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Abstract. The scientific community is currently showing strong interest in con-
structing knowledge graphs from heterogeneous domains (genomic, pharmaceuti-
cal, clinical etc.). The main goal here is to support researchers in gaining an imme-
diate overview of the biomedical and clinical data that can be utilized to construct
and extend KGs. A in-depth overview of the available biomedical data and the lat-
est applications of knowledge graphs, from the biological to the clinical context,
is provided showing the most recent methods of representing biomedical knowl-
edge with embeddings (KGEs). Furthermore, this review, differentiates biomedical
databases based on their construction process (whether manually curated by experts
or not), aiming to offer a detailed overview and guide researchers in selecting the
appropriate database for their research considering to the specific project needs,
available resources, and data complexity. In conclusion, the review highlights cur-
rent challenges: integration of different knowledge graphs and the interpretability
of predictions of new relations.
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1. Introduction

Knowledge graphs are an area of great interest in both academia and industry, because
they facilitate information extraction (facts and hypotheses) by to well-defined intercon-
nections between relevant entities (abstract and concrete) within a given domain. In addic-
tion, they are equally interesting for understanding how to form new relationships through
the use of data semantics and linkages. Originally, knowledge graphs are represented as
the knowledge base graphs in the Resource Description Framework (RDF). Information
(Resource, a Property and a Property value) is represented through assertions forming
SPO triples (subject, predicate, object) which express direct and complex relationships
between different resources [63]. Knowledge graphs can also be described as an ontology.
An ontology is a data model that represents knowledge about a specific through sets of
relations among concepts within a domain and instances of objects representing the topic.
The Web Ontology Language (OWL) serves as a markup language for expressing ontolo-
gies. RDF and OWL have become crucial standards within the Semantic Web. In 2012,
Google popularized knowledge graphs with the introduction of its “Google Knowledge
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Graph” [22]. This system uses Knowledge Vault, which combines probabilistic knowl-
edge extracted from Web content with prior knowledge derived from existing knowledge
repositories enabling users to receive relevant information based on the search queries.
Currently, numerous open knowledge bases or ontologies have been published, includ-
ing WordNet [71], DBpedia [6], Wikidata [24] etc. and industry Knowledge Graph (eg.
Google, Microsoft’s Bing, Facebook, eBay, IBM etc.) [77].

There are many papers summarising the current state of research on knowledge graphs.
One of the most recent contributions is by Hogan et al. (2021) [45] who provide a com-
prehensive introduction to knowledge graphs. The authors compare existing data query
models and languages, and summarize methods for creating, evaluating, and publishing
knowledge graphs.

Knowledge plays an important role in reasoning-driven Natural Language Processing
(NLP) tasks. Indeed, knowledge graphs have emerged as an important tool for address-
ing various NLP problems, such as Question Answering (KGQA) [49, 68, 83]. Semantics
in information can help in extrapolating information that is more semantically close to
the query. Structured knowledge is also a key element in conversational AI where virtual
assistants (e.g. Alexa, Siri or Cortana) answer questions in an advanced way (open ques-
tions), as opposed in a more advanced manner to common chatbots programmed only to
responde to strictly controlled questions (closed questions). Recently, research works have
focused on collecting different techniques for constructing Knowledge Graphs (KG) and
their application [134]. In particular, KGs have various application perspectives across
different domains such as medical, financial, cybersecurity, news and education, social
network de-anonymization, classification, geoscience.

Although several surveys on knowledge graph embeddings in general [16, 19, 112]
and specifically on the biological topic [73] have been published over the past few years,
this paper aims to explore and summarise the most recent advances in the application
of KGs, providing a concise overview of the topic. The goal is to distinguish between
biological and clinical domains, and highlight potential issues that may arise from careless
construction of KGs, as well as providing information on how KGs support semantic
knowledge. Current applications of the latest NLP models for creating clinical KGs are
shown in this context. Furthermore, we introduce the most recent and promising future
research paths (e.g., the use of multimodal approaches and Simplicial neural networks) in
the fields of biomedical and precision medicine. Additionally, the paper expands on the
study of usable resources for constructing a biomedical KG.

As this paper is an extended version of the conference paper [28] presented at a K-
GALS workshop organized in conjunction with the ADBIS 2022 conference, new re-
sources have been introduced for the construction of knowledge graphs (KGs). Moreover,
it conducts an in-depth analysis of the methods and data currently used in biochemical
and clinical applications.

2. Knowledge Graphs in Bioinformatics

The application of KGs in the field of biomedical data for decision support spanes from
clinical to the biological applications. One of the earliest and most renowned rule-based
systems for medical diagnosis is MYCIN [107] which has a knowledge base of 600 rules.
There is a close connection between KG and biomedical NLP. On one hand, this connec-
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tion allows for the enhancement of the amount and representation of data in KG. On the
other hand KG enables improvements in predictions for solving NLP tasks (e.g. named
entity recognition (NER) [57] and relation extraction [44]).

Relationship extraction systems are crucial for identifying connections between a
wide variety of topics. For instance, they are needed to assess the relationship between
non-pharmacological variables and COVID-19 pandemic as well as to support policy-
making on COVID-19 in public health [125].

A knowledge graph in the biomedical field is used to connect a vast amount of in-
terrelated information: genes with biological processes, molecular functions, and cellular
components; genes with phenotype or interaction with other genes; drugs with the dis-
eases they treat; genes responsible for diseases; generic symptoms related to diseases, etc.
Using graphs as a representation of biomedical data seems to be the most natural solution
for modelling objects of this type. In Fassetti et al. [25], graphs are used for the identifica-
tion of features that characterize and at the same time discriminate gene expression among
sets of healthy/diseased samples. This is accomplished through the identification of pat-
terns within the graphs belonging to the sample sets with complementary health statuses.
In the Table 1, most of the knowledge databases (KB) that are used for constructing and
integrating knowledge in the context of biological and clinical data are listed. The data
coverage and complexity are specified for each KB, along with their last update (release)
dates.

Biomedical databases, in general, play a crucial role in scientific research contribut-
ing to drugs development, disease diagnosis and treatment, and understanding biologi-
cal processes. Although some of these databases are not structured as knowledge graphs
(KG), integrating them into a knowledge graph can maximize their potential. By connect-
ing information from different databases and linking data of diverse nature (e.g., clini-
cal data with genetic information), enables researchers to uncover hidden relationships
and connections, potentially leading to the discovery of new associations and insights in
biomedical research. Therefore, Table 2 lists the most well-known and utilized databases
in biomedical research. In addition, the Table 2 distinguishes databases based on their
creation methodology: manually curated (by experts), automatic extraction systems or
mixed methodology (automatic and manually curated). This type of distinction is partic-
ularly important in the biomedical context. A manually curated biomedical database is
often considered superior to one created through an automatic methods in certain con-
texts. Databases curated manually by experts are regarded as the best in terms of pre-
cision, reliability, contextualization, and continuous information updates. However, it is
also important to note that this process is slow, expensive and requires the collaboration
of industry-specific experts. The choice of information generation methods for populating
these databases depends heavily on the resources available and the complexity of the data
to be evaluated.

miRNA (microRNA) databases are crucial as they offer fundamental information
about microRNA sequences, their functions, their interactions with target genes, and their
involvement in biological and pathological processes. Currently, there are not many KG
that utilize this type of data in conjunction with generic biomedical databases. The Table 3
displays the currently available human miRNA databases, for the same reasons as for gen-
eral biomedical databases. These miRNA databases may not be structured as knowledge
graphs but can still be used to discover new associations and insights regarding the roles
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of miRNA in various biological and pathological contexts. Integrating miRNA databases
into a knowledge graph provides a broader context and a more integrated approach to
understanding the roles of miRNA in gene regulation and biological networks. This ap-
proach, along with the use of this data, can lead to the identification of biomarkers, and a
better understanding of diseases. Using genetic, molecular and other specific KG informa-
tion containing details about Human miRNA can be valuable in the context of precision
medicine accelerating research and development of customized therapies.

In literature, although using different methods and algorithms, graphs are mostly used
to solve common problems: making inferences about biomedicine, creating alternative
ways to represent graphs on the same knowledge domain and extending information ex-
traction.

A large part of research is currently devoted to the identification of similar enti-
ties within a KG. Embeddings generated using neural networks are used to calculate
knowledge-based similarities between, for example, drugs, proteins and diseases [127].

Many ways are used to extend knowledge in the biomedical domain to discover latent
information or missing information in KGs.

Completion of the knowledge graph (KGC) aims to complete the structure of the
knowledge graph by predicting the missing entities or relationships in the knowledge
graph and extracting unknown facts. KGC technologies may involve the use of tradi-
tional methods, such as rule-based reasoning and the probability graph model (Markov
logic network). Recently, KGC techniques use methods of learning through embeddings
representation: methods based on semantic correspondence models, based on learning of
representation and other methods based on neural network models.

The use of models based on a generative approach to learn the embeddings of enti-
ties and relationships allows to generate hypotheses regarding the relationships associated
with a connection score between graph embeds through multiple techniques: tensor fac-
torisation (DistMult model [9]) and latent distance similarity (TransE model [124]). This
type of techniques are used in polypharmacy, to evaluate the side effects that are caused
by the interaction of drug combinations [70, 76].

2.1. Example of construction of knowledge graph

Constructing knowledge graphs from heterogeneous biomedical databases (see Table 1,
Table 2, Table 3) involves several complex steps, such as data integration, ontology align-
ment, and semantic integration. To effectively navigate these challenges, it is essential to
first define the objectives of the knowledge graph construction project. For instance in the
context of cancer research, the objective may be to integrate diverse biomedical datasets
to facilitate knowledge discovery, data-driven insights, and personalized medicine.

The following steps can guide the construction of such KG with the focus on cancer.

1. Identify and selection relevant biomedical databases. For example, to construct
a KG specialized on cancer, we need to consider database containing genomic data
(e.g., TCGA), drug data (e.g., DrugBank), molecular pathway databases, diseases-
gene associations data (e.g, COSMIC, DISEASES). It’s important to note that the
chosen databases are mostly created through manual curation by experts (see Table 2,
Table 3). In specific contexts, a manually curated biomedical database is frequently
regarded as superior to one generated through automated methods, as mentioned pre-
viously.
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Table 1. A list of 13 knowledge data sources that are useful in the biomedical context, is provided

Knowledge database Description Coverage Last Release

STRING [101]
database of known and predicted
protein-protein interactions

67.592.464 proteins
from 14.094 organisms.

August 2021

iDISK [87] Dietary Supplements (DS) Knowledge base

4.208 DS concept,
495 drugs,
776 diseases,
985 symptoms,
605 therapeutic classes,
17 system organ classes,
and 137.568 DS products.

February 2020

Hetionet [43]
biomedical knowledge assembled from 29 different
databases (genes, compounds, diseases, etc.)

47.031 nodes of 11 types
and 2.250.197 edges of 24 types.

February 2017

DRKG [50]
biological knowledge graph relating genes,
chemical compounds, biological processes,
drug side effects, diseases, and symptoms.

100.000 entities
of more than 12 types.
6.000.000 relationships
of more than 100 types.

in 2020

KEGG [79]
reference knowledge base for integration and
interpretation large-scale molecular data sets
(genomic, chemical and health information)

563 pathway maps,
47.296.502 genes,
9.010 organisms,
2.640 human diseases,
12.136 drugs etc.

May 2023

PharmGKB [130]
knowledge on actionable gene-drug
associations and genotype-phenotype relationships

759 drugs,
1761 genes,
213 pathways,
227 diseases,
200 clinical guidelines,
and 993 drug labels.

in 2023

Gene Ontology (GO) [2]
describes knowledge of the biological domain:
molecular function, biological process, cellular
component

7.554.638 annotations
1.519.515 gene products
5.291 species.

May 2023

UniProtKB [3]
collection of annotated functional information
on proteins

Swiss-Prot: 569.516 seq,
205.866.895 amino acids;
TrEMBL: 249.308.459 seq,
86.853.323.495 amino acids.

May 2023

Reactome [31]
knowledge graph that focuses on biological
pathways and their relationships

95.164 proteins,
102.459 complexes,
90.807 reactions,
22.050 pathways;
11.278 human proteins.

March 2023

OncoKB [10]
precision oncology knowledge base, consolidating
biological and clinical data on
genomic alterations in cancer

Memorial Sloan Kettering (MSK),
provides accurate
information about
the biological and
clinical implications
of over 5.000
cancer gene alterations.

May 2023

OGB-Biokg [47]

biomedical knowledge graph constructed by
Stanford University
(associations between proteins, e.g.,
physical interactions, co-expression,
homology or genomic neighborhood etc.)

5 types of entities:
diseases (10,687 nodes),
proteins (17,499),
drugs (10,533 nodes),
side effects (9,969 nodes),
protein functions (45,085 nodes).

April 2023

Bioteque [26] a resource of biological knowledge graph embeddings
12 types of biological entities
(e.g. genes, diseases, drugs)
and 67 types of relationships.

July 2022

NCBI [91]

knowledge graph representing
gene-related information,
including gene sequences,
gene structures,
functional annotations,
and genetic variations.

242.554.936 GenBank sequences April 2023
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Table 2. A list of 24 biomedical databases, valuable for biomedical research yet not explicitly
structured as KGs, is provided

Database Main scope Manually curated?
SCOPe [12] protein structural relationships Mostly manually
Protein Data Bank (PDB) [1] archive of 3D structure data for large biological molecules Yes

CATH [96] hierarchical classification of protein domains
Mixed with
other methods

InterPro [81]

functional analysis of protein sequences
by classifying them into families and
predicting domain presence and
important sites

Mixed with
other methods

The Human Protein
Reference Database [58]

for each protein in the human proteome
integrate information pertaining:
domain architecture,
post-translational modifications,
interaction networks and
disease association.

Yes

Bgee [7] gene expression patterns across multiple animal species Yes

HGNC [105]
relation between gene symbol and their
corresponding entries in other database

Mixture with
other methods

DrugBank [116]
molecular information about drugs,
their mechanisms, their interactions
and their targets

Yes

Supertarget [41]

integrates drug-related information associated
with medical indications,
adverse drug effects,
drug metabolism, pathways
and (GO) terms for target proteins

Yes

SIDER [62]
collects information on drug classification and side effects
and links to further information, e.g. drug-target relations

No

OFFSIDES [104] database of drug side-effects No
TWOSIDES [104] database drug-drug-effect No

STITCH [102]
database of known and predicted interactions between
chemicals and proteins

Yes

SIGNOR [102]
causal relationships between human proteins,
chemicals of biological relevance, stimuli and phenotypes

Yes

SMPDB [51]
database containing pathways found in model organisms
such as humans, mice, E. coli etc.

No

ChEMBL [30]
chemical, bioactivity and genomic data to aid the translation
of genomic information into effective new drugs

Yes

ChEBI [40] dictionary of molecular entities focused on ‘small’ chemical compounds Yes
PubChem [59] chemical database Yes

TISSUE [90] tissue expression, proteomics and transcriptomics screens
Mixture with
other methods

Brenda Tissue Ontology [13] collection of enzyme functional data Not specified
Disease Ontology [93] ontology for human disease Not specified
Cell Ontology [55] repository for biomedical ontologies Not specified

DISEASES [82]
integrates disease-gene associations,
cancer mutation data,
and genome-wide association studies

Mixed with
other methods

COSMIC [27]
Catalogue Of Somatic Mutations In Cancer,
associate genes with the related cancer type

Yes
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Table 3. A list of 8 databases containing Human miRNA information, valuable for biomedical
research yet not explicitly structured as KGs, is provided

Database Main Goal Manually curated?

mirCancer [120]
contains associations between
miRNAs and human cancers.

Mixed with
other methods

miRanda [52] miRNA-target interactions. Not specified

miRBase [60]

miRNAs sequences and annotations,
associated with names,
keywords,
genomic locations,
and references.

No

miRNASNP [34] contains miRNA-related mutations.
Mixed with
other methods

miRTarBase [48]

miRNA-target interactions,
including those implicated in cancer.
Experimentally validated
miRNA-target interactions.

Mixed with
other methods

DIANA-TarBas [108]

miRNA-target interactions,
including those related to cancer.
It offers information on miRNA
regulation of target genes
and associated functional effects.

Yes

OncomiRDB [109]

miRNA expression profiles
in various cancer types,
along with their putative
target genes and functional
implications.

Yes

TCGA [4]

Cancer Genomics Databases.
It provides miRNA dysregulation patterns
in cancer and their potential roles
as biomarkers or therapeutic targets.

Yes



1062 Ylenia Galluzzo

2. Develop an integration strategy. Use Extract, Transform, Load (ETL) pipelines or
data ingestion tools to extract data from these heterogeneous sources. Each source
may have its own data format (e.g Json, XML, RDF etc.), and schema.

3. Ontology Alignment. Within cancer research, critical ontologies include the Human
Phenotype Ontology (HPO) [36], which catalogues phenotypic abnormalities linked
to genetic diseases, and the Disease Ontology (DO) [93] providing a standardized vo-
cabulary for disease classification. Complementary ontologies encompass the Gene
Ontology (GO) [2], delineating molecular functions, biological processes, and cel-
lular components, as well as the Cell Ontology [55], characterizing cell types and
anatomical structures. At this step, it is necessary to establish correspondences or
mappings between entities of different ontologies. Furthermore, it is important to es-
tablish common standards and formats to facilitate comparison and alignment. Soft-
ware platforms like e.g BioPortal can help researchers to systematically assess the
efficacy and accuracy of ontology alignment methodologies in biomedical domains.

4. Mapping data into graph-based data model. The goal of this step is to develop and
define a standardized schema for our data, pinpointing crucial data entities and their
relationships. RDF (Resource Description Framework) triples, can link together di-
verse elements such as genes, proteins, diseases, drugs, and pathways. This approach
fosters a comprehensive comprehension of intricate biological systems by forging
significant links between different components.

5. Semantic Integration. Employ semantic reasoning techniques (e.g, Rule-based Rea-
soning, Semantic Similarity etc.) to deduce relationships and uncover novel insights
from the heterogeneous data.

6. Quality check. Define robust quality metrics to quantitatively evaluate the compre-
hensiveness, precision, and coherence of the constructed knowledge graph. Conduct
thorough validation procedures to verify data integrity and adherence to ontology
mappings, employing systematic validation protocols. In this step, for example is
necessary to solicit feedback on the accuracy, relevance, and completeness of the
mappings, incorporating expert insights to refine the validation process, ensuring its
scientific validity and applicability in the field.

2.2. Methods of Knowledge Graph Embedding

A very common application that has grown recently is the creation of entity embeddings
or assertions on KGs by training deep learning networks such as autoencoders from in-
puts constructed by KG nodes [69, 133]. The purpose of representing graphs in a high-
dimensional space to a low-dimensional space is to capture the essence of a graph while
preserving its intrinsic (global and / or local) structure in the form of a dense vector rep-
resentation, both of arcs [9] and of single nodes [35]. This approach has been used to
analyze knowledge graphs across different domains enabling, starting from compressed
and meaningful information, the application of classification techniques and the develop-
ment of predictors, which can aid researchers in identifying associations between diseases
and bio-molecules [95], discovering new treatments for existing drugs [43] and addressing
other related problems.

In the following section, we will explore how the most recent techniques of represen-
tative learning are applied in the biochemical and clinical context.
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Application on Biochemical Data. One of the studies that facilitated the creation of a
comprehensive KG in the biomedical context is PharmKG [130]. This study aggregated
multi-omics data, including disease-related words, gene expression and chemical struc-
ture information, while preserving biological and semantic features through the latest
KGE approaches. A significant aspect of the study focused on drug-related topics, partic-
ularly addressing drug reuse and adverse reactions, crucial for preventing harm to patients.
Additionally, the study investigated potential drug-drug interactions (DDIs), drug-protein
(DPIs), drug-disease, drug-target interactions (DTIs) by modelling the problem of predict-
ing links between graph nodes with KGs. In the study by Zhu et al. [132], the authors pro-
vided a detailed overview of existing drug knowledge bases and their applications. This
work used datasets containing key properties of drugs (DrugBank [116] and SuperTar-
get [41]) as well as datasets containing the main information about chemical compounds
(PubChem [59] and ChEMBL [30]). In the study by Lin et. al [65], a Bio2RDF created
from DrugBank was employed to evaluate the relationships between a potential drug and
its neighbours. This evaluation is based on GNN models applied to the biological KG. In-
novative work in drug research includes the development of the BioDKG-DDI model [86],
that aims to identify DDI interaction relationships to support experimental work in drug
development laboratories. BioDKG-DDI uses an innovative self-attention mechanism on
DNNs (deep neural networks)to attenuate multi-features embeddings including molecular
structures, drug structures, and drug similarity matrix. Furthermore, recent advancements
in DNNs are employed to predict the search for similar drugs, e.g. to identifying molecules
with antibiotic properties through graph-based retro-synthesis [66]. Drug-protein interac-
tions are another area of interest for researchers. In BridgeDPI [118], convolutional CNN
and feed-forward network layers are used to encode SMILES representation of drug and
protein sequences. GNNs are then employed, as in other similar works in the literature, to
build bridge nodes between interactions and predict new connections between nodes.

Many papers in scientific literature in recent years have focused on the study of graph
models applied to KG for the discovery of Drug-Target Interactions (DTIs) [5,56,84,100,
110, 113, 114]. Drug-Target Interactions (DTIs) are the interactions between drugs and
molecular targets in the human body. The interest in this type of interaction is justified
by the fact that it is now essential to understand how drugs act in the body, how they
bind to molecular targets and how they affect biological processes. These types of inter-
actions can determine the effectiveness of a drug in treating a disease and may highlight
its unwanted side effects. In pharmaceutical research it is crucial to have a comprehen-
sive picture of DTIs interactions in a KG in order to develop safer, more effective and
targeted drugs for the treatment of complex diseases. A new DT2Vec+ [5] approach to
the computational reprocessing of drugs to predict new drug-target interactions (DTIs)
was proposed in 2023, which showed promising results. DT2Vec+ was created by in-
tegrating and mapping drug-target-disease triplet association graphs. The heterogeneous
graph in DT2Vec+ with “drug”, “target” and “disease” entities has been mapped to low-
size vectors using node embedding principles to create specific characteristics for each
entity. The authors also tested the new method on DTI tasks to propose drugs targeted
at specific cancer biomarkers. Another approach for DTI predictions is KG-DTI [113].
The KG is constructed using 29,607 positive drug-target pairs. To extract the built-in
features, KG-DTI, uses the DistMult embedding strategy instead. KG-DTI is then ap-
plied to recommend drugs for AD (Alzheimer’s disease) by targeting apolipoprotein E.
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The results presented by the authors of KG-DTI show that seven of the top ten drugs
recommended for AD are supported and validated by clinical practice and literature.
KG2ECapsule [100] employs entity representations obtained by recursively propagat-
ing takeovers from the receptive fields of attention-based entities, similar to DTI-GAT
(Drug-Target Interaction prediction with Graph networks attention) [110]. In particular,
DTI-GAT uses the attention mechanism on graphs to facilitate the topological interpre-
tation of DTI, assigning a different attention weight to each node in KG. The accuracy
rate of DTI-GAT reaches 93.75, on enzyme dataset (BRENDA [92]), surpassing that of
other prediction methods. An innovative approach for DPI is employed by the authors
of TransDTI [56] (Transformer-Based Language Models for Estimating DTIs). They use
transformer-based language models to classify interactions between drug-target pairs as
active, inactive, and intermediate. The results presented by the TransDTI authors sug-
gest that transformer-based linguistics effectively predict new drug-target interactions
from sequence data. In 2022, GCHN-DTI [114], introduced a heterogeneous network cre-
ated from various data sources including drug-target interactions, drug-drug interactions,
similarities between drugs, target-target interactions and similarities between targets. In
GCHN-DTI utilizes a graph convolution approach for the DTI task. The method employs
an attention mechanism between convolutional graph layers to combine the embedding
of nodes of each layer. GCHN-DTI demonstrates superiority over several state-of-the-art
methods. One knowledge graph embedding approach that integrates and works well on
DDI (Drug-Drug Interaction), DTI (Drug-Target Interaction) and PPI (Protein-Protein In-
teraction) is ConvE-Bio [84]. While ConvE-Bio serves as a powerful tool for predicting
biomedical relationships it currently faces limitations related to processing large graphs.
As presented in the Table 4 several noteworthy works focus on solving different tasks. For
“diseases diagnosis” a recent tool based on the study gene association information and co-
functional gene modules is MLA-GNN(multi-level attention graph neural network) [121].
MLA-GNN achieves state-of-art performance on transcriptomic data [4] and proteomic
data (COVID-19). The authors also employ an innovative mechanism to try to identify
the genes most involved in model analysis and prediction. Another type of task studied
by researchers in this context is the application of knowledge graph-based “disease-gene”
prediction. The GenePredict-KG model [29] is developed for this purpose by integrating
several datasets. Despite achieving results that surpass state-of-the-art performance, the
method suffers from several limitations related to class imbalance.

In order to provide a comprehensive overview of current research, it is important to
mention the application of Neural networks known as Hyperbolic Graph Neural Net-
works (HGNN) to the DISEASE dataset, based on the SIR disease spreading model [11],
demonstrating excellent results in link prediction. However, recent advancements have
shown that these new sophisticated neural networks have been outperformed by Simpli-
cial neural networks (SNNs) for link prediction [15], achieving better results in terms of
ROC AUC on the same dataset.

In the following Table 4 we will succinctly present, the latest applications of knowl-
edge graph embedding in the context of biochemical data and the tasks they aim to ad-
dress.

Application on Clinical Data. Studies of KG-based recommendation systems built from
electronic medical records (EMRs) aim to enhance medical decision-making for improved
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Table 4. Latest KGs constructions and Graph Neural Network applications in the biochemical field

Model Task Dataset Year

BioDKG-DDI [86] DDI
DrugBank [116], SIDER [62], KEGG [79], PubChem [59]
and OFFSIDES [104]

2022

BridgeDPI [118] DPI
BindingDB [32],C.ELEGANS and
HUMAN datasets [67], DUD-E [75]

2022

RetroGNN [66] Drug Discovery Zinc15 database [99] 2020

HGNN [11]
Link Prediction,
Node Classification

Disease, PubMed 2019

ConvE-Bio [84] DDI, DTI, PPI DrugBank [116], Human Protein [88] 2023
DT2Vec+ [5] DTI CTD [20], DrugBank [116], ChEMBL [30] 2023
KG-DTI [113] DTI, DTP DrugBank [116] 2021

KG2ECapsule [100] DDI
DrugBank [116], OGB-Biokg [47],
KEGG [79]

2023

DTI-GAT [110] DTI
SuperTarget [41], DrugBank [116],
KEGG [79], BRENDA [13]

2021

TransDTI [56] DTI ChEMBL [30], Kiba [103] 2022
GCHN-DTI [114] DTI DrugBank [116] 2022

KG-COVID-19 [85] ML tasks, queries
PharmGKB [130], Therapeutic Target Database (TTD) [14],
ChEMBL [30], GO [2], STRING [101],
IntAct Molecular Interaction Database [80]

2021

MLA-GNN [121] Disease diagnosis TCGA [4], COVID-19 [111] 2022
KGMultiple Ontologies [78] Gene-Disease Association Uniprot [18], OMIM [38], Orphanet [115] 2020

GenePredict-KG [29] Gene-Disease Association

STRING [101], SIDER [62], DrugBank [116],
Human Phenotype Ontology (HPO) [36]
Genotype-Tissue Expression (GTEx) [128]
Gene Ontology Annotation (GOA) [17]
Mammalian Phenotype (MP) [97]
Mouse Genome Informatics (MGI) [23],
PubChem [59], OMIM [38]

2023

GNBR [98] Drug repurposing
Orphanet [115], OMIM [38], UMLS [8]
DrugCentral [106]

2019

Compact Walks [46] Pathways discovery Hetionet [43], ROBOKOP [74] 2022

patient care. Creating KGs from medical record texts containing a patient’s treatment
history (medical diagnoses, therapies, etc.) presents a cost-effective approach compared
to building KGs based on deeper biological aspects (relationships between genes, dis-
eases, chemical composition of drugs, etc.) that require more attention. Research in this
area is still in its early stages and recent advancements in information extraction mod-
els (such as LSTM, BERT, and NER models) enable the extraction of meaningful infor-
mation from unstructured data, enriching biomedical knowledge bases with non-trivial
connections [39] [64] [33]. Recently, Zhang et al. [129] demonstrated the effectiveness
of attention mechanisms and convolutional graphs techniques in creating embedded KGs
features enhance the classification and generation of radiological reports in order to im-
prove diagnosis and support physicians in their work.

The Table 5 presents several noteworthy research studies from last three years, which
incorporate clinical data of various types (e.g, images, ontologies, etc.). It is noteworthy
that currently only MKGs [117] constructs KGs that encompass both biomedical and
clinical data. As a result, it has the potential to address numerous tasks such as drug-drug
interactions (DDIs), drug-protein interactions (DPIs), classification of nodes, and more.
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Table 5. Latest KGs constructions and applications in the clinical field

Model Task Dataset Year

ClinicalBERT [89] link prediction
PubMed abstract,
MIMIC-III database [54]

2021

SMR [33] link prediction
MIMIC-III [54],
DrugBank [116],
ICD-9 ontology [94]

2020

RR-KG [129] generation of radiological reports U-RR dataset [21] 2020
MaKG [123] generation of radiological reports IU XRay [21]and MIMIC CXR [53] 2022

MKGs [117] several

real world data (EMH, EHR etc),
UMLS [8], ROBOKOP [74],
DrugBank [116], UniProt [18],
InterProt [81], SIDER [62],
GO [2], KEGG [79],
Therapeutic target database [14] etc.

2023

3. Open research problems

3.1. Construction and integration of knowledge graphs

Biomedical knowledge graphs are typically curated manually by expert researchers. One
such example is COSMIC [27], constructed by a group of domain experts who associated
genes with related cancer types based on literature. However, the field of biological knowl-
edge is constantly evolving, necessitating scalable intelligent systems capable of integrat-
ing real-time updates. Addressing this challenge involves not only updating knowledge
bases but also ensuring the reliability of knowledge representations in KGs and their re-
lationships. One widely studied technique for enhancing KG reliability involves aligning
entities from different KGs based on their similarity. Recently, Xiang et al. [119] intro-
duced a method that incorporates ontology hierarchies and class disjunctions to improve
entity alignment accuracy and avoid mismapping.

Research has also shown that the quality of available knowledge graphs directly im-
pacts the accuracy of knowledge graph embedding (KGE) predictions. Low data quality
can propagate into embedding models, leading to decreased prediction accuracy [73].
Missing knowledge and integration errors in KGs can further exacerbate this issue, per-
petuating incorrect and misleading domain knowledge. This is particularly problematic in
the biomedical domain, where inaccuracies can have significant consequences.

3.2. Performance

Complex biological systems are often represented as graphs, but the exploration, training
and prediction techniques applied to these graphs require significant of resources and
time leading to limited scalability. While knowledge KGEs address some aspects of this
problem by operating with linear time and space complexity, the challenge of dynamically
encoding new entities into the graph remains unresolved. KGEs rely heavily on prior
knowledge of embeddings for each type of information in the knowledge base, allowing
them to maintain both local and global information. However, this dependence on prior
knowledge presents scalability issues that propagate into the prediction process.
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3.3. Explainable predictions

Lack of interpretability is a recurring problem with deep learning models [37]. Which
becomes particularly concerning given the increasing use of neural networks in decision-
making within biomedical applications. Efforts have been made in this regard to address
this issue. For example, CrossE [126] explores the process of explaining graph search
paths using embeddings to interpret link prediction. In the context of KGE, learning
meaningful embeddings through specific optimisation techniques often leads to predic-
tions that are difficult to interpret. In data analysis, GNN models frequently employed
in the biomedical domain, generate relevant information for each data node, thereby en-
hancing interpretability to some extent. Recent efforts have aimed to impose constraints
during training to make KGE models partially interpretable (e.g. type constraints and ba-
sic relation axioms) [61, 72]. Extracting information from NLP presents challenges for
constructing reliable KG in the health domain. Complex models used for understanding
natural language still have many issues [42]. Importantly, biases inherent in extracting
information from EMHs should not be underestimated. Inevitably these biases in the data
will propagate to some extent in the results of the predictions. Therefore is crucial for
research to prioritize the development of more reliable and explainable models for the
healthcare sector.

4. Discussion and conclusion

This survey aims to present the latest models and strategies to use knowledge graphs in
the biomedical context. Their use has become increasingly widespread in recent years,
with current research focusing on enhancing the outcomes derived from their application
in biomedicine. As outlined in this survey, many knowledge graphs are typically con-
structed from data sources, which are either manually curated by experienced researchers
or generated through sophisticated NLP techniques (NER, relation extraction). We subse-
quently pointed out the potential errors that this approach may introduce in the biomedical
context, during KGs construction. In this regard, with the aim of ensuring the future re-
search in the biomedical domain is increasingly reliable and accurate, this review delves
into the detailed construction methods of biological, chemical and clinical databases (see
Table 2 and Table 3). The differences between the types of entities used in the biomedical
knowledge bases and their “size” are noted in Table 1.

The process of extending knowledge in KGEs can indeed be addressed by the low-
dimensional representation of the characteristics of each entity and/or relation within
the graph. This compressed and representative representation of the knowledge graph
can help identify potential inconsistencies during the integration process the graphs and
partially resolve some problems associated with errors in knowledge graph construction
caused by misaligned entities. KGEs are currently highly active area of research, due to
their ability to provide a generalisable context on the KG and probabilistically deduce
new relations missing in the existing graph structure. This characteristic has accelerated
the discovery of new drugs in many studies by evaluating the interaction between prop-
erties of molecules present in the KG. The importance of KG feature representation, as
discussed, underscore its effectiveness in constructing increasingly comprehensive KGs.

A recent advancement in research involves the construction of a multimodal knowl-
edge network, where additional information is incorporated into the KG to enhance rea-
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soning. This approach utilizes a combination of various interaction features among KG
entities to improve predictions (e.g. on drug repositioning) [122]. The multimodal ap-
proach has also been recently applied in precision medicine, where detailed knowledge
and a specific focus are essential for creating KGs that represent and generate reliable
knowledge [131].

In conclusion, this discussion highlights the current open challenges in the use of KGs
in the biomedical field, emphasizing the need to improve the interpretability and quality
of biomedical KG data in order to increase confidence within the community regarding
predictions and thereby support advancements in specialised medicine.
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