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Abstract. While deep neural networks (DNNs) have great potential for applica-
tions in security and safety-critical domains, their limited robustness to adversarial
samples and out-of-distribution (OOD) samples raise significant concerns. In the
software engineering community, significant efforts have been devoted to devising
testing techniques that verify the robustness of DNNs. This paper investigates se-
mantic feature-based test selection for DNNs from a frequency domain perspective
and propose a novel method called SaFeTS. Specifically, we leverage saliency de-
tection techniques, such as Fourier Phase Transform to extract semantic features
from test cases. These features are then clustered to select diverse test cases to eval-
uate the robustness of DNNs and model retraining. Experiments on CIFAR-10 and
SVHN datasets demonstrate that SaFeTS exposes more varied model errors com-
pared to baseline methods. Further, retraining with SaFeTS-selected samples signif-
icantly improves adversarial and out-of-distribution robustness over state-of-the-art
test selection methods.

Keywords: DNN testing, test selection, semantic feature, frequency domain, ro-
bustness.

1. Introduction

Deep learning (DL) systems are susceptible to adversarial samples [48] by malicious
attacks, as well as out-of-distribution (OOD) samples [1] originating from natural en-
vironments. These vulnerabilities present potential security and safety threats, raising
concerns about the application of DL technologies in security and safety-critical areas
[5, 8, 38, 43, 44]. Researchers in the software engineering community have focused on
verifying and improving the robustness of DL systems through testing to mitigate these
threats. However, a pivotal element of a DL system is the deep neural network (DNN),
which fundamentally differs from conventional software in several vital aspects: program-
ming paradigms, source of faults, and repair approach. Conventional software is often
developed based on specific requirements, while DNNs predominantly operate within a
data-driven programming paradigm, making decisions through non-deterministic logic
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[3]. Therefore, the faults in conventional software often stem from specific functions or
lines of code. In contrast, the faults in DNNs typically manifest as deviations in model
behavior, often linked to the data, learning algorithm, or training process. In addition, ad-
dressing faults in conventional software often involves pinpointing and correcting faulty
code [9]. However, repairing faults in DNNs is more intricate, as they cannot be localized
to a specific component (e.g., neuron or layer in the model) for direct fixing. A common
approach to enhance the robustness of DNN is to expand the data set to retrain the model.

Early works have proposed structural adequacy criteria for DNN testing [35, 40], as
well as test methods based on these criteria [17, 36, 40, 46, 56]. Recent efforts have ex-
tended test prioritization or selection methods to reduce computational and labeling costs.
These methods are based primarily on specific rules, such as uncertainty [14, 55] and
gradient-based rules [53]. However, existing test selection methods often focus on boost-
ing the quantity of the model errors disclosed during the test rather than the diversity of
misbehavior [15]. This leads to inadequate coverage of model erroneous behavior that po-
tentially exists in real-world scenarios. Additionally, some work shows that existing test
selection methods have a minimal impact on improving DNN’s robustness [34, 53].

To mitigate these issues, we explore an alternative strategy to enhance the test selec-
tion for DNNs. Given the data-driven nature of DNNs, we aim to increase the diversity of
test cases, not only due to its results in software testing [6, 13, 21, 32], but also due to the
call for many work in DNN testing [15,31,61,62]. Essentially, relying on diverse test cases
should expend the exploration scale of sample space and thus improve fault detection rate
for a given test set [2]. Further, incorporating diverse samples in the retraining/repair pro-
cess helps the model to learn diverse data representations, thereby improving the model’s
generalization ability and robustness on unknown data.

Current methods to assess the diversity of test cases often adopt distance measures,
which overlooks semantic diversity. Here, the Semantics refers to the meaning of data,
which is the essential attribute used to distinguish the differences among data. Instead,
Chen et al. [11] demonstrate that the depth at which a model understands or learns from
the data’s semantics is strongly linked to its generalization capabilities. In turn, we can
exploit the semantic diversity of the data for testing to reveal more model faults. Addition-
ally, researchers [11,18,41,60] found that DNNs lack robustness because they over-fitted
to noisy high-frequency information and ignored semantic information during training.
Suppressing high-frequency noise in the data will highlight the semantics of the data.
Thus, in this paper, we utilize the frequency domain transform method to extract the se-
mantics of the data and design the test selection method to improve the diversity of the
selected data. The noise of the data is usually added in the spatial domain and can be
filtered out by some frequency domain methods. For example, in the field of image pro-
cessing, frequency domain based methods can help remove unimportant high frequency
components that are often invisible to the human eye but contain noise [52]. Frequency
domain analysis can further enhance features in certain frequency ranges, making them
easier to recognize in subsequent processing. Thus, frequency domain-based methods can
extract features that are semantically consistent with human intuition and avoid the impact
of data noise [11]. Besides, frequency domain-based methods leverage the prior knowl-
edge of natural images, and therefore are model-agnostic [50]. This characteristic helps
circumvent the biases introduced by neural network feature extractors.
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In this paper, we propose a test selection method for DNNs from a frequency do-
main perspective. We empirically investigated the effectiveness of four commonly used
frequency domain-based saliency detection methods in extracting semantic features. The
evaluation results demonstrate that these methods can effectively extract semantic fea-
tures even from perturbed data. Motivated by this observation, we proposed a novel
Semantic Feature-based Test Selection method (SaFeTS). Specifically, we extract the se-
mantic features of test cases using frequency domain-based saliency detection methods.
Subsequently, we leverage these semantic features to identify potentially diverse cate-
gories of samples. Then, we select samples from each category for testing and retraining
purposes. Our work innovatively introduces the frequency domain analysis method into
the test selection technique, focuses on the diversity of semantic information of test cases,
and provides a new way of thinking for DNN testing. Extensive experimental results val-
idate the effectiveness of the proposed SaFeTS. Compared to the baseline methods, we
disclose more diverse DNN misbehavior with the proposed method. Moreover, SaFeTS
can effectively improve the adversarial and OOD robustness of DNN via retraining. The
main contributions of this paper are as follows.

• We explored test selection for DNNs from a frequency domain perspective. Through
a comprehensive empirical study, we observed that the frequency domain-based saliency
detection methods can effectively extract semantic features consistent with human intu-
ition, even for perturbed data.

• We proposed a novel semantic feature-based test selection method SaFeTS. SaFeTS
leverages saliency detection methods: Fourier Phase Transform (FPT) [39], High-pass Fil-
ter (HPF) [27], Residual Spectrum (SR) [23], and Quaternion Fourier Transform (QFT)
[16], to extract semantic features from test cases and identify diverse categories of sam-
ples based on these features. Then, we select samples from each category for testing and
retraining purposes.

• We conducted extensive experimental evaluations of SaFeTS. Compared to base-
lines, SaFeTS can detect more diverse DNN misbehavior. By selecting samples with di-
verse semantics for retraining, SaFeTS can effectively improve the adversarial and OOD
robustness of DNNs. In particular, SaFeTS utilizes the FPT to extract semantic features,
resulting in an average performance improvement of 20.79% over the best-performing
baseline on adversarial samples. We make our code public at GitHub.

The rest of this paper is organized as follows. We introduce the related work in Sec-
tion 2. In Section 3, we outline the empirical study to validate the efficacy of frequency
domain-based methods. In Section 4, we present our proposed method, SaFeTS. Finally,
we demonstrate the evaluation results and summarize this work in Section 5 and 8, re-
spectively.

2. Related Work

This section presents an overview of the related work, encompassing test selection for
DNNs, alongside the frequency domain analysis applied to image processing.

2.1. Testing for DNN

Researchers in the software engineering community have designed testing methods for
DNN to mitigate security and safety threats to DL-based systems. Inspired by structural

https://github.com/jiangzhouxian/SaFeTS-master/tree/master
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coverage criteria in conventional software testing, Pei et al. [40] first proposed the neuron
coverage criteria for DNN testing and a white-box testing framework DeepXplore. Sub-
sequently, Ma et al. [35] extended their work by offering multi-granularity testing criteria.
Based on these test criteria, various testing methods have been proposed to generate test
cases to discover the misbehavior of DNNs and verify their robustness, such as differential
testing [40], fuzzing testing [17], and mutation testing [36], and symbolic testing [46, 47]
and metamorphic testing [49, 56].

Due to the data-driven nature of DNN, comprehensive model testing requires large-
scale test cases, resulting in a vast testing overhead. Therefore, some researchers inves-
tigated test prioritization or selection techniques to reduce the cost of the testing. Feng
et al. [14] proposed DeepGini, a test prioritization method, to select test cases accord-
ing to the confidence level calculated by the Gini index. Wang et al. [53] introduced a
robustness-oriented testing framework for DNN, which used gradient-based rules as test
prioritization. Inspired by active learning, Weiss et al. [55] used the uncertainty metrics as
test prioritization. In addition, some test selection methods based on mutation testing [54]
and differential testing [15] were proposed.

Current test methods focus on selecting the test cases that are more prone to trigger
model misbehavior, therefore to boost the quantity of the identified software errors [15].
However, Zhang et al. [61] pointed out that using the error number as an evaluation met-
ric to measure testing effectiveness is inadequate for DNNs. It is worth taking efforts to
generate or select test cases with more diversity to expose various model incorrect behav-
ior that potentially exists in real-world scenarios. Additionally, the test cases generated
or selected by current test approaches have limited effect on improving the robustness of
the DL system after testing [53]. These limitations call for improved test selection tech-
niques to increase the diversity of selected test cases and further enhance the robustness
of DNNs. To address the above limitations, we propose SaFeTS for test selection, aiming
at selecting more semantically diverse test cases. These test cases with semantic diversity
can expose diverse DNN misbehavior during testing and improve the robustness of DNNs
after retraining.

2.2. Frequency Domain Analysis

Frequency domain analysis is one of the core techniques in the field of signal processing,
which mainly involves the study of the frequency components of signals [7]. There are
a wide range of techniques and applications of frequency domain analysis from time se-
quence data to images. The Fourier transform is the basis of frequency domain analysis,
which converts a signal in the time domain or spatial domain to its frequency domain rep-
resentation. For images, a two-dimensional FT can be used to obtain its frequency domain
representation.

Frequency domain analysis has been widely used in conventional image processing,
especially for saliency detection [16, 23, 27, 33, 39]. These methods often convert spatial-
domain images to frequency-domain information through the Fourier transform. They
are often used to extract the semantic features of images. Although DL-based feature
extractors have been well developed, frequency domain-based methods still play a vi-
tal role in improving the robustness of DNNs [11]. Recently, some work investigated
the robustness generalization behaviors of DNN from a data frequency domain perspec-
tive [11,24,45,51,57,59]. In particular, Wang et al. [51] empirically found that the invis-
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ible noises in high-frequency components of input images lead DNNs to make counter-
intuitive predictions. Chen et al. [11] argued that a robust DNN should focus on learning
the semantic information of data rather than high-frequency noise. Hence, they trained the
models on the augmented data by combining the images’ phase and amplitude spectrum.
Frequency domain analysis methods can separate different levels of information, such as
high frequency and low frequency, phase and amplitude. The frequency domain based
saliency detection method utilizes the information of different levels and can effectively
extract the semantic features of the data to avoid interference from data noise.

Thus, motivated by the strong ability of the frequency domain-based saliency detec-
tion methods, we explore the effective test selection for DNNs from a frequency domain
perspective in this paper. We utilize these saliency detection methods to extract data se-
mantic features. Furthermore, these semantic features provide valuable guidance in se-
lecting diverse and representative test cases for DNN testing and retraining.

3. Empirical Study

In this section, we conducted an empirical study to validate the effectiveness of frequency
domain-based saliency detection methods involving four classic saliency detection meth-
ods. We first briefly introduce the fundamentals of saliency detection methods. Then,
we applied different perturbation techniques on test images of ImageNet [12], including
adversarial attack and corruption techniques, to create adversarial and OOD samples, re-
spectively. Finally, we evaluate the saliency detection methods by comparing the semantic
maps.

3.1. Frequency Domain-based Semantic Feature Extraction

In image processing, the Discrete Fourier Transform (DFT) is commonly used to con-
vert images from the spatial domain to the frequency domain. Research has found that
frequency domain information can reveal semantic features of data, which are consistent
with human perception (e.g., structures, edges, and textures) [27, 39]. In the empirical
study, we investigated four classic frequency domain-based saliency detection methods:
FPT [39], HPF [27], SR [23] and QFT [16], which have different characteristics in image
semantic feature detection.

• FPT [39]: When an image is transformed using the Fourier transform, it is divided
into frequency components consisting of amplitude and phase. The phase spectrum is a
representation of the phase information in the frequency domain of an image. Reflects
the relative positional relationship between different frequency components in the image,
which is often adopted to detect structural and textural changes in the image.

• HPF [27]: A high-pass filter aims to sharpen edges or highlight fine details by at-
tenuating low-frequency information. It typically corresponds to the smooth regions or
large-scale structures in the image, which helps to highlight the edges and contours of
objects.

• SR [23]: The spectrum residual is based on the observation that the human visual
system tends to suppress the response to frequently occurring features, while at the same
time keeping sensitive to features that deviate from the norm [29]. The spectrum residual
method takes the logarithmic spectrum of an input image, followed by a Gaussian blur
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Fig. 1. Frequency domain-based semantic features of the images under different saliency
detection methods. The columns from left to right are the original spatial-domain
images, and the semantic maps extracted by FPT, HPF, SR, and QFT, respectively

operation. Then, the inverse Fourier transform is applied to the residual of the blurred and
original log-spectrum, to obtain the saliency map.

• QFT [16]: QFT is an extension of the traditional Fourier transform, designed to
work with quaternion-valued functions or data. QFT allows analyzing and representing
color images and other multicomponent data using quaternion mathematics, simultane-
ously capturing an image’s spatial and color information.

We applied the aforementioned methods on 1,000 images from dataset ImageNet [12].
Due to the limited space of the paper, we present one example of the images in Fig. 1. The
remaining results are shown at GitHub. We observed from the second row in Fig. 1 that all
four saliency detection methods preserved the semantic information of the image, such as
the shape and contour of the watch. We re-verified that the extracted frequency domain-
based semantic features provide a representation consistent with human perception. The
experimental results confirm the feasibility of analyzing test samples from the frequency
domain perspective.

3.2. Semantic Feature Extraction on Perturbed Images

Our further investigations probed whether four saliency detection methods could pre-
serve semantic feature extraction performance on perturbed data. We utilized a pre-trained
VGG16 [42] model on ImageNet [12] to generate adversarial samples by applying a
gradient-based adversarial attack technique, PGD [37] and CW [10]. For crafting OOD
samples, we adopted a widely used corrupted data benchmark [22], which encompasses

https://github.com/jiangzhouxian/SaFeTS-master/tree/master
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19 types of corruption involving weather, blur, noise, and digital changes with damage
levels ranging from 1 to 5.

The first and third rows of Fig. 1 show the semantic maps on adversarial and OOD
samples, respectively. Due to the space limitation, we only offer the cases of perturba-
tions caused by PGD attacks and fog corruption. More case studies are shown at GitHub.
Although both PGD attacks and fog corruption may diminish the semantic clarity of the
original sample, all four methods still managed to extract semantic information from ad-
versarial and OOD samples. In particular, FPT outperforms the other three saliency de-
tection techniques, while QFT exhibits noticeable degradation in semantic maps.

In summary, in this section, we investigate the changes in semantic maps of adversar-
ial and OOD samples. We found that saliency detection methods can effectively extract
semantic information from perturbed samples. Inspired by these observations, we design
a frequency domain-based test selection method to increase the semantic diversity of test
cases for DNN model testing and robustness enhancement via retraining.

4. Approaches

In this section, we propose the SaFeTS test selection method to detect more diverse model
erroneous behaviors and improve robustness via model retraining. First, we introduce the
problem definition in deep learning. Then, we present the SaFeTS method in detail.

4.1. Problem Definition

The Robustness of deep learning model often consists of Global Robustness and Empiri-
cal Robustness [53]. Global robustness refers to the robustness of a deep learning model
to disturbances or noise throughout the input space. Empirical robustness is evaluated by
testing the model on specific perturbed datasets. In this paper, we study the robustness
of deep learning restricted to empirical robustness, involving evaluating adversarial and
OOD data. The empirical robustness is defined as follows.

Definition 1. (Empirical Robustness) Given a DNN model F : X → Y and a per-
turbed test dataset Dt, where X and Y represent the input and output of F , respectively.
Empirical robustness is defined as µ : (F , Dt) → γ, and γ ∈ [0, 1] is the accuracy of
model F on the test set Dt.

4.2. Semantic Feature-Based Test Selection

In this section, we introduce the proposed test selection method SaFeTS. The critical is-
sue in test selection is how to utilize the semantics of test cases to expose the diverse
misbehavior of DNN and use them to improve DNN’s robustness. We design a frequency
domain-based test selection method for DNNs. Fig. 2 shows the workflow of SaFeTS, and
Algorithm 1 details the process of test selection based on SaFeTS. In general, SaFeTS se-
lects test cases based on a given candidate test set through two steps: (1) semantic feature
extraction and (2) clustering and sampling. Specifically, we use frequency domain-based
saliency detection methods to extract the semantic features of test cases (line 4). Such
methods are model-agnostic, which do not incorporate feature extractor bias. They ex-
tract semantic information while filtering out imperceptible high-frequency noise. After

https://github.com/jiangzhouxian/SaFeTS-master/tree/master
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Fig. 2. The workflow of SaFeTS. SaFeTS includes two components: semantic feature
extraction, clustering, and sampling. We evaluate the proposed method by testing and
retraining DNN models on the selected samples

that, we adopt the clustering method to mine the semantically diverse categories of sam-
ples based on the extracted frequency-domain features (line 8). Finally, we sample from
each cluster (lines 9-16), and use the sampled test cases to test and retrain DNNs.

Algorithm 1 Semantic Feature-Based Test Selection (SaFeTS)
Require: candidate set X , sampling ratio r, semantic feature set Sx, indices of sampled test cases

indicies.
Ensure: selected set Xs.

1: Xs ← ∅, Sx ← ∅, indices← ∅
2: for each x ∈ X do
3: # Extract the semantic features based on frequency domain transformation methods.
4: s← Semantic extraction(x)
5: Sx.add(s)
6: end for
7: # Cluster semantic feature to C categories.
8: C ← Cluster semantic(Sx)
9: for each c ∈ C do

10: # Uniform sampling with ratio r from each cluster, get the indices of sampled test cases.
11: indices← indices ∪ Uniform Sampling(c, r)
12: end for
13: for each i ∈ indicies do
14: # Select the samples from the candidate set.
15: Xs ← Xs ∪X[i]
16: end for
17: return Xs

Semantic feature extraction To extract the semantic features of the test cases, we trans-
form the input image from the spatial domain to the frequency domain using a Fourier
transform. Given an image g matrix with M rows and N columns, f(m,n) denotes the
pixel value of the mth row and nth column, the Fourier transform F (u, v) of f(m,n) is
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shown in Equation (1).

F (u, v) =

M−1∑
m=0

N−1∑
n=0

f(m,n) · e−j2π(um/M+vn/N) (1)

For an image g matrix with M rows and N columns, the Fourier transform theoreti-
cally requires (M ∗ N)2 operations, which is very time-consuming. Alternatively, we
use the Fast Fourier Transform (FFT) to reduce the complexity from O((M ∗ N)2) to
O(MNlog(M ∗N)) by decomposing the DFT into a series of smaller DFTs. In contrast,
we can transform an input image from its frequency domain to spatial domain via Inverse
Fast Fourier transform (IFFT), shown in Equation (2).

f(m,n) =
1√
MN

M−1∑
v=0

N−1∑
u=0

F (u, v) · e2π((vm/M)+(un/N)) (2)

Based on FFT and IFFT, we employ four classic saliency detection methods mentioned
in Section 3 to extract the semantic information of the test cases. The details of the
calculations are as follows:

• FPT: The phase spectrum of an image is the phase portion of the Fourier transform
result, shown in Equation (3).

P (u, v) = arctan

(
Im[F (u, v)]

Re[F (u, v)]

)
(3)

Where Im[F (u, v)] and Re[F (u, v)] are the imaginary and real parts of F (u, v), respec-
tively. Then, the IFFT of P leads to a saliency map Sa(m,n).

• HPF: The HPF are mainly used to enhance the high-frequency components of an
image so as to highlight the edges and details. In this paper, we use Sobel filter to compute
HPF which is a discrete difference filter used for edge detection to highlight the edges by
computing the gradient strength of the image. Sobel filter contains two 3 ∗ 3 matrices
which is shown in Equation (4) for detecting the edges in horizontal Gx and vertical
direction Gy , respectively.

Gx =

−1 0 1
−2 0 2
−1 0 1

 , Gy =

−1 −2 −1
0 0 0
1 2 1

 (4)

For each pixel in the image, its gradient values in the horizontal Vx and vertical directions
Vy are calculated by the convolution operation in Equation (5).

Vx(m,n) = f(m,n) ∗Gx, Vy(m,n) = f(m,n) ∗Gy (5)

Then calculate the total gradient intensity, i.e., saliency map Sa, by Equation (6).

Sa(m,n) =
√

Vx(m,n)2 + Vy(m,n)2 (6)

After processing, a new image is obtained which emphasizes the edge regions in the
original image and can be considered as the result of HPF process.



1508 Zhouxian Jiang et al.

• SR: The SR method estimates significance from the residuals of the amplitude spec-
trum of the image. The amplitude spectrum A(u, v) = |F (u, v)| and the phase spectrum
P (u, v) are computed after performing FFT on a given image. Then, calculate the average
amplitude spectrum log(A(u, v)) and its smoothed version Sm(u, v). spectrum residual
is computed by R(u, v) = log(A(u, v))−Sm(u, v). The Fourier transform of the saliency
map is Sa(u, v) = eR(u,v)×ejP (u,v). Finally, the IFFT is used to obtain the saliency map
Sa(m,n).

• QFT: QFT-based saliency detection suggests that in the human visual system, the
four feature channels, motion feature M , luminance feature I , red-green neuron RG,
and blue-yellow neuron BY , are almost independent. Therefore, the above four features
of an image can be represented by a quaternion q(m,n), defining the weighted image
quaternion representation as follow:

q(m,n) = M(m,n) +RG(m,n) ∗ µ1 +BY (m,n) ∗ µ2 + I(m,n) ∗ µ3 (7)

where µi, i = 1, 2, 3 satisfies µ2
i = −1, µ1 ⊥ µ2, µ2 ⊥ µ3, µ1 ⊥ µ3, µ3 = µ1µ2. The

QFT transforms an image from the spatial domain to the frequency domain as follows:

Q(u, v) =

M−1∑
m=0

N−1∑
n=0

q(m,n) · e−j2π(um/M+vn/N) (8)

Here we actually extend the concept of 2D FFT to accommodate quaternionic data. Then,
in the frequency domain, saliency detection is performed based on the phase information
of Q (u, v), that is, Sa(u, v) = |Q(u, v)|. And finally, the inverse QFT of Sa(u, v) leads to
a saliency map Sa(m,n) (extensive the concept of 2D IFFT to accommodate quaternionic
data).

Clustering and sampling To group test cases into multiple categories with similar se-
mantic features, we incorporate clustering approach in SaFeTS. In this paper, we extract
the semantic feature of image samples and cluster them into various categories in the
frequency domain feature space. Due to the convergence speed and cluster performance,
we employ the Kmeans++ algorithm [4] as the clustering method based on semantic fea-
tures to divide all samples into k clusters, where k is the number of groups. Kmeans++
algorithm is an optimized version of the Kmeans clustering algorithm [19], where the ini-
tial centroids are selected through a specific randomization process to reduce the effect
of randomization. It randomly selects the first centroid and then uses weighted random
sampling to choose the remaining centroids.

After that, we adopted the Uniform Sampling (US) strategy to maximize the diversity
of the sampled test cases. The US strategy ensures that the samples selected from each
cluster are uniformly distributed, which helps to increase the diversity and coverage of
the samples. In addition, since the uniform sampling strategy does not bias the selection
of samples towards any particular region, it provides a wider and diverse set of test cases,
which is important for deep neural network testing. In summary, the Kmeans++ and US
strategies can be easily scaled or adapted to different datasets and application scenarios,
and provide an efficient, high-quality and low-bias strategy for DNN testing that ensures
sample diversity and broad coverage.
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Retraining objective The samples selected based on SaFeTS can be used not only to
test the DNN but also to enhance the model robustness via retraining. Training samples
consist of the original training set D and the sample selected from the perturbed test
set Dt based on the test selection method TS. We define the optimization objective for
robustness retraining as

min
θ

1

L

L∑
i=1

J(xi,yi)∈D∪TS(Dt)(θ, xi, yi), (9)

where L is the number of training samples, x, y is the training samples and their labels,
and θ are the parameters of the model F . Retraining aims to optimize the model parame-
ters θ that lead to minimization of the loss function J .

In summary, we introduce SaFeTS, a test selection approach for DNNs. Employing
frequency domain transformation techniques, we extract test case semantics and then ap-
ply clustering to discern distinct categories within the frequency domain feature space.
SaFeTS is designed to select semantically diverse samples, uncovering a broader spec-
trum of DNN misbehaviors and enhancing DNN robustness through retraining.

5. Experimental Setup

In this section, we describe the experimental setup for evaluating SaFeTS, including the
research questions, datasets and DNN models, evaluation methods, baselines and param-
eter analysis.

5.1. Research Questions

Our evaluation covers various datasets and DNN models. We benchmark SaFeTS against
baseline methods with the intent to address the following three research questions (RQs).

– RQ1. Can SaFeTS expose more diverse erroneous behavior of DNNs?
– RQ2. Can SaFeTS effectively improve the adversarial robustness of DNNs via re-

training?
– RQ3. Can SaFeTS effectively enhance the OOD robustness of DNNs via retraining?

5.2. Models and Datasets

In the experiment, to evaluate the effectiveness of testing and retraining, we used two
datasets and six pre-trained models: CIFAR-10 dataset [30] (ResNet18 [20], VGG16 [42],
DenseNet121 [25]) and SVHN dataset [58] (ResNet50 [20], Wide-ResNet50 [20] and
SqueezeNet [26]). We applied the advanced adversarial attack technique PGD [37] to
generate the candidate set for test selection. Detailed configurations of datasets, models,
and attack results are reported in Table 1.

CIFAR-10 [30]: The CIFAR-10 dataset is a widely used benchmark for image clas-
sification tasks. It comprises 60,000 32x32 color images across 10 different classes, with
6,000 images per class. The dataset is divided into 50,000 training and 10,000 test images.

SVHN [58]: The SVHN dataset, or Street View House Numbers dataset, is another
popular dataset for digit recognition in natural images. It contains over 600,000 digit
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images obtained from real-world street view images. The dataset is divided into training,
validation, and test sets, and it covers a wide range of digit variations and orientations.

ResNet18, ResNet50, and Wide-ResNet50 [20]: ResNet18 is a convolutional neural
network architecture known for its effectiveness in deep learning tasks. It consists of 18
layers and introduces the concept of residual blocks, which helps address the vanishing
gradient problem and enables the training of deep networks. ResNet50 is an extension of
the ResNet architecture with 50 layers. It offers even greater model capacity and captures
intricate features from images. Wide-ResNet50 is an extended version of ResNet50 with
wider layers for better feature learning and regularization.

VGG16 [42]: VGG16 is a deep convolutional neural network architecture developed
by the Visual Geometry Group at the University of Oxford. The architecture consists of
16 layers, including 13 convolutional layers and 3 fully connected layers. VGG16’s key
feature is using small 3x3 convolutional filters in multiple layers to learn hierarchical
features from images.

DenseNet121 [25]: DenseNet is a neural network architecture that introduces dense
connections between layers. DenseNet121 is a variant with 121 layers, which includes
dense blocks where each layer is connected to every other layer in a feed-forward manner.

SqueezeNet [26]: SqueezeNet is a compact neural network architecture designed for
deep learning tasks on resource-constrained devices or environments. It achieves high ac-
curacy with a significantly reduced number of parameters. The architecture employs var-
ious strategies such as 1x1 convolutions and ‘fire’ modules (combinations of squeeze and
expand operations) to maintain model efficiency while retaining strong representational
power.

Table 1. Detailed experiment configurations
Dataset Model Accuracy% # Adversarial #Error Robustness%

CIFAR-10
ResNet18 95.35 10,000 8,953 10.47
VGG16 93.88 10,000 9,358 6.42

DenseNet121 94.78 10,000 8,990 10.10

SVHN
ResNet50 91.56 26,032 14,297 45.08

Wide-ResNet50 91.69 26,032 14,435 44.55
SqueezeNet 92.55 26,032 10,569 59.40

5.3. Evaluation methods

The evaluation methods we adopted in this section for testing and retraining are shown as
below.

Diversity of misbehavior: To investigate the diversity of the misbehavior triggered by
test cases, we visualized the confusion matrix of the prediction results. A confusion ma-
trix is a table often used in classification task to illustrate the model performance on test
data. In a confusion matrix, the rows represent the true labels, and the columns represent
the predicted labels. Each entry in the matrix indicates the number of occurrences where
a true label was predicted as a specific class. We removed the diagonal elements (correct



Semantic Feature-Based Test Selection for DNN 1511

predictions) and then focused on the distribution of the non-diagonal elements (erroneous
predictions). We evaluate the diversity of misbehavior by calculating the variance of the
confusion matrix. The more uniformly distributed the misclassified samples, the smaller
the variance of the confusion matrix, indicating higher diversity of the misclassified sam-
ples.

Accuracy on perturbed set (Robustness): The accuracy of the model on perturbed
dataset. This metric is used to evaluate the effectiveness of SaFeTS in improving the
robustness generalization of the model after retraining.

Accuracy on the original test set (Clean Accuracy): The model’s accuracy on the
original test data. This metric is used to evaluate the standard generalization of the model
after retraining.

5.4. Baselines

In this paper, we use current state-of-the-art test selection techniques as baselines, includ-
ing DeepGini [14] and RobOT [53]. We then evaluated these baseline methods on our
proposed dataset.

DeepGini [14]: DeepGini is a test selection technique that focuses on selecting test
cases based on confidence scores (computed by the Gini index) of the model predictions.
It prioritizes test cases for which the model is lowly confident in its predictions. This
technique explores the least confident predictions and potentially reveals the model mis-
behavior.

RobOT [53]: RobOT is a test selection technique based on the gradient information of
the model. RobOT calculates the robustness of the test case on the basis of its gradient of
the model’s loss function. It prioritizes samples with large gradients, which have a higher
likelihood of leading to incorrect model predictions.

5.5. Parameter Analysis
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Fig. 3. Accuracy on adversarial set with different sample ratios and test selection
methods
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This section analyzes the parameters of adversarial sample generation, as well as the
retraining sample rate. For generating adversarial samples on CIFAR-10 and SVHN, we
employ the Torchattacks library [28] to implement the advanced attack PGD [37]. For
both the CIFAR-10 dataset and the SVHN dataset, we set the maximum perturbation
eps = 4/255, and the number of steps steps = 10.

To choose a suitable sampling ratio for retraining, we set different sampling ratios for
SVHN (ResNet50) and CIFAR-10 (ResNet18) and observed the accuracy changes on the
adversarial set. Fig. 3 shows the accuracy on an adversarial set of re-trained models ac-
cording to the change in the sampling ratio. We noticed that our method performs better
on the CIFAR-10 and SVHN datasets than the baselines in improving robustness. How-
ever, the accuracy of the retrained model does not always increase as the sampling ratio
increases. This phenomenon may be due to the excessive introduction of noisy data for
training that instead destroys the performance of the model. In addition, increasing the
number of training samples will increase the training overhead. Thus, we set sampling
ratios of 0.2 and 0.1 for the CIFAR-10 and SVHN datasets to balance performance and
time spent in the subsequent experiments.

In subsequent evaluations, to mitigate the impact of randomness in sampling, we ran
the experiments five times for each configuration and then reported the mean values as the
results of testing and retraining. Additionally, we carefully tuned other hyperparameters
to achieve the best version of our method, such as the k-value in clustering. For other
details please refer to our experimental code on GitHub.

Fig. 4. The confusion matrices of test results on CIFAR-10

https://github.com/jiangzhouxian/SaFeTS-master/tree/master
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6. Analysis

This section reports the results of the evaluation based on three research questions men-
tioned in Sec. 5.1, including the evaluation on diversity of test cases, and the effect of
robustness enhancement on adversarial and OOD samples.

6.1. RQ1: Evaluation of the Diversity of Selected Test Cases

We evaluated the effectiveness of SaFeTS for testing by investigating the ability of SaFeTS
to expose diverse models’ misbehavior. As shown in Table 1, we generated adversar-
ial samples as the candidate set, using the PGD attack on the test set of CIFAR-10 and
SVHN. Then, we adopted different test selection methods to select samples from the can-
didate set.

Fig. 5. The confusion matrices of test results on SVHN

Fig. 4 and Fig. 5 show the confusion matrices of the testing results on CIFAR-10
(ResNet18) and SVHN (ResNet50), respectively. According to the confusion matrices,
FPT, HPF, SR, and QFT identify samples with a broader coverage of misclassifications,
instead of an exclusive focus on particular errors. On the contrary, the baseline methods
are heavily focused on certain predictive mistakes. In the case of CIFAR-10, DeepGini
exhibits a bias towards samples where the prediction of class ’5’ as the class ’3’ occurs,
while RobOT tends to emphasize instances where class ’6’ is misclassified as class ’3’.
Similarly, in SVHN, DeepGini prefers examples where class ’3’ is mispredicted as class



1514 Zhouxian Jiang et al.

FPT HPF SR QFT DeepGini RobOT
Method

0

1000

2000

3000

4000

5000
Va

ria
nc

e
Diversity of Selected Samples

Sample diversity
ResNet18
VGG16
DenseNet121

(a) CIFAR-10

FPT HPF SR QFT DeepGini RobOT
Method

0

500

1000

1500

2000

2500

Va
ria

nc
e

Diversity of Selected Samples
Sample diversity

ResNet50
Wide-ResNet50
SqueezeNet

(b) SVHN

Fig. 6. The variances of confusion matrices on different datasets

’9’, while RobOT is inclined towards samples with class ’2’ being wrongly assigned to
class ’7’.

We calculated the variances associated with these confusion matrices to evaluate the
model’s incorrect behavior’s diversity comprehensively. A lower variance in the confusion
matrix indicates a more uniform distribution of misclassified samples and more diversity.
Fig. 6 illustrates the variances across the confusion matrices for both CIFAR-10 (left) and
SVHN (right). The variances of the samples selected by SaFeTS, namely, FPT, HPF, SR,
QFT, indicate a consistently consistent trend and are smaller than those of DeepGini and
RobOT. This observation underscores the enhanced diversity within SaFeTS’s selection.

When we select test cases based on semantic features, we are in fact picking sam-
ples that are semantically different but could lead to classification errors. Such samples
are highly diverse because they cover a wide range in sample space that could trigger
error predicting. When using a frequency domain based approach, it is more easily to
distinguish and capture these different semantic features. For example, HPF highlights
high-frequency details, which helps to identify possible problems with the model focus in
high-frequency area. Selecting samples with different semantic features through SaFeTS
means that we evaluate the model’s performance on multiple semantic types, rather than
just focusing on a particular error pattern. Based on the experimental results, we can an-
swer RQ1.

Answer to RQ1: Compared to baselines, SaFeTS can effectively select test cases
that expose the misbehavior of more diverse models. SaFeTS mitigates the selection of
samples too focused on a particular type of error and ensures the diversity and balance of
the samples in subsequent retraining.

6.2. RQ2: Evaluation of the Adversarial Robustness

To evaluate SaFeTS in the adversarial robustness improvement of the model, we crafted a
candidate set based on PGD attacks to generate 10 and 20 times more adversarial samples
on the training sets of SVHN and CIFAR-10, respectively. Then we compared the robust-
ness performance of baseline methods and SaFeTS by retraining on the select test cases.
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We reported the robustness and accuracy of the retrained models with sampling ratios 0.2
(CIFAR-10) and 0.1 (SVHN) in Table 2. The results indicate that all four saliency detec-
tion methods outperform the baseline approach, with particular prominence observed in
the performance of the FPT method. Specifically, on the CIFAR-10 dataset, the FPT, HPF,
SR, and QFT methods enhance robustness by 31.21%, 30.76%, 30.96%, and 30.89%, re-
spectively, compared to the best-performing baseline. Similarly, on the SVHN dataset, the
FPT, HPF, SR, and QFT methods exhibit improvements in robustness by 10.89%, 10.66%,
10.54%, and 10.42%, respectively. According to the raw robustness reported in Table 1,
after retraining, the robustness boosting on CIFAR-10 is better than that on SVHN, which
is street door number data with less diversity relative to CIFAR-10. Therefore, SaFeTS
performs better on more diverse datasets. In addition, the FPT works best among all the
saliency detection methods, so in practice, to maximize the effectiveness of SaFeTS, more
diverse data can be collected and FPT configurations can be prioritized.

In addition, SaFeTS leads to a moderate reduction in the accuracy of the retrained
model, whereas retraining with DeepGini and RobOT-selected samples reduces the orig-
inal accuracy of the model. For example, on CIFAR-10 and ResNet18, the FPT method
reduces the model’s accuracy on the original test set from 95.35% to 94.82%. The ac-
curacy of the retrained model based on DeepGini and RobOT decreased to 70.89% and
74.49%, respectively. The experimental results illustrate that the model learns diverse se-
mantic features by using the samples selected by SaFeTS for retraining. SaFeTS mitigates
the overfitting of the perturbed data and maintains the performance of the original test set.

The experimental results demonstrate that SaFeTS can effectively distinguish and cap-
ture errors that the model may have in processing different semantic information, thus
providing the model with more representative samples for retraining. Selecting samples
with a high diversity is crucial for training the model, as they cover a wide range of sam-
ple space that may cause the model to make errors, which helps the model to have better
generalization ability when faced with unknown adversarial samples. The frequency do-
main based approach selects a diverse set of samples, which reduces the risk of overfitting
the model on specific types of perturbation data.

Based on the above experiments, we can answer RQ2:
Answer to RQ2: SaFeTS can effectively improve the adversarial robustness of mod-
els after retraining, especially using the FPT to extract the semantic features. FPT, HPF,
SR, and QFT improved performance over the best-perform baseline by an average of
31.21%, 30.76%, 30.96%, and 30.89% on CIFAR-10, and by 10.89%, 10.66%, 10.54%,
and 10.42% on SVHN, respectively.

6.3. RQ3: Evaluation of the Out-of-distribution Robustness

To verify whether SaFeTS can effectively work for improvements in OOD robustness,
we investigated the performance of retraining on OOD datasets. We adopted a widely
recognized corruption benchmarking [22] to generate four types of corruptions, including
weather (fog), blur (Gaussian blur), noise (Gaussian noise), digital (pixelate), and five
levels (level 1-5) of corrupted data on the CIFAR-10 training set for sampling. Afterward,
we used the CIFAR-10-C [22] dataset to verify the robustness of generalization.

We utilized the best-perform parameters in RQ2, including using FPT to extract the se-
mantic features of samples, setting the sampling ratio to 0.2 for each corruption type, and
using K-means++ for clustering. We reported the retraining results on model ResNet18
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Table 2. Accuracy on original test set (Clean Accuracy) and adversarial set (Robustness)
of the retrained models

CIFAR-10 ResNet18 VGG16 DenseNet121

Method Clean Accuracy % Robustness % Clean Accuracy % Robustness % Clean Accuracy % Robustness %

FPT 95.06 95.78 (85.31 ↑) 93.20 93.17 (86.75 ↑) 94.06 95.30 (85.20 ↑)
HPF 94.82 95.19 (84.72 ↑) 92.99 92.84 (86.42 ↑) 93.80 94.88 (84.78 ↑)
SR 94.73 95.69 (85.22 ↑) 92.85 92.93 (86.51 ↑) 93.72 94.88 (84.78 ↑)

QFT 94.84 95.35 (84.88 ↑) 92.68 93.00 (86.58 ↑) 93.76 94.94 (45.31 ↑)

DeepGini 70.89 40.26 (29.79 ↑) 71.45 50.25 (43.83 ↑) 77.21 55.41 (45.31 ↑)
RobOT 74.49 57.52 (47.05 ↑) 78.94 64.33 (57.91 ↑) 78.34 68.78 (58.68 ↑)

SVHN ResNet50 Wide-ResNet50 SqueezeNet

Method Clean Accuracy % Robustness % Clean Accuracy % Robustness % Clean Accuracy % Robustness %

FPT 93.52 90.63 (45.55 ↑) 93.21 90.44 (45.89 ↑) 92.71 89.23 (29.83 ↑)
HPF 92.83 90.32 (45.24 ↑) 92.98 90.25 (45.70 ↑) 93.04 89.05 (29.65 ↑)
SR 93.25 90.49 (45.41 ↑) 93.03 89.72 (45.17 ↑) 92.87 89.05 (29.65 ↑)

QFT 92.98 89.76 (44.68 ↑) 93.14 90.11 (45.56 ↑) 92.62 89.04 (29.64 ↑)

DeepGini 88.06 77.99 (32.91 ↑) 88.25 78.21 (33.66 ↑) 89.12 79.87 (20.47 ↑)
RobOT 91.89 76.01 (30.93 ↑) 91.58 79.64 (35.09 ↑) 92.15 80.01 (20.61 ↑)

Table 3. Accuracy on original test set (Clean Accuracy) and OOD set (Robustness) of
the retrained models

Corruption Method Clean Accuracy % Robustness %

Weather
SaFeTS(FPT) 97.35 97.34

RobOT 98.49 94.32
DeepGini 98.65 96.05

Blur
SaFeTS(FPT) 87.99 95.44

RobOT 91.08 91.28
DeepGini 92.09 94.19

Noise
SaFeTS(FPT) 96.51 96.78

RobOT 96.51 95.34
DeepGini 96.47 96.47

Digital
SaFeTS(FPT) 98.43 95.01

RobOT 99.11 90.27
DeepGini 99.07 91.47
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in Table 3. The experimental results show that, for the weather, blur, noise, and digital
corrupted data, SaFeTS has effectively improved the robust generalization compared to
baselines, with a minor performance degradation on the original test set.

Unlike adversarial samples, OOD data are those that have not appeared in the training
data, but are not intentionally designed to deceive the model. The model may be confused
by specific noises or details in the data and miss the global characteristics. Choosing
samples with diversity can help the model to better generalize to a wide variety of data, not
just a specific subset of the training set. Experimental results show that SaFeTS can help
models focus on more fundamental properties and avoid being distracted by unnecessary
noise. By enhancing the diversity of the retraining samples, it can be ensured that the
model has been trained in a variety of different contexts, thus improving its robustness
in the face of unknown data. In summary, SaFeTS helps to enhance the robustness and
generalization ability of the model on OOD data.

Based on the experimental results, we can answer RQ3:
Answer to RQ3: SaFeTS can effectively improve OOD robustness of DNN models on
various types of corruption data, the overall results indicate that our method can improve
the performance over best-perform baseline.

7. Limitation

In this section, we discuss the limitations of SaFeTS. From the perspective of time over-
head, SaFeTS depends on the convergence speed of the clustering algorithm. To explore
the impact of clustering methods on the results, we also used a clustering algorithm differ-
ent from Kmeans++, the GMM, which is a density-based clustering method. We reported
the retraining results of CIFAR-10 (ResNet18) and SVHN (ResNet50) with two clustering
methods in Table 4 (selecting samples from adversarial sets).

Table 4. The accuracy on an adversarial set of the retrained models (Robustness) and
clustering time under different clustering methods (Kmeans++ and GMM)

Dataset Method
Robustness % Time (s)

Kmeans++ GMM Kmeans++ GMM

CIFAR-10

PFT 95.78 95.42 980.92 4221.60
HPF 95.19 95.60 1417.65 3008.59
SR 95.69 95.41 1480.64 4558.23

QFT 95.35 95.88 2028.23 4292.48

SVHN

PFT 90.63 90.07 491.45 2247.11
HPF 90.32 90.20 852.56 3004.25
SR 90.49 90.44 845.57 2457.21

QFT 89.76 88.12 1074.54 2542.44

The experimental results show that the choice of clustering method impacts the per-
formance of SaFeTS. Clustering with Kmeans++ performs better than GMM. The time
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overhead of SaFeTS is more extensive compared to baseline methods. However, the train-
ing time for DNNs is much longer than the time overhead of test selection. Therefore, the
time overhead of test selection can almost be ignored. In our retraining experiments, with
the addition of 73,257 and 200,000 samples to SVHN and CIFAR-10, the time needed for
each epoch is approximately 16 minutes and 20 minutes, respectively. And each training
is run separately on a single 3090 GPU. Thus, it is worth trading more test selection time
for better testing and retraining results. Nevertheless, to reduce the time overhead of sam-
ple selection, more efficient clustering algorithms or parallel computing can be attempted
to speed up the process.

8. Conclusion

In summary, this research proposed SaFeTS, a novel semantic feature-based test selec-
tion approach for DNNs grounded in frequency domain analysis. The core innovation lies
in utilizing saliency detection methods to extract semantic features aligned with human
perception. SaFeTS then discerns diverse categories within this semantic feature space
via clustering. By sampling test cases from each cluster, SaFeTS selects data with rich
semantics for testing and retraining DNNs. Extensive experiments highlighted the ability
of SaFeTS to uncover a more varied model misbehavior compared to existing selection
techniques. Further, retraining on the semantically diverse samples enhanced adversarial
and out-of-distribution robustness, with particularly strong gains of over 20% on adver-
sarial accuracy. The proposed frequency domain viewpoint thus offers valuable new per-
spectives on testing and improving DNN robustness. Limitations like clustering overhead
present opportunities for future work on optimizing SaFeTS. By releasing our method
publicly, this research aims to provide an effective resource to advance rigorous engineer-
ing of trustworthy DNNs. In future work, we will aim to investigate the generalization of
the SeFeTS approach to other domains besides image classification and computer vision,
especially security-critical domains.
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