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Abstract. Pedestrian attribute recognition is an important task for intelligent video
surveillance. However, existing methods struggle to accurately localize discrimi-
native regions for each attribute. We propose Attribute Localization Transformer
(ALFormer), a novel framework to improve spatial localization through two key
components. First, we introduce Mask Contrast Learning (MCL) to suppress re-
gional feature relevance, forcing the model to focus on intrinsic spatial areas for
each attribute. Second, we design an Attribute Spatial Memory (ASM) module to
generate reliable attention maps that capture inherent locations for each attribute.
Extensive experiments on two benchmark datasets demonstrate state-of-the-art per-
formance of ALFormer. Ablation studies and visualizations verify the effectiveness
of the proposed modules in improving attribute localization. Our work provides a
simple yet effective approach to exploit spatial consistency for enhanced pedestrian
attribute recognition.
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1. Introduction

Due to the constant demand for intelligent video surveillance and psychosocial behavior
research, Pedestrian Analysis Recognition (PAR) is a long-standing research topic.Compared
to low-level features, pedestrian attributes can be considered high-level semantic informa-
tion and are more robust against changes in lighting conditions and viewpoint. Therefore,
PAR is widely applied in the tasks of person re-identification, face verification, and human
identity recognition.

With the development of deep learning technology, PAR has made significant progress
in the past decade. Existing methods[1–4] mainly use complex networks such as Feature
Pyramid Network (FPN) to enrich attribute representation from multilevel feature maps
and combine attention mechanisms to accurately locate attribute-related regions. How-
ever, these CNN-based methods emphasized the extraction of local features, it is difficult
to capture long-range dependencies.

In recent years, vision transformers such as ViT [5], DeiT[6]and Swin Transformer[7]
have been widely used in various computer vision tasks, which combine the learning
methods of natural language processing and computer vision. Using the multi-head self-
attention module to focus on multiple areas at the same time, transformer-based models
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(a) (b)

Fig. 1. Illustration of the problem of predicting by inter-attribute correlation and our
main hypothesis on attribute localization.In(a), Class Activation Maps (CAM)[8] (with
red boundary) of the baseline method in “short sleeve” and “trousers” attributes of the
PA100K are visualized in the second row. Attribute-related regions of each attribute are
plotted by the red dotted frame in the first row. In (b), it mainly expresses the process of
Swin Transformer utilizes correlation between attributes for prediction, where the green
attributes indicate the attributes that Swin Transformer focus on, and the yellow
attributes indicate the attributes that Swin Transformer predicts based on the correlation

can capture long-range dependencies and retain more detailed information, which makes
them suitable for extracting rich structural features. However, they mainly complete fea-
ture extraction by modelling the fine-grained relevance of images. In the task of PAR,
it is manifested as over-reliance on attribute relevance for prediction, thereby reducing
the accuracy of attribute positioning. As shown in Figure 1(a), for pedestrian A, Swin
Transformer focuses on the short sleeve attribute region and can identify pedestrian A as
a person with shorts based on its correlation to the short sleeve. However, for pedestrian
B with trousers instead of shorts, the correlation between the short sleeve and shorts does
not exist. In this case, Swin Transformer still tends to use the prior correlation to predict
via focusing on the short sleeve attribute region, which results in incorrectly attribute lo-
calization and predicting the trousers as shorts attribute for pedestrian B. Furthermore,
recognition errors may occur for other attributes such as ’handbag’, ’female’, and ’long
hair’. Although there is a significant correlation between these attributes, it is not absolute.
In the PA100k [1] dataset, a considerable proportion of males carry handbags. Therefore,
conventional Swin Transformer-based methods struggle to achieve satisfactory recogni-
tion results for these attributes due to incorrect attribute relevance. This highlights the
baseline network’s over-reliance on attribute relevance. So correct semantical correlation
(such as gender attributes and skirt attributes) is critical between attributes [9].

Additionally, we hypothesize that the spatial location of the same attribute mostly ap-
pears at the similar position between different pedestrian images. For example, the short
sleeve attribute and the trousers attribute mostly appear in the upper and lower part of
the picture, respectively, which is shown in the first row of Figure 1(b). However, we
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observe that Class Activation Maps (CAM) [8] of the same attribute generated by the
baseline method exhibit significant location variations. Some examples are shown in the
second row of Figure 1(b). Considering two aspects, we propose Attribute Localization
Transformer (ALFormer). Specifically, ALFormer uses attribute spatial memory(ASM)
module that generates reliable and stable attribute-related regions to suppress position
shifts caused by over-fitting or label noise of single image. Then ASM extracts inherent
information based on accurate attribute positions, which assists to extract more compre-
hensive and represent attribute spatial features. Experimental evaluations results show that
the proposed method achieves 1.79% and 2.34% improvements on widely adopted public
datasets PA100k and PETA..

We make the following four contributions in this works:

• The Attribute Localization Transformer (ALFormer), a novel Transformer framework
is proposed to extract comprehensive attribute spatial information for pedestrian at-
tribute recognition.

• Mask Contrast Learning (MCL) scheme is introduced to suppress relevance to locate
more precise region for each attribute.

• The Attribute Spatial Memory (ASM) module is designed to generate exact spatial
attention regions and extract discriminative semantic features for each attribute.

• The experiments on two datasets (PETA and PA100K) show that our framework has
excellent performance compared with several other state-of-the-art methods. In addi-
tion, we also present visualization results to verify the effectiveness of the proposed
framework.

2. Related Works

Due to the constant demand for intelligent video surveillance and psychosocial behavior
research, pedestrian attribute recognition is an important and challenging task.

Early methods [10–12] usually rely on hand-crafted features and learn individual clas-
sifiers for each attribute. Kumar et al. [11] extracted HOG and color histograms of im-
portant facial feature areas and then trained multiple support vector ma-chines for facial
attribute recognition. Bourdev et al. [12] developed a three-layer SVM method to extract
high-level semantic information. However, it cannot effectively utilize the potential rele-
vance between attributes for separated classifiers.

Recently deep learning is well incorporated into PAR from a variety of studies. Liu
et al. [13] designed a deep CNN composed of LNet and ANet to locate faces and pre-
dict facial attributes. Abdulnabi et al. [14] proposed a joint multi-task learning method to
achieve information sharing between attributes for clothing attribute prediction. Hand and
Chellappa [15] adopted a multi-task learning CNN method based on a grouping scheme
to classify facial attributes. Han et al. [16] designed a Deep Multi-Task Learning CNN
method (DMTL) that learns shared features for all attributes and specific category features
for heterogeneous attributes. Li et al. [17] proposed a landmark-free facial attribute predic-
tion method that does not rely on landmark an-notations. Li et al. [18] introduced pedes-
trian structural knowledge into pedestrian at-tribute recognition and proposed a posture-
oriented pedestrian attribute deep prediction model.

Based on global feature similarities, the JRL network [19] uses Long Short-Term
Memory [20] to treat the pedestrian attribute recognition task as a sequence prediction
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problem. Attention mechanisms [1, 2, 18, 21, 22] are widely used in pedestrian attribute
recognition to locate attribute-related regions and learn discriminative feature represen-
tations. Tan et al. [21] proposed a pedestrian attribute analysis method based on parsing
attention, label attention, and spatial attention. The multi-directional attention module
HydraPlus-Net [1] extracts pixel-level features and semantic-level features to locate fine-
grained attributes. Liu et al. [2], based on CAM [8] and EdgeBox [23], proposed a Lo-
calization Guided Network method to extract attribute-related local features. The PGDM
[18] framework uses a pre-trained human soft tube estimator and Spatial Transformer
Networks (STNs) [24] to generate reliable attribute-related regions.

In recent years, Transformers have played an extremely important role in deep learn-
ing. It is a model proposed by Vaswani et al. [25] for natural language processing (NLP)
tasks with far-reaching impact. The Vision Transformer (ViT) proposed by Dosovitskiy
et al. [5] achieved breakthrough applications in the field of computer vision, combining
learning methods from natural language processing and computer vision, using multi-
head self-attention modules to simultaneously focus on multiple regions, capture long-
range dependencies and retain more detailed information, thereby extracting rich struc-
tural features to achieve higher performance improvements. DeiT proposed by Touvron et
al. [6] uses knowledge distillation to guide transformers to learn more effectively so that
the network no longer needs large-scale pre-training data. To reduce computation of ViT,
Liu et al. proposed the Swin Transformer [7], which introduces a shift-window-based
attention mechanism to reduce computational costs. Transformer models achieve com-
petitive performance in different computer vision tasks. However, such methods usually
rely too much on predicting image region relationships, which leads to biased learning of
attribute position information in PAR.

As stated, previous methods generally considered aspects such as global or local
pedestrian images, attention mechanisms, and attribute correlation but these methods only
considered a single image and could not fully exploit the spatial information of each
pedestrian attribute. In contrast, our method makes full use of the potential attribute spatial
information among different images. With proposed ASM and MCL modules, framework
can better focus on attribute region and in turn obtain robust performance.

3. Attribute Localization Transformer (ALFormer)

This section first describes the overall architecture of Attribute Localization Transformer
(ALFormer). After that, we present an attribute joint learning framework composed of
two parts: an attribute spatial module (ASM) module and a mask contrast learning (MCL)
scheme that incorporates Random Mask and contrast loss. Finally, we present the detail
of the employed loss function for ALFormer.

3.1. Overall Architecture

Figure 2 shows the overall structure of the proposed ALFormer framework. Our basic net-
work is identical to the four stages of Swin Transformer. Given a 2D image, it uniformly
splits the input image into a sequence of 2D non-overlapping flattened patches. However,
studies have shown that basic network over-reliance on attribute relevance for predic-
tion, thereby reducing the accuracy of attribute positioning. This paper proposes MCL
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Fig. 2. Overall framework architecture

scheme. It first introduces a random mask module that obtains feature map from stage 1
and generates two results: Fmask and FOri .Fmask (masked feature map) is fed into the
rest stages and classifier to obtain prediction logits Mask. FOri(original input feature
map) is put into stage 2,3,4 and ASM module to generate prediction logits. ASM mod-
ule generates spatial attention map and embedded vector Vi for each attribute. ALFormer
calculates contrast loss between logits and logits Mask. In addition, classification loss
is calculated by logits. Finally, ALFormer outputs the predicted score on attributes.

Fig. 3. MCL scheme structure. We introduce Random Mask (RM) on the feature map of
backbone stage 1, and calculate the contrast loss with the original feature prediction

3.2. Mask Contrast Learning Scheme

As illustrated in Figure 2, the summation of ASM module and MCL scheme is to capture
the spatial information of pedestrian attributes. Different spatial regions in input image
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are associated with different attributes. It is desirable to focus on related regions when
recognizing one attribute. However, we observe that Swin Transformer tends to focus on
a relatively small number of local regions within which attributes may be correlated with
other attributes, which leads Swin Transformer to predict attributes in those neglected re-
gions based on such correlation. In fact, discriminative information may exist within these
neglected regions, which is crucial for attribute identification. To address this problem, we
propose MCL scheme which consists of Random Mask and contrast loss. It can force the
framework to focus on intrinsic and discriminative attribute spatial regions for PAR tasks.
The MCL scheme is illustrated in Fig.3

Different from existing random occlusion schemes, the proposed MCL scheme is per-
formed at the feature level. The advantage is to reduce the correlation among feature
regions and force the framework to focus on exact attribute spatial regions.

Specifically, random mask features are generated for each batch of input image at
corresponding number. And then, Stage 1 of the framework outputs FOri in the spatial
dimension of the feature map, as shown in the formula:

Fmask = RM(FOri) (1)

A contrast loss function Lcon is set at the classifier stage to evaluate the difference
be-tween prediction results with and without Random Mask.As shown in the formula:

Lcon = −predOri × log(predMask) (2)

3.3. Attribute Spatial Memory Module

In this section, we propose the Attribute Spatial Memory(ASM) module to tackle the spa-
tial attention region deviation problem. As shown in Figure 4, we visually demonstrate
how to extract attribute spatial and semantic feature from ASM module. ASM module
first takes input feature to generate attention map A ∈ RB×M×H×W , and then selects re-
liable ones and saves them in Memory module. Finally, it generates exact spatial attention
regions and extract discriminative semantic features for each attribute.

In detail, ASM module takes feature map F ∈ RB×C×H×W and classifier weight
w ∈ RM×C as inputs, where F ∈ RB×C×H×W is the output of the backbone framework
and H,W,C represent height,width and channel dimension of feature map.

Inspired by CAM[8], we introduce probability values as a criterion to construct spatial
attention. As shown in the formula, ASM generates attention maps for each attribute by
weighting the classifier:

Attention Map Ai,m = wm · Fi(x, y) m = 0, 1, 2 . . . ,M − 1 (3)

where M is the number of attributes, Fi is the feature map of the backbone framework,
wm is the classifier weight of the m-th attribute.

After getting the spatial attention regions of each attribute, we adopt the selector which
takes logits and ground truth labels as input to aggregate the attention maps of qualified
positive samples ofm-th attribute. The main reason is that some attributes among images
are negative or low confidence values. As shown in the formula, ASM filters out negative
samples to get high-confidence predictions:

Attention Map = {Ai,m | Lablei,m = 1, Logitisi,m > coeff threshold} (4)
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Fig. 4. Attribute Spatial Memory(ASM) module structure

Through strict selection, Ai,mcan be regarded as reliable attribute spatial locations for
m-th attribute. A criticism of this experimental design is that in actual training process,
there are differences in attribute distribution of images in different batches. Moreover,
all images in a batch may be negative on some attributes. Inspired by EMA strategy,
we adopt a momentum-weighted scheme to update attention maps and save the reliable
spatial location. In addition, for cases where all images in a batch are negative on some
attributes, the corresponding attention map will not participate in updates. Specifically
shown in the formula:

As+1 = l ·Ae+1 + (1− l) ·Ae+1 (5)

Where s is the number of training batches step. We save the generated attribute spatial
attention map in memory module to assist subsequent feature pooling fusion.

The attention map Ai,m indicates the contribution of different spatia regions to the
prediction of attributes.. Therefore, ASM generates corresponding embedding vectors for
different attributes separately, which weights the spatial location information. Thus im-
proves spatial localization for each attribute. As shown in the formula, we normalize the
spatial attention map and then use it as a spatial weighting coefficient to perform weighted
pooling on the feature Feature:

Embed Attrm = Attention Map(Fi) m = 0, 1, 2 . . . ,M − 1; i = 0, 1, 2 . . . , B − 1
(6)

Where M is the number of attribute types and B is the number of batches. The se-
mantic embedding vector Embed Attrm for each attribute is obtained through weighted
pooling.

3.4. Loss Function

As illustrated in Figure 2, contrast loss Lcon and classification loss Lcls are obtained from
the ALFormer. The classification loss is calculated according to binary cross entropy loss,
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which is formulated as follow:

Lcls =
1

N

N∑
i=1

(yi log pi + (1− yi) log (1− pi)) (7)

The final loss function L is a weighted summation of the classification loss and con-
trast loss:

Loss = Lcls + λ · Lcon (8)

Where λ = 1 is set as default in all experiments if not specially specified.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct experiments on public datasets PETA [26] and PA100K [1]. Figure 5 shows
some pedestrian image samples. The Pedestrian Attribute (PETA) dataset [26] is collected
from 10 small-scale human datasets and consists of 19,000 human images, of which 9,500
images are used for the training set, 1,900 for the validation set, and 7,600 for the test set.
Each image is labeled with 61 binary attributes and 4 multi-class attributes. We follow
the commonly used experimental scheme [3, 4, 27] and only evaluate 35 attributes with a
positive rate greater than 5%.

PA100K dataset is constructed from images taken by 598 real outdoor surveillance
cameras and contains 100,000 pedestrian images with resolutions ranging from 50 × 100
to 758 × 454. It is the largest pedestrian attribute recognition dataset to date. The entire
dataset is randomly divided into training set, validation set and test set in a ratio of 8:1:1.
Each image in the dataset is labeled with 26 attributes, with labels of 0 or 1 indicating the
presence or absence of the corresponding attribute.

Two metrics are used to evaluate attribute recognition performance [27], namely label-
based metrics and four instance-based metrics. For label-based metrics, Deng et al. [27]
use mean accuracy (mA) to evaluate attribute recognition algorithms. For each attribute,
mA indicates the classification accuracy of positive and negative samples separately and
then takes their average value as the recognition result of that attribute. Finally, the average
value of all attributes is taken to obtain the recognition rate. Specifically, the experiment
uses this indicator as part of the evaluation criteria as shown in the formula:

mA =

L∑
i

(
TPi

Pi
+

TNi

Ni
) (9)

where L is the number of attributes. TP i and TNi are the number of correctly pre-
dicted positive and negative samples respectively, and Pi and Ni are the number of posi-
tive and negative samples respectively.

For instance-based metrics, we use Accuracy, Precision, Recall and F1-score.
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(a) (b)

Fig. 5. Public dataset image samples. (a) Pedestrian samples from the PA100k dataset;
(b) Pedestrian samples from the PETA dataset

4.2. Implement Details

Our method is implemented based on the PyTorch framework and trained in an end-to-end
manner. Since our work mainly focuses on how to use local features defined by attributes,
such framework can improve spatial location for each attribute. In the experiment, we
adopt Swin Transformer [7] as the backbone network to extract pedestrian image features
for a fair comparison. Pedestrian images are uniformly adjusted to 256×192 as input.
Random horizontal mirroring, padding and random cropping are used for enhancement.
AdamW is used for training with a weight decay of 0.0005. The initial learning rate is
0.0001 and the batch size is set to 64. The total epoch of the training phase is 50. The
momentum coefficient is 0.9998. The label smoothing coefficient is set to 0.2.

4.3. Baseline Method

Given a dataset, D = {(Xi, yi) | i = 1, 2, . . . , N}, PAR aims to predict multiple attribute
yi ∈ {0, 1} to i-th pedestrian image, where N ,M denotes the number of images and at-
tributes respectively, zero and one in the attribute vector yi indicate the absence and pres-
ence of the corresponding attributes of a pedestrian image. Following [3, 4, 27, 28], we
formulate pedestrian attribute recognition as a multi-label classification task which adopts
multiple binary classifiers with sigmoid functions [27]. Binary cross-entropy loss Lcls is
used as the optimization target:

Lcls =
1

N

N∑
i=1

M∑
j=1

(yi,j log pi,j + (1− yi,j) log (1− pi,j)) (10)

where pi,j is the prediction probability of the classifier.
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4.4. Ablation Analysis

In this section, we first study the impact of the ASM and MCL modules by conducting
analysis experiments on both two datasets. The baseline methods use the original Swin
Transform set only in section 4.3. As shown in Table 1, compared to the baseline method,
we have conducted the following observations. First, when the ASM module is not used,
the attribute positioning accuracy is worse and the recognition accuracy decreases. The re-
sults show that without correct attention regions, attribute semantic features lack discrimi-
native ability and contain more noise. The ASM module generates reliable attribute space
attention maps through attribute prediction scores, guiding attribute space feature fusion
and improving attribute positioning accuracy. Second, using the ASM module can directly
bring 1.18% and 2.06% performance improvements on PA100K and PETA respectively,
indicating that the spatial memory module is beneficial for locating attribute-related re-
gions. In addition, we introduced occlusion contrast loss MCL by generating random oc-
clusions on pedestrian images and evaluating the difference between their predictions and
normal input predictions. By suppressing regional relevance to improve the framework’s
attribute positioning ability, it brings 0.39% and 0.47% performance improvements on
PA100K and PETA respectively. Finally, when the ASM module and MCL module are
used together, our method’s mA on PA100K and PETA is 1.79% and 2.34% higher than
the baseline model.

In Figure 6, by comparing the recognition mean accuracy rates of the baseline model
Swin Transform and our model in the 26 attributes of the PA100K dataset , it can be seen
that the model in this paper has a recognition effect on most attributes. For some attributes
that rely on spatial regions (such as ”hat”, ”boots”), the improvement is significant due to
ALFormer focus on intrinsic spatial regions. For some attributes that inferred from other
related attributes (e.g. ”female”), the improvement is also significant because ALFormer
could generate reliable attention maps that capture inherent locations for each attribute.

Table 1. Ablation study of each component of our method on the PETA and PA100K.
Performance 328 improved by Mask Contrast Learning (MCL) and Attribute Spatial
Memory (ASM) validates the 329 effectiveness of our methods

PA100K PETA
Model

mA Accu Pre Recall F1 mA Accu Pre Recall F1
Baseline 82.82 81.47 89.08 88.88 88.98 87.20 80.17 86.54 88.73 87.62

Ours(+MCL) 83.21 81.70 89.18 88.99 89.09 87.67 71.65 76.81 89.01 82.46
Ours(+SPM) 84.00 77.00 82.85 90.08 86.32 89.26 79.55 84.83 89.92 87.30

Ours(+SPM,MCL) 84.61 78.86 84.11 91.03 87.43 89.54 80.75 86.15 90.04 88.05

4.5. Comparison with State-of-the-art Methods

In Table 2, we compare the performance of the proposed methods with several existing al-
gorithms on the PA100K and Table 3 is on the PETA. Compared with the performance re-
ported by the paper of MsVAA [3], VAC [28], and ALM [4] methods, ALFormer achieves
better performance on the PETA and PA100K with increasing few learnable parameters.
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Fig. 6. The mA for each label on PA100k compared to baseline model. Legends in the
figure: models are the same as in Table 1. The labels 0 to 25 are: female, ageover60,
age18-60, ageless18, front, side, back, hat, glasses, handbag, shoulderbag, backpack,
holdobjectsinfront, shortsleeve, longsleeve, upperstride, upperlogo, upperplaid,
uppersplice, lowerstripe, LowerPattern, longcoat, trousers, shorts, skirtanddress, boots

Compared to the MsVAA model adopted ResNet101 as the backbone network, we
achieve 4.95% and 1.56% performance improvements in mA and F1 on the PETA dataset.
Compared with localization-based methods such as the ALM model, which utilizes the
complicated combination of FPN, STN and SE modules introducing extra 17% param-
eters, ALFormer achieves 3.93% and 3.24% performance improvements in mA on both
popular datasets. We localize attributes by ASM, which is a simple yet effective attention
module to generate reliable and stable attribute-related regions and avoid heavy hand-
crafted design.

It can be noticed that the proposed method substantially outperforms the visual atten-
tion consistency (VAC) method. The VAC method hypothesis that global attention regions
of random augmentations of the same image are consistent. The VAC method focuses on
global attention regions of an individual image and cannot generate precise local attention
regions for each fine-grained attribute. However, for a pair of augmentations of the same
image, if attention regions of both augmentations are inaccurate, the VAC method cannot
solve the attention region deviation problem, which can be addressed by our proposed
method.

4.6. Effects of ALFormer

To better understand the effect of the improved model, we visualize the attribute regions
most attended by the framework in Figure 7. It visualizes the attribute heat maps of Swin
Transformer on the test set of the PA100K dataset. We take attribute attention maps of
four pedestrian images(from P1 to P4) as examples that shows the visualization of spatial
attention regions between the baseline method (green boundary) and the proposed AL-
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Table 2. Performance (%) of the comparison state-of-the-art methods and the proposed
method on the PA100K datasets. Five metrics, mean accuracy (mA), accuracy (Accu),
precision (Prec), recall (Recall), F1 are evaluated. The best results are highlighted in red
color, while the second bests are in blue.

method mA Accu Pre Recall F1
DeepMar[29] 72.70 70.39 82.24 80.24 81.32

HP-Net[1] 74.21 72.19 82.97 82.09 82.53
PGDM[19] 74.95 73.08 84.36 82.24 83.29

JLPIS-PAA[31] 81.61 78.89 86.83 87.73 87.27
ALM[4] 80.68 77.08 84.21 88.84 86.46

JLAC[30] 82.31 79.47 87.45 87.77 87.61
CoCNN[37] 80.56 78.30 89.49 84.36 86.85
LG-Net[32] 76.96 75.55 86.99 83.17 85.04

VAC[9] 79.04 78.95 88.41 86.07 86.83
SSC[33] 81.70 78.85 85.80 88.92 86.89
ALFomer 84.61 78.86 84.11 91.03 87.43

Table 3. Performance (%) of the comparison state-of-the-art methods and the proposed
method on the PETA datasets. The best results are highlighted in red color, while the
second bests are in blue

method mA Accu Pre Recall F1
CNN+SVM[13] 76.65 45.41 51.33 75.14 61.00

ACN[38] 81.15 73.66 84.06 81.26 82.64
DeepMar[29] 82.89 75.07 83.68 83.14 83.41

HP-Net[1] 81.77 76.13 84.92 83.24 84.07
PGDM[19] 82.97 78.08 86.86 84.68 85.76
DIAA[35] 84.59 78.56 86.79 86.12 86.46

JLPIS-PAA[31] 84.88 79.46 87.42 86.33 86.87
WPAL[34] 85.50 76.98 84.07 85.78 84.90

ALM[4] 86.30 79.52 85.65 88.09 86.85
JRL[20] 85.67 - 86.03 85.34 85.42

RCRA[36] 85.78 - 85.42 88.02 86.07
JLAC[30] 89.96 80.38 87.81 87.09 87.45

CoCNN[37] 86.97 79.95 87.58 87.73 87.65
MsVAA[3] 84.59 78.56 86.79 86.12 86.46

VAC[9] 83.63 78.94 87.63 85.45 86.23
SSC[33] 86.07 79.23 84.58 89.26 86.54
ALFomer 89.54 80.75 86.15 90.04 88.05
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Former framework (red boundary). Compared with the baseline method, it is noted that
the ALFormer helps to locate attribute-related regions for each attribute. In pedestrian
image P2 and P3 shown in Figure 7, only head region is considered when recognizing the
attribute “Glasses”. Our method can effectively improve spatial location for each attribute
by generating stable spatial attention and relevance suppression modules.

Fig. 7. Illustration of the effect of ALFormer. We take the attributes of four pedestrian
images as examples to show the visualization of spatial attention regions between the
baseline method (green boundary) and the proposed method (red boundary)

5. Conclusions

In this work, we identified and addressed the limitation of existing methods in accu-
rately localizing discriminative regions for pedestrian attributes. We proposed ALFormer,
a transformer-based framework that introduces two novel components Mask Contrast
Learning and Attribute Spatial Memory. The former suppresses misleading regional cor-
relations to force focus on intrinsic areas. The latter captures inherent spatial locations for
each attribute. Experiments showed state-of-the-art results on two datasets, with ablation
studies confirming the efficacy of our modules. The improved localization was further
demonstrated through visualizations. Our model provides an effective way to exploit spa-
tial consistency for pedestrian attribute recognition. Future directions include extending
the approach to other fine-grained recognition tasks and exploring optimal fusion with
global context.
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