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Abstract. An individually rational agent will participate in a multi-agent coali-
tion if the participation, given available information and knowledge, brings a pay-
off that is at least as high as the one achieved by not participating. Since agents’
performance and skills may vary from task to task, the decisions about individual
agent-task assignment will determine the overall performance of the coalition. Max-
imising the efficiency of the one-on-one assignment of tasks to agents corresponds
to the conventional linear sum assignment problem, which considers efficiency as
the sum of the costs or benefits of individual agent-task assignments obtained by
the coalition as a whole. This approach may be unfair since it does not explicitly
consider fairness and, thus, is unsuitable for individually rational agents’ coalitions.
In this paper, we propose two new assignment models that balance efficiency and
fairness in task assignment and study the utilitarian, egalitarian, and Nash social
welfare for task assignment in individually rational agents’ coalitions. Since fair-
ness is a relatively abstract term that can be difficult to quantify, we propose three
new fairness measures based on equity and equality and use them to compare the
newly proposed models. Through functional examples, we show that a reasonable
trade-off between efficiency and fairness in task assignment is possible through the
use of the proposed models.

Keywords: Task Assignment, Multi-Agent Systems, Fairness , Efficiency, Resource
Allocation, Multi-Agent Coordination

1. Introduction

An individually rational agent operates within a decision-making context, driven by self-
interest to ensure that it attains a payoff or utility that is at least as favourable as its
best alternative, including the option of not participating. When a coalition is formed by
individually rational agents, they share a common objective, even though the agents them-
selves may possess distinct, potentially conflicting interests. They collaborate by pooling
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their capabilities and/or resources to efficiently carry out designated tasks, often achieving
synergistic outcomes that surpass what they could accomplish individually. In this con-
text, agents strive to achieve superior performance through collective action. Instances of
such coalitions can be observed in various domains, including emergency services (e.g.,
[26]), agricultural cooperatives (e.g., [28]), taxi and ride-sharing services (e.g., [5, 27]),
as well as smart grids (e.g., [36]), among others.

Of our concern in this paper is the one-on-one agent-task assignment in a coalition
composed of individually rational agents. We assume a centralised decision-making pro-
cess (or an algorithm) that is in charge of deciding which agent is assigned to each task.
From a utilitarian point of view, an optimal solution would be the assignment that pro-
duces the lowest overall cost (or the highest benefit) for the coalition as a whole. However,
the most efficient solution for the overall system may create large differences among the
agents in terms of their individually assigned costs (we refer to this as an “unfair” as-
signment). The perception of an unfair task assignment solution may motivate unsatisfied
agents to leave the coalition, putting the survivability of the same at risk. Thus, assignment
decisions should be made based on minimising overall assignment costs and considering
social welfare and fairness.

The linear-sum assignment problem, related to the topic of this paper, is a largely
studied generally computationally easy problem that maximizes the efficiency of a multi-
agent system without considering fairness. Exact solutions for this problem can be pro-
duced efficiently even for problem instances with a very large number of agents and tasks.
However, to the best of our knowledge, related work on balancing fairness and efficiency
in task assignment is scarce. Therefore, in this work, we explore the means of balancing
the overall cost and fairness in task assignment in agent coalitions. These two aspects are
generally opposed, i.e., solution approaches focusing on cost minimisation are likely to
produce unfair assignments for some agents, while fair assignments may be far from the
minimum cost solution for the coalition as a whole. In this paper, we study the trade-off
between these two requirements and focus on finding task assignment solutions that are as
fair as possible while not overly penalising the overall coalition’s assignment cost. This
implies finding efficient and fair assignments considering the distribution of individual
costs among coalition members.

The main contributions of this paper are twofold. First, we propose three new fair-
ness measures for a multi-agent system composed of self-concerned individually rational
agents: Egalitarian Fairness Measure (EFM), Relative All-to-all Fairness measure (RAF),
and Overall Relative Opportunity Cost Fairness (OROCF) measure. Then, we present two
new one-on-one task assignment models that maximise the social welfare of the system
while balancing efficiency and fairness: an envy-free utilitarian model that uses the util-
itarian social welfare function while constraining the differences in the costs between
agents, and the Nash model that optimises the Nash product of assigned tasks’ benefits or
costs of individual agents composing the system. We choose Nash social welfare due to
its structure (being a product of costs) that explicitly balances efficiency and fairness.

The rest of the paper is organised as follows. In Section 2, we give an overview of
the state of the art. In Section 3, we give motivation for this work and define the general
problem of one-on-one task assignment. We propose new equality and equity fairness
measures in Section 4 and introduce a linearised model for the calculation of one of the
more computationally complex fairness measures. The two new proposed mathematical
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models for efficient and fair task assignment are presented in Section 5. Section 6 presents
simple functional tests and discusses how the presented models differ based on the pro-
posed fairness measures. Following these functional tests, in Section 7, we compile the
results of many experiments to have a complete overview of the strengths and weaknesses
of each model. In Section 8, we conclude the paper by giving an overview of the results
and discuss the potential of the new proposed models and fairness measures to make a fair
and efficient task assignment. We also give lines of future work to improve the proposed
assignment models and fairness measures.

2. State of the Art

The assignment of resources, chores, or tasks in a multi-agent coalition may vary when
defining fairness and efficiency depending on agents’ mutual inter-dependencies and their
relation with the coalition’s objectives (e.g., [8, 11, 29]).

In this paper, we study balancing fairness and efficiency in the allocation of indivisible
goods (resources, chores, or tasks) (e.g., [12]), and, more specifically, in the one-on-one
assignment of tasks to agents in a cooperative multi-agent coalition composed of individ-
ually rational agents.

Cooperative decision making considers working toward a shared goal even though its
ownership is not shared [33], as opposed to collaborative decision making, which consid-
ers a goal that is shared and owned by all agents in a coalition. Thus, cooperative decision
making results are generally differentially beneficial to different agents [30], while col-
laboration is generally about equally sharing efforts, costs, and benefits.

Cooperative multi-agent task allocation problem was studied in, e.g., [18, 23, 27]. This
problem has many different real-world applications where fairness can be a challenge. For
example, in spatial crowdsourcing [42], there is a need to minimise the payoff difference
among workers while maximising the average worker payoff. Similarly, in ride-share plat-
forms, it was shown in [32] that, during high-demand hours, lacking any consideration of
fairness and seeking only an optimal number of trips could lead to increased societal bi-
ases in the choice of the clients. This problem is relevant for many other applications
including manufacturing and scheduling, network routing and the fair and efficient ex-
ploitation of Earth Observation Satellites, among others (e.g., [11]).

Various fairness measures exist for different contexts, e.g., machine learning (e.g.,
[14]), neural networks (e.g., [34]) and algorithm development (e.g., [20]). Fairness is stud-
ied as well in other contexts, like the multi-winner voting problem and recommender sys-
tems (e.g., [40]), but also in decision making (e.g., [37]). The importance of the individual
perception of fairness within a system to keep individual satisfaction high is emphasised
in [38]. In the Machine Learning context, the potential contradiction between individual
and group fairness is studied in [6]. Some works study more generally the concepts of
distributive justice, equality and equity (e.g., [13]).

The two most well-known fairness measures for the allocation of indivisible goods
include max-min and proportional allocation. The max-min fairness aims to maximize
the utility of the agent who contributes the least to the overall utility of the system. In
other words, it ensures that the agent with the smallest contribution still receives as much
utility as possible, while proportional fairness dictates that each agent should receive at
least one-nth of the utility they would have obtained if they were the sole recipient of
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the goods. Max-min fairness is generalised in the case of resource allocation for systems
with different resource types in [17] while max-min fairness, proportional fairness and
balanced fairness are compared in the setting of a communication network of processor-
sharing queues in [7]. Additionally, in resource allocation, there can be agents desiring
some tasks (resources) more than others, or there can even be agents desiring tasks given
to other agents, creating envy in the system (e.g., [11]). Envy-freeness criterion implies
that an allocation should leave no agent envious of the other (e.g., [9]). However, it is not
always enough to achieve envy-freeness for a fair solution (e.g., [2, 22]).

Balancing fairness and efficiency in divisible resource sharing was studied in, e.g.,
[1], while the related work on the competitive counterpart of cooperative systems usually
studies finding a Pareto-optimal and fair allocation of indivisible items aiming at maximis-
ing (computationally expensive) Nash welfare (e.g., [4, 19, 41]). Proving the existence of
such an allocation for an arbitrary number of agents is still an open problem [3].

Various social welfare concepts play an important role in balancing between efficiency
and fairness. Their modelling and importance in enhancing the quality of task allocation
are studied in [11]. In this work, we study egalitarianism and utilitarianism in this regard.
Egalitarianism is a trend of thought in political philosophy that favours equality among the
individuals composing the coalition no matter what their circumstances are (e.g., [16]).
Utilitarianism, on the other hand, is a theory of morality that advocates actions that max-
imise happiness or well-being for all individuals while opposing the actions that cause
unhappiness or harm. When directed toward making social and economic decisions, a
utilitarian philosophy aims at the improvement of the coalition as a whole (e.g., [31]).

The Nash social welfare combines efficiency and fairness considerations. This func-
tion, or variants of it, are studied in literature considering, e.g., fairness in the ambulance
location problem [21], and in allocating indivisible goods [10]. The multi-agent resource
allocation problem considering Nash social welfare (the product of the utilities of the
individual agents) is studied in [35].

This paper is an extended version of [15], where we previously studied the problem of
balancing efficiency and fairness in linear-sum one-on-one task assignment. To the best
of our knowledge, most of the related works treat efficiency in terms of proportionality in
competitive multi-agent systems and propose computationally expensive models suitable
for instances with a relatively small number of agents and tasks. In this paper, we propose
two scalable computationally efficient models for task assignment in cooperative multi-
agent systems, Nash model and envy-free utilitarian model, both with quality of solution
guarantees. The proposed models balance efficiency in terms of overall system cost and
the proposed fairness measures.

3. Motivation and problem definition

Most of the state-of-the-art literature on task assignment generally focuses on the effi-
ciency of the assignment in terms of cost minimisation or benefit maximisation and does
not consider fairness in the process, thus optimising only the system’s overall general as-
signment cost or benefit (e.g., time, distance, monetary value, etc.). It is noteworthy that,
from an optimisation standpoint, the task of maximising the overall benefit of multi-agent
task assignments can be effectively converted into a cost-minimisation problem by simply
inverting the values associated with agent-task assignment benefits.
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The overall cost-minimisation approach in multi-agent task assignment is equivalent
to optimising utilitarian social welfare function, a concept from welfare economy that
sums the utility of each individual to obtain society’s overall welfare (see, e.g., [11, 39]).
All agents are treated the same, regardless of their initial level of utility or cost distribu-
tion among the tasks. This strategy is admissible in the case of a single decision maker,
but might be unacceptable when multiple self-concerned and individually rational agents
must mutually decide on the assignment of tasks.

Let us introduce a simple example showing how unfair a task assignment optimising
a utilitarian social welfare function can be. Let us consider 3 self-concerned, individually
rational agents (a1, a2, a3) that need to be assigned in a one-on-one manner to a set of
3 tasks (k1, k2, k3) and vice versa. The cost matrix containing the assignment costs for
these agents and tasks is shown in Table 1a.

Table 1. Example of a cost matrix and different one-on-one task assignment solutions
with minimum overall cost (in bold)

(a) Cost Matrix

k1 k2 k3
a1 50 60 70
a2 30 40 50
a3 10 50 30

(b) Solution s1

k1 k2 k3
a1 50 60 70
a2 30 40 50
a3 10 50 30

(c) Solution s2

k1 k2 k3
a1 50 60 70
a2 30 40 50
a3 10 50 30

(d) Solution s3

k1 k2 k3
a1 50 60 70
a2 30 40 50
a3 10 50 30

By applying the conventional (linear-sum) task assignment model (i.e., the utilitarian
social welfare model) that minimises the overall assignment cost of the system without
considering fairness (see, e.g., [24, 27]), we might get the assignments (called solution
s1) marked in bold in Table 1b where agent a1 is assigned to task k2, agent a2 is assigned
to task k1 and agent a3 to task k3. The overall (minimum) assignment cost found by this
model is 120. However, if we focus on its cost distribution over individual agents, we see
large discrepancies. Indeed, the cost of agent a1 is 60, while the cost of a2 (and a3) is only
30. Thus, a1 is charged twice more than a2 (and a3). In Table 1d (i.e., solution s3), this
difference is even larger resulting in a 7 times larger cost of the worst-off concerning the
best-off agent. Generally, an upper bound on the difference in the assignment cost is the
maximum value in a given cost matrix. In centralised systems, where agents are owned
and controlled by a single decision-maker, this would not cause any problems. However,
in the case of decentralised systems composed of self-concerned and individually rational
agents, such an unfair solution might result in the worst-off agents leaving the system due
to the lack of fairness in the solution.

Table 1c shows a fairer solution (that we name s2) where the costs of the agents
are as close as possible, thus minimising the envy of agents. This is an ideal situation
regarding fairness in this case where all agents are assigned tasks of similar costs. Notice
that, here we did not sacrifice efficiency to achieve balanced individual costs. In case of
repetitive task allocations, the assignments can be altered to further facilitate balance in
the accumulated assignment costs.
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Problem definition. Given are a set of agents a ∈ A and a set of tasks k ∈ K that form
a weighted complete bipartite graph G = (A

⋃
K,E) with edge set E = A × K and

with given edge weights cak on each edge (a, k) ∈ E, where cak is the cost of assigning
task k to agent a, for all a ∈ A and k ∈ K. W.l.o.g, we assume that the cardinality of the
two sets is equal, i.e., |A| = |K|. In the case of unequal cardinality, we add a sufficient
number of dummy vertices and assume that cak = 0 where a ∈ A or k ∈ K are dummy
vertices. Moreover, for simplicity, we assume that agents are indexed from 1 to |A|, i.e.,
A = {1, . . . , |A|}. The objective is to assign agents a ∈ A to tasks k ∈ K in a one-on-
one manner and, therefore, find a perfect matching among vertices in A and vertices in
K considering both assignment efficiency and fairness. An edge (a, k) is matched if its
(two) extreme vertices a ∈ A and k ∈ K are mutually matched, and matching is perfect
if every vertex in A is matched (assigned) to exactly one vertex in K, and vice versa. The
following is the mathematical formulation of these constraints.

∑
k∈K

xak = 1,∀ a ∈ A (1)
∑
a∈A

xak = 1,∀ k ∈ K (2)

xak ∈ {0, 1},∀ a ∈ A,∀ k ∈ K (3)

where xak is a binary decision variable equal to 1 if agent a ∈ A is assigned to task k ∈ K,
and zero otherwise. Constraints (1) and (2) assure that there is one-on-one assignment for
each agent a ∈ A and task k ∈ K, respectively. Constraints (3) fix the ranges of the
decision variables.

4. Proposed fairness measures

In this section, we propose three new fairness measures for quantifying the balance be-
tween fairness and efficiency in task assignment from the egalitarian and equity points
of view. All the fairness measures are fractions ranging between 0 and 1. We avoid the
division by 0 in some extreme cases by adding a very small number ϵ (e.g., ϵ = 1e−10) to
both the numerator and the denominator of these fractions.

The proposed fairness measures should be computed only for non-dummy vertices in
the bipartite graph that represents the agents and tasks to ensure that these measures can
still reach either the value of 0 or 1.

4.1. Egalitarian Fairness Measure (EFM)

Egalitarian Fairness Measure (EFM) focuses on the assignment cost faced by the worst-
off agent (i.e., the agent with the highest assignment cost in a given feasible solution).
Given the assignments xsol

ak ,with a ∈ A and k ∈ K, of a feasible solution sol, EFM is
computed as follows:

EFM(sol) =
cmax − cwo

sol + ϵ

cmax − cwo
min + ϵ

(4)

where cmax = maxa∈A,k∈K{cak} is the maximum value in the cost matrix, cwo
sol =

maxa∈A{
∑

k∈K cakx
sol
ak } is the cost paid by the worst-off agent in the given solution,
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and cwo
min is the minimum (or the preferred) cost that the same agent could pay for task

assignment. In particular, cwo
min is the optimal solution of the given mathematical problem:

cwo
min = minλ (5)

s.t. (1)–(3) and ∑
k∈K

cakxak ≤ λ,∀ a ∈ A (6)

λ ≥ 0 (7)

where constraints (6) impose the upper limit on the cost (λ) paid by the worst-off agent,
and Constraints (7) fix the range of the additional variable λ. When the worst-off assigned
cost cwo

sol is equal to cmax, EFM(sol) will equal zero (ignoring ϵ). On the other hand,
when cwo

sol is equal to cwo
min, EFM(sol) will equal one; moreover, this also occurs when

there exists an agent a ∈ A such that cak = cmax, for all k ∈ K.
For the cost matrix given in Table 1a, where cmax = 70 and cwo

min = 50, we calculate
the EFM(sol) for each solution reported in Tables 1b–1d. All the solutions reported in
Table 1, have a minimum overall assignment cost equal to 120, while the values of cwo

sol are
cwo
s1 = 60, cwo

s2 = 50, and cwo
s3 = 70, for the solutions reported in Table 1b, Table 1c, and

Table 1d, respectively. EFM(sol) value for these solutions are: EFM(s1) =
70−60
70−50 =

0.5, EFM(s2) =
70−50
70−50 = 1, and EFM(s3) =

70−70
70−50 = 0.

According to the EFM measure definition, solution s2 is the fairest one. Note that the
increase in EFM value in solution s2 corresponds to a distribution of the costs that leaves
the worst-off agent better off than in s1, and that solution s3 leaves the worst-off agent
with the worst possible (highest) cost. Note that, generally, there may be multiple such
distributions.

4.2. Relative All-to-all Fairness (RAF) measure

Relative All-to-all Fairness (RAF) measure evaluates fairness at a society level by taking
into account every agent’s assignment in comparison with the others. The measure con-
siders the squared differences of the assignment costs of each agent concerning the costs
of all the others, as seen in Equation (8).

wsol =
∑
a∈A

∑
a′∈A|a′>a

(
∑
k∈K

cakx
sol
ak − ca′kx

sol
a′k)

2 (8)

Then, relative all-to-all fairness is computed as follows:

RAF (sol) =
wmax − wsol + ϵ

wmax − wmin + ϵ
, (9)

where wmax and wmin represent the maximum and the minimum value for the RAF fair-
ness measure that should be calculated a priori for a specific data set. They are modelled
as follows:

wmin = min
∑
a∈A

∑
a′∈A|a′>a

(
∑
k∈K

cakxak − ca′kxa′k)
2, (10)
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and

wmax = max
∑
a∈A

∑
a′∈A|a′>a

(
∑
k∈K

cakxak − ca′kxa′k)
2, (11)

both s.t. (1)–(3).
For the cost matrix given in Table 1a, the two components of RAF that are independent

of the assignment solution are wmax = 5400 and wmin = 0, related to solutions smax,
with xsmax

13 = xsmax
22 = xsmax

31 = 1, and smin, with xsmin
11 = xsmin

23 = xsmin
32 = 1,

respectively. The values wsol for the solutions reported in Table 1b, 1c and 1d are ws1 =
1800, ws2 = 600, and ws3 = 5400, respectively. Related RAF values are: RAF (s1) =
5400−1800
5400−0 = 0.67, RAF (s2) =

5400−600
5400−0 = 0.89, and RAF (s3) =

5400−5400
5400−0 = 0.

Also according to the RAF measure, solution s2 is the fairest one and the order of the
three solutions is the same as for EFM. This is not surprising as both measures evaluate the
equality of a solution. However, s2 is not the absolute fairest solution which, concerning
this indicator, is x11 = x23 = x32 = 1 where all the agents pay the same cost; in this
case, the RAF value is equal to 1. This is also not surprising as this particular measure
considers not only the worst-off agent, but all of them, therefore making it less likely that
one of the solutions with minimum cost also has the highest fairness value.

Linearisation of the RAF measure. It is computationally expensive to find the maxi-
mum value wmax and the minimum value wmin for the RAF fairness measure since their
models (10) and (11), respectively, are composed of quadratic terms. This is especially
the case in larger problem instances.

To fix this issue, in this section, we simplify the RAF measure by making a linear
model that will be easier to solve. We first modify the RAF formula by exchanging the
quadratic expressions with the absolute ones and then linearise the latter ones.

RAF measure with absolute values. We present in the following the proposed modified
models, replacing the quadratic terms with absolute ones, subject to the same constraints
as before.

w′
min = min

∑
a∈A

∑
a′∈A|a′>a

|
∑
k∈K

cakxak − ca′kxa′k|, (12)

and

w′
max = max

∑
a∈A

∑
a′∈A|a′>a

|
∑
k∈K

cakxak − ca′kxa′k|, (13)

both s.t. (1)–(3).

Minimising the RAF measure with linearised absolute values. In order to determine the
optimal value of w′

min in (12) subject to (1)–(3), we linearise objective function (12) by
adding new constraints and continuous free variables raa′ , for all a, a′ ∈ A, with a < a′,
as follows.
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w′
min = min

∑
a∈A

∑
a′∈A|a′>a

raa′ , (14)

s.t. (1)–(3), and

raa′ ≥
∑
k∈K

[cakxak − ca′kxa′k],∀ a, a′ ∈ A, with a < a′, (15)

raa′ ≥
∑
k∈K

[ca′kxa′k − cakxak],∀ a, a′ ∈ A, with a < a′, (16)

Maximising the RAF measure. In order to determine the optimal value of w′
max in (13)

subject to (1)–(3), next, we add other constraints and binary variables yaa′ , ∀ a, a′ ∈ A,
with a < a′, in our problem. We let M = 2 · maxa∈A,k∈K{cak} be a parameter that is
introduced for constraints (20) and (21) to select the largest of the two possible terms. We
present next the modified problem.

w′
max = max

∑
a∈A

∑
a′∈A|a′>a

raa′ , (17)

s.t. (1)–(3), and

raa′ ≥
∑
k∈K

[cakxak − ca′kxa′k],∀ a, a′ ∈ A with a < a′, (18)

raa′ ≥
∑
k∈K

[ca′kxa′k − cakxak],∀ a, a′ ∈ A with a < a′, (19)

raa′ ≤
∑
k∈K

[cakxak − ca′kxa′k] +M × yaa′ ,∀ a, a′ ∈ A with a < a′, (20)

raa′ ≤
∑
k∈K

[ca′kxa′k − cakxak] +M × (1− yaa′),∀ a, a′ ∈ A with a < a′, (21)

yaa′ ∈ {0, 1},∀ a, a′ ∈ A with a < a′, (22)

4.3. Overall Relative Opportunity Cost Fairness (OROCF)

Overall Relative Opportunity Cost Fairness (OROCF) focuses on evaluating equity among
the agents by taking into account the missed opportunities in terms of the assignment cost
for each agent. The opportunity cost (e.g., [25]) is the concept in the microeconomics of
lost benefit that would have been derived by an agent from an option not chosen. As the
reference value, we consider a task of the minimum cost and normalise the difference in
the cost value between the assigned task and the best-off task (the task with minimum
cost) over the amplitude of costs for each agent, as seen in Equation (23).
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ysol =
∑
a∈A

∑
k∈K cakx

sol
ak −mink∈K {cak}+ ϵ

maxk∈K {cak} −mink∈K {cak}+ ϵ
(23)

OROCF (sol) =
ymax − ysol + ϵ

ymax − ymin + ϵ
, (24)

where ymax, ymin represents the maximum and the minimum value of Equation (23)
given Constraints (1)–(3).

The values ysol for the solutions reported in Tables 1b, 1c and 1d are ys1 = 1, ys2 = 1,
and ys3 = 1.5, respectively. For the cost matrix given in Table 1a, the two components
of OROCF that are independent of the assignment solution are ymax = 2, for xsmax

13 =
xsmax
21 = xsmax

32 = 1, and ymin = 1, for xsmin
11 = xsmin

22 = xsmin
33 = 1. Related OROCF

values are: OROCF (s1) =
2−1
2−1 = 1, OROCF (s2) =

2−1
2−1 = 1, and OROCF (s3) =

2−1.5
2−1 = 0.5.

Note that OROCF value is the highest both for s1 and s2, meaning that these solu-
tions offer the lowest highest opportunity cost for the sum of all agents. The reader can
verify that the solution x11 = x23 = x32 = 1 would be the worst choice for agents a2
and a3 and would give a value of OROCF equal to 0.

5. Proposed models considering fairness and efficiency

In this section, we propose new models that mitigate the equity issues posed by the classi-
cal linear-sum assignment model (e.g., [8]) and achieve a solution that is as fair as possible
while sacrificing as little as possible the overall system’s efficiency.

5.1. Nash Model for task assignment

The proposed Nash Model is inspired by the Nash social welfare function, a well-studied
social welfare function in which the goal is to maximize the product of the utility functions
of the agents composing the system. The proposed model is given next:

min
∏
a∈A

∑
k∈K

cakxak (25)

s.t. (1)–(3). Since Eq. (25) is a nonlinear objective function, solving the above problem is
computationally expensive. We propose next its linearised equivalent, which is possible
due to the one-on-one assignment constraints (1)–(3).

max
∑
a∈A

∑
k∈K

log(M − cak)xak (26)

s.t. (1)–(3), where M > maxk∈K,a∈A {cak}.
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5.2. Envy-free utilitarian model for task assignment

We propose the envy-free utilitarian model that focuses both on efficiency and fairness.
We introduce the fairness variable fu to ensure that all the costs for each agent are inside
a certain interval that shrinks as fu becomes smaller. The model is defined as follows:

min αfu + (1− α)

∑
k∈K

∑
a∈A cakxak

|A|
(27)

s.t. (1)–(3), and∑
k∈K

cakxak −
∑

k∈K

∑
a∈A cakxak

|A|
≤ fu,∀ a ∈ A (28)

fu ≥ 0, (29)

where fairness weight α in objective function (27) ranges between 0 and 1 and is used
to weigh the fairness fu and the average cost paid by the agents’ coalition∑

k∈K

∑
a∈A cakxak/|A|; when α = 0, the model only considers the cost without con-

sidering fairness and vice versa for its value equal to 1. Constraints (28) guarantee that,
for each agent, the difference between the cost of its assigned task and the average of the
costs of the assigned tasks for all the agents is less than the value fu. Constraint (29) fixes
the range of variable fu.

6. Functional tests

To evaluate the performance of the Nash model and the Envy-free Utilitarian model,
we randomly generate three cost matrices (Table 2) with costs ranging from 1 to 1000.
The models were solved for each matrix using IBM ILOG CPLEX Optimization Studio
20.0.1.

Table 2. Example cost matrices

(a) Functional test 1

k1 k2 k3
a1 382 816 366
a2 846 544 175
a3 578 824 526

(b) Functional test 2

k1 k2 k3
a1 450 895 358
a2 856 233 449
a3 890 672 976

(c) Functional test 3

k1 k2 k3
a1 683 170 699
a2 943 364 894
a3 557 741 127

To compare the efficiency of the models presented in Section 5, we calculate the fol-
lowing normalised efficiency indicator (Eff ):

Eff(sol) =
zmax − zsol + ϵ

zmax − zmin + ϵ
(30)

where zsol =
∑

k∈K

∑
a∈A cakx

sol
ak with xsol

ak being the solution returned by the consid-
ered model. The values zmax and zmin are, respectively, the maximum and the minimum
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values of
∑

k∈K

∑
a∈A cakxak given Constraints (1)–(3). Table 3 shows the results of our

experiments.

Table 3. Results and Comparison
Functional test 1

Model Eff EFM RAF OROCF

Nash 0.91 1 1 1
Envy-free (α = 0) 1 0.07 0 0.68

Envy-free (α ≥ 0.5) 0.91 1 1 1
Functional test 2

Model Eff EFM RAF OROCF

Nash 0.93 1 0.91 1
Envy-free (α = 0) 1 0.28 0.17 0.92

Envy-free (α = 0.5) 0.93 1 0.91 1
Envy-free (α ≥ 0.9) 0 0 1 0
Functional test 3

Model Eff EFM RAF OROCF

Nash 0.93 1 0.73 1
Envy-free (α = 0) 1 0 0 0.99

Envy-free (α = 0.5) 0.93 1 0.73 1
Envy-free (α = 0.7) 0.59 0.94 0.93 0.64
Envy-free (α ≥ 0.9) 0.05 0.19 1 0.06

The case when α = 0 corresponds to the case when we are optimising the global cost
only (utilitarian social welfare function). We get very low values of fairness for this case
according to our prior assumptions. It is interesting to notice similarities when we set the
α value to 0.5. Indeed, in that case, the Envy-free Utilitarian model and the Nash model
have the same behaviour and give us the same solutions. These solutions for α = 0.5 are
ideal for the fairness indicators EFM and OROCF in our three tests, while RAF also
increases significantly. Moreover, the efficiency (Eff ) is greater than 0.9. Equality and
equity can be improved without a significant decrease in efficiency. We notice in tests 2
and 3 that, generally, the higher the value of α, the lower the overall system’s efficiency.
This shows that striving for too much equality can be highly detrimental to the system’s
efficiency and even equity. The results for the cost matrix in Table 1a also support this
claim in case α = 1. Here, allocation x11 = x23 = x32 = 1 is an egalitarian allocation
that decreases efficiency and equity simultaneously since agents a2 and a3 are allocated
to their worst-off tasks and the overall allocation cost is 150 instead of the minimum cost
of 120.

7. Simulation experiments

In this section, we perform simulation experiments to evaluate how the proposed models
behave from the scalability standpoint.

For these experiments, 20 cost matrices C = {cak|a ∈ A, k ∈ K} where |A| = |K|
of size 5, 10 and 20 were created, with each cost cak randomly obtaining a value from 1 to
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Table 4. Results depending on problem size
Size 5

Model Eff EFM RAF OROCF z

Nash 1.00 0.95 0.77 0.99 1402
Envy-free (α = 0) 1.00 0.89 0.75 1.00 1399

Envy-free (α = 0.25) 0.99 0.96 0.77 0.99 1405
Envy-free (α = 0.5) 0.94 1.00 0.82 0.94 1520

Envy-free (α = 0.75) 0.73 0.89 0.91 0.73 1913
Envy-free (α = 1) 0.41 0.62 0.94 0.41 2513

zmin = 1339; zmax = 3408
Size 10

Model Eff EFM RAF OROCF z

Nash 1.00 0.95 0.87 1.00 1439
Envy-free (α = 0) 1.00 0.93 0.87 1.00 1438

Envy-free (α = 0.25) 1.00 0.99 0.88 1.00 1466
Envy-free (α = 0.5) 0.97 1.00 0.89 0.98 1626

Envy-free (α = 0.75) 0.87 0.98 0.96 0.88 2330
Envy-free (α = 1) 0.47 0.59 0.99 0.48 5235

zmin = 1438; zmax = 8602
Size 20

Model Eff EFM RAF OROCF z

Nash 1.00 0.95 0.94 1.00 1522
Envy-free (α = 0) 1.00 0.95 0.94 1.00 1522

Envy-free (α = 0.25) 1.00 1.00 0.96 1.00 1610
Envy-free (α = 0.5) 0.98 1.00 0.95 0.99 1789

Envy-free (α = 0.75) 0.92 0.99 0.98 0.92 2924
Envy-free (α = 1) 0.46 0.52 0.97 0.46 10687

zmin = 1522; zmax = 18473

1000 following a uniform law of probability. This results in a total of 60 instances that we
test in the experiments in Table 4. For the envy-free utilitarian model, α takes the values
of 0 (the classical utilitarian model), 0.25, 0.5, 0.75 and 1 (considering only fairness fu).

Table 4 lists the average results for size n = 5, 10, 20, respectively, where z is the
average value of the sum of the assignment costs. It is to be noted that RAF this time
is calculated using the RAF minimisation and maximisation models from section 4.2. In
addition, the zmin and zmax values from the efficiency formula Eff (30) are given just
after the sub-table for each problem size.

Experiments results considering only lower bound. Table 5 presents the values of
our four fairness measures as a ratio of their absolute values to their lower bounds. The
experiments in this section were conducted on randomly generated instances of varying
sizes: 5, 10, 20, 50, and 100, with 20 instances for each size.

This allows for a comparison of the models based solely on their relative performance
to the lower bound, rather than taking into account both bounds. In this way, the difference
between the models is clearer compared to the results of Table 4.

The fairness measures are calculated as follows:
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Table 5. Results depending on problem size with only lower bounds
Size 5

Model Eff ′ EFM ′ RAF ′ OROCF ′

Nash 1.00 1.05 2.17 1.02
Envy-free (α = 0) 1.00 1.09 2.25 1.02

Envy-free (α = 0.25) 1.01 1.04 2.15 1.04
Envy-free (α = 0.5) 1.11 1.00 1.90 1.67

Envy-free (α = 0.75) 1.42 1.04 1.41 3.52
Envy-free (α = 1) 1.92 1.30 1.21 12.72

Size 10
Model Eff ′ EFM ′ RAF ′ OROCF ′

Nash 1.00 1.11 1.93 1.00
Envy-free (α = 0) 1.00 1.15 1.96 1.01

Envy-free (α = 0.25) 1.02 1.02 1.86 1.05
Envy-free (α = 0.5) 1.13 1.00 1.76 1.35

Envy-free (α = 0.75) 1.63 1.03 1.32 2.94
Envy-free (α = 1) 3.87 2.00 1.10 10.37

Size 20
Model Eff ′ EFM ′ RAF ′ OROCF ′

Nash 1.00 1.22 1.63 1.00
Envy-free (α = 0) 1.00 1.22 1.63 1.00

Envy-free (α = 0.25) 1.06 1.01 1.49 1.15
Envy-free (α = 0.5) 1.17 1.00 1.52 1.51

Envy-free (α = 0.75) 1.91 1.04 1.23 3.58
Envy-free (α = 1) 7.23 3.02 1.39 19.89

Size 50
Model Eff ′ EFM ′ RAF ′ OROCF ′

Nash 1.00 1.24 1.15 1.02
Envy-free (α = 0) 1.00 1.30 1.16 1.02

Envy-free (α = 0.25) 1.03 1.01 1.09 1.09
Envy-free (α = 0.5) 1.33 1.00 1.23 2.05

Envy-free (α = 0.75) 2.22 1.05 1.03 4.80
Envy-free (α = 1.00) 30.50 11.57 1.03 86.73
Size 100

Model Eff ′ EFM ′ RAF ′ OROCF ′

Nash 1.00 1.25 1.07 1.00
Envy-free (α = 0) 1.00 1.15 1.08 1.00

Envy-free (α = 0.25) 1.01 1.00 1.05 1.04
Envy-free (α = 0.5) 1.53 1.00 1.48 2.53

Envy-free (α = 0.75) 2.41 1.48 1.98 3.77
Envy-free (α = 1.00) 56.67 16.84 1.02 156.86

– EFM ′ = cwo
sol/c

wo
min

– RAF ′ = wsol/wmin

– OROCF ′ = ysol/ymin

– Eff ′ = zsol/zmin,
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where the used terminology is explained in Section 4. The values for these metrics are
in the range [1.0,+∞], with 1.0 indicating the best performance. The table shows the
average for the values obtained on 20 samples.

7.1. Interpretation of the results

The different models offer a good choice to pick from depending on the desired goal. In
the case that the system is aiming at giving the agents a similar cost, then using the envy-
free utilitarian model and increasing the value of α will considerately help. If however, the
system is aiming at an all-round and fast solution for allocating the tasks with both equity
and equality taken into account, then the Nash model will work very well. Indeed, if we
compare the Nash model to the Utilitarian model (α = 0), which gives us the best solution
for the system taken as a whole in terms of the cost paid by the agents, for each size we can
notice that all the fairness measures are better, closer to 1.0. What is even more noticeable
is that while being fairer overall, the efficiency of the Nash model is really good, with the
global cost of the solutions being roughly just as low as the Utilitarian model (α = 0).

As we can see in Table 5, the Envy-Free Utilitarian Model (EFUM) decreases its effi-
ciency as α increases, since a higher α gives more importance to the fairness (envy-free)
part. If α = 0, only the utilitarian part is considered, thus the optimal utilitarian solution
is obtained (Eff ′ = 1). The Nash model turns out to be optimal, from the utilitarian point
of view, in most experiments (on average, Eff ′ = 1).

The egalitarian fairness metric (EFM) measures how much the cost of the worst-off
agent is kept as low as possible in a given agent-task assignment. Total envy-freeness (α =
1) is not the best option because it is possible to obtain higher differences among assigned
costs (lower envy-freeness) even at a lower cost for the worst-off agent. Conversely, the
optimal utilitarian solution (α = 0) does not consider the worst-off agent cost at all and
obtains a much higher EFM ′ value. The best result from the egalitarian (EFM) point of
view is obtained by the EFUM with α values near 0.5, i.e. with a balance between the
fairness and utilitarian perspectives. The Nash model behaves quite similarly to the total
envy-freeness (α = 1) since it obtains the optimal solution in most of our experiments.

Regarding RAF, while it seems that increasing α for the EFUM gives better results
with smaller problem sizes, it is not consistent with size 20 (α = 0.5 and α = 1), size 50
(α = 0.5) and size 100 (α = 0.5 and α = 0.75). The Nash model, as mentioned above,
behaves very similarly to EFUM with α = 0, thus it obtains bad results from the RAF
measure point of view.

With regards to OROCF measure, EFUM is better for smaller α, i.e. in case we give
more importance to efficiency than to envy-freeness. We assume this is because OROCF
measures the loss against the most efficient solution from each local viewpoint. Since the
Nash model obtains the optimal solution in most of the cases, its OROCF ′ value can be
also very good (1).

7.2. Run time comparison

Table 6 shows CPLEX solving times (in seconds) we obtain when comparing the initial
quadratic version of RAF and the absolute version of RAF, for both minimising and max-
imising the related evaluation functions. The values shown are an average of 20 samples
for each size n = 5, 8, 10.
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Table 6. RAF run time comparison depending on size
Quadratic RAF run time (s) Absolute RAF run time (s)

size Min Max Min Max
5 0.066 0.113 0.035 0.110
8 1.329 2.575 0.075 2.323
10 354.104 456.932 0.368 57.183

We can see a huge improvement (reduction) in the time it takes for the solver to find
the solution for both the minimisation and the maximisation of the modified RAF measure
with absolute terms in comparison with the one with quadratic terms. This difference is
more noticeable with matrices of bigger size.

Now, looking at the average solving time for our models on the graphs of Fig. 1, tested
with four values of alpha for the envy-free model which are 0.25, 0.5, 0.75 and 1.0, we
can see that using the Utilitarian and Nash models we get the fastest results, with roughly
half a second of running time even for problems of size 200.

When solving the Envy-free model, we observe an exponential increase in the solving
time, with problems not being solved optimally after one hour for even small sizes of the
problem when alpha gets close to 1.

Stars in yellow in the graph indicate problem sizes for which CPLEX was unable to
find an optimal solution within an hour. In such instances, we used the relative Mixed
Integer Programming (MIP) gap to assess the proximity of the found solution to the opti-
mal solution. The MIP gap serves as an indicator of the proximity of the current solution
to the optimal solution. It is defined as the difference between the upper bound (repre-
senting the best-known upper bound on the objective value obtained thus far) and the
lower bound (representing the best-known lower bound on the objective value obtained
thus far), divided by the absolute value of the upper bound. This measure, expressed as a
precentage, provides a relative value, offering insights into the potential further reduction
in the objective value of the model after the prescribed one-hour run-time limit.

Here, when α = 0.75, the gap is 52% on average for problems of size 100, and it
is 76% on average for problems of size 200. When α = 1.0, the gap is 100% even for
problems of size 20, 50, 100 and 200. An MIP gap of 100% is a clear indication that the
solver has not yet been able to find a feasible solution within the defined constraints and
within the prescribed one-hour run-time limit.

8. Conclusions

In this paper, we studied the means of balancing efficiency and fairness in one-on-one
agent-task assignment in agent coalitions composed of individually rational agents. Here,
an agent decides to collaborate with other agents only if it brings an individual benefit that
is at least as good as when not collaborating. In this regard, we studied the utilitarian, egal-
itarian and Nash social welfare, the concepts from economics and philosophy that may
be applied in such multi-agent coalitions to tackle this issue. Since quantitative fairness
measures for task assignment are scarce and/or missing, we proposed three new fairness
measures: egalitarian fairness measure (EFM), relative all-to-all fairness measure (RAF),
and overall relative opportunity cost fairness (OROCF) measure. Moreover, to improve
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(a) Utilitarian Model (b) Nash Model

(c) Envy-free Model (α = 0.25) (d) Envy-free Model (α = 0.5)

(e) Envy-free Model (α = 0.75) (f) Envy-free Model (α = 1.0)

Fig. 1. Run time of the models depending on problem size
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the performance of the conventional task assignment model, we proposed the Nash model
for the one-on-one task assignment that minimises the product of the costs of each agent
considering one-on-one assignment constraints and the envy-free utilitarian model that
combines the envy-freeness concept, equity and the utilitarian social welfare measure.
The performed simulation experiments show that by using our newly proposed models,
we can achieve better fairness in terms of the proposed measures with little sacrifice in
the overall efficiency and that the envy-free utilitarian model can be adjusted depending
on the need for fairness in a coalition.

The potential impact of the proposed models and fairness measures in real-world ap-
plications is substantial. To implement the proposed system effectively, it is imperative to
establish an a priori agreement or contract defining the efficiency and fairness measures
for the multi-agent coalition.

In the domain of ride-sharing and delivery services, companies like Uber and Lyft can
employ these models to optimize efficiency while ensuring fairness among their drivers.
This approach can lead to improved driver satisfaction and retention rates. Additionally,
in labour markets and the gig economy, these concepts can be harnessed to allocate free-
lance and short-term work equitably through digital platforms. This benefits both workers
and employers by fostering a more engaged and content workforce. Furthermore, our
proposed models and fairness measures may be invaluable in supply chain management,
disaster response coordination, environmental conservation efforts, healthcare settings,
academic research collaborations, and smart grid management. These models excel at pro-
moting computationally efficient task allocation that strikes a balance between efficiency
and fairness, potentially resulting in enhanced productivity, coordination, and cooperation
across a diverse range of industries and sectors.

In future work, we plan to further study fairness measures, particularly the one encom-
passing both equality and equity to better support decision-making in collaborative and
cooperative open societies where agents can enter and leave the system at any time based
on their momentary interest. Moreover, we will focus on the three-index assignment prob-
lem where each agent requires a tool to perform a task. The assignment here is also per-
formed in a one-on-one manner. Similarly, crafting a multi-objective model which consid-
ers equality, equity and fairness for such a problem is a challenge worth facing henceforth
due to the importance of its impact in versatile real-world applications. These include
emergency services, agriculture fleet task coordination, delivery services, waste manage-
ment, construction and infrastructure projects, utility maintenance, and home healthcare,
among others.
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