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Abstract. Due to the rapid proliferation of data online, an important quantity of
private or sensitive informations is being stored as linked data in graph databases
(e.g., represented as RDF). For such databases to be shared without jeopardizing
privacy, they must first undergo a process known as database sanitization. Dur-
ing this process, databases are transformed following graph transformations that
are usually described informally or through ad-hoc processes. However, a more
thourough formalization of these transformations would aid in analysing the san-
itization process, ensuring its correctness, and demonstrating the resulting privacy
guarantees. This paper is an effort toward bridging the gap between the rigorous
graph rewriting approaches and graph sanitization. We propose a graph transforma-
tion language to serve as a basis for constructing various sanitization mechanisms.
This language relies on a set of elementary transformation operators formalized us-
ing a generic algebraic graph rewriting approach. Our language takes into account
semantic and supports the equivalent of WHERE and EXCEPT clauses. As a proof
of concept, we use these operators to implement two mechanisms from the liter-
ature, one generic (Local Differential Privacy) and one specifically introduced for
semantic graph databases (sensitive attribute masking through anatomization). We
propose an open-sourced tool implementing the elementary operators and the pri-
vacy mechanisms we derive from them relying on the Attributed Graph Grammar
System (AGG) and its java API, providing a concrete tool implementing formal
graph rewriting mechanisms to sanitize semantic graph databases. We present ex-
perimental results on this implementation regarding both proposed schemes and
discuss its efficiency and scalability.

1. Introduction

In many collaborative data centric applications that collect personal data, such as car pool-
ing, or smart metering, the data collectors (i.e., the entity managing the application) need
to publish and share raw data with various parties. These parties can range from inter-
nal developpers who need test data to data analysts in charge of producing predictive or
explicative models, or even simply the scientific community. Since this database is com-
posed of personal data, the European General Data Protection Regulation (GDPR) rules
apply. In this paper, we consider the case where the database is sanitized (anonymized)
prior to its release, which is compatible with the GDPR. Sanitization of a database means

⋆ This paper is an extended version of [1]
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that it is no longer possible (or at least very difficult, costly, and time consuming) to rei-
dentify individuals in the dataset.

Nowadays, data are often organized as graphs with an underlying semantic to allow
efficient querying and support inference engines. Such is the case in, for example, linked
data and semantic web typically relying on RDF representation. Yet, while anonymization
of tabular databases and untyped homogeneous graphs are well-researched, anonymiza-
tion processes in such databases have been mildly studied. Most existing graph saniti-
zation processes describe the underlying graph transformations in an informal, add-hoc,
format-specific, and/or ambiguous way. We argue that such transformations should be 1)
formalized, to ease the analysis of the process and the verification of both its correctness
and the guarantees it provides; 2) generic and format-agnostic to improve the applicability
of sanitization processes. In these regards, rigorous graph rewriting approaches appear to
be perfect candidates.

In general, and despite the importance of graphs in databases and ontology repre-
sentations, the use of formal graph rewriting techniques to model database evolutions is
seldom studied. To the best of our knowledge, [1] is the only proposal using rigorous
graph rewriting to model graph transformations for graph sanitization.

The present paper is an extension of [1]. We generalize this approach by formalizing a
language of basic operators using attributed graph rewriting rules to serve as a basis for a
greater number of graph sanitization mechanisms. We show this formalization in action on
two examples privacy schemes, one classical (Local Differential Privacy (LDP)) already
expressed in [1] and one specific to semantic graphs (anatomization) not explored in [1].

Contributions In this paper, we formalize and implement basic operators using AGG –
The Attributed Graph Grammar System [22], one of the most mature development envi-
ronments supporting the definition and application of typed graph rewriting systems [19].
These operators demonstrate the feasibility of the approach and should be enriched with
other operators to build a library of operators supporting various anonymization schemes.

We choose to focus on eight basic operators. The seven first operators create or delete
nodes, copy, cut, or merge edges, or randomize the targets of a relation. The eighth op-
erator help better identify sets of nodes. Each of these operators can be represented as
a single graph rewriting rule. Together, they can be combined into procedures expres-
sive enough for our announced examples, randomization providing LDP guarantees and
sensitive attribute anatomization.

We show that, given our formalization and implementation it is easy to describe sets
of nodes or edges as the scope of our operators. This can be intuitively seen as clauses:

– WHERE allows restriction of the operator to a subset of nodes defined by a set of
relations (e.g., nodes that share a type or specific attribute).

– EXCEPT allows exclusion by the operator of a subset of nodes or relations defined by
a set of relations.

The next Section presents the related work. In Section 3, we present the formalism of
graph databases and graph rewriting we base our approach on, and the visual conventions
used in the AGG rewriting tool. We also provide a running example for the rest of the
paper. Section 4 describes the semantics and syntax of the eight basic operators, among
which JoinSet that processes the keywords WHERE and EXCEPT for restriction and
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exclusion in the scope of the other operators. Section 5 presents the description of two
privacy procedures through our operators. Finally, Section 6 presents the results of a pre-
liminary experimental evaluation made by applying one of the procedures of Section 5 to
a sampling of the Sentiment140 dataset containing information about tweets.

2. Related Work

Private publication of semantic graph. A massive amount of work has focused on pri-
vacy in data presented as tables. They have resulted in multiple well-established models,
such as k-anonymity [21] and differential privacy [9]. In this article, we consider semantic
databases, such as RDF, which are graph databases. Such databases present the advan-
tage of managing the semantics of the data, which we view as an advantage in the context
of anonymization, since it helps the database designer better understand which data is
sensitive, and how it can be modified. The aforementioned general anonymization con-
cepts have been translated and applied to graph representations, but mainly in the context
of homogeneous graphs such as social or computer networks [24,25].

Only a small batch of work has tackled the publication of semantic data-graphs.
Radulovic et al. [17] introduced an anonymization framework for RDF that considers
the specific characteristics of RDF specification. The framework aims to protect the pri-
vacy of particular entities of interest within RDF graphs. The underlying privacy concept
is k-RDF anonymity, where an entity of interest within the graph is indistinguishable
from k-1 others with regard to their quasi identifiers. They introduced different add-hoc
anonymization operations that can be employed to implement such a model: generaliza-
tion, suppression, atomization, and perturbation.

K-RDF-Neighborhood anonymity is an approach presented by Heitmann et al. [12].
Their work joins and builds upon other works conducted for homogeneous graphs, specif-
ically by Zhou et al. [26], as well as on heterogeneous graphs, such as RDF, specifically
by Radulovic et al. [17]. The central point behind their proposal is that indistinguisha-
bility should be guaranteed regarding not only quasi-identifiers but the whole one hop
neighborhood of entities of interests. They presented a graph modification algorithm that
only deletes edges

In [23], intermediary nodes regroup semantically related values of sensitive attributes
via semantic anatomization, a process made to regroup attributes with strong semantic
similarities. The privacy and utility of the process are then dependant on the creation of
relevant or diverse groups. Modifications are expressed as SPARQL update queries.

Delanaux et al. [6] developed a declarative framework for anonymizing RDF graphs
by replacing sensitive nodes by blank nodes. They consider a set of utility SPARQL
queries and a set of privacy SPARQL queries, and generates operations on a graph so
that utility queries can be answered while privacy ones cannot. The generated anonymiza-
tion operations are in the form of SPARQL update queries of DELETE type (deletion of
triples) and DELETE/INSERT (triples update).

While SPARQL is a standard description rather than add-hoc, it is RDF-specific and
may exhibit ambiguities [8].

Graph rewriting for database modification. To generalize and abstract consistent
updating methods, different works have used formalisms such as tree automata or gram-
mars for XML (see [18] for a survey) or first order logic for graph databases (e.g., [4,10]).
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Despite the importance of graphs in databases and ontology representations, the use of
formal graph rewriting techniques to model database evolutions is seldom studied. For-
mal graph rewriting techniques are usually based on category theory, an abstract way to
deal with different algebraic mathematical structures and the relationships between them.
Algebraic approaches of graph rewriting allow a formal yet visual specification of rule-
based systems characterizing both the effect of transformations and the contexts in which
they may be applied.

Few approaches relying on graph rewriting to formalize ontology evolutions have al-
ready been proposed [5,20,16]. They usually focus on formalization but do not provide
an implementation. Recently, Chabin et al. [3,2] proposed SETUP, a tool for the manage-
ment of RDF/S updates. In SETUP, graph rewriting rules formalize atomic updates and
guarantee the preservation of RDF/S intrinsic constraints.

3. Background and setting

We consider databases to be modeled as attributed oriented multigraphs. In such models,
it is customary for nodes and edges to have properties (among a finite set) and attributes
(as words on a signature). In [2], RDF/S databases are modeled as a typed graph with 4
node types and 6 edge types. These types are inherent to RDF and thus the model can not
be applied natively to arbitrary graph databases (e.g., neo4j).

We argue that considering a single node type and a single edge type having a single
attribute (named att and prop, respectively) is in fact at least as expressive. Indeed, typing
and additional properties can be encoded via special kinds of relation. We believe this
model to be able to capture most –if not all– graph database representations.

In what follows, we present a running example of such databases and target privacy-
preserving scenarios for its exploitation. Then, we introduce the formalism used to model
their transformations.

3.1. Running example and target scenarios

As a running example, we consider a graph database that contains information on travels,
both professional and personal. An example of such a database is provided in Fig. 1.

It has nodes for relevant entities, people and travels, whose attributes are identifiers.
It also has nodes for literals, i.e., information that would have been stored as a raw value
instead of a link to another node in formats like RDF, e.g., last name, first name, and
address for people, date and destination for travels. We do not differentiate nodes repre-
senting entities or literals.

Its edges describe both relations between entities, e.g., “this person participated in this
travel,” represented by an edge of attribute ‘‘attends’’, but also relations between
entities and their information, e.g., “this person’s name is in this literal,” represented by
an edge of attribute ‘‘name’’. Typing falls within this second case e.g., “this node is a
person” or “this literal is a city,” represented by an edge of attribute ‘‘type’’.

In the example of Fig. 1, id105 (named Miller) attended travel id207 to Paris for
professional reasons.

We give two motivating examples consisting in the application of two privacy mecha-
nisms in this database, whose implementation will be shown to be possible in Section 5. In



Graph Rewriting Primitives for... 1037

Fig. 1. Running example: instance of a database

these examples, we will note that the described procedures should only apply to specific
nodes and relations.

– We want to provide plausible deniability with regard to the relation “destination”
between personal travels and cities. To do so, we want to randomize this relation
for personal trips exclusively, to preserve privacy with a bias towards correct an-
swers to preserve utility. This corresponds to guaranteeing local differential privacy
(LDP [14,7]) on trips with a “motive” edge leading to “personal”. More precisely, we
want to modify the database such that querying it to output the destination of personal
trips would be locally differentially private.

– For professional trips, we want to obfuscate the relation “destination” between trav-
els and cities, as to hide precise dates and frequency of collaboration between the
database’s company and its collaborators, for instance. This can be done, for instance,
by grouping trips in certain cities together (e.g., “Paris,” “Bordeaux,” “Toulouse” all
grouped in the more nebulous group “France”) and rerouting the “destination” edges
towards those groups rather than a precise value. This would mean that we want to ap-
ply anatomization [17,23] where the “destination” attributes of travels with attribute
“motive” set to “professional” is considered sensitive.

3.2. Graph Rewriting Rules

We adopt the Single Push Out (SPO) formalism ([15]) to specify rewriting rules as well as
one of its extensions to specify additional application conditions and restrict their applica-
bility, Negative Application Conditions (NACs) [11], and Positive Application Conditions
(PACs).

The SPO approach is a simple yet expressive way of fully formalizing graph trans-
formations. Furthermore, it offers an easy-to-understand yet formal graphical view of the
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graph transformation. In what follows, we adopt the graphical representation provided by
AGG’s graphical interface.

The SPO approach is an algebraic approach based on category theory. A rule is
defined by two graphs – the Left and Right Hand Side of the rule, denoted by L and R
– and a partial morphism m from L to R (i.e., an edge-preserving morphism m from a
subgraph of L to R ).

(a) (b) (c) (d)

Fig. 2. Identifying nodes having some relation with some value to be replaced by a
blank: (a) SPO core and its NACs (b) uniqueness of the blank replacing a node, (c)
EXCEPT a specific node, (c) EXCEPT nodes with some relation having some value

Fig. 2a formalizes the SPO core of the first step of the blank operator. It identifies the
nodes to be replaced and creates a blank for each. Its L is composed of a relation p from
some node (1) to a node (2) with an attribute pVal. R has the same pattern plus a new
node that is the source of an artifact edge labeled ‘‘blank’’ whose target is node (1).
Note that the attributes of two nodes of R are not represented. In general, this can stem
from three possibilities: (i) it does not matter, e.g., an unattributed node in L or NAC will
match any node; (ii) it can be inferred, e.g., a node in R or NAC has the same attributes
as the node it is matched with in R. This is the case for node (2) in the example; (iii) a
node in R is created without an attribute value. This is the case for the node representing
a blank.

By convention, an attribute value within quotation mark (e.g., ‘‘blank’’) is a fixed
constant, while a value noted without quotation mark (e.g., p) is a variable that is either
a wildcard matching any value or whose is given as input.

The partial morphism from L to R is specified in the figure by tagging graph elements
- nodes or edges - in its domain and range with a numerical value. An element with value
i in L is part of the domain of m and its image by m is the graph element in R with the
same value i. For instance, in Fig. 2a, the notation 1: for the nodes with an unspecified
attribute in L and R indicates that they are mapped through m. In the following, we refer
to such nodes as 1:node.

A graph rewriting rule r = (L,R,m) is applicable to a graph G iff there exists a total
morphism m̃ : L → G. The result of the application of r to G w.r.t. m̃ is the object of the
push-out of the diagram composed by L, R, G, m, and m̃. Informally, the application of r
to G with regard to m̃ consists of modifying G by (1) removing the image by m̃ of all ele-
ments of L that are not in the domain of m (i.e., removing m̃(L\Dom(m))); (2) removing
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all dangling edges (i.e., deleting all edges that were incident to a node suppressed in step
(1)); (3) adding an isomorphic copy of all elements of R that are not mapped through m.

In Fig. 2a, the rule is applicable to any non-artifact edge with the possibility to spec-
ify the attribute of the edge (p) and/or of its target (pVal) as input of the rule. Indeed,
such attributes are either wildcard that matches any value or their value may be given as
input. For example, with the input (‘‘rdf:type’’, ‘‘city’’), the rule only maps
1:node of type city. The application of the rule consists of adding an unattributed (blank)
node and a ‘‘blank’’ artifact edge from the new node to 1:node, representing the
fact that the latter will be replaced by the former.
NACs are well-studied extensions that restrict rule application by forbidding certain pat-
terns in the graph. EXCEPT clauses will mostlty be encoded through NACs. A NAC for
a rule r is defined as a constraint graph which is a super-graph of its left-hand side. An
SPO rule r = (L,R,m) with NACs is applicable to a graph iff: (i) there exists a total
morphism m̃ : L → G (this is the classical SPO application condition); (ii) for all NAC
N associated with r, there exists no total morphism m̄ : N → G whose restriction to L is
m̃.

By convention, since NACs are super-graphs of L, unnecessary parts of L are not
depicted when illustrating a NAC. Graph elements common to L and NAC are identified
by a numerical value, similar to elements mapped by m.

Figures 2b, 2c, and 2d represent NACs associated to the SPO core of Fig. 2a. The first
specifies that 1:node must not be the target of a ‘‘blank’’ artifact edge, ensuring
that we will not create several blank nodes linking to the same existing node. The second
maps 1:node with a node whose attribute exceptAtt is given as input. This forbids
the application of the rule to any node with such attribute, akin to an EXCEPT clause
excluding a particular node. The third NACs forbids the application of the rule to any
1:node either source of a relation pExcept and/or with value pValExcept. Indeed,
like variables appearing in L those in NACs can be either wildcards or their value may be
given as input. pExcept given as ‘‘capital city of’’ the rule exclude all 1:node
that are a capital city. With pValExcept given as ‘‘New York’ the rule will exclude
all 1:node that are linked to the a node with the attribute ‘‘New York’ (regardless of
the relation). Note that here, at least one of the two should be given a input value, or the
NAC would match L and the rule would never be applicable. For instance, with

A rewriting procedure –or rule sequence– as we consider it here is a succession of
steps. Each step is the application of a rewriting rule as long as the rule applies or a speci-
fied number of times. We consider that when a rule is applicable w.r.t. several morphisms,
it chooses one uniformly at random.

4. Our Language

Our language’s goal is to support the specification of privacy procedures and mechanisms
that will apply operators (e.g., randomization) on some particular sets of nodes and edges.

In its general form, we would expect each of our instructions to be the combination of
an operator, a set of sources (or subject), a set of destinations (or objects), and potentially
additional operator- or procedure-specific requirements (e.g., new targets for randomiza-
tion, or lists of identifiers and sensitive attributes). To this end, we aim to provide a small
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number of simple operators, as well as a a way to descrinbe the sets of nodes and edges
on which they will apply.

This section introduces the language we build and its design choices: procedures com-
posed of elementary operators applied to simple cases, and the special operator JoinSet
that allow it to preserve its expressiveness.

4.1. Design principle

Simple operators Our main design choice is to keep the basis of our language as simple as
possible. We propose a set of eight operators, each described by a single graph rewriting
rule, with an easy-to-match pattern. They allow to create and delete nodes, copy, modify,
cut or merge edges, randomize the sources or destination of a relation. Al these operators
work on very basic patterns, and the main role of the eighth operator, JoinSet, is to
reduce complex application cases to the simple cases handled by our operators.

Node and Edge identification To limit the use of an operator to specific nodes, our
language needs a way to define and manipulate sets of node and edges.

As discussed in the example of 3, these sets can be defined as types, can exclude
types, or can require the presence or absence of a certain property at a certain value. It
is possible to specify these kinds of restrictions directly in graph rewriting rules, using
L, PACs, and NACs. However, this would have the important drawback of necessitating
numerous versions of the same rule and/or complicating the pattern matching phase. We
therefore believe a pre- and post-processing procedure to construct temporary add-hoc
sets to be necessary.

To identify nodes, our language considers either the label of the node (e.g., the node.s
labeled “id207”), or the existence of labels with a given edge towards nodes of a certain
label (e.g., the node.s with edges “type” heading to nodes labeled “City”). As a short-
hand, we sometimes say that the nodes with a label S and an edge labeled p towards a
node labeled O as “matching (S, p,O)”. Such a triplet (S, p,O) can be called a set, and
identified with a single letter X .

We note that we can specify two special value in these sets:

– * corresponds to any label we want
– null corresponds to no expectation, i.e., not only any label but the existence is not

necessary either

For instance, (City, null, null) would match any node whose label is “City”, whether
they have an outgoing edge or not, which includes one node in our example. (City, ∗, ∗)
would match any node whose label is “City” with any outgoing edge at all, which includes
no node of our example. Note that null differs from * only when both p and O are equal
to null. Indeed, (City, ∗, null) would not constrain O but impose the existence of some
p, and thus of some O.

To identify edges, our language considers their labels and identifiers of their source or
target (e.g., all edges labeled “destination” from a node matching (∗, “type”, “Travel”) to
a node matching (∗, “type”, “City”)).

Pre-processing using JoinSet To reduce a wide variety of operators’ scopes and
targets to the basic case, we only define operators on very simple cases, i.e., by considering
simple node sets, and when applicable the edges that link them. For this to not hinder the
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expressiveness of our language, we need a way to create or populate sets that correspond
to nodes matching intricate conditions. For this, we use the following instruction:
JoinSet (x,X) Where {X1, . . . ,Xn} Except {Y1, . . . ,Ym}

This primitive matches nodes that match every Xi in the Where section and match
none of the Yi in the Except section. When it does, it create from it an edge labeled x
towards a node labeled X .

Graph rewriting primitives: We present here the few primitives, formalized and im-
plemented directly using AGG, that create or delete nodes, copy, divide, or merge edges,
and randomize specific relations1.

– NewNode(X) creates a new node labeled X
– DeleteNode(X ) matches all nodes matching X and deletes them.
– JoinSet (x,X) Where {X1, . . . ,Xn} Except {Y1, . . . ,Ym} (explained above)
– EdgeCopy(S, p,O, p′) matches couples of source nodes matching S and destination

nodes matching O, where there is an edge from the source to the destination labeled
p.
When a match is found, creates an edge labeled p′ from the source to the destination.

– EdgeReverse(S, p,O, p′) matches couples of source nodes matching S and desti-
nation nodes matching O, where there is an edge from the source to the destination
labeled p.
When a match is found, creates an edge labeled p′ from the destination to the source.

– EdgeCut(S, p,O, pI ,M, pO) matches pairs of source nodes matching S and desti-
nation nodes matching O, where there is an edge from the source to the destination
labeled p.
When a match is found, creates a new intermediary node of label M . Then, it creates
an edge labeled pI from the source to the intermediary, an edge labeled pO from the
intermediary to the destination, and finally it deletes the edge p from the source to the
destination.

– EdgeChord(S, pI ,M, pO,O, p) is the converse of EdgeCut, and matches triplets
of source nodes matching S, intermediary nodes matching M and destination nodes
matching O where there is an edge from the source to the intermediary labeled pI
and there is an edge from the intermediary to the destination labeled pO.
When a match is found, creates an edge labeled p from the source to the destination.

– RandomTarget(S, p,O, T ) matches all edges labeled p between a source match-
ing S and a destination matching O, and it reroutes this edge by picking a new target
uniformly among nodes matching T .

Procedures: A procedure is a sequence of instructions, executed in order. They can be
as simple as intermediary operators, or complex enough to describe graph manipulations
guaranteeing certain types of privacy. For instance, a procedure DeleteEdge(S, p,O)
meant to delete all edges labeled p between a source matching S and a destination match-
ing O would be:

1: EdgeCut(S, p,O, pI , ”ToBeDeleted”, pO)
2: DeleteNode(”ToBeDeleted”, null, null)

1 Rules specifications are available at https://github.com/ceichler/granon/blob/master/
anonOperator.ggx

https://github.com/ceichler/granon/blob/master/anonOperator.ggx
https://github.com/ceichler/granon/blob/master/anonOperator.ggx
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This procedure first cuts every occurrence of p between S and O in two with a
new node labeled “ToBeDeleted” (line 1). Then, it immediately deletes all those “ToBe-
Deleted” nodes (line 2), thus erasing the original edges.

5. Privacy Procedures

This section introduces procedures that provide privacy guarantees: Local Differential
Privacy [7] and anatomization [17]. These procedures are expressed as combinations of
our primitives.

5.1. Local Differential Privacy

The first proposed procedure support randomization to achieve local differential privacy
(LDP) as defined and used in [14,7]. Assuming a query outputing the value.s of a property
for a particular node or a set of nodes, we wish to modify the graph to make the query
satisfy LDP.

Definition 1 (Local DP (Duchi et al.) [7]). Let χ be a set of possible values and Y the
set of noisy values. A mechanism M is ε-locally differentially private (ε-LDP) if for all
x, x′ ∈ χ2 and for all y ∈ Y we have

Pr[M(x) = y] ≤ eε × Pr[M(x′) = y]

LDP-mechanisms outputing a value in Y achieve optimal utility for a given ε by
giving an answer randomly drawn from a staircase distribution over Y , with the most
probable value being the real value -whose probability depends solely on |Y | and ε- and
all other values being equiprobable [13].

To achieve ε-LDP for a set R of relations, our random operator should therefore trans-
form each (s, t) ∈ R into a relation (s, t′) ∈ R′ under the following specification:

P (t′) =


0 t′ /∈ T

K
|T |−1+K t′ = t

1
|T |−1+K t′ ∈ T ∧ t′ ̸= t

with K an integer approximation of eε, K = ⌊eε⌋.
To do so, we pick a new target at random, but, to obtain a staircase distribution from a

uniform distribution –used to choose the morphism with regard to which the transforma-
tion rule is applied–, we skew the odds by creating K−1 dummies. Picking a dummy as a
target should ultimately result as giving the true answer to recreate a staircase distribution.
The procedure, defined in Alg. 1, and detailed thereafter, has the following arguments:

– S = (XS , s, S) to match the sources of the relation to randomize
– p to match the edges of the relation to randomize
– O = (XO, o, O) to match the destinations of the relation to randomize
– K the factor by which correct answers are more likely than other values
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Algorithm 1 Procedure LDP(S,p,O,K)
1: for i from 1 to K − 1 do
2: NewNode(Dummy)
3: end for
4: JoinSet(o,O)Where{(Dummy, ∗, ∗)}Except{}
5: EdgeCut(S, p,O, pI , ”Intermediary”, pO)
6: EdgeCopy((∗, null, null), pO, (∗, null, null), pN )
7: RandomTarget((∗, null, null), pN , (XO, o, O), (∗, o, O))
8: EdgeChord(S, pI , (∗, pN , Dummy), pO,O, p)
9: EdgeChord(S, pI , (∗, null, null), pN ,O, p)

10: DeleteNode(Dummy, ∗, ∗)
11: DeleteNode(Intermediary, ∗, ∗)

Recurring example: We illustrate the steps of this procedure in a recurring example
presented in Figures 3 to 8. We present a ln(4)-LDP-providing randomization of persons
attending travels, i.e., the procedure LDP((type,Person),attended,(type,Travel),3).

In this example, nodes and edges in black are definitive data that started or are meant
to remain in the graph. Nodes and edges in blue are temporary nodes that are only used as
intermediary elements in the rewriting process (e.g. the Dummy nodes). Nodes and edges
in bold/thick have recently been created (e.g. the “attended” edge in Figure 6). Nodes and
edges that are dashed with reduced opacity have recently been deleted (e.g. the “Dummy”
nodes in Figure 8).

Initialization: We start by creating a bias for the correct value, by creating K − 1
dummy nodes thanks to the NewNode operator This rule is to be repeated as many times
as required to obtain ε-LDP, then they are matched to (∗, o, O) with JoinSet (lines 1 and
2). Creating two dummies makes the truth three times likelier, and suits ε ≥ ln(3). If we
create 0 dummies, then we are 0-LDP as the edges’ targets will be uniformly randomized.

This step is illustrated in Figure 3 with the creation of 3 dummy nodes.

Edge Cut: We want to use RandomTarget to reroute edges p towards a new target
matching (∗, o, O) at random. However, picking a dummy as a new target means we want
to keep the original target. This means that instead of rerouting the edges p directly, we
would like to create “forks” that lead both to the original and new targets. Since hyper-
edges are not objects of our graphs, we use EdgeCut and EdgeCopy to emulate this
behavior (lines 3 and 4):

– First, we cut the edges p from S to O into pI and pO edges coming from a middle
node labeled “Intermediary”

– Then, we create a copy of pO edges labeled pN

This is pictured in Figure 4.
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Fig. 3. Create dummy travel nodes
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Fig. 4. Split “attended” edges into pI, pO, pN
Randomizing: We then use RandomTarget (line 5) toto redirect the edges pN towards
any target matching (∗, o, O) = O, with uniform probability. We have one chance to pick
the original node, and K − 1 chances to pick a dummy. This means we are K times more
likely to pick one of these nodes than any other real node matching O. This is pictured in
Figure 5, where node matching (*,type,Travel) are depicted in red.
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Fig. 5. Randomize the target of pN edges
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Fig. 6. Chord rerouting: pN targets a Dummy
Rerouting: We start by dealing with the case where pN was rerouted to a dummy (line 6).
In that case, the intermediary node matches (∗, pN , Dummy), and we want to keep the
old target of p, which means the current target of pO. We say that if there is a chord from
a node matching S to an intermediary node matching (∗, pN , Dummy) to a destination
node matching O with edges pI , pO, then we create the edge p from the source to the old
destination. This is pictured in Figure 6, the matched chord being depicted in red.
We then deal with the case where pN was rerouted to a real target (line 7). We say that if
there is a chord from a node matching S to any intermediary node to a destination node
matching (∗, o, O) with edges pI , pN , then we create the edge p from the source to the
new destination. This is pictured in Figure 7, the matched chords being depicted in red.
We note that this also creates unnecessary edges from sources to dummies. This is not a
problem, as dummies will be deleted shortly, as pictured in Figure 8.

Termination: Since dummies and intermediary nodes are artifacts we created rather than
real nodes of the graph, we end the procedure by using DeleteNode to delete all nodes
of label “Dummy” and “Intermediary” (lines 8 and 9). This also deletes all edges pI , pO,
pN linked to intermediary nodes, as well as edges p unduly targeting dummies generated
during rerouting.
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Fig. 7. Chord rerouting: every path pI, pN generates a new “attended” edge
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Fig. 8. Cleanup

5.2. Anonymization through Anatomization

In this section, we show that sorting sensitive attributes in groups to prevent inferences
can be naturally expressed in our elementary operators.
We consider that some attributes of our graphs are sensitive, as described in [17,23]. These
papers describe an anonymization process that involves the deletion of explicit identifiers
(e.g. first and last name), and the separation of nodes with quasi-identifiers (e.g. date of
birth, zip code) to a set of sensitive attributes (e.g. religion, sexual orientation). To cut
links between quasi-identifiers and the sensitive attributes, the possible values of sensitive
attributes are put into groups through a process called semantic anatomization [23]. Their
approach is qualified as semantic as it concentrates on semantic-aware grouping of sensi-
tive attributes. Furthermore, it retains the correlation between entity quasi-identifiers and
semantically related sensitive values.
While the creation of these groups itself is a potentially involved and complex process
that goes beyond the scope of graph rewriting, the redirection of links from identifiers to
sensitive attributes is possible if the groups are provided.
We consider that our graph contains explicit identifiers (edge labels e1, . . . , en), quasi-
identifiers (edge labels q1, . . . , qm), sensitive attributes (edge labels p1, . . . , pk), and
group nodes that aggregate attribute values. A value X is part of a group if nodes of
label X have an edge of label “inGroup” pointed at this group’s node. The anonymization
is made as follows:
Recurring example: The algorithm is detailed thereafter and illustrated through a toy ex-
ample where the destinations of travels are considered sensitive (pi) = (destinatiation),
the identifiers are names (ei) = (name), and the quasi-identifiers are types (qi) =
(types).
More specifically, we illustrate the steps of sensitive attributes redirection in a recurring
example presented in Figures 9 to 14.
Erasing explicit identifiers: Line 1 deletes the edges towards sensitive attributes. The
values are preserved, but the links are cut for anonymization. In the example, this would
lead to the deletion of every edge whose attribute is “name”.
Flagging quasi identifiers: Lines 2 and 3 create a node QI and relate every node with at
least one quasi identifiers to QI through an edge hasQI . In the example, all nodes with a
type are the source of an edge hasQI whose target ı̂s QI .
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Algorithm 2 Procedure Anat((ei)1≤i≤n, (qi)1≤i≤m, (pi)1≤i≤k, inGroup)

1: For all ei do DeleteEdge((∗, null, null), ei, (∗, null, null))
2: NewNode(QI)
3: For all qj do JoinSet(hasQI,QI)Where{(∗, qj , ∗)}Except{}
4: For all pi do EdgeChord((∗, hasQI,QI), pi, (∗, null, null), inGroup, (∗, null, null), p′i)

5: For all pi do EdgeCut((∗, hasQI,QI), pi, (∗, null, null), piI , ”Intermediary”, piO)
6: For all pi do
EdgeChord((”Intermediary”, null, null), piO, (∗, null, null), inGroup, (∗, null, null), p′′i )

7: For all pi do EdgeReverse((”Intermediary”, null, null), p′′i , (∗, null, null), p′′i )
8: For all pi do
EdgeChord((∗, null, null), p′′i , (”Intermediary”, null, null), piO, (∗, null, null), hasOne)

9: For all pi do EdgeCopy((∗, null, null), p′i, (∗, null, null), pi)
10: For all pi do EdgeCut((∗, hasQI,QI), p′i, (∗, null, null), piI , ”Intermediary”, piO)
11: DeleteNode(”Intermediary”, null, null)
12: DeleteNode(QI, null, null)

Redirecting sensitive attributes: Line 4 matches cases where a node with quasi-
identifiers has an edge pi pointing towards the value of a sensitive attribute, which itself
has an edge inGroup designating a group of the semantic anatomization. These matches
are depicted in red on Fig. 9.
When such a match is detected, an edge p′i is directly traced from the initial node to the
group. The label used is p′i instead of pi to avoid undue deletions of redirected edges in
line 5.
Should we want to preserve those sensitive but ungrouped edges, we would only split
edges pointing towards grouped values by replacing line 5 with:

For all pi
do EdgeCut((∗, hasQI,QI), pi, (∗, inGroup, null), pI,i, ”Intermediary”, pO,i)
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Fig. 9. Short-circuit sensitive values



1048 Adrien Boiret, Cédric Eichler, Benjamin Nguyen, and Sara Taki

hasQI type

p1I

p1I

p1I

p1O

p1O

p1O

inGroup

inGroup

inGroup

p′

p′

id207

id210

id221

Inter

Inter

Inter

Paris

Lyon

London

France

England

QI City

Fig. 10. Split sensitive edges into pI1 , pO1

Keep track of sensitive attribute values: Lines 5 through 8 aim to keep track of the cardi-
nalities of each sensitive value in the anatomization groups, represented by the edges pi
we delete.
Line 5 creates an intermediary node between the source and the value of its sensitive
attribute, as depicted in Fig. 10. Line 6 links those intermediary nodes with the group
of their sensitive attributes with an edge labeled p′′i , illustrated in Fig. 11. The matched
chords are depicted in red.
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Fig. 11. Link intermediaries with groups
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Fig. 12. Reverse from group to intermediaries
This edge is inverted in line 7, then used in line 8 to create a direct link between the group
and the sensitive attribute, as shown if Fig. 12 (where the inverted p′′ are depicted in red)
and 13 (where the p′′, piO chords are depicted in red), respectively.

Bringing back pi: Line 9 creates a copy pi of each p′i linking a node with the group its
sensitive value is in. Then line 10 cut the p′i edges to prepare them for deletion.
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Cleanup: Finally, lines 11 and 11 erase the nodes we created in previous steps. This
notably includes the last trace of edges pi that could not have been redirected –i.e., those
that did not belong to an anatomization group– for which the information is gone for
good. This last step is depicted in Fig. 14.
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Fig. 13. Chord from groups to values
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Fig. 14. Cleanup

6. Experimental evaluation

User

Person

Tweet

tweetType

String

String

String

String

String

type

hasName

type timestamp

hasEmotion

hasText

references

Emotion
typeauthored

Fig. 15. Schema for Sentiment140

This section investigates the feasibility of the approach and provides a preliminary exper-
imental evaluation by applying two privacy procedures to a real dataset. We implemented
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the formal specification of the operators using AGG – The Attributed Graph Grammar
System ([22]), one of the most mature development environment supporting the defini-
tion and application of typed graph rewriting systems ([19]). Using AGG’s Java API, we
implemented Granon, a tool in Java2 to handle their management and on-the-fly modifi-
cation (e.g. the definitions of multiple NACs and PACs in the JoinSet operator). Granon
also supports the procedures defined herein. Experiments are conducted in a single-thread
on an Intel Xeon Gold 5215 2.5GHz with 64 GB RAM and a 20Go JVM heap size.

Dataset(s): The experiments are conducted on a sampling of the Sentiment140 dataset
composed of 1.6 million tweets3, which we have parsed to load as a knowledge graph
conforming to the schema shown in Fig. 15. The dataset is composed of tweets authored
by a named user. Tweets each have a timestamp, a full text, and an emotion (positive,
neutral, or negative). They may reference users’ name. The users, tweets, and emotions
are all typed.
The most important factor regarding runtime is the number of tweets and the size of the
graph. Therefore, we apply our experiments on the graphs resulting from the parsing of
the t first tweets of the datasets, with t = 200, 400, 600, 800, 1000, 1200, and 2000.

Nature of the experiments: To investigate the scalability of the proposal, we apply an
instantiation of both our privacy schemes:

1) Procedure LDP((*,“type”, “tweetType”), “hasEmotion”, (*, “type”, “Emotion”),
ln(2)) as described in Sec. 5.1. We arbitrarily consider the emotion of a tweet to be the
sensitive value and use ε = ln(2), the value of epsilon having a negligible influence on
the runtime.
2) Procedure Anat((hasText), (references), (timestamp), inGroup) described in 5.2. We
consider texts to be identifiers, timestamps to be sensitive and references to be quasi-
identifiers. Therefore, the procedure will delete all “hasText” edges and generalize the
timestamp of any tweet that references someone. After considering the dataset, we con-
struct anatomization groups representing a one minute timewindow: for instance a times-
tamp with the value “Mon Apr 06 22:20:19 PDT 2009” belongs to the group ”Mon Apr
06 22:20 PDT 2009”. Groups are constructed while parsing the experimental datasets,
resulting in slightly bigger graphs for the same t.

Experimental results: Average and median execution times (in ms) over 50 runs of the
procedures are reported in Fig. 16 for the various t. The input graphs’ sizes (i.e., their
number of vertices #V and edges #E) constructed by parsing the first t tweets of the
dataset are reported in Tab. 1. The size of the graph is linear in t, which is consistent with
the schema. The average and median runtimes for the LDP procedure are overlapping as
the distribution has a very low standard deviation. The distribution of runtimes for the
Anatomization procedure consistently comports high outliers for every t.

Experimental interpretation: As expected, the LDP procedure is more time consuming
than the Anatomization procedure. For t = 1000, the median for LDP and Anatomization

2 available at https://github.com/ceichler/granon
3 https://www.kaggle.com/kazanova/sentiment140

https://github.com/ceichler/granon
https://www.kaggle.com/kazanova/sentiment140
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Table 1. Size of the graphs resulting from parsing the t first tweets of the dataset
LDP Anatomization

t #V #E #V #E
100 531 743 538 843
200 1042 1465 1054 1665
300 1558 2201 1576 2501
400 2081 2930 2105 3330
500 2605 3661 2636 4161
600 3113 4386 3150 4986
700 3623 5115 3665 5815
800 4147 5889 4195 6659
900 4648 6576 4704 7476
1000 5170 7310 5232 8310
2000 10393 16531
3000 15463 24625

Fig. 16. Experimental results runtime (ms) with various t

are 1,47 * 106 ms and 2,4 * 104ms, respectively. Furthermore, while the asymptotic com-
plexity of the latter is roughly quadratic for t ≥ 2000, the former is over-quadratic. The
median execution time of the LDP procedure roughly triples from t = 400 to t = 500 (1,2
* 105 ms to 3,3 * 105ms) when the number of nodes is multiplied by 1,25. The average
execution time of the Anatomization procedure is multiplied by 547 regarding t = 100
and t =3000, with 28,7 times the number of nodes.
This can be explained by the randomization inherent to LDP. Indeed, randomizing
the target of a relation requires restarting the matching process from scratch, without
benefiting from optimizations (e.g. smart backtracking). Otherwise, the first match would
influence all others. Therefore, randomizing the sensitive value of n items requires
-in the randomizing step- running n search for graph homomorphisms, which is itself
super-linear in the size of the graph.
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A 30 minute run would allow to execute the LDP (resp. anatomization) scheme on a graph
slightly bigger than #V = 5170, #E = 7310 (resp. #V = 15463, #E = 24625). While such
a runtime is very much reasonable when considering the sanitization of a database prior
to its release as the process is expected to be run infrequently, the asymptotic complex-
ities discourage the application of the proposed graph-rewriting based techniques to big
graphs.

7. Conclusion

This paper is a first effort toward bridging the gap between rigorous graph rewriting and
graph sanitization. We propose a basic yet expressive set of atomic operators, formalized
as simple Single Push-Out graph rewriting rules, providing a generic expressive rigorous
definition that can be parametrized with node and set identifiers. We show how they can
be used to express privacy-preserving graph databases publication mechanisms, namely
local differential privacy and anatomization. These operators and procedures have been
subject to an open-source implementation4. This work stands as a proof of concept and a
first step towards a graph rewriting based approach to graph database sanitization. A lot
of considerations and work remain open on the topic.
Firstly, while the current implementation would reasonably allow the sanitization of small
to medium graphs, its scalability remains limited due to high asymptotic complexity. A
first effort would be required to reduce multiplicative constants, for example, by expand-
ing operators to reduce the number of transformations, e.g. implementing an operator for
edge suppression or edge modification rather than relying on two operators to conduct
the operation; 2) or even the asymptotic complexity of our procedures, for example by
considering a subgraph for the transformation, as procedures work on local properties.
Another natural outlook would be to expand the tool to encompass other privacy pro-
tocols (e.g. [6]). This might require the use of other operators, that we hope share the
simplicity and versatility of our current set.
Furthermore, our language and operators are designed to work on simple relations be-
tween two sets of nodes. In real world usecases, most queries are joins of several relations
(or to speak in graph terms, path queries on more than one edge). For a sanitization mech-
anism to preserve good qualities on such requests while still providing privacy guarantees,
it is likely that we will need operators adapted to the preservation of invariants on com-
posite paths. It is possible, but not yet shown, that some such operators can be built as
compositions of one-relation operators.
Ultimately, as a more general goal, we aim to expand our current tool to allow a user to
specify semantic and privacy constraints. Such a tool would compile those requests as
sequences of our operators and offer to perform the resulting graph transformations.

Acknowledgments. This work is part of the SENDUP project, supported by the French National
Research Agency, under grant ANR-18-CE23-0010.

4 available at https://github.com/ceichler/granon

https://github.com/ceichler/granon
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