard DP operations.

Clearly, there is a strong similarity between the SF framework and MORL problems
encoded by separate reward functions. In fact, in [3] it is shown that the transfer problem
addressed by SFs is equivalent to the multi-objective optimization in MORL. That work
demonstrates this by showing that it is possible to map any SF problem to a MORL
problem by converting each dimension of ϕ into an objective. That is, an MOMDP is
created with R(s, a, s′) = ϕ(s, a, s′). Importantly, in this case the definitions of SFs and
multi-objective action-value function become equivalent, that is,Qπ = ψπ .

Since there exists this equivalence between SF problems and MORL problems, it is
possible to apply GPI to MORL. Furthermore, [3] also shows that, if a convex coverage
set is learned, performing GPI on this set enables an RL agent to learn an optimal policy
for any weight vector w.

3. Related Work

This section presents a review of the related literature. Section 3.1 and Section 3.2 address
relevant works that have tackled SFs and GPI in MORL and MARL settings, respectively,
and Section 3.3 discusses applications of RL for traffic signal control.

3.1. SFs and GPI in MORL

SFs and GPI are presented in [4] as a generalization of the concept of successor represen-
tation [11] and policy improvement, respectively. This provides a framework for reusing
knowledge across RL tasks, which is further elaborated in [5].

By formally demonstrating the equivalence between the SF framework and MORL,
[3] is able to make use of GPI within the context of MORL, thus proposing a method that
is able to combine previously learned policies in order to compute an optimal policy for
any preference of objectives. However, this work only deals with single-agent scenarios.

Leveraging GPI within MORL is achieved by first using SFOLS, a SFs based exten-
sion of Optimistic Linear Support (OLS) [28] to assign different weights to the RL agent,
so that it iteratively computes a CCS (Eq. 10). Then, once a CCS is learned, applying GPI
to this set enables the agent to generate an optimal policy for any possible preference of
objectives.

Most of the works discussed in this section use as one of their experimental settings
the Four-Room domain, which is an environment made up of four rooms (separated by
walls) in which a single agent moves around and collects different types of objects, which
relate to different objectives. Because this environment is such a common benchmark in
the literature, this work extends the Four-Room environment to multiple agents, and uses
this domain as one of the experimental settings.

342 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

3.2. SFs and GPI in MARL
Besides the works discussed in Section 3.1, only a handful of works have mentioned SFs
in the context of MORL, such as [17] (which briefly states that SFs are a subclass of
multi-objective decision making problems), and [1] (which also briefly mentions that SFs
and MORL are analogous). However, there have been a few works that have extended the
concepts of SFs and GPI to multi-agent scenarios.

Decomposing a problem using a multi-agent solution generally introduces a source of
non-stationarity. One approach that has been used to tackle this is the centralized training
with decentralized execution (CTDE) framework, in which the agents learn their policies
together, but execute them independently.

This CTDE method is used in the universal value exploration (UNeVEn) algorithm,
presented in [16], which extends universal successor features (USFs) [8] to multi-agent
universal successor features (MAUSFs), and combines this with GPI to improve the joint
exploration of agents during training. Furthermore, CTDE is also used in [21], which
presents an approach that makes use of SFs and GPI, and enables knowledge transfer
among tasks in MARL settings.

Another relevant work that tackles SFs using CTDE is [19]. They use SFs to isolate
each agent’s impact on the performance of the entire system, which allows the method to
create individual utility functions for each agent tailored to stabilize their training.

It is important to note that, since the works addressing SFs and GPI in MARL settings
do so using the CTDE framework, they all suffer from scalability issues, for obvious
reasons. The more agents in the environment, the more difficult it is to train these agents
in a centralized manner. The method proposed in this work has no such scalability issues,
as both execution and training occur in a decentralized fashion.

3.3. RL for Traffic Signal Control
Traffic signal controllers seek to determine a split of green times among various phases at
an intersection. A phase is defined as a group of non-conflicting movements (e.g., flow in
two opposite traffic directions) that can have a green light at the same time without con-
flict. There are many different ways that traffic controllers can go about making decisions,
and [27] provides an overview of several of them.

The most basic form of traffic control is based on fixed times, where the split of green
times among the phases is computed using historical data on traffic flow, if available.
However, this approach is unable to adapt to changes in traffic demand, which may lead
to an increase in waiting times. To mitigate this issue, an adaptive approach, such as RL,
can be used to determine the split of green times using some measure of performance (for
instance, accumulated waiting time).

The RL literature for traffic signal control is very extensive and diverse, and a detailed
overview of different techniques is beyond the scope of this work. Thus, the reader is
directed to surveys such as [6, 38, 36, 25].

Besides reducing the waiting time of vehicles, traffic signal controllers can also have
different objectives, such as reducing queue lengths [12] and reducing the environmental
impact of traffic by minimzing fuel consumption [18]. However, it must be emphasized
that the literature on MORL for traffic signal control is small, and there are very few
MORL works for signal control that address pedestrians, such as [13] and [39]. This is
another literature gap that this work helps to fill.

Knowledge Transfer in MOMARL via GPI 343

4. Policy Transfer in MOMARL using GPI

This section describes the proposed method in detail. However, before the method is ex-
plained, some preliminary conditions need to be set forth. First, all agents must be homo-
geneous (that is, have the same sensors, possible actions, and objectives). We also assume
that their utility functions are represented as an inner product between the objectives and
the weights (Eq. 8). Finally, each agent can have its own individual weights w.

During the training phase, the method uses a multi-agent extension of the SFOLS
algorithm [3] to distributively solve scalarized versions of the multi-objective problem,
by assigning different weights to each agent. Each agent computes a policy that is stored
in a set of policies shared by all agents, until they have computed a convex coverage set.
This process is explained in Section 4.1.

Once the agents have decentrally computed a CCS, the training phase is over. Then,
during the execution phase, each agent is able to compute an effective policy for any pos-
sible instance ofw, by applying GPI [3] to the shared set. This is explained in Section 4.2.
A pseudocode for the algorithm is shown in Algorithm 1.

4.1. Decentrally computing a shared set of policies

During training, the agents seek to distributively compute a set of policies, Π , in order
to approximate a CCS. To do so, each agent a iteratively receives a different weight
vector, wa, and learns a policy, πa, specialized to the multi-objective task wa. Every
time an agent receives a weight vector, it solves the task given the scalar reward function
Rw(s, a, s′) = w ·R(s, a, s′) using a multi-objective Q-learning algorithm. The policies
learned by the agents (and their corresponding SFs) are stored in a shared set of policies,
Π . This process is repeated until Π corresponds to a CCS. The key, then, is to know
which weights to assign to the agents, and when to stop (that is, how to know when Π is a
CCS). This is determined by using the OLS algorithm, which is an extension of Cheng’s
linear support algorithm [10].

Let Π be a set of policies shared among all agents and P a priority queue of weight
vectors. At each iteration of the algorithm, the weights in P with greater priority are
popped off the queue and assigned to the agents. If there are more agents than weights
in P , then randomly sampled weights are assigned to the remaining agents. After each
iteration, new weights are added, until Π corresponds to a CCS. If, at the end of an
iteration, P is empty, that means that Π is a CCS, and the algorithm ends.

The first step is to add to P all weights in the extremum of the weight simplex (that is,
all weights that have one component equal to 1 and all others equal to zero), and assign
to these weights an infinite priority to ensure that they are the first weights to be trained
on. After this initialization of the priority queue, the algorithm’s main loop begins. The
weights in P are popped off according to their priorities and assigned to the agents, which
then proceed to learn policies for the scalarized version of their multi-objective task (using
their respective weights to scalarize the task).

Once each agent a finishes learning its respective policy πa (and corresponding SF
ψπa), the algorithm evaluates the multi-objective value, V πa , of each learned policy.

344 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

1 Then, each policy (and SF) is added to the shared set Π , if it corresponds to a still
unknown value vector (lines 20–22 of Algorithm 1).

Lastly, the algorithm determines the corner weights, which, as per Theorem 1, are
the instances of w that can provide the maximal improvement to the set of policies. In-
tuitively, corner weights are the instances of w whose optimal scalarized value functions
are farthest from the current known best value vector for that w.

Theorem 1. [10] Let W be the set of all possible reward vectors, let CCS be a convex
coverage set, and let Π be a set of deterministic policies. The maximum value of

max
w∈W,π∈CCS

min
π′∈Π

w · V π −w · V π′
(13)

is at one of the corner weights of

V CB
w = max

π∈Π
w · V π (14)

Let V CB
w , given by Eq. 14, be the current best value function. To determine the corner

weights, the algorithm exploits the fact that V CB
w is a piecewise linear and convex (PWLC)

[28, 10] function. Thus, the corner weights are the points in which V CB
w changes slope.

Each corner weight wc is inserted into P with priority ∆(wc) (line 27), which is
an optimistic estimate of the greatest possible improvement caused by learning a policy
specialized towc. This priority is given by Eq. 15, where V

∗
w is an optimistic upper-bound

for the optimal value function V ∗
w.

∆(wc) = V
∗
w − V CB

w (15)

After inserting the corner weights in P , the algorithm’s main loop (pop off weights
with greatest priority from P , assign them to the agents, learn policies, add corner weights
to P) is repeated, until P is empty, which indicates that there are no more corner weights,
and therefore Π forms a CCS.

Let us propose an example to better illustrate the method. For the sake of simplicity,
suppose a single agent (extending this example to multiple agents is trivial, as the only
difference would be that more than one policy would be learned at each iteration) with
three actions (A, B and C) and two objectives. Suppose there are 5 states: s0, s1, s2, s3
and s4. s0 is the initial state and s4 is the terminal state.

For this simple example, at each time step, the agent always transitions to the same
states, regardless of the action selected. Choosing different actions in each state only
changes the reward received. The MOMDP for this example is shown in Figure 1. A run
of the OLS algorithm for the example is shown graphically in Figure 2.

Since this example has only two objectives, and the weights adhere to the simplex
constraints, only one of the dimensions ofw is sufficient to express all possible instances
of weights (w0 = 1− w1).

First, the method inserts into P the weight vectors [1, 0] and [0, 1], the weights in the
extrema of the weight simplex, with infinite priority. w = [1, 0] is popped off P , and the
best policy for this weight is computed. This is shown in Figure 2a.

1 Regular policy evaluation for single-objective RL can be used to determine the value of a policy for each of
its objectives.

Knowledge Transfer in MOMARL via GPI 345

Algorithm 1: Multi-Agent SFOLS (MA-SFOLS)
1 Π ← {}; V ← {}; W ← {}; P ← {};
2 foreach weight we in extremum of weight simplex do
3 Insert (we,∞) into P ;
4 end
5 while P is not empty do
6 foreach agent a do
7 if P is not empty then
8 wa ← pop weight with highest priority from P ;
9 else

10 wa ← random weight;
11 end
12 Insert wa into W ;
13 Assign wa to agent a;
14 end
15 Wait until agents learn policies for their current weights;
16 foreach agent a do
17 πa, ψa ← last policy and SF computed by agent a;
18 V πa ← value vector computed by agent a;
19 wa ← current weight of agent a;
20 if V πa /∈ V then
21 Insert V πa into V;
22 Insert (πa, ψa) into Π;
23 Remove obsolete corner weights from P ;
24 Wc ← getCornerWeights(V πa ,wa,V);
25 foreach w ∈Wc do
26 ∆(w)← getImprovementEstimate(w,V,W);
27 Insert (w, ∆(w)) into P ;
28 end
29 end
30 end
31 end
32 return Π,Ψ

346 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

s0 s1 s2 s3 s4

A
(1, 9)

B
(8, 9)

C
(1, 5)

A
(8, 7)

B
(7, 7)

C
(5, 2)

A
(3, 6)

B
(9, 0)

C
(6, 1)

A
(1, 0)

B
(4, 8)

C
(0, 5)

Fig. 1. Example: a simple MOMDP

Then,w = [0, 1] is popped off P , and the best policy for this weight is computed. The
corner weight w = [0.32, 0.68] is found, with greatest possible improvement of ∆(w).
This corner point is inserted in P , with a priority of ∆(w). This is shown in Figure 2b.

Next,w = [0.32, 0.68] is popped off P , and the best policy for this weight is computed.
The corner weight w = [0.5, 0.5] is found, with greatest possible improvement of ∆(w).
This corner point is inserted in P , with a priority of ∆(w). This is shown in Figure 2c.

Finally,w = [0.5, 0.5] is popped off P , and the best policy for this weight is computed.
Notice that the best policy for this weight is the same as the best policy for w = [0.32,
0.68], so both curves overlap. No new corner point is found, and P is empty. The policies
computed form a CCS, and the procedure ends. This is shown in Figure 2d.

4.2. Computing behaviors for new preferences using GPI

In Section 4.1, it is shown how the method makes use of a multi-agent extension of the
OLS algorithm to decentrally compute a shared set of policies, and their respective suc-
cessor features, which corresponds to a CCS. This section shows how the agents can
create new policies for any possible weights using the policies in this shared set, thus
transferring knowledge acquired from the source tasks (scalarized versions of the multi-
objective problem using the weights in P) to the target tasks (scalarized versions of the
multi-objective problem using new weights given to the agents during execution).

It is important to note that agents reuse knowledge acquired from policies learned by
themselves and by others. This constitutes a type of multi-agent TL method, henceforth
referred to as policy transfer (since previous policies are used to create new policies, both
the source and target of the transfer are policies, thus policy transfer).

Policy improvement and GPI are only mentioned briefly in Section 2.1 and Sec-
tion 2.4, respectively. Since they constitute a fundamental part of the proposed method,
composing the core of the TL process, these operations are explained in more detail here,
for the sake of a better order of presentation of information.

The policy improvement theorem, given by Theorem 2, is an extremely important
result for RL. It shows that, for any state s, by selecting an action a in which Qπ(s, a) >
Qπ(s, π(s)), a better policy emerges. This means that, by acting greedily with respect to
the value function, policies can be improved upon.

Theorem 2. [33, 7] Let π and π′ be two deterministic policies such that, for any possible
state s,

Qπ(s, π′(s)) ≥ V π(s). (16)

Knowledge Transfer in MOMARL via GPI 347

(a) Inserts weights in the extrema of the weight simplex with infinite
priority. w = [1, 0] is popped off

(b) w = [0, 1] is popped off P . The corner weight w = [0.32, 0.68] is
found, and is inserted in P , with a priority of ∆(w)

348 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

(c) w = [0.32, 0.68] is popped off P . The corner weight w = [0.5, 0.5] is
found, and is inserted in P , with a priority of ∆(w)

(d) w = [0.5, 0.5] is popped off P . No new corner point is found, and P is
empty. The policies computed form a CCS, and the procedure ends

Fig. 2. Computing a CCS for the example using OLS

Knowledge Transfer in MOMARL via GPI 349

Then, it holds that
π′ ⪰ π. (17)

The operation of improving policies by acting greedily with respect to their value
functions is called policy improvement, and is shown in Eq. 18.

π′(s) = argmax
a∈A

Qπ(s, a). (18)

Within the framework of SFs, [4] extended Theorem 2 to a set of multiple policies.
This is the generalized policy improvement theorem, given by Theorem 3.

Theorem 3. [4] Let Π be a set of deterministic policies and let π′ be a deterministic
policy such that, for any possible state s,

Qπ(s, π′(s)) ≥ V π(s) ∀π ∈ Π. (19)

Then, it holds that
π′ ⪰ π ∀π ∈ Π. (20)

As aforementioned, the operation of improving a set of policies by acting greedily
with respect to all of their value functions is called GPI, a generalization of policy im-
provement which was originally applied to the SFs framework. However, by showing the
equivalence between SFs and MORL, [3] showed that it is possible to use GPI to improve
policies in MORL settings. This result is key to the proposed method.

To understand how Theorem 3 can be applied to MORL, suppose the policies in Π
correspond to policies learned by scalarizing a multi-objective problem using different
weights. Now consider that a new weight vector is given to an agent. Because of the result
in Theorem 3, this agent can create a new policy for this new weight vector by simply
acting greedily with respect to the value function of all policies in Π for a scalarized
version of the multi-objective problem using this new weight vector.

Now that a theoretical foundation has been laid, let us continue explaining the method.
After having decentrally computed a shared set of policies Π , the agents are now ready to
create new policies for any possible weight vector. Given a new weightw, the agent uses
Eq. 21 to generate a new policy, πGPI

w , best suited for the new weight vector, w.

πGPI
w (s) ∈ argmax

a∈A
max
π∈Π

w ·ψπ(s, a). (21)

Note that, as discussed in Section 2.4, when we define the features as being the multi-
objective reward function (R(s, a, s′) = ϕ(s, a, s′)), then the SFs are equivalent to the
multi-objective action-value function, that is, ψπ(s, a) = Qπ(s, a).

For a single-agent scenario, [3] proved that the policy πGPI
w is optimal for w if Π

corresponds to a CCS. However, since we are interested in multi-agent scenarios, the
convergence guarantees no longer hold. Nevertheless, Section 5 empirically shows that for
complex MARL problems, even though πGPI

w is not theoretically optimal, its performance
is effective.

350 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

5. Experiments and Results

This section presents the experimental settings and results, and empirically shows that the
method is both efficient at building a shared set of policies and effective at combining
these policies using GPI to generate behaviors for different preferences over objectives.
To evaluate the proposed method, two domains are used.

The Four-Room environment is used as one of the experimental settings in this work
because it is employed in relevant related works, such as [4, 15, 3].

To show that the method also performs well for even more complex domains, and that
the policies generated for new preferences over objectives are effective, a traffic signal
control environment where traffic controllers optimize for both vehicles and pedestrians
is also used, since this is an inherently distributed and multi-objective domain. Also, the
agent’s actions in this environment are highly coupled, which makes it even more chal-
lenging.

As explained in Section 4.1, the agents can use any temporal difference learning algo-
rithm to learn policies for the weights they receive. For our experiments, in both domains,
multi-objective Q-learning with experience replay [14] was used. Table 1 shows the learn-
ing parameters used. Several values for each parameter were tested, but these were the
ones that induced the best performance.

Table 1. Q-learning parameters.
Parameter Value

α 0.1
ϵ 0.05
γ 0.95

Experience replay buffer size 1000000

5.1. Four-Room

The Four-Room environment was extended to contain multiple agents. Figure 3 depicts
the environment. It is a 13 × 13 grid composed of four separate rooms, hence its name.
The black squares represent the walls separating the rooms (the agents are unable to walk
through these walls). There are three different types of objects (blue squares, green tri-
angles and red circles), which are collected by the agents once they step on their corre-
sponding squares. Each object corresponds to a different objective (there are, therefore,
three different objectives). For this multi-agent extension, a second agent has been added.
The agents start in the squares indicated by the labels S1 and S2. Once they both reach
the square indicated by the label G, the episode ends.

At each time step t, each agent observes a vector st = [x, y] which represents the
coordinates describing the agent’s current position in the grid. The agents are unaware of
each other, but their actions are highly coupled.

Each agent has four possible actions: up, down, right and left (which move the agent
one square in the corresponding direction). Agents are unable to step on black squares
(which represent walls) and unable to leave the grid.

Knowledge Transfer in MOMARL via GPI 351

S1

G

S2

Fig. 3. Four-Room domain.

The reward R(s, a, s′) ∈ R3 is a three-dimensional vector representing the type of
object in the agent’s current cell ([1, 0, 0] if blue square, [0, 1, 0] if green triangle, [0,
0, 1] if red circle and [0, 0, 0] if blank). Once an agent steps on a square with an object,
the agent receives the respective reward, and the object disappears, so the other agent can
no longer receive a non-zero reward by stepping on that square. The agents, therefore,
compete against each other.

This section aims at showing that the proposed method is efficient at generating a
shared set of policies that can be effectively combined via GPI. Since the method iter-
atively assigns weights to the agents, which learn policies to scalarized versions of the
multi-objective problem at each iteration, efficiency here can be measured by the num-
ber of iterations required to build the complete set of policies. A common baseline in the
literature, which is used here as well, is to use random weights at each iteration [37].

Figure 4 shows the average return of both agents for 12 random test weights, after each
iteration of MA-SFOLS + GPI and Random + GPI. As mentioned, for Random + GPI each
agent is assigned a random weight at each iteration (instead of the corner weights, which
offer the greatest possible improvement). For both MA-SFOLS and Random, GPI is used
at every iteration to combine the policies learned so far to generate behaviors for the test
weights.

From the plot, it is clear that the proposed method takes considerably less iterations
in order to build an approximate CCS. For this example, the shared set of policies in most
runs of the MA-SFOLS was already sufficient at iteration 4, whilst Random took more
than twice as many iterations (approximately 10) to reach a similar level of returns.

The results empirically show the concept explained in Theorem 1: that corner weights
offer the greatest possible improvement to expand the current set of policies. In fact, ac-
cording to this theorem, no other weights assigned to the agents besides the ones selected
by MA-SFOLS at each iteration could have built a CCS in fewer iterations.

352 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

Fig. 4. Expected return of the agents over the distribution of reward weights
(Four-Room).

5.2. Traffic Signal Control

The traffic scenario, shown in Figure 5, contains three intersections. Each traffic light
at each intersection is controlled by an independent RL agent. The experiments were
performed using SUMO-RL [2], which is based on the microscopic traffic simulator
SUMO [22] (Simulation of Urban MObility). SUMO-RL provides an interface for MARL,
in which each agent can receive its own observations and rewards, and provide its own
action to the traffic simulation. Below we detail how the scenario and the states, actions,
and rewards of the agents were defined in our experimental setting.

The scenario selected is especially interesting and non-trivial because it considers
pedestrians. Figure 6 shows a zoomed view of an intersection, in which lanes, vehicles,
sidewalks, pedestrians, and a crossing can be seen. Notice that there is only one crossing
lane per intersection, located at the road with greater vehicular demand. This is inten-
tional, as it ensures that a conflict exists between the vehicle and the pedestrian objectives.
Were there to be a crossing on the other road, the problem would become much less com-
plex from a multi-objective perspective, as the same actions would benefit both objectives
simultaneously.

Every link has 150 m in length, two lanes and is one-way. There are four Origin-
Destination (OD) pairs: VO1 → VD1, HO1 → HD1, HO2 → HD2 and HO3 → HD3.
Vehicles and pedestrians are inserted in an origin node and are removed from the simu-
lation in a destination node. Vehicles travel in the North-South (N-S) direction in vertical
links, and in the West-East (W-E) direction in horizontal links. Each vertical link has a
pedestrian sidewalk, and each intersection has a crossing for pedestrians. Pedestrians only
go in the North-South (N-S) direction.

Traffic signals in this scenario have a minimum and maximum green time. They are
referred to as minGreenTime and maxGreenTime, respectively. For the experiments, these
values were 10 and 50 seconds respectively. All signals have two phases, the North-South
phase, which, when green, allows pedestrians and vehicles to flow in the North-South

Knowledge Transfer in MOMARL via GPI 353

Fig. 5. Traffic signal control environment

Fig. 6. Traffic intersection

direction, and the West-East phase, which, when green, allows vehicles to flow in the
West-East direction.

Regarding demands, one vehicle is inserted in HO1, HO2 and HO3 every 3.3 seconds,
and one vehicle is inserted in VO1 every 20 seconds. As for pedestrians, one pedestrian is
inserted every second in the origin node VO1. Each episode runs for 500 seconds. Once
an episode ends, the simulation restarts.

At each time step t (which corresponds to five seconds of clock time), each agent ob-
serves a vector st, given by Eq. (22), which describes the current state of the respective
intersection. ρ ∈ {0, 1} is binary variable that indicates the current active green phase
(ρ = 0 when the West-East phase is green, and ρ = 1 when the North-South and pedes-

354 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

trian phases are green). τ ∈ [0, 1] is the elapsed time of the current signal phase divided
by maxGreenTime (50 seconds). L is the set of all incoming lanes (for both vehicles and
pedestrians). The density ∆l ∈ [0, 1] is defined as the number of vehicles or pedestrians
in the incoming lane l ∈ L divided by the total capacity of the lane. ql ∈ [0, 1] is defined
as the number of queued vehicles or pedestrians in the incoming lane l ∈ L divided by
the total capacity of the lane. A vehicle is considered to be queued if its speed is below
0.1 m/s. A pedestrian is considered to be queued if it is stopped before a crossing waiting
for its phase to turn green.

st = [ρ, τ,∆1, ...,∆|L|, q1, ..., q[L]] (22)

Each signal controller agent chooses a discrete action at at each time step t. For our
scenario, since all intersections have two incoming links, there are two phases, so each
agent has only two actions: keep and change. The former keeps the current green sig-
nal active, while the latter switches the current green light to another phase. The agents
can only choose keep if the current green phase has been active for less than maxGreen-
Time, and can only choose change if the current green phase has been active for at least
minGreenTime.

For this scenario, the traffic controllers have two objectives: to minimize the waiting
time of vehicles, and to minimize the waiting time of pedestrians. Thus, the reward func-
tion R → R2 is a two-dimensional vector, given by Eq. (23), where the first component is
the change in cumulative vehicle waiting time between successive time steps, and the sec-
ond component is the change in cumulative pedestrian waiting time between successive
time steps.

Rt = [Wvt −Wvt+1,Wpt −Wpt+1] (23)

Wvt is the cumulative vehicle waiting time at time step t, given by Eq. (24), where
Vt is the set of incoming vehicles, and wv,t is the total waiting time of vehicle v since it
entered the incoming road until time step t.

Wvt =
∑
v∈Vt

wv,t (24)

Wpt is the cumulative pedestrian waiting time at time step t, given by Eq. (25), where
Pt is the set of incoming pedestrians, and wp,t is the total waiting time of pedestrian p at
the crossing until time step t.

Wpt =
∑
p∈Pt

wp,t (25)

Figure 7 shows the average return of all three traffic controllers for 25 random test
weights,2 after each iteration of MA-SFOLS + GPI. The performance of a few policies
generated by GPI is shown in Figure 8, Figure 9 and Figure 10. Figure 8 shows the waiting
time of pedestrians for the selected policies, and it is clear that the greater the value of
w1 (the weight corresponding to the pedestrian objective), the smaller the waiting time of
pedestrians (thus, greater the performance for this objective). Figure 9 shows the waiting

2 We uniformly sample weight vectors by sampling from a d-dimensional Dirichlet distribution (α = 1), as
in [1].

Knowledge Transfer in MOMARL via GPI 355

Fig. 7. Expected return of the agents over the distribution of reward weights

time of vehicles for the selected policies, and the same effect is visible (the greater the
value of the weight corresponding to the vehicle objective, the better the performance for
this objective). Figure 10 shows a zoomed view of Figure 9.

Note that the legends of the plots only show one dimension of the weight vector (since
there are only two objectives, w0 = 1 − w1 and w1 = 1 − w0). If a plot shows waiting
time of vehicles, the legend shows the weight dimension for vehicles (w0), and if a plot
shows waiting time of pedestrians, the legend shows the weight dimension for pedestrians
(w1).

It is clear from these plots how conflicting both objectives are (the higher the pref-
erence over one objective, the worse the performance is for the other objective). This
makes this problem even more difficult, and also helps to serve as a motivation for multi-
objective methods. Clearly, for this problem, a multi-objective method is required, as a
priori scalarization of the problem would not be sufficient to address this scenario if the
weights were not known in advance.

Section 5.1 showed the efficiency of the proposed method (measured by iterations
required to form an approximate CCS). This section aims at showing the effectiveness
of the method, that is, that the policies generated by GPI are effective for new reward
weights. Thus, in the next experiments, we present an evaluation phase in which the set
of policies identified during the training phase (via Algorithm 1) is shared with all agents.
We compare the performance of policies generated via GPI with policies learned by Q-
learning given a few selected reward weights.

Figures 11, 12, 13, 14 and 15 show a comparison between the performance (for both
objectives) of policies generated by MA-SFOLS + GPI and the performance of policies
learned by Q-learning via a priori scalarization for a few weights. It is clear that the
policies generated by GPI have a very similar performance to the policies directly learned
by Q-learning via a priori scalarization. Therefore, these results show that the method is
able to appropriately leverage previous knowledge in order to create effective policies for
new values of w.

The results in this section and in Section 5.1 empirically show that the method is both
efficient and effective at building a shared set of policies that can be combined via GPI

356 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

Fig. 8. Waiting time of pedestrians for a few policies generated by GPI

Fig. 9. Waiting time of vehicles for a few policies generated by GPI

to generate behaviors for new weights, so that the RL agents can perform well for any
required preference of objectives.

Knowledge Transfer in MOMARL via GPI 357

Fig. 10. Zoomed view of waiting time of vehicles

Fig. 11. MA-SFOLS + GPI vs Q-learning: w = [0.5, 0.5] (pedestrians)

6. Conclusion

This work introduced a multi-objective multi-agent transfer learning method in which
homogeneous agents decentrally build a shared set of policies during training. During
the execution/evaluation phase, the agents combine these policies via GPI to create new
policies specialized to any new linear combinations of their objectives. Within the method,
two layers of knowledge transfer can be discerned: knowledge sharing and policy transfer.

Knowledge sharing refers to the fact that the policies learned by one agent can be used
by another, thus all the agents in the system share their knowledge with each other. Policy
transfer refers to the fact that, by leveraging a generalization of policy improvement, the

358 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

Fig. 12. MA-SFOLS + GPI vs Q-learning: w = [0.4, 0.6] (pedestrians)

Fig. 13. MA-SFOLS + GPI vs Q-learning: w = [0.2, 0.8] (pedestrians)

proposed method also enables agents to combine policies learned by themselves and by
the other agents in order to create new policies, thus, policy transfer.

The proposed method is very useful for problems that are inherently distributed (there-
fore, a multi-agent solution is preferable or required) and multi-objective, and scalarizing
them is not an option, either because the weights for the objectives are not known during
training, or because the trade-off between objectives may change over time.

A traffic signal control domain with vehicles and pedestrians was used to evaluate
the method, in addition to a standard domain in the SFs literature. It must be noted that
optimizing for pedestrians is rarely addressed in the RL literature for traffic signal control.

The results empirically showed that the method is both efficient and effective at build-
ing a shared set of policies that can be combined via GPI to generate behaviors for new
weights, so that the RL agents can perform well for any required preference of objectives.

Knowledge Transfer in MOMARL via GPI 359

Fig. 14. MA-SFOLS + GPI vs Q-learning:w = [0.2, 0.8] (vehicles)fig:four-room-returns

Fig. 15. MA-SFOLS + GPI vs Q-learning: w = [0.4, 0.6] (vehicles)fig:four-room

This is one of the first works to address TL in the context of MOMARL, and the first
work (to the authors’ best knowledge) that leverages generalized policy improvement for
settings with multiple objectives and multiple agents.

In future work, we would like to address the two main limitations of our approach.
First, we assumed linear utility functions, and thus our method is only able to identify
policies in the CCS. How to deal with the more general case of non-linear utility func-
tions is still an open problem in MORL [34]. Second, we considered independent learning
agents that do not take into account the effects of non-stationarity caused by other agents.
Extending our method in a way such that agents’ policies are conditioned on the prefer-
ences of other agents is a promising research direction. In order to tackle this problem,
we plan to design a method that learns an inherently multi-agent coverage set, instead of a
regular CCS; that is, a coverage set that takes into account the preferences over objectives
of all agents simultaneously.

360 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

Acknowledgments. Ana Bazzan is partially supported by CNPq (grant 304932/2021-3). This work
was partially funded by FAPESP and MCTI/CGI (grants number 2020/05165-1) and by CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil, Finance Code 001), and
also partially sponsored by the German Federal Ministry of Education and Research (BMBF), Käte
Hamburger Kolleg Cultures des Forschens/ Cultures of Research. We are grateful to the anonymous
reviewers inputs.

References

1. Abels, A., Roijers, D.M., Lenaerts, T., Nowé, A., Steckelmacher, D.: Dynamic weights in multi-
objective deep reinforcement learning. In: Proceedings of the 36th International Conference on
Machine Learning. vol. 97, pp. 11–20. International Machine Learning Society (IMLS) (2019)

2. Alegre, L.N.: SUMO-RL. https://github.com/LucasAlegre/sumo-rl (2019)
3. Alegre, L.N., Bazzan, A.L.C., da Silva, B.C.: Optimistic linear support and successor features

as a basis for optimal policy transfer. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 162, pp. 394–413. PMLR (17–23
Jul 2022), https://proceedings.mlr.press/v162/alegre22a.html

4. Barreto, A., Dabney, W., Munos, R., Hunt, J.J., Schaul, T., van Hasselt, H.P., Silver, D.: Suc-
cessor features for transfer in reinforcement learning. In: Guyon, I., Luxburg, U.V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information
Processing Systems. vol. 30. Curran Associates, Inc. (2017)

5. Barreto, A., Hou, S., Borsa, D., Silver, D., Precup, D.: Fast reinforcement learning with general-
ized policy updates. Proceedings of the National Academy of Sciences 117(48), 30079–30087
(2020)

6. Bazzan, A.L.C.: Opportunities for multiagent systems and multiagent reinforcement learning
in traffic control. Autonomous Agents and Multiagent Systems 18(3), 342–375 (June 2009)

7. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)
8. Borsa, D., Barreto, A., Quan, J., Mankowitz, D.J., Munos, R., Hasselt, H.V., Silver, D., Schaul,

T.: Universal successor features approximators. In: Proceedings of the 7th International Con-
ference on Learning Representations (ICLR) (2019)

9. Buşoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforce-
ment learning. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on 38(2), 156–172 (2008)

10. Cheng, H.T.: Algorithms for partially observable Markov decision processes. Ph.D.
thesis, University of British Columbia (1988), https://open.library.ubc.ca/
collections/ubctheses/831/items/1.0098252

11. Dayan, P.: Improving generalization for temporal difference learning: The successor represen-
tation. Neural Computation 5(4), 613–624 (1993)

12. Duan, H., Li, Z., Zhang, Y.: Multiobjective reinforcement learning for traffic signal control
using vehicular ad hoc network. EURASIP Journal on Advances in Signal Processing 2010 (12
2010)

13. Egea, A.C., Connaughton, C.: Assessment of reward functions in reinforcement learning
for multi-modal urban traffic control under real-world limitations (2020), arXiv preprint
arXiv:2010.08819

14. Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M., Dabney,
W.: Revisiting fundamentals of experience replay. In: Proceedings of the 37th International
Conference on Machine Learning. Vienna, Austria (2020)

15. Gimelfarb, M., Barreto, A., Sanner, S., Lee, C.G.: Risk-aware transfer in reinforcement learning
using successor features. In: Proceedings of the 35th Annual Conference on Advances in Neural
Information Processing Systems. Online (2021)

Knowledge Transfer in MOMARL via GPI 361

16. Gupta, T., Mahajan, A., Peng, B., Böhmer, W., Whiteson, S.: Uneven: Universal value explo-
ration for multi-agent reinforcement learning (2021), arXiv preprint arXiv:2010.02974

17. Hayes, C.F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M., Ver-
straeten, T., Zintgraf, L.M., Dazeley, R., Heintz, F., Howley, E., Irissappane, A.A., Mannion,
P., Nowé, A., Ramos, G., Restelli, M., Vamplew, P., Roijers, D.M.: A practical guide to multi-
objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems
36(1), 26 (Apr 2022), https://doi.org/10.1007/s10458-022-09552-y

18. Khamis, M.A., Gomaa, W.: Enhanced multiagent multi-objective reinforcement learning for
urban traffic light control. In: 2012 11th International Conference on Machine Learning and
Applications. vol. 1, pp. 586–591 (2012)

19. Kim, S.H., Stralen, N.V., Chowdhary, G., Tran, H.T.: Disentangling successor features for co-
ordination in multi-agent reinforcement learning. In: International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2022. pp. 751–760 (2022)

20. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research 32(11), 1238–1274 (2013)

21. Liu, W., Niu, D., Dong, L., Sun, C.: Efficient exploration for multi-agent reinforcement learning
via transferable successor features. IEEE/CAA Journal of Automatica Sinica 9 (2022)

22. Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.P., Hilbrich, R., Lücken,
L., Rummel, J., Wagner, P., Wießner, E.: Microscopic traffic simulation using SUMO. In: The
21st IEEE International Conference on Intelligent Transportation Systems (2018)

23. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for combinato-
rial optimization: A survey. Computers and Operations Research 134, 105400 (2021)

24. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep rein-
forcement learning. Nature 518(7540), 529–533 (Feb 2015)

25. Noaeen, M., Naik, A., Goodman, L., Crebo, J., Abrar, T., Far, B., Abad, Z.S.H., Bazzan, A.L.C.:
Reinforcement learning in urban network traffic signal control: A systematic literature review
(2021), engrxiv.org/ewxrj

26. Rǎdulescu, R., Mannion, P., Roijers, D., Nowé, A.: Multi-objective multi-agent decision mak-
ing: a utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems 34 (04
2020)

27. Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic Engineering. Prentice Hall, 3rd edn. (2004)
28. Roijers, D.: Multi-Objective Decision-Theoretic Planning. Ph.D. thesis, University of Amster-

dam (2016)
29. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential

decision-making. J. Artificial Intelligence Research 48(1), 67–113 (Oct 2013)
30. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences 39(10),

1095–1100 (1953)
31. Silva, F.L.d., Costa, A.H.R.: A survey on transfer learning for multiagent reinforcement learn-

ing systems. Journal of Artificial Intelligence Research 64, 645–703 (2019)
32. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,

L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.: Mastering chess and
shogi by self-play with a general reinforcement learning algorithm (2017)

33. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT Press, second
edn. (2018)

34. Vamplew, P., Foale, C., Dazeley, R.: The impact of environmental stochasticity on value-based
multiobjective reinforcement learning. Neural Computing and Applications (Mar 2021)

35. Vamplew, P., Yearwood, J., Dazeley, R., Berry, A.: On the limitations of scalarisation for multi-
objective reinforcement learning of pareto fronts. In: Wobcke, W., Zhang, M. (eds.) AI 2008:
Advances in Artificial Intelligence. pp. 372–378. Springer, Berlin, Heidelberg (2008)

36. Wei, H., Zheng, G., Gayah, V.V., Li, Z.: A survey on traffic signal control methods (2020),
http://arxiv.org/abs/1904.08117, preprint arXiv:1904.08117

362 Vicente N. de Almeida, Lucas N. Alegre, and Ana L. C. Bazzan

37. Yang, R., Sun, X., Narasimhan, K.: A generalized algorithm for multi-objective reinforcement
learning and policy adaptation. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-
Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. pp.
14610–14621 (2019)

38. Yau, K.L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement
learning models and algorithms for traffic signal control. ACM Comput. Surv. 50(3) (2017)

39. Yin, B., Menendez, M.: A reinforcement learning method for traffic signal control at an isolated
intersection with pedestrian flows. pp. 3123–3135 (07 2019)

40. Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: A survey. ACM
Comput. Surv. 55(1) (nov 2021)

Vicente Almeida received the B.Sc. degree (cum laude) in computer engineering from
the Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, in 2022,
where he is currently pursuing the masters degree with the Institute of Informatics. His
research interests include data exploration, reinforcement learning, and visual analytics.
In his masters, he is currently working on the problem of exploring large datasets by
combining multiple hypothesis testing with data-informed dimensions.

Lucas N. Alegre received the B.Sc. degree (cum laude) in computer science from the
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, in 2021, where
he is currently pursuing the Ph.D. degree with the Institute of Informatics. Part of his
Ph.D. was done in the AI Lab at the Vrije Universiteit Brussel (VUB). His research in-
terests include reinforcement learning, machine learning, artificial intelligence, and their
applications to real-world problems. In particular, in his Ph.D., he is tackling the problem
of how to design sample-efficient multi-task and multi-objective reinforcement learning
algorithms capable of learning multiple behaviors that can be combined to solve novel
problems.

Ana Bazzan is a professor of Computer Science at the Institute of Informatics at the
Universidade Federal do Rio Grande do Sul (UFRGS), where she leads the Artificial
Intelligence Group. Her research focuses on multiagent systems, in particular on agent-
based modeling and simulation, and multiagent learning. Since 1996, she has collaborated
with various researchers in the application of multiagent systems. In recent years, she has
contributed to different topics regarding smart cities, focusing on transportation. In 2014,
she was General Co-chair of AAMAS (the premier conference in the area of autonomous
agents and multiagent systems).

Received: December 10, 2022; Accepted: September 02, 2023.

