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Abstract. In this paper, we focus on some aspects of structural operational se-
mantics for a selected domain-specific language for robot control. After defining a
syntax for two independent languages for control of a robot’s movements, we de-
fine a structural operational semantics for them. The integrated part of structural
operational semantics is abstract implementation, which consists of defining ab-
stract machine and transformation of a programming language to abstract machine
instructions. The achieved results as well as the mentioned research are a part of
the research in the field of semantic methods, where we focus on the formalization
of semantic methods for software engineering. This area is also very important for
the training of students and young IT experts because the semantic methods can
help to understand program behavior and detect errors in program design. To make
the teaching of formal semantics in the field of domain-specific languages more at-
tractive, we have also prepared an application that serves to visualize the individual
steps of the program on an abstract machine – simulation of translated code with
visualization of a robot’s movement.

Keywords: Abstract machine, containerization, domain-specific language, formal
semantics, micro-service, online teaching, teaching software, university didactic.

1. Introduction

The main aim of this paper is to define an abstract machine and abstract implementa-
tion as a part of structural operational semantics for a simple domain-specific language.
After that, we design an application that serves as an emulation tool of the defined ab-
stract machine. For its design and implementation, a modular approach was taken. Our
approach is primarily dedicated to the students visiting our graduate course Semantics of
Programming Languages.

Domain-specific languages (DSLs) constitute a new class of programming languages
and they can be characterized as a new programming paradigm. These languages are de-
signed as special-purpose programming languages with a higher level of abstraction to
support a particular set of tasks, meant to be used in the contexts of specific domains [2].
DSLs are defined in [8] as programming languages or executable specification languages
that offer expressive power focused on, and usually are restricted to particular problem do-
mains. At present, there are several DSLs for various domains: domain-specific functional
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languages for dynamic geometry [28], for finance (for instance Marlowe [17] which al-
lows users to create blockchain applications tailored for financial contracts, or Findel [3],
designed for financial derivatives and boasts simplicity and expressiveness for complex
derivative expressions); legislative, and juridical applications (e.g. ERGO [29] which fo-
cuses on legal contract execution logic, aiming for consistency between legal prose and
executable logic, accessible to both lawyers and developers); for asset management (e.g.
Psamathe [21]); for multidomain (e.g. Jabuti [9] catering the smart contracts in application
integration, offering natural language-like constructors, ContextMapper [15] grounded in
Domain-Driven Design principles aiding in context mapping and service decomposition,
Adico [11] serving as the interface between human-readable institutional specifications
and machine-readable Solidity contracts (referring to Ethereum, see [41]), Archetype [40]
focused on developing smart contracts on the Tezos blockchain, with a specific focus on
the formal verification of the contract, ink! [22] as a programming language dedicated
to smart contracts (referring to Polkadot, see [42]), and iContractML [12] facilitating
modeling and deploying smart contracts across multiple blockchain platforms); for smart
contract formal analysis and verification (VeriSolid, Scilla), for modeling platform inde-
pendent model specifications of a specific information system [18], for the development
of software agents [6] or specifically for modeling application-specific functionalities of
business applications [26] and many others. For more interested user, we recommend
more comprehensive survey [1] in blockchain model. Because many of mentioned prob-
lem domains require deep knowledge of their principles and needs, they are not appro-
priate for teaching students because many details are not needed for explaining how to
define the semantics of DSLs. Therefore we decided to use a simple DSL language Robot
that is suitable for our purposes. We note that the first idea about this robot language was
presented in [25].

A formal definition of each programming language consists of a formal syntax and
formal semantics [16]. The formal syntax can be concrete and abstract. Generally, the
concrete syntax is the set of rules that defines the combinations of symbols that are con-
sidered to be well-formed in a computer language. Abstract syntax defines the structure of
syntactic entities without some details, and it is needed for defining the formal semantics
of a language. Under semantics, we understand the meaning of such structures.

Formal semantics is an integral part of programming language’s formal definition.
It offers students studying computer science and IT experts to understand the meaning
of the programs and the opportunity to better understand how the code execution works
on the machine using abstraction, thus removing some unnecessary details which can be
ignored.

Based on the above, this suggests that strong support for formal methods and prin-
ciples in the field of software engineering and software development at the level of uni-
versity education will help to acquire critical thinking and support abstraction in solving
problems, whether from the point of view of designing more effective algorithms, ver-
ifying the properties of languages programs written in this language and thus prevent
many (logical) errors in various phases of the design and development of software sys-
tems. Since all formal methods are rooted in formal semantics, we are also of the opinion
that interactive support in the teaching of semantic methods will make it easier to learn the
principles of these methods, as well as easier to navigate in the choice of a suitable seman-
tic method, or to correctly interpret the results achieved at all levels of derivation. There-
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fore, visualization software is one of the interactive aids that we present in an effort to
modernize and make teaching more attractive. Orientation to domain-specific languages
will make it easier for students to understand the principles that are standardly presented
in imperative and functional languages. Students will more easily understand how these
paradigms are related and how individual methods are modified when used across dif-
ferent paradigms. We would like to add that, from a practical point of view, support is
still available when using the SLANG [31] tool. It is a software for the rapid prototyp-
ing of a programming language from its formal specification; which also allows belief
in its semantic specification (currently support for denotational and natural operational
semantics).

The students of our course become familiar with several semantic methods, such as
natural semantics, denotational semantics, algebraic semantics, and axiomatic semantics.
Natural semantics, or the semantics of big steps is the simplest kind of semantic method
and is well understandable by students. Denotational semantics define the meaning of
programs by functions and it does not keep track of execution details. Algebraic seman-
tics specifies programs as a hierarchy of abstract data types and defines the semantics
as heterogeneous algebras. Axiomatic semantics is suitable for verification purposes by
defining preconditions and postconditions before and after executing the statements, re-
spectively. One of the most popular semantics methods is structural operational semantics
[20], also called the semantics of small steps, which defines how individual steps of pro-
grams are executed. This method requires to define also abstract implementation based on
an abstract machine and we concentrate on this method in our paper.

Knowledge of structural operational semantics and the appropriate abstract machine
is an important foundation in the teaching of programming languages. It offers students
the opportunity to better understand how code execution works on the machine using
abstraction, thus removing some unnecessary details which can be ignored. However, the
related abstract machine theory can be unfriendly or difficult for students to learn.

To overcome this problem, we follow the idea of making formal semantic methods
visual in particular steps of calculations. The current situation requires that students also
acquire skills in working with this type of educational software, as stated by the author
in [32]. In educating young IT experts, there is a need for tools that can illustrate the
semantic methods to students and make it clearer how for example an abstract machine
operates interactively for not only self-study for students but also for teachers to present
abstract machine in their lectures. Many times, the introduction to programming is ex-
plained in languages similar to the original idea of Karel the Robot (or simply Robot).
Therefore, we were also inspired by this approach and expanded our research in the field
of domain-specific languages, where we work with a language for robot control. The
domain-specific language we work with is the language Robot which is an entity moving
in two-dimensional space by executing given commands.

The abstract implementation of a robotic language represents a natural continuation
in the field of semantic methods, leveraging structural operational semantics for its defini-
tion. It is also a great motivation for us, as other semantic approaches are already formu-
lated and derived: denotational and operational semantics are defined in [13], we defined
natural semantics in [36] and we processed its visualization in [38]. It is also natural when
extending the spectrum of semantic methods to verify that the new method is fully equiv-
alent to the existing ones and that it provides the same results. Then we have in mind a
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deterministic approach in the application of semantic methods. We formulated the proof
of equivalence between the denotational semantics of the Robot language and the natural
semantics defined by us in [37].

In this article, we present a practical approach to the visualization of the semantic
method for a given DSL language, while the results achieved here are based on our pre-
viously mentioned works. In this way, we have, on the one hand, extended the field of
semantic methods for a given language and thus given the user the opportunity to choose
a method according to the pursued goal (only the result, detailed calculation procedure,
verification of language properties, etc.), and on the other hand, we have also provided a
visualization module that will enable the interactive use of the mentioned method, track-
ing the progress of the calculation or checking the results.

The aim of this paper is to define an abstract machine for the structural operational se-
mantics of the robot language and for its abstract implementation. After that, we designed
an application that serves as an emulation tool of abstract machine defined. For its design
and implementation, a modular approach was taken. The application is divided into four
micro-services: translation logic, translation graphical user interface, simulation logic,
and simulation graphical user interface, with a database in the separate (fifth) container.

This paper is a part of our project to prepare young engineers and IT experts to deal
with semantic methods. We have prepared the applications for teaching and learning deno-
tational semantics [35], operational semantics [34] and abstract machine [33]. Our needs
are so specific that we had problems finding similar applications. We followed the meth-
ods published in [30] with some modifications. The aim of our project is to provide an
integrated system for learning and teaching semantic methods. This paper serves for il-
lustrating how domain-specific languages differ in using operational semantics.

The purpose of the logic components is to parse the given input source code and to
provide an output form (bytecode) for visual processing and calculation. The processed
input for the translation logic is afterwards translated to abstract machine code and for the
simulation logic, the data is used for simulating the execution on the abstract machine, re-
turning simulation data. The web is used as a graphical user interface for both components
using Spring with Thymeleaf template engine for displaying variable data on the HTML
page which uses JavaScript scripts for additional calls. Web pages have both English and
Slovak localization with the link from the compiler to the simulator and back.

The paper is structured as follows: in Section 2, we present a syntax of the language
for robot and preliminaries for defining the semantics. Section 3 contains a definition of
the abstract machine(s) for the robot language(s). Section 4 focuses on the design of an
emulation of an abstract machine, and Section 5 presents its specification and functional-
ity. Finally, Section 6 concludes our paper.

2. Simple Domain-Specific Language for Robot

A domain-specific language (DSL) is a programming language or executable specifica-
tion language that, through appropriate notation and abstraction, offers expressive power
focused on, and usually limited to, a specific domain of the problem [8]. Domain-specific
languages are languages tailored to a specific application domain. They offer substantial
gains in expressiveness and ease of use compared with general-purpose programming lan-
guages in their domain of application [19]. With the creation of a DSL, a user can focus
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on the problem and its solution in a specific area for further processing. One of the pos-
sible benefits of using DSL is lower implementation time, reduced maintenance costs, as
well as better portability, reliability, optimizability and testability [7]. The language of the
robot is an external DSL which means it is a fully independent language with its syntax
and semantics [14]. Language workbench is a great tool for creating such a language – it
is easy to define not the only parser, but also a custom editing environment [10].

The operational semantics of the language of a robot is a base for abstract machine
definition. The robot is an entity in two-dimensional space, a grid, with specified x (hor-
izontal) and y (vertical) coordinates which are typically changed during the execution of
a program. The robot can move horizontally and vertically, diagonal movement is not
possible in this simplified version. Language has two syntactic domains [13]:

– n ∈ Num – numerals specifying number of steps which robot has to move;
– C ∈ Comm – commands.

The syntactic domain is specified by an abstract syntax giving the structure of the basic
elements and the composite ones. The syntactic domain Num has from the point of view
of abstract syntax no internal structure (but syntactically numerals can be represented with
a regular expression [0, . . . ,9]+). We need to define abstract syntax only for syntactic
domain Comm for commands. The structure of well-structured commands we define
using BNF formalism by production rule as follows:

C ::= left | right | up | down | left n | right n | up n | down n |
skip | reset | C;C.

The commands left and right express the movement of a robot one position to the
left or to the right, respectively. The commands up and down express the movement of
a robot tothe up or to the left, respectively. The commands left n, right n, up n and
down n express the particular movements by n position in the specified direction. The
reset statement invokes an immediate return to the initial, or default, position set by the
user at the beginning (akin to teleportation). Next, the skip statement is void of action,
serving primarily as a placeholder in proofs of semantic equivalence. The composition
(sequence) of commands is expressed by the last pattern.

For the robot’s position, we define the semantic domain

Point = Z× Z

with the elements p that are considered states. Each position has a form

p = (x, y)

where x and y are the coordinates. The change in the position of the robot is considered a
change of state. For simplification, we consider that our grid is not limited in any direction.

Example 1: Assume a simple program of robot:

right 2;

up 2;

right 3
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Fig. 1. Movement of a robot

A robot moves two positions right, then two positions up and finally three positions right.
The robot movement according to this program is illustrated as a path along the orthogonal
grid (Fig. 1). The position

p∗ = (1,1)

is the starting position of a robot, i.e. the coordinates are x = 1 and y = 1.
As we showed in [37], for natural semantics of n-step statements, we can use direct

evaluation, rewriting or inductive definition. Using the first approach, the semantics of the
program is evaluated by the following derivation tree:

⟨right 2, p∗⟩ → p1

⟨up 2, p1⟩ → p2 ⟨right 3, p2⟩ → p

⟨up 2; right 3, p1⟩ → p

⟨right 2;up 2; right 3, p∗⟩ → p

and the internal states are: p1 = (3,1) and p2 = (3,3). After performing all steps, the
robot ends up at the position p = (6,3).

□

The semantics of the commands is given by evaluation of the semantic function

C : Comm → (Point → Point).

A structural operational semantics is known as a small-step semantics. That means each
step is defined by a transition relation between configurations. A configuration is in gen-
eral a pair

⟨C, p⟩,
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and it describes a simple step of execution of a command C from a state p. The transition
has the form

⟨C, p⟩ ⇒ α,

where α is a configuration and it can be either:

– a new state p′, if the command C is performed in one step. A typical case is a move-
ment in some direction in one step or the teleportation to the initial position. That
means, the execution has terminated in a state p′, or

– an intermediate configuration ⟨C ′, p′⟩, if the execution of command C is not com-
pleted and remaining computation continues.

Assume a state p = (x, y). The transitions for the commands executed in one step are:

⟨left, (x, y)⟩ ⇒ (x⊖ 1, y),

⟨right, (x, y)⟩ ⇒ (x⊕ 1, y),

⟨up, (x, y)⟩ ⇒ (x, y ⊕ 1),

⟨left, (x, y)⟩ ⇒ (x, y ⊖ 1).

Each command executing more movements can be considered as a sequence of com-
mands:

left n = left; left m,

right n = right; right m,

up n = up;up m,

down n = down;down m,

where Jm K = Jn K ⊖ 1.
The commands that are not executed in one step have transitions expressing the first

step of execution:

⟨left n, (x, y)⟩ ⇒ ⟨left m, (x⊖ 1, y)⟩,
⟨right n, (x, y)⟩ ⇒ ⟨right m, (x⊕ 1, y)⟩,
⟨up n, (x, y)⟩ ⇒ ⟨up m, (x, y ⊕ 1)⟩,
⟨down n, (x, y)⟩ ⇒ ⟨down m, (x, y ⊖ 1)⟩,

where Jn K = Jm K ⊕ 1, for Jm K, Jn K ∈ N0 and J · K is a semantic function that sends
numerals to naturals (or zero) [13]:

J · K : Num → N0.

The last two commands of a language have the following transitions:

⟨skip, p⟩ ⇒ p,

⟨reset, p⟩ ⇒ p∗,

where p∗ is the starting position and its coordinates are stated in beginning of a program.
To make this language more general (closer to real languages), we change its abstract

syntax by defining new commands for turning into the given direction according to the
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angle. Because the robot moves on the grid, the angles are multiples of 90 degrees and they
define movement in the current heading. We define the abstract syntax of this language as
follows:

C ::= forward | forward n | turn left | turn right |
skip | reset | C;C.

These commands enable the robot to rotate around its axis. The command forward
causes the robot moves one step in the direction of the current heading. The command
forward n defines that robot moves n steps in the direction of the current heading. The
rotation of movement defines the commands turn left, which changes the direction of
movement to the left, and turn right, which changes the direction of movement to the
right according to the direction of the current heading. The commands skip and reset
work as in the previous version of a language. The last item in production rule C;C is the
concatenation of commands. We define a new semantic domain for the angles

Angle = Z

with the elements a ∈ Angle. We consider the following convention: if the robot is
facing north, then the current angle is 0, for east it is 90, for south 180 and for west 270.
The forward command calculates the next position by trigonometric functions sine and
cosine. For the potential input values of the angle, these functions respectively yield values
of −1, 0, or 1.

Because an angle is an element that provides the direction of the robot, we need to
modify the notion of state. A new semantic domain State is a product:

State = Point×Angle

with the elements (p, a) ∈ State, p ∈ Point and a ∈ Angle. Then a state is a tuple and
has the following form

⟨C, p, a⟩.

Now we have two groups of commands:

– the first group contains commands left, right,up,down, left n, right n,up n and
down n;

– the second group contains the commands enabling rotation, forward, forward n,
turn left and turn right;

– for te second group of statements, we need to extend (redefine) also an initial state by
adding an angle, s∗ = (p∗,0);

– the commands skip, reset and C;C belong to both groups of commands.

Commands from different groups cannot be combined in one program, because of differ-
ent definitions of configurations. But they can be executed on the same abstract machine
– for this reason we create two ANTLR grammars during implementation, so it is possi-
ble to apply one implementation of abstract machine emulation to several input language
specifications.

The semantic function for this language is defined as

C ′ : Comm → State → State,
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and is defined by the following transitions:

⟨forward, (x, y), a⟩ ⇒ ((x⊕ sin a, y ⊕ cos a), a),

⟨forward n, (x, y), a⟩ ⇒ ((x⊕ Jn K ⊗ sin a, y ⊕ Jn K ⊗ cos a), a),

⟨turn left, p, a⟩ ⇒ (p, (a⊕ 270) mod 360),

⟨turn right, p, a⟩ ⇒ (p, (a⊕ 90) mod 360).

We also need to redefine the commands reset and skip:

⟨reset, (p, a)⟩ ⇒ (p∗,0),

⟨skip, (p, a)⟩ ⇒ (p, a).

Both defined languages can be extended by other commands, for instance, init(x, y),
which can initialize the starting position of the robot. Another useful extension can be con-
ditional command and loop command that can serve for shortening the code and opening
a lot of new options. Another extension can be an addition of flags on the environment
which the robot can place and lift from. Furthermore, battery or energy management can
be added, so each robot’s movements deplete its energy which needs to be recharged later
on [13]. The mentioned extensions are the aims for future work.

3. Abstract Machine for DSL – Theory and Development of Method

Abstract implementation of a program is used to verify the partial correctness of the im-
plementation of programming languages and consists of

– the definition of an abstract machine;
– the translation of the program into a sequence of the instructions of an abstract ma-

chine;
– the execution of code of abstract machine and comparison with a structural opera-

tional semantics of a program.

Definition of the abstract machine [20] consists of

– the syntax of instructions;
– the semantics of instructions.

We define the new syntactic domains Code for a sequence of instructions and Ins
for the instructions. An element c ∈ Code is a sequence of instructions. We define the
abstract syntax of instructions and code by the following production rules:

ins ::= LEFT | LEFT-n | RIGHT | RIGHT-n |
UP | UP-n | DOWN | DOWN-n |
FORWARD | FORWARD-n | TLEFT | TRIGHT |
SKIP | RESET,

c ::= ε | ins : c.

Our definition of abstract machine for structural operational semantics is defined for
the domain-specific language of the robot, namely for both versions of the language. The
state of the abstract machine determines the position of the robot in the environment

p ∈ Point = Z× Z



1086 William Steingartner, Valerie Novitzká

and possibly an angle of its rotation

a ∈ Angle = Z.

Hence, for the first version of the language containing the directional commands, the
state is an element of the semantics domain Point. For the second version of the lan-
guage, comprising the rotations, a state is an element of the semantic domain

s ∈ State = Point×Angle.

Evaluation stack is not used in this abstract machine(s) but will be needed for possible
extensions of robot language.

Semantic of instructions is defining using configurations, which can be written as
triples

⟨c, v, s⟩,

where c is the code, a sequence of instructions, v is an evaluation stack of values and s is
the state of the abstract machine.

Some of the instructions contain numeric parameters which represent the number of
steps in a given direction (it simply means that command is performed n-times, where
n = Jn K). For situations, when numeral n is converted to boundary values (0) or not
supported values (negative numbers), an abstract machine (and in a simulation program,
as well) does not do anything. Hence, the compilation of such commands provides an
error.

From the semantic equivalence (proved for natural semantics in [36]) it follows that
(for any parametric instruction, denoted INST-n):

⟨INST-n, v, p⟩ =≫ ⟨INST; INST-m, v, p⟩
⟨INST-1, v, p⟩ =≫ ⟨INST, v, p⟩

for Jn K = Jm K ⊕ 1, Jn K, Jm K ∈ N0. We note that all instructions with the value 0 of
the parameter don’t do anything and they are (semantically) equivalent to the instruction
SKIP.

The semantics of abstract machine instructions (for the language with directional com-
mands) expresses how a configuration is changed after execution of them. We define the
semantics of instructions as follows:

⟨LEFT : c, ε, (x, y)⟩ =≫ ⟨c, ε, (x⊖ 1, y)⟩,
⟨LEFT-n : c, ε, (x, y)⟩ =≫ ⟨LEFT-m : c, ε, (x⊖ 1, y)⟩,
⟨RIGHT : c, ε, (x, y)⟩ =≫ ⟨c, ε, (x⊕ 1, y)⟩,
⟨RIGHT-n : c, ε, (x, y)⟩ =≫ ⟨RIGHT-m : c, ε, (x⊕ 1, y)⟩,
⟨UP : c, ε, (x, y)⟩ =≫ ⟨c, ε, (x, y ⊕ 1)⟩,
⟨UP-n : c, ε, (x, y)⟩ =≫ ⟨UP-m : c, ε, (x, y ⊕ 1)⟩,
⟨DOWN : c, ε, (x, y)⟩ =≫ ⟨c, ε, (x, y ⊕ 1)⟩,
⟨DOWN-n : c, ε, (x, y)⟩ =≫ ⟨DOWN-m : c, ε, (x, y ⊖ 1)⟩,
⟨RESET : c, ε, (x, y)⟩ =≫ ⟨c, ε, p∗⟩,
⟨SKIP : c, ε, (x, y)⟩ =≫ ⟨c, ε, (x, y)⟩,
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for Jn K = Jm K ⊕ 1, Jn K, Jm K ∈ N0 and p∗ stands for an initial (starting) position
defined by user specification. Instructions defining the movement of n steps are performed
according to the principles of structural operational semantics the first movement and the
remaining code contains the same instruction for n⊖ 1 steps.

Similarly, the semantics of abstract machine instructions (for the language with rota-
tions) is defined as follows:

⟨FORWARD : c, ε, ((x, y), a)⟩ =≫ ⟨c, ε, ((x⊕ sin a, y ⊕ cos a), a)⟩,
⟨TLEFT : c, ε, ((x, y), a)⟩ =≫ ⟨c, ε, (p, (a⊕ 270) mod 360)⟩,
⟨TRIGHT : c, ε, ((x, y), a)⟩ =≫ ⟨c, ε, ((a⊕ 90) mod 360)⟩,
⟨RESET : c, ε, ((x, y), a)⟩ =≫ ⟨c, ε, (p∗,0)⟩,
⟨SKIP : c, ε, (p, a)⟩ =≫ ⟨c, ε, (p, a)⟩,

The transition for moving n steps is defined similarly. We note, that in this specification,
an initial configuration (state) is a tuple consisting of the position p∗ and the angle 0. The
initial value for the angle can be changed according to the user specification.

Generating of abstract machine code from the input language is done by the translation
function

T C : Comm → Code

which sends an input source code written in the robot language into a sequence of in-
structions of abstract machine. Although we defined two forms of robot language, only
one translation function for our purposes is defined:

T C J left K = LEFT T C J left n K = LEFT-n

T C J right K = RIGHT T C J right n K = RIGHT-n

T C Jup K = UP T C Jup n K = UP-n

T C Jdown K = DOWN T C Jdown n K = DOWN-n

T C J turn left K = TLEFT T C J turn right K = TRIGHT

T C J forward K = FORWARD T C J forward n K = FORWARD-n

T C J reset K = RESET T C J skip K = SKIP

T C JC1;C2 K = T C JC1 K : T C JC2 K

The colon symbol “:” serves as an instruction separator delineating distinct instructions
(syntactic elements) in the abstract machine instruction sequence listing.

For example, let

forward 2; turn right; forward; turn right;

forward 1; turn left; forward 4;

be a correct program in robot language. A code of abstract machine for this program is
the following:

FORWARD-2 : TRIGHT : FORWARD : TRIGHT :

FORWARD-1 : TLEFT : FORWARD-4

As the next step, we define the meaning of the abstract machine code using a partially
defined execution function:

M : Code → Point ⇀ Point,
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defined as follows:

M J c Kp =

{
p′, if ⟨c, ε, p⟩ =≫∗ ⟨ε, ε, p′⟩,
⊥, otherwise.

A symbol ≫∗ represents a finite number of steps in transition relation.
By composing the translation and execution functions, we get the semantic function

for the abstract machine:

C : Comm → Point ⇀ Point,

C J c K = (M ◦ T C ) J c K.

This definition applies to the language version with directional commands. We note that
the definition of the execution (M ′) and semantic function (C ′) for the second types of
language variants (with rotations) are analogous, taking into account the semantic area:

M ′J c Ks =

{
s′, if ⟨c, ε, s⟩ =≫∗ ⟨ε, ε, s′⟩,
⊥, otherwise.

C ′ : Comm → State ⇀ State,

C ′J c K = (M ′ ◦ T C ) J c K.

4. Application Design

We followed the idea of containerizing the application. We based on the methodological
design, where we separated the individual layers (front-end, back-end) and implemented
each functional unit as a separate Docker module. Docker is an open-source containeriza-
tion platform which enables developers to package applications into containers and offers
isolation of applications into containers which run safely [5] and independently thanks to
Docker Engine directly on the host computer’s operating system [27]. Docker containers
also offer scalability and portability [24], so the system is easy to extend or change, and
reusability of containers in other systems thereby achieving reproducible research [4].
The application consists of five components:

– data structures – contain data structures that are used in multiple components to avoid
code repetition,

– execution logic – performs code simulation on an abstract machine, the output of
which is the states and intermediate states of the abstract machine that occurred during
execution,

– GUI execution – visualization of the simulation with which the user will interact,
– translator logic – translates the code from the language of the robot into the language

of the abstract machine,
– translator GUI – the implementation of the page through which the user will enter

input and perform the translation.

The last four components are containers and have their own Dockerfile defined, which
downloads the openjdk version 11 image, defines a new user and working directory, copies
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the JAR archive and runs it in the given container on the specified port. The database
has its own container and a Dockerfile with a postgres version 13.3 image, a user and
database set up and running it. For easier work with containers, a docker-compose file
was also defined, which is common to all components with described image name, source
code path, ports, container name, dependencies and environment variables. The interface
between the front end and back end parts is obvious.

The components of applications are running on Spring Boot which is being used in a
big amount of projects in areas like cloud computing, big data, reactive programming and
client applications development [39]. Spring Boot data can be displayed on web pages
using a template engine like Thymeleaf which is used for our GUI components. Visu-
alization, HTTP requests and other logic are implemented using JavaScript, jQuery and
other libraries.

For reading and transforming the user input, a technology of ANTLR has been used
[23]. Three ANTLR grammar files are designed for our application for compiler and sim-
ulator logic components:

– simple directional commands (without rotations) for translator – translates input source
code to abstract machine language where only up, down, left, right are present,
then commands with parameter n as number of steps and reset commands are valid;

– commands with rotations for translator – translates input source code to abstract ma-
chine language where only forward, forward n, turn left, turn right and reset
commands are valid;

– parser for simulator – parses the abstract machine code into data structures (bytecode)
on which simulation can be performed.

Finally, we give a brief overview of the technologies that were used in the devel-
opment of the presented application. As a development environment, the IntelliJ IDEA
environment of the Jet-Brains company with a valid university license, the Git version
management tool and the university Gitlab platform, as well as the Docker Desktop con-
tainer management tool, which was available for free for school non-commercial work at
the time of software development, were used. Maven version 3.6.3 was used for compila-
tion. The languages Java version 11.0.11, JavaScript, HTML together with the Thymeleaf
templating tool and the Spring framework were used for the implementation, for which
the IntelliJ IDEA environment provides the generation of basic source and configuration
files. For parsing and translation, ANTLR 4 was used as an IntelliJ IDEA plugin, instal-
lable from the plugin store in the environment settings, the grammar files associated with
them, the generated Java files, and the auxiliary “interp” and “tokens” files. Other files are
css style files, icons from the Flaticon site by Freepik, Kiranshastry, Vectors Market and
Chanut, and configuration files such as Dockerfile and docker-compose to define contain-
ers. The jQuery library was used to manipulate the HTML page and provide a simpler
programming interface. The jsPDF JavaScript library developed by MrRio was used to
create PDF documents. Creating archives in ZIP format was handled by the JSZip open
source library.

5. Functionality of Application

An application can be accessed through a standard web browser (the application is opti-
mized for the Mozilla Firefox browser). This allows users to work with the application
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from anywhere. An application allows to insert the user’s input source code or to load
a code into the application from external storage. The idea is that user input is sent to
the back-end layer and compiled. If no error occurs, the source is correct and compiled
bytecode is sent back for performing the visualization.

The user interface helps the user to enter the input source by providing also hints
for writing the code in the robot language. The hint disappears when the user starts to
write the code. Two main functionalities are available – simulation (visual computation)
of abstract machine and compilation (translation) of input source to internal bytecode (a
data structure according to the specification).

For the implementation of the compilation module, the ANTLR tool was used. The
compiler reads an input source and identifies in which variant of language the program is
written:

– if code contains rotation commands, appropriate grammar is applied;
– if code does not contain rotation commands, only directional-stepping commands,

then grammar for this language, is applied;
– otherwise, no code is generated and the program provides error information (since

the languages cannot be mixed).

If the commands are not mixed, but during the compilation, the lexical or syntactic error
occurs, the compilation does not provide a bytecode, only information about the compila-
tion error. Then, abstract machine code is annotated by adding HTML tags and sent back
to the front end where all errors are highlighted.

Fig. 2. A computational sequence of an abstract machine code (cropped screenshot)

The successful compilation, if no error appears, provides a bytecode for abstract ma-
chine computation steps and visualization. The result of the compilation is then stored in
an internal database and sent back to the GUI component.

The main screen of the application contains two visual areas. An abstract machine
code is displayed on the right-hand side of an application window (Fig. 2). The application
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allows also to save the source code. The user interface supports being displayed in English
and Slovak languages, a color theme can be changed from light to dark, as well.

By clicking on the execution button, the user is redirected to the simulator page with
the id of the latest translation request. On the simulator web page, the given id is sent to
the back end and then to the simulator logic. There the id is searched in the database for
a given request. After finding the request, the abstract machine code is parsed according
to the third grammar to a list of commands from which the initial configuration is created
and execution of these commands is started. The result of an execution is a list of states or
rather configurations of the abstract machine and this list is added to the execution request
which is sent back to the user and front-end.

On the left-hand side, there is the visualization canvas showing the robot’s position
and rotation in an orthogonal grid (Fig. 3).

Fig. 3. Visualization canvas

Below (under the canvas area) is the simulation controller with control buttons (play,
pause, step back, step forward and reset buttons) and a simulation speed slider. On the
right-hand side, there are transitions of configurations from the initial configuration to the
current configuration. On the top, in the middle, a currently performed command from
the translated abstract machine code is highlighted. The user can download a record of
the simulation in four different formats:

– standard CSV format with position, rotation, value and code stacks for each configu-
ration in time,

– XML format with structured data similar to CSV data,
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– PDF file with a title, current time, a snapshot of the canvas and transitions of config-
urations which are generated using jsPDF library by MrRio1,

– a TEXsource format and picture with a snapshot of the canvas which looks similar to
the PDF and is stored in a ZIP archive using JSZip2.

Visualization is performed using JavaScript following states or configurations from sim-
ulator logic to move the robot in its environment and draw its path.

6. Conclusion

In this paper, we presented our approach to define structural operational semantics and
its abstract implementation for selected domain-specific language describing the control-
ling of robot. We developed and defined our semantic approach for both versions of the
language for natural semantics in [36]. For the existing approach in structural operational
semantics (defined in [13]), we defined our approach of abstract implementation. The ab-
stract implementation consists of a definition of an abstract machine and from translation
function that transforms each command of robot language into a sequence of abstract ma-
chine instructions. We defined one abstract machine consisting of instructions suitable for
both versions of the robot language, together with their semantics expressing changing
configurations during instruction execution.

For this semantic approach, we also developed a visualizing software that provides a
compilation of input source code written in robot language and emulates the calculation of
abstract machine for both versions of the language, and it accepts direct input in abstract
machine code and provides also the calculations and emulations.

The design of the micro-service system is created by using containerization, so each
micro-service can be reused in other systems later (if we assume the future work is ori-
ented to a complex software visualizing environment).

The created application offers many possible extensions, also thanks to the modular
approach applied by containerization, and improvements. The list of commands can be
extended in future based on a new specification. Such developed application is ready to
be integrated into the teaching process for the courses oriented to formal semantics, and
(possibly) formal languages. Its added value is a significant degree of interactivity, clarity
and illustrativeness and, above all, the possibility to use the application in the process of
present and distance teaching as well as during the independent preparation of students.

Because we see the potential for expanding and consolidating formal methods for
software engineering, mainly because all formal methods are based on formal semantics,
we will focus our research on semantic methods with the possibility of integrating the
results into practice and into teaching young IT specialists and experts.
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