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Abstract. In light of the escalating advancements in architectural intelligence and
information technology, the construction of smart cities increasingly necessitates a
higher degree of precision in architectural measurements. Conventional approaches
to architectural measurement, characterized by their low efficiency and protracted
execution time, need to be revised to meet these burgeoning demands. To address
this gap, we introduce a novel architectural image processing model that syner-
gistically integrates Restricted Boltzmann Machines (RBMs) with Convolutional
Neural Networks (CNNs) to facilitate the conversion of 2D architectural images
into 3D. In the implementation phase of the model, an initial preprocessing of the
architectural images is performed, followed by depth map conversion via bilateral
filtering. Subsequently, minor voids in the images are rectified through a neighbor-
hood interpolation algorithm. Finally, the preprocessed 2D images are input into
the integrated model of RBMs and CNNs, realizing the 2D to 3D conversion. Ex-
perimental outcomes substantiate that this novel model attains a precision rate of
97%, and significantly outperforms comparative algorithms in terms of both run-
time and efficiency. These results compellingly corroborate our model’s superiority
in architectural image processing, enhancing measurement accuracy and drastically
reducing execution time.

Keywords: Building image; Boltzmann machine; Convolution neural network; Bi-
lateral filtering; Neighborhood difference; 2D to 3D.

1. Introduction

As smart cities undergo rapid development, the digitization of architecture has emerged as
a pivotal trend in modern urban development and transformation within the real estate in-
dustry. In this context, the enhancement of architectural measurement accuracy becomes
increasingly critical. However, traditional methods of measurement, such as manual and
mechanical techniques, are inefficient and cumbersome, failing to meet the demands of
contemporary society [25]. These approaches are labor-intensive and time-consuming and
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fall short in ensuring accuracy when dealing with complex architectural forms. Further-
more, the increasing complexity of modern architectural forms exacerbates the limitations
of conventional image processing methods, including low accuracy and extended execu-
tion time [33].

In the realm of three-dimensional reconstruction, deep learning has manifested sig-
nificant potential and a broad spectrum of application prospects. Initially, theoretical ad-
vantages of deep learning can be observed. For instance, the article [23] introduces a
Convolutional Restricted Boltzmann Machine model for image segmentation. Despite its
high computational complexity and slow training, hindering its widespread application in
3D reconstruction, the theoretical merits of this approach warrant attention. Secondarily,
deep learning technologies have also unveiled new possibilities in practical applications.
The article [37] employs an AlexNet Convolutional Neural Network model infused with
transfer learning principles, maintaining high accuracy even with limited data, thereby
offering a novel perspective for 3D reconstruction. However, certain technical challenges
remain to be addressed. For example, the image transformation time in the 11-layer deep
Convolutional Neural Network model built upon the GoogLeNet model, as described in
the article [43], is excessively lengthy, compromising real-time application efficiency. A
small DNN architecture called SqueezeNet is proposed in the literature [30], which deep
neural networks for 3D reconstruction applications have improved accuracy, achieving
comparable accuracy to AlexNet on the ImageNet dataset but with 50 times fewer number
of parameters, which opens up a new path for efficient and accurate 3D model construc-
tion, but the architecture suffers from size constraints, computationally intensive prob-
lems. A new channel pruning method, Xception, is proposed in the literature [28], which
not only significantly reduces the cumulative error, but also enhances the compatibility of
the network with a variety of architectures, and can be used to accelerate very deep con-
volutional neural networks, which significantly improves the efficiency of the network
operation while maintaining the accuracy, but the model has limitations in the small-
sample constraints, and has a large number of parameters. An efficient model MobileNet
for mobile and embedded vision applications is proposed in the literature [29], which uses
depth-separable convolution to build lightweight deep neural networks and has wide ap-
plicability and superior performance in advanced vision tasks such as 3D reconstruction,
but has significant limitations in terms of computational and spatial complexity.

Further research includes the multi-view stereo matching method based on deep learn-
ing proposed in the article [10], achieving precise 3D reconstruction through multi-angle
image fusion; the in-depth exploration of deep learning in point cloud data processing
in the article [24], resulting in fine-grained 3D model reconstruction; and the article [32]
overcoming some of the challenging issues in traditional 3D reconstruction by combining
deep learning with geometric learning. While these studies offer new perspectives and
methods, such as those discussed in articles [31] and [9] concerning indoor and outdoor
architectural 3D reconstruction, challenges persist in model generalization, data acquisi-
tion, and processing. Consequently, there remains a necessity to explore more efficient
and precise methodologies in the field of architectural measurement and to identify suit-
able deep learning models for solving associated problems. This will not only enhance
the accuracy of architectural measurements but also contribute to breakthroughs in the
development of architectural digitization. Within this context, the processing of architec-
tural images from two to three dimensions is of particular significance. By transforming
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2D architectural images into 3D models, one can both improve measurement accuracy
and significantly enhance efficiency, thereby fulfilling the needs of contemporary soci-
ety [26] [13] [1]. When selecting deep learning models, factors such as complexity, train-
ing speed, and accuracy should be considered [5] [20], and the impact of training data
volume on model performance should be noted [35] [17].

This study introduces an innovative approach based on a deep learning model aimed at
generating corresponding 3D architectural images from inputted 2D architectural images.
Compared to existing deep learning methods for 3D reconstruction, the distinctiveness
and innovative contributions of this research can be summarized in three main aspects.
Firstly, in terms of model architecture, this study amalgamates Restricted Boltzmann Ma-
chines (RBMs) with Convolutional Neural Networks (CNNs), creating a stark contrast
with standalone deep learning models such as GoogLeNet and AlexNet mentioned in
the literature. Secondly, the image preprocessing stage in this research incorporates bilat-
eral filtering algorithms and neighborhood interpolation algorithms, specific preprocess-
ing techniques not explicitly discussed in existing articles. Lastly, this research focuses
on the transformation of 2D architectural images into 3D, whereas the scope of literature
encompasses a broader array of 3D reconstruction applications, including image segmen-
tation and multi-view stereo matching. The confluence of these three aspects ensures a
marked distinction of this study in terms of model architecture, preprocessing techniques,
and application domain when compared to extant research, thereby exhibiting unique in-
novative value. More specifically, the workflow of the model is divided into two modules:
image preprocessing and model transformation. In the image preprocessing module, depth
acquisition and void-filling are achieved for the original 2D architectural images through
bilateral filtering and neighborhood interpolation. Subsequently, in the model transforma-
tion module, these preprocessed images are input into the fused RBM and CNN model for
3D conversion. This targeted and specialized approach not only enhances the accuracy of
measurements but also significantly boosts efficiency, thus better catering to the specific
demands of architectural measurement in modern society.

2. Related Work

2.1. Bilateral Filtering Algorithm

Filtering constitutes a crucial technique in image processing [11], effectively eliminating
image disturbances such as noise and blur to enhance image quality. Filters, encompass-
ing both frequency-domain and spatial-domain filters, smooth the image by summing or
convolving the pixels, thereby reducing noise and unnecessary detail. Frequency-domain
filters operate in the image frequency domain, eliminating specific frequency components;
spatial-domain filters operate in the spatial domain, altering pixel values, as indicated in
equation1.

GC[I]p =
∑

Gσ(∥p− q∥)Iq (1)

Gaussian filtering represents a significant image processing technique that accom-
plishes linear smoothing of the image through weighted averaging, effectively eliminat-
ing Gaussian noise and enhancing image quality. In Gaussian filtering, the magnitude
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of the weights is associated with the spatial distance between pixels, implying that pix-
els closer to the center pixel exert greater influence on the filtering outcome due to their
larger weights. However, this approach has its limitations. If the distance between pixels
is excessively large, even adjacent pixels could exhibit considerable disparities in their
weights [39] This could result in a loss of detail in the filtering outcome, diminishing the
local visual effects of the image. More importantly, such blurring in the filtering results
could adversely impact subsequent image processing steps. Therefore, when employing
Gaussian filtering, it is imperative to meticulously select appropriate weights to ensure
the quality of the filtering outcome.

Bilateral filtering is a nonlinear filtering technique extensively employed in image
processing, introduced by Tomasi et al. in 1998 [38]. The uniqueness of bilateral filter-
ing lies in its simultaneous consideration of both the image domain and the value range,
enabling it to better preserve image detail during processing. The definition of bilateral
filtering closely parallels that of Gaussian filtering, both being realized through weighted
averaging based on neighborhood definitions [19]. However, the method of weight mea-
surement in bilateral filtering diverges from that in Gaussian filtering. In bilateral filtering,
researchers opt for dual weight values to handle pixel values, thereby more adequately ac-
counting for the variances between adjacent pixels. This approach, nevertheless, has its
limitations. If the discrepancies between two pixels are excessively large, they may re-
ciprocally affect each other, inducing unwarranted errors. To circumvent this, researchers
introduce a sufficient number of influencing factors in both pixel values and spatial posi-
tions to ensure the quality of the filtering result. This method yields favorable outcomes
when applied to images with complex textures and details. The definition of bilateral fil-
tering is as shown in equation 2.

BF [I]p =
1

Wp

∑
q∈S

Gσs(∥p− q∥)Gσr(|Ip − Iq|)Iq (2)

Herein, Wp represents the normalization factor; Iq denotes the input image; BF [I]p
signifies the filtered image;

∑
q∈S

Gσs ||p− q|| is the spatial weight function; and Gσr (|Ip − Iq|) Iq

is the distance weight, with the sum of the weights equating to 1, as illustrated in equa-
tion 3.

Wp =
∑

q∈S
Gσs(∥p− q∥)Gσr(|Ip − Iq|) (3)

Bilateral filtering is particularly well-suited for the preprocessing of depth maps [21].
Depth maps, whether directly acquired through cameras or generated algorithmically, are
susceptible to noise. Such noise may result in small voids in the target image during vir-
tual viewpoint synthesis utilizing depth maps. To mitigate this noise, research employs
filtering to preprocess depth maps, effectively reducing distortions and voids within them.
However, some conventional filtering methods, such as Gaussian or median filtering, risk
the loss of edge information in images, leading to cracks and voids. Therefore, the reten-
tion of edge information is of paramount importance, as it allows for image smoothing
while preserving salient features. Bilateral filters consist of two filter components: one as-
sociated with geometric spatial distance and the other with pixel differences. This design
enables the bilateral filter to effectively reduce noise and voids while preserving edge in-
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formation when processing depth maps, thereby enhancing the overall image processing
outcome. The complete bilateral filter is as delineated in equation 4.

f(x, y) =

∑
(i,j)∈Sx,y

w(i, j)g(i, j)∑
(i,j)∈Sx,y

w(i, j)
(4)

Herein, Sx,y represents the neighborhood of the central point at coordinates (x, y)
with a dimension of (2N + 1) ∗ (2N + 1), N is an integer, g(i, j) denotes the original
image, and f(x, y) signifies the image post-filtering. The weight coefficient w(i, j) is
composed of the product of two parts: the range filtering coefficient wr(i, j) and the
spatial filtering coefficient ws(i, j), as illustrated in equations 5 and 6.

Wr(x, y) = exp(−

∣∣∣g(i, j)− g(x, y)
2
∣∣∣

2σ2
r

) (5)

Ws(i, j) = exp(− (i− x)
2
+ (j − y)

2

2σ2
S

) (6)

Herein σS is the spatial proximity factor and σr is the luminance similarity factor. For
a given image, its value is fixed.

2.2. RBM

Restricted Boltzmann Machines (RBMs) are a derivative of Boltzmann Machines (BMs),
which are generative stochastic neural network models capable of learning and repre-
senting complex data distributions, thereby generating new samples similar to the train-
ing data [42]. However, their training process typically requires extensive computational
resources and time. To address this issue, researchers introduced Restricted Boltzmann
Machines (RBMs). RBMs substantially simplify the model’s architecture and learning
process by removing connections within the same layer. In the present study, RBMs are
primarily employed for feature extraction from images. The energy function serves as the
foundational descriptor of the overall structure and operations of the RBM, as delineated
in equation 7.

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

vihjwij (7)

Herein, v and h represent the states of the visible and hidden layers, respectively. ai
and bi are the bias terms, and wij denotes the weights.

Layers of the RBM The Restricted Boltzmann Machine (RBM) is composed of two
primary layers: the visible layer and the hidden layer [12]. The visible layer serves as the
input interface of the RBM and is alternatively referred to as the observational layer. This
layer comprises all observable data nodes, each of which represents a specific feature of
the data. The principal function of the visible layer is to receive input data and relay this
information to the hidden layer. By forming weighted connections with the hidden layer,
the visible layer is capable of capturing the rudimentary structure and patterns inherent in
the data.
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The term “restricted” in Restricted Boltzmann Machine refers to the absence of con-
nections between nodes within the same layer. This distinguishes RBMs from traditional
Boltzmann Machines, where intralayer node connections are fully permitted. By eliminat-
ing these intralayer connections, RBMs substantially reduce both model complexity and
computational requirements. This streamlined architecture not only simplifies the training
process but also helps mitigate the risk of overfitting, making the model more scalable to
large datasets. RBM achieves effective learning and representation of data distributions
through the collaborative training of its visible and hidden layers, and by optimizing the
weights between them. The advanced features and concepts captured by the hidden layer
facilitate the model’s understanding and reconstruction of complex data structures. This
makes RBMs a potent tool for feature extraction and generative modeling, and they are
widely employed in tasks related to unsupervised learning and deep learning.

The integration of a two-layer architecture—comprising the visible and hidden lay-
ers—and restricted connectivity design offers an efficient, flexible, and robust approach
for learning and representing complex data distributions. The visible layer directly en-
gages with the input data, while the hidden layer is responsible for capturing higher-order
features and structures within the data. This design imbues RBMs with extensive applica-
bility and superiority in handling a wide array of tasks in unsupervised learning and deep
learning.

RBM activation function In RBMs, the probability distribution of the nodes in the hid-
den layer can be articulated using the Sigmoid activation function. Given the state v of
the visible layer, the activation probability for the hidden layer nodes hi is delineated as
shown in equation 8.

P (hi = 1| v) = σ(
∑
i

viwij + bj) (8)

Herein, σ represents the Sigmoid activation function, vi denotes the state in the visible
layer nodes i, wij is the weight between the visible layer nodes i and the hidden layer
nodes j, and bj signifies the bias term for the hidden layer nodes j.

The Sigmoid activation function possesses the characteristic of mapping continu-
ous inputs into a probability distribution. By employing the Sigmoid function, RBMs
are capable of converting the linear combinations between the visible and hidden lay-
ers into probability values, representing the activation probabilities of the hidden layer
nodes. These probability values are subsequently utilized in the sampling and inference
processes, aiding the model in learning and generating the underlying data distribution.
Through such an activation mechanism, RBMs effectively capture complex patterns and
structures within the data, encoding and interpreting them probabilistically.

Loss Function RBMs employ Contrastive Divergence (CD) as their loss function. This
study analyzes the limitations of the Contrastive Divergence method and introduces a
feedback mechanism to optimize the training process.

The Contrastive Divergence loss function is described as shown in equation 9.

CDn = ⟨E(v, h)⟩data − ⟨E(v′, h′)⟩model (9)
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2.3. Convolutional Neural Networks (CNN)

Layers Convolutional Neural Networks (CNNs) are a form of deep feed-forward neural
networks [2], where n represents the number of Gibbs sampling steps, and ⟨·⟩ symbolizes
expectation. The training procedure primarily comprises three key phases: the forward
pass, starting from the visible layer and calculating the probabilities in the hidden layer
using the Sigmoid activation function, followed by sampling; the backward pass, com-
mencing from the hidden layer and employing the same Sigmoid function to compute the
reconstruction probabilities of the visible layer, also followed by sampling; and finally,
weight updates, where gradients are computed based on the results of the forward and
backward passes and applied using gradient descent methods.

However, two significant drawbacks exist in this training regimen. Firstly, Contrastive
Divergence (CD) employs approximation techniques, which may not accurately capture
the true data distribution. Secondly, CD is susceptible to local optima, leading to subopti-
mal training results. To mitigate these issues, this study introduces a feedback mechanism
to optimize the training process. Specific improvements include: dynamic adjustment of
the learning rate by monitoring loss variations to avoid local minima and accelerate con-
vergence; the incorporation of regularization techniques, specifically L1 regularization, to
enhance the model’s generalization capabilities and prevent overfitting; and an increase
in the number of Gibbs sampling steps to improve the accuracy of CD training and bet-
ter approximate the true data distribution. This comprehensive approach ensures training
accuracy and efficiency, effectively overcoming the limitations of traditional CD methods.

Artificial Neural Networks [7], particularly Convolutional Neural Networks (CNNs),
are exceptionally suited for image recognition tasks [6]. The fundamental architecture of
CNNs comprises convolutional layers, pooling layers, and fully connected layers.

The objective of the convolutional layer is to extract features from the image through
convolution operations, as indicated in equation 10.

Fi,j =
∑
m

∑
n

Km,n · Ii+m,j+n + b (10)

Herein, Fi,j represents an element of the feature map, Km,n denotes an element of
the convolutional kernel, Ii+m,j+n signifies an element of the input image, and b is the
bias term.

This study employs max pooling, as illustrated in equation 11.

Pi,j = max
m,n

Ii+m,j+n (11)

The fully connected layer transforms the output from the preceding layer into a one-
dimensional array, which is then fed into the subsequent layer. Given N inputs and M
outputs, the mathematical representation of the fully connected layer is as indicated in
equation 12.

Oj =

N∑
i=1

Wi,j · Ii + bj (12)

Herein, Oj represents the value of the output node, Wi,j denotes an element of the
weight matrix, Ii signifies the value of the input node, and bj is the bias term.
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Activation Functions This study employs the ReLU (Rectified Linear Unit) [3] nonlin-
ear activation function to enhance the nonlinear expressive capability of the Convolutional
Neural Network (CNN) model. The mathematical expression of the ReLU activation func-
tion is f(x) = max(0, x), such that its graphical representation appears as a piecewise
linear curve. Specifically, the output is zero when the input is less than zero, and the output
is equal to the input when it is greater than or equal to zero. Although the ReLU function
may appear linear graphically, it is inherently nonlinear, enabling it to handle complex
problems, especially within deep learning models. The computation of ReLU is remark-
ably simple and efficient, requiring only a check to determine whether the input is greater
than zero, thereby reducing the demands on training time and computational resources.
Additionally, given that the gradient of the ReLU function is 1 in the positive interval, it
helps to mitigate the vanishing gradient problem, particularly in deep networks. In CNNs,
the ReLU activation function is commonly applied following the convolutional and fully
connected layers to increase the model’s nonlinear expressive power, thereby enhanc-
ing predictive accuracy and generalization capabilities. Overall, due to its straightforward
mathematical formulation, nonlinear properties, computational efficiency, and ability to
alleviate the vanishing gradient problem, the ReLU activation function finds extensive ap-
plication in the realm of deep learning. By utilizing ReLU in CNNs, this study aims to
construct a more effective and robust model [15].

Loss Function The loss function serves as a metric for assessing the disparity between
the model’s predictions and the actual labels, and its selection is contingent upon the na-
ture and objectives of the task at hand [14]. In this study, which focuses on classification
tasks, Cross-Entropy Loss [34] is employed as the loss function. Cross-Entropy Loss is
commonly used in multi-classification problems, and its mathematical expression is de-
noted as Loss = −

∑
i yi log(ŷi), where yi represents the i th element of the actual label,

usually taking values of 0 or 1, and ŷi is the i th element of the model’s prediction, with a
value range between 0 and 1. The role of Cross-Entropy Loss is to measure the divergence
between the predicted probability distribution and the true probability distribution of the
labels, making it suitable for scenarios where the model’s output is a probability distri-
bution. In the context of binary classification, it is equivalent to the log-likelihood loss
in logistic regression and imposes a more severe penalty for confidently incorrect classi-
fications. By judiciously selecting and applying Cross-Entropy Loss, this study aims to
accomplish accurate classification tasks and effectively guide model training.

3. Method

3.1. Improved Neighborhood Interpolation Method for Small Hole-Filling

This study employs a neighborhood interpolation method for filling small holes, as cited
in [27]. Given that most small holes are vertically contiguous—meaning holes exist both
above and below the target hole—relying solely on the 8 adjacent pixels of the hole would
result in underutilization of surrounding information. Therefore, we extend laterally to
include two additional pixels, denoted as A2 and E2, as reference pixels for hole-filling, as
proposed in [22]. Considering that the correlation between a pixel and the hole increases
as they are closer to each other, the weights are assigned in such a manner that pixels
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farther away from the hole have smaller weights, while those closer have larger weights,
thereby ensuring effective hole-filling. The DIBR method, as per references [40] [36],
generates left and right views of the image with different disparities, employing the same
filling methodology. The relationship between the holes and the adjacent pixels used for
filling is summarized in Table 1.

Table 1. Relationship Diagram between Holes and Adjacent Pixels Used for Filling

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

Assuming C2 is a hole point, it is filled using the ten pixels B1, C1, D1, B2, D2,
B3, C3, D3, A2 and E2. However, it is possible that some of the pixels used for filling
may also be holes, and not all of these ten pixels may be empty. Therefore, it is essential
to discuss the number of hole points within these pixels. Different filling methods are
proposed based on the number of filled points within these pixels. If none of the ten
pixels are holes, the filling formula is as indicated in equation 13.

C2 = (B1 + C1 +D1 +B2 +D2 +B3 + C3 +D3)ω1 + (A2 + E2)ω2 (13)

Where ω1 and ω2 are the filling parameters. Let m denote the number of holes in the 8-
pixel neighborhood of C2, and n denote the number of holes in the pixels A2 and E2. The
number of hole points may have some influence on the filling outcome. If m is less than 8
and n is less than or equal to 2, the hole-filling formula is as indicated in equation 14.

C2 =
8ω1

8−m
(B1 + C1 +D1 +B2 +D2 +B3 + C3 +D3) +

2ω2

2− n
(A2 + E2) (14)

If m = 8 and n < 2, the hole-filling formula is as indicated in equation 15.

C2 =
10ω2

2− n
(A2 + E2) (15)

If m < 8 and n = 2, the hole-filling formula is as indicated in equation 16.

C2 =
10ω1

8−m
(B1 + C1 +D1 +B2 +D2 +B3 + C3 +D3) (16)

Through the methods described above, holes within the image can be effectively filled
by utilizing the adjacent pixels, thereby resolving issues related to the presence of holes
in the image. However, if the area of the hole is large and there is insufficient pixel infor-
mation surrounding it, such holes are considered unrepairable large holes. Edge portions
generally do not contain critical information; thus, they can be filled using corresponding
positions from the original image.
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3.2. RBM+CNN for Image Recognition

This study integrates Restricted Boltzmann Machines (RBM) with Convolutional Neu-
ral Networks (CNN) algorithms for training on input images. The RBM is responsible
for extracting crucial features from the raw images, while the CNN takes on the task of
transforming these features into specific recognition outcomes. The architecture of the
integrated network is illustrated in Figure 1.

Fig. 1. Conversion effect

As shown in Figure 1, the RBM and CNN integrated network in this study comprises
the following key components:

1) Input Layer: Image data are fed into the visible layer of the RBM, with each pixel
corresponding to a visible unit. This layer serves to present the raw image data to the
network.

2) RBM Hidden Layer: The hidden layer of the RBM is responsible for extracting fea-
tures from the images. Each hidden unit acts as a feature detector and is not inter-
connected with other hidden units, only sharing bidirectional connections with the
visible units. This design enhances computational efficiency and feature extraction
capabilities.

3) Convolutional Layer: Transfers from the RBM’s hidden layer to the CNN’s convo-
lutional layer for further spatial feature extraction. Each neuron in the convolutional
layer is connected to a localized region in the preceding layer and utilizes a shared
weight matrix (i.e., convolutional kernel) for computation. This helps capture spatial
dependencies within the image.

4) Pooling Layer: Performs downsampling to reduce the number of parameters. Each
neuron in the pooling layer connects to a small region in the preceding layer and em-
ploys a max-pooling function for computation. This layer minimizes computational
demands while retaining feature significance.

5) Fully Connected Layer: Serves as the final decision-making layer for classification.
Each neuron in this layer is connected to all neurons in the preceding layer and em-
ploys a ReLU activation function for computation. This ensures the network can per-
form complex nonlinear mappings.

6) Output Layer: Presents the final classification outcome. Each neuron in the output
layer corresponds to a specific class and employs a softmax activation function for
computation. This ensures that the output is represented as a probability distribution,
with each element indicating the predicted probability of the corresponding class.
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Overall, the integrated RBM and CNN network structure leverages the strengths of
both models, offering a hierarchical approach for image feature extraction and classifica-
tion, and demonstrating considerable flexibility and performance [16].

This study begins with an analysis of the shortcomings of the Contrastive Divergence
method using a Restricted Boltzmann Machine (a sub-model of the Boltzmann Machine)
and introduces a feedback mechanism, as cited in [41]. Given the high computational cost
of direct gradient use, stochastic sampling is employed for gradient estimation. A subset
X ′ of the original X set is obtained to ensure that their distributions are approximately
consistent. The gradient parameters (e, f, v) indicated here require continuous updates in
the Contrastive Divergence method of the RBM algorithm. The learning process in the
Boltzmann Machine (e, f, v) can also be represented as an updating process. Therefore,
RBM (e, f, v) can likewise be depicted as an iterative process.

The training and learning process of the model relies on samples obtained through
sampling, which directly influence the effectiveness of the training classification. Upon
completion of sampling, a feedback mechanism [4] can be introduced to better optimize
the parameters. The RBM model is considered in terms of network input (X) and network
output (Y ), and sampling is performed for both inputs and outputs. The sampling process
for X . and Y is defined as sample positive. It calculates the similarity between Y , X ,
and X ′, and the sampled output of Y given X is defined as sample negative. To obtain
optimal parameters, multiple samples are required. The best parameters are identified
when the sample distance is reduced or approaches the first node. When the distance
changes, the bias could have optimal parameters, and sampling terminates. The number
of iterations (C) is arbitrary and depends on the treatment of the sampled examples. For
any training sample Xi, the current position of the sample is represented as X (0) = Xi.
The Contrastive Divergence method based on the feedback mechanism is as indicated in
equation 17.

∆Wji = Orjbji (17)

In the convolutional computations, rj represents the adjustment coefficient of the sam-
pling element j in the overall connection gradient bias. bji represents the amount of data
acquired by element wji in a given direction. The corresponding learning rate is denoted
by O. The adjustment amount for the i th input weight of the sampling element j can be
represented as indicated in equation 18.

∆P l
fmap−i =

N∑
j−1

convn
(
∆P l+1

fmap−j , inv
(
Kl+1

ij

))
(18)

In the convolutional computation process, K denotes the convolutional kernel ma-
trix. The feature changes in the convolutional layer must be acquired through backtrack-
ing methods. If I represents the sampling layer, then I signifies the convolutional con-
nections. Node i, corresponding to the non-wired layer, has N convolutional rollbacks
and can be viewed as the sum of N elements. During hierarchical transmission, the for-
ward convolutional matrix is PI + 1 with dimensions Size

(
PI, 1

)
− Size (K, 1) + 1.

The backward convolutional matrix is PiPi, with corresponding dimensions described
as Size

(
PI+1, 1

)
+ Size (K, 1)− 1. Convolutional kernel flipping is employed, and dur-
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ing this flipping process, the bias matrix of the ith feature map in the lth layer of M-
dimensional convolutional operation is as indicated in equation 19.

∆Kl
ij = convn∆P l

fmap−j , inv
(
P l−1
fmap−i

)
(19)

The output bias (∆P l−1
fmap−i) is derived from the flipped convolutional kernel inv

(
Kl+1

ij

)
and the input bias matrix (∆P l−1

fmap−i). Using backtracking methods, the bias of the con-
volutional kernel matrix can be further obtained from the flipped input bias matrix and
output bias matrix, as indicated in equation 20.

K
(t)
ij = K

(t−1)
ij −∆Kij (20)

When progressing through layers from I = 2 forward, the kernel state at a given time
t− 1 is obtained by applying the convolutional kernel bias to the kernel state Kij

(t−1) at
the preceding time t, as indicated in equation 21.

∆W
(t)
ji = W

(t−1)
ij −∆Wij (21)

Through the derived kernel bias function, one can further extend to the states of the
ith feature volume matrix at the first layer for different time instances, as indicated in
equation 22.

∆W
(t)
ji = Orjbji + β∆W

(t−1)
ji (22)

Here, a momentum term is introduced to describe the state of the corresponding fea-
ture volume bias matrix, aiming to accelerate convergence. β represents the momentum
coefficient, with a value range of [0, 1]. When β = 0, it is capable of representing the
state of the corresponding feature volume bias matrix at time t.

3.3. Image Transformation Results

In the experiment, we selected an indoor corridor as the scene and achieved the trans-
formation from 2D to 3D through different stages of image processing. As depicted in
Figure 2, the four stages are as follows: Fig0.2(a) The original 2D grayscale image: This
serves as the starting point of the experiment and showcases the basic appearance and
shape of the corridor. Fig0.2(b) Foreground and background segmentation: At this stage,
the image is segmented into foreground and background, with white representing the fore-
ground and black representing the background. This helps to emphasize the main features
of the corridor. Fig0.2(c) Pre-processed depth map: The image undergoes pre-processing
to generate a depth map, which contains spatial depth information of the corridor and
lays the groundwork for 3D reconstruction. Fig0.2(d) 2D-to-3D reconstruction: Utilizing
the previous processing steps, the 2D image is successfully transformed into a 3D effect
image, revealing the three-dimensional appearance of the corridor.

Through these four sequential stages, we are able to start with the original 2D grayscale
image, progressively unveil the structure of the corridor, and ultimately achieve a 2D-to-
3D transformation. Each stage provides necessary information and a foundation for the
subsequent stage, forming a coherent and logical processing workflow.
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(a) The original 2D
grayscale image

(b) Foreground and back-
ground segmentation

(c) Pre-processed depth
map

(d) 2D-to-3D reconstruc-
tion

Fig. 2. Effects of the 2D-to-3D Processing Workflow

4. Result and Discussion

4.1. Experimental Environment

The experiments are conducted using a Dell Precision T7960 graphics workstation, the
main parameters of which include the use of an Intel Xeon W7-3465X 28-core processor
with a frequency of 2.5 GHz, equipped with a 1 TB or 2 TB SSD and 16 TB mechanical
hard disk storage solution, as well as a high-end four NVIDIA RTX 6000 Ada graphics
cards. The experiments runs on a Linux operating system, the datasets utilized include the
GlobalMLBuildingFootprints open-source dataset, architectural images from ADE20K,
and the WHU Building Dataset for building detection.

The model was trained on a curated subset of the GlobalMLBuildingFootprints open-
source dataset and validated on architectural images from ADE20K as well as the WHU
Building Dataset. In total, 1,317,000 architectural images were used, with 790,000 images
in the training set, 263,000 images in the test set, and 261,800 images in the validation
set.

4.2. Comparative Experiment on Hole-filling

To enhance the accuracy of image transformation, a hole-filling algorithm was introduced
for image pre-processing, specifically targeting the repair of small holes at the edges of the
depth map [8]. The evaluation metrics used in this experiment are Peak Signal-to-Noise
Ratio (PSNR) and Mean Squared Error (MSE), defined by equations 23, 24, respectively.

PSNR = 10 · log10
(
MAX2

I

MSE

)
= 20 · log10

(
MAX2

I√
MSE

)
(23)

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

||I (i, j)−K (i, j)||2 (24)

In these equations, I (i, j) and K (i, j) represent the pixel values at corresponding
coordinates. m and n denote the height and width of the image, respectively. MAXI is
the maximum numerical value representing the color of a pixel in the image.

As well as the structural similarity index (SSIM) and the mean absolute error (MAE),
which are defined by the formulas shown in equations 25 and 26:
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SSIM(P1, P2) =
(2µP1µP2 + C1)(2σP1P2 + C2)

(µ2
P1

+ µ2
P2

+ C1)(σ2
P1

+ σ2
P2

+ C2)
(25)

Where P1, P2 represents the original and enhanced images respectively; µP 1
, µP 2

represents the mean of the images P1 and P2 respectively; σ2
P1
, σ2

P2
represents the vari-

ance of the images P1 and P2 respectively; σP1P2
represents the covariance of the P1 and

P2; and C1, C2 represents the small constant used to stabilize the denominator.

MAE =
1

mn

∑m

i=1

∑n

j=1
|P1ij − P2ij | (26)

Where P1ij , P1ij represent the pixel values of the original and enhanced images at the
location (i, j) respectively; m and n are the height and width of the image respectively.
The main objective of this study is to measure the quality of the enhanced image by
calculating the difference between the gray values of the corresponding pixel points of
the enhanced image and the original image by using a statistical method.Both PSNR and
MSE measure the good quality of the image by calculating the global magnitude of the
pixel error between the enhanced image and the original image. Specifically, a larger
value of PSNR indicates that the distortion between the enhanced image and the original
image is smaller and the image quality is better. On the contrary, a smaller value of MSE
indicates better image quality.SSIM considers the brightness, contrast and structure of
an image, and a value closer to 1 indicates better image quality. This metric is useful
for evaluating the visual quality of an image during 2D to 3D conversion, and can help
determine whether the converted image visually maintains structural features similar to
those of the original image.MAE measures the average error at the pixel level, with a
smaller value indicating a smaller error, and this metric is valid for evaluating the overall
pixel-level error in 2D to 3D conversion.

To verify the effectiveness of this paper’s algorithm, by comparing with SqueezeNet
algorithm , Xception algorithm and MobileNet algorithm , as shown in Table 4.2. In terms
of PSNR, the algorithm in this paper is 38.67 dB, which is an improvement of 2.44% com-
pared with SqueezeNet algorithm, 1.55% compared with Xception algorithm, and 1.31%
compared with MobileNet algorithm. Since PSNR is a measure of the quality aspect of
image reconstruction, its improvement means that the error of image reconstruction is
reduced and the image quality is improved. Although the improvement effect is not obvi-
ous, it still indicates a certain progress, which is due to the optimization of the algorithm
in image feature extraction and reconstruction model in this paper. In terms of MSE, the
mean square error of this algorithm is 8.92, which is 27.71% lower than the SqueezeNet
algorithm, 16.24% lower than the Xception algorithm, and 2.19% lower than the Mo-
bileNet algorithm. Since MSE is a measure of the difference between images, the lower
its value indicates that the error between the reconstructed image and the original image
is smaller, the effect of this paper’s algorithm is more obvious compared with the previ-
ous two algorithms, which should be attributed to the more accurate model training and
more appropriate loss function selection. Although the effect is almost the same with Mo-
bileNet, there is also a slight improvement. In terms of SSIM, the structural similarity
index of this paper’s algorithm is 0.9277, which is improved by 7.43% compared with
SqueezeNet algorithm, 5.21% compared with Xception algorithm, and 3.72% compared
with MobileNet algorithm. Since SSIM is a metric in evaluating the structural fidelity of
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an image, its improvement means that the image reconstruction process better preserves
the structural features of the original image. Although the improvement is not extremely
significant, it shows that the algorithm in this paper has made some progress in this area.
This effect is due to the optimization of the algorithm in using more efficient activation
functions and more efficient data enhancement techniques. The more efficient activation
function may help the network to better capture and convey important features in the im-
age, while the efficient data enhancement technique may enhance the robustness of the
model to various changes and perturbations, and thus perform better in preserving the
image structure. In terms of MAE, the mean square error of the algorithm in this paper
is 3.29, which is 10.35% lower compared to SqueezeNet algorithm, 11.56% lower com-
pared to Xception algorithm and 3.52% lower compared to MobileNet algorithm. Since
the MAE is a measure of the difference between images, the lower its value indicates that
the error between the reconstructed image and the original image is smaller, the effect of
this paper’s algorithm is more obvious compared with the previous two algorithms, which
should be attributed to the more optimized network architecture of this paper’s algorithm
and optimization of the specific dataset. Although the effect of this algorithm is similar to
that of MobileNet, there is a slight improvement. This suggests that the algorithm in this
paper may be more refined in terms of network design, which can handle specific types
of image data more effectively, and the optimization for specific datasets may help the
algorithm better adapt to and handle these data, and thus achieve better results in terms of
MAE metrics.

Table 2. Comparative Experimental Results on Parameters for Hole-filling

Algorithms PSNR/DB MSE SSIM MAE
SqueezeNet 37.75 12.34 0.8635 3.67

Xception 38.08 10.65 0.8818 3.72
MobileNet 38.17 9.12 0.8944 3.41

Algorithms in this article 38.67 8.92 0.9277 3.29

4.3. Comparison Experiments

Comparison of quantitative results of measurements In this study, the performance
of SqueezeNet algorithm, Xception algorithm, MobileNet algorithm and the algorithm
proposed in this paper are compared on WHU Building Dataset dataset. To ensure the
fairness of the comparison, all algorithms are tested on the same training, test and valida-
tion sets. Specifically, each training contains 400 samples and the training process of each
algorithm is capped at a maximum of 1000 iterations. The comparison results of the four
algorithms are shown in Table 3.

The comparison in terms of number of iterations is discussed first. The number of
iterations of this paper’s algorithm needs more compared to SqueezeNet algorithm and
Xception algorithm, this is because the model structure and optimization strategy of this
paper’s algorithm needs more iterations to reach convergence. However, this paper’s al-
gorithm requires fewer iterations compared to MobileNet algorithm, which indicates that
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Table 3. Comparative Experimental Results of Three Algorithmic Models

Algorithms
Number of
iterations

Training
set loss
function

Training
set

accuracy

Validation
set loss
function

Validation
set

accuracy

Measurement
accuracy

SqueezeNet 790 0.0231 0.9891 0.2100 0.9579 95.32
Xception 650 0.0229 0.9913 0.0056 0.9714 98.59

MobileNet 920 0.0089 0.9985 0.0039 0.9932 99.21
Algorithms

in this article 830 0.0214 0.9946 0.0041 1.0000 99.44

this paper’s algorithm outperforms MobileNet algorithm in terms of optimization strat-
egy. Next, the performance of the three aspects of training set loss function, training set
accuracy and validation set loss function are analyzed. The algorithm in this paper outper-
forms SqueezeNet and Xception algorithms in these aspects, which is mainly attributed
to the effective loss function optimization, accurate model parameter tuning, excellent
feature extraction, and better model generalization ability of the algorithm in this paper.
In contrast, the performance of this paper’s algorithm in these three aspects is slightly
lower compared to the MobileNet algorithm, indicating that the MobileNet algorithm has
a slight advantage in these aspects. Finally, consider the performance in both validation
set accuracy and measurement accuracy. This paper’s algorithm outperforms the other
three algorithms in both aspects, which indicates that this paper’s algorithm is more accu-
rate and effective in processing validation set data, and has more robustness in practical
applications.

In summary, the algorithm in this paper performs well in several aspects, especially
in validation set accuracy and measurement accuracy, showing its advantages in practical
applications. Although it is slightly inferior to MobileNet in some aspects, overall, the
algorithm in this paper demonstrates its effectiveness and robustness in image processing
tasks.

Table 4. Quantitative Comparison Experiment Results for 2D Images Across Different Algorithmic
Models

Algorithms Check Accuracy Rate IoU Recall Rate F1 Score Error rate
SqueezeNet 0.912 0.933 0.954 0.931 0.048

Xception 0.927 0.938 0.96 0.947 0.041
MobileNet 0.958 0.945 0.962 0.962 0.042
Algorithms

in this article 0.97 0.948 0.964 0.967 0.041

The experiments in this study involved inputting 8,000 2D images taken in the field
into different models for recognition and analyzing them in depth in terms of five aspects:
checking accuracy, IoU (intersection and concatenation ratio), recall, F1 score (reconciled
mean), and error rate. In terms of detection rate, the detection rate of SqueezeNet algo-
rithm is only 0.912, and after observing the pictures with prediction errors in detail, it is
found that the possibility of prediction errors is increased in special areas such as high re-
flective areas formed by little difference in color, strong external light, or broken concrete
floors. In comparison, the algorithm in this paper improves the checking accuracy with
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Xception algorithm and MobileNet algorithm by 4.64% and 1.25%, respectively, showing
better robustness and discriminative ability for these complex situations. In terms of IoU
(intersection-to-union ratio), this paper’s algorithm shows a slight improvement compared
to the other three algorithms. This result proves that all four algorithms have better ability
in locating the target object boundary, while this paper’s algorithm can locate the target
object boundary more precisely and capture the target morphology more accurately. In
terms of recall, this paper’s algorithm also has a slight improvement compared with the
other three algorithms, this result shows that the four algorithms have comparable abili-
ties in capturing positive samples, and also highlights the slight advantage of this paper’s
algorithm in recalling positive samples. In terms of F1 scores, this paper’s algorithm im-
proves by 3.87%, 2.11% and 0.52% compared to the SqueezeNet algorithm, the Xception
algorithm and the MobileNet algorithm, respectively. Since the F1 score is the reconciled
average of the detection and recall rates, this improvement reflects the simultaneous op-
timization of this paper’s algorithm in terms of detection and recall rates. In terms of
error rate, this paper’s algorithm has the lowest error rate with Xception algorithm, which
is 14.58% and 2.38% lower than SqueezeNet algorithm and MobileNet algorithm, re-
spectively. This result proves the superiority of this paper’s algorithm in providing more
accurate classification decisions and more robust feature extraction.

Combining the experimental results in Tables 3 and 4, this paper’s algorithm per-
forms better in several key performance metrics, especially in validation set accuracy,
measurement accuracy, checking accuracy, and F1 scores than the other compared algo-
rithms. These results show that this paper’s algorithm has advantages in model training,
generalization ability and accuracy in practical applications. The subtle advantages of this
paper’s algorithm in other metrics also reflect its overall algorithmic robustness and ef-
ficiency. These performance improvements are attributed to the innovation of algorithm
design, refinement of feature engineering, and optimization of the training process.

Table 5. Experimental results comparing 2D to 3D running time and efficiency of different algo-
rithm models

Algorithms Total Time(s) FPS FLOPS
SqueezeNet 59.22 51 53.97

Xception 56.37 55 57.81
MobileNet 51.93 62 67.38
Algorithms

in this article
36.11 87 87.27

Runtime & Efficiency Comparison In this study, the total time taken by four differ-
ent algorithms to convert 2000 2D architectural images into 3D images with the same
training, test, and validation sets is compared. The study observes the conversion duration
(s), frames per second (FPS) of processed images and peak speed per second (FLOPS).
In terms of conversion duration, the conversion time of this paper’s algorithm is 36.11s,
which is 39.02% lower than the running time of SqueezeNet algorithm, 35.94% lower
than the running time of Xception algorithm, and 28.06% lower than the running time of
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MobileNet algorithm; this result is due to the fact that the algorithm of this paper has im-
proved the traditional CNN This result is attributed to the improvement of the traditional
CNN network structure and the precise setting of the weight initialization value of this
algorithm. In terms of FPS, the algorithm in this paper improves significantly compared
with the other three algorithms, which is attributed to the improvements in image prepro-
cessing, feature extraction, reduction of redundant computation, optimization of memory
access, and enhancement of parallel computation capability. In terms of FLOPS, the algo-
rithm in this paper has a significant advantage over the other three algorithms in terms of
processing speed per second, which is attributed to the optimization of the computational
density of the algorithm, which reduces unnecessary floating-point operations, improves
the parallelism of the algorithm, and optimizes the computationally intensive part of the
code. In summary, the significant improvement in conversion time, FPS and FLOPS of
this paper’s algorithm reflects the optimization and improvement of the algorithm in sev-
eral key aspects, such as computational efficiency, data preprocessing, feature extraction,
parallel computing, resource management and code implementation, which proves that
this paper’s algorithm can efficiently and accurately implement the 2D to 3D conversion
technology.

Ablation Study The present study introduces a novel image reconstruction algorithm
that amalgamates the advantages of both Convolutional Neural Networks (CNN) and Re-
stricted Boltzmann Machines (RBM). The objective is to achieve more precise image re-
construction. To validate the superiority of the proposed algorithm over traditional CNN
and RBM techniques in terms of image reconstruction quality, we have designed a com-
parative experiment.

Table 6. 2D picture quantitative ablation comparison experiment results

Algorithms
Check

Accuracy
Rate

IoU
Recall
Rate

F1
Score

Error
rate

CNN 0.665 0.701 0.782 0.719 0.081
RBM 0.73 0.715 0.759 0.745 0.076

Algorithms
in this article 0.97 0.948 0.964 0.967 0.041

The experiment involved the input of 8,000 on-site captured 2D images into three
different algorithms for identification. The results, as shown in Table 6, indicate that the
algorithm proposed in this study outperforms traditional CNN and RBM models across
five key metrics, substantiating its effectiveness. This superiority can be elucidated from
several perspectives:

Architectural Advantage: The proposed algorithm integrates the convolutional layers
of CNN with the generative model features of RBM. This amalgamation leverages the
strengths of both, resulting in higher precision and robustness in image reconstruction.

Efficient Training: By adopting more precise weight initialization, the training process
for our algorithm is both efficient and stable. This enhances the model’s ability to fit the
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training data more effectively, thereby improving its 3D reconstruction performance on
the on-site captured 2D images.

Function Selection: The algorithm employs loss and activation functions that are par-
ticularly suited to this specific task. The appropriate choice of loss function better guides
model learning, while the optimal activation function enhances the model’s non-linear
representational capability.

In summary, the proposed algorithm’s superiority over traditional CNN and RBM
models is primarily attributable to its comprehensive optimization in structural design,
training strategy, and function selection. These collectively contribute to a significant ad-
vantage in 3D reconstruction tasks for on-site captured 2D images.

Table 7. Ablation Study on Run Time and Efficiency for 2D-to-3D Conversion

Algorithms Total Time(s) FPS FLOPS
CNN 124.89 31 27.92
RBM 119.54 34 31.31

Algorithms
in this article

36.11 87 87.27

Under a unified framework of identical training, testing, and validation sets, this
study meticulously contrasts the efficacy of three disparate algorithms—our proposed al-
gorithm, traditional Convolutional Neural Networks (CNN), and Restricted Boltzmann
Machines (RBM)—in the task of transforming 2,000 2D architectural images into 3D
models, as detailed in Table 7. Our observations indicate that the proposed algorithm sig-
nificantly outperforms the traditional counterparts across various metrics, including total
conversion time, frames processed per second (Fps), and peak floating-point operations
per second (FLOPs). Firstly, this substantial advantage can be attributed to the architec-
tural refinements incorporated into the proposed algorithm. By synergistically leveraging
the convolutional attributes of CNNs and the generative capabilities of RBMs, the algo-
rithm enhances both the efficiency and accuracy of image conversion tasks. Secondly, the
marked elevation in computational efficiency underscores the algorithm’s prowess in di-
minishing computational complexity and overall operational time. This not only expedites
the training phase but also augments the model’s performance in handling intricate image
data. Finally, the flexibility and precision of the proposed algorithm are also manifest.
Optimized for task-specific needs, the algorithm minimizes unnecessary floating-point
calculations and redundant computations. As a result, it significantly amplifies opera-
tional speed, establishing new benchmarks in both frames processed per second and peak
operational speed.

In summary, the comprehensive optimization of the proposed algorithm in terms of
architecture, efficiency, and flexibility renders it exceptionally proficient in 2D-to-3D im-
age conversion tasks. It substantially transcends traditional CNN and RBM algorithms,
thereby demonstrating its potent potential and applicability.

Comparative Performance of 2D-to-3D Image Reconstruction Across Algorithms
As shown in Figure 3, the results of three different algorithms are demonstrated on the
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task of 2D to 3D image reconstruction on library image, academic building image, cor-
ridor image and residential building image. Image.3(a) is the original image, and images
Image.3(c) to Image.3(e) show the processing results of SqueezeNet algorithm, Xception
algorithm, MobileNet algorithm, and this paper’s algorithm, respectively. SqueezeNet al-
gorithm, as an earlier deep learning model, has a relatively simple structure and cannot
capture all the subtle features of the image, so the detail features are weak. The Xcep-
tion algorithm, with a more complex structure and more parameters, is better than the
SqueezeNet algorithm but still has room for improvement. The MobileNet algorithm, an
efficient neural network model, achieves minimizing the demand for computational re-
sources while maintaining good performance by employing depth-separable convolutions
and specific network structural adjustments, but it is not effective in dealing with ex-
tremely complex or fine-grained tasks, there is still room for improving its performance.

In contrast, our proposed algorithm excels in 2D-to-3D image reconstruction, mani-
festing a marked enhancement in detail fidelity. This superiority can be attributed to three
key facets: (1)Task-Specific Optimization: The algorithm has been fine-tuned for specific
types of images and content, enabling it to better capture intricate details. (2)Loss Func-
tion and Optimization Strategy: The selection of a loss function and optimization tech-
niques particularly tailored for 2D-to-3D conversion tasks further augments the quality of
image reconstruction. (3)Precise Weight Initialization and Efficient Training: The algo-
rithm employs a highly accurate weight initialization process and an optimized training
methodology, contributing to efficient and stable training.

In summation, the proposed algorithm stands as the most proficient in reconstructing
3D images from 2D precursors, owing to its comprehensive optimization across task-
specific requirements, loss function selection, and training procedures. Its exemplary per-
formance underscores its robustness and applicability in complex image transformation
tasks.

In this study, we incorporate various performance indicators such as the TOP-5 [18]
error rate, the number of convolutional layers, the size of the convolutional kernels, and
the number of fully connected layers to compare the efficacy of different algorithmic mod-
els. The TOP-5 error rate serves as a critical evaluation metric that considers a prediction
as correct if the true label is among the top five probabilities in the final output vector.
A lower TOP-5 error rate is indicative of better model performance. Taking the library
image reconstruction effect as an example, the Top-5 error rates of different algorithm
models can be observed in Table 8, and the four algorithms show different performances.
the SqueezeNet algorithm has a relatively high error rate of 6.7%, which is not able to ad-
equately capture the complex features of the image due to its relatively simple structure.
the Xception algorithm and MobileNet algorithm have reduced the error rates to 5.9% and
4.9%, which is a significant improvement compared to the first algorithm, but there is still
room for improvement. Proposed Algorithm: Demonstrates a significantly reduced TOP-5
error rate of 3.1%, emphasizing the algorithm’s superiority in image reconstruction tasks.

The decline in error rates can be attributed to increased algorithmic complexity and
task-specific optimizations. The proposed algorithm, through its architectural refinements
and innovative methods, achieves a more accurate image reconstruction. Its substantially
lower error rate compared to the other algorithms corroborates its excellence in image
reconstruction tasks.
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(a) Original Fig-
ure

(b) SqueezeNet (c) Xception (d) MobileNet (e) Algorithms in
this article

Fig. 3. Algorithm effect diagram comparison

In the subsequent section, we delve into the significance of convolutional layers. Im-
ages are composed of pixels, which may contain noise. Convolutional layers serve the
purpose of extracting features from these noisy pixels. As the number of convolutional
layers increases, these rudimentary features combine to form higher-level patterns. Con-
sequently, a deeper convolutional network is capable of capturing more abstract and com-
prehensive features. With 151 convolutional layers, our proposed algorithm excels in ex-
haustive detail extraction, contributing to the increased accuracy of the generated 3D im-
ages.

Furthermore, to reduce computational and parameter overhead while accelerating model
training, smaller convolutional kernels are beneficial. They allow for the inclusion of ad-
ditional convolutional layers, thereby enhancing the network’s nonlinear capabilities. On
another note, a single fully connected layer is insufficient for condensing feature data
to a degree where accurate judgments can be made. The presence of two layers in our
algorithm ensures more concentrated feature data.

In summary, when considering multiple evaluation metrics such as the TOP-5 error
rate, the number of convolutional layers, the size of the convolutional kernels, and the
number of fully connected layers, our proposed algorithm outperforms other models in
terms of overall efficacy. The architecture of our model is well-balanced in terms of con-
volutional kernel size and the number and size of fully connected layers, making it a more
potent solution for the task at hand.
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Table 8. Experimental results of performance comparison of different algorithms for library image
reconstruction

Algorithms
TOP-5
Error
Rate

Number Of
Convol
-utional
Layers

Convol
-utional

Kernel Size

Number
Of Fully

Connected
Layers

SqueezeNet 6.7% 115 7,1,3,5 2
Xception 5.9% 118 7,1,3,5 2

MobileNet 4.9% 132 11,7,5,3 2
Algorithms

in this article 3.1% 151 7,1,3,5 2

5. Conclusion

A new model for architectural image processing is developed in this study. This model
combines a Restricted Boltzmann Machine (RBM) and a Convolutional Neural Network
(CNN) specifically designed to convert two-dimensional (2D) architectural images into
three-dimensional (3D) models. The input building images are first preprocessed to en-
sure their suitability. Then, a bilateral filtering technique is used to convert the image into
a depth map, laying the foundation for subsequent 3D reconstruction. Next, small voids
in the image are repaired by a domain difference algorithm, thus improving the integrity
and quality of the image. The last key step is to input the processed 2D image into the
research-designed model. The model incorporates the features of RBM and CNN to ef-
fectively realize the conversion from 2D image to 3D model. After thorough testing, the
study found that the model achieved 97% in terms of checking accuracy and significantly
outperformed other existing algorithms in terms of runtime and efficiency.

However, it is crucial to acknowledge the limitations of our current algorithm. For
instance, the likelihood of prediction errors increases when dealing with areas of subtle
color variations, strong external lighting causing high reflectivity, or surfaces with dam-
age mimicking water stains. This suggests that further optimizations are required for our
algorithm to adeptly handle these challenging scenarios. Looking ahead, we anticipate
continual refinement of our algorithm in two primary directions:

Enhanced Models and Techniques: We aim to incorporate more advanced deep learn-
ing models and techniques to improve both the accuracy and robustness of our algorithm.
Diverse Applications: We will explore the utility of our algorithm in processing other
types of architectural images and even in other image processing tasks, with the goal of
widespread application and dissemination.

By addressing these aspects, we aim to extend the applicability and fortify the re-
silience of our algorithm, thereby contributing to its broader adoption in the domain of
image processing.
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