
SIS
ComSIS

Com

Computer Science
and Information Systems

C
om
puter Science and Inform

ation System
s

ISSN: 1820-0214 (Print) 2406-1018 (Online)

Computer Science
and Information Systems

Published by ComSIS Consortium

V
ol 17, N

o 1, January 2020

Volume 17, Number 1
January 2020

Volume 17, Number 1, January 2020

Contents
Editorial
Guest Editorial
Papers
 1 Run-time Interpretation of Information System Application Models in Mobile Cloud Environments
 Nikola Tanković, Tihana Galinac Grbac
 29 E 29 Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers
 Loiy Alsbatin, Gürcü Öz, Ali Hakan Ulusoy
 51 Towards a software-based mobility management for 5G: An experimental approach
 forflattened network architectures
 Jesús Calle-Cancho, José-Manuel Mendoza-Rubio, José-Luis González-Sánchez,
 David Cortés-Polo, Javier Carmona-Murillo
 71 Instance-based classification using prototypes generated from large noisy and streaming datasets
 Stefanos Ougiaroglou, Dimitris Stefanos Ougiaroglou, Dimitris A. Dervos, Georgios Evangelidis
 93 Climate Change Opinions in Online Debate Sites
 Adrian Groza, Pinar Ozturk, Radu Razvan Slavescu, Anca Marginean
117 Architecting Business Process Maps
 Geert Poels, Félix García, Francisco Ruiz, Mario Piattini
141 Correctness of the Chord Protocol
 Bojan Marinković, Zoran Ognjanović, Paola Glavan, Anton Kos, Anton Umek
161 Distance161 Distance Transform and Template Matching Based Methods for Localization
 of Barcodes and QR Codes
 Melinda Katona, Péter Bodnár, László G. Nyúl
181 Comparison of systematically derived software metrics thresholds for
 object-oriented programming languages
 Tina Beranič, Marjan Heričko
205 Regression Verification for Automated Evaluation of Students Programs
 Milena Milena Vujošević Janičić, Filip Marić
229 Visualization of path patterns in semantic graphs
 José Paulo Leal
Papers selected from 8th International Conference on Model and Data Engineering (MEDI 2018)
253 A Mobile Crowd Sensing Framework for Suspect Investigation: An Objectivity Analysis and
 De-Identification Approach
 ElAlaoui ElAbdallaoui Hasna, ElFazziki Abdelaziz, Ennaji Fatima Zohra, Sadgal Mohamed
271 271 Verification and Testing of Safety-Critical Airborne Systems: a Model-based Methodology
 Mounia Elqortobi, Warda El-Khouly, Amine Rahj, Jamal Bentahar, Rachida Dssouli
293 Business Process Specification, Verification, and Deployment in a Mono-Cloud, Multi-Edge Context
 Saoussen Cheikhrouhou, Slim Kallel, Ikbel Guidara, Zakaria Maamar
315 A Tool-assisted Method for the Systematic Construction of Critical Embedded Systems using Event-B
 Pascal André, Christian Attiogbé, Arnaud Lanoix
339 Game-based learning and Gamification to improve skills in early years education
 Rachid Lamrani, El Hassan Rachid Lamrani, El Hassan Abdelwahed

ComSIS is an international journal published by the ComSIS Consortium

ComSIS Consortium:
University of Belgrade:
Faculty of Organizational Science, Belgrade, Serbia
Faculty of Mathematics, Belgrade, Serbia
School of Electrical Engineering, Belgrade, Serbia
Serbian Academy of Science and Art:
Mathematical Institute, Belgrade, Serbia
Union University:
School of Computing, Belgrade, Serbia

University of Novi Sad:
Faculty of Sciences, Novi Sad, Serbia
Faculty of Technical Sciences, Novi Sad, Serbia
Faculty of Economics, Subotica, Serbia
Technical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
University of Montenegro:
Faculty of Economics, Podgorica, Montenegro

EDITORIAL BOARD:
Editor-in-Chief: Mirjana Ivanović, University of Novi Sad
Vice Editor-in-Chief: Ivan Luković, University of Novi Sad
Managing Editor:
 Miloš Radovanović, University of Novi Sad

Editorial Assistants:
 Vladimir Kurbalija, University of Novi Sad
 Jovana Vidaković, University of Novi Sad
 Ivan Pribela, University of Novi Sad
 Slavica Aleksić, University of Novi Sad
 Srđan Škrbić, University of Novi Sad
 Miloš Savić, University of Novi Sad

Editorial Board:
C. Badica, University of Craiova, Romania
M. Bajec, University of Ljubljana, Slovenia
L. Bellatreche, ISAE-ENSMA, France
I. Berković, University of Novi Sad, Serbia
M. Bohanec, Jožef Stefan Institute Ljubljana, Slovenia
D. Bojić, University of Belgrade, Serbia
Z. Bosnic, University of Ljubljana, Slovenia
S. Bošnjak, University of Novi Sad, Serbia
D. Brđanin, University of Banja Luka, Bosnia and
Hercegovina
Z. Budimac, University of Novi Sad, Serbia
C. Chesñevar, Universidad Nacional del Sur, Bahía
Blanca, Argentina
P. Delias, https://pavlosdeliassite.wordpress.com
B. Delibašić, University of Belgrade, Serbia
G. Devedžić, University of Kragujevac, Serbia
D. Đurić, University of Belgrade, Serbia
J. Eder, Alpen-Adria-Universität Klagenfurt, Austria
V. Filipović, University of Belgrade, Serbia
M. Gušev, Ss. Cyril and Methodius University Skopje, North
Macedonia
M. Heričko, University of Maribor, Slovenia
L. Jain, University of Canberra, Australia
D. Janković, University of Niš, Serbia
J. Janousek, Czech Technical University, Czech Republic
Z. Jovanović, University of Belgrade, Serbia
Lj. Kašćelan, University of Montenegro, Montenegro
P. Kefalas, City College, Thessaloniki, Greece
S-W. Kim, Hanyang University , Seoul, Korea
J. Kratica, Institute of Mathematics SANU, Serbia
D. Letić, University of Novi Sad, Serbia
Y. Manolopoulos, Aristotle University of Thessaloniki,
Greece

M. Mernik, University of Maribor, Slovenia
B. Milašinović, University of Zagreb, Croatia
A. Mishev, Ss. Cyril and Methodius University Skopje, North
Macedonia
N. Mitić, University of Belgrade, Serbia
G. Nenadić, University of Manchester, UK
N-T. Nguyen, Wroclaw University of Science and
Technology, Poland
P Novais, University of Minho, Portugal
B. Novikov, St Petersburg University, Russia
S. Ossowski, University Rey Juan Carlos, Madrid, Spain
M. Paprzicky, Polish Academy of Sciences, Poland
P. Peris-Lopez, University Carlos III of Madrid, Spain
J. Protić, University of Belgrade, Serbia
M. Racković, University of Novi Sad, Serbia
B. Radulović, University of Novi Sad, Serbia
H. Shen, Sun Yat-sen University/University of Adelaide,
Australia
J. Sierra, Universidad Complutense de Madrid, Spain
M. Stanković, University of Niš, Serbia
B. Stantic, Griffith University, Australia
L. Šereš, University of Novi Sad, Serbia
H. Tian, Griffith University, Gold Coast, Australia
N. Tomašev, Google, London
G. Trajčevski, Northwestern University, Illinois, USA
M. Tuba, John Naisbitt University, Serbia
K. Tuyls, University of Liverpool, UK
D. Urošević, Serbian Academy of Science, Serbia
G. Velinov, Ss. Cyril and Methodius University Skopje, North
Macedonia
F. Xia, Dalian University of Technology, China
K. Zdravkova, Ss. Cyril and Methodius University Skopje,
North Macedonia
J. Zdravković, Stockholm University, Sweden

ComSIS Editorial Office:
University of Novi Sad, Faculty of Sciences,
Department of Mathematics and Informatics

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
Phone: +381 21 458 888; Fax: +381 21 6350 458

www.comsis.org; Email: comsis@uns.ac.rs

Volume 17, Number 1, 2020

Novi Sad

Computer Science and Information Systems

ISSN: 1820-0214 (Print) 2406-1018 (Online)

The ComSIS journal is sponsored by:

Ministry of Education, Science and Technological Development of the Republic of Serbia

http://www.mpn.gov.rs/

http://www.mpn.gov.rs/

Computer Science and
Information Systems

AIMS AND SCOPE

Computer Science and Information Systems (ComSIS) is an international refereed journal, pub-

lished in Serbia. The objective of ComSIS is to communicate important research and development

results in the areas of computer science, software engineering, and information systems.

We publish original papers of lasting value covering both theoretical foundations of computer

science and commercial, industrial, or educational aspects that provide new insights into design

and implementation of software and information systems. In addition to wide-scope regular

issues, ComSIS also includes special issues covering specific topics in all areas of computer

science and information systems.

ComSIS publishes invited and regular papers in English. Papers that pass a strict reviewing

procedure are accepted for publishing. ComSIS is published semiannually.

Indexing Information

ComSIS is covered or selected for coverage in the following:

۰ Science Citation Index (also known as SciSearch) and Journal Citation Reports / Science

Edition by Thomson Reuters, with 2018 two-year impact factor 0.620,

۰ Computer Science Bibliography, University of Trier (DBLP),

۰ EMBASE (Elsevier),

۰ Scopus (Elsevier),

۰ Summon (Serials Solutions),

۰ EBSCO bibliographic databases,

۰ IET bibliographic database Inspec,

۰ FIZ Karlsruhe bibliographic database io-port,

۰ Index of Information Systems Journals (Deakin University, Australia),

۰ Directory of Open Access Journals (DOAJ),

۰ Google Scholar,

۰ Journal Bibliometric Report of the Center for Evaluation in Education and Science

(CEON/CEES) in cooperation with the National Library of Serbia, for the Serbian Ministry of

Education and Science,

۰ Serbian Citation Index (SCIndeks),

۰ doiSerbia.

Information for Contributors

The Editors will be pleased to receive contributions from all parts of the world. An electronic

version (MS Word or LaTeX), or three hard-copies of the manuscript written in English, intended

for publication and prepared as described in "Manuscript Requirements" (which may be

downloaded from http://www.comsis.org), along with a cover letter containing the corresponding

author's details should be sent to official journal e-mail.

Criteria for Acceptance

Criteria for acceptance will be appropriateness to the field of Journal, as described in the Aims

and Scope, taking into account the merit of the content and presentation. The number of pages of

submitted articles is limited to 20 (using the appropriate Word or LaTeX template).

Manuscripts will be refereed in the manner customary with scientific journals before being

accepted for publication.

Copyright and Use Agreement

All authors are requested to sign the "Transfer of Copyright" agreement before the paper may be

published. The copyright transfer covers the exclusive rights to reproduce and distribute the

paper, including reprints, photographic reproductions, microform, electronic form, or any other

reproductions of similar nature and translations. Authors are responsible for obtaining from the

copyright holder permission to reproduce the paper or any part of it, for which copyright exists.

Computer Science and Information Systems

Volume 17, Number 1, January 2020

CONTENTS

Editorial

Guest Editorial

Papers

1 Run-time Interpretation of Information System Application Models in

Mobile Cloud Environments

Nikola Tanković, Tihana Galinac Grbac

29 Efficient Virtual Machine Placement Algorithms for Consolidation in

Cloud Data Centers

Loiy Alsbatin, Gürcü Öz, Ali Hakan Ulusoy

51 Towards a software-based mobility management for 5G: An experimental

approach for flattened network architectures

Jesús Calle-Cancho, José-Manuel Mendoza-Rubio, José-Luis González-

Sánchez, David Cortés-Polo, Javier Carmona-Murillo

71 Instance-based classification using prototypes generated from large noisy

and streaming datasets

Stefanos Ougiaroglou, Dimitris A. Dervos, Georgios Evangelidis

93 Climate Change Opinions in Online Debate Sites

Adrian Groza, Pinar Ozturk, Radu Razvan Slavescu, Anca Marginean

117 Architecting Business Process Maps

Geert Poels, Félix García, Francisco Ruiz, Mario Piattini

141 Correctness of the Chord Protocol

Bojan Marinković, Zoran Ognjanović, Paola Glavan, Anton Kos, Anton Umek

161 Distance Transform and Template Matching Based Methods for

Localization of Barcodes and QR Codes

Melinda Katona, Péter Bodnár, László G. Nyúl

181 Comparison of systematically derived software metrics thresholds for

object-oriented programming languages

Tina Beranič, Marjan Heričko

205 Regression Verification for Automated Evaluation of Students Programs

Milena Vujošević Janičić, Filip Marić

229 Visualization of path patterns in semantic graphs

José Paulo Leal

Papers selected from 8th International Conference on Model and Data

Engineering (MEDI 2018)

253 A Mobile Crowd Sensing Framework for Suspect Investigation: An

Objectivity Analysis and De-Identification Approach

ElAlaoui ElAbdallaoui Hasna, ElFazziki Abdelaziz, Ennaji Fatima Zohra,

Sadgal Mohamed

271 Verification and Testing of Safety-Critical Airborne Systems: a Model-

based Methodology

Mounia Elqortobi, Warda El-Khouly, Amine Rahj, Jamal Bentahar,

Rachida Dssouli

293 Business Process Specification, Verification, and Deployment in a Mono-

Cloud, Multi-Edge Context

Saoussen Cheikhrouhou, Slim Kallel, Ikbel Guidara, Zakaria Maamar

315 A Tool-assisted Method for the Systematic Construction of Critical

Embedded Systems using Event-B

Pascal André, Christian Attiogbé, Arnaud Lanoix

339 Game-based learning and Gamification to improve skills in early years

education

Rachid Lamrani, El Hassan Abdelwahed

Computer Science and Information Systems 17(1): i–iii https://doi.org/10.2298/CSIS200100iI

Editorial

Mirjana Ivanović1 and Miloš Radovanović1

University of Novi Sad, Faculty of Sciences
Novi Sad, Serbia

{mira,radacha}@dmi.uns.ac.rs

Volume 17 of the Computer Science and Information Systems journal, for the year
2020, is started with this issue consisting of 11 regular articles, as well as 5 articles within
the special section dedicated to extended versions of papers published in the proceed-
ings of MEDI 2018, 8th International Conference on Model and Data Engineering, which
took place in Marrakesh, Morocco, October 24-26, 2018. We thank the guest editors,
Djamal Benslimane, Stephane Jean, Ladjel Bellatreche, and Kazumi Nakamatsu, and ac-
knowledge the hard work and enthusiasm of our authors and reviewers, without whom
the current issue would not have been possible.

This issue starts with “Run-time Interpretation of Information System Application
Models in Mobile Cloud Environments” by Nikola Tanković and Tihana Galinac Gr-
bac, which proposes an architectural framework for building distributed information sys-
tem applications in which application models are directly interpreted during execution,
shortening evaluation cycles and providing faster feedback to developers. The application
model is represented as a graph structure complemented with a procedural action script-
ing language that can express more complex software behavior. A case study in a mobile
cloud environment showed the approach shortened the requirements engineering process
and automated the configuration and deployment process by providing more engagement
of end-users.

In the second article, “Efficient Virtual Machine Placement Algorithms for Consol-
idation in Cloud Data Centers,” Loiy Alsbatin et al. propose new algorithms for virtual
machine (VM) placement for the problem of dynamic VM consolidation in cloud environ-
ments. The two proposed algorithms, CPU Priority based Best-Fit Decreasing (CPBFD)
and Dynamic CPU Priority based Best-Fit Decreasing (DCPBFD), are compared with the
state-of-the-art algorithms for VM placement through simulations with real-world work-
load traces, showing that the proposed algorithms provide the least service level agree-
ment violations, least VM migrations, and efficient energy consumption.

“Towards a Software-Based Mobility Management for 5G: An Experimental Ap-
proach for Flattened Network Architectures,” by Jesús Calle-Cancho et al. proposes a
novel mobility management solution which takes advantage of software defined network-
ing (SDN). The approach avoids the use of IP-IP tunnels and adds the dynamic flow man-
agement capability provided by SDN. Comparison with the network-based distributed
mobility management (NB-DMM) approach is provided through an analytical model and
experimental testbed, showing that the proposed solution achieves better efficiency in
terms of signaling and routing cost.

Stefanos Ougiaroglou et al., in “Instance-Based Classification Using Prototypes Gen-
erated from Large Noisy and Streaming Datasets,” present a new variation of their algo-
rithm for instance-based classification aimed at streaming data, that maintains prototypes
in a convenient and manageable way. This is achieved by removing the weakest prototype

ii Mirjana Ivanović and Miloš Radovanović

when a new prototype is generated. The experimental results reveal that the proposed
algorithm is as accurate as its predecessor, but is more efficient and noise tolerant.

“Climate Change Opinions in Online Debate Sites,” authored by Adrian Groza et al.,
focuses on developing technical instrumentation for making sense of a set of online ar-
guments concerning climate change, and aggregating them into usable results for policy
making and climate science communication. The objectives are three-fold: (1) aggregate
arguments posted for a certain debate topic, (2) consolidate opinions posted under several
but related topics, and (3) identify possible linguistic characteristics of the argumenta-
tive texts. The methods proposed to fulfill the given objectives may be used in domains
different from climate change.

In the article entitled “Architecting Business Process Maps,” Geert Poels et al. posi-
tion the concept of process map within the domain of architecture description. That way,
the authors identify and clarify diverging views of this concept as found in the literature
and set requirements for describing process maps, producing a meta-model for a process
mapping language. The meta-model allows investigating the suitability of enterprise ar-
chitecture (EA) modeling languages as a basis for defining a domain-specific language
for process mapping along with the creation of a better understanding of business process
architecture in relation to EA.

“Correctness of the Chord Protocol” by Bojan Marinković et al. studies the Chord
protocol – one of the first, the simplest and the most popular distributed protocols that
are at the core of technologies such as the Internet of Things (IoT). Up to now, the Chord
protocol has been applied without a formal proof of correctness. This article provides the
proof of correctness of the Chord protocol using the logic of time and knowledge with the
respect to the set of possible executions, called regular runs. A deterministic description of
the correctness of the Chord protocol is provided, considering Chord actions that maintain
a ring topology while the nodes can freely join or leave.

The article “Distance Transform and Template Matching Based Methods for Local-
ization of Barcodes and QR Codes,” by Melinda Katona et al. addresses the problem of
the existence of a wide variety of bar/QR code types, sizes, noise levels and blurring
by introducing two methods for localization of 1D barcodes based on template match-
ing and distance transformation, and a third method for QR codes, which are able to
simultaneously localize several different types of codes. Experimental evaluation shows
improvement over previous approaches.

Tina Beranič and Marjan Heričko in their article “Comparison of systematically de-
rived software metrics thresholds for object-oriented programming languages,” present
the results of an empirical study aimed at comparing systematically obtained threshold
values for nine software metrics in four object-oriented programming languages (Java,
C++, C#, and Python). The challenges in the threshold derivation domain were addressed
within introduced adjustments of the benchmark-based threshold derivation approach.
The comparison reveals that threshold values differ between different programming lan-
guages.

In “Regression Verification for Automated Evaluation of Students Programs,” Milena
Vujošević Janičić and Filip Marić propose an approach that provides precise assessment
of functional correctness of student programs based on a form of software verification
founded on formal static analysis of code called regression verification. Furthermore, the
paper describes the open-source, publicly available implementation of the approach, built

Editorial iii

on top of compiler infrastructure LLVM and the software verification tool LAV. Evalu-
ation of the approach on two real-world corpora of student programs shows that the ap-
proach can be used as a precise and reliable supplementary technique in grading of student
programs in various computer-science courses, as well as programming competitions.

Finally, “Visualization of path patterns in semantic graphs,” by José Paulo Leal presents
a precise definition of a-graphs (a novel kind of graph designed to highlight path patterns
using summarization) and of the mapping of semantic graphs into a-graphs. Visualization
is obtained with a-graphs diagrams, and a web application to visualize and interact with
these diagrams was implemented to validate the proposed approach. Diagrams of well-
known semantic graphs are presented to illustrate the use of a-graphs for discovering path
patterns in different settings. The validation with large semantic graphs is the basis for
a discussion on the insights provided by a-graphs on large semantic graphs: the differ-
ence between a-graphs and ontologies, path pattern visualization using a-graphs and the
challenges posed by large semantic graphs.

Computer Science and Information Systems 17(1): v–vii https://doi.org/10.2298/CSIS200100vB

Guest Editorial
Papers selected from 8th International Conference on

Model and Data Engineering (MEDI 2018)

Djamal Benslimane1, Stéphane Jean2, Ladjel Bellatreche2, and Kazumi Nakamatsu3

1 University of Claude Bernard Lyon 1
Lyon, France

djamal.benslimane@univ-lyon1.fr
2 LIAS/ISAE-ENSMA – Poitiers University

Poitiers, France
(jean,bellatreche)@ensma.fr

3 University of Hyogo
Hyogo, Japan

nakamatu@pf7.so-net.ne.jp

This special issue aims at shedding the light on some recent and significant advances
in the field of model and data engineering. It presents selected papers from the scientific
workshops that were held in conjunction with the 8th International Conference on Model
and Data Engineering (MEDI 2018), which took place in Marrakesh, Morocco, October
24-26, 2018. MEDI 2018 attracted four workshops on a wide range of topics that fall into
the main area of the MEDI 2018 conference:

1. The Model and Data Engineering for Social Good Workshop (MEDI4SG)
2. The international workshop on moDeling, vErification and Testing of dEpendable

CriTical systems (DETECT)
3. The International Workshop: Formal Model for Multifaceted Systems (REMEDY)
4. The Second International Workshop on Cybersecurity and Functional Safety in Cyber-

Physical Systems (IWCFS)

This special issue was managed as follows: the organizers of the first three workshops
proposed their best paper, except DETECT that suggested two papers. This is because this
workshop had a good acceptance rate since it attracted 19 submissions and only six papers
have been accepted. We also invited one paper from the MEDI 2018 main conference
based on its good ranking. The content of each paper has been extended by at least 30%.
After the second round of reviews, we finally accepted five papers.
We congratulate the authors who submitted articles to MEDI 2018 workshops.

The five selected papers are summarized as follows:
The first article titled, ”A Mobile Crowd Sensing Framework for Suspect Investi-

gation: An Objectivity Analysis and De-Identification Approach”, by Hasna Elalaoui
Elabdallaoui, Abdelaziz Elfazziki, Fatima Zohra Ennaji, Mohamed Sadgal introduces an
approach to develop a crowdsourcing framework allowing a wider collaboration between
citizens and their authorities. It mainly allows collecting information on crimes and sus-
pects, computing users credibility and information reliability. A de-identification mech-
anism is also used to anonymize data users. The proposed framework is generic, can be
used in different contexts and is suitable for any type of crimes that can be witnessed

vi Djamal Benslimane et al.

by citizen participants. Unsupervised machine learning techniques are used to cluster re-
ported locations on crimes before applying an objectivity analysis. This latter is based on
a probabilistic algorithm to identify the most reliable crime locations.

The second article titled, ”Verification and Testing of Safety-Critical Airborne Sys-
tems: a Model-based Methodology”, by Mounia Elqortobi, Warda El-Khouly, Amine
Rahj, Jamal Bentahar, Rachida Dssouli highlights the importance of formal verification
and testing activities in the avionics software development cycle. It then addresses the
safety-critical software verification and testing issue and proposes to integrate model-
based verification and model-based testing within a single framework. The defined frame-
work starts first by formally modeling the safety-critical airborne system from informal
and consistent requirement specifications, and produces an FSM-like model. The obtained
model is then refined and encoded in the extended Interpreted Systems Programming Lan-
guage (ISPL+). Computation Tree Logic (CTL) is also used to extract and express the
system requirements in the form of temporal properties. Intended properties are automat-
ically checked and witness-examples or counter-examples are generated to either prove
the satisfaction of properties or guide designers to detect and repair errors in the formal
system model.

The third article titled, ”Business Process Specification, Verification, and Deployment
in a Mono-Cloud, Multi-Edge Context”, by Saoussen Cheikhrouhou, Slim Kallel, Ik-
bel Guidara, Zakaria Maamar focuses on the satisfaction of time-constrained business
processes in the context of cloud and edge-based resources. It presents an approach to
formally specify and verify cloud resources allocation to business processes using Time
Petri- Nets model, and to fragmenting and deploying free-of-violations time-constrained
business processes on mono-cloud and multi-edge context. Different phases are intro-
duced at both design and run time, including specification, (ongoing) placement, transfor-
mation, and (ongoing) verification. The ongoing verification phase produces a list of vio-
lations that are handled in the ongoing placement by producing corrective actions, mainly
on where future data and tasks should be re-placed to better satisfy time constraints.

The fourth article titled, ”A Tool-assisted Method for the Systematic Construction of
Critical Embedded Systems using Event-B”, by Pascal André, Christian Attiogbé, Arnaud
Lanoix concerns the critical embedded systems and proposes an Event-B based approach
to support formal modeling of the full software design process to better address reliability
and correctness construction requirements. The design of a companion tool of the pro-
posed method is presented and experimented in the context of the landing gear case study
which is a typical cyber-physical system involving the control and interaction of software
and physical components.

The fifth article titled ”Game-based learning and Gamification to improve skills in
early years’ education”, by Rachid Lamrani and El Hassan Abdelwahed focuses on how
to improve children’s skills in their early years education and reduce the drop-out rate of
learners through play-based learning and gamification mechanisms. The proposed system
principles are aligned with the main orientations of the Montessori approach. Different
factors for the assessment of the proposed solution are identified and a variety of serious
gaming activities is provided.

We gratefully acknowledge the support of the contributors to this special issue and
express our great esteem to the anonymous reviewers for the time and effort they have put
in reviewing these papers. For readers of this volume, we hope you will find its content

Guest Editorial vii

interesting and will inspire you to look further into the challenges that still lie ahead in
our digital society. We also would like to thank Prof. Mirjana Ivanovic, the editor in chief
of the COMSIS journal for accepting to run this special issue.

Computer Science and Information Systems 17(1):1–27 https://doi.org/10.2298/CSIS180829021T

Run-time Interpretation of Information System
Application Models in Mobile Cloud Environments

Nikola Tanković1 and Tihana Galinac Grbac2

1 Faculty of Informatics, Juraj Dobrila University of Pula
nikola.tankovic@unipu.hr

2 Faculty of Engineering, Juraj Dobrila University of Pula
tihana.galinac@unipu.hr

Abstract. Application models are commonly used in the development of informa-
tion systems. Recent trends have introduced techniques by which models can be
directly transformed into execution code and thus become a single source for appli-
cation design. Inherently, it has been challenging for software developers to become
proficient in designing entire systems due to the complex chain of model transfor-
mations and the further refinements required to the code generated from the models.
We propose an architectural framework for building the distributed information sys-
tem applications in which the application models are directly interpreted during ex-
ecution. This approach shortens the evaluation cycles and provides faster feedback
to developers. Our framework is based on a holistic application model represented
as a graph structure complemented with a procedural action scripting language that
can express more complex software behavior.
We present the implementation details of this framework architecture in a mobile
cloud environment and evaluate its benefits in eleven projects for different cus-
tomers in the retail, supply-chain management and merchandising domain involving
300 active application users. Our approach allowed engaging end-users in the soft-
ware development process in the phase of specifying executable application models.
It succeeded in shortening the requirements engineering process and automating the
configuration and deployment process. Moreover, it benefited from the automatic
synchronization of application updates for all active versions at the customer sites.

Keywords: model-driven development, MDD, cloud computing, information sys-
tem, model interpretation, application graph model

1. Introduction

The information systems (IS) development process includes numerous repeating patterns
such as constructing database schema, designing user interfaces for data display and ma-
nipulation, building communication services [1], etc. These and similar patterns arise dur-
ing the process of human or semi-automatic translation of the system model artifacts to
machine-executable code. Application modeling has become extremely relevant—not just
for supporting analysis and design phases—but in serving as the primary source for au-
tomatic application generation [2]. Therefore, Model-Driven Development (MDD) advo-
cates the automation of repetitive software development tasks.

In addition, such automation opens new opportunities for end-users to actively par-
ticipate in the software development process, offloading the development tasks that were

2 Nikola Tanković and Tihana Galinac Grbac

exclusive to software engineers [3]. Figure 1 depicts a generic scenario of how this is
applied. The software developers can steer their focus on providing generic components
and/or model transformation procedures that are actively reused through different appli-
cation models defined by the end-user developers.

End-user
Developer

Software
Developer

Model

Reusable
Components

AGM
system

Application
End-user

Fig. 1. Offloading the software developers by introducing modeling techniques
understandable to end-users

Additionally, the cloud computing paradigm facilitates software provisioning by en-
abling software providers with large-scale infrastructure resources paid on a per usage
basis [4]. The cloud services benefit from offloading software and system engineers due
to the high level of automation.

This paper proposes an approach to alleviate the role of end-users in the development
process of information systems. This goal is achieved by interpreting application models
at runtime on a highly automated distributed cloud environment. We strive to gain benefits
from: (1) enabling adaptive and rapid-feedback modeling in which changes can be made
quickly and applied easily, (2) enabling easier software maintenance and distribution, and
(3) runtime application version management with quick transition times between different
end-application versions. Our approach is targeted primarily at small-to-medium-sized
projects that require fast development cycles and a greater degree of exploration during
the requirements-gathering phase.

To achieve model interpretation, we devised a technique that represents models at
runtime as directed graphs, called the Application Graph Model (AGM). To supplement
AGM for building more complex solutions, we provide a complementary action scripting
language targeted to advanced users with a software programming skillset. This paper de-
scribes the AGM execution architecture and evaluates it with a concrete implementation
for building mobile-enabled information systems [5] in the retail, supply chain manage-
ment, and the merchandising domain.

The rest of this paper is organized as follows: Section 2 provides the rationale behind
the model interpretation. Section 3 lays a conceptual foundation for interpreting models in
the information system application domain. The implementation details are presented in
Section 4 together with a discussion concerning our experiences of AGM usage in practice
and an example application model. The limitations of our approach are disseminated in

Run-time Interpretation of IS Models in Mobile Cloud 3

Section 5. Related work is reviewed in Section 6. Finally, Section 7 concludes the paper
and elaborates on the possibilities for further research.

2. Background

Two major strategies exist for transforming models to executable applications [6]: (1) the
generative approach, in which models undergo a series of transformations that result in
executable application code, and (2) the interpretative approach, in which models are ex-
ploited through runtime interpretation. Generative solutions yield better end applications
performance-wise because runtime interpretation of models comes with additional execu-
tion cost. The existing strategies, such as the Model-Driven Architecture initiative (MDA)
and the Eclipse Modeling Framework (EMF), focus primarily on the generative approach.
Though application performance is superior, the generative approach requires the defini-
tion of a series of model transformation steps using different templates for compiling the
higher-level model to lower-level programming code. Specifying such transformations
can be extremely challenging [7]. Consequently, it involves a broader spectrum of highly
specialized engineers. While such involvement is essential for large-scale software prod-
ucts, at the same time, such characteristics hinder large-scale MDD adoption.

Another ongoing research challenge associated with the generative approaches is the
manual source-code refinement typically applied after the initial model to code transfor-
mations. While the code generated from models covers the majority of generic application
functionalities, some parts of applications still require the implementation of specific busi-
ness logic. These highly specific portions of applications are difficult to represent using
high-level abstract models [8]. Therefore, specific functionality is often implemented af-
ter the initial code has been generated from the models. This post-model-generation code
refinement requirement has several inherent drawbacks: (1) it impacts the synchronization
between the model and the application source code, (2) it requires specialized software
programming skills, and (3) it imposes a burden on model and application change and
deployment management, because it requires additional housekeeping for each version of
the model, transformation rules, code templates and customized code to maintain their
compatibility [8]. To address these drawbacks, some solutions have proposed modeling
specific functionalities by providing an abstract action domain-specific language [9,10]
that is also transformed to concrete programming code through compilation. This ap-
proach works in keeping the models synchronized but raises other difficulties. For exam-
ple, specifying model transformation rules requires expert knowledge and has a massive
impact on the customer-engineer requirements negotiation process. Rapid prototyping be-
comes almost impossible: the time required for generating code, compiling, installing and
restarting existing systems can range from several minutes to several hours [11].

3. AGM Solution

As we briefly discussed in a previous research paper [12], AGM reuses the Object and
Process modeling approach [13] standardized in Automation systems and integration—
the Object-Process Methodology, ISO/PAS 19450:2015. Object Process Methodology
(OPM) is a holistic graphical modeling language applicable to a large variety of domains.

4 Nikola Tanković and Tihana Galinac Grbac

The main advantage of OPM is its ability to capture the dynamic and static aspects of
a system within a single model. The OPM approach handles model complexity through
refinement techniques [14] and alternative model views rather than splitting the model-
ing process using several semantically orthogonal modeling languages. The underlying
model in OPM is holistic: it captures the complete end-solution within a single model.

Our solution builds upon the OPM research in several ways:

– We emphasize the holistic model idea derived from a reflexive meta-model; that is, a
model that can describe itself. The Meta-Object Facility (MOF) [15] from the Model-
Driven Architecture (MDA) initiative is also reflexive, but it is used to derive a set of
semantically and not necessarily compatible models.

– We built the AGM meta-model in a manner similar to the OPM meta-model, but it
possesses specialized constructs for defining mobile information system applications.

In the following subsections, we present the framework for realizing the runtime
model interpretation, followed by an explanation of the AGM meta-model and, finally,
the details of how model interpretation is achieved.

3.1. AGM Framework Architecture

Third Party Services

Application Graph Model (AGM)

Interface ViewData View Process View

Artifacts Repository

Data Processing
 Components
Repository

User Interface
Components
Repository

Execution Platform

Data Persistence
Adapter

Process
Executor

Infrastructure
Manager

User Interface
Generator

Orchestrator

Infrastructure

Computing
Resources

Storage
Resources

Fig. 2. AGM Framework Architecture

The AGM framework architecture for runtime interpretation is presented in Figure 2.
The framework consists of an application graph model (AGM) interpreted by the execu-
tion platform that references components available at artifacts repository.

Run-time Interpretation of IS Models in Mobile Cloud 5

The Application graph model (AGM) provides a set of notations by which an end-user
developer can specify the application models. An information system application model
is constructed by using the Data view, Process view and Interface view notations in a
holistic model. A Data view involves defining runtime invariant data structures, while the
Process view and Interface view are assembled using constructs that reference artifacts
stored in an artifact repository. These models respectively represent the graphical user
interface (GUI) and the data-flow of the information system.

The Execution platform interprets the AGM model. It consists of a User Interface
Generator, a Process Executor, a Data Persistence Adaptor, an Infrastructure Manager
and an Orchestrator. The User Interface Generator interprets the part of the AGM model
that defines GUI elements within the Interface view. The Process Executor interprets the
information system application model and orchestrates the data-flow components avail-
able in the artifacts repository. The data-flow components are connected with the GUI
components to represent information system data. The Data Persistence Adapter provides
permanent data storage functionality based on structures defined in the information sys-
tem application within a Data view. The Infrastructure Manager provisions the infrastruc-
ture resources required for the interpretation processes and data processing components.
It ensures that non-functional requirements such as application performance are met by
providing sufficient resources. Finally, the Orchestrator binds all the above components
and switches control according to the current system state.

The Artifacts repository contains a set of reusable artifacts (generic parts of an infor-
mation system application). These components are divided into user interface-related and
data processing-related functionality. The User interface components represent application-
specific information through a set of user interface (UI) elements that enable interaction
with end-application users. Note that there could be several different types of UIs de-
pending on the client platform (e.g. smartphone, tablet, or personal computer), and these
components can be specialized for specific client platforms. Data processing components
are used for data management. They provide real-time integration with external systems
for persistent data storage.

The Infrastructure resources involved in provisioning information system applications
can be divided into computing resources and storage resources. The computing resources
provision the CPU-intensive parts of information systems such as data processing, while
the storage resources are specialized for data management.

3.2. AGM meta-model

Figure 3 displays an AGM meta-model we developed for modeling information sys-
tem applications. The AGM meta-model is extensible because of its reflexive nature—it
completely defines itself [12,16]. This characteristic enables extending AGM capabilities
beyond the three views described in the following subsections. For example, additional
views could be defined for other types of interfaces (e.g., special resources and domain-
specific devices). The meta-model is defined using UML class model semantics [17].

Data view A Data view defines the data structures from which different static artifacts
can be derived (e.g. the information system database schema, web service interfaces, ...).
It is derived both from the Structure - Classes specification contained within UML Super-
structure model [17] and the OPM meta-model [13].

6 Nikola Tanković and Tihana Galinac Grbac

Object

name : String
value : String

Relationship <<enumeration>>
LinkType

Association
Aggregation

Cardinality

minimum : Number
maximum : Number

outbound

1

*

inbound

1

*

Link

name:String
type:LinkType

outbound
*1

SpecializationAttribute

name : String

attributes

*

*

AttributeType

name : String

type
*

1

inbound
1 1

Element

(a) Data view meta-model

LayoutItem

configuration:String

Object

Layout

name:String

0..1

*
Widget

name:String
sourceURI:String

Screen

name:String1*

* 1

Container

name:String
sourceURI:String

*

1

*

1

1

*

Attribute

*

*

Link

*

*

UIElement

(b) User interface view meta-model

Process

name : String
code : String
sourceURI:String
environment:String

Event

name:String

Element

ObjectProcess
Relationship

type:OPRType

1
1

1

1

<<enumeration>>
OPRType

Creates
Displays
Modifies
Removes
Uses
Searches

*

*
runs

<<enumeration>>
PERType

OnStart
OnEnd

UIElement

Screen redirects
*1

*

1

interface

ProcessEvent
Relationship

type:PERType

1 1

1

1
*

*

triggers

(c) Process view meta-model

Fig. 3. AGM Meta-model

Each entity represented within the data structure is represented by an Object con-
struct. Each Object can have multiple Attributes and Relationships to other objects. A
Relationship can be a Specialization, representing attribute and link inheritance (as in
object-oriented programming) or a Link representing connections between objects. The
Cardinality quantifies the minimal and maximal number of Objects connected by Links.
Unbounded cardinality is achieved by omitting a maximum quantity in the Cardinality
object.

User interface view A User interface view defines a GUI used to manage the informa-
tion and conduct business processes defined in a Process view. User interface generation
combines information stored in the AGM with the current application context (e.g. cur-
rently running processes) and composes the graphical user interface using a reusable set
of components, referred to as Widgets [18]. Widgets can be connected either to whole
Objects or to their Attributes and Links through LayoutItems which serve to select and
order the displayed data. For example, table-like widgets can display entire Object in-
stances, whereas text-input widgets display only certain Attributes. A set of LayoutItem
objects comprises a Layout that can be placed directly into an application Screen or into

Run-time Interpretation of IS Models in Mobile Cloud 7

a Container. A Container is a user interface component used to organize information on
Screens, e.g. a tabular form with many tabs. The location of the source code of the Widget
implementation is contained within sourceURI attribute.

Process view A Process view represents the modeling concepts used to implement dy-
namic application aspects. A Process either models a user activity within the application
(which usually corresponds to real-life business process - or activity we wish to electron-
ically document) or a background task that does not require user interaction (e.g. calcula-
tions and connection to remote services). A process can also run additional processes, all
of which are contained in the application context within a process stack.

Every instantiated Process node is linked with an Element (Object, Attribute or Link)
on which it operates through an ObjectProcessRelationship. The nature of this relation-
ship is denoted by an OPRType enumeration: Processes can create, display, use, modify,
remove and search for Elements. Processes can also emit Events, which are represented
by ProcessEventRelationships that can be a PERType (triggered on process start or end).
User interface components or Widgets can also trigger Events, usually as a result of user
interactions. Throughout the user interfaces, processes that involve end-application users
are represented by the Screen constructs from an Interface view. These processes collect
and display information to/from end-users through a series of user interface forms. In con-
trast, processes that are not linked with Screens are considered as background processes.
Process nodes can either directly represent generic components through their sourceURI
attribute or contain action scripts used for expressing additional functionalities stored in
a Code attribute. Currently, our proposal assumes that action scripts are written in an in-
ternal domain-specific language (DSL) [19], namely JS-DSL, that runs on top of existing
procedural code that is also interpreted at runtime.

For the purposes of our evaluation case-study, the mobile cloud IS, or Processes, have
an additional attribute intended to specify the environment in which they should be exe-
cuted, which can be local (on the client side) or remote (in the cloud). Remote process
execution is vital for maintaining a consistent and secure system since the scripts at the
front-end are exposed and easy to manipulate.

3.3. AGM representation

To describe the methods and algorithms for interpreting the AGM, we first define it using
a directed property graph. AGM thus becomes an ordered quadruple consisting of edges,
vertices and mapping functions denoting their type (class from meta-model):

GAGM = (V,E, TE , TV)

where V is a set of vertices V = {x1, x2, x3, . . . , xn} , xi ∈ D, and D represents a set
of concepts from the modeled domain (e.g. customer, product, ...); whereas E ⊆ X ×X
represents a set of ordered vertex pairs E = {(xi, xj)|i 6= j, xi, xj ∈ E} that represent
the edges (links) from xi to xj . Mapping functions are defined as TE : E →ME , which
represents the node types in the AGM meta-model, and TV : V → MV , denoting the
vertex types. According to the AGM meta-model defined in the previous section,

ME = {Object, Process, Event, Layout, Screen . . . } (1)
MV = {Association,Aggregation, Inheritance, Uses,Modifies, . . . } (2)

8 Nikola Tanković and Tihana Galinac Grbac

Object nodes are the primary building blocks for the structural aspects of a system
(Data view). Node types such as Process and Event represent dynamic (Process view)
behaviors and node types such as Layout and Screen represent User interface views.
AGM provides full modeling capability for the structural aspects of a system, including
schemes for data storage and user interface definitions. The structural model is complete,
meaning that the interpreter can execute them without requiring additional programming
code to render database schema [20] or augment the user interfaces. For dynamic system
definition, the AGM is supplemented by action scripts contained in Process nodes, mean-
ing that an additional mapping exists from each Process node to executable artifacts or
source code, if required.

The biggest advantage of representing models as holistic graphs is that we can use
all the well-known concepts from graph theory, including graph traversal, graph match-
ing, and querying for subgraphs. Our graph model interpreters use such capabilities to
efficiently and reliably execute end applications.

We will demonstrate runtime traversal in a Data view. The Algorithm 1 is used to
build a subgraph with the structural model defined for the requested Object. The input
to the algorithm is the node that represents a certain Object, for which a complete list of
attributes and links is extracted by traversing the AGM graph. The resulting subgraph can
then be used to enable Object serialization (e.g., XML or JSON), or to generate SQL-
language data manipulation queries to communicate with underlying databases.

Data: GAGM = (X,V), and starting node xs where TE (xs) ∈ {Object}
Result: G′

AGM = (X ′, V ′) where X ′ ⊆ X and V ′ ⊆ V represent the complete structural
model of concept xs

begin
X ′ ← {xs}, V ′ ← ∅
for x ∈ X ′ do

Ssuccessors ← {xj |xj ∈ Γ+(x), TV (x, xj) = Specialization}
X ′ ← X ′ ∪ Ssuccessors

for s ∈ Ssuccessors do
V ′ ← V ′ ∪ (x, s)

end
end
for x ∈ X ′ do

Ssuccessors ← {xj |xj ∈ Γ+(x), TV (x, xj) ∈
{Association,Aggregation,Attribute}}

for s ∈ Ssuccessors do
V ′ ← V ′ ∪ (x, s)

end
end

end
Algorithm 1: Traversal of subgraph containing the structural definition of a modeled
concept

Run-time Interpretation of IS Models in Mobile Cloud 9

A similar concept is applied to extract interface compositions and their relationships
from Screen, Layout and Widget nodes, and to conduct processes defined by Process
and Event nodes.

3.4. Interpretation principles

Model interpretation consists of three interpreters, a server-side interpreter (SSI), a client-
side process interpreter (CSPI), and a client-side user interface interpreter (CSUII) as de-
picted in Figure 4. The SSI serves as the Process Executor and is responsible for executing
defined processes on the server side and for creating web service endpoints for bindings
with client-side interpreters. On the client side, the CSPI serves both as a Process Ex-
ecutor and as an orchestrator for conducting processes locally in the client environment.
The CSUII is a User Interface Generator used to render user interface (UI) elements.
AGM models, when interpreted, are stored as graphs (see Section 3.3) in a Graph DB.
To minimize the communication between client and server, and to enable the application
to work in situations when the client is disconnected from the network, we also imple-
mented a local database (Local DB) that contains serialized portions of the AGM model
and application data.

Client EnvironmentServer Environment

Server-side
Interpreter (SSI)Graph DB

Database
Adapter

Relational
DB

R
E

S
T

 A
P

I

Local DB

Client-side
Process

Interpreter (CSPI)

Client Side UI
Interpreter (CSUI)

R
E

S
T

 C
lie

nt

Fig. 4. A high-level view of the server-client architecture for interpreting the AGM

The server side includes a Database Adapter module to enable access to relational
databases for manipulating data in persistent storage according to a defined Data view
structure in the AGM. This module implements a Data Persistence Adapter from the
framework presented in Figure 2. Because our approach supports runtime changes, hold-
ing relational schema solely within the Relational DB hinders instant adaptations to new
models. Instead, every model change in a Data view yields incremental relational schema
updates. The Database Adapter analyses model changes and issues updates to relational
schema. However, because schema updates are a sensitive process that may result in data
losses, it is possible to turn off automatic schema changes and rely on a semi-automatic
approach after the initial application release.

Runtime model interpretation makes it possible to link stored data with a specific
AGM model version. Multiple AGM model versions can be stored in Graph DB due to
the continuous evolution of the modeled system. As an information system evolves from
version to version, data structure mismatches may be introduced between the older and
newer model versions.

The interpretation process transforms an AGM model into an information systems ap-
plication at runtime. The resulting information system application may include a number

10 Nikola Tanković and Tihana Galinac Grbac

of UI forms (we will use the term application screens), where users process presented
information and decide on their next action. We refer to presentation and interaction be-
tween application users and application screens as interpretation cycles.

State Machine
Mechanism

Application
User G

en
er

at
ed

 In
te

rfa
ce

AGM model

Reusable
components

Reusable
components

Graph Queries and
Transformations

2.

1.

Execution Platform Reusable
components

Third Party Services

3.

Fig. 5. AGM interpretation cycle

Figure 5 shows the steps that the AGM interpreter must take to execute each inter-
pretation cycle. Each cycle begins by querying the AGM model for a definition of the
UI and a set of possible user actions (Step 1). This definition is used to construct a state
machine (SM) used to implement communication with the user (Step 2). Finally, the UI
is generated for the application user (Step 3). Figure 6 shows a simplified version of the
states and transitions for an SM. The SM is initialized to a start state that triggers UI ren-
dering (application screen); then, it enters a wait-for-user state. For each Process node
and connected Event, a transition and a new state is added to SM and can be executed.

The algorithm 2 shows how a state machine is generated for each interpretation cycle.
To provide user interaction for each application screen, the CSUII traverses AGM model
from the Screen nodes in a User interface view to all connected Process and Event nodes
that serve as input for defining state machine states and transitions. Three default states
are always present: (1) an sRI state in which the user interface is rendered, (2) a sWU

state that represents user think time, and (3) sNC , which is a final state that occurs when
the CSPI makes a switch to the next interpretation cycle. Additional states are defined
for each process obtained while traversing the AGM. Transitions correspond to incident
Event nodes that trigger those processes.

The UI is constructed according to a User interface view in the AGM. It consists of
multiple Screen nodes that define the appearance of each end-application UI component.
Each Layout specifies a mapping between object attributes and widgets. It is important for
widgets to be developed using generic programming approaches, allowing them to serve
as templates that display different information based on linked Attributes from Objects.
We provide different Widget types according to the cardinality between an Object and its
Attribute or Link.

Run-time Interpretation of IS Models in Mobile Cloud 11

Data: sRI - render interface state, sWU - wait for user state, sNC - next cycle state, and
Pe = {(p, e)} - set of process-event pairs from AGM for current cycle,
p ∈ P, e ∈ E

Result: generated state machine (Σ,S, s0, δ, F) where Σ is set of transition events, S is
set of possible states, s0 is a start state, and δ is a set of transitions δ : S ×Σ → S

begin
s0 ← sRI , F ← {sNC} S ← {sRI , sNC , sWU}, Σ ← ∅ δ ← ∅
for (p, e) ∈ Pe do

S ← S ∪ {sp}
Σ ← Σ ∪ {ve}
Σ ← Σ ∪ {vfinish}
if isInterfaceTriggered(e) then

δ ← δ ∪ {δ(sWU , ve)→ sp}
end
else if isDataTriggered(e) then

δ ← δ ∪ {δ(sRI , ve)→ sp}
end
if redirects(p) then

δ ← δ ∪ {δ(sp, vfinish)→ sNC}
end
else if updatesInterface(p) then

δ ← δ ∪ {δ(sp, vfinish)→ sRI}
end
else

δ ← δ ∪ {δ(sp, vfinish)→ sUW }
end

end
end

Algorithm 2: Constructing a cycle state machine from a set of processes and events
linked to each application screen

Execute
Process(es)

Wait for
user input

Render
Interface

predefined event

user event

finish

update

finish navigate

End of
cycle

Fig. 6. A state machine is constructed for each interpretation cycle

12 Nikola Tanković and Tihana Galinac Grbac

4. Implementation and Evaluation

In this section, we describe the implementation of the presented framework for execut-
ing business applications in a mobile cloud context. IS applications contain numerous
repeated patterns, which we have identified over the past ten years of professional soft-
ware development3 in the retail, supply-chain and merchandising domains. To automate
the software development processes, we abstracted these patterns and now provide them
as generic components through the AGM. Figure 7 shows an overview of our imple-
mentation. The AGM interpreter is divided into a Mobile interpreter and a Cloud server
interpreter. The Cloud server interpreter additionally manages infrastructure resources
using an Infrastructure API provided by the cloud provider. The main challenge in this
type of implementation was the distributed nature of mobile cloud applications because
it requires keeping the AGM models and application data synchronized in a distributed
mobile execution environment.

AGM Interpreter

Mobile
Interpreter

Mobile
Interpreter

Infrastructure API

Worker nodes

Cloud Server
Interpreter

...

DB1
DB2

DBn

Database nodes

AGM

End-User Developer

Internet

Fig. 7. AGM concept in the mobile cloud computing environment

Because AGM is a directed graph structure, we sought a semantically similar solution
to manage it efficiently and reliably. We decided to use a graph database called Neo4j
[21], which supports efficient queries because of its specialized graph-structure storage
scheme. Neo4j provides a property graph model for storing data. This model allows each
node and vertex to be associated with its own key-value data-store that can hold additional
information. This capability was used to represent the mappings TE and TV from GAGM

3 One of the authors was associated with a Croatian software company Superius d.o.o., dedicated to building
mobile cloud information systems

Run-time Interpretation of IS Models in Mobile Cloud 13

as well as other additional values associated with certain model nodes (e.g., Object nodes
contain names and values, and Process nodes can contain action script source code (see
Figure 3).

Currently, mobile interpreters have been implemented for Android and iOS platforms
using a hybrid development approach that combines native platforms with web application
components [22]. The server-side interpreter is built as a Java application running on (but
not limited to) Apache Tomcat application servers.

4.1. Data persistence

To manage stored data, we implemented DatabaseAdapters for three relational databases:
PostgreSQL, Oracle, and MSSQL. A generative tool is used to construct database schema
from AGM models, allowing us to keep the database schema synchronized with the AGM
models.

In the current implementation, the scalability and elasticity limitations of the rela-
tional databases are a drawback, since these relational databases do not typically provide
elastic capabilities [23]. Our execution engine does not currently control database elas-
ticity, hence the database components need to be provisioned according to planned work-
loads. Obviously, this is not something that end-user developer can achieve, and thus this
steps requires specialized infrastructure personnel for on-premises usage of AGM. On the
other hand, if one wishes to use public cloud providers, one can use a managed relational
database such as Amazon RDS 4 or DigitalOcean PostgreSQL 5. Achieving cloud-native
automatically elastic persistence for AGM is a great future challenge, where we could
also explore NoSQL solutions like document databases (e.g. MongoDB 6).

4.2. Action Scripting Language Implementation

Process nodes from AGM are enriched with an action scripting language called JS-DSL.
JS-DSL is an internal domain-specific language (DSL) developed on top of JavaScript.
Figure 9 represents a block of JS-DSL code from one of our applications that sums up the
total charges in an invoicing process. JS-DSL provides special constructs for accessing
and manipulating user-level data. Figure 8 displays how JS-DSL can be used to customize
user interfaces.

To create JS-DSL we followed the guidelines for creating internal DSLs proposed in
[24], [25] and [19]. JS-DSL currently provides the following capabilities:

a) It can make runtime changes to UI widgets (e.g., emphasizing certain information
using color, controlling widget behavior, and navigating through the application).

b) It can access data stored in background services (e.g., data persisted on a smartphone
client or from remote servers),

c) It can apply a set of simple mathematical operators to data (e.g. sum, average, min,
and max).

d) It can invoke remote third-party services.

4 Amazon RDS, available at https://aws.amazon.com/rds/
5 DigitalOcean cloud provider, available at https://www.digitalocean.com/
6 MongoDB, available at https://www.mongodb.com/

https://aws.amazon.com/rds/
https://www.digitalocean.com/
https://www.mongodb.com/

14 Nikola Tanković and Tihana Galinac Grbac

Retail Invoice

Invoice Number

Date Salesperson

Item 1

Invoice Lines

Quantity

Item 2 Quantity

Item 3 Quantity

Item 4 Quantity

Retail Total

Uses

Modifies

Process

set (' I nvoi ce Ret ai l Tot al ') . t o(
 sumOf (' Ret ai l Tot al ') . al l (' I nvoi ce Li nes')
)

Process

f et chLast (" Ret ai l I nvoi ce")
. get (" I nvoi ce Number ") . i ncr ement ()

Event

t ype: onDi spl ay

Modifies

Fig. 8. Example of Process nodes combined with JS-DSL in specifying custom
application behavior

1 set(’Invoice Retail Total’).to(
2 sumOf(’Retail Total’).all(’Invoice Line’)
3)
4 set(’Lines Count’).to(
5 all(’Invoice Line’).count()
6)

Fig. 9. A sample of JS-DSL source code for a Process node.

When desired actions are not available within JS-DSL, designers can rely on classical
JavaScript code, which exploits the benefits of adopting a DSL embedded in the under-
lying JavaScript language. Note that such extensions require a more advanced user skill
set.

4.3. Defining AGM models

To construct application models and load them to an execution platform we provide an
additional DSL, called AGM-DSL. AGM-DSL is a one-to-one textual representation of an
AGM model. Each model view has associated AGM-DSL commands (e.g., a Data view is
associated with a DEF command). A BNF specification for a DEF command is presented
in Figure 10, and Figure 11 shows an example DEF command used in an application from
the retail domain.

4.4. Reusable components

Client-side user interface interpreter (CSUII) interprets the AGM model and composes
the user-interface using the reusable generic components - widgets. Widgets are designed
to be the gatekeepers of complexity towards the end-user developers. They are engineered

Run-time Interpretation of IS Models in Mobile Cloud 15

〈define statement〉 |= DEF object 〈inheritance〉 〈newline〉 〈attribute list〉
〈attribute list〉 |= 〈attribute〉 〈newline〉 〈attribute list〉 | 〈attribute〉
〈Inheritance〉 |= : inheritedObject

〈attribute〉 |= 〈tab〉attribute name : attribute type 〈card〉 〈nl〉
〈card〉 |= 〈quantity〉..〈quantity〉 | 〈quantity〉

〈quantity〉 |= numeric value | *
〈nl〉 |= \n

〈tab〉 |= \t

Fig. 10. BNF specification for DEF command in AGM DSL

1 DEF Product :Resource
2 Name: Name 1..1
3 Unit Of Measure: Unit Of Measure 0..1
4 Wholesale Price: Number 0..1
5 VAT: Number 0..1
6 Retail Price: Number 0..1
7 Stock: Number 0..1
8 Stock Date: Date 0..1
9 Code: Number 0..1

10 Weight: Number 0..1
11 Tax: Number 0..1
12 Package Weight: Number 0..1
13 Pallet Weight: Number 0..1
14 Barcode: Number 0..1
15 Package Quantity: Quantity 0..1

Fig. 11. Excerpt from the AGM-DSL defining a product in a retail domain

with classical software engineering methods by professional teams to conform to the pre-
defined component specification. AGM achieves extensibility through the development
of new widget components paired with their meta-models - connection points to the rest
of the AGM model. Some widgets like InputTextWidget have a single connection
point (e.g. the attribute of the object that needs to be provided by the user), while some
widget can have multiple connection points (e.g. LabelWidget can represent multiple
objects’ attributes).

Widget component-model interface is derived from the port-based interface component-
model [26]. The deviation from port-based interfaces is the introduced connection be-
tween components and the meta-data. This enables turning generic components into spe-
cific representations based on the context. The widget interface is displayed in Figure
12. Each widget implementation is complemented with an AGM node inherited from
a Widget node. The meta-data connection within IM are referencing the data-view el-
ements (Fig. 3a) refined through LayoutItem nodes. The data that flows through data-

16 Nikola Tanković and Tihana Galinac Grbac

Widget

IM = (m1, m2, . . .)
<latexit sha1_base64="+UbMM1YV6SNA3om/hGkPTLjA/QE=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyEB84DkCHubTbJk78HunhCOfAUbv4qNhRJs7ez8Fn4E95IUmjgw8Jv/zLA7fy8SXGnH+bIyS8srq2vZ9dzG5tb2jr27V1NhLCmr0lCEsuERxQQPWFVzLVgjkoz4nmB1b3Cd9usPTCoeBvd6GDHXJ72Adzkl2kihfQC30IY7QHBl8hR8U2E4N5xSMSV0Yqqztp13Cs4k0CLgGeRLduV7DADltv3Z6oQ09lmgqSBKNbETaTchUnMq2CjXihWLCB2QHmsaDIjPlJtMLhqhY6N0UDeUJgONJurvjYT4Sg19z0z6RPfVfC8V/+s1Y929dBMeRLFmAZ0+1I0F0iFK7UEdLhnVYmiAUMnNXxHtE0moNibmjAl4/uRFqBUL2CngCs6XHJhGFg7hyNiL4QJKcANlqAKFR3iGV3iznqwXa2y9T0cz1mxnH/6E9fED8JGVLw==</latexit><latexit sha1_base64="x812LHS8cvp6pkd1xeG/dr0DcCc=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyGCeUByhL3NXrK492B3TwhHvoKNX8XGQhFbOzu/jXvJFZo4MPCb/8ywO38vFlxpx/m2CguLS8srxdXS2vrG5pa9vdNUUSIpa9BIRLLtEcUED1lDcy1YO5aMBJ5gLe/+Muu3HphUPArv9ChmbkAGIfc5JdpIkb0H19CDG0BwYfIYAlNhODWcUTUjdGSqk55ddirOJNA84BzKkEe9Z391+xFNAhZqKohSHezE2k2J1JwKNi51E8ViQu/JgHUMhiRgyk0nF43RoVH6yI+kyVCjifp7IyWBUqPAM5MB0UM128vE/3qdRPvnbsrDONEspNOH/EQgHaHMHtTnklEtRgYIldz8FdEhkYRqY2LJmIBnT56HZrWCnQq+xeWak9tRhH04MPZiOIMaXEEdGkDhEZ7hFd6sJ+vFerc+pqMFK9/ZhT9hff4A0MqS3g==</latexit>

IM = (m1, m2, . . .)
<latexit sha1_base64="+UbMM1YV6SNA3om/hGkPTLjA/QE=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyEB84DkCHubTbJk78HunhCOfAUbv4qNhRJs7ez8Fn4E95IUmjgw8Jv/zLA7fy8SXGnH+bIyS8srq2vZ9dzG5tb2jr27V1NhLCmr0lCEsuERxQQPWFVzLVgjkoz4nmB1b3Cd9usPTCoeBvd6GDHXJ72Adzkl2kihfQC30IY7QHBl8hR8U2E4N5xSMSV0Yqqztp13Cs4k0CLgGeRLduV7DADltv3Z6oQ09lmgqSBKNbETaTchUnMq2CjXihWLCB2QHmsaDIjPlJtMLhqhY6N0UDeUJgONJurvjYT4Sg19z0z6RPfVfC8V/+s1Y929dBMeRLFmAZ0+1I0F0iFK7UEdLhnVYmiAUMnNXxHtE0moNibmjAl4/uRFqBUL2CngCs6XHJhGFg7hyNiL4QJKcANlqAKFR3iGV3iznqwXa2y9T0cz1mxnH/6E9fED8JGVLw==</latexit><latexit sha1_base64="x812LHS8cvp6pkd1xeG/dr0DcCc=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyGCeUByhL3NXrK492B3TwhHvoKNX8XGQhFbOzu/jXvJFZo4MPCb/8ywO38vFlxpx/m2CguLS8srxdXS2vrG5pa9vdNUUSIpa9BIRLLtEcUED1lDcy1YO5aMBJ5gLe/+Muu3HphUPArv9ChmbkAGIfc5JdpIkb0H19CDG0BwYfIYAlNhODWcUTUjdGSqk55ddirOJNA84BzKkEe9Z391+xFNAhZqKohSHezE2k2J1JwKNi51E8ViQu/JgHUMhiRgyk0nF43RoVH6yI+kyVCjifp7IyWBUqPAM5MB0UM128vE/3qdRPvnbsrDONEspNOH/EQgHaHMHtTnklEtRgYIldz8FdEhkYRqY2LJmIBnT56HZrWCnQq+xeWak9tRhH04MPZiOIMaXEEdGkDhEZ7hFd6sJ+vFerc+pqMFK9/ZhT9hff4A0MqS3g==</latexit>

ID = (d1, d2, . . .)
<latexit sha1_base64="bt5iypJ+wjtAa4SqaLSkgPiCq5I=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhLo02QkAL7RIwD0iOsLe3lyzZe7C7J4QjX8HGr2JjoQRbOzu/hR/BvSSFJg4M/OY/M+zO3405k8qyvozc0vLK6lp+vbCxubW9Y+7uNWSUCELrJOKRaLlYUs5CWldMcdqKBcWBy2nTHVxn/eYDFZJF4b0axtQJcC9kPiNYaSkyD+AOunADCK50noKnKxvONWdUzgid6OqsaxatkjUJtAj2DIoVs/Y9BoBq1/zseBFJAhoqwrGUbduKlZNioRjhdFToJJLGmAxwj7Y1hjig0kknF43QsVY85EdCZ6jQRP29keJAymHg6skAq76c72Xif712ovxLJ2VhnCgakulDfsKRilBmD/KYoETxoQZMBNN/RaSPBSZKm1jQJtjzJy9Co1yyrZJds4sVC6aRh0M40vbacAEVuIUq1IHAIzzDK7wZT8aLMTbep6M5Y7azD3/C+PgBxR2VFA==</latexit><latexit sha1_base64="rXx+12PlvUulov8Pw5XnWobt1OY=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QkAL7SKYByRH2NvbSxb3HuzuCSHkK9j4VWwsFLG1s/PbuJdcoYkDA7/5zwy78/cSwZV2nG+rsLC4tLxSXC2trW9sbtnbO00Vp5KyBo1FLNseUUzwiDU014K1E8lI6AnW8u4vs37rgUnF4+hODxPmhqQf8YBToo0U23twAz24AgQXJo/BNxWGU8MZVTNCR6Y66dllp+JMAs0DzqEMedR79lfXj2kaskhTQZTqYCfR7ohIzalg41I3VSwh9J70WcdgREKm3NHkojE6NIqPgliajDSaqL83RiRUahh6ZjIkeqBme5n4X6+T6uDcHfEoSTWL6PShIBVIxyizB/lcMqrF0AChkpu/IjogklBtTCwZE/DsyfPQrFawU8G3uFxzcjuKsA8Hxl4MZ1CDa6hDAyg8wjO8wpv1ZL1Y79bHdLRg5Tu78Ceszx+lVpLD</latexit>

ID = (d1, d2, . . .)
<latexit sha1_base64="bt5iypJ+wjtAa4SqaLSkgPiCq5I=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhLo02QkAL7RIwD0iOsLe3lyzZe7C7J4QjX8HGr2JjoQRbOzu/hR/BvSSFJg4M/OY/M+zO3405k8qyvozc0vLK6lp+vbCxubW9Y+7uNWSUCELrJOKRaLlYUs5CWldMcdqKBcWBy2nTHVxn/eYDFZJF4b0axtQJcC9kPiNYaSkyD+AOunADCK50noKnKxvONWdUzgid6OqsaxatkjUJtAj2DIoVs/Y9BoBq1/zseBFJAhoqwrGUbduKlZNioRjhdFToJJLGmAxwj7Y1hjig0kknF43QsVY85EdCZ6jQRP29keJAymHg6skAq76c72Xif712ovxLJ2VhnCgakulDfsKRilBmD/KYoETxoQZMBNN/RaSPBSZKm1jQJtjzJy9Co1yyrZJds4sVC6aRh0M40vbacAEVuIUq1IHAIzzDK7wZT8aLMTbep6M5Y7azD3/C+PgBxR2VFA==</latexit><latexit sha1_base64="rXx+12PlvUulov8Pw5XnWobt1OY=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QkAL7SKYByRH2NvbSxb3HuzuCSHkK9j4VWwsFLG1s/PbuJdcoYkDA7/5zwy78/cSwZV2nG+rsLC4tLxSXC2trW9sbtnbO00Vp5KyBo1FLNseUUzwiDU014K1E8lI6AnW8u4vs37rgUnF4+hODxPmhqQf8YBToo0U23twAz24AgQXJo/BNxWGU8MZVTNCR6Y66dllp+JMAs0DzqEMedR79lfXj2kaskhTQZTqYCfR7ohIzalg41I3VSwh9J70WcdgREKm3NHkojE6NIqPgliajDSaqL83RiRUahh6ZjIkeqBme5n4X6+T6uDcHfEoSTWL6PShIBVIxyizB/lcMqrF0AChkpu/IjogklBtTCwZE/DsyfPQrFawU8G3uFxzcjuKsA8Hxl4MZ1CDa6hDAyg8wjO8wpv1ZL1Y79bHdLRg5Tu78Ceszx+lVpLD</latexit>

EOUT = (eO
1 , eO

2 , . . .)
<latexit sha1_base64="BYDTKq+Ek0dbNzO2kwvHldY99vQ=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIrQoilJmutGNUBTBnRX6gnYsmTRtQzMPkoxQhv6KCP6KGxeKdCf+jJm2grYeuHDOufeS3OOGnEllWZ9GamFxaXklvZpZW9/Y3DK3d6oyiAShFRLwQNRdLClnPq0opjith4Jiz+W05vavkn7tgQrJAr+sBiF1PNz1WYcRrLQVmPtwDS2I4RYqUIYhILjQdQQU7rXXAhtOtf5RhUShQ+0ct8yclbfGQPPEnpJcMds8eQKAUsscNdsBiTzqK8KxlA3bCpUTY6EY4XSYaUaShpj0cZc2NPWxR6UTjy8cogPttFEnELp8hcbu740Ye1IOPFdPelj15GwvMf/rNSLVOXdi5oeRoj6ZPNSJOFIBSuJCbSYoUXygCSaC6b8i0sMCE6VDzegQ7NmT50m1kLetvH1n54qXMEEa9iCrY7bhDIpwAyUdP4FHeIE3eDeejVfjwxhNRlPGdGcX/sD4+gYcqZf6</latexit><latexit sha1_base64="XouKAc99DikfcyLW6KVdpw0jsTs=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIrQoilJmutGNUBTBnRX6gnYcMmnahmYeJBmhDP0L1278FTcuFOmu+DOmD0GtBy6cc+69JPd4EWdSWdbISC0sLi2vpFcza+sbm1vm9k5VhrEgtEJCHoq6hyXlLKAVxRSn9UhQ7Huc1rze1bhfe6BCsjAoq35EHR93AtZmBCttheY+XIMLCdxCBcowAAQXuo6Awr32XLDhVOtvVRgrdKidY9fMWXlrAjRP7BnJFbPNk8dRsV9yzWGzFZLYp4EiHEvZsK1IOQkWihFOB5lmLGmESQ93aEPTAPtUOsnkwgE60E4LtUOhK1Bo4v7cSLAvZd/39KSPVVf+7Y3N/3qNWLXPnYQFUaxoQKYPtWOOVIjGcaEWE5Qo3tcEE8H0XxHpYoGJ0qFmdAj235PnSbWQt628fWfnipcwRRr2IKtjtuEMinADJR0/gSd4gTd4N56NV+PDGE5HU8ZsZxd+wfj8AiYTmYA=</latexit><latexit sha1_base64="XouKAc99DikfcyLW6KVdpw0jsTs=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIrQoilJmutGNUBTBnRX6gnYcMmnahmYeJBmhDP0L1278FTcuFOmu+DOmD0GtBy6cc+69JPd4EWdSWdbISC0sLi2vpFcza+sbm1vm9k5VhrEgtEJCHoq6hyXlLKAVxRSn9UhQ7Huc1rze1bhfe6BCsjAoq35EHR93AtZmBCttheY+XIMLCdxCBcowAAQXuo6Awr32XLDhVOtvVRgrdKidY9fMWXlrAjRP7BnJFbPNk8dRsV9yzWGzFZLYp4EiHEvZsK1IOQkWihFOB5lmLGmESQ93aEPTAPtUOsnkwgE60E4LtUOhK1Bo4v7cSLAvZd/39KSPVVf+7Y3N/3qNWLXPnYQFUaxoQKYPtWOOVIjGcaEWE5Qo3tcEE8H0XxHpYoGJ0qFmdAj235PnSbWQt628fWfnipcwRRr2IKtjtuEMinADJR0/gSd4gTd4N56NV+PDGE5HU8ZsZxd+wfj8AiYTmYA=</latexit><latexit sha1_base64="T9u5snkU6/o9bIHjfu8pEepDy5Y=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIlgUBSkz3ehGKIrgzgp9QTsOmTStoZkHSUYoQ3/Fjb/ixoUi3Yk/Y6YdQVsPXDjn3HtJ7vEizqSyrE8jt7C4tLySXy2srW9sbpnbOw0ZxoLQOgl5KFoelpSzgNYVU5y2IkGx73Ha9AZXab/5SIVkYVBTw4g6Pu4HrMcIVtoKzX24BhcSuIU61GAECC50HQOFe+25YMOp1j+qnCp0pJ0T1yxaJWsCNE/sjBQhQ9U1x51uSGKfBopwLGXbtiLlJFgoRjgdFTqxpBEmA9ynbU0D7FPpJJMLR+hQO13UC4WuQKGJ+3sjwb6UQ9/Tkz5WD3K2l5r/9dqx6p07CQuiWNGATB/qxRypEKVxoS4TlCg+1AQTwfRfEXnAAhOlQy3oEOzZk+dJo1yyrZJ9Zxcrl1kcediDAx2zDWdQgRuo6vgJPMELvMG78Wy8Gh/GeDqaM7KdXfgD4+sbCiqWcQ==</latexit>

EIN = (eI
1, e

I
2, . . .)

<latexit sha1_base64="idZBVgxTM8DIIgUgozdue63xWIU=">AAACH3icbVDLSgMxFL3js9aqoy67CRZFoZSZbnQjFETQjbRgH9COJZOmbWjmQZIRytBv8Adc6K+4caGIuOvfmGkraOuBC+ecey/JPW7ImVSWNTaWlldW19ZTG+nNzNb2jrm7V5NBJAitkoAHouFiSTnzaVUxxWkjFBR7Lqd1d3CR9Ov3VEgW+LdqGFLHwz2fdRnBSluBmYVLaEMM13ADI0BwrusYKNxppw025LX+UcVEoSPtnLTNnFWwJkCLxJ6RXCnzUHkCgHLb/Gp1AhJ51FeEYymbthUqJ8ZCMcLpKN2KJA0xGeAebWrqY49KJ57cN0KH2umgbiB0+QpN3N8bMfakHHqunvSw6sv5XmL+12tGqnvmxMwPI0V9Mn2oG3GkApSEhTpMUKL4UBNMBNN/RaSPBSZKR5rWIdjzJy+SWrFgWwW7YudKeZgiBVk40DHbcAoluIIyVIHAI7zAG7wbz8ar8WF8TkeXjNnOPvyBMf4GbNaXpw==</latexit><latexit sha1_base64="GCLN+/pSJugOXfteFpW5shcOBaQ=">AAACH3icbVBNS0JBFL3PvsysrJZCDElRIPKem9oEQgS1CYX8ADWZN446OO+DmXmBPPwN7aNN+35FmxZFRDv/TDRPDUo7cOGcc+9l5h7b50wq0xwZsYXFpeWV+GpiLbm+sZna2q5ILxCElonHPVGzsaScubSsmOK05guKHZvTqt0/i/rVWyok89xrNfBp08Fdl3UYwUpbXioN59CCEC7hCoaA4FTXIVC40U4LLMhq/aPykUIH2jlqpTJmzhwDzRNrSjKF5F3p6f5rt9hKfTbaHgkc6irCsZR1y/RVM8RCMcLpMNEIJPUx6eMurWvqYofKZji+b4j2tdNGHU/ochUau783QuxIOXBsPelg1ZOzvcj8r1cPVOekGTLXDxR1yeShTsCR8lAUFmozQYniA00wEUz/FZEeFpgoHWlCh2DNnjxPKvmcZeaskpUpZGGCOKRhT8dswTEU4AKKUAYCD/AMr/BmPBovxrvxMRmNGdOdHfgDY/QNxrSZaQ==</latexit><latexit sha1_base64="GCLN+/pSJugOXfteFpW5shcOBaQ=">AAACH3icbVBNS0JBFL3PvsysrJZCDElRIPKem9oEQgS1CYX8ADWZN446OO+DmXmBPPwN7aNN+35FmxZFRDv/TDRPDUo7cOGcc+9l5h7b50wq0xwZsYXFpeWV+GpiLbm+sZna2q5ILxCElonHPVGzsaScubSsmOK05guKHZvTqt0/i/rVWyok89xrNfBp08Fdl3UYwUpbXioN59CCEC7hCoaA4FTXIVC40U4LLMhq/aPykUIH2jlqpTJmzhwDzRNrSjKF5F3p6f5rt9hKfTbaHgkc6irCsZR1y/RVM8RCMcLpMNEIJPUx6eMurWvqYofKZji+b4j2tdNGHU/ochUau783QuxIOXBsPelg1ZOzvcj8r1cPVOekGTLXDxR1yeShTsCR8lAUFmozQYniA00wEUz/FZEeFpgoHWlCh2DNnjxPKvmcZeaskpUpZGGCOKRhT8dswTEU4AKKUAYCD/AMr/BmPBovxrvxMRmNGdOdHfgDY/QNxrSZaQ==</latexit><latexit sha1_base64="AdLVp61vftaCp6WzrwwBRSI/ooY=">AAACH3icbVDLSgMxFL3js9bXqMtugkVRKGWmG90IBRF0IxXsA9pxyKRpG5p5kGSEMvRP3PgrblwoIu76N2baEbT1wIVzzr2X5B4v4kwqy5oYS8srq2vruY385tb2zq65t9+QYSwIrZOQh6LlYUk5C2hdMcVpKxIU+x6nTW94mfabj1RIFgb3ahRRx8f9gPUYwUpboVmAK3AhgRu4hTEguNB1AhQetOOCDSWtf1QlVehYO6euWbTK1hRokdgZKUKGmmt+dbohiX0aKMKxlG3bipSTYKEY4XSc78SSRpgMcZ+2NQ2wT6WTTO8boyPtdFEvFLoChabu740E+1KOfE9P+lgN5HwvNf/rtWPVO3cSFkSxogGZPdSLOVIhSsNCXSYoUXykCSaC6b8iMsACE6UjzesQ7PmTF0mjUratsn1nF6ulLI4cFOBQx2zDGVThGmpQBwJP8AJv8G48G6/Gh/E5G10ysp0D+ANj8g0ABZXb</latexit>

Fig. 12. Interface for UI components - Widgets

interface ID conforms to data-view elements from IM . The set of input and output events
(EIN , EOUT) is also linked to Event nodes from the process-view model (Fig. 3c).

Currently, widget components are implemented in JavaScript, HTML, and CSS and
executed strictly on the client-side, at the user-interface level. Since our mobile application
engine is implemented as a hybrid web application using PhoneGap [27], all widgets are
both working on Android, as well as iOS smart-phones. By using PhoneGap, we can
provide an embedded web browser (e.g. Android WebView) as an integral part of the client
application engine such that JavaScript interpreter is always available and enabled.

4.5. Performance considerations

Implementing interpreters with solid execution performance is challenging; it took us
four developer-years to develop the proposed framework and obtain a satisfying user ex-
perience from a performance perspective (e.g. application load-time, GUI rendering-time,
and communication-time). We encountered issues with the limited computing power of
smartphones, resulting in slow UI rendering and slow execution of defined Process nodes.
We compared AGM-modeled applications with previous generation non-modeled appli-
cations and noticed severe performance degradation. We tracked the main performance
bottlenecks in the preparation process for executing the code contained in Process nodes
and added caching mechanisms that stored the state machine specifications for each in-
terpretation cycle as well as generated user interface code. After introducing such mech-
anisms, the interpreted model exploits performance benefits previously available only to
generative approaches; the cached data represents compiled fragments of AGM mod-
els. Caching introduced drastic performance improvements to the initial prototype and
reduced the performance penalty to only 15–20% compared to classically developed non-
modeled applications. Our approach to the AGM model interpretation can be considered
as a form of just-in-time (JIT) compilation.

4.6. Reference application

In order to better illustrate the applicability of the AGM framework, we will disseminate
an AGM model example and the resulting mobile application derived from it. The ap-
plication presented is a subset of the typical application in the domain of supply chain

Run-time Interpretation of IS Models in Mobile Cloud 17

management. The application is used by the field operatives from the distribution com-
pany in the supply chain process that are visiting end distributors (noted PoS - Point of
Sales) and collecting orders for products that should be distributed. Orders that are col-
lected are sent through the Internet and stored in the central database where the integration
modules are used to transfer those orders into existing systems. The integration compo-
nents are currently not provided by the AGM system due to the vast differences between
different ERP vendors.

Figure 13a displays the main part of the AGM application model from the process-
view and interface-view perspective. We can observe that the application consists of four
main processes: (a) Visit process - where the users select a Point of Sales and can create
a new Order, (b) Create Order process for the actual user-input of a new order, (c) View
Order process for displaying previous orders, and (d) Messages for internal communica-
tion between organization members (this process is not further disseminated for brevity).
Figure 13b displays the details of the Create Order process including the elements of the
user interface and their links to the objects and attributes of the order object. We can ob-
serve that the PoS object required no widget since it is automatically extracted from the
context of the Visit process which requires PoS to be defined.

Figure 14 displays the resulting user interface screens:

(a) a Home screen which is rendered from the specification of the Home Screen element
that contains the Menu widget,

(b) PoS selection screen which is not explicitly modeled but inferred from the fact that the
Visit process that is selected requires a PoS object to be selected. The user interface
for selecting a PoS instance is not specified so it is automatically derived.

(c) Visit screen which is specified with Visit Menu screen from the model,
(d) and (e) - Order insertion screens which are specified with the Create Order nodes and

their connections with different user-interface and data-view nodes.

18 Nikola Tanković and Tihana Galinac Grbac

VisitP

Uses

PoSO

1..1

Visit MenuS

interface

HomeS

Main menuW

ButtonW onClick

ButtonW

ButtonW

Create OrderP

OrderO

onClick

Creates

View OrderP

onClick

Views

New OrderS

interface

View messagesP

ButtonW

onClick

(a) The process and interface for navigating through application

Create OrderP OrderO

Creates

New OrderS

interface

DateW

DropdownW

DropdownW

DateA

DeliveryA

SalespersonO

Order ItemO

1..*

CatalogueW

1..1

ItemO

1..1

NumericW

GroupO

1..1

1..*

QuantityA

A

O

W

DATA-VIEW

Object

Attribute

P

PROCESS-VIEW

INTERFACE-VIEW

S

Process

Screen

Widget

Layout

Container

Composition

Aggregation

Event

PoSO
1..1

NumericW

Order TotalACalculateP

onChange

Updates

Uses

(b) The process for creating order

Fig. 13. The AGM source model for the example application

Run-time Interpretation of IS Models in Mobile Cloud 19

Store visit

FieldOrders

Messages

Logout

(a) Application home screen

LocationBack

 Search…

Example store #1
Address #1
City #1

Example store #2
Address #2
City #2

Example store #3
Address #3
City #3

(b) Selecting a store to visit

Orders

Back

Example store #1
Address #1
City #1

New order

(c) The menu with activities
when a store is selected

Cancel Save

2019/01/01

Date

Salesperson

Mark

General Items

Delivery option

Fast (< 3 days)

(d) Inserting new order

Back Save

ItemsGeneral

Item Group #1

Item G1 Qty.

Item G2 4
Item G3 Qty.

Item Group #2

Item Group #3

Order Total: 476,00

(e) Selecting the items for
the new order

Fig. 14. Example mobile cloud application in the supply chain domain.

20 Nikola Tanković and Tihana Galinac Grbac

4.7. Evaluation
We applied the AGM approach in implementing eleven projects for Southern European
customers in the retail, supply chain management, and merchandising domains. The projects
included building mobile information systems integrated with existing customer infor-
mation systems. Combined, the projects involved over 300 end-application users with
Android-based smartphones. In the retail domain, application functionality included col-
lecting product orders and inspecting current stock levels in retail shops. The merchan-
dising domain applications included conducting various surveys at points of sale to gain
input on product quality, shelf placement, exposure metrics, and retail prices from com-
petitive products. The sizes of the projects varied from 80 to 170 modeled entities, and
from 8 to 27 modeled business processes. The largest project stored approximately 2–3
million transactions each month.

Table 1. A list of software development process improvements introduced by AGM
Before AGM After introducing AGM

Requirements Defi-
nition

UML semantics were hard for our customers
to understand

Visual application feedback on a graphical
user-interface level

Implementation Applications were implemented according
to defined UML models. Software evolution
meant additional effort for keeping the UML
models in sync

The model itself is the implementation; imple-
mentation process leaves on implementing the
specific JS-DSL action scripts which are inte-
gral to model itself

Verification and
Validation

Each functionality point required a set of unit
tests across all architecture layers (storing
and representing information)

Unit tests are executed on a per predefined
component level. New tests are required only
when introducing new user-interface or data-
processing components.

Distribution Each new functionality point required the
repackaging and redistribution of whole sys-
tem.

New functionality points are introduced with
new application model versions which are syn-
chronized automatically upon application load.
Repackaging and redistribution was required
only when new modeling artifacts are intro-
duced.

By using AGM, our application development team achieved noticeable time-savings.
Although we have not yet reached a point where our customers have been able to develop
their own information system applications, we have enabled our software analysts to de-
fine nearly complete end-applications. The only point at which software engineers were
required was when using the JS-DSL to fine-tune the models.

The main benefit was accrued from the quicker development cycle, which enabled vi-
sual exploration and negotiation while gathering requirements with our customers. Model
interpretation enabled rapid visual feedback of the end system; thus, it allowed quicker
convergence to the end-stage requirements. A more detailed set of improvements grouped
by software development process phases is given in Table 1.

AGM also made the installation and distribution of end-applications application users
easier because the users all shared the same mobile interpreter. After installation on the
users’ smartphones, the client interpreters loaded their AGM models from the associated
cloud environment. This facilitated the configuration management process in the sense
that we were able to reduce the number of client application versions and releases.

Run-time Interpretation of IS Models in Mobile Cloud 21

Software evolution also became easier because the interpreters always pull the latest
model changes at run-time. The previous classically-built client applications binaries were
over 10 MB in size which made remote transport and installation on each smartphone dif-
ficult because some users did not have solid, stable cellular network connections. This is
a common issue in mobile cloud computing [28]. Introducing the AGM solution required
synchronizing only new model versions, which was considerably faster. The AGM mo-
bile interpreter occupies slightly more than 1 MB and is redistributed to users only upon
new AGM meta-model element releases or when new reusable components are added. In
comparison, the generative approach typically generates source code compiled the same
or similar to classical methods, meaning that every model update requires a complete
re-installation.

The downside of the AGM approach is in the large investment required to implement
the distributed interpreter. A single software defect in the interpreter is usually manifested
among all end-applications and solving such problems involves redistributing the inter-
preter to all end-application users. The greatest challenge was implementing an interpreter
that was both fast and energy efficient enough for use in the mobile cloud domain. It was
essential for end-application users to be able to use the application throughout an 8–10-
hour business day without having to recharge their smart-phones or tablets. As mentioned
earlier, just-in-time interpretation and caching are essential in achieving that goal.

5. Limitations

Our research demonstrates an end-user developer friendly framework for building infor-
mation system applications in the cloud. There are some limitations that need to be con-
sidered both in terms of the system itself, and the way we have conducted the evaluation.
We present these separately together with our current belief and future plans on how these
limitations could be circumvented.

5.1. AGM limitations

There are two drawbacks to the current implementation of the AGM. The first drawback is
using the textual AGM-DSL language in defining the data, process and interface structure.
The users are required to learn the syntax of the language which is achieved by using
existing examples of the language constructs and the way these are mapped to resulting
applications. We are working on a visual representation of the language which follows the
AGM meta-model. Visually, the language will resemble the visual representation used in
Figure 13. This will also enable even faster visual feedback where the resulting application
can be rendered side-by-side to the model itself.

The second challenge for end-users is using the action language embedded in Javascript
which requires a basic knowledge of the JavaScript itself. This is a serious limitation
and a significant learning step for an end-user developer. Although this language only
uses a small subset of vanilla JavaScript in the form of basic control flow statements and
data-structures (e.g. we require no regular expressions, higher-order functions, Document
Object Model, modules&packages, callbacks, or closures), end-users have a significant
problem to understand the basic concepts of programming. This design choice results in

22 Nikola Tanković and Tihana Galinac Grbac

the fact that these scripts were needed to be additionally composed by software devel-
opers. While we can still report significant time savings in the development of the end
applications, the development process cannot be 100% offloaded to end-user developers.
We plan to build a visual representation language in order to specify the behavior needed.
A good example we are considering is the Blueprints language7 which should be adapted
so that it fits our AGM meta-model.

5.2. Research methods limitations

There are also some threats to the validity of this research that also should be considered
[29].

Construct validity There are many forms of mobile applications that can be built. Our
approach currently targets the data-collection applications which complement the existing
information systems. Currently, the AGM framework has limited support for the data
transformation, analysis, and reporting of the higher-level data aggregations.

Internal and external validity Our study did not perform controlled experiments on the
degree of usability in designing the applications compared to the classical methods. We
plan to conduct these experiments once we complete the framework with visual modeling
and action script programming parts.

Conclusion validity Based on that controlled experiments were not conducted, a more
general conclusion on the applicability of our results to the general case of mobile soft-
ware development cannot be reported with significant confidence. A full scale controlled
experiment on a convincing number of different application domains is required.

6. Related Work

Information systems modeling has been well researched within the generative MDD field.
Table 2 lists some of the well-established general-usage MDD tools, the majority of which
follow a generative MDD approach. For building information systems, Milicev proposed
an approach using an executable UML profile called Object-Oriented Information Sys-
tems (OOIS) [2]. After the models are compiled, they can be used in a special runtime
Java-based environment. SOLOist is a tool based on OOIS that uses Java code for appli-
cation customization.

Unlike OOIS, which uses Java, Popovic et al. [9] developed a DSL to specify appli-
cation customization code at a platform independent model (PIM) level. Similar to AGM,
PIM is targeted at information systems, and its approach is also generative but uses a
pre-generated application interface and database. Dimitrieski et al. [30] also took a gen-
erative approach in their Multi-Paradigm Information System Modeling Tool (MIST) for
building information systems through the simultaneous use of three different approaches.

7 Blueprints language is used in the Unreal Engine 4 engine, which is available at https://www.
unrealengine.com/en-US/

https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/

Run-time Interpretation of IS Models in Mobile Cloud 23

The selected approach can thus depend on the problem domain and on the knowledge and
personal preferences of an IS designer. MIST translates models to a relational data model
or a class model.

MIDAS is a model-driven generative methodology proposed by Cáceres et al. [31] for
developing web-based information systems. MIDAS is a specific application of Model-
Driven Architecture (MDA) for Web platforms that uses XML and object-relational method-
ology. Currently, however, MIDAS provides only structural modeling of information sys-
tems.

Boyd and McBrien [32] also used graph structures for model representation. They
proposed a hypergraph data model (HDM) structure for data model representation. HDM
concentrates only on the data model of application and alleviates the need for model-to-
model transformations used in previous generative approaches. AGM also uses a directed
property graph, but unlike HDM, it is interpreted at runtime.

Many studies have emphasized end-user involvement in application development.
Cappiello et al. [33] developed a UI-centric model that enables end-user developers to cre-
ate mashup applications by applying WYSIWYG (what-you-see-is-what-you-get) spec-
ifications of data integration and service orchestration. They argued that user interfaces
function as the medium most easily understandable by end-users. Vera [34] suggested that
MDD methodology can be simplified by using a set of user interface components con-
figured to define system behavior. Francese et al. [35] proposed an approach for model-
driven development of portable applications based on a finite-state machine for specifying
GUIs, transitions, and data-flow. Rivero et al. [36] proposed an MDD approach to cap-
ture requirements from end-users faster by using user interface prototypes that end-users
completely understand. Garzotto [37] also promoted end-user development by propos-
ing an approach that combined Model-Driven and End-user Development paradigms in
modeling web applications in cultural heritage and cultural tourism domains.

There are few tools intended to perform model interpretation. Mendix, a commercial
MDD tool, exploits runtime model interpretation for modeling web applications [38];
however, we are unaware of the internal details of the Mendix interpreter’s operation
because it is a closed-source commercial product.

The idea of directly executing UML models was introduced by Riehle et al. [11], who
proposed a UML virtual machine; the biggest issue with this approach was that UML
is too abstract to specify the behavioral aspects of applications. Following the work of
Shlaer and Mellor [39], the OMG issued two important standards: an executable subset of
the UML language called Foundational UML (fUML) [40] and the Action Language for
Foundational UML (Alf) [41]. These standards enabled designers to create UML mod-
els with detailed behavioral specifications that could be effectively transformed into ex-
ecutable programs. This capability enables graphical specification of UML models sup-
plemented by textual semantically related Alf code. Because fUML and Alf are novel
specifications, few tools support them yet, especially tools targeted toward the IS domain.
There has been some research proposing Alf transformation [10], but to best of our knowl-
edge, no tools for interpretation of these standards yet exist, especially in the domain of
modeling mobile cloud applications. However, because these standards are aligned with
our proposal, we are exploring ways to integrate fUML and Alf when specifying AGM
models.

24 Nikola Tanković and Tihana Galinac Grbac

Table 2. Some of available MDD Tools
Product Url

Generative approach
WebRatio http://www.webratio.com
WebML http://www.webml.org
EMF http://www.eclipse.org/modeling/emf
AndroMDA http://www.andromda.org
IBM Rational Rhapsody http:/ibm.com/software/awdtools/rhapsody
OpenMDX http://www.openmdx.org
MetaEdit+ http://www.metacase.com
Cloudfier https://cloudfier.com/
SOLOist http://www.soloist4uml.com/

Interpretative approach
Mendix http://www.mendix.com

Hybrid approach
System Vision http://www.mentor.com/products/sm
OOA Tool http://ooatool.com/OOATool.html

7. Concluding Remarks

In this paper, we proposed an approach that enables faster development of information
system applications. The developed models are then interpreted directly at runtime.

We presented an architectural framework for an Application Graph Model (AGM),
which is used to model IS applications using generic components and an action scripting
language contained directly within the model. Through model interpretation, we enabled
run-time adaptations of modeled systems, resulting in faster prototyping and rapid soft-
ware delivery.

Implementing the AGM framework in concrete industrial projects resulted in sev-
eral improvements. We enabled software analysts and developers to cooperate in imple-
menting information systems, which drastically improved requirements negotiation and
reduced the team size to a single analyst and engineer. However, we did measure a 15–
20% performance penalty, which is especially noticeable in smartphone execution envi-
ronments. This performance penalty is due to the overhead associated with querying the
model for interpretation and run-time interface generation.

We are also working on building a graphical modeling environment for end-user de-
velopers [42] that will increase their productivity and reduce errors. Spreadsheet-like soft-
ware has amply demonstrated that the what-you-see-is-what-you-get concept is highly ap-
pealing; having a runtime interpretive model is the foundation for a similar solution when
designing IS systems. Our future work will also include efforts to implement a graph
analysis algorithm that could be used to propose optimally efficient cloud deployment
strategies [43] based on operational data inspections. Using this approach, a cloud execu-
tor could save costs by dynamically reassigning computation tasks among heterogeneous
cloud resources according to workload demands.

Acknowledgments. This work has been supported in part by Croatian Science Foundation’s fund-
ing of the project UIP-2014-09-7945.

http://www.webratio.com
http://www.webml.org
http://www.eclipse.org/modeling/emf
http://www.andromda.org
http:/ibm.com/software/awdtools/rhapsody
http://www.openmdx.org
http://www.metacase.com
https://cloudfier.com/
http://www.soloist4uml.com/
http://www.mendix.com
http://www.mentor.com/products/sm
http://ooatool.com/OOATool.html

Run-time Interpretation of IS Models in Mobile Cloud 25

References

1. Li, J., Rong, W., Yin, C., Xiong, Z.: Goal-oriented dependency analysis for service identifica-
tion. Computer Science & Information Systems 16(2) (2019)

2. Milicev, D.: Model-Driven Development with Executable UML. John Wiley & Sons (2009)
3. Harel, D., Marron, A.: The quest for runware: On compositional, executable and intuitive

models. Software and Systems Modeling 11(4) (2012) 599–608
4. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges.

Journal of Internet Services and Applications 1(1) (apr 2010) 7–18
5. Samad, J., Loke, S.W., Reed, K.: Mobile Cloud Computing. Cloud Services, Networking, and

Management (2015) 153–190
6. Tankovic, N., Vukotic, D., Zagar, M.: Rethinking Model Driven Development: analysis and

opportunities. In Luzar-Stiffler, V., Jarec, I., Bekic, Z., eds.: Information Technology Interfaces
(ITI), Proceedings of the ITI 2012 34th International Conference on, SRCE (2012) 505–510

7. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal 45(3) (2006) 451–461

8. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development:
Technology, Engineering, Management. (2006)

9. Popovic, A., Lukovic, I., Dimitrieski, V., Djukic, V.: A DSL for modeling application-specific
functionalities of business applications. Computer Languages, Systems & Structures 43 (2015)
69–95

10. Ciccozzi, F., Cicchetti, A., Sjodin, M.: Towards Translational Execution of Action Language
for Foundational UML. 2013 39th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEPTEMBER) (2013) 153–160

11. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The architecture of a UML virtual
machine. Environment 36(11) (2001) 327–341

12. Tanković, N., Vukotić, D., Žagar, M.: Executable graph model for building data-centric appli-
cations. Proceedings of the International Conference on Information Technology Interfaces,
ITI (2011) 577–582

13. Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm; with CD-ROM. Vol-
ume 1. Springer Science & Business Media (2002)

14. Ma, Q., Kelsen, P., Glodt, C.: A generic model decomposition technique and its application to
the Eclipse modeling framework. Software & Systems Modeling (2013) 1–32

15. OMG: Meta Object FacilityTM (MOFTM) Version 2.5 Specification (2015)
16. Reinhartz-Berger, I., Dori, D.: A Reflective Meta-Model of Object-Process Methodology: The

System Modeling Building Blocks. Business Systems Analysis with Ontologies (2005) 130–
173

17. OMG: OMG Unified Modeling Language (OMG UML) Superstructure (2010)
18. Nicolaescu, P., Klamma, R.: A Methodology and Tool Support for Widget-Based Web Applica-

tion Development. In Cimiano, P., Frasincar, F., Houben, G.J., Schwabe, D., eds.: Engineering
the Web in the Big Data Era. Volume 9114 of Lecture Notes in Computer Science. Springer,
Cham (2015) 515–532

19. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
20. Brdjanin, D., Banjac, D., Banjac, G., Maric, S.: Automated two-phase business model-driven

synthesis of conceptual database models. Computer Science & Information Systems 16(2)
(2019)

21. Miller, J.: Graph Database Applications and Concepts with Neo4j. Proceedings of the 2013
Southern Association for Information Systems (2013) 141–147

22. Charland, A., Leroux, B.: Mobile application development. Communications of the ACM
54(5) (may 2011) 49

26 Nikola Tanković and Tihana Galinac Grbac

23. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Towards an elastic and autonomic multi-
tenant database. In: Proc. of NetDB Workshop. (2011)

24. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in Java. Companion
to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages,
and applications (2006) 855–865

25. Kossakowski, G., Amin, N., Rompf, T., Odersky, M.: JavaScript as an embedded DSL. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7313 LNCS (2012) 409–434

26. Crnkovic, I., Sentilles, S., Vulgarakis, a., Chaudron, M.R.V.: A Classification Framework for
Software Component Models. IEEE Transactions on Software Engineering 37(5) (2011) 593–
615

27. Wargo, J.M.: PhoneGap essentials: Building cross-platform mobile apps. Addison-Wesley
(2012)

28. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless Communications and Mobile Computing 13(18) (dec
2013) 1587–1611

29. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineering.
Guide to Advanced Empirical Software Engineering (2008) 201–228

30. Dimitrieski, V., Čeliković, M., Aleksić, S., Ristić, S., Alargt, A., Luković, I.: Concepts and
evaluation of the extended entity-relationship approach to database design in a multi-paradigm
information system modeling tool. Computer Languages, Systems & Structures 44 (2015)
299–318

31. Cáceres, P., Marcos, E., Vela, B., Juan, R.: A MDA-Based Approach for Web Information
System Development. Methodology

32. Boyd, M., McBrien, P.: Comparing and Transforming Between Data Models via an Intermedi-
ate Hypergraph Data Model. Journal on Data Semantics IV 4 (2005) 69–109

33. Cappiello, C., Matera, M., Picozzi, M.: A UI-Centric Approach for the End-User Development
of Multidevice Mashups. ACM Transactions on the Web 9(3) (2015) 1–40

34. Vera, P.M.: Component Based Model Driven Development:. International Journal of Informa-
tion Technologies and Systems Approach 8(2) (jun 2015) 80–100

35. Francese, R., Risi, M., Scanniello, G., Tortora, G.: Model-Driven Development for Multi-
platform Mobile Applications. In Abrahamsson, P., Corral, L., Oivo, M., Russo, B., eds.:
Product-Focused Software Process Improvement. Volume 9459 of Lecture Notes in Computer
Science. Springer International Publishing, Cham (2015) 61–67

36. Rivero, J.M., Luna, E.R., Grigera, J., Rossi, G.: Improving user involvement through a model-
driven requirements approach. In: 2013 3rd International Workshop on Model-Driven Require-
ments Engineering (MoDRE), IEEE (jul 2013) 20–29

37. Garzotto, F.: Enterprise Frameworks for Data Intensive Web Applications: An End-User De-
velopment, Model Based Approach. Journal of Web Engineering 10(January) (2011) 87–108

38. Henkel, M., Stirna, J.: Pondering on the key functionality of model driven development tools:
The case of mendix. Perspectives in Business Informatics Research BIR 2010, (2010) 146–160

39. Shlaer, S., Mellor, S.J.: The Shlaer-Mellor Method. (1996) 1–13
40. OMG: Semantics of a Foundational Subset for Executable UML Models (FUML) Version 1.1

Specification (2013)
41. OMG: Action Language For Foundational UML (ALF) 1.0.1 Specification (2013)
42. Tankovic, N., Galinac Grbac, T., Zagar, M.: Experiences from building a EUD business por-

tal. In: 2014 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), IEEE (may 2014) 551–556

43. Tanković, N., Galinac Grbac, T., Truong, H.l., Dustdar, S.: Transforming Vertical Web Appli-
cations Into Elastic Cloud Applications. In: International Conference on Cloud Engineering
(IC2E 2015), IEEE (mar 2015) 135–144

Run-time Interpretation of IS Models in Mobile Cloud 27

Nikola Tanković is a postdoctoral researcher at the Juraj Dobrila University of Pula. His
main research interests are directed to model-driven development of information systems,
quality optimisation of distributed systems, and generally black-box model optimisation
using soft computing and simulation. He is involved in several industry projects in devel-
oping predictive machine-learning models and web services in cloud.

Tihana Galinac Grbac is a full professor of computer science and the head Software
Engineering and Information Processing Laboratory (SEIP Lab) at the Juraj Dobrila Uni-
versity of Pula. Her main research interests are related to large scale and complex soft-
ware systems that are evolutionary developed. In a broader sense, she is also interested
in a variety of large scale complex systems including smart cities, telecommunication
networks and others. She is actively involved as the leader, management committee mem-
ber and researcher in a number of research projects funded by European Union, Croatian
government or industry partners. The results of her work are continously published in
international scientific journals and conferences.

Received: October 11, 2018; Accepted: September 17, 2019.

Computer Science and Information Systems 17(1): 29–50 https://doi.org/10.2298/CSIS181122036A

Efficient Virtual Machine Placement Algorithms for

Consolidation in Cloud Data Centers

Loiy Alsbatin1,2, Gürcü Öz1, and Ali Hakan Ulusoy3

1 Department of Computer Engineering, Faculty of Engineering, Eastern Mediterranean

University,

 Famagusta, North Cyprus via Mersin 10 Turkey,

loiy.alsbatin@gmail.com, gurcu.oz@emu.edu.tr
2 Department of Computer Science, Collage of Computing and Information Technology,

Shaqra University,

 Riyadh, Saudi Arabia
3 Department of Information Technology, School of Computing and Technology, Eastern

Mediterranean University,

 Famagusta, North Cyprus via Mersin 10 Turkey,

alihakan.ulusoy@emu.edu.tr

Abstract. Dynamic Virtual Machine (VM) consolidation is a successful approach

to improve the energy efficiency and the resource utilization in cloud

environments. Consequently, optimizing the online energy-performance tradeoff

directly influences quality of service. In this study, algorithms named as CPU

Priority based Best-Fit Decreasing (CPBFD) and Dynamic CPU Priority based

Best-Fit Decreasing (DCPBFD) are proposed for VM placement. A number of

VM placement algorithms are implemented and compared with the proposed

algorithms. The algorithms are evaluated through simulations with real-world

workload traces and it is shown that the proposed algorithms outperform the

known algorithms. The simulation results clearly show that CPBFD and DCPBFD

provide the least service level agreement violations, least VM migrations, and

efficient energy consumption.

Keywords: Cloud computing, energy consumption, dynamic consolidation,

virtualization

1. Introduction

Dynamic Virtual Machine (VM) consolidation effectively improves the energy

efficiency and resource utilization in data centers. Reallocating VMs from an

overloaded Physical Machine (PM) maximizes the utilization and energy efficiency

with providing a high Quality of Service (QoS). The goal of consolidation of VMs

ensures an efficient utilization that can be achieved through the use of VM migrations

across different PMs. Power consumption of USA data centers has increased by 62.5%

from 2005 to 2013 and expected to increase by 150% in 2020 [1]. Most of the energy

consumption of data centers is consumed by computing resources. Accordingly,

resource management is important to ensure that the applications efficiently utilize the

available computing resources. Switching the idle nodes to sleep mode to eliminate the

idle power consumption can achieve a reduction in energy consumption.

30 Loiy Alsbatin et al.

One efficient way to improve the utilization of cloud data center resources is the

dynamic consolidation of VMs [2-11]. The dynamic consolidation reallocates VMs

periodically using migration to reduce the number of active PMs required to handle

requests. The objective of this approach is mainly to minimize energy consumption and

maximize of QoS provided by the system.

It is complex to solve dynamic VM consolidation problem analytically as a whole [3,

4]. In general, the problem can be decomposed into tasks as following [8]:

1. PM underload detection: This is the phase when a PM is considered as being

underloaded, so all VMs running on an underloaded PM should be migrated to other

PMs and the underloaded PM should be switched to the sleep mode (to reduce the

number of active PMs).

2. PM overload detection: This is the phase when a PM is considered as being

overloaded, so some VMs running on an overloaded PM should be migrated to

another active PM (to avoid violation QoS requirements).

3. VM selection: This is the phase to select VMs to be migrated from the overloaded

PM.

4. VM placement: This is the phase to place selected VMs for migration on another

active PM.

In this study, we mainly focus on VM placement problem. Algorithms named as

CPU Priority based Best-Fit Decreasing (CPBFD) and Dynamic CPU Priority based

Best-Fit Decreasing (DCPBFD) are proposed for VM placement. We implemented a

number of placement algorithms to compare with the proposed algorithms using real

workload traces.

The rest of the paper is organized as follows. The related work and the system model

are discussed in Sections 2 and 3, respectively. The metrics used to show the

performance of the algorithms are described in Section 4. The proposed VM placement

algorithms are presented in Section 5. In Section 6, the experimental setup, evaluations

and results are discussed. Finally, we conclude the results and discuss the future work in

Section 7.

2. Related Work

The two main types of energy efficient resource management algorithms in the cloud

data centers are constraint energy consumption algorithm [12, 13] and energy efficiency

(energy consumption and Service Level Agreement (SLA) violation) algorithm [7, 8,

14, 15]. The constraint energy consumption algorithm aims to minimize the energy

consumption, but this type of algorithm does not consider SLA violation at all or

focuses a little on it. Therefore, this type of algorithm does not meet the requirements of

users. For example, two heuristic algorithms are proposed by Lee and Zomaya [12] to

reduce the energy consumption, but the algorithms do not consider SLA violation.

Similarly, Kang and Ranka [13] proposed an energy-saving algorithm, but it also does

not consider SLA violation. The main goal of the energy efficiency algorithm is to

reduce the energy consumption and SLA violation in data centers. Several VM

placement algorithms are proposed in [7, 8, 14, 15]. These algorithms reduce SLA

violation and save energy consumption, but SLA violation remains at a high level. In

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 31

our previous study [16], we proposed dynamic VM consolidation based on a PM

overload detection algorithm and a combination of PM overload detection algorithm and

VM quiescing to minimize number of VM migrations according to QoS requirements.

The goal of the model is to improve utilization of resources, SLA, and energy efficiency

in cloud data centers. However, this model does not focus on energy consumption.

In the past few years, many approaches to the dynamic consolidation of VMs have

been proposed [2-11]. Comparative studies of various existing consolidation of VM

algorithms using real-world workload traces were presented. Some of VM consolidation

algorithms based on different heuristics on the legitimate PM were analyzed in [17]. A

scheduling algorithm to assign VMs to PMs in a data center was proposed in [18]. The

goal was to improve energy efficiency by taking into consideration the conflicts

between the costs of VM migration and CPU and disk utilizations. Four models named

as the migration model, the energy model, the application model, and the target system

model were presented to identify the conflicts.

An adaptive threshold-based algorithm was proposed by Deng et al. in [19]. The

overload threshold of CPU utilization and the average utilization of active PMs were

used for PM underload detection algorithm, and minimum average utilization difference

of the data center was used for VM placement algorithm. Several dynamic VM

consolidation algorithms were proposed by Khoshkholghi et al. in [20] to improve the

utilization, energy consumption and SLA violations based on the CPU, RAM and

bandwidth. They used an iterative weighted linear regression method for PM overload

detection and a vector magnitude squared of resources for PM underload detection.

They also proposed SLA and power-aware VM selection algorithm and VM placement

algorithm. PM overload and underload detection algorithms and VM placement

algorithm based on dynamic thresholds and probable future load were proposed by

Shaw et al. in [21]. They used simple exponential smoothing technique to predict CPU

utilization and calculate dynamic upper and lower utilization thresholds. A VM

consolidation algorithm with utilization prediction of multiple resource types based on

the local history of PMs was proposed by Nguyen et al. in [22] to improve the energy

efficiency of cloud data centers. Two adaptive energy-aware algorithms for minimizing

SLA violation and maximizing energy efficiency in cloud data centers were proposed

by Zhou et al. in [23]. CPU, memory resources and application types were considered

during the deployment of VMs.

Managing resource allocation to improve response time using control loops at the

server and cluster levels were applied in [24]. The server migrated a VM if the server’s

resource capacity was not enough to meet SLA of application. An adaptive heuristics

energy-aware algorithm that used an upper threshold of CPU utilization for PM

overload detection and dynamic VM selection algorithms was proposed in [25]. A

greedy consolidation algorithm based on VM placement algorithm was proposed in [26]

to improve the network usage and performance of applications in the data centers. The

greedy consolidation algorithm reduced the number of migrations and speed up the

placement decisions. In [27], two algorithms which could be used together for live

migration of multiple VMs were proposed. The proposed VM migration depended on

three factors that were the cost of migration, the expected distribution of workload and

the state of PM after migration. The algorithms distributed the workload efficiently in

the system. In spite of that, the research did not discuss how to meet SLA. In [3], the

problem of dynamic VM placement was solved by a heuristic bin packing algorithm.

However, SLA cannot be met because of unforeseeable workloads and instability.

32 Loiy Alsbatin et al.

A dynamic consolidation of VMs for web applications was implemented in [10]. In

this study, the response time was used to define SLA. Weighted linear regression was

applied to get the future workload and improve the distribution of workload. VM

consolidation algorithms under QoS expectations were evaluated using the CloudSim

toolkit showing high improvement of cost savings and energy efficiency using dynamic

workload scenarios [7, 8]. They proposed maximum correlation, random selection and

Minimum Migration Time (MMT) policies for VM selection from the overloaded PM

and utilized interquartile range, median absolute deviation, robust local regression and

Local Regression (LR) algorithms for PM overload detection. Simple Method (SM) was

used to find underloaded PM which was with the least resource utilization. For VM

placement, they proposed Power-Aware Best-Fit Decreasing (PABFD) algorithm,

which based on sorting VMs by CPU utilization in decreasing order and placing a VM

in PM that will have the minimum expected increasing in power consumption. The

results showed that the combination of LR for PM overload detection and MMT for VM

selection had better performance in the number of VM migrations, energy consumption,

and SLA violations.

In this research, LR method was used for PM overload detection, SM policy was

used for PM underload detection, MMT policy was used for VM selection, and for

comparison purposes with proposed CPBFD and DCPBFD VM placement algorithms

we used PABFD, First-Fit Decreasing (FFD) [28-30] and Best-Fit Decreasing (BFD)

[29, 30] algorithms which are well-known algorithms for bin-packing problem. VM

placement algorithm based on FFD sorts VMs by CPU utilization in decreasing order

and places a VM in the first PM that will fit it [30]. VM placement algorithm based on

BFD sorts VMs by CPU utilization in decreasing order and places a VM in PM that will

have the maximum CPU utilization after allocating VM [30].

3. System Model

We use the system model presented in [8] to evaluate VM placement algorithms by

using the CloudSim [31] toolkit. The system consists of X heterogeneous PMs in a

large-scale data center. Characteristics of each PM are defined by CPU performance

denoted by Random Access Memory (RAM), Millions Instructions Per Second (MIPS),

and network bandwidth. The storage of servers for VM live migration is network

attached storage. Multiple independent users request for supplying Y VMs characterized

by requirements denoted by RAM, MIPS and network bandwidth.

As shown in Fig. 1, the system includes global and local managers. The local

manager on each PM monitors CPU utilization of PM using VM Monitor (VMM).

VMM decides when and which VMs should be migrated to other PMs. The global

manager which acts as the controller in the system collects information of the utilization

of PMs from the local managers and decides VM placement, and VMMs migrate VMs

and change the power mode of PMs.

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 33

Fig. 1. The system model [8]

4. Metrices

4.1. Power Model

In the data centers, power consumption of PMs is usually defined by CPU, cooling

systems, power supplies, memory and disk storage [32]. The power consumption of

PMs can be defined using linear relationship of CPU utilization even if dynamic voltage

and frequency scaling is used [7, 33, 34]. Due to the fact that the limited number of the

frequency and voltage states of a CPU and other system components, such as network

interfaces and memory, the voltage and frequency scaling are not used. Since analytical

models of power consumption is a complex research problem for modern multi-core

CPUs [8], real power consumption benchmark results provided by the SPECpower [35]

are used.

The work in [7, 36] shows that a PM when it is idle uses approximately 70% of its

maximum energy consumption. As presented in [7, 36], the power consumption of PM

can be defined as

𝑃(𝑢) = 0.7 × 𝑃𝑚𝑎𝑥 + 0.3 × 𝑃𝑚𝑎𝑥 × 𝑢 (1)

where 𝑃𝑚𝑎𝑥 is the maximum power of a fully utilized PM and is set to 250 W as

presented in [33, 34]. u is CPU utilization. Since CPU utilization changes over time, it is

presented as a function of time as u(t). As presented in [7], energy consumption can be

obtained as

E = ∫ 𝑃(𝑢(𝑡))𝑑𝑡
𝑡

. (2)

Since the energy consumption of a PM is determined by CPU utilization, we take

CPU utilization into consideration in the proposed VM placement algorithms to reduce

the energy consumption in the system [6].

34 Loiy Alsbatin et al.

4.2. Cost of Live Migration of VMs

Live migration of VMs transfers VMs between PMs without suspension. However, the

large number of live VM migrations may drop the performance of applications. So, the

number of VM migrations should be reduced. The behavior of applications causes

performance degradation. We use cost model for VM migration presented in [6] to

avoid performance degradation. The authors stated in [6] that CPU utilization can be

increased by 10% for each VM migration. So, each VM migration can cause SLA

violations. Therefore, VM migrations should be reduced, and VM with minimum

memory should be selected.

4.3. SLA Violation Metrics

In cloud computing environments, it is highly important to meet QoS requirements. QoS

is usually defined in the form of SLA that is defined through some characteristics such

as maximum response time or minimum throughput of the system [8]. To evaluate QoS

requirements, SLA metric is defined as a workload independent metric for any loads in

Infrastructure as a Service (IaaS). Two metrics are used to measure SLA violations: The

fraction of time when CPU utilization of PM has been 100%, SLA violation Time per

Active Host/PM (SLATAH) as shown in (3); and Performance Degradation due to

Migrations (PDM) as shown in (4) [8],

SLATAH = ∑
𝑇𝑠𝑖

𝑇𝑎𝑖

𝑋

𝑖=1

 (3)

PDM =
1

𝑌
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

𝑌

𝑗=1

 (4)

where X represents the number of PMs, 𝑇𝑠𝑖
 is the time when the utilization of i-th PM is

100% which leads to an SLA violation, 𝑇𝑎𝑖
 is the time when i-th PM is active, Y

represents the number of VMs, 𝐶𝑑𝑗
 is the estimated performance degradation caused by

j-th VM migrations, 𝐶𝑟𝑗
 is the total CPU capacity requested by j-th VM. 𝐶𝑑𝑗

 is estimated

to be 10% of CPU utilization in MIPS during the j-th VM migrations [8].

The level of SLA violations is independently characterized by both SLATAH and

PDM metrics. So, we use a metric presented in [8] that includes performance

degradation caused by both overloaded PM and VM migrations, denoted as SLA

Violation (SLAV) that is calculated as

SLAV = SLATAH × PDM. (5)

VM consolidation objective is to reduce both energy consumption (E) and SLAV.

ESV metric presented in [8] that equals the product of energy consumption and SLA

violations is used as

ESV = E × SLAV. (6)

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 35

SLAV and energy consumption are the most important metrics that should be

minimized to improve efficiency of resources [7, 8]. SLA violation has a negative

relation with the energy consumption in the cloud data center [37]. Therefore, ESV is

used for performance evaluation of all algorithms to show the trade-off between energy

consumption and SLA violation [7, 8, 37].

5. VM Placement

We propose novel VM placement algorithms based on giving priority of PM with

highest CPU utilization between two sided limits, then giving priority to PM with CPU

utilization outside the two-sided limits and nearest to the two-sided limits. Second

priority is given to PMs with CPU utilization outside the two-sided limits, since

selecting PMs with low load or high load leads to less active PMs and less energy

consumption than waking up PMs from sleep mode. We modified well-known BFD

algorithm [29] to be suitable for VM placement by limiting the upper CPU utilization

threshold [38-42] and lower CPU utilization threshold and implementing the

abovementioned priority. We denote proposed algorithm that used static upper and

lower CPU utilization thresholds as CPBFD, and proposed algorithm that used dynamic

upper and lower CPU utilization thresholds as DCPBFD. Not setting an upper limit for

the CPU utilization of allocated PMs may cause frequent overloading of allocated PMs,

which leads to performance degradation and increases the number of VM migrations.

We propose to limit the upper threshold of CPU utilization of allocated PM to avoid

performance degradation caused by VM migrations to PM with high load and to

minimize the number of VM migrations. Furthermore, not setting a lower limit for CPU

utilization of allocated PMs may cause allocating underloaded PMs, which leads to

more active PMs and more energy consumption. We propose to limit the lower

threshold of CPU utilization of allocated PM to improve energy consumption.

5.1. CPBFD Algorithm

CPU resource utilization model of PM of CPBFD algorithm is shown in Fig. 2. In

CPBFD, all VMs are sorted in the decreasing order of their current CPU utilizations and

allocate each VM to a PM with maximum CPU utilization less than upper CPU

utilization threshold a and more than lower CPU utilization threshold b. If there are no

PMs with CPU utilization between upper and lower threshold, a PM with the nearest

CPU utilization to upper or lower thresholds will be allocated. The priority may be

given to PM with CPU utilization nearest to upper threshold or lower threshold by

adjusting parameter c. PM with CPU utilization that nearest to c and outside of a to b

range will be selected.

36 Loiy Alsbatin et al.

Fig. 2. CPU utilization model of PM of CPBFD and DCPBFD algorithm

There is no specific optimal upper CPU threshold value among the researchers [38-

42]. Selecting high upper CPU threshold may significantly drop the performance of

VMs running on a PM, while selecting low upper CPU threshold value makes

consolidation inefficient to reduce energy consumption. Furthermore, there is no

specific optimal lower CPU threshold value. So, selecting the suitable value for upper

and lower CPU threshold is important. The upper and lower threshold of CPU

utilization modified according to parameter a and b, respectively. CPBFD VM

placement algorithm is shown in Algorithm 1.

Algorithm 1: CPBFD VM Placement Algorithm

Input: pmList, vmList, a, b, c

Output: allocatedPm

 1; vmList.sortDecreasingUtilization()

 2: for each vm in vmList do

 3: maxCpu = min

 4: minCpu = max

 5: allocatedPm = null

 6: for each pm in pmList do

 7: if pm is excluded pm then

 8: continue

 9: end if

10: if pm has enough resources for vm then

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 37

11: if pm.Cpu ≠ 0 and pm is over utilized after allocation vm then

12: continue

13: end if

14: if pm.Cpu ≤ a and pm.Cpu ≥ b then

15: if pm.Cpu > maxCpu then

16: allocatedPm = pm

17: maxCpu = pm.Cpu

18: end if

19: else if Abs(pm.Cpu - c) < minCpu then

20: allocatedPm2 = pm

21: minCpu = Abs(pm.Cpu - c)

22: end if

23: end if

24: end for each

25: if allocatedPm = null then

26: allocatedPm = allocatedPm2

27: end if

28: if allocatedPm ≠ null then

29: allocation.add(vm,allocatedPm)

30: end if

31: end for each

32: return allocatedPm

5.2. DCPBFD Algorithm

CPU resource utilization model of PM of DCPBFD algorithm is the same as that used in

CPBFD shown in Fig. 2. The only difference between DCPBFD and CPBFD is that

upper and lower CPU utilization thresholds in DCPBFD are dynamic, but in CPBFD

they are static as discussed in Section 5.1. In DCPBFD, all VMs are sorted in the

decreasing order of their current CPU utilizations and allocate each VM to a PM with

maximum CPU utilization less than dynamic upper CPU utilization threshold a and

more than dynamic lower CPU utilization threshold b. If there are no PMs with CPU

utilization between upper and lower threshold, a PM with the nearest CPU utilization to

upper or lower thresholds will be allocated. The priority may be given to PM with CPU

utilization nearest to upper threshold or lower threshold by adjusting parameter c. PM

with CPU utilization that is nearest to c and outside of a to b range will be selected.

There is no specific optimal upper and lower CPU utilization threshold values among

the researchers. In DCPBFD, the proposed optimal value of dynamic upper and lower

CPU utilization threshold a and b are based on fixed highest and lowest CPU utilization

values, Median Absolute Deviation (MAD) of historical values of PM CPU utilization,

and median of historical values of PM CPU utilization divided by number of VMs.

The fixed highest CPU utilization is used for upper CPU threshold as highest CPU

threshold, and fixed lowest CPU utilization is used for lower CPU threshold as lowest

CPU threshold. MAD is defined as the median of the absolute deviations from the

median of historical values of PM CPU utilization. MAD gives an idea about CPU

utilization variability, which is important to calculate suitable upper and lower CPU

threshold. Median of historical values of PM CPU utilization divided by number of

38 Loiy Alsbatin et al.

VMs gives an idea about the utilization of VMs that will be allocated to PM, which is

also important to calculate suitable upper and lower CPU thresholds. a and b are

calculated as shown in (7) and (8), respectively.

𝑎 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝐶𝑝𝑢 − 𝑠 × (𝐶𝑝𝑢𝑀𝐴𝐷 + 𝐶𝑝𝑢𝑀𝑒𝑑𝑖𝑎𝑛/𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠) (7)

𝑏 = 𝐿𝑜𝑤𝑒𝑠𝑡𝐶𝑝𝑢 + 𝑠 × (𝐶𝑝𝑢𝑀𝐴𝐷 + 𝐶𝑝𝑢𝑀𝑒𝑑𝑖𝑎𝑛/𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠) (8)

where s is a parameter that allows the adjustment of the dynamic upper and lower CPU

utilization limits, the lower s, the wider two sided limits and the less the energy

consumption, but the higher the level of SLA violations caused by the consolidation.

DCPBFD VM placement algorithm is shown in Algorithm 2.

Algorithm 2: DCPBFD VM Placement Algorithm

Input: pmList, vmList, highestCpu, lowestCpu, c, s

Output: allocatedPm

 1: vmList.sortDecreasingUtilization()

 2: for each vm in vmList do

 3: maxCpu = min

 4: minCpu = max

 5: allocatedPm = null

 6: for each pm in pmList do

 7: if pm is excluded pm then

 8: continue

 9: end if

10: if pm has enough resources for vm then

11: if pm.Cpu ≠ 0 and pm is over utilized after allocation vm then

12: continue

13: end if

14: if (pm.CPUHistory.length ≥ 12) then

15: a = highestCpu – s × (pm.CPUHistoryMAD + pm.CPUHistoryMedian / #ofvm)

16: b = lowestCpu + s × (pm.CPUHistoryMAD + pm.CPUHistoryMedian / #ofvm)

17: else

18: a = highestCpu - 0.05

19: b = lowestCpu + 0.05

20: end if

21: if pm.Cpu ≤ a and pm.Cpu ≥ b then

22: if pm.Cpu > maxCpu then

23: allocatedPm = pm

24: maxCpu = pm.Cpu

25: end if

26: else if Abs(pm.Cpu - c) < minCpu then

27: allocatedPm2 = pm

28: minCpu = Abs(pm.Cpu - c)

29: end if

30: end if

31: end for each

32: if allocatedPm = null then

33: allocatedPm = allocatedPm2

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 39

34: end if

35: if allocatedPm ≠ null then

36: allocation.add(vm,allocatedPm)

37: end if

38: end for each

39: return allocatedPm

Calculation of MAD starts when at least 12 historical values of CPU utilization of

PM are obtained. 12 is used as a safe value to calculate MAD [8]. We suggest having

the initial values of a and b before obtaining the first MAD value. The initial value of a

is adjusted to (highest CPU threshold – 5%), and the initial value of b is adjusted to

(lowest CPU threshold + 5%), which are supposed to be appropriate to avoid that a

reaches the highest CPU threshold and b reaches the lowest CPU threshold.

6. Performance Evaluation

6.1. Experiment Setup

A cloud computing user accesses infinite computing resources. Large scale and

repeatable experiments which are necessary to analysis and compare the algorithms is

very difficult on a real-world infrastructure [8]. We use simulations for ensuring the

repeatability of experiments. We use the CloudSim toolkit [14, 31] as a simulation

platform that allows the energy consumption modeling on cloud computing

environments.

As presented in [8], we simulate a data center containing 800 heterogeneous PMs.

PM types are HP ProLiant ML110 Generation 4 and HP ProLiant ML110 Generation 5.

CPU frequencies of the servers are mapped onto MIPS rating: 1,860 MIPS for each core

of HP ProLiant ML110 G4 server, and 2,660 MIPS for each core of HP ProLiant

ML110 G5 server. Each server is modeled to have 1 GB/s network bandwidth. VM

characteristics correspond to Amazon EC2 instance types including Extra Large

Instance (3.75 GB, 2,000 MIPS); High-CPU Medium Instance (0.85 GB, 2,500 MIPS);

Micro Instance (613 MB, 500 MIPS); and Small Instance (1.7 GB, 1,000 MIPS).

Initialization of VMs allocation is done according to the resource requirements of VM

types. However, VM’s useless resources during the lifetime according to the workload

create opportunities for dynamic consolidation.

6.2. Workload Data

To make the evaluation of simulation applicable, we use real-world workload traces

provided as a monitoring infrastructure for PlanetLab [43], which is a part of the

CoMon project. We use CPU utilization traces presented in [8] from more than a

thousand VMs running on PMs located in more than 500 places around the world.

Utilization is collected every 5 minutes. Random 10 days from the collected workload

traces are used in the simulations. The workload characteristics for each day are

40 Loiy Alsbatin et al.

presented in Table 1. In the simulations, each VM is randomly assigned a workload

trace from one of VMs from the corresponding day. VM consolidation is not limited by

the memory bounds to avoid the constraint on the consolidation.

Table 1. Workload data characteristics [8]

Workload
Number of

VMs

Mean of

CPU

utilization

Standard deviation

of CPU utilization

Median of

CPU

utilization

1 1052 12.31% 17.09% 6%

2 898 11.44% 16.83% 5%

3 1061 10.70% 15.57% 4%

4 1516 9.26% 12.78% 5%

5 1078 10.56% 14.14% 6%

6 1463 12.39% 16.55% 6%

7 1358 11.12% 15.09% 6%

8 1233 11.56% 15.07% 6%

9 1054 11.54% 15.15% 6%

10 1033 10.43% 15.21% 4%

6.3. Simulations Results

The algorithms are evaluated using the CloudSim and the workload traces presented in

Section 6.2. We compare proposed CPBFD algorithm to FFD, BFD and PABFD. We

simulate all combinations of SM underload detection algorithm, LR overloading

detection algorithm, MMT VM selection policy and four VM placement algorithms

(FFD, BFD, PABFD and proposed CPBFD). Algorithms that are used in dynamic VM

consolidation problem are shown in Fig. 3.

For the proposed CPBFD algorithm, two-sided limits (a and b) of CPU utilization is

varied from wider to narrower based as 90% to 10%, 80% to 20%, 70% to 30% and

60% to 40%. Moreover, c parameter is varied to give more priority for low CPU

utilization, equal priority to low or high CPU utilization, and more priority for high

CPU utilization as 0.45, 0.50, and 0.55, respectively. According to these variations,

combinations of a, b and c parameters are varied as (0.9, 0.1, 0.45), (0.9, 0.1, 0.5), (0.9,

0.1, 0.55), (0.8, 0.2, 0.45), (0.8, 0.2, 0.5), (0.8, 0.2, 0.55), (0.7, 0.3, 0.45) (0.7, 0.3, 0.5),

(0.7, 0.3, 0.55), (0.6, 0.4, 0.45) (0.6, 0.4, 0.5), and (0.6, 0.4, 0.55). The purposes of these

variations are to get better upper and lower CPU utilization threshold and better priority

for low or high CPU utilization for the proposed CPBFD algorithm and to use these

better parameters in proposed DCPBFD algorithm.

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 41

Fig. 3. Dynamic VM consolidation problem and algorithms in cloud data centers.

Figs. 4 to 9 show the average results with 95% confidence intervals of ESV metric,

energy consumption, SLAV metric, number of migrations, PDM metric, and SLATAH

metric for all algorithms combination in 10 workload cases, respectively. Results in

Figs. 4 to 9 show that CPBFD leads to better results regarding all parameters compared

to FFD. CPBFD leads to better of ESV metric, SLAV metric, number of migrations,

PDM metric, and SLATAH metric compared to BFD and PABFD. Moreover, BFD

leads to better results regarding ESV metric, SLAV metric, number of migrations, PDM

metric compared to FFD and PABFD. On the other hand, PABFD only leads to the least

energy consumption compared to all algorithms. Fig. 4 shows that CPBFD has better

ESV on average approximately 61.1%, 54.2% and 17.5% than FFD, PABFD, and BFD,

respectively. Fig. 5 shows that CPBFD has less energy consumption on average

approximately 3.8% than FFD and more energy consumption on average approximately

0.75%, and 3% than BFD, and PABFD, respectively. Fig. 6 shows that CPBFD has less

SLAV on average approximately 54.2%, 56.7% and 19% than FFD, PABFD, and BFD,

respectively. Fig. 7 shows that CPBFD has fewer number of migration on average

approximately 22.1%, 27.4%, and 8.3% than FFD, PABFD, and BFD, respectively. Fig.

8 shows that CPBFD has less PDM on average approximately 35.9%, 52.5% and 12.7%

than FFD, PABFD, and BFD, respectively. Fig. 9 shows that CPBFD has less SLATAH

42 Loiy Alsbatin et al.

on average approximately 19.3%, 8% and 13.1% than FFD, PABFD, and BFD,

respectively.

CPBFD_70,30,55 has better ESV and SLAV on average approximately 7.7% and

8.7% than CPBFD with other parameters. CPBFD_80,20,55 has better efficient energy

consumption on average approximately 0.8% than CPBFD with other parameters.

CPBFD with (a = 70, b = 30) of CPU has better ESV on average approximately 14.5%,

3% and 4.3% than CPBFD with (a = 90, b = 10), CPBFD with (a = 80, b = 20), and

CPBFD with (a = 60, b = 40), respectively. CPBFD with (a = 70, b = 30) of CPU has

better SLAV on average approximately 15.9%, 3.9% and 3.9% than CPBFD with (a =

90, b = 10), CPBFD with (a = 80, b = 20), and CPBFD with (a = 60, b = 40),

respectively. CPBFD with (a = 80, b = 20) has almost the same energy consumed by

CPBFD with (a = 90, b = 10), and better efficient energy consumption on average

approximately 0.7%, and 1.5% than CPBFD with (a = 70, b = 30), and CPBFD with (a

= 60, b = 40).

CPBFD_80,20,55 has almost the same energy consumed by BFD, and more energy

consumption on average approximately 2.3% than PABFD, but CPBFD_80,20,55 has

better ESV and SLAV on average approximately 62.2% and 63.9% than PABFD. This

means even if we consider that ESV metric is modified to the product of energy

consumption powered by 20 and SLAV (modified ESV = E20 × SLAV),

CPBFD_80,20,55 will still better than PABFD in regard of modified ESV.

The energy consumption changes slightly compared to SLA violation. Therefore, the

impact of SLA violation on ESV metric is greater than energy consumption. However,

the suitable value of a, b and c should be selected to make a tradeoff between meeting

QoS and improving energy efficiency. From the simulation results, we observe that

CPBFD with (a = 70, b = 30) provides best ESV metric, SLA violations and number of

migrations. In addition, CPBFD with (a = 80, b = 20) provides best efficient energy

consumption. Moreover, CPBFD when c parameter equals 0.55 leads to a little better

ESV metric, SLA violations and energy consumption. Furthermore, we observe that

selecting moderate two-sided limits of CPU utilization between (a = 70, b = 30) and (a

= 80, b = 20) for CPBFD is better than selecting too wide (a = 90, b = 10) or too narrow

(a = 60, b = 40) sided limits of CPU utilization.

Fig. 4. ESV metric of VM placement algorithms

1

2

3

ES
V

 x
 0

.0
0

1

Algorithm

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 43

Fig. 5. Energy consumption of VM placement algorithms

Fig. 6. SLAV metric of VM placement algorithms

Fig. 7. Number of VM migrations of VM placement algorithms

95
100
105
110
115
120
125
130
135

En
e

rg
y

C
o

n
su

m
p

ti
o

n

(k
W

h
)

Algorithm

0

1

2

3

SL
A

V
 x

 0
.0

0
0

0
1

Algorithm

9
10
11
12
13
14
15
16
17

N
u

m
b

e
r

o
f

V
M

m

ig
ra

ti
o

n
s

×1
0

0
0

Algorithm

44 Loiy Alsbatin et al.

Fig. 8. PDM metric of VM placement algorithms

Fig. 9. SLATAH metric of VM placement algorithms

For the proposed DCPBFD algorithm, the fixed highest CPU utilization used for

higher CPU utilization limit (a) is set to 80%, and the fixed lowest CPU utilization used

for lower CPU utilization limit (b) is set to 20%, which are suitable moderate values

according to the results obtained from CPBFD algorithm. s parameter of two-sided

limits (a and b) of CPU utilization is varied as 1, 0.75, and 0.5. Moreover, c parameter is

set to 0.55 to give more priority for high CPU utilization, which gives the best result

according to the results obtained from CPBFD algorithm. According to these variations,

combinations of the fixed highest CPU utilization, the fixed lowest CPU utilization, c

and s parameters are varied as (0.8, 0.2, 0.55, 1), (0.8, 0.2, 0.55, 0.75), and (0.8, 0.2,

0.55, 0.5).

Figs. 10 to 15 show the average results with 95% confidence intervals of ESV metric,

energy consumption, SLAV metric, number of migrations, PDM metric, and SLATAH

metric for DCPBFD algorithm with all combination of parameters, and

CPBFD_80,20,55, CPBFD_75,25,55, and CPBFD_70,30,55 that have the best results

compared to CPBFD with other parameters. Results in Figs. 10 to 15 show that

DCPBFD_80,20,55,75 leads to better results compared to DCPBFD with other

parameters, and CPBFD_75,25,55 leads to better results compared to CPBFD with other

parameters. Results in Figs. 10, 12, 13, 14, and 15 show that DCPBFD_80,20,55,75

leads to better of ESV metric, SLAV metric, number of migrations, PDM metric, and

SLATAH metric compared to DCPBFD and CPBFD with other parameters. Moreover,

results in Fig. 11 show that CPBFD_80,20,55 provides a little better efficient energy

consumption compared to DCPBFD and CPBFD with other parameters. We observe

0.02%

0.03%

0.04%

0.05%

0.06%

P
D

M
 %

Algorithm

3%

4%

5%

6%

SL
A

TA
H

 %

Algorithm

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 45

that selecting moderate two-sided limits of CPU utilization for DCPBFD by selecting

moderate highest CPU utilization and lowest CPU utilization and adjusting s parameter

to moderate value is better than selecting too wide or too narrow sided limits of CPU

utilization.

Fig. 10. ESV metric of CPBFD and DCPBFD algorithms

Fig. 11. Energy consumption of CPBFD and DCPBFD algorithms

0.5

1.0

1.5

2.0

ES
V

 x
 0

.0
0

1

Algorithm

95
100
105
110
115
120
125
130

En
e

rg
y

C
o

n
su

m
p

ti
o

n
(k

W
h

)

Algorithm

46 Loiy Alsbatin et al.

Fig. 12. SLAV metric of CPBFD and DCPBFD algorithms

Fig. 13. Number of VM migrations of CPBFD and DCPBFD algorithms

Fig. 14. PDM metric of CPBFD and DCPBFD algorithms.

0.5

1.0

1.5

2.0

SL
A

V
 x

 0
.0

0
0

0
1

Algorithm

9

10

11

12

13

14

N
u

m
b

e
r

o
f

V
M

m

ig
ra

ti
o

n
s

×1
0

0
0

Algorithm

0.02%

0.03%

0.04%

P
D

M
 %

Algorithm

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 47

Fig. 15. SLATAH metric of CPBFD and DCPBFD algorithms.

7. Conclusion and Future Work

The goal of the proposed CPBFD and DCPBFD VM placement algorithms is to

improve energy efficiency, and SLA in cloud data centers. A number of VM placement

algorithms are implemented to compare with the proposed algorithm. We evaluate the

algorithms through simulations with real-world workload traces. CPBFD and DCPBFD

algorithms produce better results by avoiding VM migrations to PM with high load that

may cause SLA violations or low load, which lead to more active PMs and more energy

consumption. The simulation results show that CPBFD and DCPBFD with moderate

two-sided limits of CPU utilization provide the least ESV, least SLA violations, least

VM migrations, and efficient energy consumption. However, PABFD algorithm leads to

a little better energy consumption than CPBFD and DCPBFD algorithms.

As a future work, we plan to extend our research by using a software framework for

dynamic and energy efficient consolidation of VMs applied in existing cloud

deployments and in research on dynamic consolidation of VMs to optimize the resource

utilization and energy efficiency.

References

1. Weber, W. D., Fan, X., Barroso, L. A.: Powering the data center. U.S. Patent No. 8,595,515.

Washington, DC: U.S. Patent and Trademark Office. (2013)

2. Beloglazov, A., Buyya, R.: Managing overloaded hosts for dynamic consolidation of virtual

machines in cloud data centers under quality of service constraints. IEEE Transactions on

Parallel and Distributed Systems, Vol. 24, No.7, 1366-1379. (2013)

3. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application

placement in virtualized systems. In Proceedings of ACM/IFIP/USENIX International

Conference on Distributed Systems Platforms and Open Distributed Processing, Springer

Berlin Heidelberg, 243-264. (2008)

3%

4%

5%
SL

A
TA

H
 %

Algorithm

48 Loiy Alsbatin et al.

4. Jung, G., Hiltunen, M. A., Joshi, K. R., Schlichting, R. D., Pu C.: Mistral: Dynamically

managing power, performance, and adaptation cost in cloud infrastructures. In Proceedings

of IEEE 30th International Conference on Distributed Computing Systems, 62-73. (2010)

5. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management: Reactive

versus proactive or lets be friends. Computer Networks, Vol. 53, No. 17, 2905-2922. (2009)

6. Fu, X., Zhou, C.: Virtual machine selection and placement for dynamic consolidation in

Cloud computing environment. Frontiers of Computer Science, Vol. 9, No. 2, 322-330.

(2015)

7. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing. Future Generation Computer

Systems, Vol. 28, No. 5, 755-768. (2012)

8. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive Heuristics

for energy and performance efficient dynamic consolidation of virtual machines in cloud data

centers. Concurrency and Computation: Practice and Experience, Vol. 24, No. 13, 1397-

1420. (2012)

9. Han, G., Que, W., Jia, G., Shu, L.: An efficient virtual machine consolidation scheme for

multimedia cloud computing. Sensors, Vol. 16, No. 2, 246-246. (2016)

10. Guenter, B., Jain, N., Williams, C.: Managing cost, performance, and reliability tradeoffs for

energy-aware server provisioning. In Proceedings of 30'st Annual IEEE Intl. Conf. on

computer communications (INFOCOM), 1332-1340. (2011)

11. Alsbatin, L., Oz, G., Ulusoy, A. H.: An overview of energy-efficient cloud data centres. In

Proceedings of the International Conference of computer and applications (ICCA2017),

Dubai, United Arab Emirates, 211- 214. (2017)

12. Lee, Y. C., Zomaya, A. Y.: Energy conscious scheduling for distributed computing systems

under different operating conditions. IEEE Transactions on Parallel and Distributed Systems,

Vol. 22, No. 8, 1374–1381. (2011)

13. Kang, J., Ranka, S.: Dynamic slack allocation algorithms for energy minimization on parallel

machines. Journal of Parallel and Distributed Computing, Vol. 70, No. 5, 417–430. (2010)

14. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud

computing environments and the CloudSim toolkit: Challenges and opportunities. In

Proceedings of 2009 Conference on High Performance Computing & Simulation Conference,

1-11. (2009)

15. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data

centers. in Proceedings of the 10th IEEE/ACM International Symposium on Cluster, Cloud,

and Grid Computing, 826–831. (2010)

16. Alsbatin, L., Oz, G., Ulusoy, A. H.: A Novel Physical Machine Overload Detection

Algorithm Combined with Queiscing for Dynamic Virtual Machine Consolidation in Cloud

Data Centers. The International Arab Journal of Information Technology, Vol. 17, No. 3.

(2020). Available online: https://iajit.org/PDF/May%202020,%20No.%203/16897.pdf.

17. Kaushar, H., Ricchariya, P., Motwani, A.: Comparison of SLA based energy efficient

dynamic virtual machine consolidation algorithms. International Journal of Computer

Applications, Vol. 102, No. 16. (2014)

18. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual

machines using workload-aware consolidation techniques. Journal of Supercomputing, Vol.

61, No.1, 46-66. (2012)

19. Deng, D., He, K., Chen, Y.: Dynamic virtual machine consolidation for improving energy

efficiency in cloud data centers. In Proceedings of 4th international conference on cloud

computing and intelligence systems. (2016)

20. Khoshkholghi, M. A., Derahman, M. N., Abdullah, A. , Subramaniam, S., Othman, M.:

Energy-efficient algorithms for dynamic virtual machine consolidation in cloud data centers.

IEEE Access, Vol. 5, 10709-10722. (2017)

https://iajit.org/PDF/May%202020,%20No.%203/16897.pdf

Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers 49

21. Shaw, S. B., Singh, A. K.: Use of proactive and reactive hotspot detection technique to

reduce the number of virtual machine migration and energy consumption in cloud data

centre. Computers & Electrical Engineering, Vol. 47, 241-254. (2015)

22. Nguyen, T. H., Francesco, M. D., Yla-Jaaski, A.: Virtual Machine Consolidation with

Multiple Usage Prediction for Energy-Efficient Cloud Data Centers. IEEE Transactions on

Services Computing, Vol. 99, 1-14. (2017)

23. Zhou, Z., Abawajy, J., Chowdhury, M., Hu, Z., Li, K., Cheng, H., Alelaiwi, A. A., Li, F.:

Minimizing SLA violations and power consumption in cloud data centers using adaptive

energy-aware algorithms. Future Generation Computer Systems, Vol. 86, 836-850. (2018)

24. Wang, X., Wang, Y.: Coordinating power control and performance management for

virtualized server clusters. IEEE Transactions on Parallel and Distributed Systems, Vol. 22,

No. 2, 245-259. (2011)

25. Yadav, R. Zhang, W.: MeReg: Managing Energy-SLA Tradeoff for Green Mobile Cloud

Computing. Wireless Communications and Mobile Computing, Vol. 2017. (2017)

26. Kakadia, D., Kopri, N., Varma, V.: Network-aware virtual machine consolidation for large

data centers. In Proceedings of 3rd International Workshop on Network-Aware Data

Management. (2013)

27. Forsman, M., Glad, A., Lundberg, L., Ilie, D.: Algorithms for automated live migration of

virtual machines. Journal of Systems and Software, Vol. 101, 110-126. (2015)

28. Yue, M.: A simple proof of the inequality FFD (L)< 11/9 OPT (L)+ 1,for all l for the FFD

bin-packing algorithm. Acta Mathematicae Applicatae Sinica (English Series), Vol. 7, No. 4,

321-331. (1991)

29. Coffman, E. G., Garey, M. R., Johnson, D. S.: Approximation algorithms for bin-packing: A

survey. Approximation algorithms for NP-hard problems, 46-93. (1996)

30. Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for

energy efficient data centers. in IEEE Symposium on Computers and Communications, 9-15.

(2013)

31. Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A., Buyya, R.: CloudSim: A toolkit

for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms. Software: Practice and Experience, Vol. 41, No. 1, 23-50. (2011)

32. Minas, L., Ellison, B.: Energy efficiency for information technology: How to reduce power

consumption in servers and data centers. Intel Press. (2009)

33. Fan, X., Weber, W. D., Barroso, L.A.: Power provisioning for a warehouse-sized computer.

ACM SIGARCH Computer Architecture News, Vol. 35, No. 2, 13-23. (2007)

34. Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., Jiang, G.: Power and performance

management of virtualized computing environments via lookahead control. Cluster

Computing, Vol. 12, No. 1, 1-15. (2009)

35. Lange, K. D.: Identifying shades of green: The SPECpower benchmarks. Computer, Vol. 42,

No.3, 95-97. (2009)

36. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient

consolidation of virtual machines in cloud data centers. In Proceedings of the 8th

International Workshop on Middleware for Grids, Clouds and e-Science. (2010)

37. Ammar, A., Luo, J, Tang, Z, Wajdy, O.: Intra-Balance Virtual Machine Placement for

Effective Reduction in Energy Consumption and SLA Violation. IEEE Access, Vol. 7.

(2019)

38. Murtazaev, A., Oh, S.: Sercon: Server consolidation algorithm using live migration of virtual

machines for green computing. IETE Techical Review, Vol. 28, No. 3, 212-231. (2011)

39. Vogels, W.: Beyond Server Consolidation. ACM Queue, Vol. 6, No. 1, 20-26. (2008)

40. Magesh, H., Smith, J.: Server consolidation through virtualization with quad-core intel xeon

processors. White Paper by Intel Corporation and Infosys Technologies. (2008)

41. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box strategies for

virtual machine migration. 4th USENIX Symposium on Networked Systems Design &

Implementation. (2007)

https://ieeexplore.ieee.org/author/37086858755
https://ieeexplore.ieee.org/author/37085390054
https://ieeexplore.ieee.org/author/37086858152

50 Loiy Alsbatin et al.

42. Song, Y., Wang, H., Li, Y., Feng, B., Sun, Y.: Multi-tiered ondemand resource scheduling

for vm-based data center. 9th IEEE/ ACM International Symposium on Cluster Computing

and the Grid. (2009)

43. Park, K., Pai, V. S.: CoMon: A mostly-scalable monitoring system for PlanetLab. ACM

SIGOPS Operating Systems Review, Vol. 40, No. 1, 65-74. (2006)

Loiy Alsbatin received his B.S. degree in Computer Engineering from Mutah

University, Jordan, in 2008, his M.S. degree in Computer Engineering from Jordan

University of Science and Technology (JUST), Jordan, in 2012, and his Ph.D. degree in

Computer Engineering from Eastern Mediterranean University (EMU), in Famagusta,

North Cyprus, in 2019. He is currently a faculty member in the Department of

Computer Science at Shaqra University, Saudi Arabia. His current research interests

include distributed system, cloud computing, resource management, and virtualization.

Gurcu Oz received her B.S, M.S. degrees from the Electrical and Electronic

Engineering department and Ph.D. degree from the Computer Engineering Department

of Eastern Mediterranean University, in Famagusta, North Cyprus. Currently, she is

working in the Department of Computer Engineering of Eastern Mediterranean

University. Her research interests include computer networks, wireless networks,

distributed systems, cloud computing, system simulation, information security and

network security.

Ali Hakan Ulusoy was born in Eskisehir, Turkey, on June 3, 1974. He graduated from

the double major program of the department of Electrical and Electronic Engineering

(EEE) and department of Physics in Eastern Mediterranean University (EMU) in 1996.

He received his M.S. and Ph.D. degrees in EEE in EMU in 1998 and 2004, respectively.

He joined Information Technology department, EMU, in 2004. His current research

interests include wireless communications, receiver design, channel estimation, fuzzy

systems, wireless networks, cloud computing, millimeter wave communications and

healthcare system development.

Received: November 22, 2018; Accepted: November 20, 2019

Computer Science and Information Systems 17(1):51–70 https://doi.org/10.2298/CSIS181101016C

Towards a software-based mobility management for 5G:
An experimental approach for flattened network

architectures.

Jesús Calle-Cancho1, José-Manuel Mendoza-Rubio2, José-Luis González-Sánchez1,
David Cortés-Polo1, and Javier Carmona-Murillo2

1 Research, Technological Innovation and Supercomputing Center of Extremadura (CénitS),
10071 Cáceres, Spain

{jesus.calle,joseluis.gonzalez,david.cortes}@cenits.es
2 Department of Computing and Telematics Engineering, University of Extremadura

10003 Cáceres, Spain
{jmendozah, jcarmur}@unex.es

Abstract. The number of mobile subscribers, as well as the data traffic generated
by them, is increasing exponentially with the growth of wireless smart devices and
the number of network services that they can support. This significant growth is
pushing mobile network operators towards new solutions to improve their network
performance and efficiency. Thus, the appearance of Software Defined Networking
(SDN) can overcome the limitations of current deployments through decoupling
the network control plane from the data plane, allowing higher flexibility and pro-
grammability to the network. In this context, the process of handling user mobil-
ity becomes an essential part of future mobile networks. Taking advantage of the
benefits that SDN brings, in this article we present a novel mobility management
solution. This proposal avoids the use of IP-IP tunnels and it adds the dynamic flow
management capability provided by SDN. In order to analyse performance, an an-
alytical model is developed to compare it with NB-DMM (Network-based DMM),
one of the main DMM (Distributed Mobility Management) solutions. Additionally,
performance is also evaluated with an experimental testbed. The results allow han-
dover latency in real scenarios and numerical investigations to be measured, and
also show that SR-DMM achieves better efficiency in terms of signaling and rout-
ing cost than NB-DMM solution.

Keywords: SDN, DMM, IPv6 mobility, cost analysis, experimental evaluation.

1. Introduction

With the ever more rapid development and innovations of wireless communications, and
the advancement of more powerful and smart mobile devices, the future mobile networks
are expected to be able to provide new services according to the specific demands of
the users. These advances have generated an exponential growth of global mobile data
traffic which will increase sevenfold between 2017 and 2022, reaching 77.5 exabytes per
month by 2022 [1]. The signaling load is expected to increase almost 50% faster than the
growth in data traffic [2]. Driven by this massive wireless data traffic increase, efficient
network management mechanisms have been revealed as one of the major challenges in

52 Jesús Calle-Cancho et al.

next-generation mobile networks [3, 4]. These mechanisms must be able to dynamically
control and allocate network resources to provide flexibility in the new 5G ecosystem [5].

One of these processes, involved in the network management, is the mobility support.
Mobility management protocols are responsible for maintaining the active services while
the user roams between different networks. For this purpose, the Internet Engineering
Task Force (IETF) standardized IP mobility management protocols that are Mobile IPv6
(MIPv6) [6] and Proxy Mobile IPv6 (PMIPv6) [7]. The operation of these solutions is
based on the existence of a central entity responsible for managing the movement of the
mobile node. This agent maintains the location of MNs and redirects traffic to them. How-
ever, these centralized mobility management paradigms are not efficient when handling a
large volume of mobile data traffic. Our previous works [8,9] establish the limitations and
problems of these approaches such as non-optimal routes, centrally deployed mobility
anchors (single point of failure) and reliability and scalability issues [10].

In order to address these problems, new distributed mobility management approaches
are being proposed, in which the mobility anchors are positioned closer to the user with
the aim of getting a flatter network. Moreover, SDN has emerged as an efficient network
approach capable of supporting the dynamic nature of the next-generation wireless net-
works. In this article, we propose a mobility management solution, called SR-DMM, that
combine SDN and DMM and improves the mobility management process in 5G networks,
taking full advantages of the software capabilities of the SDN paradigm. The key benefit
of the SR-DMM solution is that it manages to reduce significantly both signaling and rout-
ing cost, optimizing control and data plane. The signaling overhead is reduced because
our proposal does not require the binding refresh process. Moreover, the complexity of the
data plane and the tunnel management is also reduced avoiding the use of IP-IP tunnels
during the movement of the users. Due to this, the proposed solution can reduce handover
latency. These benefits have also been identified and validated through experimental eval-
uation in a testbed. In addition, an analytical framework has been developed in order to
evaluate and compare our proposal with a previous legacy DMM proposal.

The rest of the paper is organized as follows. In Section 2, we briefly present back-
ground information about Distributed Mobility Management protocols. Then, Section 3
describes Software Defined Networking paradigm and SR-DMM is introduced. Section
4 shows the analytical model used to evaluate the proposal, and the numerical results
of this analysis. Section 5 presents the performance evaluation through the experimental
prototype. Finally, Section 6 concludes the paper.

2. Related work

Nowadays, most of the deployed architectures, such as 3GPP (Third Generation Partner-
ship Project) networks, have a small number of centralized anchors managing the traffic
of thousands of mobile users, but these centralized approaches have certain problems [8].
The evolution towards DMM approaches has shown improvements in better use of net-
work resources [11,12,13,14,15]. Additionally, future mobile networks will be driven by
software, relying on emerging technologies such as SDN [16, 17, 18].

Similarly to other mobility solutions, distributed mobility management protocols can
be broadly classified in two categories, depending on the role of the mobile node in the
handover process, namely those that require the active involvement of the MN (Host-

Towards a software-based mobility management for 5G 53

Based DMM) and those that not (Network-Based DMM). Thus, in this section, an overview
of the distributed mobility management protocols is presented in order to then discuss
its relationship with the Software Defined Networking paradigm and its implications for
future mobile networks. A brief description of the existing solutions is also given for
comparison with the SDN-based DMM solution proposed in this paper.

2.1. Host-Based DMM

This DMM proposal is based on Mobile IPv6 and is detailed in [13, 19] (Host-Based
DMM, HB-DMM). HB-DMM extends mobility signaling and reuses many concepts such
as the binding cache at the MN, binding cache at the mobility anchor or tunneling. More-
over, in [19], the authors attempt to improve the performance of mobility support by ex-
tending the MIPv6s HA to the AMA (Access Mobility Anchor), which is a new mobility
anchor defined for the proposed Host-Based DMM approach. These AMAs are distributed
at the edge of the access network level and the MN configures its address based on the
provided network prefix from the AMA.

When an MN moves to an adjacent access network, served by another AMA, a new
address is configured in the MN based on the network prefix obtained from the serving
AMA at the new access network, while it keeps the previous address from the origin
AMA. As a result of the signaling between the serving AMA and the origin AMA, a
bidirectional tunnel is created between them through new signaling messages called Ac-
cess Binding Update (ABU) and Access Binding Acknowledgement (ABA). As depicted
in Fig. 1, this solution creates multiple tunnels between AMAs and, in cases where a
high mobility rate exists, the system performance might be critically compromised by the
frequent registrations and maintenance of multiple tunnels.

Fig. 1. Host-Based DMM

54 Jesús Calle-Cancho et al.

2.2. Network-Based DMM

Network-Based DMM (NB-DMM) [20] is a Distributed Mobility Management approach
that shares with PMIPv6 the fact that it is network-based. It exempts the MN from par-
ticipating in any mobility signaling, so no network software upgrade is required at the
MN for mobility support because distributed mobility anchors perform mobility signal-
ing on behalf of the MN. This NB-DMM is one of the early proposals designed in the
IETF for network-based DMM at the Distributed Mobility Management Working Group.
In NB-DMM, the mobility management functionalities are moved to the access routers
(AR) level in order to anchor the traffic closer to the MN. Each AR is required to have
both mobility anchoring and location functionalities, and it is referred to as a mobility
capable access router (MAR).

In NB-DMM, a new session is anchored at the current AR and initiated using the cur-
rent IPv6 address. When a handover occurs before the end of the session, the data traffic
of this session is tunneled between the current MAR and the anchoring MAR for this ses-
sion. In order to achieve a network-based solution without the participation of the MN in
the mobility signaling, the architecture is partially distributed and relies on a centralized
database (Mobility Context DB, CMD). This DB stores ongoing sessions for the MNs;
it stores the home network prefix currently allocated to the MN and their respective an-
choring points. Thus, upon a handover, the new MAR retrieves the IP addresses of the
anchoring MAR for the MNs sessions from the database. Then, the new MAR proceeds
to update the location by sending a PBU to each anchoring MAR. Each anchoring MAR
replies by a PBA. The basic operation of NB-DMM is depicted in Fig. 2.

Fig. 2. Network-Based DMM

Towards a software-based mobility management for 5G 55

3. SDN-Based Distributed Mobility Management

Software Defined Networking is an emerging approach to designing, building and man-
aging networks. This term has been coined in recent years and is currently attracting
attention from universities and industry as important architecture for the management of
traditional IP networks which are complex and very hard to manage. The SDN architec-
ture is directly programmable, agile, centrally managed and open standards-based.

Furthermore, Fig. 3 describes the SDN functional architecture which consists of three
main layers. The Infrastructure layer involves the physical network equipment, the control
layer consists of the network controllers and the application layer involves functional
applications.

Fig. 3. SDN functional architecture

In this way, SDN provides innovation, improved performance and enhanced configu-
rations. Therefore, this paradigm can be seen as a great opportunity to manage mobility
efficiently in 5G networks.

3.1. SR-DMM solution

The objective of managing the mobility of MNs through SDN technology is to achieve
solutions where the control plane is centralized and separated from the data plane, which
is distributed. Mobility management is offered based on a service developed as an SDN
application that will run on the network controller. This network controller manages a
control plane that consists of generic hardware. Therefore, the main objective of our pro-
posal (SDN Redirection DMM) is to provide flexibility, scalability and reliability to the
future wireless communications by using SDN capabilities in order to manage mobility
as a service. SR-DMM focuses on providing L3 improvements such as L3 handover la-
tency reduction. However, there are other solutions, which include improvements at the
link-layer [21, 22], but they are out of the scope of this paper.

56 Jesús Calle-Cancho et al.

In this work, network flexibility refers to the ability of a network to adapt its resources
[23, 24]. SR-DMM offers flexibility through SDN programmability. The proposed solu-
tion implements a mechanism via open standards to optimally redirect flows when an
MN moves through the network domain. Moreover, scalability is defined as the ability
to, more specifically in the control plane, handle an increasing workload [25]. SR-DMM
provides scalability by reducing the signaling overhead because our proposal does not
require the binding refresh process. In the following sections, flexibility and scalability
are measured analytically in terms of signaling cost and packet delivery cost respectively.
These improvements are also measured experimentally in terms of handover latency. In
addition, SR-DMM introduces reliability through centralized network controllers which
must be capable of meeting real time requirements of the network [26].

The centralized network controller has a global vision of the entire network. This
opportunity is taken advantage of by SDN application through OpenFlow channel. There-
fore, mobility service knows the global status of the DMM domain data plane in order to
make timely decisions.

On the other hand, the network controller provides capabilities to the edge switches
through OpenFlow interfaces by anchoring the packet flow to each mobile node. This
solution distinguishes between switches with anchor capabilities (edge switches) and
switches without these capabilities. The SR-DMM application is developed on the net-
work controller and it allows flow tables over OpenFlow Switches (OFSwitches) with an-
chor capabilities to be configured. Moreover, the SR-DMM application provides the edge
OFSwitches with other functionalities such as neighbour discovery and access control.

Due to the global vision of the network controller, the proposal avoids overheads
introduced by tunneling between mobility anchors in DMM solutions by performing flow
redirections.

Fig. 4. Architecture of SR-DMM proposal

Towards a software-based mobility management for 5G 57

Fig. 4 shows the functional architecture of the SR-DMM solution where the access
network consists of OpenFlow switches which are managed by the network controller. In
this case, a switch located at the edge of the network (e.g. OF-Switch1) acts as an anchor
for the flows opened by the mobile node when connected to this OF-Switch. When the
MN moves through the DMM domain, it acquires new IPv6 prefixes from the visited
networks.

Clearly, an analogy with the NB-DMM solution can be established: an SDN controller
in SR-DMM is a similar entity to CMD (in NB-DMM) and OFSwitches are the entities
analogous to the MAARs located on the edge network.

The following subsections show the important tasks of the SR-DMM proposal, such
as the initial registration operation and the handover process.

3.2. SR-DMM: Initial registration

When an MN connects for the first time to an OFSwitch of the DMM domain, it sends
a RS (Router Solicitation) message to this device. This OFSwitch, according to its flow
table, encapsulates the RS in an OpenFlow PacketIn message and sends it to the network
controller. The MN is authenticated and located by the network controller,which stores a
bind with its MAC address, its identifier (MN-ID) and the anchor to which the terminal
is currently associated. Then, the network controller retrieves the corresponding network
prefix, creates an RA (Router Advertisement) message with this prefix, encapsulates this
message into an OpenFlow PacketOut message and finally this message is sent to OF-
Switch. When the MN receives the RA, it configures the IPv6 address that anchors to the
OFSwitch (see Fig. 5).

Fig. 5. SR-DMM proposal: initial registration operation

3.3. SR-DMM: Handover operation

During the handover operation, SR-DMM allows the location of the MN to be detected
when the network controller receives a new RS message encapsulated into a PacketIn

58 Jesús Calle-Cancho et al.

message. In this moment, the network controller de-encapsulates this message and verifies
that the current OFSwitch is different from the previous one. If so, the SDN controller
generates as many network prefixes as previously visited OFSwitches by the MN during
its movement through the DMM domain. With these network prefixes, the mobile node
could configure its IPv6 network addresses. This occurs when the MN receives an RA
message from its new mobility agent.

The SR-DMM application sets a flow rule on each previous OFSwitch where the flows
are anchored by the MN. The creation of flow rules for the OFSwitches visited by the MN
is described in detail in Algorithm 1.

Algorithm 1: Flow rules calculation for the OFSwitches visited by the MN
Input:

Mobile Node (MN),
Previous OFSwitches list (OFSlist),
Current OFSwitch (COFS)

Output:
Flow rules list to install in OFSwitches (FR)

1 foreach PrevOFS ∈ OFSlist do
2 // Get IPv6 address from the MN physical address and network prefix of the PrevOFS
3 MNglobal addr = getIPv6Address(MNhw addr, P revOFSprefix);

4 // Get local address used to connect PrevOFS and COFS
5 MNlocal addr = getIPv6Address(COFS,MNId);

6 // Build OpenFlow rule to install on OFSwitches
7 Rule = buildOpenF lowRule(PrevOFS,MNglobal addr,MNlocal addr);

8 // Create list of all rules
9 FR[PrevOFS] = Rule

10 end

11 return FR;

The installed rule allows packets to redirect from previous anchors to current mobility
agents of the MN by establishing an IPv6 destination address which is formed by the
network prefix associated with the current OFSwitch and the identifier of the MN in the
SR-DMM domain (MN-ID). The flow rule installed on the current mobility agent allows
the original IPv6 address of the packets belonging to the previous sessions to be restored
in order to maintain the continuity of the sessions transparently. Moreover, the flow rules
installed on OFSwitches expire when the time elapses and the corresponding match does
not exist. This event is received by the network controller and the expired sessions will
not have mobility support (see Fig. 6).

Therefore, SR-DMM allows data traffic to be redirected from the previous OFSwitch
to the current one transparently according to the MN location and without involving the
MN in the control signaling. This process does not overload the network with the control
headers introduced by the IP-IP tunnels.

Towards a software-based mobility management for 5G 59

Fig. 6. SR-DMM proposal: handover process

Other implementations establish an optimal route by applying flow rules to all OF-
Switches involved in the path between CN and MN [27]. With SR-DMM it is only nec-
essary to install new rules on the edge OFSwitches visited by the MN because the paths
to each destination network are calculated previously and dynamically by the mobility
service in order to calculate the optimal route between the previous OFSwitch and the
current one. The SR-DMM solution does not need to use any specialized mobility agent,
as distinct from other solutions such as [28]. All network devices of the DMM domain
are generic and its functionality is established by the network controller, which chooses
whether the switches act as mobility agents or not.

4. Analytical model

This section presents a cost analysis in terms of signaling cost and data packet delivery
cost of our proposed solution and compares them with NB-DMM solution.

The analysis is performed on a domain which consists of N cells connected to different
access nodes. These will be the first network devices with IP capability. The network
topology is described in Fig. 7.

60 Jesús Calle-Cancho et al.

Fig. 7. Network topology used in analysis.

NB-DMM and SR-DMM solutions are evaluated through an analytical model in order
to calculate signaling cost and packet delivery cost. Both solutions are also analysed on
an experimental testbed, which is presented in the following sections.

The analytical model has been developed using the framework described in [15]. The
packet transmission cost in IP networks is directly proportional to the number of hops
between source and destination nodes. Hence, hx,y is defined as the hop distance between
x and y network nodes.

4.1. Signaling cost evaluation

One of the main functionalities for any IP mobility management protocol is the process
of ensuring that the MNs mobility session is kept up to date while an MN moves among
networks. This requires control messages that need to be sent among the mobility agents
in the network.

The total signaling cost of registration updates during a session is denoted by Cs. The
signaling cost is the accumulative traffic load on exchanging signaling messages during
the communication session of the MN. This cost depends on the size of the signaling
messages and the number of hops in every L3 handover process during the time interval
that the MN communication remains active. Therefore, for each movement into a new
subnet, the Proxy Binding Update(PBU)/Proxy Binding ACK (PBA) message is sent to
the CMD for NB-DMM proposal. Moreover, the binding cache is refreshed during the
prefix lifetime (binding refresh process) and the prefix is deleted when there is no active
session (deregistration process).

The SR-DMM approach notifies the handover using OpenFlow messages to interact
with the forwarding table of the OFSwitches. The signaling control messages exchanged

Towards a software-based mobility management for 5G 61

are FlowMod messages, which are typical of SDN architecture. Thus, the path between
mobility agents is updated through FlowMod messages. Moreover, inactive network pre-
fixes are removed when the timers of the flow table entries expire. In this case, the binding
refresh mechanism is not necessary.

We refer to the total signaling cost as a sum of the three main components: the cost
for the binding update after a handover; the cost for terminating a prefix that is no longer
active; and the cost required to periodically refresh the bindings. Therefore, the signaling
cost during MN movement for both NB-DMM and SR-DMM solutions are summarized
in the following expressions:

CNB−DMM
s = µc · ((SPBU + SPBA) · hCMD−MAR

·(Npr + 1) + 2 · (SPBU + SPBA) · hCMD−MAR

+RBCE · (SPBU + SPBA) · hCMD−MAR)

(1)

CSR−DMM
s = µc · ((Npr + 1) · 2 · SFlMod · hCONT−OFS

+(SP−IN + SRS + SP−OUT + SRA) · hCONT−OFS)
(2)

where µc is the subnet (i.e., cell) border crossing rate and Npr is the number of active
prefixes per MN. Npr can be also defined as the number of MARs/OFSwitches which
maintain some active session with the MN. According to [29], Npr is calculated as:

Npr =
µc

δ
(3)

where 1/δ is the mean value of the active prefix lifetime while the MN is visiting a
foreign network.

4.2. Packet delivery cost evaluation

The total data packet delivery cost for a session is defined as Cpd. This value is influenced
by the size of the data messages multiplied by the number of hops needed to forward
packets from the CN to the MN and vice versa. Thus, the expressions that represent the
cost are as follows:

CNB−DMM
pd = Np/s · ((Npr − 1) · (SDATA + SIP)

·hMAR−MAR + (SDATA · hCN−MAR)

+(SDATA · hMN−MAR))

(4)

CSR−DMM
pd = Np/s · ((Npr − 1) · SDATA · hOFS−OFS

·hOFS−OFS + (SDATA · hCN−OFS)

+(SDATA · hMN−OFS))

(5)

where Np/s is the packet transmission rate per active flow and SDATA is the size of
these data messages. All parameters used in the analysis are shown in the Notations.

62 Jesús Calle-Cancho et al.

4.3. Numerical results

This subsection discusses the performance evaluation of both NB-DMM and SR-DMM
proposals. Network topology used for analytical evaluation is shown in Fig. 7. The default
values [15] [19] [30] are assumed to be as follows: E[µc] = [50 − 1800] s; E[δ] = 60 s;
E[RBCE] = 60 s; Np/s = 3000; SPBU = SPBA = 76 bytes; SRS = SRA = 52 bytes;
SP−IN = 92 bytes; SP−OUT = 103 bytes; SFlMod = 116 bytes; SDATA = 120
bytes; SIP = 40 bytes; hCMD−MAR = hCONT−OFS = 2 hops; hMAR−MAR =
hOFS−OFS = 2 hops; hCN−MAR = hCN−OFS = 5 hops and hMN−MAR = hMN−OFS =
1 hop.

Fig. 8 shows the comparison of signaling cost as a function of the cell residence time,
which varies from 50 to 1800 seconds. As could be expected, Cu achieves the highest
values when the cell residence time is low.

!"##$%"&'(")*"$+',"$-&"*.

/ 0// 1// 23// 24//

5
'6
)7
#')
6
$*
8&
+$
-9
:+
"&
;&
"*
.

/

2/

3/

</

0/

=9>?@@

5A>?@@

Fig. 8. Signaling cost versus cell residence time

When the cell residence time is low, signaling cost for the SR-DMM proposal is
greater than the value of NB-DMM solution because NB-DMM is based on IPv6 pro-

Towards a software-based mobility management for 5G 63

tocols. Moreover, SR-DMM is an SDN-based proposal and messages exchange is per-
formed through OpenFlow primitives which use TCP protocol.

However, we observe an enhanced performance of our proposal when the value of
the cell residence time is increased. SR-DMM benefits from the options included by the
SDN paradigm. Thus, our proposal does not require the binding refresh process and its
signaling cost is lower than the signaling cost introduced by NB-DMM solution.

On the other hand, data packet delivery cost represents the cost of delivering data
packets to an MN per unit time. Fig. 9 depicts the packet delivery cost as a function of the
cell residence time. As can be observed, NB-DMM solution implies IP-IP tunneling in-
cluding an IPv6 header between the previous and current mobility agents. However, with
our proposal, additional IPv6 headers are not introduced. This is an important advantage
on the data plane of the DMM-based solutions. Clearly, the SR-DMM proposal obtains
the best results, optimizing both the control plane and data plane.

!"##$%"&'(")*"$+',"$-&"*.

/01 /02

3
4+
4$
5
4*
6"
+$
(
"#
'7
"%
8$
*9
&+
$-
:
8+
"&
.

1100000

1200000

1;00000

1<00000

1=00000

1>00000

1?00000

1@00000

A:B3CC

DEB3CC

Fig. 9. Packet delivery cost versus cell residence time

64 Jesús Calle-Cancho et al.

5. Experimental evaluation

This section reports on the experimental evaluation conducted using real implementations
of NB-DMM and our solution SR-DMM. The testbed deployed to perform the exper-
iments of both solutions is depicted in Fig. 10. On the one hand, NB-DMM has been
analyzed using a DMM implementation for GNU/Linux systems called MAD-PMIPv6
(Mobility Anchors Distribution for Proxy Mobile IPv6) [31]. This solution is written in
C and runs on the Linux kernel. On the other hand, the control plane of SR-DMM is im-
plemented through Ryu framework for SDN environments, using OpenFlow protocol as
a control interface. Ryu fully supports IPv6. Thus, the SR-DMM service is deployed as
an application on the network controller, which is running with Ryu.

Fig. 10. Network topology used in experimental evaluation

Both solutions have been evaluated on the same network topology. This access net-
work consists of three OFSwitches, which provide access to the MNs through wireless
interfaces by using IEEE 802.11g technology. A network prefix (64 bits) is associated
with each OFSwitch/MAR. This prefix is calculated by the SR-DMM application on the
network controller. However, in the NB-DMM implementation, the prefix is calculated
by the MAR. Moreover, a CN is responsible for sending flows to the MN. SR-DMM does
not require the TCP/IPv6 stack of all devices to be updated. However, MARs and CMD,
in NB-DMM solution, run with a compiled Linux kernel with mobility features.

The experimental evaluation focuses on the handover latency. This parameter is de-
fined as the time interval in which an MN does not have IP connectivity as a result of
a handover process, which is caused by the nature of the mobility when a MN changes

Towards a software-based mobility management for 5G 65

its point of attachment to the network and a disruption time exits. In fact, the number of
packets lost during a handover is directly proportional to the handover latency.

In our experimental testbed, we use Wireshark at the MN to extract the events pro-
duced when repeating the following sequence: the MN attaches to OFSwitch/MAR 1 and
CN starts an UDP stream to the MN. Then, the MN visits OFSwitch/MAR 2 and OF-
Switch/MAR 3 before coming back to OFSwitch/MAR 1.

This experiment is repeated obtaining more than 600 handovers for both solutions.
Fig. 11 depicts the empirical CDF for the values of the UDP stream recovery time in the
testbed for SR-DMM and NB-DMM.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Handover latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

SR-DMM
NB-DMM

Fig. 11. Empirical CDF of the handover measurements

Moreover, Table 1 reports the mean and standard deviation values of these results for
SR-DMM and NB-DMM proposals.

Table 1. SR-DMM handover latency measurements

Mean (s) Std.Dev. (s)

SR-DMM 1.78 0.29
NB-DMM 2.01 0.31

66 Jesús Calle-Cancho et al.

As can be seen in Table 1, the average handover latency is 1.78 seconds in SR-DMM
tests. However, with NB-DMM the average handover latency is higher (2.01 seconds).
During this handover disruption time, the mobile node cannot receive IPv6 packets until
the session is restored by the SR-DMM/NB-DMM service.

Finally, other tests conducted consisted in measuring the different components of the
handover latency while the MN roams among the three OFSwitches/MARs of our testbed
(see Fig. 10). UDP traffic has been used in this experiment. We have measured three
handover events which are detailed as follows:

– L2: the Layer-2 handover is the time required to perform an L2 switch from one OF-
Switch/MAR to another. We measured this as the interval between two IEEE 802.11
control messages.

– LSDN: time between when the MN sends an RS to the OFSwitch in the visited net-
work and the MN receives an RA with all IP parameters. NB-DMM does not spend
LSDN time, because it does not use SDN mechanisms.

– L3: is measured as the interval between the last data packet received by the MN before
the handover and the first data packet received or sent after the handover.

Fig. 12 explores in detail the components of the handover latency for the SR-DMM
and NB-DMM solutions.

NB-DMM SR-DMM
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ha
nd

ov
er

 la
te

nc
y

(s
)

L2
LSDN
L3

Fig. 12. Handover latency composition

Towards a software-based mobility management for 5G 67

As can be seen from the results, the L2 switch time is the major term for both pro-
posals. The technology used in this level is IEEE 802.11g. The processing time of the
network controller in SR-DMM (LSDN) is between 0.3 and 0.7 percent of the total han-
dover latency. However, NB-DMM does not spent LSDN time because it does not require
any SDN mechanisms. Moreover, IP flow recovery (L3) depends on types of solution:
the NB-DMM solution uses 18% of the handover time and SR-DMM only uses 6%. The
SR-DMM offers benefits due to SDN capabilities compared with NB-DMM.

6. Conclusions

Software-Defined Networking brings a natural solution to decouple the network control
plane from the data plane for 5G environments, where Distributed Mobility Management
is seen as a necessary paradigm in future mobile network deployments in order to flatten
the network.

In this context, this article is focused on an analytic and experimental evaluation of an
SDN-based DMM solution, called SR-DMM. The main objective is to provide flexibility
and scalability to the mobility process in next generation networks. In order to compare
the performance of our proposals with other legacy DMM solution such as NB-DMM, we
have formulated an analytical model that reveals the benefits that SR-DMM brings to the
network’s performance in terms of signaling and packet delivery cost. This improvement
can be achieved due to the implementation of SR-DMM, that reduces the complexity of
the data plane and the tunnel management avoiding the use of IP-IP tunnels during the
movement of the users. In addition, an experimental evaluation of SR-DMM and NB-
DMM have been conducted in a real scenario. The results show that the own mechanisms
of SDN introduce a minimum latency in the handover process. It also demonstrates that
SDN can alleviate the complexity of mobility management and will be a key concept in
the design of future mobile networks.

SR-DMM provides a simple implementation of the mobility management protocol
without modifying the network nodes. Moreover, the data plane is simplified by avoiding
the use of IP-IP tunnels. Thus, the packet delivery cost is improved with our proposal.
On the other hand, in the experimental evaluation, SR-DMM also presents an enhanced
scalability due to the global vision of the network controller. The SR-DMM offers benefits
due to SDN capabilities compared to the legacy DMM approaches.

Notations

hx−y: Average hop distance between x and y nodes.
Npr: Number of used active prefixes.
Np/s: Packet transmission rate per active flow.
RBCE : Rate of BCE refresh operations.
SDATA: Size of a data packet.
SPBU : Size of the PBU message.
SPBA: Size of the PBA message.
SFlMod: Size of the FlowMod message.
SP−IN : Size of the PacketIn message.
SP−OUT : Size of the PacketOut message.

68 Jesús Calle-Cancho et al.

SRS : Size of the Router Solicitation message.
SRA: Size of the Router Advertisement message.
SIP : Size of the IPv6 tunnel header.
µc: Subnet border crossing rate.

Acknowledgments. This work was supported in part by the Regional Fund, through Computing and
Advanced Technologies Foundation of Extremadura (COMPUTAEX), European Regional Devel-
opment Fund, and the Regional Ministry of Economy and Infrastructure of the Junta de Extremadura
under project IB18003.

References

1. Cisco Systems Inc. Cisco Visual Networking Index: Forecast and Trends, 2017-2022. White
Paper. February 2019.

2. Nokia Siemens Networks. Signaling is growing 50% faster than data traffic. White Paper,
2012.

3. I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali and A. Habbal. Caching in
Information-Centric Networking: Strategies, Challenges, and Future Research Directions. In
IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1443-1474, 2018.

4. O. A. Khan, M. A. Shah, I. Ud Din, B. Kim, H. A. Khattak, J. J. P. C. Rodrigues, H. Farman and
B. Jan. Leveraging Named Data Networking for Fragmented Networks in Smart Metropolitan
Cities. In IEEE Access, vol. 6, pp. 75899-75911, 2018.

5. B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero, I. Tra-
jkovska, P. S. Khodashenas, L. Goratti, M. Paolino, E. Sfakianakis, F. Liberal, and G. Xilouris.
Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN.
Computer Standards and Interfaces. In Computer Standards and Interfaces, vol. 54, pp. 216-
228, 2017.

6. C. Perkins, D. Johnson, and J. Arkko. Mobility Support in IPv6. IETF RFC 6275, July 2011.
7. S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil. Proxy Mobile IPv6.

IETF RFC 5213, August 2008.
8. J. Carmona-Murillo, I. Soto, F.-J. Rodrı́guez-Pérez, D. Cortés-Polo, and J.-L. González-

Sánchez. Performance Evaluation of Distributed Mobility Management Protocols: Limitations
and Solutions for Future Mobile Networks. In Mobile Information Systems, vol. 2017, Article
ID 2568983, 15 pages, 2017.

9. J. Carmona-Murillo, V. Friderikos, and J.-L. González-Sánchez. A hybrid DMM solution and
trade-off analysis for future wireless networks. In Computer Networks, vol. 133, pp. 17-32,
2018.

10. H. Chan, D. Liu, P. Seite, H. Yokota, and J. Korhonen. Requirements for Distributed Mobility
Management. IETF RFC 7333, August 2014.

11. Shariq Haseeb and Ahmad Faris Ismail. Handoff latency analysis of mobile IPv6 protocol
variations. In Computer Communications, Volume: 30, Issue: 4, 2007.

12. K. N. Ashraf, V. Amarsinh and D. Satish. Survey and analysis of mobility management pro-
tocols for handover in wireless network. In Proc. 3rd IEEE International Advance Computing
Conference (IACC), Ghaziabad, 2013, pp. 413-420, 2007.

13. Mun-Suk Kim, SuKyoung Lee, David Cypher, and Nada Golmie. Performance analysis of fast
handover for proxy Mobile IPv6. In Information Sciences, Volume: 219, pp. 208-224, 2013.

14. M.K. Murtadha, N.K. Noordin, B.M. Ali, and F. Hashim. Design and evaluation of distributed
and dynamic mobility management approach based on PMIPv6 and MIH protocols. In Wireless
Networks, Volume: 21, Issue: 8, pp. 2747-2763, 2015.

Towards a software-based mobility management for 5G 69

15. C. Makaya and S. Pierre. An Analytical Framework for Performance Evaluation of IPv6-
Based mobility Management Protocols. In IEEE Transactions on Wireless Communications,
7(3), 972983, March 2008.

16. Qiang Wu, Chun-Ming Wu, and Wen Luo. Distributed mobility management with ID/locator
split network-based for future 5G networks. In Telecommunication Systems. 2018.

17. A. N. Toosi, R. Mahmud, Q. Chi, and R. Buyya. Management and Orchestration of Network
Slices in 5G, Fog, Edge, and Clouds. In Fog and Edge Computing. 2019.

18. I.U. Din, H. Asmat, and M. Guizani. A review of information centric network-based internet of
things: communication architectures, design issues, and research opportunities. In Multimedia
Tools and Applications, 1-16. 2018.

19. Jong-Hyouk Lee, Jean-Marie Bonnin, Ilsun You, and Tai-Myoung Chung. Comparative Han-
dover Performance Analysis of IPv6 Mobility Management Protocols. In Transactions on
Industrial Electronics, IEEE, Volume: 60, Issue: 3, March 2013.

20. Hassan Ali-Ahmad, Meryem Ouzzif, Philippe Bertin, and Xavier Lagrange. Performance Anal-
ysis on Network-Based Distributed Mobility Management. In Wireless Personal Communica-
tions, 74(4):1245-1263, 2014.

21. M. M. Sajjad, D. Jayalath, and C. J. Bernardos. A Comprehensive Review of Enhancements
and Prospects of Fast Handovers for Mobile IPv6 Protocol. In IEEE Access, vol. 7, pp. 4948-
4978, 2019.

22. I. Ullah, Z. Shah, and A. Baig. S-TFRC: An Efficient Rate Control Scheme for Multimedia
Handovers. In Computer Science and Information Systems, vol. 13, no. 1, pp. 45-69, 2016.

23. Enio Kalji, Almir Maric, Pamela Begovic, and Mesud Hadzialic. A Survey on Data Plane
Flexibility and Programmability in Software-Defined Networking. In IEEE Access,vol. 7, pp.
47804-47840, 2019.

24. M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer. Flexibility in softwarized networks:
Classifications and research challenge. In IEEE Communications Surveys Tutorials, 2019.

25. K. Benzekki, A. El Fergougui, and A Elbelrhiti Elalaoui. Software-defined networking (SDN):
a survey. In Security and Communications Networks, 2017.

26. S. Moazzeni, M. Reza Khayyambashi, N. Movahhedinia, and F. Callegati. On reliability im-
provement of Software-Defined Networks. In Computer Networks,vol. 133. pp. 195-211. 2018.

27. T.-T.Nguyen, C. Bonnet and J. Harri. SDN-based distributed mobility management for 5G
networks. In 2016 IEEE Wireless Communications and Networking Conference, pp. 17, April
2016.

28. F. Giust, L. Cominardi, and C. Bernardos Distributed mobility management for future 5G
networks: overview and analysis of existing approaches. In IEEE Communications Magazine,
vol. 53, no. 1, pp. 142 149, January 2015.

29. F. Giust, C. J. Bernardos, and A. De La Oliva Analytic Evaluation and Experimental Validation
of a Network-based IPv6 Distributed Mobility Management Solution. IEEE Transactions on
Mobile Computing, vol. 13, no. 11, pp. 2484-2497, 2014.

30. David Cortés-Polo, Jesús Calle-Cancho, Javier Carmona-Murillo, and José-Luis González-
Sánchez. Future Trends in Mobile-Fixed Integration for Next Generation Networks: Classifica-
tion and Analysis. In International Journal of Vehicular Telematics and Infotainment Systems,
Volume: 1, 33-53, January 2017.

31. CJ. Bernardos et al. A PMIPv6-based solution for Distributed Mobility Management. draft-
bernardos-dmm-pmip-09, 2017.

Jesús Calle-Cancho studied at the University of Extremadura, Spain, where he received
his Beng (2011) and MEng (2013) in Computer Science Engineering. He is currently
working as Supercomputing System Manager at the COMPUTAEX Foundation and the

70 Jesús Calle-Cancho et al.

CénitS center. His main area of research interest is IPv6 mobility management in next
generation wireless networks.

José-Manuel Mendoza-Rubio received his Meng in Telematics Engineering (2017) at
University of Extremadura. His main areas of interest are software-defined networks and
mobility management in next-generation networks.

José-Luis González-Sánchez is a full time Associate Professor of the Computing Sys-
tems and Telematics Engineering department at the University of Extremadura, Spain. He
received his Engineering degree in Computer Science and his Ph.D in Computer Science
(2001) at the Polytechnic University of Cataluña, Barcelona, Spain. He has worked for
years at several private and public organizations as a System and Network Manager. Cur-
rently he is also the General Manager of CénitS (Research, Technological Innovation and
Supercomputing Center of Extremadura).

David Cortés-Polo received the Computer Science degree and a Ph.D. in Telematics in
2015, both from University of Extremadura, Spain where he worked as a research and
teaching assistant from 2011 to 2014. Since 2011, he has worked as Network Manager at
COMPUTAEX Foundation. His main research interests include IP-based mobility man-
agement protocols, performance evaluation and quality of service support in future mobile
networks.

Javier Carmona-Murillo received the Computer Science degree (with honors) and a
Ph.D. in Telematics in 2015, both from University of Extremadura, Spain where he worked
as a research and teaching assistant from 2005 to 2009. Since then, he has worked as an
assistant professor at the Department of Computing and Telematics System Engineering
in the same university. His main research interests include IP-based mobility manage-
ment protocols, performance evaluation and quality of service support in future mobile
networks.

Received: November 1, 2018; Accepted: July 18, 2019.

Computer Science and Information Systems 17(1):71–92 https://doi.org/10.2298/CSIS190518044O

Instance-based classification using prototypes generated
from large noisy and streaming datasets

Stefanos Ougiaroglou1,2, Dimitris A. Dervos1, and Georgios Evangelidis2

1 Department of Information and Electronic Engineering, International Hellenic University,
GR-57400, Sindos, Thessaloniki, Greece

stoug@uom.edu.gr,dad@it.teithe.gr
2 Department of Applied Informatics, School of Information Sciences, University of Macedonia,

156 Egnatia Str., GR-54006, Thessaloniki, Greece
gevan@uom.gr

Abstract. Nowadays, large volumes of training data are available from various data
sources and streaming environments. Instance-based classifiers perform adequately
when they use only a small subset of such datasets. Larger data volumes introduce
high computational cost that prohibits the timely execution of the classification pro-
cess. Conventional prototype selection and generation algorithms are also inappro-
priate for data streams and large datasets. In the past, we proposed prototype gener-
ation algorithms that maintain a dynamic set of prototypes and are appropriate for
such types of data. Dynamic because existing prototypes may be updated, or new
prototypes may be appended to the set of prototypes in the course of processing.
Still, repetitive generation of new prototypes may result to forming unpredictably
large sets of prototypes. In this paper, we propose a new variation of our algorithm
that maintains the prototypes in a convenient and manageable way. This is achieved
by removing the weakest prototype when a new prototype is generated. The new
algorithm has been tested on several datasets. The experimental results reveal that
it is as accurate as its predecessor, yet it is more efficient and noise tolerant.

Keywords: k-NN classification, Data reduction, Prototype generation, Data streams,
Large datasets, Noisy data.

1. Introduction

Classification is a fundamental concept in data mining [10]. Many classification algo-
rithms have been proposed in the last half century [12]. They aim at accurate class pre-
diction of the unclassified instances on the basis of a set of already classified instances
(training set). The quality of the training set as well as its size determine the efficiency
and the effectiveness of the algorithm and consequently they are vital for all classifiers.

Handling training data-streams [1] and large training sets in classification systems has
attracted the interest of the data mining research community. The goal is the reduction of
the high computational cost involved. The problem is more intense in cases of instance-
based classifiers because the whole training set should be examined for each unclassified
instance in order to classify it. In addition, executing classification algorithms on devices
with limited memory (e.g., sensors) is also an important issue, since otherwise, trans-
ferring data to powerful servers for processing is inevitable. In both cases, a simple and

72 Ougiaroglou et al.

obvious approach is the use of a subset of the available data. However, this subset proba-
bly cannot represent the whole training set and may harm the classification accuracy.

Instance-based classification is characterized to comprise a lazy learner algorithm be-
cause instead of involving a discriminative function it directly processes unclassified in-
stances against the training dataset. The k-Nearest Neighbors (k-NN) [6] classifier is a
typical example of a lazy learner. When an unclassified instance is to be classified, the
k-NN classifier identifies and retrieves the k nearest instances from the available training
set on the basis of a pre-specified distance metric; most often, the Euclidean distance. The
nearest instances are called neighbors. The unclassified instance is assigned to the class
that dominates in its k-nearest neighbor set. This task is very simple. However, since all
the training set members need to always be available in memory and all distances between
the unclassified instance and the training data have to be computed, the approach com-
prises a memory and CPU intensive task. Yet another drawback is that the k-NN classifier
is not noise-tolerant. Noise affects the classification process and reduces accuracy.

Data Reduction Techniques (DRTs) [9,24] can remedy the stated drawbacks by intro-
ducing a preprocessing stage to the training dataset. A set of representative prototypes is
created (usually called a condensing set) from the initial training data. Although there are
few exceptions [21], by definition, DRTs cannot handle data of an incremental nature (data
streams), as well as large dataset that do not fit in the main memory. To overcome these
drawbacks, we recently proposed the dynamic RHC (dRHC) [19], and the abstraction IB2
(AIB2) [17,18] algorithms. Both construct/maintain a dynamic condensing set from the
data stream or large data set. Dynamic because the algorithms update continuously the
condensing set by incrementally considering new instances as the latter emerge.

Both dRHC and AIB2 operate on a small set of prototypes without seriously degrading
the accuracy achieved by the k-NN classifier that operates on the whole of the original
training set. Yet, they both introduce an unpleasant phenomenon that constitutes the major
motivation behind this work: as new prototypes are generated and they get appended to
the condensing set, the size of the latter may exceed the size of the available memory. A
second motive is that both algorithms are not noise tolerant. False new prototypes may be
generated as a result of the noise present in the initial training set. Consequently, there is
a clear need to filter out the noise present in the training set, and to maintain the size of
the condensing set under control, up to a user specified threshold value.

In [16], we made a first attempt to address the aforementioned issues. In particular,
we proposed dRHC-V2, which is a variation of dRHC. Contrary to dRHC, dRHC-V2
keeps the size of the condensing set in a convenient, manageable by the classifier, level by
ranking the prototypes and removing the least important ones. As soon as the condensing
set size exceeds a user-specified threshold value, the condensing set prototypes are ranked
on a calculated weight value, and the necessary number of low ranked prototypes are
removed from the condensing set in order to maintain the set threshold. The experimental
measurements presented in [16] show that dRHC-V2 filters the noisy data and keeps the
classification accuracy at high levels. However, dRHC-V2 is not a one pass algorithm. It
utilizes a ranking procedure that may not cope well with fast data streams. Even a quick
sort algorithm may be inappropriate for very fast data streams, where new instances arrive
at fast rates. This is another motive of the present work.

We propose a new variation of AIB2 called AIB2-V2. Like dRHC-V2, AIB2-V2 in-
corporates a mechanism for prototype weighting and removal. However, AIB2-V2 is of

Instance-based classification on large noisy and streaming datasets 73

a more proactive nature. Weight values are calculated again as in the case of dRHC-V2
and as a new prototype enters the condensing set, the weakest (i.e., the one with the low-
est weight) of the existing prototypes is removed from the set. In other words, the newly
generated prototype replaces the weakest one. Contrary to dRHC-V2, AIB2-V2 does not
rank the prototypes. The prototype with the minimum weight is removed. Noisy proto-
types tend to involve low weight values. Hence, they are the first to be removed as new
prototypes get appended to the (dynamically updated) condensing set. The experimental
results show the new algorithm to be faster and more noise-tolerant than AIB2, with no
sacrifice in accuracy and computational complexity.

The paper is organized as follows: In section 2, the fundamental issues about DRTs
and their limitations are briefly presented. The section also includes a recap of the AIB2,
dRHC and dRHC-V2 algorithms. Section 3 considers in detail the AIB2-V2 algorithm.
In Section 4, the latter is experimentally compared to dRHC-V2 and to their predecessors
on sixteen datasets. The experimental study is complemented with a statistical validation
using the Wilcoxon signed rank test [7,23]. Section 5 suggests new directions for future
work and concludes the paper.

2. Background knowledge

2.1. Data Reduction Techniques

DRTs [9,24] pre-process the training data and construct a set of prototypes that is then
used by the k-NN classifier. DRTs can be grouped into two categories:

– Prototype Selection (PS) algorithms [9] select prototypes from the initial training set.
PS algorithms can be also grouped into two subcategories:
• PS-editing algorithms aim to remove noise from the training set and to “clean”

the borders between classes. This way, the classification accuracy is improved.
• PS-condensing algorithms aim for data condensation, i.e., the construction of a

small set of prototypes (condensing set) that represents the initial training data.
– Prototype Generation (PG) algorithms [24] generate prototypes by summarizing on

instances. As in the case of PS-condensing algorithms, the goal is data condensation.

Most PS-condensing and PG algorithms construct condensing sets by removing “in-
ternal” instances. These instances do not determine the borders between the classes and
can be removed without accuracy loss. Thus, PS-condensing algorithms try to select only
the instances that are close to the borders. These instances are called close-border in-
stances and are essential to classification. PG algorithms generate many prototypes for
the close-border areas and few for the “internal” areas. Unfortunately, most of PS and
PG algorithms cannot handle noise and this leads to lower data reduction rates. In the
case of PS-condensing algorithms, an instance with wrong class label is considered as
close-border instance and it is erroneously included in the condensing set, along with its
neighboring instances. In the case of PG algorithms, more prototypes are generated for
noisy data areas because neighboring instances of different classes cannot be summarized.
Consequently, for training sets with noise, editing should be applied beforehand.

Although there are some exceptions (e.g., the IBL algorithms [3,5]), DRTs are memory-
based. All training data are assumed to reside in main memory. Hence, DRTs are unsuit-
able for large datasets that cannot fit into memory and they cannot be used on devices

74 Ougiaroglou et al.

with limited memory. In addition, DRTs are appropriate only for static datasets. Except
for few exceptions [21], they cannot process new incoming data, after the construction
of the condensing set. Equivalently, they cannot dynamically update the condensing set.
Suppose that a DRT constructs a condensing set by considering a training set TS. Also,
suppose that new training data D arrive. For the construction of an updated version of
the condensing set, the DRT needs to operate from scratch on the complete training set
TS ∪ D. This means that the entire training instances set need be considered. Hence,
DRTs are inappropriate for data streams where new training instances become gradually
available. The dRHC [19] and AIB2 [17,18] algorithms are PG algorithms that can be
used in such environments.

2.2. Review of dRHC and dRHC-V2

Dynamic RHC (dRHC) constitutes a descendant of the Reduction through Homogeneous
Clusters (RHC) algorithm [19]. Inherent to the latter is the concept of cluster homogene-
ity. RHC utilizes k-means clustering. Suppose that a training set C contains D classes.
Initially, the whole training set is considered as an unprocessed non-homogeneous cluster.
RHC averages out over the instances of each class in C and calculates a mean (centroid)
for each class. Then, k-means runs over C by using these class-centroids as initial seeds.
The result is D clusters. Each instance in C is assigned to one of the D clusters. Subse-
quently, the D clusters are considered. For each one homogeneous cluster (i.e., involving
instances of only one class), the cluster-mean comprises a representative prototype placed
in the condensing set. On the other hand, for each non-homogeneous cluster, the algorithm
proceeds recursively. When no non-homogeneous clusters are left, RHC terminates. This
way, each homogeneous cluster contributes a (representative) prototype to the condensing
set. Like most PG algorithms, RHC generates few prototypes for the “internal” data areas
and more prototypes for close-border data areas. Like most DRTs, RHC is memory-based
and as such it cannot manage data that cannot fit in memory and data streams.

The dRHC algorithm can manage large and / or streaming datasets. This is accom-
plished by considering the training data in the form of data segments. The size of the data
segment is fixed and it can be adjusted according to the available memory. In the case
of data streams, dRHC utilizes a buffer the size of the data segment that is set to accept
incoming instances. When the buffer gets full, its content is moved forward for process-
ing. Analogously, large datasets that cannot fit into memory are divided into equally sized
data segments appropriate to the device’s memory, and the latter are processed sequen-
tially. The algorithm includes two main stages: stage 1 is the initial condensing set con-
struction. It is executed only once utilizing the first data segment. It is identical to RHC
with one difference: each one prototype is stored alongside with a weight attribute value
equal to the number of instances it represents. Stage 2 is the condensing set update. It is
executed following the arrival of data segment number two and onwards. It processes the
prototypes of the current condensing set against the instances of a new data segment and
constructs a new set of clusters. It then proceeds in a way similar to that of RHC.

Figure 1 illustrates an example of the execution of the condensing set update stage.
Sub-figure (a) presents an existing condensing set that has three prototypes with the cor-
responding weights. Suppose that a new segment with seven new instances arrives (Sub-
figure (b)). Each new instance carries a weight value equal to one. At first, each new
instance is assigned to the cluster of the nearest prototype (Sub-figure (c)). No instance

Instance-based classification on large noisy and streaming datasets 75

has been assigned to cluster B. Hence, the corresponding prototype remains unchanged.
The instances assigned to cluster A are of the same class as the class of the prototype in
A. Thus, A remains homogeneous. Therefore, the weighted mean in A is computed and it
is placed in the condensing set alongside with its new weight value. In effect, the proto-
type “moves” towards the new instances to represent better this data area (Sub-figure (d)).
Cluster C becomes non-homogeneous after the assignment of the new instances. For each
discrete class in C, the algorithm computes a weighted class mean and executes k-means.
Two new homogeneous clusters emerge (Sub-figures (d) and (e)). Eventually, dRHC com-
putes a weighted cluster mean for each cluster as well as the corresponding weights. They
constitute new prototypes and they are placed in the condensing set (Sub-figure (f)).

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of execution of the condensing set update stage of dRHC

RHC and dRHC are compared to each other and against state-of-the-art PS [11,3,14,26]
and PG [22] algorithms in [19]. The results obtained reveal that dRHC involves the lowest
preprocessing cost (i.e., it is the fastest to execute) and constructs the most compact con-
densing set without sacrificing accuracy. A week point is that noise in the training data
results into having a larger number of non-homogeneous clusters which, consequently,
leads to a lower reduction rate and to a higher preprocessing cost during the prototypes
construction stage.

The dRHC-V2 algorithm constitutes a dRHC variation that retains the size of the
condensing set within acceptable levels. The desirable maximum size of the condensing
set comprises a user-specified input parameter (T). dRHC-V2 executes in a way simi-

76 Ougiaroglou et al.

lar to dRHC with one difference: as soon as the size of the condensing set exceeds the
set number of T prototypes, the least important of the latter are removed from the con-
densing set, to save space. In effect, the mechanism for prototypes removal comprises a
post-processing step of the condensing set update stage. The input parameter T is set by
considering the available memory, the noise, and the desirable trade-off between compu-
tational cost and accuracy.

The stated functionality is implemented by having dRHC-V2 rank the prototypes ac-
cording to their importance, following the execution of each condensing set update stage.
Next, only the top T prototypes are retained. The prototype weights are vital for the rank-
ing procedure. It is reminded that the prototype weight depicts the number of instances
represented by the prototype in question. A straightforward approach could be to remove
the necessary number of prototypes with the lowest weights. However, this would not
comprise a fair criterion. An old prototype probably has a higher weight value than that
of a prototype generated at a subsequent condensing set update stage. Consequently, pro-
totypes generated at later stages would be prone for removal as compared to older ones.
Also, if the weight is adopted to comprise the sole ranking criterion, an old prototype of
high weight that has survived many executions of the condensing set updates will prob-
ably tend to be favored to survive against all recently generated prototypes and will thus
remain permantly in the condensing set. Therefore, prototype weight should not by itself
comprise the sole contributor to the calculation of the prototype’s rank measure.

To achieve fairness in prototype ranking, dRHC-V2 takes into consideration the weight
as well as the age of the prototype. Thus, dRHC-V2 holds a counter of the data segments
that have been processed at any one given instance in time. Each prototype has an extra
attribute that denotes the number (r) of the data segment corresponding to its genera-
tion. In this respect, r depicts the instance in time when the prototype in question got
appended to the condensing set. Following the completion of each condensing set update
stage, dRHC-V2 re-calculates the rank measure for all the condensing set prototypes. The
measure is called Average number of Arrivals (AnA). This measure incorporates the pro-
totype’s weight (w) and age (r) contributors. More specifically, the prototype’s AnA rank
measure is calculated as follows:

AnA =
w

ds− r + 1

where ds is the (sequence) number of the current data segment, r is the number of the
data segment corresponding to the prototype’s generation, and w is the prototype’s weight
value, i.e. the number of instances it represents. In other words, the denominator reflects
the age of the prototype. A prototype is weak when it has low AnA value.

Considering the above, prototypes generated by the latest condensing set update stage
have AnA values equal to their weight (w). For existing prototypes, their Ana values
are (re-)calculated by dividing their weights w by their (updated) age values. Prototypes
updated to represent new instances during the condensing set update stage have their AnA
value (re-)calculated by diving their new weight w value by their (updated) age value.

The post-processing step of dRHC-V2 executes following the completion of the ini-
tial condensing set construction stage, as well as the execution of each one subsequent
condensing set update stage. It operates on an already constructed condensing set, with
given a maximum condensing set size T . When the size of the updated condensing set is

Instance-based classification on large noisy and streaming datasets 77

found to exceed the set maximum T , the training set is trimmed to only contain the top T
prototypes with the highest AnA values.

Noisy prototype instances present in the dRHC generated condensing sets usually
relate to low AnA values in dRHC-V2. As such, they are weak and comprise the first
candidates to be removed when the T threshold value is reached in dRHC-V2. Thus, con-
trary to dRHC, dRHC-V2 can deal with datasets that involve noise and, for such datasets,
it achieves higher classification accuracy compared to dRHC.

Despite its fairness in treating the newly generated protoypes, dRHC-V2 is not tuned
for handling the concept drift phenomenon [25] that may be present in data streams.
Newly generated prototypes or prototypes updated during a condensing set update stage
are in no way favored to survive and remain in the condensing set by removing older ones.

2.3. Review of AIB2

The Abstraction IB2 (AIB2) algorithm is a prototype generation version of the well-
known IB2 condensing algorithm [2,3]. Contrary to most DRTs, the latter is a one-pass
algorithm and constructs its condensing set in an incremental manner3. This means that
IB2 can add new prototypes to an already constructed condensing set without needing
to retain the instances that had been used for the initial construction of the condensing
set. From this point of view, IB2 is suitable for data streams and for large datasets that
cannot fit into the device’s memory. IB2 starts by moving the first training instance to
the condensing set. For each following training instance inst, IB2 examines the current
condensing set and retrieves the nearest prototype p to inst. If inst has a different class
from p, it is moved to the condensing set. Otherwise, it is ignored.

AIB2 inherits all the properties of IB2. In addition, AIB2 not only appends new pro-
totypes to an already constructed condensing set; it may also update existing prototypes.
The motive behind the development of AIB2 is that prototypes should be the centroids of
the instances they represent. Thus, if the examined instance has the same class label with
its nearest prototype in the current condensing set, the examined instance is not ignored as
in the case of IB2. Instead, it contributes to the shaping of the condensing set by updating
the nearest prototype. To accomplish this, AIB2 assigns a weight value to each prototype.
The weight value denotes the number of instances that the prototype represents and it
is used to move the prototype in the data space. In effect, the nearest prototype moves
towards the examined instance.

Considering the above, AIB2 improves on the representation effectiveness of the con-
densing set prototypes in comparison with IB2. Consequently, higher classification accu-
racy is achieved. Moreover, by having prototypes act as centroids for the instances they
represent, AIB2 reduces the number of prototypes in the condensing set. In this respect,
higher reduction rates and lower computational cost are achieved when compared to IB2.
Contrary to dRHC and dRHC-V2, AIB2 does not consider the dataset in the form of data
segments. Each instance is processed individually. Like dRHC, AIB2 is also subject to the
noise effect: a noisy instance nearest to a prototype is likely to be of a different class. As
such, its inclusion in the condensing set increases the number of prototypes in the latter.

3 According to the reviews [9,24], DRTs can be either incremental or decremental. This depends on how they
construct the condensing set. Here, the term incremental refers to the algorithm’s ability to update an already
constructed condensing set

78 Ougiaroglou et al.

(a) Condensing
Set

(b) Instance ar-
rival

(c) Nearest proto-
type update

Fig. 2. AIB2 example: repositioning an existing prototype. CS prototypes are colored
black. The new instance is colored white. Shapes indicate classes.

(a) Condensing
Set

(b) Instance ar-
rival

(c) The new In-
stance enters the
condensing set

Fig. 3. AIB2 example: new prototype enters the condensing set. CS prototypes are colored
black. The new instance is colored white. Shapes indicate classes.

AIB2 execution examples are depicted in Figures 2 and 3. Initially, the condensing
set includes three prototypes. Suppose that a new circle instance a arrives (Figure 2(b)).
Since a is closer to a prototype P of the same class, P moves towards a and its weight
is increased by one (Figure 2(c)). On the other hand, suppose that a new square instance,
a, arrives (Figure 3(b)). Since a is closer to a prototype of a different class, a enters the
condensing set forming a new prototype the weight of which is set to one (Figure 3(c)).

3. The AIB2-V2 Algorithm

One may claim that dRHC and AIB2 are also appropriate for data streams and large
datasets. This is not true since the repetitive generation of new prototypes is likely to lead
to a very large condensing set, one that is inappropriate for instance-based classification.
This fact renders dRHC and AIB2 inapplicable, especially on infinite data streams [13].
Therefore, there is a need of a mechanism for the size of the condensing set to remain
compact. The dRHC-V2 algorithm is seen to handle large datasets and data streams, yet
its prototype ranking stage may render its use problematic especially in cases of very
fast (i.e., high velocity) data streams. Even a quick sort procedure may not cope with
very fast rates of instance arrivals. Therefore, dRHC-V2 may involve a large queue of
data segments that await their turn for processing. In case of high speed data streaming,
prototypes ranking should be avoided.

Yet another weakness of dRHC-V2 is that it first appends a set of new prototypes to
an already existing condensing set and it then removes the prototypes with the lowest

Instance-based classification on large noisy and streaming datasets 79

AnA values (a.k.a. the weakest prototypes). Since the number of new prototypes into
the condensing set during each condensing set update stage is not known beforehand,
the reverse cannot be implemented. Thus, the size of the condensing set may temporarily
exceed the size of available memory, an issue to be taken into consideration when setting
the T parameter for dRHC-V2.

AIB2-V2 is a simple variation of AIB2 that successfully addresses the stated dRHC-
V2 drawbacks. Like AIB2, AIB2-V2 does not consider the new data as data segments.
Each new instance is considered individually. During each iteration of the algorithm, an
existing prototype either gets updated or a new prototype is generated. Like in dRHC-V2,
AIB2-V2 is given a T threshold value. When the generation of a new prototype results
into a condensing set whose size exceeds T , the weakest prototype gets discarded. Since,
only one prototype is discarded, there is no need for the algorithm to rank the prototypes.
When a prototype need be removed to retain the size of the condensing set within the set
T value, AIB2-V2 calculates the AnA value of each prototype and removes the weakest
one. One pass over the prototypes set suffices. In case of a tie involving two or more
prototypes having the same (lowest) AnA value, the oldest one gets removed.

At each one point in time (clock tick), one instance arrives and it is examined against
the existing condensing set. There exist no data segments in the logic of the AIB2-V2
algorithm. A clock tick corresponds to incrementing the time value by 1. The newly gen-
erated prototype is assigned the current time value. A prototype created at “time” r is of
age t− r when the current time is t. Hence, the value of AnA is calculated as follows:

AnA =
w

t− r + 1

with w being the given prototype’s weight.
The pseudocode in Algorithm 1 presents the AIB2-V2 algorithm. Like AIB2, when

an instance inst from the training set TS has the same class as its nearest prototype nn
in the current condensing set CS, nn’s attributes are updated by taking into consideration
its current weight and the attributes of inst. Of course, since inst is from now on to
be represented by nn, the weight of nn is increased by 1 (lines 32–35). The difference
between AIB2-V2 and AIB2 is depicted in lines 16–22 and 27–29. The algorithm starts to
remove prototypes when |CS| > T . The for-loop in lines 12–23 performs the single pass
over the prototypes and finds the nearest prototype nn. Simultaneously, it computes the
corresponding AnA values and marks the prototype p min with the lowest AnA value.
Next, if inst enters CS, p min is removed from CS (line 28). p min is retrieved only
when the size of the condensing set exceeds the set T threshold value. Contrary to the
ranking procedure executed by dRHC-V2 for each data segment, here, there is no extra
cost for finding the prototype with the lowest AnA. It is retrieved by the single pass over
the prototypes. It is worth noting that the new prototype enters at the end of CS. Thus,
the prototypes in CS are stored sorted by their age values, from the oldest to the newest.
Therefore, in case of ties, p min is the oldest prototype with the lowest AnA value.

As already stated, both dRHC and AIB2 are not noise-tolerant. In the case of their
-V2 variations, it is noted that noisy prototypes usually involve low AnA values and they
are amongst the first candidates for removal from the condensing set. In this respect, it
may safely be assumed that both dRHC-V2 and AIB2-V2 are noise tolerant algorithms,
provided that in the course of condensing set construction the pre-specified T value is
exceeded for the algorithms to start removing prototypes from the condensing set. This

80 Ougiaroglou et al.

Algorithm 1 AIB2-V2
Input: TS, T Output: CS

1: time← 1
2: CS ← ∅
3: move first instance inst of TS to CS
4: instweight ← 1
5: instr ← time
6: while there exist instances in TS do
7: time← time+ 1
8: inst← next instance in TS
9: minimum AnA←∞

10: p min← NULL
11: nn← NULL
12: for each prototype p ∈ CS do
13: if p is the nearest prototype of inst then
14: nn← p
15: end if
16: if |CS| > T then
17: pAnA ← pweight

time−pr+1
18: if pAnA < minimum AnA then
19: minimum AnA← pAnA

20: p min← p
21: end if
22: end if
23: end for
24: if nnclass 6= instclass then
25: instweight ← 1
26: instr ← time
27: if |CS| > T then
28: CS ← CS − {p min}
29: end if
30: CS ← CS ∪ {inst}
31: else
32: for each attribute attr(i) of nn do
33: nnattr(i) ←

nnattr(i)×nnweight+instattr(i)

nnweight+1

34: end for
35: nnweight ← nnweight + 1
36: end if
37: TS ← TS − {inst}
38: end while
39: return CS

Instance-based classification on large noisy and streaming datasets 81

is yet one more issue to be taken into consideration when setting the value of the T
parameter. Setting T to a high value effectively disables the noise tolerant character of the
algorithm, and setting it too low ends up in having the algorithm remove useful prototypes
from the condensing set, especially in cases when the size of the latter is relatively small.

4. Performance Evaluation

4.1. Experimental Setup

The performance of AIB2-V2 was tested against dRHC-V2, dRHC and AIB2 using four-
teen well-known and widely-used datasets distributed by the KEEL repository4 [4]. Their
profile is summarized in Table 1. It is worth mentioning that in [19] and [18], dRHC and
AIB2 were evaluated against five state-of-the-art DRTs by utilizing the same fourteen
datasets. More specifically, dRHC and AIB2 were experimentally evaluated against the
CNN-rule [11], IB2 [3,2], PSC [14,15], ENN-rule [26] and RSP3 [22]. In this respect,
when dRHC-V2 and AIB2-V2 are compared to dRHC and AIB2, they are “indirectly”
compared to these five data reduction techniques. We did not include the PS and PG algo-
rithms reviewed in [21] because they either focus on concept drift detection or introduce
high computational cost. Consequently, they are inappropriate to be compared against
AIB2-V2 and dRHC-V2. It is worth mentioning that the reader may execute all dRHC-V2,
AIB2-V2, their predecessors and the aforementioned algorithms using the stated datasets
at the publicly accessible WebDR5. environment [20].

Table 1. Dataset description

Dataset Size Attributes Classes

Letter Image Recognition (LIR) 20,000 16 26
Magic G. Telescope (MGT) 19,020 10 2

Pen-Digits (PD) 10,992 16 10
Landsat Satellite (LS) 6,435 36 6

Shuttle (SH) 58,000 9 7
Texture (TXR) 5,500 40 11
Phoneme (PH) 5,404 5 2
Balance (BL) 625 4 3
Pima (PM) 768 8 2
Ecoli (ECL) 336 7 8
Yeast (YS) 1,484 8 10

Twonorm (TN) 7,400 20 2
MONK 2 (MN2) 432 6 2
KddCup (KDD) 141,481 36 23

4 http://sci2s.ugr.es/keel/datasets.php
5 https://atropos.uom.gr/webdr

http://sci2s.ugr.es/keel/datasets.php
https://atropos.uom.gr/webdr

82 Ougiaroglou et al.

The LIR, PD, SH, PH, TXR datasets are all noise-free. It is expected that both dRHC-
V2 and AIB2-V2 will perform better on noisy datasets by achieving higher classification
accuracy than dRHC and AIB2, respectively. Thus, we built two additional datasets with
noise by introducing a 10% of random noise to the PD and LS datasets. The noise was
introduced by setting 10% of the training instances to a randomly chosen (different) class
label. We refer to these datasets as PDN and LSN, respectively.

The algorithms were coded in C, adopting the Euclidean distance as the distance met-
ric. We randomized the datasets that were distributed sorted on the class label. The KDD
dataset involves a large number of duplicates, their ranges varying widely. We removed
duplicates and normalized the attributes to the [0, 1] range. Furthermore, we removed the
nominal and the fixed-value attributes that exist in KDD. No other transformation was
applied to all other datasets. For each one dataset and algorithm, Accuracy (ACC), Re-
duction Rate (RR), and Preprocessing Cost (PC) in terms of distance computations were
calculated. The average values of the three reported measurements were obtained via five-
fold-cross-validation. As expected, the higher the reduction rates, the fewer distances are
computed during the classification step and, as a consequence, the lower is the computa-
tional cost introduced by k-NN classifier. Therefore, we did not measure the cost of the
classification process.

Since the concept drift phenomenon is not present in the datasets used, we did not
implement any special evaluation method for data streams, like test-then-train [8]. Clas-
sification accuracy was estimated by running k-NN classification with k = 1. The PC
cost measurements conducted do not include the cost overhead introduced by the proto-
types ranking in the case of dRHC2-V2. The cost of ranking is O(n log n) on average
when a quicksort approach is used. When the threshold is reached, dRHC-V2 ranks the
prototypes after the arrival of each data segment. AIB2-V2 avoids the cost of ranking.

Both dRHC and dRHC-V2 consider data in data segments. Datasets are split into data
segments of a specific size. Table 2 lists the segment size and the number of segments used
for each dataset. It is worth noting that the experiments conducted empirically in [19]
reveal that the size of the data segment does not influence the performance of dRHC.
Hence, the experimental measurements reported do not involve different segment sizes.

Both AIB2-V2 and dRHC-V2 utilize the T threshold value, that is a ceiling value for
the condensing set size. If the condensing set size exceeds T , both algorithms remove
prototypes from the condensing set in order to maintain its size equal to T . A number of
runs were conducted, with T assuming a value from a set of percentages of the size of the
condensing set constructed by dRHC, namely 85%, 70%, 55%, and 40%. This is done in
order to be fair when comparing the two algorithms, since dRHC and and AIB2 achieve
similar data reduction rates. Table 2 lists the T values used.

4.2. Experimental Results

Two types of experiments were conducted. The first type focuses on measuring the perfor-
mance, following the arrival of all data. The second type measures the data reduction rate
(i.e., the size of the condensing set) and the classification accuracy achieved following the
arrival and the processing of each one data segment.

Table 3 lists the performance measurements conducted following the arrival of all
data segments. Table 3 lists the accuracy achieved by the 1-NN classifier operating on

Instance-based classification on large noisy and streaming datasets 83

Table 2. Segment size and T parameter values

Dataset Segment Segments CS Size CS Size CS Size CS Size
size T = 85% T = 70% T = 55% T = 40%

LIR 2,000 8 1,608 1,324 1.040 757
MGT 1.902 8 3,283 2,703 2,124 1,545
PD 1,000 9 207 171 134 97
LS 572 9 510 420 330 240
SH 1,856 25 197 162 128 93

TXR 440 10 189 156 122 89
PH 500 9 649 534 420 305
BL 100 5 93 77 60 44
PM 100 7 182 150 118 86
ECL 100 3 71 58 46 33
YS 396 3 492 405 318 232
TN 592 10 233 192 151 110

MN2 115 3 9 8 6 4
KDD 4,000 29 752 620 487 354
PDN 1,000 9 2,072 1,706 1,341 975
LSN 572 9 1,249 1,029 808 588

the condensing set of each algorithm. The best results are highlighted in boldface. More-
over, Table 3 lists the reduction rates achieved by the algorithms and the corresponding
preprocessing costs in terms of millions of distance computations. Although, DRTs are
adopted when the conventional k-NN classifier cannot be applied due to its limitations,
for reference, Table 3 presents the accuracy measurements achieved by applying k-NN on
the original complete training set.

The accuracy measurements for AIB2-V2 are quite promising (see in Table 3). In
cases of noise-free datasets, the k-NN classifier that operates on condensing sets built
by AIB2-V2 achieves accuracy values comparable to those of the dRHC and AIB2 algo-
rithms at a lower (classification stage) computational cost, and at a lower preprocessing
cost. In cases of datasets that contain noise, the gain is higher. AIB2-V2 and dRHC-V2 are
measured to achieve higher classification accuracy than dRHC and AIB2. This happens
because noisy data originating prototypes relate to low importance (i.e. AnA) values and
as such they are removed from the condensing set. Hence, in cases of datasets with a high
level of noise (e.g., MGT, PDN, LSN, BL), AIB2-V2 and dRHC-V2 with the lowest T
value were found to achieve even higher accuracy than the conventional k-NN classifier.
It is noted that the lower is the T value used, the higher the reduction rate and the lower
the preprocessing cost achieved. Since AIB2-V2 and dRHC-V2 adopt a ceiling value for
the maximum condensing set size and maintain it throughout the whole execution, the
reduction rate (RR) and processing cost (PC) results obtained were as expected; the size
of the condensing set and the processing cost increase until the set maximum value T is
reached and then they remain constant, for all the T values used.

It is not clear which of AIB2-V2 and dRHC-V2 are more accurate. In Table 3, dRHC-
V2 is seen to construct its condensing set by computing fewer distances than AIB2-V2.

84 Ougiaroglou et al.

However, it ranks the prototypes and it may be problematic in cases of very fast data
streams. Also, the average measurements (AVG) depicted in the last row of Table 3 sug-
gest that dRHC-V2 and AIB2-V2 can achieve even better accuracy than their predecessors
by avoiding the arbitrary growth in size of the condensing set, and by reducing the pre-
processing cost.

Tables 3 lists performance rates measured after the arrival of the last data segment,
i.e., when all data are processed. An additional set of experiments conducted involved the
measuring of accuracy and condensing set sizes following the processing of each one data
segment by executing the algorithms on ten datasets. With the exception of the Shuttle
(SH) dataset, the largest datasets were used for this set of experimental runs. In the case
of the Shuttle (SH) dataset accuracy does not present an essential variance from one data
segment to another and for this reason the dataset was excluded. For AIB2-V2, whereby
processing does not involve the use of data segments, accuracy values were measured
utilizing condensing set snapshots as they were following the processing of s prototypes,
where s is the “Segment size” value listed in Table 2.

Figures 4– 13 present the results obtained from this new set of experiments. Each
figure involves two diagrams. Diagram (a) plots the size of the condensing set following
the arrival of each one data segment (numbered 1,2,. . .) on the x axis. The size of the
condensing set is seen to rise and start to level off when T is reached. Diagram (b) plots the
accuracy achieved following the processing of each (subsequent) data segment. It is worth
noting that for the MGT, PDN and LSN datasets which involve a relatively high level of
noise, the classification accuracy increases considerably when the prototype removing
mechanism is enabled. Thus algorithms that adopt low T values perform better in cases
of noisy datasets. In general, we observe accuracy tends to rise relatively fast for the first
few data segments that are being processed and it then tends to level off either gradually
(e.g. for LS, PH) or a bit more abruptly (LIR, PD, TXR and KDD).

4.3. Wilcoxon Signed Rank Test results

The experimental results obtained are herewith complemented by the Wilcoxon signed
rank test results [7,23] in order to statistically confirm the validity of the ACC measure-
ments presented in Table 3. The Wilcoxon signed rank test compares all the algorithms
in pairs, considering the accuracy achieved against each one dataset. All four versions
of dRHC(-V2) and AIB2(-V2) were considered, using a number of T values. Since both
dRHC-V2 and AIB2-V2 dominate in terms of the RR and PC results obtained, there was
no need to include the corresponding measures in the test.

Table 4 presents the Wilcoxon signed rank test results obtained. The column labeled
“w/l/t” lists the number of wins, losses and ties for each one comparison test. The column
labeled “Wilcoxon” value (last column) lists a figure that quantifies the significance of the
measured difference between the two algorithms compared. When it is lower than 0.05,
the difference is statistically significant.

Despite the fact that AIB2-V2 is seen to involve more wins over dRHC-V2, the results
in Table 3 indicate that there exists no statistically significant difference between the two
algorithms. Furthermore, there is no statistical difference between AIB2-V2 and AIB2. In
the case of dRHC-V2 and dRHC, the former is seen to outperform the latter when T=85%,
and when T=70%. There is no statistical difference between the two when T=55%, and
when T=40%. The results obtained reveal that both dRHC-V2 and AIB2-V2 can be used

Instance-based classification on large noisy and streaming datasets 85

Table 3. Comparisons in terms of Accuracy (ACC(%)), Reduction Rates (RR(%)) and
Preprocessing Cost(M)

Data T% 1NN dRHC dRHC- AIB2 AIB2-
V2 V2

LIR

85:

95.83 93.920

93.530

94.145
93.775

70: 92.835 92.750
55: 91.660 91.440
40: 88.845 89.075

MGT

85:

78.14 72.965

74.606

73.286

75.268
70: 75.447 75.662
55: 75.920 75.994
40: 76.393 76.236

PD

85:

99.35 98.490

98.508
98.326

98.226
70: 98.235 98.062
55: 97.953 97.316
40: 97.471 96.543

PDN

85:

89.52 75.864

81.832

77.265

84.125
70: 85.862 86.672
55: 89.065 88.719
40: 91.394 90.175

LS

85:

90.60 88.500

88.671

89.417

89.573
70: 88.920 89.402
55: 88.687 88.873
40: 88.314 88.733

LSN

85:

81.99 76.566

79.487

77.653

81.663
70: 81.974 82.828
55: 83.357 83.807
40: 84.646 84.880

SH

85:

99.82 99.695

99.667

99.726
99.671

70: 99.624 99.621
55: 99.590 99.593
40: 99.400 99.243

TXR

85:

99.02 97.600

97.291

97.691
97.400

70: 98.836 96.909
55: 96.218 96.255
40: 95.182 94.982

PH

85:

90.10 85.381

85.667
85.067

85.474
70: 85.104 85.363
55: 84.955 84.327
40: 83.845 83.623

BL

85:

78.40 70.560

74.080

68.480

77.600
70: 77.600 78.080
55: 79.840 79.520
40: 81.790 77.760

PM

85:

68.36 63.925

66.792

67.321

66.796
70: 67.572 64.972
55: 69.913 67.445
40: 67.184 68.481

ECL

85:

79.78 71.462

74.732

72.963

72.963
70: 76.216 74.460
55: 75.316 71.185
40: 77.094 70.597

YS

85:

52.02 48.379

49.256

48.247

49.258
70: 49.864 49.932
55: 50.743 49.594
40: 51.415 49.662

TN

85:

94.88 93.081

93.838

93.054

94.865
70: 94.514 95.203
55: 94.986 95.351
40: 95.459 95.568

MN2

85:

90.51 97.680
96.517

93.293

91.890
70: 95.589 86.792
55: 91.190 81.489
40: 80.281 81.251

KDD

85:

99.71 99.424

99.449

99.414

99.469
70: 99.464 99.444
55: 99.443 99.443
40: 99.353 99.309

AVG

85:

86.75 83.343

84.620

83.459

84.876
70: 85.479 84.760
55: 85.552 84.397
40: 84.879 84.132

dRHC dRHC-V2 AIB2 AIB2-V2
RR PC RR PC RR PC RR PC

88.18 19.574

89.95 19.179

88.14 20.098

89.95 19.387
91.73 17.721 91.73 17.488
93.50 15.362 93.50 14.820
95.27 12.293 95.27 11.337

74.62 26.025

78.42 25.851

71.87 33.079

78.42 31.259
82.24 24.414 82.24 28.551
86.04 21.709 86.04 24.648
89.85 17.730 89.85 19.513

97.23 1.438

97.65 1.410

97.19 1.381

97.65 1.336
98.06 1.317 98.06 1.234
98.48 1.155 98.48 1.057
98.90 0.925 98.90 0.811

72.28 9.502

76.44 9.407

70.04 11.572

76.44 11.045
80.60 8.908 80.60 10.128
84.75 7.964 84.75 8.786
88.91 6.504 88.91 6.998

88.35 1.531

90.09 1.511

86.77 1.916

90.09 1.785
91.84 1.422 91.84 1.615
93.59 1.261 93.5 1.378
95.34 1.029 95.34 1.075

71.44 3.511

75.74 3.477

68.28 4.349

75.74 4.101
80.01 3.288 80.01 3.737
84.31 2.932 84.31 3.213
88.58 2.390 88.58 2.532

99.50 7.977

99.58 7.614

99.45 8.041

99.58 7.420
99.65 6.911 99.65 6.540
99.72 5.946 99.72 5.453
99.80 4.729 99.80 4.127

94.95 0.685

95.71 0.669

94.91 0.660

95.71 0.637
96.46 0.617 96.46 0.575
97.23 0.533 97.23 0.481
97.98 0.429 97.98 0.369

82.34 1.638

84.99 1.615

81.50 1.883

84.99 1.808
87.65 1.515 87.65 1.651
90.29 1.333 90.29 1.420
92.95 1.077 92.95 1.119

78.12 0.029

81.40 0.029

70.56 0.037

81.40 0.032
84.60 0.027 84.60 0.028
88.00 0.025 88.00 0.024
91.20 0.021 91.20 0.018

65.11 0.064

70.41 0.063

64.75 0.062

70.41 0.060
75.61 0.060 75.61 0.056
80.81 0.055 80.81 0.049
86.02 0.046 86.02 0.040

68.92 0.015

73.61 0.015

68.70 0.011

73.61 0.011
78.44 0.015 78.44 0.011
82.90 0.014 82.90 0.009
87.73 0.013 87.73 0.007

51.23 0.306

58.59 0.306

47.10 0.366

58.59 0.349
65.91 0.306 65.91 0.321
73.23 0.278 73.23 0.278
80.47 0.244 80.47 0.222

95.37 0.695

96.06 0.688

93.47 1.080

96.06 0.917
96.76 0.654 96.76 0.822
97.45 0.590 97.45 0.701
98.14 0.495 98.14 0.551

96.88 0.004

97.63 0.004

93.18 0.005

97.63 0.003
97.80 0.004 97.80 0.003
98.27 0.004 98.27 0.002
98.84 0.004 98.84 0.001

99.22 54.70

99.34 53.555

99.21 58.705

99.34 56.947
99.45 49.811 99.45 52.493
99.57 43.476 99.57 45.319
99.69 34.603 99.69 35.609

82.73 7.981

85.35 7.837

68.28 8.952

85.35 8.569
87.92 7.312 87.92 7.828
90.51 6.415 90.51 6.727
93.10 5.158 93.10 5.271

86 Ougiaroglou et al.

(a) Condensing Set size (b) Classification Accuracy

Fig. 4. LIR: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 5. MGT: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 6. PD: Condensing Set Size and Classification Accuracy per data segment

Instance-based classification on large noisy and streaming datasets 87

(a) Condensing Set size (b) Classification Accuracy

Fig. 7. PDN: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 8. LS: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 9. LSN: Condensing Set Size and Classification Accuracy per data segment

88 Ougiaroglou et al.

(a) Condensing Set size (b) Classification Accuracy

Fig. 10. TXR: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 11. PH: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 12. TN: Condensing Set Size and Classification Accuracy per data segment

Instance-based classification on large noisy and streaming datasets 89

(a) Condensing Set size (b) Classification Accuracy

Fig. 13. KDD: Condensing Set Size and Classification Accuracy per data segment

instead of dRHC and AIB2 without loss of accuracy when there is need for a condensing
set with a fixed size.

Table 4. Results of Wilcoxon signed rank test

Methods Accuracy
w/l/t Wilcoxon

dRHC vs dRHC-V2 (T=85%) 4/12/0 0.030
dRHC vs dRHC-V2 (T=70%) 5/11/0 0.026
dRHC vs dRHC-V2 (T=55%) 6/10/0 0.121
dRHC vs dRHC-V2 (T=40%) 8/8/0 0.326
AIB2 vs AIB2-V2 (T=85%) 6/9/1 0.132
AIB2 vs AIB2-V2 (T=70%) 7/9/0 0.255
AIB2 vs AIB2-V2 (T=55%) 8/8/0 0.756
AIB2 vs AIB2-V2 (T=40%) 7/9/0 0.836

dRHC-V2 (T=85%) vs AIB2-V2 (T=85%) 4/12/0 0.179
dRHC-V2 (T=70%) vs AIB2-V2 (T=70%) 8/8/0 0.918
dRHC-V2 (T=55%) vs AIB2-V2 (T=55%) 6/9/0 0.061
dRHC-V2 (T=40%) vs AIB2-V2 (T=40%) 6/10/0 0.352

dRHC vs AIB2 7/9 0.408

5. Conclusion and Directions for Further Work

A new noise-tolerant prototype generation algorithm is considered in detail. It maintains a
fixed size condensing set by monitoring a stream of training data, or by managing a large
dataset that cannot fit in memory. The new algorithm is code-named AIB2-V2 and has
some common characteristics with dRHC-V2. Both comprise improved variations of the
AIB2 and dRHC algorithms, respectively. Contrary to dRHC-V2, AIB2-V2 avoids rank-
ing when replacing its prototypes. When a new prototype enters the condensing set and

90 Ougiaroglou et al.

the threshold limit has been reached, the pre-marked prototype with the lowest AnA is
removed. The experimental study yields promising results. Even when the condensing set
generated by the new algorithm is less than half the size of that generated by the AIB2 al-
gorithm, there is no loss in accuracy and in many cases the accuracy achieved by AIB2-V2
is even higher. By having the size of the condensing set to vary up to a pre-specified max-
imum value T and practically remain constant, the preprocessing costs involved remain
low and constant throughout the execution of each one of the two algorithms. Moreover,
the latter can be implemented to execute on devices with limited memory.

Suggested directions for future work include the development of new variations of
noise-tolerant prototype generation algorithms that will fully exploit the potential of han-
dling data streams involving the concept drift. This could be achieved by further increas-
ing the value of the importance measure for newly generated prototypes, next to that of
old prototypes involving static attribute values in the course of time. Moreover, we also
plan to introduce parallelism to the DRTs, in order to speed up the construction of the
condensing set.

References

1. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Systems Series,
Springer Science+Business Media, LLC (2007)

2. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based learning algo-
rithms. Int. J. Man-Mach. Stud. 36(2), 267–287 (Feb 1992), http://dx.doi.org/10.
1016/0020-7373(92)90018-G

3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (Jan 1991), http://dx.doi.org/10.1023/A:1022689900470

4. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garcı́a, S.: KEEL data-mining soft-
ware tool: Data set repository, integration of algorithms and experimental analysis framework.
Multiple-Valued Logic and Soft Computing 17(2-3), 255–287 (2011)

5. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intell.
Data Anal. 11(6), 627–650 (Dec 2007), http://dl.acm.org/citation.cfm?id=
1368018.1368022

6. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27
(Sep 2006), http://dx.doi.org/10.1109/TIT.1967.1053964

7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.
7, 1–30 (Dec 2006), http://dl.acm.org/citation.cfm?id=1248547.1248548

8. Gama, J.a., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 329–338. KDD ’09, ACM, New York, NY, USA (2009), http://doi.
acm.org/10.1145/1557019.1557060

9. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classifica-
tion: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435
(Mar 2012), http://dx.doi.org/10.1109/TPAMI.2011.142

10. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems, Elsevier Science (2011)

11. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory
14(3), 515–516 (1968)

12. James, M.: Classification algorithms. Wiley-Interscience, New York, NY, USA (1985)
13. Lallouet, A., Law, Y.C., Lee, J.H., Siu, C.F.: Constraint Programming on Infinite Data

Streams. In: Walsh, T. (ed.) International Joint Conference on Artificial Intelligence.

http://dx.doi.org/10.1016/0020-7373(92)90018-G
http://dx.doi.org/10.1016/0020-7373(92)90018-G
http://dx.doi.org/10.1023/A:1022689900470
http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://doi.acm.org/10.1145/1557019.1557060
http://doi.acm.org/10.1145/1557019.1557060
http://dx.doi.org/10.1109/TPAMI.2011.142

Instance-based classification on large noisy and streaming datasets 91

pp. 597–604. Barcelone, Spain (Jul 2011), https://hal.archives-ouvertes.fr/
hal-01009693

14. Olvera-Lopez, J.A., Carrasco-Ochoa, J.A., Trinidad, J.F.M.: A new fast prototype selection
method based on clustering. Pattern Anal. Appl. 13(2), 131–141 (2010)

15. Olvera-Lpez, J.A., Carrasco-Ochoa, J.A., Trinidad, J.F.M.: Object selection based on clustering
and border objects. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer
Recognition Systems 2, Advances in Soft Computing, vol. 45, pp. 27–34. Springer (2008)

16. Ougiaroglou, S., Arampatzis, G., Dervos, D.A., Evangelidis, G.: Generating fixed-size training
sets for large and streaming datasets. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A. (eds.)
Advances in Databases and Information Systems. pp. 88–102. Springer International Publish-
ing, Cham (2017)

17. Ougiaroglou, S., Evangelidis, G.: AIB2: An abstraction data reduction technique based on ib2.
In: Proceedings of the 6th Balkan Conference in Informatics. pp. 13–16. BCI ’13, ACM, New
York, NY, USA (2013), http://doi.acm.org/10.1145/2490257.2490260

18. Ougiaroglou, S., Evangelidis, G.: Efficient data abstraction using weighted IB2 proto-
types. Comput. Sci. Inf. Syst. 11(2), 665–678 (2014), http://dx.doi.org/10.2298/
CSIS140212036O

19. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data reduction for ef-
ficient k-NN classification. Pattern Analysis and Applications 19(1), 93–109 (2014), http:
//dx.doi.org/10.1007/s10044-014-0393-7

20. Ougiaroglou, S., Evangelidis, G.: WebDR: A web workbench for data reduction. In: Calders,
T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery
in Databases, Lecture Notes in Computer Science, vol. 8726, pp. 464–467. Springer Berlin
Heidelberg (2014), http://dx.doi.org/10.1007/978-3-662-44845-8_36

21. Ramrez-Gallego, S., Krawczyk, B., Garca, S., Woniak, M., Herrera, F.: A survey on data
preprocessing for data stream mining. Neurocomput. 239(C), 39–57 (May 2017), https:
//doi.org/10.1016/j.neucom.2017.01.078

22. Sánchez, J.S.: High training set size reduction by space partitioning and prototype abstraction.
Pattern Recognition 37(7), 1561–1564 (2004)

23. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. A Chapman
& Hall book, Chapman & Hall/CRC (2011)

24. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study on proto-
type generation for nearest neighbor classification. Trans. Sys. Man Cyber Part C 42(1), 86–100
(Jan 2012), http://dx.doi.org/10.1109/TSMCC.2010.2103939

25. Tsymbal, A.: The problem of concept drift: definitions and related work. Tech. Rep. TCD-CS-
2004-15, The University of Dublin, Trinity College, Department of Computer Science, Dublin,
Ireland (2004)

26. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algo-
rithms. Mach. Learn. 38(3), 257–286 (Mar 2000), http://dx.doi.org/10.1023/A:
1007626913721

Stefanos Ougiaroglou holds a B.Sc in Computer Science (2004) from Alexander TEI
of Thessaloniki, Greece, a M.Sc. in Computer Science (2006) from Aristotle Univer-
sity of Thessaloniki, Greece and a PhD in Computer Science (2014) from University
of Macedonia, Thessaloniki, Greece. His PhD studies were supported by a Scholarship
from State Scholarships Foundation (I.K.Y) of Greece. From 2016, he is postdoctoral
researcher at the department of Applied Informatics of University of Macedonia. More-
over, S. Ougiaroglou holds a Certificate of Pedagogical and Teaching Competence (2010),

https://hal.archives-ouvertes.fr/hal-01009693
https://hal.archives-ouvertes.fr/hal-01009693
http://doi.acm.org/10.1145/2490257.2490260
http://dx.doi.org/10.2298/CSIS140212036O
http://dx.doi.org/10.2298/CSIS140212036O
http://dx.doi.org/10.1007/s10044-014-0393-7
http://dx.doi.org/10.1007/s10044-014-0393-7
http://dx.doi.org/10.1007/978-3-662-44845-8_36
https://doi.org/10.1016/j.neucom.2017.01.078
https://doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.1109/TSMCC.2010.2103939
http://dx.doi.org/10.1023/A:1007626913721
http://dx.doi.org/10.1023/A:1007626913721

92 Ougiaroglou et al.

ASPAITE, Greece. Currently, he is a laboratory lecturer at the department of Informa-
tion and Electronic Engineering of the International Hellenic University (IHU), Thessa-
loniki, Greece where he teaches Databases, Data Structures, Data Mining, Algorithms
and Programming, Operating Systems, Web Languages and Technologies and Devel-
opment of Internet Applications. His research interests include Data Mining algorthms,
Data streams, Data management for Mobile Computing and Educational Technology. He
has authored several journal and conference papers in these fields. Personal webpage:
https://www.iee.ihu.gr/˜stoug/

Dimitris A. Dervos (https://d-a-d.weebly.com) is with the Department of In-
formation and Electronic Engineering of the International Hellenic University in Thessa-
loniki, Greece. He holds a BSc degree in Physics and a Ph.D degree in Computer Sci-
ence from the Aristotle University of Thessaloniki, plus an M.A. degree in Physics, and
an M.Sc. degree in Computer Engineering from the University of Southern California.
His teaching record includes undergraduate and graduate level topics ranging from Algo-
rithms and Data Structures to Database Technology and Data Mining taught at academic
institutions in Greece, and in the U.K. His research interests primarily focus in the areas of
Bibliography Data Analysis, and Data Mining. He has led the research team who received
the 2005 Thomson ISI / ASIS&T Citation Analysis Research Grant.

Georgios Evangelidis is a Professor at the Department of Applied Informatics, School
of Information Sciences, University of Macedonia, Thessaloniki, Greece. He is the Di-
rector of the Software and Data Engineering Laboratory of the Department since 2016.
He holds a BSc in Mathematics (1987, Aristotle University, Thessaloniki), and MSc and
PhD in Computer Science (1990 and 1994, Northeastern University, Boston, MA). His re-
search interests and published work (about 120 papers and book chapters) are in the area
of Information Management: Databases, Data Mining, Information Retrieval, Analysis
of Bibliographic Databases. He teaches Databases, Data Mining and Geographic Infor-
mation Systems. He has been coordinator and/or participant in more than 20 Greek gov-
ernment and EU funded research and development projects. Personal webpage: http:
//users.uom.gr/˜gevan/

Received: May 18, 2019; Accepted: November 18, 2019.

https://www.iee.ihu.gr/~stoug/
https://d-a-d.weebly.com
http://users.uom.gr/~gevan/
http://users.uom.gr/~gevan/

Computer Science and Information Systems 17(1):93–115 https://doi.org/10.2298/CSIS180601015G

Climate Change Opinions in Online Debate Sites

Adrian Groza1, Pinar Ozturk2, Radu Razvan Slavescu1, and Anca Marginean1

1 Technical University of Cluj-Napoca
400128 Cluj-Napoca, Romania

{Adrian.Groza,Radu.Razvan.Slavescu,Anca.Marginean}@cs.utcluj.ro
2 Norwegian University of Science and Technology

Trondheim, Norway
pinar@ntnu.no

Abstract. Debate sites in social media provide a unified platform for citizens to
discuss controversial questions and to put forward their ideas and arguments on
the issues of common interest. Opinions of citizens may provide useful knowledge
to stakeholders but manual analysis of arguments in debate sites is tedious, while
computational support to this end has been rather scarce. We focus here on devel-
oping a technical instrumentation for making sense of a set of online arguments and
aggregating them into usable results for policy making and climate science commu-
nication. Our objectives are: (i) to aggregate arguments posted for a certain debate
topic, (ii) to consolidate opinions posted under several but related topics either in the
same or different debate site, and (iii) to identify possible linguistic characteristics
of the argumentative texts. For the first objective, we propose a voting method based
on subjective logic [13]. For the second objective, we assess the semantic similarity
between two debate topics based on textual entailment [28]. For the third objective,
we employ various existing methods for lexical analysis such as frequency analysis
or readability indexes. Although we focused here on the climate change, the method
can be applied to any domain.

Keywords: online debate analysis, aggregation of individual opinions, web text
analysis, decision support for policy making.

1. Introduction

Policy makers, managers and social scientists are interested in opinions of stakeholders on
issues of environmental, societal and political consequences. Although social media has
proven to be a precious data source for studying how people use public arena for commu-
nicating their ideas and opinions [7,34], debate sites have not been in research focus to
the same extent as other online platforms. The objective of this work is to investigate what
kind of information can be extracted from individual opinions posted on debate sites. We
focus here on the climate change problem because it is a matter that interests many people
who may have different opinions and arguments. However, the method is general and can
be used in other areas as well.

Debate sites are structured according to topics, (e.g. ”global warming”). Anybody
may post a question (e.g., ”Is global warming affecting the planet?”) or a hypothesis (e.g.,
“Global warming is affecting the planet”), and anybody can post his or her opinion re-
lated to this question/hypothesis. In the rest of this paper we use ”hypothesis” regardless

94 Adrian Groza et al.

of the initiating post being in affirmative or interrogative format. The responses are votes
(e.g., yes/no, pro/against or agree/disagree), which are optionally accompanied by an ar-
gumentative text. From the debate analysis perspective, the debate sites therefore possess
a distinguished advantage: people’s opinions about a debate topic are intrinsically labeled
as pro or against, which enables automated extraction of labeled arguments.

It is not unusual that the same or similar hypotheses are discussed in more than one
thread in the same debate site, even synchronously, because the debate sites do not offer
a service for detecting such redundancy. For example, we noticed that ”Climate change
affects the earth” and ” Global warming affects our planet” were debated at almost the
same time within the same debate community. Moreover, the same hypothesis can be
posted on the distinct debate community, where it may attract more (or less) negative
(or positive) arguments. Thus, there is need for computational methods to handle these
situations in order to have a clearer picture on what is debated related to a topic of interest.
Hence, we propose here a computational method and a tool to facilitate a high level view
on what is debated online.

There are several challenges in making sense of online debates. First, redundancy oc-
curs when a person posts an existing hypothesis again, with a different wording. Second,
the number of responses vary significantly across topics/hypotheses which makes it diffi-
cult to compare the degree of support for two hypotheses, one with tiny and the other with
massive discussions. Third, different hypotheses may be considered the same for a spe-
cific purpose, for example, of a policymaker and hence the responses to them may need to
be merged. Fourth, there are several debate sites, which we call ”communities”, indepen-
dent from each other but discussing similar or the same topics. Gathering a consolidated
opinion across these communities will provide a better insight into public opinions. How-
ever, it is not trivial to assess the semantic similarity between hypotheses and hence to
extract collective opinions of people from distinct debate sites.

We used debate sites to extract an annotated corpus of climate change arguments in
natural language. The motivation is that existing corpora for climate change are based
either on media [4], or tweets [14,23]. Both sources do introduce specific disadvantages
for natural language processing. First, arguments conveyed in media are too large and
sparse within an article or news. Second, arguments in tweets do not follow a specific set
of grammar rules. We consider that arguments from debate sites are more adequate for
natural language processing (NLP), as arguments are smaller than media documents and
they are grammatically more correct than tweets. Moreover, the existing corpora contain
arguments labeled as pro or against either manually by external human annotators or
automatically (e.g. based on machine learning). Differently, the arguments in our corpus
are labeled by the conveyor of the argument himself/herself. That is, the confidence in the
labels is higher. Hence, such a corpus can be useful for researchers in natural language
arguments or argument mining.

Our objectives are (1) to aggregate arguments posted for a certain hypothesis, (2) to
consolidate opinions posted under several but related hypotheses either in the same or
different debate site, and (3) to identify possible linguistic characteristics of the argu-
mentative texts. Note that we reserve the term aggregation for a summary of opinions
under a specific hypothesis posted in one thread, while consolidation is used whenever
two separated threads about a topic can semantically be merged.

Climate Change Opinions in online Debates 95

For the first objective, we proposed a vote-based method based on Subjective Logic [13].
For the second objective, we assess the semantic similarity between two hypotheses based
on textual entailment [28]. For the third objective, we employ various existing lexical
analysis instrumentations such as frequency analysis or readability indexes. Although we
focused here on the climate change, the method can be applied to any domain.

A social scientist using our ARGSENSE tool can obtain answers related to the fol-
lowing research questions:

Q1: Are the arguers within a community apriori prone to accept or to reject a hypothesis?
Q2: Which hypotheses are most (dis)believed or (un)popular in a community?
Q3: Do the pro arguments have a different lexicon than the counter ones?
Q4: Does an interrogation have more pros or more cons arguments than an affirmation?
Q5: Are the pro arguments more readable than the con arguments?
Q6: Is the length of hypothesis correlated with the number of arguments it receives?
Q7: Does the formulation of the hypothesis itself (e.g., interrogative or affirmative) in-

fluence the degree of interest in the debate?

In the rest of the paper, section 2 browses related work on analysing climate change
arguments. Section 3 introduces the climate change argument corpus that we harvested
from debate sites, and the architecture of ARGSENSE for supporting the analysis of the
online debates. Section 4 presents our vote-based method for argument aggregation based
on subjective logic. Section 5 presents a method based on textual entailment for con-
solidating opinions of related debate topics. Section 6 applies opinion aggregation and
opinion consolidation in the climate change domain. Section 7 applies lexical analysis for
supporting social scientists on the climate change corpus. Finally, we review the findings
through a concluding section.

2. Related work

Related work is restricted to our running scenario: climate change. We approach related
work from three perspectives. First, we introduce different approaches for analysing on-
line arguments on global warming. Second, we browse the existing corpora on climate
change. Third, we present related tools that support understanding of climate change.

2.1. Opinion aggregation

We are aware of the limitations and risks of aggregating data from online sources. For ex-
ample, people from online communities disagree far more on climate change than climate
experts do. The scientific community has reached a consensus that the rise of average tem-
perature is mostly caused by human activity. It has been argued by Boussalis et al. [4] that
the lack of awareness or understanding of the scientific evidence is due to a ”coordinated
and well-funded counter-movement of climate skeptics“. Relevant to the topic of climate
change denial is the investigation in [32]. Here, Washington et al. have analysed the ar-
gumentative patterns in climate change literature and have identified five types of climate
change denial argument: i) conspiracy theory, ii) fake expert, iii) impossible expectations,
iv) misrepresentation or logical fallacy v) cherry-picking. From the argumentation tech-
nologies viewpoint, these results [32] open the way towards argumentation schemes [31]
for climate change.

96 Adrian Groza et al.

In the same line of aggregating expert opinions instead of non-expert arguments is
the work of HaDoung et al. that compared several procedures to aggregate expert opinion
based on an Transferable Belief Model. The approach in [10] has been tested with 16 ex-
pert real-world datasets on climate sensitivity. The experts are firstly clustered into fields
of taught. In each group, beliefs are aggregated using a cautious conjunction operator.
Across groups, a non-interactive disjunction is used. In our case, the arguers are parti-
tioned into different debate sites. Within a community, the argument properties (belief,
disbelief, ignorance) are consolidated based on the similarity, contradictory and entail-
ment relations.

Our method for representing individual votes is inspired from the subjective logic
of [32]. Lioma et al. have used subjective logic for interactive information retrieval [18].
Subjective logic has been used to model representation of information needs as uncer-
tain beliefs. In [18], the same information need can have various textual representation.
Similarly, our debate topics or hypotheses have different supporting arguments.

For consolidation of opinions posted under different (but semantically related) hypoth-
esis, we used natural language processing techniques such as textual entailment. Textual
entailment is used here to compute similarity, contradiction and entailment between hy-
potheses. The latter one includes a supervised machine learning component, that benefits
from our crawled labeled arguments. Moreover, in line with [2] our method for detecting
similarity, contradiction and entailment relies also on external knowledge resources like
Wordnet [22] and VerbOcean [8].

2.2. Climate change debate corpora

Existing corpora for climate science are based on media documents [4], or tweets [14,23].
Boussalis et al. [4] has collected 16.000 documents for compiling a corpus of contrarian
literature on climate change. 19 organisations known to argue for climate skepticism were
included. The corpus was used to analyse the skeptical discourse on global warming over
the period 1998-2013. Kirilenko et al. [14] have collected 1.8 million tweets on climate
change between 2012 and 2013 in five languages with 41% of the daily discussion of
climate change on Twitter originates from the USA and 13% from the UK. Tweets have
also been collected for the stance detection dataset [23]. The corpus contains 4870 tweets
in five domains: ”atheism”, ”climate change is a real concern”, ”feminist movement”,
”Hillary Clinton” and ”legalisation of abortion”. Each tweet was annotated by at least
eight respondents in the CrowdFlower (http://www.crowdflower.com) platform.

From the natural language perspective, our climate change corpus has a technical ad-
vantage over the tweets-based corpora or document-based corpora. The advantage comes
from the size and structure of the arguments. Tweets are charactered by flexible grammar
structure, and lots of links or hash-tags. Hence, natural language processing is based more
or less on lexical analysis within a statistical framework. Differently, media documents or
journal articles are large and hence it is difficult to automatically filter the relevant in-
formation. Our corpus contains small arguments supporting and attacking a debate topic.
The size of each pair of arguments makes it possible to effectively apply technical instru-
mentations such as textual entailment.

Regarding the size of each text, the corpus of Kwon et al. [16] is similar. Kwon at al.
have collected 119 public comments about Environmental Protection Agency’s proposed
emission standard rule on hazardous pollutants. The comments have been classified in

Climate Change Opinions in online Debates 97

three classes: support, oppose or propose a new idea. Each comment has been annotated
by at least two coders. The inter-annotator agreement based on Cohen’s Kappa coeffi-
cient [15] has been only 0.62. This low value signals the uncertainties rising when the
comments are manually labeled by human annotators. Our larger corpus (11.653 argu-
ments compared to 119 comments) does not have this labeling uncertainty, as each label
was available from the debate sites. Hence, an advantage of our corpus is that the classi-
fication of an argument as positive or negative is given by the conveyor of the argument
and not by an external annotator.

Chalaguine and Schulz [6] have focused on how convincing arguments are in online
debates. The corpus contains arguments collected from 32 debates on 16 topics from cre-
atedebate.com and procon.org. The collected arguments have been used to generate 16k
pairs of arguments. Each pair has been classified by human annotators as more convincing
versus less convincing. Note that the arguments are not restricted to only one domain (i.e.,
climate change). The more topics in the corpus, the more difficult for machine learning to
learn the language model. Note also that assessing the strength of an arguments in 16K
pairs is a highly subjective task, given the bias due to personal beliefs, preferences and
background of the annotators. Moreover, the randomly generated pairs contain arguments
from different topics, hence more difficult to assess their strength. Chalaguine and Schultz
have used the corpus by extracting 70 features for each pair (POS, statistics on texts, etc.)
and fed these features to a neural network.

Hence, our climate change corpus provides the following advantages compared to
existing corpora used in the argumentation mining community. First, the size of each
argument is relatively small (compared to large scientific documents) and has a proper
grammar (compared to tweets). Second, the corpus is restricted to a single domain (i.e.
climate change), hence it facilitates building a better language model, in case machine
learning is used. Third, classification of arguments into pros and cons is guaranteed to
reflect the conveyor’s real intention, and does not include inherent errors of manual anno-
tation [16,23].

2.3. Tools for climate change understanding

The ARGSENSE tool aims to enhance understanding on climate change topic as it ap-
pears in public arena. Henceforth, this section browses related tools used to support stake-
holders to understand climate science.

Launched in November 2014, the Web-based tool VisAdap [1] aims to increase un-
derstanding of anticipated risks from climate change. These climate change risks are ad-
dressed from the perspective of the target group of home-owners. The challenge is that
home-owners have socio-cognitive barriers to adapt to the new risks caused by climate
change. Risk impact of climate change is anticipated for a given region over the coming
40-60 years. With 16,000 users within 8 months [1], VisAdap has proved a popular tool to
support individual decision making when buying or building a house. Currently, VisAdap
is designed based on norms and values of home-owners collected from direct interviews.
Instead of interviews, ARGSENSE relies on arguments conveyed in the public arena. In
the same line of understanding people opinions on a narrow topic, ARGSENSE can per-
form topic-based analysis. The topic can be selected based on the target stakeholders,
including the home-owners. For home-owners, ARGSENSE can report on the arguments

98 Adrian Groza et al.

related to debate topics such as flooding or storm damage. ARGSENSE is able to sig-
nal topics which are not accepted by a community. This result guidelines a policymaker
regarding which information to communicate on platforms like VisAdap.

Launched in 2016, the AGCLIMATE hub (http://AgClimate4U.org) aims to transform
heterogeneous climate change datasets into usable information in agriculture. Here, the
stakeholders are crop farmers and agricultural advisors [3]. To understand their needs,
methods from social sciences have been used: surveys, focus groups, interviews, and
network analysis. Findings from these methods have been used to design various deci-
sion support tools for graphical visualisation of climate data, crop fields, or irrigation in-
vestment. ARGSENSE follows the same ”useful to usable” paradigm: the argumentation
dataset is analysed from different perspectives to present usable findings to a policymaker.
Data in AGCLIMATE is obtained by querying the Web services of various providers
(i.e. National Oceanic Atmospheric Administration, Midwestern Regional Climate Cen-
ter, USDA National Agricultural Statistics Service) of climate change structured data.
Differently, data in ARGSENSE is obtained through crawling and it is in textual form.
Hence, natural language processing techniques (such as textual entailment) were used to
aggregate arguments. These aggregation contributes to increase usability for policymakers
and social change agents.

The two works above [1,3] have focused on understanding the views on climate
change of people. Differently, Mayer et al. [21] have recently focused on understand-
ing mental models on climate change of the scientists. Mayer et al. [21] have argued
that understanding the decisions for model design are important for the informed use
of tools built on that models. The research method has been to qualitatively analyse
semi-structured interviews with eleven interdisciplinary experts (i.e., climate scientists,
economists, decision analysts) who lead projects in the field of climate risk management.
For managing climate change risks, Mayer et al. have been interested in analysing deci-
sion’s justification and explanations. In the same line of focusing on expert knowledge
and not public arguments, Huang et al. [12] have developed an expert system for integrat-
ing climate change impact in the petroleum industry with the aim to support formulation
of the relevant adaptation policies. Similarly, Qin et al. [27] have proposed an expert sys-
tem to assess the impact of climate change on socio-economic and environmental factors.
These relevant factors are further used by the expert system to formulate adaptation poli-
cies. In this paper, we were interested to analyse, people’s arguments. These may lead to
an interesting interplay between arguments, justifications and explanations [17,30].

The VA-TURF tool [20] aims to assess the vulnerability of coastal fisheries ecosys-
tems. VA-TURF includes socio-economical aspects and enhances planning of coastal
communities to climate change impacts. The research method has been to assess vul-
nerability directly by fishers, barangay leaders, residents, and local executive staff. These
stakeholders can discuss within the VA-TURF system on risks associated to a particular
climate change scenario. ARGSENSE can also provide insights on a particular climate
change topic. Yet the target communities are different in VA-TURF and ARGSENSE :
VA-TURF encourages local community-level actions. Differently, ARGSENSE analyses
arguments conveyed by a debate community that is globally distributed.

The ArgueApply has been launched in 2017 as a mobile application for generic de-
bates [26]. The argumentation model of ArgueApply is based on four different relations:
support, strong support, attacks, and strong attacks. The voting method counts strong sup-

Climate Change Opinions in online Debates 99

port twice compared to the support relations. This refinement is necessarily in our view
to overcome cases in which most of the semantics of abstract argumentation output the
empty set. Differently, we have only the support and attack relations. Instead, our ap-
proach based on subjective logic can be used to distinguish between the following cases:
i) let a debate topic supported by 3 arguments and rejected by 2; ii) consider also a debate
topic supported by 30 arguments and attacked by 20. The ignorance level in our argu-
mentation model allows to distinguish between such arguments. The topic with 30/20
arguments is considered more accepted in a debate community. The capacity of modeling
ignorance level is why we used subjective logic for our argumentation model. Moreover,
our ARGSENSE tool complements its vote-based method with text analysis capabilities
(textual entailment, lexical analysis).

3. Methods and tool

This section describes 1) the climate change argument corpus that we crawled for our ex-
periments, and 2) the architecture of the ARGSENSE tool that we developed to facilitate
the analysis of online debates.

First, we created a corpus (denoted cc) for the Climate Change domain from the three
debate sites we selected: ForAndAgainst (henceforth faa), Debate.org (deb) and Debate-
pedia (dbp). All debate hypotheses discussing climate change were filtered based on the
Wikipedia glossary of climate change. First, the crawled opinions are automatically struc-
tured in tuples 〈h, t, l〉, where h represents the debate hypothesis, t the argument in natural
language (optional, hence may be empty), and l is the label of the vote pro (i.e., yes or
agree) or cons (no or disagree) (see Table 1). Note that the label (pro or con) is provided
by the conveyor of the argument. This label of the argument is automatically crawled
from the webpage. This nice feature of the debate sites makes them an ideal source for
extracting arguments which are already classified (i.e. labeled).

Table 1. Sample of tuples 〈h, t, l〉 in the climate change corpus.

Hypothesis (h) Argument (t) Label (l)
Climate change is man-made. Human carbon emissions have accelerated global warming ... pro
Climate change is man-made. The climate has changed through history due to natural cycles. cons
Should government adopt
emissions trading to combat
global warming?

Emissions trading encourages investments in technologies. pro

There are 1,793 hypotheses in the corpus, and total 11,653 separate responses, i.e.,
arguments for the whole hypotheses repertoire. The cc corpus was obtained by crawling
three debate communities: faa with 142 debates containing 877 arguments, deb with 742
topics containing 6,026 arguments, dbp with 909 debates on climate change attracting
4,750 arguments. With the resulted total of 11,653 arguments, the climate change corpus
is, to our knowledge, the largest corpus of labeled arguments on climate change 3.

3 The ARGSENSE tool and the climate change corpus are available at
http://users.utcluj.ro/∼agroza/projects/argclime.

http://users.utcluj.ro/~agroza/projects/argclime

100 Adrian Groza et al.

Second, we built the ARGSENSE tool to support the analysis of people’s opinions
expressed in debate sites. The system is helpful for social scientists and policymakers
in getting an insight into people’s attitudes toward the controversial issues of worldwide
interest. ARGSENSE has two architectural components relying on a vote-based method
and text-based methods respectively (see Fig. 1).

Fig. 1. ARGSENSE investigation domain. A voting method based on subjective logic is
proposed to rank the debate topics based on belief, disbelief and popularity in a com-
munity of arguers. An opinion consolidation method is proposed to aggregate arguments
from related debate topics. This supports a more accurate view on the same questions Q1

andQ2. Lexical analysis uses off-shelf frequency analysis tools to support social scientists
and science communicators with questions Q3 to Q7.

The vote-based method takes tuples 〈h, t, l〉 by crawling the debate sites and aggre-
gates votes l (of type pro or cons) for the same debate topic h. The aggregation is based on
subjective logic. Subjective logic allows also to quantify belief and disbelief in h, but also
the degree of ignorance in a community with respect to a debate topic h. The vote-based
method helps a social scientist with answer to questions Q1 and Q2.

Text-based methods have two components: opinion consolidation and lexical analysis.
By opinion consolidation we mean the operation of aggregating arguments of seman-

tic similar hypotheses. The semantic similarity relation is computed using textual entail-
ment. Textual entailment identifies hypotheses representing the same debate topic, but
posted using different words (e.g. Climate change is manmade and Global warming is
caused by humans). Such related hypotheses can also be posted in different debate com-
munities or posted in the same community but at different time points. To better support
the social scientist, we need to consider all the arguments posted for or against all the hy-
potheses representing the same debate topic. We call this process opinion consolidation.
Opinion consolidation is based on textual entailment and it represents the main conceptual
proposal of this research.

Note that the vote-based method can be applied either on a single topic or on the
consolidated topic that includes arguments from all related debates. In Fig. 1, this is illus-
trated by the fact that questions Q1 and Q2 can be applied both on a single hypothesis or
on the consolidated debate topic. Throughout the paper, we use the term ”aggregation” for

Climate Change Opinions in online Debates 101

a summary of opinions (vote-based) under a specific hypothesis, while ”consolidation” is
used whenever two separately posted hypotheses can semantically be merged.

Lexical analysis identifies linguistic features of argumentative texts. One can investi-
gate if a community of people uses specific linguistic patterns, and whether these patterns
depend upon the topic or whether the discourse is supporting or countering. The results
are presented visually through graphs, rankings, and the identified lexical patterns. The
methods used for lexical analysis are not new - we use readability indexes, sequential
pattern mining, statistical analysis. Instead, these features help a social scientist or poli-
cymaker for answering questions Q3 to Q7.

4. Aggregation of arguments for an individual hypothesis

Now we describe the method for translating the individuals’ arguments posted under one
thread of particular hypothesis in one debate site into an aggregated opinion.

To represent aggregated opinions we use subjective logic [13,9], which originally
was developed for belief representation in knowledge bases. In subjective logic, an opin-
ion ω on a given state of a system x is represented in terms of four quantities: ωx =
(bx, dx, ux, ax), where bx represents an individual’s degree of belief that the particular
state x is true, dx stands for disbelief and shows the belief that a state is false, and ux is
the uncertainty about the state. The parameter ax is a measure of the prior probability of
the truth value of x. In our case, the state x represents the hypothesis h for which people
have provided arguments.

Differently from [13], we prefer the term ignorance instead of uncertainty, as it fits
better to our task of assessing the degree in which a community is interested in a specific
topic. Differently from [13], we also introduce the notion of community, to count only the
arguments conveyed within a community or arguers.

The aggregated opinion of a community α about a hypothesis h is defined by:

Definition 1. The opinion ωαh regarding the perceived truth value of hypothesis h by com-
munity α is a quadruple ωαh = 〈bh, dh, ih, aαh〉, where bh represents the degree of belief
(amount of evidence supporting h), dh represents the disbelief (amount of evidence at-
tacking h) and ih represents the degree of ignorance about h with

bh + dh + ih = 1, {bh, dh, ih} ∈ [0, 1]3 (1)

The parameter aαh is a measure of the prior probability of the truth value of h in the
community α. Hence, aαh is a feature of the community α. With no apriori information
about α, we consider that a hypothesis has equal chances to be accepted or rejected.

In our framework, evidence for h are the arguments supporting or attacking h. For
community α, let A+

h be the set of arguments supporting h, and A−h the set of arguments
attacking h. Let eh = |A+

h | be the number of arguments supporting h, and nh = |A−h | the

102 Adrian Groza et al.

number of arguments attacking h. The parameters bh, dh and ih are computed with:

bh =
eh

eh + nh + 1/aαh
(2)

dh =
nh

eh + nh + 1/aαh
(3)

ih =
1/aαh

eh + nh + 1/aαh
(4)

Example 1 illustrates the opinion ωαh for the h=”Climate change is man-made”.

Example 1. Assume h=”Climate change is man-made” receives A+
h = {t1, t2, t3, t4, t5}

and A−h = {t6, t7, t8}. With no apriori information about community α (a0 = 0.5), we
have bh = 5/(5+3+2) = 5/10, dh = 3/(5+3+2) = 3/10, uh = 2/(5+3+2) = 2/10.
That is the opinion ωαh = 〈0.5, 0.33, 0.22, 0.5〉.

For particular values for bh, dh or ih, special types of opinions can be defined: i)
vacuous opinion: ih = 1 (maximum ignorance, when no argument is available for h);
ii) dogmatic opinion: ih = 0 (no ignorance; theoretically, this happens if the number of
arguments is infinite); iii) neutral opinion: bh = dh; iv) equidistant opinion: bh = dh =
ih; v) pure opinion: bh = 0 or dh = 0; vi) negative opinion: bh < dh (when dh = 1 we
have an absolute negative opinion);vii) positive opinion: bh > dh.

The fourth parameter aα is global to the community α where h is debated. With no
apriori information regarding the acceptance of h by a community of agents, aα defaults
to 0.5. More accurate representation of aα is obtained on the basis of the distribution of
positive and negative opinions. Let Pα be the set of hypotheses in a debate community α
having more positive opinions than negative ones, given by Pα = {h ∈ Hα|eh > nh}.
Let Nα be the set of hypotheses in the community α having more negative opinions,
given by Nα = {h ∈ Hα|nh > eh}. With this interpretation we have:

aα =
|Pα|

|Pα|+ |Nα|
, ∀h ∈ Hα (5)

The remaining Eα = Hα \ Pα \ Nα is the set of neutral hypotheses in α.
A topic h is not necessarily independent from all other topics in the same community.

There can be topics claiming the contrary of h or topics claiming the same idea of h but
with different linguistic expressions. Therefore, we are interested next in exploiting these
inter-relations between hypotheses in α, to obtain a clearer and consolidated opinion.

5. Consolidation of opinions from related hypotheses

If two hypotheses are semantically close to each other, we may want to consolidate the
opinions expressed for them, because it may give more information about people’s atti-
tude towards the underlying debate topic. Such hypotheses may be posted in one debate
site or different ones. The question is then how to judge semantic closeness between two
hypotheses. Our computational method uses three relations for semantic closeness: simi-
larity, contradiction and entailment.

Climate Change Opinions in online Debates 103

Example 2 (Similar hypotheses). Consider g=“Climate change is manmade” and h=“Global
warming is human made”. Since g is similar to h, their supporting and attacking argu-
ments can be aggregated.

Let h, g ∈ Hα, eh = |A+
h |, nh = |A−h |, eg = |A+

g |, ng = |A−g |.

Definition 2 (Consolidating opinions for similar hypotheses). If h is similar to g (h ∼
g) then the number of positive and negative arguments for computing the consolidating
opinion ω̂αh are:

êh = êg = eh + eg (6)
n̂h = êg = nh + ng (7)

Example 3 (Contradictory hypotheses). Let g=”Climate change is a natural cycle”. As h
claims the opposite of g, the supporting arguments for h are the attacking arguments for
g, while the supporting arguments for g attack h.

Definition 3 (Consolidating opinions for contradictory hypotheses). If h contradicts
g (h ∼ ¬g) then the number of positive and negative opinions for computing the consoli-
dated opinion ω̂αh are:

êh = n̂g = eh + ng (8)
n̂h = êg = nh + eg (9)

Example 4 (Entailed hypotheses). Let k=”Climate-induced changes are likely to cause
effects involving many species of plants and animals” and l=”Animals can be affected by
climate changes”. As k entails l, supporting arguments for k also support the particular
claim l. But the supporting arguments for l do not necessarily support the more general
hypothesis k. Instead, the attacking arguments of l also attack k. Arguments attacking k
do not necessarily attack l.

Definition 4 (Consolidating opinions for entailing hypotheses). If h entails g (h ent−−→
g) then the number of positive and negative arguments for computing the consolidating
opinion ω̂αh are:

êh = eh (10)
êg = eh + eg (11)
n̂h = nh + ng (12)
n̂g = ng (13)

Three properties hold for our consolidation method:

1. less ignorance: based on the consolidated values êh for supporting arguments and n̂h
for attacking arguments.

2. belief consistency: if h entails another hypothesis g, then bh is expected to be smaller
than bg . That is: (h ent−−→ g)⇒ (b̂h ≤ b̂g).

3. sub-additivity of belief: if b̂h + b̂¬h < 1.

104 Adrian Groza et al.

The technical difficulty is to automatically identify these three relations: similarity,
contradiction and entailment. For this task, we used the Excitement Open Platform for
Textual Entailment (EOP) [19,24]. From EOP, the Biutee algorithm [28] was preferred
due to its ability to interleave knowledge from lexical resources (e.g. WordNet, VerbO-
cean, Wikipedia) with the language model obtained with supervised learning. Biutee con-
verts the text into the hypothesis via a sequence of transformations. The sequence of
transformations is run over the syntactic representation of the text. On the parse tree, dif-
ferent entailment transformations can be applied, like lexical rules (e.g. CO2 → gas) or
paraphrasing rules (e.g. A affects Y↔ Y is affected by X). As these relations are usually
insufficient, they are complemented with transformations from a language model. The
language model is learned based on a corpus of labeled pairs of text and hypothesis. The
logistic-regression is the default algorithm used by Biutee. Given all possible transforma-
tions, Biutee applies the Stern et al. search algorithm [29] to find a proof that transforms
the text into the hypothesis. The availability of this proof is another reason of using Biutee
in our approach.

Algorithm 1 formalises our entailment-based method for computing consolidated opin-
ions. The method starts by training the textual entailment machinery with the available
tuples 〈h, t, l〉 of labeled arguments. Here we exploited the advantage that the arguments
are already labeled as pro or cons by their own creators. Based on the labeled pairs, we
used the max entropy classification algorithm to generate a language model for climate
change arguments. The resulted model contains linguistic patterns in the climate change
corpus for entailment and contradiction between each hypothesis h and its supporting and
attacking arguments t.

Our trick was to use this learned model to compute now the entailment relations l
between pairs of hypotheses 〈h1, h2, l〉 instead of a pair of hypothesis and one of its ar-
guments 〈h, t, l〉. Hence, we fed Biutee (line 11) with: i) two hypotheses h and g, ii) the
model for the climate change corpus, and iii) lexical knowledge bases like WordNet or
VerbOcean (see Algorithm 1). Biutee will interleave domain-specific knowledge (encap-
sulated in the model) and domain-independent knowledge (i.e. WordNet, VerbOcean) to
search for contradictory or entailment relations between h and g. If a contradictory rela-
tion is found, then the parameters êh and n̂h are computed based on Equations (8) and (9).
If an entailment relation is found between h and g, we check if the relation is symmetric
(i.e. g entails h too). In this case (line 14), we consider the two hypotheses are semanti-
cally similar and equations (6) and (7) are applied. Otherwise, we apply equations (10),
(11), (12) and (13). Note that the same hypothesis can be in various relations with other
hypotheses at the same time: contradiction (line 9), entailment (lines 18-19), or similarity
(lines 14-16).

6. Opinion aggregation and consolidation on the climate chance

This section applies opinion aggregation and opinion consolidation on the climate change
corpus. We start by ranking the topics in the climate change corpus based on degree of
belief, disbelief, or ignorance. Then we identify similar topics and we consider all their
arguments in order to make a more clear picture on the ongoing debates.

Climate Change Opinions in online Debates 105

Algorithm 1: Consolidating opinions with textual entailment.
1: Input: α, corpus of hypotheses and labeled arguments 〈h, t, l〉
2: Input: kb, lexical knowledge bases (e.g. WordNet, VerbOcean)
3: Output: ω̂αh , consolidated opinion for each h in α
4: for 〈h, t, l〉 ∈ α do
5: model← trainBiutee(h, t, l)
6: end for
7: for h ∈ Hα do
8: eh ← |A+

h |, nh ← |A
−
h |

9: for g ∈ Hα \ {h} do
10: eg ← |A+

g |, ng ← |A−
g |

11: rel← BiuteeEntail(h, g,model, kb)
12: if rel ≡ ¬ then
13: êh = n̂g ← eh + ng
14: n̂h = êg ← nh + eg
15: end if
16: if rel ≡ ent−−→ then
17: if BiuteeEntail(g, h,model, kb) ≡ ent−−→ then
18: êh = êg ← eh + eg
19: n̂h = êg ← nh + ng
20: else
21: êg ← eh + eg
22: n̂h ← nh + ng
23: end if
24: end if
25: ω̂αh ← computeConsolidatedOpinion(êh, n̂h, a

α)
26: end for
27: return ω̂αh
28: end for

106 Adrian Groza et al.

6.1. Opinion aggregation

The voting based method based on subjective logic applied on the climate change cor-
pus provides insights regarding Q1: Are the arguers within a community apriori prone
to accept or reject a hypothesis? In the climate change corpus a hypothesis has on aver-
age 4.5 supporting arguments and 3.62 attacking arguments. With |Pcc| = 943 positive
hypotheses and |N cc| = 453 we have acc = 0.67. On average, the degree of belief is a
little larger than disbelief. Hence, members of the communities from which the arguments
were collected seem to be prone to accept a given hypothesis.

All hypotheses in climate change corpus are depicted with barycentric coordinates in
Fig. 2. Closer to the top are the hypotheses with high ignorance. Neutral opinions are on
the median from the top. On the right part are positive opinions, and on the left part are
the negative ones. By pressing on each of the opinion point, ARGSENSE provides details
on that hypothesis or set of hypotheses.

No. of hypotheses cc = 1,793
Positive hypotheses Pcc = 943
Negative hypotheses N cc = 453
Neutral hypotheses Ecc = 397
Positive arguments A+

cc = 6,662
Counter arguments A−

cc = 4,991
Acceptance prone acc = 0.67
Ignorance interval i ∈ [0.04..0.66]
Belief interval b ∈ [0.14..0.93]
Disbelief interval d ∈ [0..0.72]

Fig. 2. Depicting 1,793 hypotheses in the climate change corpus with barycentric coordi-
nates. Each point depicts the set of hypotheses with the same coordinates. For instance,
the opinion point w = 〈0.25, 0.25, 0.5, a0〉 corresponds to 145 neutral hypotheses.

Figure 2 also shows that no vacuous opinions exist in our climate change corpus. The
highest degree of ignorance is 0.66, given by hypotheses with only one argument. Still,
there are 194 opinions with this high degree of ignorance, representing 11% from the to-
tal of 1793 hypotheses. Among them, 88% are pure positive and 12% are purely negative.
With 35 positive arguments and 25 counter arguments, the hypothesis with the smallest
degree of ignorance is ”Global warming is a natural cycle”. Note that the second hy-
pothesis with the smallest ignorance is ”Mankind is the main cause of global warming”,
which claims the opposite of h0. There are 57 purely negative opinions, with the highest
disbelief assigned to ”Is there a climate change conspiracy behind global warming and

Climate Change Opinions in online Debates 107

global cooling theories?” (5 negative arguments and 0 positive). Instead, there are 396
purely positive opinions. The purely positive opinion with the highest degree of belief
is ”The Kyoto protocol would harm the American economy”. With 22 supporting argu-
ments and 0 against, it has a belief of 0.91. The percentage of pure opinions (25%) is
quite high. No equidistant opinion exists in the corpus. There are 22% neutral opinions.
Most of them are supported by one argument and attacked by one argument. There are
53% positive opinions and 25% negative opinions.

Table 2. Answering to Q2: Which hypotheses are most believed/disbelieved or popu-
lar/unpopular in a community?

Most believed hypothesis eh nh bh dh ih
The Kyoto protocol would harm the American economy. 22 0 0.94 0 0.06
Colonizing the Moon is critical for human survival. 18 0 0.92 0 0.08
Solar shading is a just response to irreversible global warming. 18 0 0.92 0 0.08

Most disbelieved hypothesis eh nh bh dh ih
People can relax. Global warming is a sham. 3 13 0.17 0.74 0.09
Is cap-and-trade better at reducing emissions? 3 13 0.17 0.74 0.09
Are oil sands bad for climate change? 3 10 0.21 0.69 0.1
Is injecting sulphur dioxide into the atmosphere a good idea? 3 8 0.24 0.64 0.12

Most popular hypothesis eh nh bh dh ih
Global warming is a natural cycle. 35 25 0.57 0.41 0.02
Mankind is the main cause of global warming. 28 26 0.5 0.47 0.03
Should we actually have a purge? 19 18 0.49 0.47 0.04
Manmade global climate change is real and a threat. 16 18 0.45 0.51 0.04

Most unpopular hypothesis eh nh bh dh ih
Global warming causes earthquakes. 1 0 0.4 0 0.6
The sun causes global warming. 1 0 0.4 0 0.6
All natural disasters are related to global warming. 1 0 0.4 0 0.6

By ranking the topics based on belief, disbelief, and popularity, ARGSENSE supports
Q2 as depicted in Table 2. Note that the most believed hypotheses are all pure opinions,
given by no counter arguments for them (dh = 0). Differently, none of the four most
disbelieved topics is pure, given by the existence of pro arguments for them (bh > 0.17).
With 35 pro and 25 con arguments, the most popular topic has an ignorance of 0.02. Note
that the first two most popular hypotheses belong to the same topic - real cause of global
warming - but they claim opposite statements. From the ignorance value perspective, this
result is consistent with the interpretation that the cause of global warming has been the
most interesting topic for the arguers. From the psychological perspective, the result might
indicate that the way in which the topic of the debate is formulated does influence the
output of the debate: in both cases people seem to rather support the claim in the topic. The
”natural cycle” hypothesis h is supported with a belief of bh = 0.57, while the ”human
cause” hypothesis g is also supported with bg = 0.5, even if g claims the opposite thing
as h. One might expect that believing in h means a disbelief in g or a belief in g would

108 Adrian Groza et al.

be consistent with a disbelief in h. Given the nature of each debate, various factors may
contribute to the above belief inconsistency at the community level.

From the opposite perspective, bottom part of Table 2 presents the hypotheses that
people seem not to be interested in. There are 409 debates with only one positive argument
and no attacking argument. Comparing the results of the most popular with the most
ignored topics indicates that popular hypotheses are more general. Hidden variables, like
time of issuing the debate, might be a cause of this lack of interest4.

6.2. Consolidating opinions across hypotheses

The language model of climate change corpus was obtained by training the Biutee with
on the cc corpus with 6,662 entailment pairs and 4,991 non-entailment. The entailment
pairs correspond to pairs of hypotheses with supporting arguments, while non-entailment
correspond to pairs of hypotheses with attacking arguments. We used the max entropy
classification algorithm to generate the language model. WordNet [22] and VerbOcean [8]
were used as external knowledge resources. From Wordnet, the following relations were
considered during the search process for a useful transformation: synonym, derivation-
ally related, hypernym, instance hypernym, member holonym, part holonym, substance
meronym, entailment. Only the first sense was used for a depth limit of 2 in the Wordnet
taxonomy.

We illustrate one entailment proof computed with the Biutee method. The proof lists
the transformations applied on the parse tree of the hypothesis h1 (see Table 3). Knowl-
edge from Wordnet and VerbOcean was used, but also the learned model from the training
examples. The resulted sentence Climate change can affect animals is compared with the
hypothesis h2, and the entailment label is applied. Note that the confidence for this deci-
sion is 0.61. On the entire corpus we have a confidence of 0.65. This value is similar to
cases in which texts are manually labeled by two human annotators. For instance, Kwon
et al. have reported an inter-annotator agreement of 0.62 [16].

Having entailment/non-etailment relations computed for the debate topics, we can
now apply our consolidation method to aggregate arguments of similar topics, as exem-
plified in the next subsection. To illustrate the consolidation method in case of entail-
ment consider the pair of hypotheses h=“Mankind is the main cause of global warm-
ing“ and g=”Global warming is real”. h non-explicitly assumes that global warming
is real and questions only its cause. Note that the assumption of h is the claim in g.
Therefore we consider h entails g. In our corpus, we found that h is supported by 28
arguments and attacked by 26, while g is supported by 4 arguments and attacked by 4.
That is bh = 0.5 and bg = 0.46. Because h ent−−→ g and bh > bg , the consistency
property of belief does not hold for h and g. Instead, after applying the consolidation
method in case of entailment, the consolidated belief becomes consistent and also the ig-
norance decreases. Based on equations (10) and (11), êg = eh + eg = 28 + 4 = 32 and
n̂h = nh + ng = 26 + 4 = 30, while êh = eh = 28 and n̂g = ng = 4. The consolidated
opinion for h is ω̂cch = 〈0.47, 0.5, 0.03, 0.67〉 and for g is ω̂ccg = 〈0.85, 0.11, 0.04, 0.67〉.
As the consolidated belief b̂h < b̂g , the belief consistency property holds between the
entailing hypothesis h and g.

4 For instance, the Marrakesh Climate Change Conference - November 2016 has not managed to trigger many
debates, as all the debates site were invaded by debates related to the USA elections.

Climate Change Opinions in online Debates 109

Table 3. Proof of entailment between two debate topics h1 and h2.

h1: Climate-induced changes are likely to cause a series of cascading effects involving
many species of plants and animals.

h2 : Animals can be affected by climate changes.
Proof: Entailment, score = 0.6172
Substitute: ”climate-induced”(JJ) to: ”climate”(NN) (Multi-Word, remove words)
Substitute: ”involve”(VBG) to: ”affect”(VERB) with confidence:0.5 (Verb ocean)
Substitute: ”animal”(NNS) to: ”animals”(NNS)
Syntactic extraction rule: ”Relative Clause - Extract reduced relative clause to independent sentence”
The part-of-sentence (bag of words) is: ”affect effects ”
Insert <(5) ”by”, IN, prep> under <(12) ”affect”, VERB>(”by” costs -5.4143)
Insert <(2) ”can”, MD, aux> under <(12) ”affect”, VERB>(”can” costs -7.5089)
Existing-Word-Insert <(7) ”change”, NNS, pobj> under <(5) ”by”, IN> (”change” costs -8.2133)
Existing-Word-Insert <(6) ”climate”, NN, nn> under <(7) ”change”, NNS> (”climate” costs -10.7516)
Syntactic substitution rule: ”Coordination - Delete a verbal nominal or adjectival conjunct”
The part-of-sentence (bag of words) is: ”and Animals plants ”
Syntactic substitution rule: ”Possessive - Substitute an ”of-construction” with a nn modifier”
The part-of-sentence (bag of words) is: ”Animals of species”
Move node <(18) ”animals”> to <(12) ”affect”> with relation ’nsubjpass’(costs -3.00, change context)
Climate changes are likely to cause a series of cascading effects involving many species of plants and animals.
Climate changes are likely to cause a series of cascading effects affecting many species of plants and animals.
Climate changes are likely to cause a series of cascading effects affecting many species of plants and animal.
Climate change can by affecting many species of plants and animals.
Climate change can affecting many species of animals.
Climate change can affect animals.

To illustrate the sub-additive property of consolidated belief, consider the contra-
dictory hypothesis h=“Mankind is the main cause of global warming.“ and k=”Global
warming is a natural cycle”. Semantically, h is opposite of k. In the climate change cor-
pus, the non-additive property does not hold for h and k (bh = 0.5, bk = 0.57). Instead,
after applying the accrual of arguments in case of the contradictory relation, the belief be-
comes consistent and also the ignorance decreases. Based on equations (8) and (9), êh =
n̂k = eh+nk = 28+25 = 53 and n̂h = êg = nh+ek = 26+35 = 61. the consolidated
opinion for h is ω̂cch = 〈0.46, 0.53, 0.01, 0.67〉 and for g is ω̂ccg = 〈0.53, 0.47, 0.01, 0.67〉.
As for the consolidated belief b̂h + b̂g = 0.46 + 0.53 = 0.99 < 1, then the belief consis-
tency property holds.

Opinion consolidation was used here as a general method for enriching the set of
arguments for a given hypothesis, thus diminishing its ignorance.

7. Argumentative-text characteristics

Argumentative text characteristics are used by social scientists, policymakers or science
communicators to better understand the communities of arguers and to design effective
ways to communicate science or policies to target audience. ARGSENSE is able to anal-
yse differences between linguistic patterns used in pro and counter arguments, to assess
the correlation between the popularity of a debate with how the debate topic was posted,
or to compute the readability of pro and counter arguments. We exemplify the lexical
analysis of ARGSENSE by answering questions Q3 to Q7 on the climate change corpus.

110 Adrian Groza et al.

Q3: Do the pro arguments have a different lexicon than the counter arguments? Dif-
ferent lexicon might be an indicator to the social scientist that one party of the debate is
sensible to different aspects as the other party.

To detect possible differences, we searched for the most frequent words in pro and
cons arguments. For instance, if we denote by f+20 and f−20 the sets of the 20 most frequent
words in the set of pros and cons, we obtained f+20\f

−
20 = {emissions, greenhouse, water}

and f−20 \ f
+
20 = {ice, increase, opponent}. These results suggest that proponents of

climate change are concerned with emissions and greenhouse, while the opponents rise
arguments related to ice. Interestingly, the ice related counter-argument is a common mis-
conception related to climate change [11]. ARGSENSE was able to signal that this mis-
conception is also spread over the debate sites.

Q4: When does a debate get more pros than cons, when formulated as a statement or
as a question? We are interested whether posting a hypothesis in affirmative or interroga-
tive form could modify its chances to accumulate more arguments on one side or another.
In the climate change corpus, 382 affirmative hypotheses received more pro arguments
and 83 of them got more counter arguments. For interrogative topics, 561 got more pros
and 370 more counter arguments. Fisher’s exact test indicates a very strong statistical cor-
relation (p < 0.0001) between the type of hypothesis and its chances to get more positive
than negative arguments. The odds ratio value for the given example is 3.04, showing that
the chances to have a winner are more than three times higher when the sentence is in
affirmative than in interrogative.

Q5: Which is the readability of the arguments conveyed in a debate? This provides an
insight on the writing and reading comprehension skills of a community of arguers. An
expert in science communication uses such readability indexes to adapt its arguments to
the target audience. The science communicator should balance between simplifying the
text and retaining technical details.

ARGSENSE is able to compare pro and counter arguments based on six readabil-
ity indexes (Table 4). Coleman Liau and Automated Readability indexes rely on counting
characters, words and sentences. The other indexes consider number of syllables and com-
plex words. For more about readability formulas the reader is referred to [33]. No matter
the readability index, the values for the positive and negative arguments are extremely
similar. That is, no side uses more complex words than the other. The science communi-
cator has to design ways to convey scientific results with the same readability indexes as
the target audience or community or arguers [5].

Table 4. Readability indexes for pro (A+
cc) and against (A−cc) arguments.

Readability
index

Flesch Kincaid
Reading Ease

Flesch Kincaid
Grade Level

Gunning
Fog Score

SMOG Coleman
Liau

Automated
Readability

A+
cc 58.40 8.73 11.21 8.73 11.80 8.01
A−
cc 59.77 8.58 11.17 8.62 11.45 7.77

Q6: Is there a correlation between the length of a hypothesis and the number of its
arguments? We investigated whether heuristics like “the shorter the hypotheses, the more
arguments” can be used by a debater to decide how to formulate the debate topic. The
average number of words in Hdbp is 8.67. The correlation between the length of the hy-

Climate Change Opinions in online Debates 111

pothesis and the ignorance on it is -0,01. Similarly, the average number of words inHdeb
is 9.67. The correlation between the length of the hypothesis and the ignorance on it is
0.12. Based on these two low values, we can conclude that for both communities deb and
dbp, the length of the hypothesis does not influence the number of arguments.

Q7: Does a query trigger more interest than a statement? We analysed if a debate
topic posted as Will the planet adapt to global warming? will attract more arguments than
the version The planet will adapt to global warming. We evaluated the ignorance level
for each hypothesis in the affirmative and interrogative form. Fig. 3 gives the cumulated
percentages of hypotheses in affirmative and interrogative format for a given ignorance
threshold. For example, if we specify an ignorance threshold 0.1, there are 12.75% of
interrogative hypotheses, but only 7.40% of affirmative hypotheses. The percentage of
interrogative hypotheses is always higher than its affirmative counterpart, which makes
us believe interrogative hypotheses have higher chances to get more intense discussion.

Fig. 3. Interrogative hypotheses attract more arguments than claiming hypotheses.

To summarise, the findings of lexical analyses related to questions Q3 to Q7 are: 1)
proponents of climate change are more interested in: emissions, greenhouse and water,
while the opponents convey more counter-arguments regarding ice; 2) affirmative hy-
potheses have three times higher chances to win compared to interrogative hypotheses
(p < 0.0001); 3) pros and cons have the same readability values; 4) the length of the
hypothesis does not influence the number of arguments for it; 5) interrogative hypotheses
have higher chances to attract more arguments than in affirmative form.

8. Conclusions

We analysed arguments conveyed in public arena related to climate change. The four
contributions of this research are: 1) the argumentative climate change corpus, 2) the

112 Adrian Groza et al.

ARGSENSE social software for understanding public opinion on climate change, 3) the
computational methods for aggregating and consolidating arguments, and 4) the lexical
analysis of climate change arguments.

First, the climate change corpus is, to our knowledge, the largest corpus of labeled
arguments on climate change.

Second, ARGSENSE makes sense of a set of arguments on climate change and ag-
gregates them into usable results for policy making and climate science communication.
ARGSENSE employs a voting method based on Subjective Logic to rank the debate top-
ics according to their belief, disbelief or popularity within a community of arguers. Thus,
ARGSENSE is in line with the recent trend to support scientific discovery [25] and to
enhance the climate science cyber-infrastructure from useful to usable decision support
tools [3].

Third, social sciences need to extend their instruments to be able to measure world-
view on debate issues. Our method enhances the capabilities of social science to measure
public support, disagreement or ignorance. It employs textual entailment to find similarity,
contradiction or entailment between natural language arguments.

Fourth, we investigated in which way those interested in promoting public engage-
ment need to pay attention towards linguistic aspects of communicating climate science.
Our lexical analysis performed on arguments conveyed by people found that: 1) conveyors
of pro arguments are interested in: emissions, greenhouse and water, while conveyors of
con arguments in ice; 2) sequences in positive arguments do not overlap with sequences
in negative arguments; 3) affirmative hypothesis have three times higher chances to win
compared to interrogative hypotheses (p < 0.0001); 4) both pros and cons have the same
readability; 5) no influence has been found between the length of the hypothesis and the
number of arguments for it; 6) interrogative hypotheses have higher chances to attract
more arguments than in affirmative form. Such lexical findings can be used by stakehold-
ers to figure out how to communicate their point of view more effectively to the public.

One limitation of our approach regards the difficulty accurately assess the semantic
similarity between topics. Even if the confidence in computing this semantic similarity is
in the same range with the confidence of human annotators, it remains quite low: 0.65.
This value is an average computed on the entire corpus. To tackle this limitation, one
could explore the following two main directions. One direction is to apply the opinion
consolidation method only to pairs of hypotheses for which the entailment/nonentailment
is computed with high confidence. Another direction is to fine tune the parameters of
the Biutee method related to: i) learning algorithm, ii) search process, or iii) external
knowledge bases. We envisage the following possibilities. First, there are parameters of
the learning algorithm used to build the language model. We run experiments only the max
entropy classification algorithm. Second, there are parameters of the search step used to
build the proof for entailment or nonentailment. We used all relations from the Wordnet
and a depth limit of 2 in the Wordnet taxonomy. Third, one can add domain specific
knowledge bases. That is, instead of relying only on general lexical resources (Wordnet,
VerbOcean, Wikipedia) one can convert domain ontologies (for climate change in our
case) to a rule-based format required by the Biutee method.

Another research line to be pursued is detecting repetitive arguments, either in verba-
tim copies or in semantically equivalent rephrasing. Here, we considered only the number
of arguments and semantic similarity between topics. To overcome this, multiple dimen-

Climate Change Opinions in online Debates 113

sions can be considered, like argument provenance or time of issue. Such direction can
be integrated into the larger context of research on fake arguments, collusion of argument
proponents, or on how arguments propagate in public arena or in specific communities.

Acknowledgments. This work was funded by the EEA and the Norwegian Financial Mechanisms
2009-2014 under the contract 73264/02.09.2016 ”Increasing understanding on climate change through
public discourse analyse and stakeholders modeling” between Norwegian University of Science and
Technology, Trondheim, Norway and Technical University of Cluj-Napoca, Romania.

References

1. Facilitating climate change adaptation through communication: Insights from the development
of a visualization tool. Energy Research & Social Science 10, 57 – 61 (2015)

2. Batanović, V., Bojić, D.: Using part-of-speech tags as deep-syntax indicators in determining
short-text semantic similarity. Computer Science and Information Systems 12(1), 1–31 (2015)

3. Biehl, L.L., Zhao, L., Song, C.X., Panza, C.G.: Cyberinfrastructure for the collaborative devel-
opment of u2u decision support tools. Climate Risk Management 15, 90–108 (2017)

4. Boussalis, C., Coan, T.G.: Text-mining the signals of climate change doubt. Global Environ-
mental Change 36, 89–100 (2016)

5. de Bruin, W.B., Morgan, M.G.: Reflections on an interdisciplinary collaboration to inform
public understanding of climate change, mitigation, and impacts. Proceedings of the National
Academy of Sciences p. 201803726 (2019)

6. Chalaguine, L.A., Schulz, C.: Assessing convincingness of arguments in online debates with
limited number of features. In: Proceedings of the SR Workshop at the 15th Conference of the
European Chapter of the Association for Computational Linguistics. pp. 75–83 (2017)

7. Chaniotakis, E., Antoniou, C., Pereira, F.: Mapping social media for transportation studies.
IEEE Intelligent Systems 31(6), 64–70 (2016)

8. Chklovski, T., Pantel, P.: Verbocean: Mining the web for fine-grained semantic verb relations.
In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing
(2004)

9. Groza, A., Ozturk, P., Slavescu, R.R., Marginean, A., Prasath, R.: Analysing climate change
arguments using subjective logic. In: 2018 IEEE 14th International Conference on Intelligent
Computer Communication and Processing (ICCP). pp. 37–44. IEEE (2018)

10. Ha-Duong, M.: Hierarchical fusion of expert opinions in the transferable belief model, appli-
cation to climate sensitivity. International Journal of Approximate Reasoning 49(3), 555 – 574
(2008)

11. Hamilton, L.C.: Did the arctic ice recover? demographics of true and false climate facts.
Weather, Climate, and Society 4(4), 236–249 (2012)

12. Huang, Y., Huang, G., Hu, Z., Maqsood, I., Chakma, A.: Development of an expert system for
tackling the public’s perception to climate-change impacts on petroleum industry. Expert Sys-
tems with Applications 29(4), 817 – 829 (2005), http://www.sciencedirect.com/
science/article/pii/S0957417405001077

13. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 9(03), 279–311 (2001)

14. Kirilenko, A.P., Stepchenkova, S.O.: Public microblogging on climate change: One year of
twitter worldwide. Global Environmental Change 26, 171–182 (2014)

15. Kraemer, H.C.: Kappa coefficient. Wiley StatsRef: Statistics Reference Online (1982)
16. Kwon, N., Zhou, L., Hovy, E., Shulman, S.W.: Identifying and classifying subjective claims.

In: Proceedings of the 8th Int. Conf. on Digital government research: bridging disciplines &
domains. pp. 76–81. Digital Government Society of North America (2007)

http://www.sciencedirect.com/science/article/pii/S0957417405001077
http://www.sciencedirect.com/science/article/pii/S0957417405001077

114 Adrian Groza et al.

17. Letia, I.A., Groza, A.: Arguing with Justifications between Collaborating Agents, pp. 102–116.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/
978-3-642-33152-7_7

18. Lioma, C., Larsen, B., Schütze, H., Ingwersen, P.: A subjective logic formalisation of the prin-
ciple of polyrepresentation for information needs. In: Proceedings of the third symposium on
Information interaction in context. pp. 125–134. ACM (2010)

19. Magnini, B., Zanoli, R., Dagan, I., Eichler, K., Neumann, G., Noh, T.G., Pado, S., Stern, A.,
Levy, O.: The excitement open platform for textual inferences. In: Association for Computa-
tional Linguistics (System Demonstrations). pp. 43–48 (2014)

20. Mamauag, S.S., Alino, P.M., Martinez, R.J.S., Muallil, R.N., Doctor, M.V.A., Dizon, E.C.,
Geronimo, R.C., Panga, F.M., Cabral, R.B.: A framework for vulnerability assessment of
coastal fisheries ecosystems to climate change - tool for understanding resilience of fisheries
(VA-TURF). Fisheries Research 147, 381 – 393 (2013), //www.sciencedirect.com/
science/article/pii/S0165783613001719

21. Mayer, L.A., Loa, K., Cwik, B., Tuana, N., Keller, K., Gonnerman, C., Parker, A.M., Lem-
pert, R.J.: Understanding scientists’ computational modeling decisions about climate risk man-
agement strategies using values-informed mental models. Global Environmental Change 42,
107 – 116 (2017), http://www.sciencedirect.com/science/article/pii/
S0959378016306197

22. Miller, G.: WordNet: An electronic lexical database. MIT press (1998)
23. Mohammad, S.M., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: A dataset for detecting

stance in tweets. In: Proceedings of 10th edition of the the Language Resources and Evaluation
Conference (LREC), Portoroz, Slovenia (2016)

24. Padó, S., Noh, T.G., Stern, A., Wang, R., Zanoli, R.: Design and realization of a modular
architecture for textual entailment. Natural Language Engineering 21(02), 167–200 (2015)

25. Pankratius, V., Li, J., Gowanlock, M., Blair, D.M., Rude, C., Herring, T., Lind, F., Erickson, P.J.,
Lonsdale, C.: Computer-aided discovery: Toward scientific insight generation with machine
support. IEEE Intelligent Systems 31(4), 3–10 (July 2016)

26. Pührer, J.: Argueapply: A mobile app for argumentation. In: International Conference on Logic
Programming and Nonmonotonic Reasoning. pp. 250–262. Springer (2017)

27. Qin, X.S., Huang, G.H., Chakma, A., Nie, X., Lin, Q.: A MCDM-based expert system for
climate-change impact assessment and adaptation planning–a case study for the Georgia Basin,
Canada. Expert Systems with Applications 34(3), 2164–2179 (2008)

28. Stern, A., Dagan, I.: The BIUTEE research platform for transformation-based textual entail-
ment recognition. LiLT (Linguistic Issues in Language Technology) 9 (2014)

29. Stern, A., Stern, R., Dagan, I., Felner, A.: Efficient search for transformation-based inference.
In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Long Papers-Volume 1. pp. 283–291. Association for Computational Linguistics (2012)

30. Svrcek, M., Kompan, M., Bielikova, M.: Towards understandable personalized recommenda-
tions: Hybrid explanations. Computer Science and Information Systems 16(1), 179–203 (2019)

31. Walton, D., Reed, C., Macagno, F.: Argumentation schemes. Cambridge Univ. Press (2008)
32. Washington, H.: Climate change denial: Heads in the sand. Routledge (2013)
33. Weiss, K.D., Vargas, C.R., Ho, O.A., Chuang, D.J., Weiss, J., Lee, B.T.: Readability analysis

of online resources related to lung cancer. Journal of Surgical Research 206(1), 90–97 (2016)
34. Zhang, H., Alim, M.A., Li, X., Thai, M.T., Nguyen, H.T.: Misinformation in online social

networks: Detect them all with a limited budget. ACM Trans. Inf. Syst. 34(3), 18:1–18:24 (Apr
2016), http://doi.acm.org/10.1145/2885494

Adrian Groza is assoc prof. at the Dept. of Computer Science at Technical University of
Cluj-Napoca, Romania. His current research regards knowledge representation, argumen-
tative agents, explainable AI.

http://dx.doi.org/10.1007/978-3-642-33152-7_7
http://dx.doi.org/10.1007/978-3-642-33152-7_7
//www.sciencedirect.com/science/article/pii/S0165783613001719
//www.sciencedirect.com/science/article/pii/S0165783613001719
http://www.sciencedirect.com/science/article/pii/S0959378016306197
http://www.sciencedirect.com/science/article/pii/S0959378016306197
http://doi.acm.org/10.1145/2885494

Climate Change Opinions in online Debates 115

Pinar Ozturk is assoc. prof. at the Dept. of Computer and Information Science at Nor-
wegian University of Science and Technology (NTNU). Before joining NTNU, Ozturk
was a senior research scientist at SINTEF. Ozturk’s research area is artificial intelligence
methods for decision making.

Radu Razvan Slavescu got his PhD from the Technical University of Cluj-Napoca, Ro-
mania with a thesis focused on trust modeling and its application in multiagent systems.
Now, Radu is with the Intelligent Systems group at the Computer Science Department of
the same University. His domains of interest include Artificial Intelligence, Multiagent
Systems and trust modeling, and Natural Language Processing, in which he has authored
40+ papers.

Anca Marginean got her PhD fromthe Techical University of Cluj-Napoca, Romania in
2013. Her interests regard natural language processing and Semantic Web.

Received: October 11, 2018; Accepted: September 17, 2019.

Computer Science and Information Systems17(1):117–139 https://doi.org/10.2298/CSIS181118018P

Architecting Business Process Maps

Geert Poels1, Félix García2, Francisco Ruiz2, and Mario Piattini2

1 Faculty of Economics and Business Administration,

Ghent University, Belgium

geert.poels@UGent.be
2 Institute of Information Technology and Systems

University of Castilla-La Mancha, Spain

{felix.garcia, francisco.ruizg, mario.piattini}@uclm.es

Abstract. Process maps provide a high-level overview of an organization’s

business processes. While used for many years in different shapes and forms, there

is little shared understanding of the concept and its relationship to business

process architecture. In this paper, we position the concept of process map within

the domain of architecture description. By ‘architecting’ the concept of business

process map, we identify and clarify diverging views of this concept as found in

the literature and set requirements for describing process maps. A meta-model for

a process mapping language is produced as a result. The proposed meta-model

allows investigating the suitability of EA modelling languages as a basis for

defining a domain-specific language for process mapping along with the creation

of a better understanding of business process architecture in relation to enterprise

architecture, which can be beneficial for both BPM and EA professionals.

Keywords: Process map, Business process architecture, Enterprise architecture,

Architecture description, Domain-specific modelling.

1. Introduction

Recently, business process architecture design has received attention in Business

Process Management (BPM) research [1]. Business process architecture is commonly

defined as the organised overview of the processes that exist within an organisation,

including their relationships [2]. As the output of the BPM lifecycle process

identification phase during which the organisation’s business processes are designated

and prioritised, the business process architecture provides the basis to single out the

processes that will be subjected to further BPM lifecycle activities. Like modelling

individual processes is a starting point for any BPM effort [2], modelling the

architecture of an organisation’s collection of business processes is required for any

analysis, design or improvement effort that transcends the level of individual processes

(e.g., multi-process analysis [3]). Process architecture has further been positioned as an

important instrument for managing large collections of process models in organisations

that have already invested heavily in BPM [4]. Process architecture is also essential for

process portfolio management [5] and improvement initiatives that concern multiple

processes like process standardisation efforts and the identification of shared services

[6]. Research in Goal-Oriented Requirements Engineering (GORE) has resulted in a few

118 Geert Poels et al.

methods for (re)designing business process architecture in alignment with business

goals [7-9], though most GORE research on business processes relates to goal alignment

or goal-driven design of individual business processes rather than entire process

architectures [10]. In Enterprise Architecture (EA), the business process architecture is

considered an integral component of the business layer of an organisation’s enterprise

architecture, where processes are managed as assets that are vital to the organisation’s

operations [11, 12]. Meanwhile, different kinds of models have been proposed for

representing specific views on an organisation’s business process architecture, like

business process co-operation models [13], process chain models [14], process

landscape models [2] and process maps [6]. In particular, the concept of process map as

a holistic and abstract representation of an organisation’s business processes, has only

recently been investigated [15], while being in use for many years in different shapes

and forms. In practice, there is little shared understanding of the concept, related to its

contents, form, purpose, and relationship to business process architecture. According to

[16], the current variety in process maps that can be observed might be due to the lack

of modelling language dedicated to expressing process maps. The need for designing

such language, preferably building upon a general-purpose modelling language, has

been expressed by many researchers [1, 17, 18].

Although the modelling of business processes, their interrelationships, and their

linkages with strategic, operational, informational or infrastructural business and

information technology elements is part of several enterprise modelling approaches

(e.g., EKD [19], ARIS [20], TBIM [21], MEMO [22], 4EM [23], PGA [24]), these types

of models have not been positioned as general solution for articulating process maps as

they are part of and make sense in the context of a specific enterprise modelling

approach. Some researchers have proposed requirements for a general-purpose process

mapping language [6, 18], while Malinova and Mendling [15] have proposed a meta-

model for process maps that sets requirements for a process map representation

language. Malinova and Mendling [15] further showed that BPMN is not ontologically

expressive enough for meeting these requirements, and therefore a process mapping

language needs to be designed. Apart from not having a process mapping language,

there is lack of clarity in the conceptualisation of the process map in relation to business

process architecture. Specifically, in the literature there are substantial differences in

conceptualization of business process architecture, process map and their mutual

relation. Further, only few works on modelling business process architecture hint at

positioning an organization’s business process architecture within the broader enterprise

architecture, though without elaborating the idea.

The goal of the research presented in this paper is to provide a conceptualization of

process maps in the context of enterprise architecture by considering a process mapping

language as an architecture description language. As a result, we conceptualize the

process map as an enterprise architecture artefact and propose a meta-model for a

business process architecture description language that can be used to represent process

maps. By ‘architecting’ the concepts of business process architecture and process map

we clarify diverging views of these concepts as found in the literature and set

requirements for describing process maps. An integration of the current BPM research

on process maps with EA thinking could lead to advancement in the field and increased

knowledge sharing, and opens up new possibilities for research on the boundaries of

BPM and EA [25]. It could also facilitate the harmonized use of general-purpose

modelling languages from both fields (e.g., BPMN and ArchiMate).

Architecting Business Process Maps 119

The remainder of this paper is structured as follows: Section 2 presents the research

methodology. Section 3 presents the background of the research, i.e., the ISO/IEC/IEEE

42010 standard for architecture description, and the related work. Section 4 describes

the design of the meta-model based on our conceptualization using the defined

requirements as design principles. Section 5 empirically evaluates the meta-model by

instantiating it for known classifications of business process architecture descriptions

and elaborate examples of process maps found in the literature. The meta-model is also

formally evaluated by verifying general requirements for defining domain-specific

languages. Finally, Section 6 presents the conclusion and future work.

2. Research Methodology

The development of a new enterprise modelling solution encompassing amongst others

a language defined by a meta-model (i.e., abstract syntax and semantics of modelling

constructs), a modelling notation (i.e., concrete syntax and notational conventions), and

modelling guidelines and tool support (i.e., pragmatics of using the language and

notation) – for a full set of requirements see e.g., [22] – can be undertaken as Design

Science Research [26]. As several researchers have already noted the lack of a universal

process mapping language and have motivated the need for its design, we engaged in an

objective-centred initiation of a Design Science Research (DSR) project (Figure 1) [27],

where the first research activity is the definition of the objectives of a solution for the

identified problem. In this paper, we instantiate these solution objectives as a meta-

model for a business process architecture description language that can be used to

represent process maps, consisting of modelling constructs, their relationships and

constraints – leaving other language requirements (e.g., notational, tool support) outside

the scope of the current paper. Following [28], the design of a new meta-model initiates

a new research cycle embedded in the overall DSR project.

Fig. 1. Design Science Research process [27]

In this embedded DSR project, the following research steps were taken:

(1) Literature review of research on process maps and modelling of business process

architecture. Research presenting requirements for process mapping, informal solutions,

120 Geert Poels et al.

and reviews of design approaches for business process architecture was analysed. The

result was an inference of different perspectives on process maps in relation to business

process architecture, indicating a lack of ‘architectural point of view’, which motivated

our research (i.e., identify problem and motivate in Figure 1) (Section 3).

(2) Analysis of the reviewed process map and business process architecture concepts

from an architectural point of view, using the ISO/IEC/IEEE 42010 software and

systems engineering international standard for architecture description [29] as

conceptual frame of reference. This standard provides a core ontology (i.e., ‘theory’ in

Figure 1) for the description of architectures, that we used as a conceptual reference

framework for clarifying the relationship between the business process architecture and

process map concepts. Contextualising these concepts according to this architecture

description standard clarifies their mutual relationship, reveals the diversity that is

present in the inferred perspectives from the literature, and guides proper choices

regarding assumptions and requirements for business process architecture description

(i.e., define objectives for a solution in Figure 1) (Section 3).

(3) Guided by the developed contextualization within architecture description, we

first recovered a conceptualization of process map as business process architecture

model [30]. We critically assess existing proposals of process map conceptualizations,

along with proposed requirements for a process mapping language and informal

solutions that have been used in the absence of a standard process mapping language.

We then developed a new meta-model for business process architecture description that

can be used to guide the development of a general representation language for process

maps (i.e., design and development in Figure 1) (Section 4).

(4) To demonstrate the meta-model’s ability to guide the design of a universal

representation language for process maps, we instantiated it to represent a wide array of

process maps and other business process architecture descriptions found in the literature

which are currently only informally described or represented using different notations

(i.e., demonstration in Figure 1) (Sub-Sections 5.1, 5.2, and 5.3).

(5) To evaluate the meta-model, we analysed the meta-model instantiations used in

the demonstration for evaluating the meta-model’s ability to uniformly represent

different kinds of process map (Sub-Sections 5.1, 5.2, and 5.3). In practice, this was an

iterative process as representing those process maps allowed us to refine the design of

the meta-model until all process maps were valid instantiations of the meta-model.

Apart from that, we verified the satisfaction of core requirements for defining domain-

specific modelling languages, as identified in the literature [31] (i.e., evaluation in

Figure 1) (see Sub-Section 5.4).

(6) Presentation of the meta-model and its DSR research process (i.e., communication

in Figure 1) (i.e., the purpose of this paper).

Architecting Business Process Maps 121

3. Background

In this Section the background of the presented proposal is described and the related

work that we analysed to recover a conceptualization of process map consistent with

this background is presented. As conceptual reference framework for imposing an

architectural point of view on business process architecture and process maps as models

of business process architecture we used the ISO/IEC/IEEE 42010 software and systems

engineering international standard for architecture description [29]. This standard

presents a conceptual model of architecture description that can be applied to any kind

of architecture, including business process architecture. The standard also specifies

desired properties for architecture descriptions, which result in requirements for

architecture frameworks and architecture description languages such that desired

properties are exhibited by the architecture descriptions that are developed using these

frameworks and languages. The concepts and requirements provided by the standard

can be used to guide the design of a business process architecture description language,

which can be used to represent process maps. The mapping to business process

architecture description of the standard’s architecture description concepts is

summarized in Table 1.

Table 1. Process map and process mapping language in terms of business process architecture

description

ISO/IES/IEEE 42010

standard- architecture

description concept

Mapping to business process architecture description

System (Collection of) business processes

Environment Organization

Examples company, not-for-profit organization,

university, business unit of a company

Stakeholder Examples operational managers, process/domain

architects, CPO, business managers, enterprise architects

System Concern

(associates System and

Stakeholder)

Examples consistency and completeness, dependencies

between processes, responsibilities, performance,

strategic fit

Purpose (is a System

Concern)

Efficient organization of the work to be performed in the

organization

Architecture Business process architecture

Architecture Description Business process architecture description

Architecture Viewpoint Example E2E processes viewpoint

Architecture View Example E2E processes view

Model kind Example E2E processes model kind (e.g., meta-model)

Architecture Model Example E2E processes model (i.e., process map)

Architecture Framework Business process architecture framework

Architecture Description

Language

Business process architecture description language (i.e.,

process mapping language)

The standard also defines the concepts of architecture framework and architecture

description language (ADL) as mechanisms that can be used for creating and employing

122 Geert Poels et al.

architecture descriptions. TOGAF [32] for instance presents an architecture content

framework identifying business processes as an architectural artefact, but refers to

ArchiMate [13] as possible ADL to provide a notation for modelling business processes.

Regarding the definition of business process architecture, we noticed in the literature

two main perspectives:

1. The process architecture as the organization of the business processes in terms of

their boundaries, dependencies, priorities, criticality, strategic importance,

linkage with functional domains, etc. [1, 2]. In this perspective, the business

process architecture is used to select processes that will be subjected to analysis

and improvement actions (BPM) or to design or align the organization’s

system of business processes in relation with other organizational assets, goals

and strategies (EA, GORE).

2. The process architecture as the organized collection of business process models

and their relationships [4]. In this perspective, the business process architecture

is used to categorize and manage process models [33] and to maintain the

consistency between process models [18].

While these perspectives are not per se incompatible – the process architecture as a

guide to initiate BPM and once the BPM initiative is ongoing as an organized overview

of the resulting business process models – there are implications for the definition of the

process map. In the first perspective, the process map is a model of the business process

architecture, while in the second perspective it is part of the business process

architecture, which would in that case more appropriately be called the business process

models architecture. In the second perspective, the collection of business process

models is usually hierarchically structured into several layers of modelling abstraction,

resulting in a business process models decomposition tree, starting from the more

abstract process models at the top to the more concrete process models at the bottom.

While this decomposition can be organized in different ways, either or not ensuring

consistency between models at different abstraction levels [34], the process map is

typically seen as the entry-level model at the top of the hierarchy, providing a holistic

and abstract overview of all or the main processes and their relationships [33].

In the first perspective, the business process architecture can also be hierarchically

structured, but now according to increasing levels of granularity. In this context

granularity refers to what is being considered as the atomic element of a business

process architecture. In a flat (i.e., non-hierarchical) business process architecture, also

called process landscape [14], there is only one atomic element and that is the business

process. Business processes can be ordered, grouped, decomposed and specialized

(whatever type of relation is recognized; see Section 4), but all process steps, process

group members, sub-processes and process variants still qualify as business processes.

On the contrary, in a hierarchical business process architecture, the atomic element

considered at lower levels is more fine-grained than the atomic element considered at

higher levels. For instance, the process architecture discussed in [2] defines three levels

of granularity with respectively business processes, activities, and tasks as atomic

elements. Sometimes the top level of a proposed hierarchy has a more coarse-grained

atomic element than the business process. For instance, Van Nuffel and De Backer [18]

consider the main business process, representing a process family, as atomic element for

the top level, whereas the elementary business processes that are process variants in

these process families are only considered at the second level.

Architecting Business Process Maps 123

Regardless whether the process map is defined as a model of the business process

architecture (i.e., first perspective) or as entry-level model of the business process

models architecture (i.e., second perspective), other differences surface. These

differences emerge as a result of variations in the assumed structure of the business

process architecture. Whereas in a flat architecture the scope of the process map is the

entire process landscape [6], in a hierarchically structured business process architecture,

the scope is typically limited to the top level. For instance, in [18] the process map

describes the top level in a five-level process architecture and thus models the main

business processes of an organization. On the other hand, in [2] the process map is

positioned as a model of the second hierarchical level where it describes the main flow

of process activities. Some literature also recognizes that a process map may only

partially model the process architecture within its scope and is thus part of a view on the

architecture [4]. A process map as part of a view on the business process architecture is

an abstraction that serves some purpose. For instance, the requirements for process

maps specified in [6] define an abstraction that is useful for identifying sub-processes

that can be further investigated for being standardized. Few authors, however, explicate

the intended use of process maps.

In summary, the current proposals of desiderata for process mapping are hard to

compare and evaluate, unless an architecture viewpoint has been explicated. Purposes

listed in the literature can be very general (e.g., representation) or very specific (e.g.,

identifying functional similarities). We found only one paper (i.e., [18]) that explicitly

distinguishes process maps according to several different views, however, without

defining the corresponding viewpoints. In general, there is a lack of explicit definition

of viewpoints identifying stakeholders in the organization’s system of business

processes and the concerns of these stakeholders. Furthermore, it is clear that the

different proposals for process map representation make their own (and generally

implicit) assumptions about architectural viewpoints of the business process architecture

description, which along with differing assumptions about the nature and structure of

the business process architecture and its relation to the process map, result in lack of

consensus on the requirements for and design of a general-purpose process mapping

language.

4. Designing the Metamodel

Following [35] and [36] on the difference between ontology and meta-model, we move

with the meta-model beyond the conceptualization of process map within the business

process architecture description domain (i.e., ontology development), by supporting the

computerized representation of business process architecture models (i.e., domain-

specific modeling language development). Prior to the development of the metamodel a

conceptual analysis of process maps was conducted. Despite the absence of explicitly

defined business process architecture viewpoints in the related literature (see Section 3),

there is one proposal that is similar to the design of an ADL for business process

architecture description as it provides a model kind for process maps. The process map

meta-model of Malinova and Mendling [15] is to the best of our knowledge unique in its

kind. The proposed meta-model is positioned by its designers as a model of a process

map conceptualization rather than a formal meta-model defining a process mapping

124 Geert Poels et al.

language, which makes it a valuable starting point for our conceptual analysis. Its

embedding in BPM research results, however, in a number of assumptions related to the

use of process maps prior to BPM implementation (i.e., process identification) and

during BPM implementation (i.e., process model management). Referring to the

perspectives discussed in the previous Section, the meta-model conceptualizes the

process map as an entry-level model of a hierarchically structured business process

models architecture (i.e., the second perspective discussed in Section 3). We therefore

complement the conceptual analysis with other related work that positions the process

map as a model (i.e., abstraction) of the business process architecture (regardless what

view is abstracted). The goal is to arrive at an elaborate conceptualization that covers

not only the proposed meta-model but also other proposals even if only informally

described or just based on a set of requirements or example notation. As a result of the

conceptual analysis of process maps based on the reviewed literature, the following

requirements were formulated:

Req. 1: The business process is the atomic element of the process map.

Req. 2: It should be possible to show on a process map the enterprise architecture

elements that a business process (composite) is related to.

Req. 3: It should be possible to show on a process map composites of business

processes that result from the application of different types of process relations.

• (Req. 3a) Sequencing relations: The execution of business processes may be

ordered in time meaning that the execution of a first process is followed by the

execution of a second process. Such ordering relations typically indicate that

processes are steps in a process chain that serves a higher-level goal. For

instance, the requisition process and the purchasing process are steps of the

Purchase-to-Pay (P2P) end-to-end process where requisition is performed

before purchasing. Identifying ordering relations is important as changes

applied to a prior process may affect the design and execution of a subsequent

process.

• (Req. 3b) Decomposition relations: A business process can be a sub-process of

another business process, like the sales order data entry process that is a sub-

process of the sales order handling process. The steps of a process chain are

sub-processes of the process chain. Decomposition can also take the form of

shared aggregation. For instance, a customer data verification process can be a

sub-process of both a sales process and an after-sales service process.

Decomposing business processes into sub-processes relates processes

hierarchically which is important as BPM actions taken on sub-processes may

affect their superordinate processes.

• (Req. 3c) Grouping relations: Business processes can be related through joint

membership of a process group. From the moment business processes have

something in common, a process group can be defined. For instance, a credit

sales process and a cash sales process are members of the group of sales

processes. Both processes share the goal of selling products or services to

customers, but differ in the manner in which customers pay for their sales. In

principle, any property of processes can be used to form process groups.

Defining process groups allows abstracting from certain differences between

Architecting Business Process Maps 125

processes to see ‘the forest through the trees’, which can be important

especially for organizations with large numbers of business processes.

• (Req. 3d) Specialization relations: A business process can be a specialized

version of another business process, like the job student recruitment process

that specializes the personnel recruitment process. A business process and its

child processes form together a process family in which the child processes are

process variants and the parent process becomes a standard process for these

process variants. A process group, like the sales processes group, can be a

process family, but is not necessarily so as there might be no standard sales

process defined. Identifying specialization relations is important as changes

applied to a parent process may have consequences for the child processes.

Note that the implementation of specialization is not considered at the

abstraction level of the business process architecture. One approach for

instance is to define variation points in a standard process, which can be filled

differently for the process variants [37].

The solution to these requirements which guided the design of the process maps

metamodel can be summarized as follows (detailed explanations are included in [30]):

• We chose to restrict the use of process maps (as a business process architecture

model) to black-box modelling of organization’s business processes (Req. 1).

• We generalize existing proposals of including process-related elements in a

process map by means of an Enterprise Architecture Element that can be

instantiated in process maps according to needs (depending on business process

architecture viewpoint) (Req. 2).

• We recognize the need to represent in a flexible and extensible manner Business

Process Composites where business processes can be aggregated to higher-

level concepts reflecting different internal structures depending on the types of

relation between the processes in the composite (Req. 3).

Therefore, our metamodel design philosophy was driven by the conceptualization of the

process map as a business process abstraction that provides a black-box view on the

organization’s business processes, the search for maximal integration with EA

description assuring robustness and extensibility of the meta-model, and the recognition

of different kinds of business process composites. In addition, to cater for expressing

any business process architecture viewpoint, we need to allow maximum freedom for

instantiating the meta-model according to process mapping needs, thereby limiting the

number of constraints at the meta-model level. The result of our design is shown in

Figure 2 as a UML class diagram.

As it can be observed in Figure 2, the core concept of the meta-model is the Business

Process Architecture Element, which is shown as an abstract class. We prefer the term

business process architecture element to business process as a business process

architecture does not necessarily include all organizational business processes [18],

hence only the business processes and their composites that are part of the business

process architecture are represented in process maps. Also, according to the architecture

description standard, the system’s architecture is what is essential about the system

considered by the system stakeholders and their concerns. For instance, while

Rosemann and vom Brocke [38] include in their ‘enterprise process architecture’ all

processes of an organization, [2] include only those processes that have been identified

126 Geert Poels et al.

in the first phase of the BPM cycle [39]. As noted before, the process map

conceptualization by Malinova and Mendling [15] is strongly based on the process

landscape level of the three-level process architecture in [2], but then seen as entry-level

model to the business process models architecture. To allow for different business

process architecture viewpoints, we thus prefer the use of the term business process

architecture element. The abstract business process architecture element is either an

Elementary Business Process or a Business Process Composite. According to Req. 1, a

process map provides a black-box model of the elementary business processes in the

business process architecture, meaning that the internal structure and operation of the

elementary business processes is hidden [18]. An Elementary Business Process is thus

an atomic business process architecture element [15]. The concept of business process

composite is a new notion that we introduce because of Req. 3 and which is not present

in the reviewed literature. We obtain it by applying the composition pattern [40]. A

Business Process Composite can thus simply be defined as any business process

architecture element that is not an elementary business process. By applying the

composition pattern, a business process composite can be disaggregated into other

business process composites or elementary business processes. A business process

composite is thus a non-atomic business process architecture element. Even if non-

atomic, a process map may show a business process composite without showing its

parts. That is why there is no minimum cardinality constraint on the parts of a business

process composite. Through the composition pattern we include the decomposition

relation (Req. 3b) in the meta-model, in the form of unrestricted shared aggregation.

Business process architecture decomposition structures can extend over multiple levels.

The only constraint included in the meta-model is that elementary business processes

cannot be disaggregated (as this would violate Req. 1). When instantiating the meta-

model for developing process maps according to specific business process architecture

viewpoints, additional constraints can be imposed. An example of such constraint could

be that the leaves in a decomposition structure can only be elementary business

processes.

The meta-model (Figure 2) shows three subclasses of business process composite:

process group, process chain and process family. The specialization is partial meaning

that there can be other business process composites than these three. We include these

three composites as a specific type of relation between business process architecture

elements defines each of them:

• Process Chain is an aggregate of business process architecture elements that are

related through sequencing relations (Req. 3a), meaning that there is a

sequential ordering amongst these elements. The roles of prior and subsequent

process as steps in the process chain are extended to business process

architecture elements to allow, for instance, a process chain to be composed of

sequentially ordered ‘sub’ process chains or process families (as represented by

their standard processes). Using our meta-model, end-to-end processes can be

modelled as process chains.

• Process Group is an aggregate of business process architecture elements that

become members of the same process group as defined by grouping criteria

(Req. 3c). The members of a process group are related in the sense that they

share one or more similar properties. They can, for instance, belong to a same

process category, in which case the process group represents a category and the

property of fulfilling a similar role in the organization or serving a similar

Architecting Business Process Maps 127

purpose is used as grouping criterion (see Sub-Section 4.5). The process group

may also represent a phase meaning that its member processes are executed at

the same time and time of execution is the property that serves as grouping

criterion. Also, being related to a same enterprise architecture element is a

property that can be used as grouping criterion to define a process group, for

instance, all processes having the same business actor as process owner form a

process group.

• Process Family is an aggregate of business process architecture elements based

on specialization relations (Req. 3d) where a parent process assumes the role of

standard process (called main process in [18]) and child processes are variants

of the standard process. The specialization relation is defined for the abstract

business process architecture elements to allow for maximum freedom when

instantiating the meta-model (e.g., one process group specializing another

process group, one process chain being a variant of another process chain). We

follow Van Nuffel and De Backer [18] by having the process family

represented through the standard process, implying that a standard process not

only generalizes process variants but also aggregates these variants, i.e., the

standard process is not an elementary business process but a business process

composite. The meta-model does, however, not impose that all parent

processes are standard processes that represent process families.

Fig. 2. Meta-model for business process architecture description.

The recognition of different types of business process composite implies that

business process architecture elements can be related in different ways. The Sequencing

Relation (Req. 3a) associates a source element to a target element implying a temporal

ordering of source and target. The source and target association ends represent the roles

that business process architecture elements fulfil in sequencing relations. In case of

sequentially related elementary business processes, the source and target roles are

equivalent to the prior and subsequent roles identified in our process map

conceptualization [30]. The semantics of the temporal ordering of source and target are

defined more precisely in the subclasses of the sequencing relation, yet the

128 Geert Poels et al.

specialization is optional to allow for maximum freedom when instantiating the meta-

model to describe business process architectures and create process maps. For instance,

Dijkman et al. [1] present a process map example where processes are shown as

temporally ordered without further specification of the exact nature of the sequential

ordering (e.g., Should the prior process be completed before the subsequent process can

start? Does the prior process passes information on to the subsequent process?).

Scheer’s Value Added Diagram [20] has been mentioned in related literature as a

framework for designing process maps [41]. The sequential order of the prior and

subsequent processes composing the process chain represented on such diagram might

be indicated purely by means of secondary notation (i.e., using the chevron symbol for

processes and placing sequentially ordered processes adjacently on the map). The only

semantics attached to the sequential relation concept in our meta-model is that the

business process architecture element that is the target of the relation follows up on

something performed by the business process architecture element that is the source of

the relation. ‘Follows up on’ means that it may depend on the type of sequential relation

(if further specified) but also on the type of business process architecture elements that

are sequentially related. Hence, when instantiating the meta-model, additional

constraints might be imposed by the users (e.g., a constraint that process groups cannot

be sequentially related). Two subclasses of sequential relation are specified in the meta-

model: Trigger and Flow, which we define based on the formalization in [42]. A

Trigger is a sequencing relation in which the source business process architecture

element causes the target business process architecture element to be instantiated and to

start. Instantiation of business process composites is not further defined as its relevancy

and semantics may depend on the chosen business process architecture viewpoint. For

instance, the instantiation of a process chain could mean the instantiation of its first

process step. For a process family, it could mean the instantiation of any variant of the

standard process. For process groups, it probably has no relevancy. We further

distinguish delegation as a subclass of trigger. A Delegation is a trigger in which the

source is dependent on the outcome of the target. It is similar to the dependency relation

in [18] and the uses relation in [1]. While with trigger it is not required that the source

expects a response from the target (and so can end independently of the target), with

delegation a response is expected and the source will not end before the target has

performed some work whose outcome is needed to successfully complete the source. A

Flow is a sequencing relation in which a business object flows from the source to the

target. We define a Business Object as anything that flows between business process

architecture elements and which is considered relevant according to some business

process architecture viewpoint to be represented in a process map. This can be

information, as in the meta-model of Malinova and Mendling [15], but also physical

products or even persons (e.g., a patient). While conceptually every flow has at least one

business object as flow object, the process map as an abstraction does not need to show

this flow object. On the other hand, a business object can only be a flow object on a

process map if it is linked to some flow. As shown in our meta-model, a business object

is an enterprise architecture element. The meta-model allows flows between elementary

business processes, but also between business process composites. More restrictive rules

can be imposed if flows between certain kinds of composites are not meaningful, but for

the sake of generality such constraints are not part of the meta-model. Trigger (or

delegation) and flow can occur concurrently between a same source and target.

Triggering is usually also accompanied by the passing of some information or signal. If

Architecting Business Process Maps 129

meaningful to be shown on the process map, then both relations can be depicted, where

the trigger has the meaning of starting the target and the flow has the meaning of

passing a business object to the target.

Apart from decomposition and sequencing relations, the meta-model includes

Specialisation which relates a child business process architecture element to a parent

business process architecture element (Req. 3d). A parent can have many children while

a child can have many parents. The meta-model allows business process composites to

specialize other business process composites (e.g., a process group that specializes

another process group), but again specialization of business process composites is not

further defined as its relevancy and semantics depends on business process architecture

viewpoint.

A special kind of relation is that between members of a process group. They are

related in the sense that they share a common property. The property on the basis of

which the grouping occurs is defined by a Grouping Criterion (Req. 3c). An example of

a grouping criterion is ‘the process category is core’. This criterion then groups all the

core processes of the organization. A grouping criterion can aggregate other grouping

criteria, for instance ‘the process category is management and the location of process

execution is the company headquarters’. Each of these aggregated criteria defines its

own process group, while the aggregate criterion defines the intersection of these groups

as a new process group. The type of aggregation shown in the meta-model is shared

aggregation, allowing any kind of regular expression of logical operators to compose

grouping criteria based on elementary criteria, again allowing maximum freedom when

instantiating the meta-model. The meta-model shows that each grouping criterion

defines at least one process group (possibly empty), but there can be many groups

defined by the same criterion to account for evolution over time (i.e., the set of business

process architecture elements that share some property is dynamic). The meta-model

also allows that a process map shows process groups without identifying the defining

grouping criteria.

The final element on the meta-model is that of Enterprise Architecture Element,

which is defined as an element that is part of the enterprise architecture and that is

related to a business process architecture element (Req. 2). As discussed in Sub-Section

4.5, the reviewed literature offers a non-exhaustive set of concepts that can be shown in

a process map as they relate to business processes or their composites. We believe that

most of these can be described as enterprise architecture elements, though it might

depend on the EA framework referred to whether they are recognized as such.

The meta-model in Figure 2 shows a number of subclasses of Enterprise Architecture

Element. These subclasses are not an exhaustive enumeration of relevant types of

enterprise architecture elements that can be included in process maps (as the

specialization of Enterprise Architecture Element is partial). They are included in the

meta-model for illustrative purposes only, being inspired by the concepts included in the

motivation, strategy and business layers of the ArchiMate ADL [13]. We could also add

concepts of the application, technology and physical layers of the ArchiMate ADL (e.g.,

application components, data objects), but we chose not to do so in order not to overload

Figure 2. We consider a relationship with an enterprise architecture element as a

property of the business process architecture element. Consequently, a primary use of

enterprise architecture elements in a process map is to define process groups. Hence,

enterprise architecture elements can be used by grouping criteria to define process

groups. Enterprise architecture elements can aggregate other enterprise architecture

130 Geert Poels et al.

elements. For instance, processes of an international company can be grouped by

continent and by country, where a continent is a location aggregating countries as other

locations.

The main feature of the meta-model is that through the use of the concept Enterprise

Architecture Element, the business process architecture is integrated into the overall

enterprise architecture and hence the process map, as a business process architecture

model, can be linked to EA models.

5. Testing the Metamodel

To demonstrate and evaluate the meta-model’s ability to serve as a conceptual

foundation of a universal representation language for process maps, we instantiated it to

represent a wide array of example process maps found in the literature. This was a

repetitive process providing us with feedback on how to refine the meta-model until all

our instantiations were valid. To this end we used three different published

classifications of business process architecture description. Sub-Section 5.1 presents

meta-model instantiations for the four ‘archetypes’ of process map used in industry after

an extensive empirical study of how process mapping is performed in practice

conducted in [4]. Sub-Section 5.2 shows how the meta-model can be instantiated for the

example process maps described in [1] based on a systematic literature review of

business process architecture design approaches. Next, Sub-Section 5.3 describes how

the illustrative process maps that are part of different business process architecture

views proposed by Van Nuffel and De Backer [18] can be represented using the meta-

model that we designed. We show the instantiation of the meta-model by means of

concept maps. To clarify the link between the concept map and the meta-model,

concepts are stereotyped with the name of the meta-model class that is instantiated. The

relationships between the concepts show the links between these class instances

according to the associations and aggregation relationships of the meta-model. The

meta-model evaluation against core requirements for domain-specific languages is

presented in Section 5.4.

5.1. Representation of Archetypical Process Maps Used in Industry

With regard to the representation of archetypical process maps, in Malinova, Leopold

[4] four types are distinguished. Table 2 shows these archetypical process maps (left

column) together with their concept map representation using the proposed meta-model

(right column). The model shown in the left column of the first row represents two

adjacent modelling layers in a hierarchical process model architecture. Note that the

process models in the layers labelled level 2 and 3 are not black-box models of business

processes, showing for instance sequence flows and gateways for non-sequential flow.

Following Req. 1, representing this model using our meta-model means abstracting

from the internal details of these processes. The corresponding concept map thus shows

Level 2 Process as a business process composite that has the two Level 3 Process as

parts. These Level 3 Process are modelled as elementary business processes. The second

row shows a process map of the pipeline process architecture archetype. This process

Architecting Business Process Maps 131

map can be represented without compromise by instantiating the proposed meta-model.

At each level a process chain is shown that is decomposed into sequentially related

‘sub’ process chains. The concept map on the right shows the mechanism of this

recursive structure of sequentially related process chains. Although not shown in the

concept map, for level 4 the business process architecture elements modelled would be

elementary business processes. The third row contains the example process map of the

divisional process architecture archetype. The process map distinguishes between

management processes and core processes for which (business) units are responsible.

The concept map at the right demonstrates the use of the grouping mechanism. The

grouping of management processes is defined by the process category (i.e.,

management). We chose to explicitly model the grouping criterion, but the grouping can

also be implicit and just based on the name of the process group. Core processes are

grouped by means of a common property, i.e., their relation to a business unit. Such

business units can be represented in an EA model as business actors (e.g., using

ArchiMate). The reference to a common business actor thus defines the grouping of the

core processes, which is only illustrated for Unit II in the concept map at the right. The

plus signs in the process map at the left indicate that each core process is actually a

business process composite, which can be further decomposed and specialized if

needed, for instance as process chains like in the pipeline process architecture of the

second row. Finally, the fourth row shows the example process map of the service-

oriented process architecture archetype. The process map includes four distinct groups

of processes, which we model as process groups, the criterion for grouping being the

process category (i.e., management, service, support, measure & analyse). Each process

in these groups is modelled as a business process composite (because of the plus sign in

the process map). The concept map shows the mechanism of delegation that is

exemplified in the process map. A business process (composite) in the service process

group delegates part of the work to be performed to processes of other groups. In the

example an elementary business process that is part of some business process composite

of the support group and an elementary business process that is part of some business

process composite that is part of the measure & analyse process group. Note that similar

to what is seen in the first row, the right part of the process map (left column) is not a

black-box model, hence the instantiation of the meta-model (right column) does not

show gateways and sequence flows.

5.2. Representation of Process Maps Resulting from Different Business Process

Architecture Design Approaches

Dijkman et al. [1] identified five different approaches for designing business process

architectures in the literature. These approaches stand for the academic perspective on

business process architecture. Each approach is exemplified by a different process map

in an informal notation that is inspired by ArchiMate. Table 3 shows these example

process maps (left column) along with their representation as instantiation of the meta-

model proposed in Section 4 (right column). The example process maps in the left

column of Table 3 differ from those of Table 2 in that they only show business process

architecture elements and relationships between those, i.e., no process-related EA

elements are shown. All the elements and relationships included in the example process

132 Geert Poels et al.

maps can be represented by instantiating the proposed meta-model, in particular by

means of business process composites, elementary business processes and is-part-of

relationships. In the second row a process chain (Perform Project) is shown that consists

of two elementary business processes (Make Project Plan and Approve Project Plan)

that are related by a Trigger relation (i.e., Make Project Plan triggers Approve Project

Plan). In the third row a process family is shown, which is represented by a standard

process (Insurance Application) that generalizes two elementary business processes

(Home Insurance Application and Car Insurance Application) that are part of the

process family. An alternative representation is to show both processes as children of

the parent process Insurance Application, however, the chosen representation

emphasizes that Insurance Application represents an entire process family.

Table 2. Meta-model instantiations for archetypical industry process maps.

Archetypical industry process map –

original representation

Archetypical industry process map – meta-

model instantiation as concept map

Architecting Business Process Maps 133

Table 3. Meta-model instantiations of business process architecture design approaches.

Business process architecture design

approach – original representation of

resulting process map

Business process architecture design

approach – meta-model instantiation as

concept map

5.3. Representation of Process Maps that Model Different Business Process

Architecture Views

Van Nuffel and De Backer [18] propose six views of business process architecture of

which they illustrate three with an example process map in an informal self-crafted

notation. Table 4 shows these examples (left column) and how they can be represented

using the concepts of the proposed meta-model (right column). The fourth row in the

table presents another example taken from [18] which is positioned at a lower level in

their business process decomposition structure to show the process variants making up a

134 Geert Poels et al.

process family. The first row contains a model that is part of a view that shows main

business processes, elementary business processes and dependency relationships

between processes. Using the proposed meta-model, these business process architecture

elements and relationships are modelled as process families, elementary business

processes and delegation relationships, as shown in the concept map (right column).

Table 4. Representation of process maps that model different business process architecture views.

Business process architecture view –

original representation

Business process architecture view –

meta-model instantiation as concept map

According to [18], a dependency relationship means that a ‘depender’ process depends

on the result of a ‘dependee’ process to perform its task, which corresponds

semantically to the delegation relation of our meta-model. The depender is the source of

the relation, while the dependee is the target of the relation. The model in the second

row uses colour coding to identify the process owner of each main and elementary

Architecting Business Process Maps 135

business process in the process architecture. The concept map demonstrates the

grouping mechanism by grouping process families and elementary business process

owner that refer to the same process owner, which is modelled as a business role (i.e.,

specialization of the EA element class of the meta-model). The view portrayed in the

third row shows that main and/or elementary business processes can belong to more

than one process group. The concept map has process family C referring to functional

domains 1 and 5 (modelled as business functions, which specialize the EA element class

of the meta-model). Hence, process family C is part of two process groups. Finally, in

the fourth row the model shows the process variants (C1, C2 and C3) of a main business

process (C). The concept map on the right shows the full model where elementary

business processes are part of process families and both kinds of business process

architecture elements are further grouped based on common reference to a process

owner, modelled as business role like in row two. Process dependencies are modelled

using the delegation relation of the meta-model.

5.4. Evaluation of the Meta-Model

As demonstrated in Sub-Sections 5.1 to 5.3, a large variety of notations is used to

articulate process maps, regardless whether they originate in practice or in academia.

The metamodel was demonstrated to model this variety of situations along with the

fulfilling of the stated solution requirements. Furthermore, the meta-model has been

evaluated in order to have a first insight about its validity, by considering the core

requirements for a domain-specific language (DSL) [31], given that the proposed meta-

model is intended to serve as the domain definition meta-model of a potential DSL for

process mapping. The meta-model has been tested against these core requirements [31],

such as summarized in Table 5.

Table 5. Evaluation of the metamodel

DSL req. Justification

Conformity The following general concepts were considered: (i) architecture; (ii)

organizational context with regards to business processes; (iii)

structure and relations between business processes.

Elements at the business level in EA are included (in accordance to

the relevant related literature). (Req. 2)

The meta-model has been applied to represent a wide array of

process maps and other business process architecture descriptions

found in the literature (see Sub-Sections 5.1, 5.2 and 5.3).

Orthogonality Each construct in the language was conceived to represent exactly

one distinct concept in the domain.

Supportability The suitability of enhancing EA modelling languages, in particular

ArchiMate, will be considered, as we conceptualize the process map

as an EA artefact along with the formal meta-model for a business

process architecture description language.

Integrability Conceptualization of the process map is driven as a business process

abstraction that provides a black-box view on the organization’s

business processes (Req. 1). This can easily be integrated with the

136 Geert Poels et al.

DSL req. Justification

white-box perspective, supported by BPMN.

A maximal integration with enterprise architecture description is

obtained through the alignment with the ISO/IES/IEEE 42010

standard for architecture description.

Different kinds of business process composites are considered.

(Req. 3)

Maximum freedom for instantiating the meta-model according to

process mapping needs is provided, thereby limiting the number of

constraints at the meta-model level.

Longevity The meta-model was built to be aligned with the relevant standards

about enterprise architecture and in the particular domain of business

process architecture it generalizes existing proposals to reflect the

mostly agreed upon concepts.

The usage of generalized concepts (Enterprise Architecture Element,

Business Process Architecture Element, etc.) facilitates the extension

of the meta-model to be adapted to future situations.

Simplicity A set of minimal constructs and constraints were considered

Some complex mechanisms in process maps (e.g. aggregation) were

simplified by applying design patterns (e.g. composition).

6. Conclusion and Future Work

In this paper, a meta-model of a business process architecture description language for

representing process maps was presented, based on a process map conceptualization in

the context of enterprise architecture. With the aim of testing the meta-model’s ability to

serve as a foundation of a universal representation language for process maps, a wide

sample of process maps were instantiated and it has been shown how the meta-model

fulfils core requirements for a domain-specific language.

The contribution of this research is the creation through our meta-model of a better

understanding of business process architecture in relation to enterprise architecture,

which could promote major advancements in the field and can be beneficial for both

BPM and EA professionals and enterprise modelling in general. As a process map is a

model of the business process architecture, it is complementary to any model that

describes a view of the enterprise architecture (e.g., a goal model, a capability map, an

application landscape, an infrastructure landscape). The main novelty in our meta-

model, compared to the related work and apart from the generic Business Process

Composite concept obtained through applying the composition pattern, was the

introduction of the Enterprise Architecture Element as a ‘placeholder’ for any kind of

element in any kind of enterprise architecture model that is related to a Business Process

Architecture Element (e.g., goals or capabilities realized by elements of the business

process architecture, elements of the business process architecture served by

applications that are hosted on IT infrastructure nodes). This way a process map can be

effectively integrated into the overall enterprise architecture model of an organization.

Whether this integration is easy to perform is another issue, that will depend on the

choice of languages for the different architecture models. For instance, models

Architecting Business Process Maps 137

expressed in ArchiMate do not allow users to zoom in on the details of specific types of

business processes and relationships between them. For this reason, our proposal was

designed to overcome this limitation by proposing a new type of model (i.e., the process

map as a model of business process architecture) that is aligned with industrial EA

standards such as TOGAF and ArchiMate.

The main future work will be the design of a concrete syntax for the meta-model,

which considers the suitability of EA modelling languages as a basis for defining a

domain-specific language for process mapping. A software tool will be developed and

empirical studies will be conducted to test the usability and usefulness of the proposed

metamodel and syntax. The resulting feedback can serve to improve the metamodel in a

new research cycle by following DSR. In terms of tooling, our proposal will seek to

support the navigation between different EA and BPM models. For example, the user

could be viewing a model in ArchiMate and by clicking on a business process element,

the software would show in another window the detailed process model with the

workflow (BPMN). As a result, new possibilities can arise to harmonize the use of

general-purpose modelling languages from both fields (e.g., BPMN and ArchiMate).

Acknowledgements. This work is partially supported by: BIZDEVOPS-Global (ref. RTI2018-

098309-B-C31), “Ministerio de Economía, Industria y Competitividad” (MINECO) & “Fondo

Europeo de Desarrollo Regional” (FEDER); and G3Soft (SBPLY/17/180501/000150),

“Consejería de Educación y Ciencia, Junta de Comunidades de Castilla-La Mancha” and FEDER.

References

1. Dijkman, R., I. Vanderfeesten, and H.A. Reijers, Business process architectures: overview,

comparison and framework. Enterprise Information Systems, 2016. 10(2): p. 129-158.

2. Dumas, M., et al., Fundamentals of Business Process Management. 2013, Berlin Heidelberg:

Springer-Verlag.

3. Soffer, P. and Y. Wand, Goal-driven multi-process analysis. Journal of the Association for

Information Systems, 2007. 8(3): p. 175-203.

4. Malinova, M., H. Leopold, and J. Mendling, An Empirical Investigation on the Design of

Process Architectures, in 11th International Conference on Wirtschaftsinformatik. 2013:

Leipzig.

5. Rosemann, M. Process Portfolio Management. BPTrends, 2006.

6. Heinrich, B., et al., The process map as an instrument to standardize processes: design and

application at a financial service provider. Information Systems and E-Business

Management, 2009. 7(1): p. 81-102.

7. Lapouchian, A., E. Yu, and A. Sturm, Design Dimensions for Business Process Architecture,

in ER 2015, Lecture Notes in Computer Science, P. Johannesson, Editor. 2015a, Springer

International Publishing. p. 276-284.

8. Lapouchnian, A., E. Yu, and A. Sturm, Re-Designing Process Architectures: Towards a

Framework of Design Dimensions, in 7th IEEE International Conference on Research

Challenges in Information Science. 2015b: Athens.

9. Odeh, Y., M. Odeh, and S. Green, Aligning Riva-based Business Process Architectures with

Business Goals Using the i* Framework, in 3rd International Conference on Business

Intelligence and Technology. 2013: Valencia.

10. Poels, G., et al., Investigating Goal-Oriented Requirements Engineering for Business

Processes. Journal of Database Management, 2013. 24(2): p. 35-71.

11. Engelsman, W., et al., Extending enterprise architecture modelling with business goals and

138 Geert Poels et al.

requirements. Enterprise Information Systems, 2011. 5(1): p. 9-36.

12. Nogueira, J., et al., Leveraging the Zachman Framework Implementation Using Action –

Research Methodology – A Case Study: Aligning the Enterprise Architecture and the

Business Goals. Enterprise Information Systems, 2013. 7(1): p. 100-132.

13. The Open Group, Open Group Standard. ArchiMate 3.0 Specification. 2016.

14. Wierda, G., Mastering ArchiMate. 2nd ed. 2014.

15. Malinova, M. and J. Mendling, Why is BPMN not Appropriate for Process Maps?, in 36th

International Conference on Information Systems. 2015a: Fort Worth.

16. Malinova, M., H. Leopold, and J. Mendling, An Explorative Study of Process Map Design, in

CAiSE Forum 2014, Lecture Notes in Business Information Processing, S. Nurcan and E.

Pimenidis, Editors. 2015, Springer International Publishing.

17. Bider, I., et al., A fractal enterprise model and its application for business development.

Software & Systems Modeling, 2016.

18. Van Nuffel, D. and M. De Backer, Multi-abstraction layered business process modeling.

Computers in Industry, 2012. 63(2): p. 131-147.

19. Rolland, C., S. Nurcan, and G. Grosz, Enterprise knowledge development: the process view.

Information & Management, 1999. 36(3): p. 165-184.

20. Scheer, A., ARIS: Business Process Modeling. 2000, Berlin Heidelberg: Springer-Verlag.

21. Francesconi, F., F. Dalpiaz, and J. Mylopoulos, TBIM: A Language for Modeling and

Reasoning about Business Plans, in ER 2013, Lecture Notes in Computer Science, W. Ng, V.

Storey, and J. Trujillo, Editors. 2013, Springer International Publishing. p. 33-46.

22. Frank, U., Multi-perspective enterprise modeling: foundational concepts, prospects and

future research challenges. Software and Systems Modeling, 2014. 13(3): p. 941-962.

23. Sandkuhl, K., et al., Enterprise Modeling. Tackling Business Challenges with the 4EM

Method. 2014, Berlin Heidelberg: Springer-Verlag.

24. Roelens, B., W. Steenacker, and G. Poels, Realizing strategic fit within the business

architecture: the design of a Process-Goal Alignment modeling and analysis technique.

Software & Systems Modeling, 2017.

25. von Rosing, M., et al., Combining BPM and EA in Complex IT Projects: A Business

Architecture Discipline, in IEEE 13th Conference on Commerce and Enterprise Computing.

2011. p. 271-278.

26. Hevner, A.R., et al., Design science in Information Systems research. Mis Quarterly, 2004.

28(1): p. 75-105.

27. Peffers, K., et al., A design science research methodology for Information Systems Research.

Journal of Management Information Systems, 2007. 24(3): p. 45-77.

28. Wieringa, R., Design Science as Nested Problem Solving, in 4th International Conference on

Design Science Research in Information Systems and Technology. 2009: Philadelphia.

29. ISO/IEC/IEEE, International Standard 42010. Systems and Software Engineering –

Architecture Description. 2011.

30. Poels, G., et al., Conceptualizing Business Process Maps. 2018: CoRR abs/1812.05395.

31. Kolovos, D., et al., Requirements for Domain-Specific Languages, in 1st ECOOP Workshop

on Domain-Specific Program Development. 2006: Nantes.

32. The Open Group, Open Group Standard. TOGAF 9.1 Specification. 2009.

33. Malinova, M., A Language for Process Map Design, in BPM 2014 Workshops, Lecture Notes

in Business Information Processing, F. Fournier and J. Mendling, Editors. 2015, Springer

International Publishing. p. 567-572.

34. Milani, F., et al., Criteria and Heuristics for Business Process Model Decomposition Review

and Comparative Evaluation. Business & Information Systems Engineering, 2016. 58(1): p.

7-17.

35. Aßmann, U., S. Zschaler, and G. Wagner, Ontologies, Meta-models, and the Model-Driven

Paradigm, in Ontologies for Software Engineering and Software Technology, C. Calero, F.

Ruiz, and M. Piattini, Editors. 2006, Springer-Verlag. p. 249-273.

36. Saeki, M. and H. Kaiya, On Relationships Among Models, Meta Models, and Ontologies, in

Architecting Business Process Maps 139

6th OOPSLA Workshop on Domain-Specific Modeling. 2006: Portland.

37. La Rosa, M., M. Dumas, and A. ter Hofstede, Modeling Business Process Variability for

Design-Time Configuration, in Handbook of Research in Business Process Modeling, J.

Cardoso and W. van der Aalst, Editors. 2009, IGI Global. p. 204-228.

38. Rosemann, M. and J. vom Brocke, The Six Core Elements of Business Process Management,

in Handbook on Business Process Management 1, J. vom Brocke and M. Rosemann, Editors.

2015, Springer-Verlag: Berlin Heidelberg. p. 105-122.

39. Malinova, M., B. Hribar, and J. Mendling, A Framework for Assessing BPM Success, in 22nd

European Conference on Information Systems. 2014: Tel Aviv.

40. Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software. 1995,

Boston: Addison-Wesley Longman Publishing.

41. Malinova, M. and J. Mendling, Leveraging Innovation Based on Effective Process Map

Design: Insights from the Case of a European Insurance Company, in BPM – Driving

Innovation in a Digital World, J. vom Brocke and T. Schmiedel, Editors. 2015b, Springer

International Publishing: Bern. p. 215-227.

42. Eid-Sabbagh, R.-H., R. Dijkman, and M. Weske, Business Process Architecture: Use and

Correctness, in BPM 2012, Lecture Notes in Computer Science, A. Barros, A. Gal, and E.

Kindler, Editors. 2012, Springer International Publishing. p. 65-81.

Geert Poels is head of the Management Information Systems research group at Ghent

University (Belgium). He is full professor at the Faculty of Economics and Business

Administration, Ghent University where he teaches Computer Science, Information

Systems and Management of Information Technology subjects to Business Engineering

and Business Administration students. He is member of the Ghent University Research

Council. He also teaches, consults and directs master dissertation research at the IC

Institute, which is part of the INNOCOM company (Beersel, Belgium). His areas of

research are business process management, enterprise modelling, business ontology,

digital transformation, agile requirements engineering, and IT governance (as co-

developer of COBIT 2019). Mid 2019, he is promoter of 13 completed PhD research

projects (11 at UGent and 2 at KU Leuven) and has 118 publications listed in Web of

Science. His Google Scholar h-index is 30 with over 3000 citations recorded.

Félix García is Full Professor at the University of Castilla La-Mancha (UCLM), where

he received his MSc (2001) and PhD (2004) degrees in Computer Science. He is

member of the Alarcos Research Group and his research interests include business

process management, software processes, software measurement and agile methods.

http://orcid.org/0000-0001-6460-0353.

Francisco Ruiz is a full professor at the University of Castilla-La Mancha (UCLM),

Spain. His current interests include enterprise architecture, business process

management, information systems, and socio-demographic data analysis. Ruiz received

a Master in chemistry-physics from Complutense University of Madrid, and a PhD in

computer science from UCLM. Contact him at francisco.ruizg@uclm.es.

Mario Piattini is the director of the Alarcos Research Group and a full professor at the

University of Castilla-La Mancha, Spain. His research interests include software and

data quality, information-systems audit and security, and IT governance. Piattini

received a Ph.D. in computer science from Madrid Technical University, Spain.

Received: November 18, 2018; Accepted: July 30, 2019

Computer Science and Information Systems 17(1):141–160 https://doi.org/10.2298/CSIS181115017M

Correctness of the Chord Protocol

Bojan Marinković1, Zoran Ognjanović1, Paola Glavan2, Anton Kos3, and Anton Umek3

1 Mathematical Institute of the Serbian Academy of Sciences and Arts
Beograd, Serbia

[bojanm,zorano]@mi.sanu.ac.rs
2 Faculty of Mechanical Engineering and Naval Architecture

University of Zagreb, Zagreb, Croatia
pglavan@fsb.hr

3 Faculty of Electrical Engineering
University of Ljubljana, Ljubljana, Slovenia

[anton.kos, anton.umek]@fe.uni-lj.si

Abstract. Internet of Things (IoT) can be seen as a cooperation of various devices
with limited performances that participate in the same system. IoT devices compose
a distributed architecture system. The core of every IoT system is its discovery and
control services. To realize such services, some authors used the developed solu-
tions from the different domains. One such solution is the Chord protocol, one of
the first, the simplest and the most popular distributed protocols. Unfortunately, the
application of the Chord protocol was realized using the correctness of the Chord
protocol for granted, or by the very hard assumptions. In this paper we prove the
correctness of the Chord protocol using the logic of time and knowledge with the
respect to the set of possible executions, called regular runs. We provide the deter-
ministic description of the correctness of the Chord protocol and consider Chord
actions that maintain ring topology while the nodes can freely join or leave.

Keywords: IoT, DHT, Chord, correctness, temporal logic, epistemic logic

1. Introduction

Internet of Things (IoT) paradigm can be defined as: “The pervasive presence around us
of a variety of things or objects which, through unique addressing schemes, are able to
interact with each other and cooperate with their neighbors to reach common goals” [1].

In this framework the smart objects, which are connected by a network structure, are
able to communicate and exchange information and to enable new forms of interaction
among things and people [2]. The core of every IoT system consists of its discovery
and control services. It is common that various homogeneous and heterogeneous devices
participate in the same IoT system. Usually, these devices are highly distributed, therefore
it can be seen as they participate in a distributed Peer-to-Peer (P2P) system.

In a case of homogeneous decentralized distributed P2P system, nodes (peers) run
the same application, and share the same properties in terms of computation and storage
capacities and network connectivity [3]. Without any centralized control processes are
dynamically distributed to nodes that can join or leave the system at any time. Thus, P2P
systems are highly scalable, as they have no inherent bottlenecks. Also, such systems are

142 Bojan Marinković et al.

resilient to failures, attacks, etc., since there is no single node or a group of nodes that
implement a critical functionality, which would render the system unusable, if disrupted.
P2P systems are used for file sharing, redundant storage, and real-time media streaming.

While the underlying network actually connects devices, P2P systems are frequently
implemented in a form of overlay networks, structures which organize system resources
in an independent logical topology [4]. Overlay networks can be realized in the form of
Distributed Hash Tables (DHTs). A DHT provides a lookup service similar to a hash ta-
ble. Pairs of the form 〈key, value〉 are stored in a DHT, while nodes participating in the
network can efficiently retrieve the value associated with a given key. The functionality
of maintaining the mapping from keys to values is implemented by nodes in a distributed
manner and changes in the set of participating nodes cause only minimal amount of dis-
ruption.

The Chord protocol [5,6,7] is one of the first, the simplest and the most popular im-
plementations of DHTs. Nodes in a network executing the Chord protocol are organized
in a ring. Because of the simplicity and popularity of the Chord protocol, it was used
for the realization of the discovery and/or control service of IoT systems described in
[2,8,9,10,11]. Although Chord is one of the simplest protocols, since it is distributed, it is
subject to faults and bugs, so the protocol verification is extremely important.

In this paper we use a temporal epistemic logic to prove the correctness of the Chord
protocol with respect to the Chord actions that maintain ring topology. We consider the
case when the nodes are allowed to leave or join the network with respect to the set of
possible executions, called regular runs. It means that a network executing a regular run
will be always brought from an arbitrary state to a state in which links between nodes
form a ring.

Up to our knowledge there were of only a few papers related to formal verification of
DHTs, and particularly Chord [12,13,14,15,16]. They are considered them in Section 2
and compared with our approach.

The rest of the paper is organized in the following way: in Section 2 we consider
other approaches for proving the correctness of the Chord protocol and clearly present the
contributions of this paper; Section 3 presents a short description of the Chord protocol;
in Section 4 we present a logical framework which is used to prove the correctness of the
maintenance of the ring topology of the Chord protocol with the respect to the regular
runs; the proof is given in Section 5; we conclude with Section 6. In Appendix A we
provide detailed proofs of the main lemmas and theorems from the paper.

2. Related Work and Contributions

2.1. Related Work

The Chord protocol is introduced in [5,6,7]. The detailed examination of the protocol’s
performance and robustness is given under the assumption that nodes and keys are ran-
domly chosen. The provided approach is probabilistic, e.g., statements are of the form
“With high probability, the number of nodes that must be contacted to find a successor in
a N -node network is O(logN)”.

The only deterministic given result is [5,6,7, Theorem IV.3] which partially corre-
sponds to our Lemma 6. Theorem IV.3 proves that inconsistent states produced by exe-
cuting several concurrent joins of the new nodes are transient, i.e., that after the last node

Correctness of the Chord Protocol 143

joins the network will form a cycle. A more general sequences of concurrent joining and
leaving of nodes is presented in [15]. The paper gives a lower bound of the rate at which
nodes need to maintain the system such that it works correctly with high probability. In
this paper we consider the case when the nodes are allowed to leave the network with
respect to the set of possible executions, called regular runs.

While it is hard to directly compare these two approaches (deterministic and proba-
bilistic), they are complementary and may be used together to improve our understanding
of the Chord protocol. One can argue that the probabilistic approach is useful to study
robustness of protocols. On the other hand, it will be also useful to describe sequences
of actions that lead to (un)stable states of Chord networks, in order to be able to analyze
properties of systems incorporating Chord and assuming its correctness, as it is the case
with the discovery and/or control service of an IoT system.

The paper [14] uses the theory of stochastic processes to give estimations of the prob-
ability that a Chord network is in a particular state. The correctness of the Chord’s stabi-
lization algorithm is proved in the framework of π-calculus by showing the equivalence of
the corresponding specification and implementation in [12,13], but assuming that nodes
cannot leave a network. The correctness of the pure join model is also proved using the
Alloy formal language in [16], and some counterexamples to correctness of Chord ring-
maintenance in the general case are presented.

As we mentioned in the Introduction, using DHT/Chord in IoT domain is not a nov-
elty [2,8,9,10,11]. In all papers regular discovery (and/or control) service, to improve
performances, is replaced by DHT protocol. In [8] authors proposed distributed control
plane. They consider the problem how to deliver control messages to the devices that are
in sleeping mode most of the time. The proposed DHT algorithm, to realize the control-
plane, is Chord. The system consists from two type of nodes - peers and clients. Peers
are those nodes which participate in the Chord network, and by the assumption they are
stable. Clients are “normal” nodes that use peers as proxies to connect to the Chord net-
work. Paper [2] introduces scalable, self-configuring and automated service and resource
discovery mechanism based on structured DHT architecture to provide support of more
complex search queries. Article [9] presents the overview and comparison of the discov-
ery service mechanisms in IoT domain, both traditional and distributed approaches. In
[10] authors give the description of a novel discovery service for IoT. In this approach
the information repositories are organized in a DHT network to enable multidimensional
search procedure. Authors of [11] presented discovery service, that improves scalability,
load balance and reliability, for objects carrying RFID tags based on double Chord ring .
In all these articles, the correctness of the Chord protocol was accepted for granted, or
by an assumption of stable DHT network.

In [17] a joint frame for reasoning about knowledge and linear time is presented, and
the proof of weak completeness for a logic which combines expressions about knowledge
with linear time is provided. Related strongly complete logics that concern linear and
branching time are presented in [19,20,21]. We use this framework, as a starting point
for our logic of time and knowledge. We describe the Chord protocol using the formal
language of that temporal epistemic logic and prove properties of the Chord protocol.

2.2. Contributions

The main contributions of this paper are:

144 Bojan Marinković et al.

– a description of the Chord protocol using a temporal epistemic logic;
– a proof of the correctness of the maintenance of the ring topology of the Chord pro-

tocol with the respect to the set of possible executions called regular runs.

This work was motivated by the importance of the discovery and control service of an
IoT system and the obvious fact that errors in concurrent systems are difficult to reproduce
and find merely by program testing. This proof could be, also, the foundation for the
formal proof created using a formal proof assistant (like, Coq or Isabelle/HOL).

3. Chord Protocol

The Chord protocol was introduced in [5,6,7] where its specification in C++-like pseudo-
code was given. Here we provide a short description of the Chord protocol that is needed
to understand the rest of the paper.

Nodes that run the Chord protocol construct a network that is ring-shaped. The main
operations supported by the Chord protocol are:

– adding a node to network,
– removing a node from a network, and
– mapping the given key onto a node using consistent hashing.

The primitive actions on which the procedure of maintaining the ring topology in the
Chord protocol is based are:

– a node starts a network,
– a new node joins a network,
– a node leaves a network,
– a node updates its successor, and
– a periodic check of the predecessor.

The consistent hashing is used because it provides load-balancing, i.e., every node re-
ceives roughly the same number of keys, and when nodes join or leave the network only a
few keys are required to be moved [18]. Since Chord networks are overlay systems, each
node in a network, which consists of N -nodes, needs “routing” information about only
O(logN) other nodes, and resolves all lookups via O(logN) messages to other nodes.

Nodes are assigned random identifiers and objects are stored across these nodes using
consistent hashing. The identifier for a node (a key), hash(node) (hash(key)) is ob-
tained by hashing the node’s IP address, or the value of the key, respectively. The length
of identifiers, e.g., m bits, guarantees that the probability that two objects of the same
type are assigned the same identifiers is negligible. Identifiers are ordered in an identifier
circle modulo 2m (see Figure 1), while all arithmetic is preformed modulo 2m. A key
is assigned to a node if their hash-values are equal. Otherwise, if there is no node such
that hash(node) = hash(key), the key is assigned to the first node in the ring such that
hash(node) > hash(key).

Every node stores its current successor and predecessor nodes in the identifier circle.
To improve performance of the lookup procedure, every node organizes routing informa-
tion in the Finger Table with up to m entries. The ith entry in the table which belongs to
the node n contains the identifier of the first node s such that s = successor(n+ 2i−1),

Correctness of the Chord Protocol 145

where 1 6 i 6 m. In other words, the node s succeeds the node n by at least 2i−1 in the
identifier circle. Figure 1 presents Finger tables of nodes n2, n37, n50 and n56.

A node can be aware of only a few other nodes in the system. For example, node n2
from Figure 1 knows about the existence of only 4 other nodes. Other nodes can have
different node identifiers in almost every entry in its Finger table, like the node n50 from
Figure 1.

Fig. 1. Chord lookup procedure. Node n2 is looking for the node responsible for the key
with the identifier 57.

During the lookup procedure, a node forwards a query to the largest element of the
Finger table smaller than the key used in the query, in respect to the used arithmetic
modulo 2m. In the example illustrated by Figure 1, if n2 is looking for the responsible
node for the key with identifier 57, it will forward this query to node n37, the closest
predeceasing node from its finger table to the identifier 57, the closes node from its finger
table. After that, this query will be forwarded to n56 (again as the closest predeceasing
node from its finger table to the identifier 57), until it finally ends at n60, as the successor
of the node n56. The answer if n60 contains the key and respected value with identifier 57
will be returned to node that started query, in this case n2.

When a node n joins an existing network, certain keys previously assigned to n’s
successor now become assigned to n. When a node n leaves the network regularly, it
notifies its predecessor and successor and reassigns all of its keys to the successor.

The stabilization procedure implemented by Chord runs periodically in the back-
ground at each node and must guarantee that each node’s finger table, predecessor and
successor pointers are up to date.

Figure 2 illustrates the process of stabilization after joining of a new node n5 between
nodes n2 and n7. Figure 2a shows a pair of stable nodes n2 and n7 that are a part of the

146 Bojan Marinković et al.

Chord ring. When a new node n5 joins the system, it sets its successor to n7 as presented
in Figure 2b. Node n7 will then set its predecessor to n5 as seen in Figure 2c, and node
n2 will later set its successor to n5 as shown in Figure 2d. Finally, node n5 will set its
predecessor to n2 as seen in Figure 2e.

(a) (b) (c)

(d) (e)

Fig. 2. Stabilization process during the joining of a new node: (a) a stable pair of nodes
n2 and n7; (b) node n5 joins and sets its successor to n7; (c) node n7 sets its predecessor
to n5; (d) node n2 sets its successor to n5; (e) node n5 sets its predecessor to n2.

Figure 3 illustrates the process of stabilization after leaving of the node n5. Figure 3a
shows two pairs of stable nodes n2 and n5, and n5 and n7 that are a part of the Chord
ring. When the node n5 leaves the system, nodes n2 and n7 point to nothing, as presented
in Figure 3b. Then, node n2 will set its successor to n7 as shown in Figure 3c. Finally,
node n7 will set its predecessor to n2 as seen in Figure 3d.

4. Logic of Time and Knowledge

As we mentioned in the previous Section, a system which runs the Chord protocol is a
dynamic multi-agent system, where every node has it own partial view of the surrounding
environment. To be able to reason about such systems, we need to introduce a frame-
work for formal description of changes of the knowledge of a node during the time, and
which allows nodes to share their knowledge. In this section we present the corresponding
temporal-epistemic logic.

4.1. Syntax

Let N be the set of non-negative integers. We denote Nodes = {n0, . . . nm−1},
where m ∈ N, and then let N1 = Nodes∪{u} be the set of propositional variables. The
elements from the set Nodes will represent nodes of the Chord network, while u is the
special letter used in the situation when some value is undefined.

Correctness of the Chord Protocol 147

(a) (b)

(c) (d)

Fig. 3. Stabilization process after leaving of a Chord ring node: (a) two stable pairs of
nodes n2 and n5, and n5 and n7; (b) node n5 leaves the Chord ring; (c) node n2 sets its
successor to n7; (d) node n7 sets its predecessor to n2;.

The set For of all formulas is the smallest superset of N1 which is closed under the
following formation rules:

– 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {�,≺} and φ, ψ ∈ N1,
– 〈φ, ψ, ϕ〉 7→ φM〈ψ,ϕ〉 where φ, ψ, ϕ ∈ Nodes,
– ψ 7→ ∗ψ where ∗ ∈ {¬,©, , Ki},
– 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {∧, G, H}.

The operators � and ≺ represent the relations successor and predecessor of a node,
respectively. The tip of the “arrow” is pointing to the node with “greater” identifier, with
respect to the ordering determined by the ring shaped Chord network. An abbreviation
ni �2 nk will be used for ni, nk ∈ N iff there is an nj ∈ N such that ni � nj and
nj � nk, and nk ≺2 ni for ni, nk ∈ N iff there is an nj ∈ N such that nk ≺ nj and
nj ≺ ni. Similarly, we can define nj �i nk, as well as nj ≺i nk for nj , nk ∈ N and
0 < i < m. Figure 4 illustrates the relations �, ≺ (Figure 4a) and �i (Figure 4b).

(a). n56 � n60 and n60 ≺ n56 (b). n50 �3 n60

Fig. 4. Examples of �, ≺ and �i

148 Bojan Marinković et al.

The operators ¬ and ∧ are logical negation and conjunction. The operators©, , G
and H are standard temporal operators next, previous, always in the future and always in
the past. The operator Ki represents the knowledge of the node i.

The remaining logical ∨,→,↔, and temporal F (eventually in the future), P (eventu-
ally in the past) connectives, G, H are defined in the usual way:

– φ ∨ ψ =def ¬(¬φ ∧ ¬ψ),
– φ→ ψ =def ¬φ ∨ ψ,
– φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ),
– Fψ =def ¬G¬ψ,
– Pψ =def ¬H¬ψ,
– ©0ψ =def ψ;©n+1ψ =©©n ψ, n > 0,
– 0ψ =def ψ;

n+1ψ = nψ, n > 0.

4.2. Semantics
In this paper we will consider time flow which is isomorphic to the set N. We take into
account both future and past.

We will defined models as Kripke’s structures, where the central notion is that of run.
A run is an ordered list (a sequence) of consecutive states of the system and corresponds
to a possible execution which starts in an initial state.

Definition 1. A modelM is any tuple 〈R, π,A,K〉 such that

– R is the set of runs, where:
• every run r = 〈(xt0, . . . , xtm−1)|t = 0, 1, 2 . . . 〉, is a countably infinite sequence,

where xti ∈ {>,⊥}, and
• a state (or a possible world) of a run r is 〈r, t〉 = (xt0, . . . , x

t
m−1),

– π : R× N×N1 → {>,⊥} is the set of valuations:
• π(r, t, nl) = xtl , associates truth values to propositional letters of the possible

world 〈r, t〉,
– A associates sets of active nodes to possible worlds, and
– K = {Ka : a ∈ A} is the set of transitive and symmetric accessibility relations for

nodes, such that:
• if a 6∈ A(〈r, t〉), then 〈r, t〉Ka〈r′, t′〉 is false for all r′ ∈ R and all t′ ∈ N.

Actually, a state, or a possible world 〈r, t〉, in a run r represents the state of the system in
the corresponding time instant t, and we will alternatively use these notions in the rest of
the paper.

Figure 5 illustrates a Kripke model which contains the runs r1, r2, r3, r4, where r1 is
the sequence of 〈r1, 0〉, 〈r1, 1〉, 〈r1, 2〉, etc. and similarly for other runs. In this model, for
example 〈r2, 1〉K1〈r2, 2〉, etc.

An ni ∈ Nodes is true in the time instant t in the run r (xti = >) if the Chord
network node i is active in the corresponding realization of the network. For ni, nj , nk ∈
Nodes we define the relation M which represents the fact that ni is the member of the
ring interval (nj , nk] as: niM〈nj , nk〉 is true iff

– j = k, or
– j < k and j < i 6 k, or
– k < j and ¬(k < i 6 j).

Note that the relation M is defined for all members of the set Nodes, regardless the fact
if the members are active or not.

Correctness of the Chord Protocol 149

Fig. 5. Kripke model

4.3. Satisfiability relation

A formula is satisfiable if there is a possible world in a model which makes that formula
true.

Definition 2. LetM = 〈R, π,A,K〉 be any model. The satisfiability relation |= (formula
α is satisfied in a time instant t of a run r) is defined recursively as follows:

1. 〈r, t〉 |= n iff π(r, t, n) = true, n ∈ N1

2. 〈r, t〉 |= α ∧ β iff 〈r, t〉 |= α and 〈r, t〉 |= β
3. 〈r, t〉 |= ¬α iff not 〈r, t〉 |= α (〈r, t〉 6|= α)
4. 〈r, t〉 |=©α iff 〈r, t+ 1〉 |= α
5. 〈r, t+ 1〉 |= α iff 〈r, t〉 |= α
6. 〈r, 0〉 |= α
7. 〈r, t〉 |= Gα iff for all i > 0 holds 〈r, t+ i〉 |= α
8. 〈r, t〉 |= Hα iff for all 0 6 i 6 t holds 〈r, t− i〉 |= α
9. 〈r, t〉 |= Kiα iff 〈r′, t′〉 |= α for all 〈r′, t′〉 ∈ Ki(〈r, t〉)

10. 〈r, t〉 |= ni � nj iff
(a) i = j and 〈r, t〉 |= ni ∧ Ki(

∧
nj∈Nodes\{ni} ¬nj)

(b) i < j 6 m and 〈r, t〉 |= ni ∧ nj ∧ Ki(
∧j−1

k=i+1 ¬nk) ∧ Kinj
(c) j < i < m and 〈r, t〉 |= ni ∧ nj ∧ Ki(

∧m
k=i+1 ¬nk) ∧ Ki(

∧j−1
k=1 ¬nk) ∧ Kinj

(d) j < i and i = m and 〈r, t〉 |= ni ∧ nj ∧ Ki(
∧j−1

k=1 ¬nk) ∧ Kinj
11. 〈r, t〉 |= nj ≺ ni iff

(a) i = j, t 6= 0 and 〈r, t〉 |= ni ∧ Ki(
∧

nk∈Nodes\{ni} ¬nk)
(b) i < j 6 m and 〈r, t〉 |= ni ∧ nj ∧ Ki(

∧j−1
k=i+1 ¬nk) ∧ Kinj

(c) j < i < m and 〈r, t〉 |= ni ∧ nj ∧ Ki(
∧m

k=i+1 ¬nk) ∧ Ki(
∧j−1

k=1 ¬nk) ∧ Kinj
(d) j < i and i = m and 〈r, t〉 |= ni ∧ nj ∧ Ki(

∧j−1
k=1 ¬nk) ∧ Kinj

(e) ni = u and 〈r, t〉 |= ¬nj ∨ (nj ∧ ((¬Kk(nk � nj))))

Now, we can explain the intuitive meaning of the operators. For example, the formula
©α is true in a state 〈r, t〉 of a run r iff α is true in the next state 〈r, t + 1〉 of the same
run. Next, Kiα is true in a state 〈r, t〉 iff α is true in all states 〈r′, t′〉 accessible from 〈r, t〉
by the relation Ki(〈r, t〉). On the other hand, the formula ni � nj is true if there is only
one active node in the Chord network (case (a)), or there is not other active nodes between
ni and nj and node ni is aware of activity of nj (cases (b)-(d)). The cases (b)-(d) take in

150 Bojan Marinković et al.

account the ring structure of the Chord network, i.e. [ni, nj] is one ring interval. Similarly
for nj ≺ ni.

By Definition 2 it is trivial to prove that the following lemma holds:

Lemma 1. TP: 〈r, t〉 |= (©α ∧©β)↔©(α ∧ β).

We use this property in the proofs provided in Appendix A.

5. Proof of Correctness

In this Section we analyze correctness of the Chord protocol. More precisely, we prove
that any execution of a regular run maintains the ring topology of the corresponding net-
work. It means that the network will be brought, after a finite number of steps, from a
state in which links between nodes do not form a ring to a stable state. First, we need to
introduce the following definitions:

Definition 3 (Stable pair). The pair of active nodes 〈nk, nl〉 is stable in a time instant t
of a run r (i.e., in the state 〈r, t〉), denoted with nk e nl, iff

〈r, t〉 |= (nl �m1 nk)∧(
m1∧
j=1

Kij (nij � nij+1))∧(nl ≺m1 nk)∧(
m1∧
j=1

Kij+1(nij+1 ≺ nij)),

where nk, nl, nij ∈ A(〈r, t〉) for 1 6 j 6 m1.

Intuitively, a pair 〈nk, nl〉 is stable if:

– the nodes nk and nl are active, and
– every active node nj such that njM〈nk, nl〉 knows its successor and predecessor.

It means that there is no node ni between nk and nl which tries to join or leave the
network in 〈r, t〉.

Definition 4 (Stable network). A Chord network is stable (we denote it with }) at 〈r, t〉
iff nk e nk for all nk ∈ A(〈r, t〉).

Intuitively, the whole network is stable if all successor and predecessor pointers are
sorted.

Definition 5. A node ni is a member of a stable pair 〈nk, nl〉 iff niM〈nk, nl〉 and nk enl.

Definition 6 (Regular runs). A run is regular if in every state of the run a node can leave
the network only if it is a member of a stable pair of nodes.

Definition 6 is essential in producing a deterministic proof of the correctness of the
Chord protocol, since if it is allowed that nodes can leave the network when they are
members of unstable pairs, there are counter examples in which those nodes can be left
isolated or the network can be divided into more then one separate subnetworks, as it is
shown in [16].

We assume the following form of the fairness condition: there is a constant f ∈ N
which denotes a uniform limit from above for duration of all primitive actions of the
Chord protocol (listed in Section 3).

The basic properties of � and ≺ relations can be described with:

Correctness of the Chord Protocol 151

AS1: 〈r, t〉 |= ni � nj →
∧

nk∈N1\{nj} ¬(ni � nk), ni, nj ∈ Nodes

AS2: 〈r, t〉 |= ni ≺ nj →
∧

nk∈N1\{nj} ¬(ni ≺ nk), ni, nj ∈ Nodes

AS3: 〈r, t〉 |= ni ≺ nj →
∧

nk∈N1\{ni} ¬(nk ≺ nj), ni, nj ∈ Nodes

AS4: 〈r, t〉 |= ni ≺ nj → nj � ni, ni, nj ∈ Nodes
AS5: 〈r, t〉 |= ni � nj → Ki(ni � nj), ni, nj ∈ Nodes
AS6: 〈r, t〉 |= ((ni � nj) ∧ nkM〈ni, nj〉 ∧©(¬Kink))→©(ni � nj),
ni, nj , nk ∈ Nodes
AS7: 〈r, t〉 |= ((ni ≺ nj) ∧ nkM〈ni, nj〉 ∧©(¬Kink))→©(ni ≺ nj),
ni, nj , nk ∈ Nodes

[AS1] says that a node can have only one successor. [AS2] says that a node can be
predecessor of only one node. [AS3] says that a node can have only one predecessor.
[AS4] says that if a node is predecessor of some other node, that other node has to be its
successor. [AS5] says that if a node ni has the successor nj , then ni knows that nj is its
successor. [AS6] says that the current successor (nj) of a node (ni) will be successor of the
node in the next time instant (©(ni � nj)), assuming that ni does not know (©(¬Kink)))
that a new node nk which belongs to the ring interval [ni, nj) (i.e., nkM〈ni, nj〉) joins the
network. Similarly, [AS7] says when the current predecessor will be the predecessor in
the next time instant, if there are no new nodes.

The primitive actions of the Chord network can be describe in the following way:

ρS : 〈r, t〉 |= H(
∧

nj∈Nodes ¬nj) ∧ ni ∧ (
∧

nj∈Nodes\{ni} ¬nj) ∧ Ki(ni � ni) ∧
Ki(ni ≺ u) for one ni ∈ Nodes,
ρJ,i: 〈r, t〉 |= (¬ni) ∧ ni ∧

∨f
l=0©lKi(ni � nj) ∧ Ki(ni ≺ u), nj ∈ A(〈r, t〉),

ni ∈ Nodes, i 6= j,
ρL,i: 〈r, t〉 |= (ni ∧nj enk)∧niM〈nj , nk〉∧¬ni, ni ∈ Nodes nk, nj ∈ A(〈r, t〉)
ρS1,i,j : 〈r, t〉 |= (Ki(ni � nj) ∧ Kj(nj ≺ u)) ∨ (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧
niM〈nk, nj〉)→

∨f
l=0©lKj(nj ≺ ni), ni, nk, nj ∈ A(〈r, t〉),

ρS2,i,j : 〈r, t〉 |= Ki(ni � nj)∧ Kj(nj ≺ nk)∧nkM〈ni, nj〉 →
∨f

l=0©lKi(ni � nk),
ni, nk, nj ∈ A(〈r, t〉),
ρS3,i: 〈r, t〉 |= Ki(ni � nj)∧¬nj →

∨f
l=0©lKi(ni � nk)∧

∨
l∈A(〈r,t〉) ¬nlM〈ni, nk〉,

ni, nk ∈ A(〈r, t〉), nj ∈ Nodes

ρS4,i: 〈r, t〉 |= Ki(nj ≺ ni) ∧ ¬nj →
∨f

l=0©lKi(u ≺ ni), ni ∈ A(〈r, t〉),
nj ∈ Nodes

[ρS] describes the start of the new Chord network, i.e., there was no active node in
the past (H(

∧
nj∈Nodes ¬nj)), in the current time instant only ni becomes active (ni ∧

(
∧

nj∈Nodes\{ni} ¬nj)), and ni knows that it is its own successor (Ki(ni � ni)), while its
predecessor is still undefined (Ki(ni ≺ u)). Similarly, for the other formulas: [ρJ,i] rep-
resents the situation when a new node ni joins the existing Chord network, while [ρL,i]
represents the situation when a new node ni leaves the existing Chord network in a regu-
lar run. [ρS1,i,j] - [ρS4,i] characterize stabilization processes (that make predecessor and
successor pointers up to date).

To be able to describe periodicity of the stabilization process, we introduce the fol-
lowing formulas:

ACF1: 〈r, t〉 |= ni ∧ ρS →
∨f

l=0©l
∨m−1

j=0 ρS1,i,j , ni ∈ A(〈r, t〉),

152 Bojan Marinković et al.

ACF2: 〈r, t〉 |= ni ∧ ρS →
∨f

l=0©l
∨m−1

j=0 ρS2,i,j , ni ∈ A(〈r, t〉),
ACF3: 〈r, t〉 |= ni ∧ ρJ,i →

∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ A(〈r, t〉),

ACF4: 〈r, t〉 |= ni ∧ ρJ,i →
∨f

l=0©l
∨m−1

j=0 ρS2,i,j , ni ∈ A(〈r, t〉),
ACF5: 〈r, t〉 |= ni ∧ ρS1,i,k →

∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ A(〈r, t〉),

k ∈ {0,m− 1},
ACF6: 〈r, t〉 |= ni ∧ ρS2,i,k →

∨f
l=0©l

∨m−1
j=0 ρS2,i,j , ni ∈ A(〈r, t〉),

k ∈ {0,m− 1},
ACF7: 〈r, t〉 |= ni ∧ ρS →

∨f
l=0©l

∨m−1
j=0 ρS3,i, ni ∈ A(〈r, t〉),

ACF8: 〈r, t〉 |= ni ∧ ρS →
∨f

l=0©l
∨m−1

j=0 ρS4,i, ni ∈ A(〈r, t〉),
ACF9: 〈r, t〉 |= ni ∧ ρJ,i →

∨f
l=0©l

∨m−1
j=0 ρS3,i, ni ∈ A(〈r, t〉),

ACF10: 〈r, t〉 |= ni ∧ ρJ,i →
∨f

l=0©l
∨m−1

j=0 ρS4,i, ni ∈ A(〈r, t〉),
ACF11: 〈r, t〉 |= ni ∧ ρS3,i →

∨f
l=0©l

∨m−1
j=0 ρS3,i, ni ∈ A(〈r, t〉),

ACF12: 〈r, t〉 |= ni ∧ ρS4,i →
∨f

l=0©l
∨m−1

j=0 ρS4,i, ni ∈ A(〈r, t〉).

The correctness of the Chord protocol can be proved by compounding simpler cases.
The statements 2-6 guarantee that the successor and predecessor pointers for each node
will be eventually sorted after one or more nodes join existing or start a new network.
Theorem 6 expresses the correctness of the model of executions without failures of nodes
and corresponds to Theorem IV.3 from [5]. The statements 7-9 consider possible leaving
of a node. Lemma 10 says that a stable pair of nodes in a Chord network eventually
becomes stable after adding/removing of a node between them with the respect to the
regular runs, while Theorem 4 shows the same, but for a stable network.

Lemma 2. Let a node start a new Chord network. Then, there is a finite period of time
after which the network will be stable, if no other nodes are trying to join in the mean-
while.

Lemma 3. Let a new node join a stable Chord network which consists of only one node.
Then, there is a finite period of time after which the network will be stable again, if no
other nodes are trying to join in the meanwhile.

Proofs of Lemmas 2 and 3 are similar to the proof of Lemma 4 (that can be found in
Appendix A).

Lemma 4. Let a node join a Chord network, between two nodes which constitute a stable
pair, such that the second node is the successor of the first node. Then, there is a finite
period of time after which the starting pair will be stable again, if no other nodes are
trying to join the network between the nodes that constitute the particular stable pair in
the meanwhile.

Lemma 5. Let a node join a Chord network, between two nodes which constitute a stable
pair. Then, there is a finite period of time after which the starting pair will be stable again,
if no other nodes are trying to join in the meanwhile.

Proof. Since one new node is joining the network between a stable pair, we can choose
two nodes which are each others successor and predecessor and the new node is joining
between them, so we can apply Lemma 4.

Correctness of the Chord Protocol 153

Lemma 6. Let a Chord network contain a stable pair. If a sequence of nodes join between
the nodes that constitute this stable pair, then there is a finite period of time after which
the starting pair will be stable again.

Proof. If we assume that all nodes that want to join the network have different successors,
by Lemma 5 the statement holds.

If this is not the case, we can assume that nienk and that the set of nodes nj1 , nj2 , . . .,
such that i 6 . . . 6 j2 6 j1 6 k, are joining this stable pair. Then, we can apply Lemma
5 on the tuples 〈ni, nj1 , nk〉, 〈ni, nj2 , nj1〉, This process will produce the stable pair
ni e nk, again.

Lemma 7. Let a Chord network contain a stable pair and let a node between them leave
the network. Then, there is a finite period of time after which the starting pair will be
stable again, if no other nodes are trying to join in the meanwhile.

Proofs of Lemmas 8 and 9 are similar to the proof of Lemma 7 (that can be found in
Appendix A).

Lemma 8. Let a Chord network contain a stable pair nienk. Let a node which is between
those nodes leave the network followed by several nodes which want to join between
〈ni, nk〉.Then, there is a finite period of time after which 〈ni, nk〉 will be stable again.

Lemma 9. Let a Chord network contain a stable pair. Let a node, which is in between
those nodes, leave the network. Then, there is a finite period of time after which the start-
ing pair will be stable again.

Lemma 10. Let a finite initial segment of a run of a Chord network produce the state
〈r, t〉, and 〈n, n′〉 ∈ A(〈r, t〉) be nodes that do not leave the network. Then, there is a
finite period of time after which 〈n, n′〉 will be stable, i.e., n e n′.

Proof. First note that, if the pair is stable at 〈r, t〉, then the statement trivially holds.
Otherwise, since we consider only regular runs, only joining of the new nodes between
〈n, n′〉 is possible. So, this is similar to Lemma 9.

Theorem 1. Let a finite initial segment of a run produce the state 〈r, t〉 of a Chord net-
work. Then, there is a finite period of time after which the network will be stable again:

〈r, t〉 |= ¬}→ F}

Proof. We assume that at least one node does not leave the network. Note that an unstable
state can be reached under following conditions:

– if a node starts the Chord network, which is considered in Lemma 2,
– if a node joins the Chord network, which is considered in Lemma 3, 4, 5 and 6,
– if a node leaves the Chord network, which is considered in Lemma 7, and
– if some nodes are leaving and some nodes are joining the Chord network, which is

considered in Lemma 8, 9 and 10.

So, as an unstable state can be reached only in some of the cases that are already
considered, this theorem is the corollary of the lemmas 2 – 10.

154 Bojan Marinković et al.

6. Conclusion

Discovery and control services are the core part of every IoT system. To improve the per-
formances of them, we found several examples where the regular approach was replaced
by DHT, i.e. the Chord protocol. All these examples do not consider correctness of the
Chord protocol and take it for granted, or consider it by very strong assumptions. To be
used in a proper manner, it is necessary to describe in a deterministic scenario for all the
situation when the Chord protocol manifest incorrect behavior. For that purpose, we de-
fine the notion of regular runs and prove the correctness of the maintenance of the ring
topology of the Chord protocol with the respect of them, using the framework of time and
knowledge.

One of the possible directions for further work is to apply the similar technique to
describe other DHT protocols and other cloud processes. Another challenge could be to
verify the given proof in one of the formal proof assistants (e.g., Coq, Isabelle/HOL). It
might also produce a certified program implementation from the proof of correctness.

Acknowledgments. The work presented here was supported by Serbian Ministry of Education,
Science and Technology Development (the projects ON174026 and III44006), through Matematički
institut SANU, and Croatian Ministry of Science and Education. This work was supported in part by
the Slovenian Research Agency within the research program Algorithms and Optimization Methods
in Telecommunications.

References

1. L. Atzori, A. Iera, G. Morabito. The Internet of things: A survey. In Computer Networks, 54.15,
2787–2805, 2010.

2. S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, L. Veltri. A Scalable and
Self-Configuring Architecture for Service Discovery in the Internet of Things. In IEEE Internet
of Things Journal, Vol. 1, No. 5, 508–521, 2014.

3. R. Rodrigues, P. Druschel. Peer-to-Peer Systems In Communications of the ACM, Vol. 53 Issue
10, pages 72–82, October 2010.

4. I. Taylor. From P2P to Web Services and Grids. Springer-Verlag, 2005.
5. I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan. Chord: A Scalable Peer-to-Peer

Lookup service for Internet Applications. In ACM SIGCOMM, pages 149–160, 2001.
6. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H. Balakrishnan.

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. MIT Technical re-
port, TR-819, 2001.

7. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In IEEE/ACM Trans-
actions on Networking, vol. 11, no. 1, 17 – 32, 2003.

8. J. J. Bolonio, M. Urueña, G. Camarillo. A Distributed Control Plane for the Internet of Things
Based on a Distributed Hash Table. In Mobile Networks and Management, Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
125, 108–121, 2013.

9. S. Evdokimov, B. Fabian, S. Kunz, N. Schoenemann. Comparison of Discovery Service Ar-
chitectures for the Internet of Things. In IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC), 2010.

10. F. Paganelli, D. Parlanti. A DHT-Based Discovery Service for the Internet of Things. In Journal
of Computer Networks and Communications, doi:10.1155/2012/107041, 2012.

Correctness of the Chord Protocol 155

11. D. Xu, Z. Wu, Z. Wu, Q. Zhang, L. Qin, J. Zhou. Internet of Things: Hotspot-based Discovery
Service Architecture with Security Mechanism. In International Journal of Network Security,
Vol. 17, No. 2, 208–216, 2015.

12. R. Bakhshi, D. Gurov. Verification of Peer-to-peer Algorithms: A Case Study. Technical report,
ICT, 2006.

13. R. Bakhshi, D. Gurov. Verification of Peer-to-peer Algorithms: A Case Study. In Electronic
Notes in Theoretical Computer Science (ENTCS), Volume 181, 35–47, 2007.

14. S. Krishnamurthy, S. El-Ansary, E. Aurell, S. Haridi. A Statistical Theory of Chord Under
Churn. In 4th International Workshop on Peer-To-Peer Systems, pages 93–103, 2005.

15. D. Liben-Nowell, H. Balakrishnan, D. R. Karger. Analysis of the Evolution of Peer-to-Peer
Systems. In Proc. 21st ACM Symp. Principles of Distributed Computing (PODC), pages 233–
242, 2002.

16. P. Zave. Using Lightweight Modeling to Understand Chord. In ACM SIGCOMM Computer
Communication Review, Vol. 42, Issue 2, pages 50–57, April 2012.

17. R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi. Reasoning About Knowledge. The MIT Press,
Cambridge, Massachusetts, 1995.

18. D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, D. Lewin. Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proceedings of STOC’97, pages 654–663, 1997.

19. B. Marinkovic, Z. Ognjanovic, D. Doder, A. Perovic. A Propositional Linear Time logic with
Time Flow Isomorphic to ω2. In Journal of Applied Logic, 12(2), 208 – 229, 2014.

20. Z. Ognjanovic. Discrete Linear-time Probabilistic Logics: Completeness, Decidability and
Complexity. In Journal of Logic Computation, Vol. 16, No. 2, 257–285, 2006.

21. Z. Ognjanovic, D. Doder, Z. Markovic. A Branching Time Logic with Two Types of Probability
Operators. In Fifth International Conference on Scalable Uncertainty Management SUM-
2011, Springer LNCS 6929, 219–232, 2011.

A. Proofs

Recall that f denotes the maximum of durations of all primitive actions of the Chord
protocol.

Lemma 4. Let a node join a Chord network, between two nodes which constitute a stable
pair, such that the second node is the successor of the first node. Then, there is a finite
period of time after which the starting pair will be stable again, if no other nodes are
trying to join the network between the nodes that constitute the particular stable pair in
the meanwhile.

Proof. We will show that 5 rounds of the stabilization process (i.e., 5f steps of an execu-
tion of the Chord protocol) will be enough to guarantee that the considered pair of nodes
becomes stable.

Let us assume that ni, nj ∈ A(〈r, t〉) and ni enj , i.e. (ni � nj)∧ (nj ≺ ni) and that
nk tries to join that stable pair. Let us denote

α = (ni e nj) ∧ ρJ,k
∧
nl∈I

5f∧
t=0

©t¬nl, I = {nl|nlM〈ni, nj〉, nk 6= nl, nj 6= nl}.

The formula α says that the pair 〈ni, nj〉 is stable in the previous time instant
((ni e nj)), nk is joining (ρJ,k) and during the next 5f time instants no other node

156 Bojan Marinković et al.

(©t¬nl) is trying to join the network between the nodes that constitute initial stable pair
(nlM〈ni, nj〉).

By MP we denote the standard inference rule modus ponens:

from α and α→ β conclude β.

We have,

〈r, t〉 |= α (0)
〈r, t〉 |= Ki(ni � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉 ∧ nk (by AS6) (1)
〈r, t〉 |= Ki(ni � nj) (by definition of ∧ and 1) (2a)
〈r, t〉 |= Kj(nj ≺ ni) (by definition of ∧ and 1) (2b)
〈r, t〉 |= nkM〈ni, nj〉 (by definition of ∧ and 1) (2c)
〈r, t〉 |= nk (by definition of ∧ and 1) (2d)
〈r, t〉 |= ρJ,k (by definition of α) (2e)
〈r, t〉 |= nk ∧ ρJ,k (by 2d, 2e) (2f)

〈r, t〉 |= ρJ,k →
f∨

l=0

©lKk(nk � nj) (by definition of ρJ,k) (3)

〈r, t〉 |=
f∨

l=0

©lKk(nk � nj) (by MP, 2e, 3) (4)

〈r, t〉 |=
f∨

l=0

©lKk(nk � nj)→ #
fKk(nk � nj), (by definition of AS6,4) (5)

〈r, t〉 |= #fKk(nk � nj) (by MP, 4, 5) (6)

〈r, t〉 |= nk ∧ ρJ,k →
f∨

l=0

©lρS1,k,j [ACF3] (7)

〈r, t〉 |=
f∨

l=0

©lρS1,k,j (by MP, 2f,7) (8a)

〈r, t〉 |=©fρS1,k,j (by AS6) (8b)

〈r, t〉 |=©f ((Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉)→
f∨

l=0

©lKj(nj ≺ nk))

(by 8b) (9a)

〈r, t〉 |= #f ((Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉))→ #
f (

f∨
l=0

©lKj(nj ≺ nk))

(by AT2, 9a) (9b)

〈r, t〉 |= #fKk(nk � nj) (by AS6, 6) (10a)

〈r, t〉 |= #fKk(nj ≺ ni) (by AS6, 2b) (10b)

〈r, t〉 |= #f (nkM〈ni, nj〉) (by AS6, 2c) (10c)

Correctness of the Chord Protocol 157

〈r, t〉 |= #f (Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉) (by TP, 10a, 10b, 10c) (11)

〈r, t〉 |= #f (

f∨
l=0

©lKj(nj ≺ nk)) (by MP, 9,11) (12)

〈r, t〉 |= #2fKj(nj ≺ nk) (by definition of #, AS6, 12) (13)

〈r, t〉 |=
2f∨
l=f

©l
m−1∨
j=0

ρS2,i,j (by ni ∈ A(〈r, t〉) and ACF2 or ACF4) (14)

〈r, t〉 |=
2f∨
l=f

©lρS2,i,k (by definition of ∨,14) (15a)

〈r, t〉 |=©2fρS2,i,k (by definition AS6,15a) (15b)

〈r, t〉 |= #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉)→
f∨

l=0

©lKi(ni � nk))

(by 15b) (16a)

〈r, t〉 |= #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉))→ #
2f (

f∨
l=0

©lKi(ni � nk))

(by AT2, 16a) (16b)

〈r, t〉 |= #2fKi(ni � nj) (by AS6, 2a) (17a)

〈r, t〉 |= #2fKj(nj ≺ nk) (by AS6, 13) (17b)

〈r, t〉 |= #2f (nkM〈ni, nj〉) (by AS6, 2c) (17c)

〈r, t〉 |= #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉) (by TP, 17a, 17b, 17c) (18)

〈r, t〉 |= #2f (

f∨
l=0

©lKi(ni � nk)) (by MP, 16b,18) (19)

〈r, t〉 |= #3fKi(ni � nk), (by definition of #, AS6,19) (20)

〈r, t〉 |=
4f∨

l=3f

©l
m−1∨
j=0

ρS1,i,j (by ni ∈ A(〈r, t〉) and ACF1 or ACF3) (21)

〈r, t〉 |=
4f∨

l=3f

©lρS1,i,k (by definition of ∨,21) (22a)

〈r, t〉 |=©4fρS1,i,k (by definition AS6, 22a) (22b)

〈r, t〉 |= #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉)→
f∨

l=0

©lKk(nk ≺ ni))

(by 22b) (23a)

〈r, t〉 |= #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉))→ #
4f (

f∨
l=0

©lKk(nk ≺ ni))

(by definition of AT2, 23a) (23b)

158 Bojan Marinković et al.

〈r, t〉 |= #4fKi(ni � nk) (by AS6, 29) (24a)

〈r, t〉 |= #4fKk(nk ≺ u) (by AS6, 2e) (24b)

〈r, t〉 |= #4f (nkM〈ni, nj〉) (by AS6, 2c) (24c)

〈r, t〉 |= #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉) (by TP, 24a, 24b, 24c) (25)

〈r, t〉 |= #4f (

f∨
l=0

©lKk(nk ≺ ni)) (by MP, 23b,25) (26)

〈r, t〉 |= #5fKk(nk ≺ ni) (by definition of #, AS6,26) (27)

〈r, t〉 |= #5fKk(nk � nj) (by AS6, 6) (28)

〈r, t〉 |= #5fKj(nj ≺ nk) (by AS6, 13) (29)

〈r, t〉 |= #5fKi(ni � nk) (by AS6, 20) (30)

〈r, t〉 |= #5fKk(nk ≺ ni) (by AS6, 27) (31)

〈r, t〉 |= #5f (Kk(nk � nj) ∧ Kj(nj ≺ nk) ∧ Ki(ni � nk) ∧ Kk(nk ≺ ni))
(by TP, 28, 29, 30, 31) (32)

〈r, t〉 |= #5f (ni e nj) (by definition of e) (33)

The last formula represents the statement of this Lemma.

Lemma 7. Let a Chord network contain a stable pair and let a node between them leave
the network. Then, there is a finite period of time after which the starting pair will be
stable again, if no other nodes are trying to join in the meanwhile.

Proof. We will show that 2 rounds of the stabilization process (i.e., 2f steps of an execu-
tion of the Chord protocol) will be enough to guarantee that the considered pair of nodes
becomes stable.

Let us assume that ni, nj , nk ∈ A(〈r, t〉) and ni e nk, i.e. (ni � nj) ∧ (nj ≺
ni) ∧ (nj � nk) ∧ (nj ≺ nk) and that nj tries to leave that stable pair. Let us denote

α = (ni e nk) ∧ ρL,j

∧
nl∈I

2f∧
t=0

©t¬nl, I = {nl|nlM〈ni, nj〉, nk 6= nl, nj 6= nl}.

ρL,j : (nj ∧ ni e nk) ∧ njM〈ni, nk〉 ∧ ¬nj
We have,

〈r, t〉 |= α (0)
〈r, t〉 |= Ki(ni � nj) ∧ Kk(nj ≺ nk) ∧ ¬nj (by simplification α) (1)

〈r, t〉 |=
f∨

l=0

©Ki(ni � nk) (by 1, ρS3,i) (2)

〈r, t〉 |=
f∨

l=0

©Kk(u ≺ nk) (by 1, ρS4,k) (3)

〈r, t〉 |=©fKi(ni � nk) (by AS6,2) (4)

Correctness of the Chord Protocol 159

〈r, t〉 |=©fKk(u ≺ nk) (by AS7, 3) (5)

〈r, t〉 |=
f∨

l=0

©fKk(ni ≺ nk) (by MP, 4,5, ρS2,i,k) (6)

〈r, t〉 |=©2fKk(ni ≺ nk) (by AS7, 6) (7)

〈r, t〉 |=©2fKi(ni � nk) (by AS6, 4) (8)

〈r, t〉 |=©2f (Kk(ni ≺ nk) ∧ Ki(ni � nk) (by TP, 7,8) (9)

〈r, t〉 |= #2f (ni e nk) (by definition of e) (10)

The last formula represents the statement of this Lemma.

Bojan Marinković is Research Assistant Professor at Mathematical Institute of the Ser-
bian Academy of Sciences and Arts. He received his PhD student at The Faculty of Techi-
cal Sciences University of Novi Sad, Serbia in 2014. During 2009, he spent three months
as a visiting researcher at INRIA Sophia Antipolis, France. His research interests concern:
distributed systems, applications of mathematical logic in computer science, automated
theorem proving and digitization of cultural and scientific heritage.

Zoran Ognjanović is a research professor at the Mathematical Institute of the Serbian
Academy of Sciences and Arts. He received his PhD degree in mathematical logic from
University of Kragujevac, Serbia, in 1999. He has authored or coauthored over 70 (chap-
ters of) monographs and technical papers in major international journals and conferences.
His research interests concern: applications of mathematical logic in computer science,
artificial intelligence and uncertain reasoning, automated theorem proving, applications
of heuristics to satisfiability problem and digitization of cultural and scientific heritage.
He is a recipient of the Serbian Academy of Sciences and Arts Award in the field of
mathematics and related sciences for 2013 and the annual award of Serbian Ministry of
Science for results in fundamental research in 2004.

Paola Glavan, PhD, is currently research and teaching assistant at the University of Za-
greb, Faculty of Mechanical Engineering and Naval Architecture-FSB. Her main scientific
interests include using logic and logical methods in analyzing distributed processes and
protocols. In particular, she is interested in Abstract State Machines and their application
to semantics of programming languages and distributed protocols and the use of temporal
epistemic logic in describing and verifying distributed protocols.

Anton Kos received his Ph.D. in electrical engineering from University of Ljubljana,
Slovenia, in 2006. He is an assistant professor at the Faculty of Electrical Engineering,
University of Ljubljana. He is a member of the Laboratory of Information Technologies
at the Department of Communication and Information Technologies. His teaching and re-
search work includes communication networks and protocols, quality of service, dataflow
computing and applications, usage of inertial sensors in biofeedback systems and applica-
tions, signal processing, and information systems. He is the (co)author of more than thirty
papers appeared in the international engineering journals and of more than fifty papers
presented at international conferences.

160 Bojan Marinković et al.

Anton Umek received his Ph.D. in electrical engineering from University of Ljubljana,
Slovenia, in 1999. He is currently an assistant professor at the Faculty of Electrical En-
gineering, University of Ljubljana. He is a member of the Laboratory of Information
Technologies at the Department of Communication and Information Technologies. He is
a member of the research program Algorithms and optimization methods in telecommu-
nications that was two years in a row the best research program financed by the Slovenian
research agency. Since last year he is the leader of industrial research and development
projects in designing of sensor based smart sport equipment and sensor based forestry
machinery. His teaching and research work includes signal processing, digital communi-
cation, secure communications , access network technologies and design of sensor sup-
ported sport training systems. He is the (co)author of eight papers appeared in the inter-
national engineering journals and of more than thirty papers presented at international
conferences. Anton Umek is a member of IEEE and between 2015 and 2018 he was the
Slovenian section ComSOC chapter chair.

Received: November 15, 2018; Accepted: August 8, 2019.

Computer Science and Information Systems 17(1):161–179 https://doi.org/10.2298/CSIS181011020K

Distance Transform and Template Matching Based
Methods for Localization of Barcodes and QR Codes

Melinda Katona, Péter Bodnár and László G. Nyúl

Department of Image Processing and Computer Graphics
University of Szeged

Árpád tér 2., H-6720 Szeged, Hungary
{mkatona, bodnaar, nyul}@inf.u-szeged.hu

Abstract. Visual codes play an important role in automatic identification, which
became an inseparable part of industrial processes. Thanks to the revolution of
smartphones and telecommunication, it also becomes more and more popular in
everyday life, containing embedded web addresses or other small informative texts.
While barcode reading is straightforward in images having optimal parameters (fo-
cus, illumination, code orientation, and position), localization of code regions is
still challenging in many scenarios. Every setup has its own characteristics, there-
fore many approaches are justifiable. Industrial applications are likely to have more
fixed parameters like illumination, camera type and code size, and processing speed
and accuracy are the most important requirements. In everyday use, like with smart-
phone cameras, a wide variety of code types, sizes, noise levels and blurring can be
observed, but the processing speed is often not crucial, and the image acquisition
process can be repeated in order for successful detection.
In this paper, we address this problem with two novel methods for localization of
1D barcodes based on template matching and distance transformation, and a third
method to detect QR codes. Our proposed approaches can simultaneously local-
ize several different types of codes. We compare the effectiveness of the proposed
methods with several approaches from the literature using public databases and a
large set of synthetic images as a benchmark. The evaluation shows that the pro-
posed methods are efficient, having 84.3 % Jaccard accuracy, superior to other ap-
proaches. One of the presented approaches is an improvement on our previous work.
Our template matching based method is computationally more complex, however,
it can be adapted to specific code types providing high accuracy. The other method
uses distance transformation, which is fast and gives rough regions of interests that
can contain valid visual code candidates.

Keywords: barcode localization, QR code localization, feature extraction, distance
transform, template matching.

1. Introduction

Item identification using visual codes is popular in our everyday life, and there are several
methods available for the process to be fast and reliable. The retrieval of the embedded
data takes place in two steps. First, we have to find the visual code object within the
acquired sensor data or image (localization step), then we have to use the symbology of
the code and recognize the embedded data (decoding step). Decoding is widely studied,

162 Melinda Katona, Péter Bodnár and László G. Nyúl

so we can use many approaches from the literature [8,10,19,23,27], or public APIs like
the ZBar library1.

It should be emphasized that decoding is far more straightforward, while the issue of
localization is similar to object recognition and is still not fully solved. For localization
of the code object, most algorithms use segmentation techniques with different features.
Several applications simply ignore the localization step by adding a fast rotating laser
that scans in many directions. Also, false positives are not acceptable, but the checksum
digit (barcode) and the error correction (QR code) make false positives very unlikely in
practice.

Visual codes are not meant to be readable for humans, they are decoded by specific
devices. The most popular 1D barcode subtypes are the EAN-13 and UPC standards.
These are widely used in commerce, like on wrapping of products, and they help quickly
obtain the information on e.g. the producing country, types of entities of products. The
flow of information is greatly boosted using visual codes, which provide decoding of the
embedded data by electronic devices. Some types include features that also help their
localization. The traditional 1D barcode structure is simple: a sequence of parallel light
and dark bars of varying thickness represent information. The literature sometimes refers
to 2D codes as “barcodes”, however, they do not necessarily consist of “bars”. They carry
the embedded data along two axes, and their most popular types are QR code and Data
Matrix. Some 1D and 2D codes are presented in Fig. 1. In addition, these classical visual
codes can also be produced in a way that they become unique and thus can be used to
validate originality or authenticity. For example, in our previous work [14], we focused
on automatic localization of glitters used as a certain kind of Natural Feature Identifier
(NFI).

Fig. 1. Popular barcode types (from left to right). Top row (1D codes): Code39, Codabar,
Code128, UPC-A; Bottom row (1D codes, 2D code): UPC-E, EAN-8, I2of5, QR code.

The use of visual codes has a reputation of more than 50 years, however, in the past,
the localization process required many conditions to fulfill. The first barcodes were in
a fixed position on railway trucks and were read by a fixed sensor gate. As technology
progressed, PoS terminals appeared, still requiring human intervention to perform code
reading. In the ’70s, new algorithms have been developed that could localize codes having
various orientation and position within the image. The first approaches were very simplis-
tic, they imitated the laser scanners of the barcode reading device. From the ’90s, machine

1 publicly available at http://zbar.sourceforge.net/

Methods for Localization of Barcodes and QR Codes 163

learning provided some more sophisticated solutions for the issue. Methods providing au-
tomatic code localization are usually slower, but more accurate than their predecessors.
Accuracy and processing speed are conditions that can hardly be fulfilled simultaneously,
and most approaches aim to find a balance between these. Some machine learning algo-
rithms make an exception, and they are capable of a quick evaluation after a significantly
slower learning process, provided that the features can be computed efficiently and there
is sufficient amount of training data available.

In industrial applications, accuracy is more crucial, since missed codes may lead to
loss of profit. In those cases, speed is a second desired attribute, while in smartphone
applications accuracy is not as critical, because the user handles the device interactively,
and repetition of the image acquisition is possible and relatively easy.

There are numerous methods for the localization of visual codes in digital images,
some imitating the classical laser scanner. Adelmann et al. [1] introduced a barcode recog-
nition and information system to detect and read EAN-13 barcodes. This system works
as a mobile application and traditional and widely used. After some preprocessing steps,
Ohbuchi et al. [18] used a scanline based procedure to detect QR and EAN codes.

The toolkit of mathematical morphology has been used in many approaches in the
literature. Bodnár et al. explained that using simple detectors [4] such as combination of
different morphological operators and distance map to detect barcodes efficiently. Fur-
thermore, texture analysis [3] can also achieve great efficiency. Similarly, Katona et al.
[12] showed a method that relies on simple morphological bottom-hat filtering after a
pre-processing step that highlights the bars of the barcode. Later in their work [13], they
used simple features to localize a barcode areas. A distance map based approach was used
as an extension of this process to merge split regions, which improves accuracy. Those re-
gions, for example, arise from bad illumination, or flaws of the barcode material. Lin et
al. [17] demonstrated a fast and effective method that can simultaneously detect 1D and
2D barcodes. Their method is based on a modified run length smearing algorithm. Kong
[15] defines regions of interests that may contain QR codes in synthetic images with the
mix of Harris corner detector and convex hull. In addition, they recommended a solu-
tion to correct for geometric distortion. Belussi et al. [2] introduced a machine learning
method that is based on the locator pattern of the QR code. They proposed a cascade of
weak classifiers using features from the Haar wavelet family. Although it is fast, it pro-
vides a noticeable amount of false positive code candidates. Bodnár et al. [6] proposed
an improvement on that, using LBP and HoG features as an extension of the training step
on the full code object. Sörös et al. [20] aim to localize 1D and 2D code using edge and
corner maps, even considering the saturation channel in HSV images. Their algorithm is
optimized on images suffering from heavy directional smoothing [21]. The method has
high accuracy, in cases however, where the code object is surrounded by text, their ap-
proach provides oversized bounding boxes. Text filtering can help get rid of this problem,
considering the surrounding text as a priori information. Szentandrási et al. [22] also work
with edge and corner maps and HoG features. Their method works locally on square im-
age cells, similarly to convolution. This approach enables parallel execution and it is also
highly accurate.

Yun et al. [28] introduced an orientation histogram-based method. They used a his-
togram to the principal orientation components from the entire image and calculate the
local entropy of the orientation to generate a saliency map. Bodnár et al. [5] presented

164 Melinda Katona, Péter Bodnár and László G. Nyúl

a method based on distance transformation. The algorithm also considers local image
blocks and evaluates the distance map of the edge map. It takes into account the mean and
standard deviation of the distance values within each block, then makes a binary decision
whether or not the block contains a barcode part. While this feature can be computed
efficiently, it has weak classification power, therefore it is not sufficient for use alone
for the localization step. In their work, the authors tried to overcome this attribute using
morphological operations.

Many recent papers use machine learning methods to solve various image processing
problems. Hansen et al. [11] used a deep learning object detection algorithm, namely
You Look Only Once (YOLO) model. Their network is based on a pre-trained Darknet19
model with 6000 epochs. The most common architecture for semantic segmentation is
the U-net that has different variants for each task. Ventsov et al. [26] divided the input
image into 128×128 blocks, extracted statistical characteristics for each block and trained
a convolution neural network. A Region-based Convolutional Neural Network (R-CNN)
model was proposed by Ban et al. [25] for detecting diversified barcodes under complex
scenes. They used for experiments two pre-trained model, ImageNet and VGG16.

In this paper, in Sec. 2.2, we present an improvement to this latter approach, giving a
feature that can also be computed using the distance map and it also considers direction
information. Also, instead of using only statistical values, we propose to use the whole
distribution vector and make the final decision with SVM. The feature is computed lo-
cally, and in the final step, the accuracy is further improved by processing the feature
matrix. This shows good performance for 1D codes, but on 2D codes, it is not sufficiently
accurate. We also present two algorithms based on template matching, one suitable for
efficiently localizing 1D barcodes (Sec. 2.1), and the other suitable for QR code detection
(Sec. 2.3).

2. Methods

Although the imaging quality of recent digital cameras is high, lower quality images may
be acquired as well due to various circumstances, such as dust, humidity, shaking of the
camera in low-light situations. Due to this, preprocessing of the input images is usually
necessary before code localization. In this section, we present three barcode detection
algorithms. They use different classical operations to find the barcode in the image.

2.1. 1D barcode localization using pattern matching

In this section, we present a novel method for the localization of 1D barcodes based on
pattern matching. The overview of the algorithm is presented in Fig. 2, while particular
steps are illustrated in Fig. 3 and described below.

During processing, the input images can be of different sizes. We reduce the height
of the image to a fixed size of 500 pixels in order to make them more uniform, easier
to handle, and make processing faster. Empirical experience has shown that this is the
smallest image size where smaller area code regions can still be localized. We did not use
color information during the process, so the input RGB image was converted to grayscale.
Input images are often blurry, therefore we use sharpening (Fig. 3(b)).

Methods for Localization of Barcodes and QR Codes 165

Input image Resampling RGB → L*a*b* (L*)

SharpeningBinarization

Rectangularity filteringTemplate matching Dilation

Binary image with
matched center points

Thresholding by
number of holes

Keep overlapping regions

Morph. openingDetected barcode region

Fig. 2. The barcode localization process using template matching

The detection process is based on binary images, so the image is binarized using a
global threshold. In our case, this value was 4% of the maximum intensity (Fig. 3(c)).
This threshold was chosen empirically, based on the observation that white parts of the
code more often fall into the gray intensity range because of dust, cheap quality labels
or shapes being present because the packaging does not necessarily use white color for
the bright parts of the code. This is not a robust solution, but selecting valid regions
from false regions is easier than finding a missing part during a post-processing process.
Obviously, a filter step is needed to reduce the number of false regions where different
noise, etc., can occur. The shape of the bars of a barcode are rectangular, so we examine
the shape of each object. If the shape of the object is not approximately rectangular, we do
not consider it as a candidate region. The examined barcodes have a specific structure, so
template matching is a possible way to detect the bars of the barcode. The input for pattern
matching is illustrated in Fig. 3(d). As barcodes consist of parallel “bars”, the template
consists of two parallel lines. Traditional barcodes consist of a plurality of parallel lines,
so a similar part of the image may be suitable for template matching. We also know the
maximum and minimum distance between bars for each type of code. The template image
was selected based on this information.

The process of template matching occurs in the frequency domain using Fast Fourier
Transformation. The complexity of template matching in Fourier domain is O(n log n ∗
n2), where n is the data size. We rotate the template image in every 10◦, up to 170◦, and
compute the sum of the pointwise multiplication of the frequency representation of the
original image and the rotated template images. 10◦ step was empirically found to be suf-
ficient because the efficiency of this method had its maximum at around 15◦. Thanks to
the symmetric nature of the matched template, it is sufficient to examine only the afore-
mentioned rotations. The summarized feature image is then thresholded with the mean of
the summarized value.

Next, we use only the center of the objects that are being obtained. Pixels belonging
to a specific cluster are well-separable like the bars of the barcode that are close to each
other. We used the well-known kNN clustering method to separate connected objects from
each other. The set of points from template matching can be well separated, so we have

166 Melinda Katona, Péter Bodnár and László G. Nyúl

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. The proposed method for 1D barcode localization. (a) input image, (b) deblurring,
(c) binarization, (d) filtering by rectangularity, (e) thresholding using the number of
cluster points, (f) result of (d) after dilation, (g) matching objects with (e) on image (f),
(h) opening, (i) code candidate boxes overlaid onto (a) in red

chosen k = 3. To keep valid regions, we use a priori information that a barcode consists
of at least 8 bars, so only those clusters are kept that have at least 8 points (3(e)). The
complexity of kNN is O(ndk)n, where n denotes the number of training points, d is the
number of dimensions and k is the number of iterations.

We apply morphological dilation on the binary version of the original image, using
a 3×3 structuring element (Fig. 3(f)). We investigate objects between the dilated image
and filtered cluster points and we only keep overlapping regions (Fig. 3(g)). In order
to determine the whole barcode region, we use morphological opening with a square-
shaped structuring element. The size is defined based on the maximal distance between the
stripes, which provides that every barcode will have its own connected region (Fig. 3(h)).
The complexity of morphological operations depends on the used operator.

2.2. Barcode localization using distance transformation

The proposed algorithm is based on a feature derived from distance transformation. First,
the Canny edge map is produced, then distance transformation is performed, where every

Methods for Localization of Barcodes and QR Codes 167

point gets the distance value from its closest edge point. During this computation, we
propose to also register the angle of each corresponding edge point, which reinforces the
feature.

A priori information is needed regarding the element size of the visual code. “Bar
thickness” of the barcodes may vary with respect to the distance of the code object and the
camera, however, a range can be given for the expected thickness of the bars. Typically, the
thinnest bar of a barcode is 1–3 px, while the thickest is 5–15 px wide in a case where the
data is reasonably retrievable. With QR codes, typical element size is 5–30 px, regarding
public code databases.

We propose to work on the brightness channel of the color space (V in HSV or L* in
L*a*b*). As a preprocessing step, contrast stretching is performed and Gauss smoothing
is applied, with a kernel size depending on the image resolution and expected bar thick-
ness. For the aforementioned case, a 3×3 or 5×5 kernel is appropriate. After smoothing,
the Canny edge map is produced as the hysteresis thresholding of the Sobel’s x and y gra-
dients. The method greatly helps localization because it produces thin, connected edges.
Those edge points are the marked points for the distance transformation. We also calculate
the direction to the closest corresponding point. This approach produces similar “zones”
like the Voronoi diagram (Fig. 4).

original image edge map distance map direction map

Fig. 4. Sample from the Muenster data set and its corresponding feature images

The feature image is divided into disjoint square blocks as the next step, then we
calculate the distribution of the distance and angle values, aggregated in a predefined
number of bins. The two vectors are then concatenated and fed into an SVM that learns
a binary classification. Although we could give the raw pixel data to the SVM, it is less
efficient than the aforementioned features that take advantage of spatial information. The
prediction of the SVM will give an answer to the question of whether or not an image
block contains part of a barcode. Such binary value is assigned to each block forming a
feature matrix.

In the next step, connected components of the feature image are determined. Compo-
nents are filtered by size, as barcode bar width gives a range for expected minimum and
maximum code size. Those code objects appear as connected components in the feature
matrix. Compactness can be calculated as the proportion of the perimeter and area of a
blob. The tolerance should be set according to the expected visual code type (bar width
and the width-to-height ratio of the specific code). Fig. 5 shows an example for the feature
image, its thresholded connected components and filtering by size and compactness.

168 Melinda Katona, Péter Bodnár and László G. Nyúl

original image feature image thresholding component classification

Fig. 5. Post-processing steps of the feature image

A rotated bounding rectangle is given for the components that meet the aforemen-
tioned conditions. After that, we look for a homography with a properly oriented rectan-
gle having the expected code size and proportions. The decoder gets the rectangular area
from the image with the inverse homography applied.

In a previous work [5] the distance transformation was performed block-wise, which
means the closest marked point was only searched for within the block. It is more ap-
propriate to do the distance transformation before the tiling because we can also find the
closest corresponding points in neighboring blocks and this helps the training process of
the SVM. Block size is not relevant for the distance feature itself, however, it should be
selected so that most bins of the distribution contain a sufficient number of samples. The
rule of thumb for binning declares that n is a proper choice for the number of bins if
we have at least n2 samples. According to that, a distribution of 16 bins defines a lower
bound of 16×16 px block size. The upper bound for the block size is related to the code
size. In order to successfully detect a code object, at least 15–20 blocks are needed in the
feature matrix for a code candidate. Fewer blocks would mean block length being bigger
than 25–35 % of the code length along its dimensions, which decreases the occurrence of
blocks that are full with code pattern only.

Blocks can be overlapping, but overlapping does not significantly improve the vari-
ability (and the learnability) of the distribution, and approximating the process of convo-
lution only increases running time. Summary of the steps can be observed in Fig. 6.

Input image Canny edge map

Distance map Direction map

Feature image,
divided into blocks

Distance and direction
histograms for each block

SVM Component filtering Detected barcode region

Fig. 6. Steps of the Distance Transform approach

Methods for Localization of Barcodes and QR Codes 169

2.3. QR code localization with template matching

In this section, we present a new method for localization of QR codes. The overview is
given in Fig. 7, while the particular steps are illustrated in Fig. 8 and described below.

Input image Resampling RGB → L*a*b* (L*)

σ filteringσ filteringBinarizationDensity calculation

Morph. opening Masking Template matching

Detected barcode region

Fig. 7. The QR code localization process

(a) (b) (c) (d)

(e) (f) (g)

Fig. 8. Proposed method for QR code localization. (a) input image, (b) σ filtering, (c)
binarization, (d) density calculation, (e) morphological opening, (f) post-processing, (g)
detected QR code

Similarly to the procedure described in Sec. 2.2, we also work with images with spe-
cific size during the localization and convert the images to grayscale. In order to highlight
the barcode areas, we use standard deviation based adaptive filtering method with 3×3
neighborhood [9]. The resulting image is heterogeneous, so we used density calculation
with a fixed 7×7 kernel. We calculated the number of object points for every kernel and
removed from candidate barcode regions where this value was under the half of the kernel
size.

In order to remove false small regions and then merge the connected regions, we ap-
ply a morphological opening. The shape of the QR code is ideally a square, so we use a

170 Melinda Katona, Péter Bodnár and László G. Nyúl

square shaped structuring element for the morphological operation. Based on empirical
observations, we binarize the image obtained in the previous step with the threshold value
of 7/8th of the maximum intensity. Since global thresholding is not an overly robust oper-
ation, but the bars of the barcode have low-intensity as usual (we supposed that barcode
not colorful), so we can eliminate numerous false segments with a low-intensity value
when determining global thresholding. In the last step, we validate the code segments by
pattern matching. For this, we used a region from the inner box of a QR code as a sample.
We do the template matching on the original image and we investigate overlapping with
the opened binary image similarly as described in Sec. 2.2. Valid QR code regions are
available after the validation step.

3. Evaluation and results

In this section, the proposed algorithms are compared against some effective ones from the
literature. Several research groups [8,7,12,20,24,29,28,11,26] evaluated their algorithms
on the WWU Muenster data set, therefore we also decided to use that set for evaluation,
while the fine-tuning of parameters and some of our other tests were performed on our
custom, synthetic image set2.

3.1. Test suite and implementation

An artificial test set is created from the barcode examples presented in Fig. 1. One ex-
ample is selected from each code type, and various distortions and levels of noise are
applied. The generated images were rotated from 0◦ to 180◦ by 15◦. Gaussian smooth-
ing is applied with 3×3 kernel and 6 different σ values. Also, Gaussian noise was added
from 0 % to 50 % with the step of 10 %. In total, we created 12 orientations from 8 types
of barcodes, using 6 different smoothing and 6 different noise levels, with perspective
distortions, counting as cca. 15 000 images. Fig. 9 illustrates some examples from our
artificial data set. Furthermore, we used 1056 images of real barcodes from the WWU
Muenster data set.

For the test set of QR codes, we used a database consisting of 1400 real images [20],
and 10 000 synthetic test images. The latter set is generated similarly to the 1D barcode
set. Fig. 10 shows some samples from that data set. The second public database by Dubská
et al. contained two similar sets of QR code images, surrounded with text in a scene having
low saturation in general. The first set has 410 high-resolution (2560 × 1440 px) images
with uneven lighting conditions, high grades of distortion and minor blur. The second test
set has 400 low-resolution (604 × 402 px) images with smaller grades of distortion and
more even illumination, but having less light in general, thus producing darker images.

3.2. Figures of merit

To measure the efficiency of the algorithms, we compared the overlap of our segmentation
output and the ground truth with the Jaccard similarity measure, defined as

J =
TP

TP + FP + FN
,

2 http://www.inf.u-szeged.hu/˜bodnaar/barcode_database/

http://www.inf.u-szeged.hu/~bodnaar/barcode_database/

Methods for Localization of Barcodes and QR Codes 171

Fig. 9. 1D samples with different distortions, synthetic (first row) and real images
(second row).

Fig. 10. Synthetic and real images with QR code

where TP denotes the correctly detected codes, FP is the number of not valid code
regions and FN is the number of not localized codes. Note that, ground truth regions
have a tight fitting bounding polygon showing the code object without numbers and “quiet
zones” as a border. A successful detection is where J > 0.5, according to the work of
Szentandrási et al. [22].

3.3. Parameters for the distance transformation approach

The fine-tuning of the SVM parameters were performed using a subset of the Muenster
database since with 1D cases, the visual structure of the code and the distribution of the
angles is more prominent.

As the first step of the evaluation, we examined how SVM accuracy is influenced
by the number of bins. We performed separate trainings using only the distributions of

172 Melinda Katona, Péter Bodnár and László G. Nyúl

 0.55

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

0 5 10 15 20 25 30 35

number of bins

recall
precision
accuracy

(a)

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

0 5 10 15 20 25 30 35

number of bins

recall
precision
accuracy

(b)

Fig. 11. Efficiency of the Distance Transformation method w.r.t. the number of distance
(a) and direction (b) bins

 0.90

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1.00

2 4 6 8 10 12 14

input vector prefix

recall
precision
accuracy

(a)

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

2 3 4 5 6 7 8

input vector prefix

recall
precision
accuracy

(b)

Fig. 12. SVM efficiency w.r.t. the used prefix of the distance (a) and direction (b)
histograms

distance values (Fig. 11(a)) and angles (Fig. 11(b)). We can conclude that more than 16
distance classes do not significantly improve accuracy. With angles, 8 classes show the
highest classification power.

Also, we examined feeding only a prefix of a distribution of distances or angles, which
shows how important the individual bins are. Intuitively, we shall expect that for the dis-
tance values, the first few bins are important, because the edge points are close to each
other in barcodes, and this characteristic contributes the most to the classification power.
Our results confirm this assumption (Fig. 12(a)).

For the directions we shall expect that the elements of the distribution are equally
important, so the number of bins is linearly correlated to accuracy (Fig. 12(b)).

We examined the accuracy considering only distance values, only angles, and both
distance and angle simultaneously. Results are shown in Table 1. The highest accuracy is
obtained when both directions and angles are used for the training.

We also evaluated the training accuracy using a small number of training samples.
Results are shown in Fig. 13. The whole Muenster database with a given block size of
50×50 px contains cca. 300 000 input vectors, about 10 % of them labeled as positive.
The SVM classes should be weighted according to that proportion. We used 10-fold cross-

Methods for Localization of Barcodes and QR Codes 173

Table 1. SVM training performance for various features

input recall precision accuracy
directions only 0.9625 0.9416 0.9893
distances only 0.8169 0.8978 0.9698
both dir. & dist. 0.9597 0.9871 0.9942

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

0 5000 10000 15000 20000 25000 30000 35000

number of samples

recall
precision
accuracy

Fig. 13. SVM efficiency w.r.t. the number of used training samples

validation for validation purposes. The decrease in accuracy at the beginning of the graph
indicates that a small number of samples are more separable.

We implemented the algorithm using OpenCV, with the automatic SVM optimizer
option. Optimal parameter set means that the error is minimal during the cross-validation.
Additionally, it shall be noted that considering the directions along with the distances does
not increase running time significantly, because, during the 2-pass calculation of distance
values, the directions can also be recorded. Regarding memory usage, the space needed
to store the angles is similar to that for the original image.

3.4. Comparison

Our approaches were compared against other algorithms of the literature using the Muen-
ster database as a benchmark. Results are shown in Table 2. Considering the proposed
method with distance transformation (PROP-DT, Sec. 2.2), it shall be noted that the ear-
lier method based only on distance values can only be used as a weak classifier, but this
improvement with the directions and the SVM trained on the whole distribution makes it
a usable state-of-the-art solution. Only the algorithm of Tekin el al. [24] has better mean
value, however, with higher variance. For the comparison, we selected algorithms based
on various features, like edge and corner maps [20], or deformable templates [8]. Zam-
berletti et al. [29] work with the popular localization method that is also implemented in
ZXing barcode reading framework, while Creusot et al. [7] have an approach that uses
MSER. Our template matching based approach (PROP-TM, Sec. 2.1) is even more spe-
cific to the barcode localization issue, therefore it shows even better performance than
PROP-DT. Hansen et al. [11] reported 0.87 Jaccard value to result in their article, but we

174 Melinda Katona, Péter Bodnár and László G. Nyúl

did not use this result in our comparison, because there is some missing information about
training parameters, so we were unable to re-implement and evaluate the procedure.

Table 2. Comparison of various localization algorithms on the Muenster data set. (Mean
and standard deviation of Jaccard index.) Best performing method is typeset in bold.

Algorithm J st.dev.
Zamberletti et al. [29] 0.6950 N/A
Creusot et al. [7] 0.7990 N/A
Gallo et al. [8] 0.7089 0.3542
Tekin et al. [24] 0.8122 0.2562
Katona et al. [12] 0.5200 0.2967
Sörös et al. [20] 0.6647 0.2277
Yun et al. [28] 0.4716 0.2240
PROP-DT (Sec. 2.2) 0.8104 0.1944
PROP-TM (Sec. 2.1) 0.8430 0.1876

Most of the presented methods have the main goal as to highlight the bars of the
barcode (gradiens calculation, bottom-hat filtering, etc.). The algorithms that are based on
simple image operations and logic are examined on the synthetic image database under
different conditions. We investigated and found that the procedures are not sensitive to
rotation. We also examined the results with different noise and blur levels. In both cases
the generated images had 6 different levels for those parameters, modifying the σ value of
Gaussian smoothing and a γ weight for weighted addition of uniform noise to the original
image. We present the obtained Jaccard indexes in Table 3. It shows that the efficiency of
the procedures is hardly reduced by increasing the level of noise and smoothing. However,
in all cases, the methods do not behave significantly differently on ideal cases. We used 8
different codes to generate the images. The procedures were less successful in localization
task for these three types (Code-39, I2of5, UPC-E) as shown in Table 4. We also present
some qualitative results of the aforementioned approaches on challenging images. See 14
for details.

In the 2D case, we evaluated PROP-DT on the two data sets of Dubská et al. [22],
and obtained Jset2 = 0.7588 and Jset1 = 0.5592 as shown in Table 5. This means that
distance transformation cannot be used for 2D code localization because of the low level
of separability of distance and angle values. However, our template matching approach
(PROP-TMQR, Sec. 2.3) with 2D QR codes performed well on the Dubská data sets,
with Jset1 = 0.8315 and Jset2 = 0.8102. Hansen et al. [11] published 0.73 average
Jaccard value on Dubská sets.

We also compared the results on synthetic images along different blur and noise levels
(Table 6).

Methods for Localization of Barcodes and QR Codes 175

Table 3. Accuracy of the methods for different blur (σ value) and noise levels (in
percent) on 1D synthetic images (mean Jaccard index).

Blur Noise Gallo [8] Yun [28] Sörös [20] PROP-DT PROP-TM
0 0.74 0.64 0.75 0.83 0.82

0 30 0.75 0.66 0.76 0.83 0.82
50 0.75 0.65 0.77 0.83 0.81
0 0.77 0.64 0.74 0.75 0.82

3 30 0.75 0.67 0.76 0.83 0.81
50 0.73 0.63 0.76 0.77 0.78
0 0.76 0.65 0.74 0.73 0.82

5 30 0.74 0.66 0.76 0.83 0.81
50 0.73 0.63 0.75 0.77 0.78

Table 4. Accuracy of the algorithms for various types of code on 1D synthetic images
(mean Jaccard index).

Gallo [8] Yun [28] Sörös [20] PROP-DT PROP-TM
Codabar 0.81 0.71 0.8 0.73 0.87
Code-128 0.82 0.73 0.83 0.78 0.92
Code-39 0.57 0.52 0.59 0.84 0.72
Ean-13 0.82 0.69 0.81 0.85 0.83
EAN-8 0.81 0.70 0.81 0.91 0.83
I2of5 0.69 0.6 0.69 0.77 0.72
UPC-A 0.78 0.66 0.78 0.84 0.80
UPC-E 0.69 0.64 0.74 0.74 0.73

Table 5. Comparison of various localization algorithms on the QR synthetic database
(mean Jaccard index).

input Ohbuchi [18] Lin [16] PROP-DT PROP-TMQR
Dubska set1 0.79 0.81 0.56 0.83
Dubska set2 0.77 0.79 0.76 0.81

176 Melinda Katona, Péter Bodnár and László G. Nyúl

Table 6. Accuracy of the methods for different blur (σ value) and noise levels (in
percent) on QR synthetic images (mean Jaccard index).

Blur Noise Ohbuchi [18] Lin [16] PROP-DT PROP-TM
0 0.96 0.50 0.77 0.99

0 50 0.96 0.50 0.77 0.99
100 0.96 0.50 0.77 0.99

0 0.57 0.51 0.67 0.77
1.5 50 0.52 0.49 0.67 0.78

100 0.49 0.40 0.70 0.75
0 0.47 0.42 0.65 0.83

3 50 0.48 0.45 0.65 0.80
100 0.45 0.37 0.64 0.76

original image

Gallo

Yun

Sörös

PROP-DT

PROP-TM

Fig. 14. Qualitative results for the compared methods on some challenging 1D images.

Methods for Localization of Barcodes and QR Codes 177

original image Ohbuchi Lin PROP-DT PROP-TM

Fig. 15. Qualitative results for the compared methods on some challenging QR images.

4. Conclusion

Three novel approaches were presented, two for 1D barcode localization, and one for
2D QR codes. They are compared to algorithms from the literature, some of them being
universal (working on both 1D and 2D codes), others specialized for either 1D or 2D. For
the evaluation of efficiency, we generated data sets containing a large number of synthetic
images. Results indicate that the proposed algorithms are efficient, even in cases where
the visual codes suffer from perspective distortion.

Distance transformation was used for barcode localization in [5], however, it only
could be considered as a weak classifier. Adding angle information to the feature, accuracy
improves significantly. Distance transformation can be used as a standalone feature for the
problem, with various code types. The approach also has a disadvantage, namely, it cannot
be tuned to consider sophisticated structural details of different code types, like template
matching.

In specific cases, when we can define more assumptions on the expected code type,
size, or orientation, template matching can outperform general purpose solutions. How-
ever, in most applications, we cannot make very specific assumptions. Nevertheless, for
some industrial applications, where the code properties fall in narrow ranges, the concept
of template matching can be useful. In more general cases, the method based on distance
transformation performs well, and it only contains computationally simple steps. Also,
template matching might need different templates depending on the code type to find.

The proposed methods can be implemented to run in real time. The methods that use
SVM and distance transformation take cca. 250 ms for an image of size 1024x768 px.
The template matching based method’s running time is 680 ms for an image in the case
of 1D barcodes, and 419 ms for QR codes.

Acknowledgments.
This work was supported by the project “Integrated program for training new generation of

scientists in the fields of computer science”, No. EFOP-3.6.3-VEKOP-16-2017-0002. The project
has been supported by the European Union and co-funded by the European Social Fund. Melinda
Katona was supported by the European Union and the State of Hungary, co-financed by the Eu-
ropean Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ’National Excellence
Program’. The authors would like to thank Dr. Attila Tanács for his detailed and helpful comments
and suggestions.

178 Melinda Katona, Péter Bodnár and László G. Nyúl

References

1. Adelmann, R., Langheinrich, M., Flörkemeier, C.: A toolkit for bar-code-recognition and -
resolving on camera phones – jump starting the internet of things. In: In Workshop Mobile and
Embedded Interactive Systems (MEIS’06) at Informatik (2006)

2. Belussi, L.F.F., Hirata, N.S.T.: Fast QR Code Detection in Arbitrarily Acquired Images. In:
Graphics, Patterns and Images (Sibgrapi), 2011 24th SIBGRAPI Conference on. pp. 281–288
(2011)

3. Bodnár, P., Nyúl, L.G.: Barcode Detection with Morphological Operations and Clustering. In:
Signal Processing, Pattern Recognition, and Applications, Proceedings of the Ninth IASTED
International Conference on. pp. 51–57 (2012)

4. Bodnár, P., Nyúl, L.G.: Improving Barcode Detection with Combination of Simple Detectors.
In: 8th International Conference on Signal Image Technology and Internet Based Systems,
SITIS 2012. pp. 300–306 (2012)

5. Bodnár, P., Nyúl, L.G.: Barcode detection with uniform partitioning and distance transforma-
tion. IASTED International Conference on Computer Graphics and Imaging pp. 48–53 (2013)

6. Bodnár, P., Nyúl, L.G.: QR Code Localization Using Boosted Cascade of Weak Classifiers. In:
Image Analysis and Recognition, pp. 338–345. Springer International Publishing (2014)

7. Creusot, C., Munawar, A.: Real-Time Barcode Detection in the Wild. In: 2015 IEEE Winter
Conference on Applications of Computer Vision. pp. 239–245 (Jan 2015)

8. Gallo, O., Manduchi, R.: Reading 1D Barcodes with Mobile Phones Using Deformable Tem-
plates. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1834–1843 (2011)

9. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2003)

10. Ha, J.E.: A new method for detecting data matrix under similarity transform for machine vision
applications. International Journal of Control, Automation and Systems 9, 737–741 (2011)

11. Hansen, D.K., Nasrollahi, K., Rasmussen, C.B., Moeslund, T.B.: Real-Time Barcode Detection
and Classification using Deep Learning. In: IJCCI. pp. 321–327 (2017)

12. Katona, M., Nyúl, L.G.: A Novel Method for Accurate and Efficient Barcode Detection with
Morphological Operations. In: Signal Image Technology and Internet Based Systems (SITIS),
2012 Eighth International Conference on. pp. 307–314 (2012)

13. Katona, M., Nyúl, L.G.: Efficient 1D and 2D Barcode Detection Using Mathematical Mor-
phology. In: Mathematical Morphology and Its Applications to Signal and Image Processing,
Lecture Notes in Computer Science, vol. 7883, pp. 464–475. Springer Berlin Heidelberg (2013)

14. Katona, M., Nyúl, L.G.: Fast Recognition of Natural Feature Identifiers by a Mobile Phone.
Acta Cybernetica 22(1), 101–116 (2015)

15. Kong, S.: QR Code Image Correction based on Corner Detection and Convex Hull Algorithm.
Journal of Multimedia 8, 662–668 (2013)

16. Lin, D.T., Lin, C.L.: Multi-symbology and Multiple 1D/2D Barcodes Extraction Framework.
In: Proceedings of the 17th International Conference on Advances in Multimedia Modeling -
Volume Part II. pp. 401–410 (2011)

17. Lin, D.T., Lin, C.L.: Automatic location for multi-symbology and multiple 1D and 2D bar-
codes. Journal of Marine Science and Technology 21, 663–668 (2013)

18. Ohbuchi, E., Hanaizumi, H., Hock, L.A.: Barcode Readers Using the Camera Device in Mobile
Phones. In: Proceedings of the 2004 International Conference on Cyberworlds. pp. 260–265.
CW ’04 (2004)

19. Shams, R., Sadeghi, P.: Bar Code Recognition in Highly Distorted and Low Resolution Im-
ages. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on. vol. 1, pp. I–737 –I–740 (2007)

20. Sörös, G., Flörkemeier, C.: Blur-resistant Joint 1D and 2D Barcode Localization for Smart-
phones. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous Mul-
timedia. pp. 11:1 – 11:8 (2013)

Methods for Localization of Barcodes and QR Codes 179

21. Sörös, G., Semmler, S., Humair, L., Hilliges, O.: Fast Blur Removal for Wearable QR Code
Scanners. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers.
pp. 117–124. ISWC ’15, ACM (2015)

22. Szentandrási, I., Herout, A., Dubská, M.: Fast Detection and Recognition of QR Codes in High-
resolution Images. In: Proceedings of the 28th Spring Conference on Computer Graphics. pp.
129–136. SCCG ’12 (2013)

23. Tekin, E., Coughlan, J.: A Bayesian Algorithm for Reading 1D Barcodes. In: Proceedings of
the 2009 Canadian Conference on Computer and Robot Vision. pp. 61–67. CRV ’09 (2009)

24. Tekin, E., Coughlan, J.: BLaDE: Barcode localization and decoding engine. Tech. rep., Tech-
nical Report 2012-RERC (2012)

25. Tian, Y., Che, Z., Zhai, G., Gao, Z.: BAN, A Barcode Accurate Detection Network. In: 2018
IEEE Visual Communications and Image Processing (VCIP). pp. 1–5 (2018)

26. Ventsov, N.N., Podkolzina, L.A.: Localization of Barcodes Using Artificial Neural Network.
2018 IEEE East-West Design & Test Symposium (EWDTS) pp. 1–6 (2018)

27. Wang, K., Zou, Y., Wang, H.: Bar code reading from images captured by camera phones. In:
2005 2nd International Conference on Mobile Technology, Applications and Systems. p. 6
(2005)

28. Yun, I., Kim, J.: Vision-based 1D barcode localization method for scale and rotation invariant.
In: TENCON 2017 - 2017 IEEE Region 10 Conference. pp. 2204–2208 (2017)

29. Zamberletti, A., Gallo, I., Carullo, M., Binaghi, E.: Neural Image Restoration for Decoding
1-D Barcodes using Common Camera Phones. In: Computer Vision, Imaging and Computer
Graphics. Theory and Applications. pp. 5–11 (2010)

Melinda Katona received the M.S. degree in Computer Science in 2014 at University of
Szeged, Hungary. He is currently an PhD candidate at Institute of Informatics, University
of Szeged. Her research interests include pattern recognition and medical imaging.

Péter Bodnár graduated at University of Szeged in 2011 as technical informatician. After
that, he was admitted the PhD fellowship of the Doctoral School in Informatics. After
the three years of PhD studies, he was awarded the predoctoral fellowship in 2014. He
wrote his thesis about localization of visual codes. He participates in various projects
of the Department of Image Processing and Computer Graphics at University of Szeged
since 2011. Besides that, he has participated in the teaching activity of the Institute of
Informatics.

László G. Nyúl, received the M.S. degree in Computer Science in 1994, and the Ph.D de-
gree in 2003 from the University of Szeged, Hungary. He has been a visiting research as-
sociate at University College London, University of Pennsylvania, Universität Erlangen-
Nürnberg, Medical University Graz, and Uppsala Universitet. He is currently an associate
professor and the Head of Department of Image Processing and Computer Graphics, and
the Head of the Institute of Informatics at the University of Szeged, Hungary. His research
interests include image processing, medical imaging, and pattern recognition.

Received: August 29, 2018; Accepted: September 10, 2019.

Computer Science and Information Systems 17(1):181–203 https://doi.org/10.2298/CSIS181012035B

Comparison of systematically derived software metrics
thresholds for object-oriented programming languages

Tina Beranič1 and Marjan Heričko1

University of Maribor,
Faculty of Electrical Engineering and Computer Science,

Koroška cesta 46, 2000 Maribor, Slovenia
{tina.beranic, marjan.hericko}@um.si

Abstract. Without reliable software metrics threshold values, the efficient quality
evaluation of software could not be done. In order to derive reliable thresholds,
we have to address several challenges, which impact the final result. For instance,
software metrics implementations vary in various software metrics tools, including
varying threshold values that result from different threshold derivation approaches.
In addition, the programming language is also another important aspect. In this
paper, we present the results of an empirical study aimed at comparing system-
atically obtained threshold values for nine software metrics in four object-oriented
programming languages (i.e., Java, C++, C#, and Python). We addressed challenges
in the threshold derivation domain within introduced adjustments of the benchmark-
based threshold derivation approach. The data set was selected in a uniform way,
allowing derivation repeatability, while input values were collected using a single
software metric tool, enabling the comparison of derived thresholds among the cho-
sen object-oriented programming languages. Within the performed empirical study,
the comparison reveals that threshold values differ between different programming
languages.

Keywords: software metrics, threshold values, reference values, object-oriented,
benchmark data, programming language interdependence, reliable derivation, re-
peatability, replication

1. Introduction

Measurement is a key component for good software engineering, important for under-
standing, control and improvement [9]. It is performed with software metrics that facili-
tate the monitoring of the achieved quality level [19]. As defined, the software metric is
a quantitative measurement of the degree to which an evaluated entity possesses a spe-
cific attribute [17]. Many different object-oriented software metrics have been introduced
[18,29,6,3,24]. However, their use in practice, especially within software quality evalua-
tion, is limited, since reliable threshold values have not been proposed, [19,10,1].

Evaluating software quality with software metrics thresholds is a known approach
[29]. When software metric values of the assessed software entity exceed the threshold
values of the evaluated software metrics, this indicates potential problems in the form of
code deficiencies or smells, non-optimal source code, or different structural problems. In
the study by Beranič et al. [5], identification of deficient code was done using the com-
bination of software metrics and corresponding threshold values. The performed expert

182 Tina Beranič and Marjan Heričko

judgment confirmed the efficiency of identification based on derived thresholds, since,
by using the highest threshold, the proposed evaluation resulted in the detection of truly
deficient software classes.

Since efficient software quality evaluation can be done only with reliable threshold
values, the process of threshold derivation is very important. Different approaches for
deriving threshold values are proposed in the literature [4], including approaches based
on benchmark data, like [19,10,1,30,13,21]. They use software metric values as an input,
and provide concrete threshold values for selected software metrics. Resulting thresholds
vary between studies, and besides, generally applicable and accepted threshold values
cannot be found within related work. This may be due to the different challenges which
exist in the domain of software metrics threshold derivation.

When deriving threshold values, it is crucial that the input data sets are transparent,
and that they are gathered in a systematic and uniform way. With this, the reliability
of the results is increased and repeatability of calculations is achieved. Different soft-
ware metric tools are available that enable the collection of software metric values. How-
ever, the implementation of the same software metric often varies within different tools
[31,10,13,44,22,14,33], resulting in different values for the same software metric using
the same input data. In various software metric tools, a set of supported metrics differs
and, additionally, new tool-specific software metrics can be detected. Available software
metric tools rarely enable the collection of software metric values for more than one pro-
gramming language, wherein the broadest support is available in the Java programming
language [4]. The above-mentioned challenges affect the derivation of software metric
threshold values directly, especially when using benchmark-based approaches, where the
gathered metric values present an input data set into the threshold calculation step.

Also, different approaches for software metric threshold derivation based on bench-
mark data are available in existing literature. Each has its own characteristics, that are
reflected in differing threshold values, though the input data set is the same. In our pre-
liminary research, we compared threshold values derived by using approaches by Ferreira
et al. [10], Oliveira et al. [30] and Alves et al. [1], and confirmed that the derived thresh-
olds vary. This was also confirmed by Yamashita et al. [44], where they observed that the
derived thresholds would differ if a different derivation approach were to be used. Hence,
to provide comparable results, it is important that only a single derivation approach is
used.

The prevalence of the Java programming language within software metric tools is also
detectable between existing threshold derivation approaches, where most of the threshold
values are derived for Java, while other object-oriented programming languages are not
covered. The only exceptions, using the benchmark based threshold derivation approach,
are the studies by Alves et al. [1], which derived threshold values for C#, and by Lanza
and Marinescu [19], who derived threshold values for the C++ programming language.
Though some individual examples of derived thresholds exist, the systematic analysis of
threshold values between programming languages was not detected.

Based on the presented background, our research pursued the following research
question: Do software metric threshold values differ between different object-oriented
programming languages? We analyzed if the programming language has an influence
on the derived threshold values. The presented research work describes a systematic
threshold derivation, which enables a reliable analysis and comparison of software met-

Systematic comparison of software metrics thresholds 183

ric threshold values. In the paper, software metric threshold values are derived for four
object-oriented programming languages, namely Java, C++, C# and Python. Considering
the above-mentioned challenges, the derivation was conducted using a single threshold
derivation approach within all of the selected programming languages. Thresholds were
derived for nine class level software metrics. Metric CountLineCode, that counts the num-
ber of lines of code in a class, AvgLineCode, expressing the average size of methods in
a class, metric SumCyclomatic, presenting the sum of cyclomatic complexities of all the
methods in a class, AvgCyclomatic, expressing the average value of cyclomatic complex-
ity in the methods of a class, metric MaxNesting, measuring the maximal nesting level
in a class, CountClassCoupled, counting the classes to which a class is coupled, soft-
ware metric PercentLackOfCohesion, expressing the lack of cohesion in a class, metric
CountDeclMethodAll, counting the number of methods in a class, and metric MaxInher-
itanceTree, expressing the maximum depth of a class in the inheritance tree. Benchmark
data was collected systematically, and input values were collected using a single software
metric tool. With this, the comparison of derived software metric threshold values be-
tween programming languages was enabled, and a replication of the performed derivation
approach was provided.

The structure of the paper consists of the following parts. Chapter 2 presents related
work, followed by Chapter 3, presenting a threshold derivation approach that is based on
a statistical distribution of benchmark data. In Chapter 3, adjustments to the approach
are proposed, and the tools and data sets used within the empirical study are presented.
Chapter 3.3 describes the calculation of thresholds, covering the distribution analysis of
input values, resulting in concrete threshold values. Later, an analysis and comparison of
derived threshold values are presented in Chapter 4. Limitations and threats to validity are
presented at the end.

2. Related work

Software quality evaluation with software metrics can be done only when reliable thresh-
old values are defined. Different approaches for deriving threshold values are available in
the literature [4]. Fontana et al. [13] categorizes derivation approaches into (1) approaches
based on observations, (2) error-based approaches, (3) approaches using machine learn-
ing and, (4) approaches that derive thresholds based on a statistical analysis of benchmark
data. In the presented research, we focus on the latter.

Table 1 lists derivation approaches based on benchmark data. The approach proposed
by Lanza and Marinescu [19] derives threshold values using the mean and standard de-
viation, but the distribution of input data sets is not considered. On the other hand, the
majority of studies consider the assumption that software metrics values usually follow
a power law distribution [10,30,38,1,7], since distribution has a significant impact on
software metric interpretation [38]. The distribution is also considered by Lavazza and
Morasca [20]. Although they use the mean and the standard deviation, an improvement
is proposed that enables the use of data that does not follow a normal distribution. Ap-
proaches by Ferreira et al. [10], Oliveira et al. [30], Alves et al. [1], Lima et al. [21],
Vale and Figueiredo [41] and Vale et al. [42] consider the fact that software metric values
usually do not follow a normal distribution, leading to the inapplicability of methods con-
nected to normal distribution [1,38]. Ferreira et al. [10] identify threshold values for six

184 Tina Beranič and Marjan Heričko

Study Programming language(s)
Alves et al. [1] Java, C#
Ferreira et al. [10] Java
Filo et al. [12] Java
Fontana et al. [13] Java
Lanza and Marinescu [19] Java, C++
Lavazza and Morasca [20] Java
Lima et al. [21] Java
Oliveira et al. [30] Java
Vale and Figueiredo [41] SPL benchmark (FH-Java, AHEAD, FH-JML)
Vale et al. [42] SPL benchmark (FH-Java, AHEAD, FH-JML), Java

Table 1. Literature proposing software metric threshold derivation approaches

object-oriented software metrics reflecting a common practice. Filo et al. [12] introduced
two improvements to the approach presented by Ferreira et al. [10], the modification of
the ranges names, and the use of two percentiles, dividing the values into three areas.
Alves et al. [1] propose an approach using weighting according to the size of the entities,
wherein the approach was an inspiration for the work by Fontana et al. [13]. Fontana et
al. [13] define thresholds for the metrics used in the code smell detection rules. Lima et
al. [21] addressed the area of threshold derivation for annotations in the Java program-
ming language, and Vale and Figueiredo [41] present a threshold derivation approach in
the software product lines context. In the study [42], Vale et al. generalize the approach
by using a benchmark composed of 103 Java open source projects. The major difference
according to other available studies is that Vale et al. [42] also extract the lower bond
thresholds, namely the 3rd and 15th percentiles. Oliveira et al. [30] introduce the concept
of the relative threshold, implemented in an RTTool [31]. Another threshold derivation
tool, a TDTool, is presented by Veado et al. [43].

As seen in Table 1, the threshold values are mainly derived for the Java programming
language. In rare cases, thresholds are derived for two or more languages, as in [1,19,42].
However, the empirical comparison of threshold values between programming languages
was not found within the related work.

The studies were done in order to define the impact of different contextual factors on
derived threshold values, or on the distribution of software metric values. Ferreira et al.
[10], in an experiment, analyzed the impact of thematic domains in gathered benchmark
data. As they observed, there is only a slight difference between the thresholds derived
using a full data set and thresholds derived within each of the thematic domains [10]. Even
more, the results show that software metric values follow the same probability distribution
regardless of the application domain. Mori et al. [28] also analyzed the impact of domains
on derived thresholds. In contrast to the study described above, they found evidence that
software metrics thresholds are sensitive to the software domain, but we can still find
domains that have similar thresholds for some of the analyzed software metrics [28].

On the other hand, Dósea et al. [8] conducted an empirical study regarding design
decisions influencing the distribution of software metrics. As they conclude, the design
roles affect the distribution of metric values, wherein design roles include architectural
roles and classes with application-specific responsibility that are not connected to any
specific reference architecture [8]. The impact of programming language on the distri-
bution of software metrics values was included in the study by Zhang et al. [45] and a

Systematic comparison of software metrics thresholds 185

study by Gil and Lalouche [15]. Zhang et al. [45] present a study about the impact of
different contextual factors on maintainability metrics. They found out that application
domain, programming language, and the number of changes, are the most influential fac-
tors regarding the distribution of software metric values [45]. They use the data from 320
software projects, selected randomly from SourceForge, but they were not represented
equally for each of the used programming languages, which can have a great impact on
the validity of results. A similar study was done by Gil and Lalouche [15], where they
found out that every project is different, therefore, measurement in one project could not
be used for making predictions in another software project.

Namely, the challenges connected to benchmark data present one of the biggest chal-
lenges when using benchmark based threshold derivation approaches. Considering the
above-mentioned challenges, we collected the data in a systematic way, where each pro-
gramming language is represented equally and selected software projects correspond to
the whole population of open-source software available on the chosen online repository.
Moreover, to avoid the impact of a specific software project on a final result, we gathered a
large set of benchmark projects, since Lochmann [23] found out that, with large numbers
of data, the diversity of areas and the variance of results decreases correspondingly.

Our research work aims at providing a comparison of the software metrics threshold
values for the object-oriented programming languages, namely Java, C++, C# and Python,
considering known challenges. The comparison is based on the performed analysis of sys-
tematically derived threshold values for nine software metrics. By adopting and adjusting
the existing derivation approach based on benchmark data and considering the distribu-
tion of software metric values, thresholds are calculated based on systematically collected
benchmark data and uniformly collected input values.

3. Threshold derivation approach

As presented in the related work, software metric values are used as an input in different
threshold derivation approaches. Lanza and Marinescu [19] do not consider data distribu-
tion, and Lavazza and Morasca [20], despite the presented changes, do not consider fully
the distribution of software metric values. Vale and Figueiredo [41] and Vale et al. [42]
present a method that also derives the lower thresholds that are not a priority when identi-
fying deficient source code, and Lima et al. [21] present an approach targeting annotation
for Java programming languages. Therefore, only papers by Alves et al. [1], Oliveira et al.
[30] and Ferreira et al. [10], with improvements presented by Filo et al. [12], that present
derivation approaches and resulting in concrete threshold values used for the evaluation of
software projects, were selected for a detailed analysis. Approaches are similar, wherein
Alves et al. [1] weigh the program entities based on their size expressed with lines of code
software metric, Ferreira et al. [10] consider the frequency of a specific software metric
value, and Oliveira et al. [30] introduce the concept of a relative threshold. As shown by
the performed comparison, weighing by size results in very high threshold values, and
the approach presented by Oliveira et al. [30], with the exception of the newly presented
concept, resulted in threshold values consistent with thresholds provided by the approach
proposed by Ferreira et al. [10].

We decided to adopt the approach presented by Ferreira et al. [10]. The approach
focuses on the statistical properties of analyzed data and object-oriented programming

186 Tina Beranič and Marjan Heričko

languages. Thresholds are defined according to the frequency concept within the bench-
mark data. The proposed approach can be summarized with the following steps [10]:

1. The software metrics values of selected benchmark projects are gathered, forming an
input data set.

2. The distribution of software metrics values is determined for each metric, using a
visual analysis, and by using a distribution fitting tool.

3. The thresholds are derived based on the best-fitted distribution. If representative val-
ues exist for a best-fitted distribution, it is defined as the threshold. Otherwise, three
areas are determined using a visual examination:

– The Good area joins the values of software metrics with a high frequency of
occurrence. Those values are used most commonly in practice.

– The Regular area represents an intermediate zone, joining the values that are not
commonly used, and, on the other hand, are also not very rare.

– The Bad area joins values with a very low frequency of occurrence.

In the performed experiment, Ferreira et al. [10], with the use of derived thresholds,
identify software classes with structural problems, wherein a bad value indicates the ex-
istence of design problems, and a good value indicates the absence of structural problems
in a class.

The approach was repeated and upgraded by Filo et al.[12]. They introduced two main
improvements. The first is connected to the identification of thresholds. Instead of using
the visual identification, Filo et al. [12] introduced the use of two percentiles that di-
vide the values into three areas. The percentiles are points dividing values into 100 equal
parts [11]. The use of percentiles was adopted from Alves et al. [1]. The second improve-
ment is connected to threshold naming. They complement existing names to achieve a
better understanding of each defined threshold. The names of the ranges are as follows:
good/common, regular/casual and bad/uncommon, but the use of derived software met-
rics’ thresholds for identification of the anomalous values indicating a potential problem
in source code, remains unchanged [12].

3.1. Adjustments of the adopted approach

Based on the analysis of the replicated approach presented by Ferreira et al. [10] and im-
provements introduced by Filo et al. [12], we propose some additional adjustments for the
adopted threshold derivation approach. When software metric thresholds are fied using the
presented steps, a few challenges arise. The first one is related to the fication of threshold
values that limit the mentioned areas. A visual examination was already replaced by the
use of two percentiles in the study presented by Filo et al. [12]. Adapted from Alves et al.
[1], they use the 70th and 90th percentiles to form three risk areas, although the primary
study by Alves et al. [1] proposed the use of three percentiles, i.e. 70th, 80th and 90th to
form four risk areas.

We propose an adjustment of the replicated approach by using two or three percentiles,
depending on the input data range and suitability of values. If the software metric values
occupy a wide range of data, thresholds can be determined with three percentiles: 70th,
80th and 90th. If the values occupy a limited range of data, thresholds should be fied with
two percentiles: 70th and 90th, and the very high risk area should not be included. Also, to

Systematic comparison of software metrics thresholds 187

exclude any subjectivity and to gain accuracy, we propose that the fication of percentiles
is done based on raw data sets instead of the visual examinations used by Ferreira et al.
[10] and Filo et al. [12].The detailed steps of the used threshold derivation approach are
presented within algorithm 1.

Algorithm 1 Threshold derivation process
1: collect and prepare input data set for each software metrics SM1...i

2: for each software metric SM1...i do
3: collect descriptive statistics
4: obtain kurtosis and skewness
5: analyze collected data set
6: verify normal distribution
7: end for
8: for each software metric SM1...i do
9: find best fitted distribution

10: verify heavy tail distribution
11: end for
12: for each software metric SM1...i do
13: derive threshold value T1...i

14: if distribution equals power law then
15: determine thresholds value T1...i regarding the distribution
16: using 70th percentile determine low risk area
17: using 70th and 80th percentile determine moderate risk area
18: using 80th and 90th percentile determine high risk area
19: using 90th percentile determine very high risk area
20: else
21: determine thresholds value T1...i regarding the distribution
22: using threshold values determine risk area
23: end if
24: end for

Filo et al. [12] complemented the naming of areas proposed by Ferreira et al. [10]
to increase the understanding of the derived thresholds. The proposed names reveal the
frequency of use of values within each area, whereas we propose renaming the areas to
express the risk each area represents within the context of quality evaluation. The naming
was suggested by Alves et al. [1] and is based on the risk perspective. We propose the
following naming of the fied areas:

– low risk, ≤70th,
– moderate risk, >70th and ≤80th,
– high risk, >80th and ≤90th and
– very high risk, >90th.

The formed areas express the risk that an evaluated program entity includes irregu-
larities in the context of different smells, specific structural problems, or potential defi-
ciencies. The low risk area is determined with the 70th percentile, therefore, coinciding
with the good/common area, as proposed by Filo et al. [12], indicating the absence of
structural problems in a class. On the other hand, if a very high risk area coincide with
a bad/uncommon area, this indicates the existence of design problems within the chosen
software entity. The described risk areas were used in the study by Beranič et al. [5] for
the detection of deficient source code. The study detects deficient software entities based
on the combination of quality aspects, increasing the reliability of the identification. Since
the use of only one software metric covers a single quality dimension, the use of a combi-
nation is crucial for reliable results. The expert judgment performed within the evaluation

188 Tina Beranič and Marjan Heričko

of the proposed approach confirmed that software entities that have the majority of metric
values in the area of very high risk, are evaluated accurately as deficient.

3.2. Selection of tools and data set for the empirical study

Within threshold derivation, one of the well-known challenges is how to provide com-
parable results between selected programming languages, and this constitutes precisely
the key driver of our research. We aimed at providing threshold values for the same soft-
ware metrics in four different programming languages. To overcome the distinctive def-
initions of software metrics within various software metric tools, the input data set into
the derivation process should be gathered using a single software metric tool. Based on
the performed analysis, we chose an Understand tool [35], that supports the collection of
software metric values for multiple programming languages [36]. With this, the risk was
addressed and eliminated of providing varying, tool dependent values for the same met-
ric. Besides, collecting values with a single software metric tool enables a more objective
comparison among different programming languages.

In the threshold derivation approach, the statistical properties of the input data set
were assessed with an SPSS tool [16], and by using R [32]. The best fitted distribution
according to the input data set was found with the EasyFit tool [26], and the fication of
thresholds was obtained from software metric values using the SPSS tool [16].

The second major challenge that has to be addressed when calculating thresholds us-
ing a benchmark data approach is the input data set. To provide reliable thresholds, the
input data has to be diverse, extensive and transparent. As Lochmann [23] found out, when
the input data set is larger, the diversity of areas and the variance of results decreases cor-
respondingly. Therefore, a large benchmark base reduces the impact of randomly selected
software products [34,23]. To determine the optimal size of input data set, we reviewed
studies deriving threshold values from benchmark data. The number of software projects
used by each study is presented in Table 2.

Study Number of software projects
Alves et al. [1] 100
Arar and Ayan [2] 10
Ferreira et al. [10] 40
Filo et al. [12] 111 (from Qualitas Corpus [40])
Fontana et al. [13] 74 (from Qualitas Corpus [40])
Mori et al. [28] 3,107
Oliveira et al. [30] 106 (from Qualitas Corpus [40])
Yamashita et al. [44] 4,780
Vale et al. [42] 103 (from Qualitas Corpus [40])

Table 2. Number of projects used as benchmark data within the threshold derivation
process

Oliveira et al. [30], Fontana et al. [13], Filo et al. [12] and Vale et al. [42] used projects
from Qualitas Corpus [40], whereas Alves et al. [1] used 100 software products, including
open source and proprietary solutions. Yamashita et al. [44] also used the combination
of open source and industrial software solutions, wherein 205 projects were proprietary

Systematic comparison of software metrics thresholds 189

and 4,757 projects were open source projects. Mori et al. [28] included 3,107 software
systems divided into 15 domains, since their focus was to analyze the impact of domains
on derived threshold values. On the other hand, Ferreira et al. [10] and Arar and Ayan [2]
used a smaller benchmark, including 40 and 10 projects, respectively.

Summarizing the collected numbers, we decided to use 100 software projects and use
the obtained values of software metrics as an input data set for threshold derivation. Since
we derived thresholds for the programming languages Java, C++, C# and Python, the use
of Qualitas Corpus collection [40] was not possible. The collection combines software
developed in the Java programming language, and, not knowing the conditions by which
the software projects were chosen, a comparable suite for the other three programming
languages could not be gathered.

We formed a reusable suite of software products that enables repeatability, and con-
tributes to the objectivity of the presented empirical research. The suite includes 400 soft-
ware projects, 100 in each of the selected programming languages. The list of used soft-
ware products is available at: https://bit.ly/2RIQhle. Since software projects were chosen
and gathered systematically, it allows a reliable comparison of derived thresholds.

In the implemented study, only open source software was used. We collected the input
software solution from SourceForge [39], that allows categorization of software projects
using different criteria, e.g., programming language, operating system, license, user inter-
face and others. Also, software projects are categorized into different thematic domains,
where each domain includes a different number of projects. Therefore, the ratio within
every programming language was transferred to the selected sample of 100 projects to
keep a ratio of the population. The impact of application domains on benchmark data set
values was studied by Ferreira et al. [10]. Thresholds were derived using the benchmark
data from 11 application domains. The results show that software metric values follow the
same probability distribution, regardless of the application domain, and that there is only
a slight difference between the thresholds derived for the used domains and the thresh-
olds derived using a full data set [10]. As they conclude, regardless of the observed minor
differences, the general results can be used for all application domains [10].

Within the scope of our experimental study, the selection of software projects was
performed in several steps. In the first step, we applied the programming language filter,
therefore, four lists were formed, a list of Java, C++, C# and Python projects. In the second
step, we applied different filters to the project lists to fy only those projects that are reg-
ularly maintained and stable, which suggests that they follow best software development
and maintenance practices. We considered criteria related to status and freshness, which
were chosen by using the following filters: (1) status - production/stable, (2) freshness -
recently updated. The third step sorted the filtered software projects by their popularity in
descending order, forming another filter for fication of stable projects. In the fourth step,
ordered and filtered lists were divided into different thematic domains using a category
filter, and producing a final input list into the software selection step. In the fifth step, the
corresponding number of software projects were chosen from each category, considering
the ratio accessible in the population. The data about each project were documented, and
the actual version of source code was downloaded. Each project got a unique fication key
that allows for traceability across a derivation approach.

The descriptive statistic of the established reusable suite is presented in Table 3. It
presents the statistics for selected software projects for each of four programming lan-

190 Tina Beranič and Marjan Heričko

files # classes # lines # code lines
Java

Min 12 12 1,511 957
Max 18,469 22,837 4,897,144 2,823,916
Avg 1,436.1 2,266.3 314,915.9 184,994.5

C++
Min 6 1 1,236 687
Max 26,517 34,718 10,032,886 5,996,402
Avg 1,644.8 987.4 542,526.0 312,326.8

C#
Min 5 4 570 378
Max 7,656 10,422 1,311,745 857,729
Avg 529.3 686.4 124,241.2 80,875.4

Python
Min 6 1 2,139 1,114
Max 4,167 10,085 915,078 583,278
Avg 287.8 587.9 82,126.5 54,830.1

Table 3. Descriptive statistics of selected software projects in a reusable suite

guages, presenting the minimum, maximum and average values of the number of files,
classes, the total number of lines, and number of lines of code.

Since the methodology of the selection of software products is presented and doc-
umented systematically, it can be repeated, and, with this, the formed suite of software
projects can be extended to other programming languages.

3.3. Calculation of threshold values

The focus of our research was on deriving threshold values for class level software met-
rics. As presented in Chapter 3.2, a reusable suite of software products was established,
including 400 software products, 100 for each of the selected programming languages. For
every software project in the suite, software metrics were collected with the Understand
tool [35]. Input files were prepared according to guidelines presented by the replicated ap-
proach [10], wherein the input file for the Java programming language included 206,730
records, the file for C++ 98,762 records, the file for C# had 81,293 records and the input
file for Python included 60,462 records.

The Understand tool [35] allows for the collection of 102 software metrics, evaluating
different levels. Our study is limited to Java, C++, C# and Python. Since all software
metrics are not supported in all programming languages, meaning that the support for
Python is limited, we decided to calculate thresholds for nine software metrics:

– CountLineCode - number of lines of code in a class,
– AvgLineCode - average size of methods in a class in lines of code,
– SumCyclomatic - the sum of cyclomatic complexities for all the methods in a class,
– AvgCyclomatic - the average value of cyclomatic complexity in the methods in a class,
– MaxNesting - the maximal nesting level in a class,
– CountClassCoupled - number of classes to which a class is coupled,
– PercentLackOfCohesion - the lack of cohesion in a class,
– CountDeclMethodAll - number of methods in a class, including inherited ones, and
– MaxInheritanceTree - the maximum depth of a class in the inheritance hierarchy.

Systematic comparison of software metrics thresholds 191

Metrics evaluating size and complexity are probably the most widely used software
measurements [19]. Size-related software metrics are aimed to quantify the size of a
software [37], for example, the metric CountLineCode expresses the number of lines of
source code in a chosen software class, excluding blank lines and comment lines, and
AvgLineCode expresses the average method size in a class, expressed with the number
of lines of code. Related to the latter, is also the metric CountDeclMethodAll, counting
all the methods within a class, taking into account inherited methods [36]. McCabe [27],
in 1976, introduced a complexity measure known as Cyclomatic Complexity. SumCyclo-
matic and AvgCyclomatic are measuring complexity, wherein SumCyclomatic expresses
the sum of cyclomatic complexities of all the methods in a class, and metric AvgCyclo-
matic gives an overview, expressing the average value of cyclomatic complexity of all the
methods in a class. Another aspect affecting the complexity of a program entity is covered
by metric MaxNesting [46], expressing the maximal nesting level in a class.

In addition to the above-mentioned software metrics, thresholds were also derived
for different object-oriented software metrics. Chidamber and Kemerer [6] proposed a
metrics suite aimed at measuring specific object-oriented properties. Among others, they
define a metric measuring coupling between object classes, a metric expressing lack of
cohesion in methods, and a metric expressing depth of the inheritance tree. The latter
are implemented in Understand tool [35] as CountClassCoupled, PercentLackOfCohesion
and MaxInheritanceTree, respectively. The software metric CountClassCoupled measures
the coupling of a class to other classes. Two classes are coupled if one class uses the meth-
ods and variables defined in another class [6]. High coupling is not desirable, since the
reuse is difficult because of decreased modularity [37]. On the other hand, the software
metric PercentLackOfCohesion expresses the lack of cohesion in a class. High cohesion
means that methods and attributes cooperate with each other and form a logical whole
[25]. The lack of cohesion may suggest that a class should be divided [37]. One of the
advantages of object-oriented design is the reuse of program entities. We can form classes
that inherit functionalities from their parent class [19]. Software metric MaxInheritance-
Tree expresses the maximum depth of a class in an inheritance hierarchy. The MaxIn-
heritanceTree of the root node is 0 [36]. In a case of multiple inheritances, the metric
expresses only the maximum length from the class node to the root of the inheritance tree
[6]. The deeper the class is in a hierarchy, the more methods could be inherited, which,
consequently, increases the complexity in the design [37].

For Java, C++ and C#, thresholds were derived for nine different software metrics,
and for Python, thresholds were derived for seven software metrics, since the metrics
CountClassCoupled and PercentLackOfCohesion are not supported by the used software
metric collection tool. Following the approach presented by Ferreira et al. [10], the thresh-
old derivation approach starts by checking the distribution of the input data set, which is
to say, by finding the best-fitted distribution. First, it was checked to see if data are dis-
tributed normally with the use of descriptive statistics. The latter was used to confirm the
power law distribution in the data set by Shatnawi and Althebyan [38]. Within normal dis-
tributions, the values are centralized strongly around the arithmetic mean, meaning that
the latter presents a representative value that a random variable can occupy [38]. For each
software metric in each of the selected programming languages, we gathered values for
the arithmetic mean, median, standard deviation and maximal value. Also, the values of
kurtosis and skewness were obtained, that enable an insight into data distribution and in-

192 Tina Beranič and Marjan Heričko

CountLineCode AvgLineCode
Java C++ C# Python Java C++ C# Python

kurtosis 2,439.1 5,911.9 15,921.9 834.9 17,284.6 310.7 6,056.9 5,966.7
skewness 32.1 60.2 113.7 19.6 91.2 10.7 64.7 59.3
arithmetic mean 88.3 114.9 136.9 58.6 9.4 7.8 9.5 7.6
median 27 29 41 17 6 4 5 4
standard deviation 283.4 568.8 995.8 166.6 18.9 12.3 28.9 19.0
maximum 36,273 74,278 156,163 11,798 4,312 666 3,414 2,159
kurtosis leptokurtic leptokurtic
skewness positive positive

SumCyclomatic AvgCyclomatic
Java C++ C# Python Java C++ C# Python

kurtosis 4,182.6 11,670.1 24,038.2 677.3 1,297.9 783.2 7,018.4 348.8
skewness 45.7 84.3 148.8 17.8 21.8 18.5 68.3 12.9
arithmetic mean 14.8 22.5 18.2 13.7 1.7 1.9 1.6 1.7
median 4 6 5 4 1 1 1 1
standard deviation 52.1 125.9 208.5 40.1 2.2 3.5 4.3 2.7
maximum 7,026 21,581 34,702 2,430 206 228 524 150
kurtosis leptokurtic leptokurtic
skewness positive positive

MaxNesting CountClassCoupled
Java C++ C# Python Java C++ C# Python

kurtosis 5.3 3.2 3.5 3.3 522.4 140.1 58.3 n/a
skewness 1.9 1.6 1.7 1.6 12.0 10.1 4.9 n/a
arithmetic mean 1.1 1.2 1.3 1.2 4.8 6.6 9.9 n/a
median 1 1 1 1 2 3 6 n/a
standard deviation 1.4 1.6 1.6 1.5 8.4 14.2 12.7 n/a
maximum 21 16 18 16 704 328 403 n/a
kurtosis leptokurtic leptokurtic
skewness positive positive

PercentLackOfCohesion CountDeclMethodAll
Java C++ C# Python Java C++ C# Python

kurtosis -1.4 -1.6 -1.6 n/a 2,699.3 248.7 11,728.9 7.8
skewness 0.5 -0.1 0.2 n/a 22.8 13.3 82.7 2.6
arithmetic mean 32.8 48.9 37.2 n/a 20.21 43.9 30.8 27.24
median 0 52 33 n/a 5 16 16 11
standard deviation 38.1 40.8 37.2 n/a 46.8 128.1 90.5 41.3
maximum 100 100 100 n/a 7,113 3,776 14,246 464
kurtosis mesokurtic leptokurtic
skewness symmetric positive

MaxInheritanceTree
Java C++ C# Python

kurtosis 655.5 2.7 422.1 1.1
skewness 8.4 1.4 14.5 1.0
arithmetic mean 1.7 1.2 0.9 1.8
median 1 1 1 1
standard deviation 1.1 1.2 1.5 1.8
maximum 118 11 58 10

leptokurtic
positive

Table 4. Descriptive statistics of analyzed software metrics values

Systematic comparison of software metrics thresholds 193

dicate a deviation from the normal distribution. Kurtosis expresses the size of peaks and
skewness measures the symmetry of the used data set. Data that are normally distributed
have a value of kurtosis and skewness of approximately zero [11]. When the values move
away from zero it proves that they are not following a normal distribution and values are
gathered on one end of the scale, and values are distributed in a peak or are flattened.
Data that follow heavy tailed distributions have a positive skew. For the positive skew,
also apply [38]:

standard deviation � arithmetic mean

standard deviation � median
(1)

maximum � arithmetic mean (2)

Besides the mentioned, the positive skew is indicated by:

arithmetic mean ≥ median ≥ mode (3)

Descriptive statistics for the evaluated metrics are presented in Table 4. Software met-
ric values are limited to the left, with a value 0, and unlimited to the right, since the
maximum value is usually not defined [13]. Among the gathered values, data describing
the metric PercentLackOfCohesion that expresses a lack of cohesion in a class, stand out.
The metric can occupy a value from 0 to 100, since the result is expressed in percentages.
Based on the numbers, it is the only metric for which descriptive statistics do not discard
normal distribution. Other software metrics, without a doubt, do not follow a normal dis-
tribution, as reflected by their positive skew and leptokurtic distribution. Namely, when
the values of skewness are more than 0, a positive skew is present, which is reflected with
values gathered on the left, and individual values on the right that form a tail [11,38]. On
the other hand, the positive value of kurtosis is shown in a bigger peak of distribution, and
indicates that the values are forming a heavy tail [11].

After the descriptive statistics were analyzed, the best fitted distribution for data was
determined using an EasyFit tool [26]. More than 55 distributions are available, and the
tool checks how well a chosen distribution fits an input data set, and arranges them ac-
cording to performance. Table 5 presents the best-fitted distributions for selected software
metrics values in four programming languages.

The threshold values were determined after the data distribution was determined for
each software metric in all of the four programming languages. All software metrics,
except PercentLackOfCohesion, correspond to a heavy tail distribution. Because of this,
the derivation could be done as proposed by Ferreira et al. [10], by using percentiles, and
considering the proposed adjustments related to risk areas. As suggested in 3.1, thresholds
were determined using two or three percentiles using an SPSS tool [16].

The values of software metrics AvgCyclomatic, MaxNesting and MaxInheritanceTree
are presented within a small range of data. For example, the metric MaxNesting has the
same value for the 70th and 80th percentile for C++ and C#. Because forming the area
with such small differences between the borders is not feasible, the 80th percentiles was
excluded and only the 70th and 90th percentiles were used for forming the threshold risk
areas. The metric PercentLackOfCohesion follows a Uniform distribution, and thresholds
cannot be determined using percentiles. For this purpose, the threshold value was deter-
mined using the arithmetic mean and standard deviation.

194 Tina Beranič and Marjan Heričko

Software metric Programming language Distribution

CountLineCode

Java Inverse Gaussian
C++ Dagum
C# Pareto 2
Python Wakeby

AvgLineCode

Java Generalized Pareto
C++ Generalized Pareto
C# Generalized Logistic
Python Generalized Logistic

SumCyclomatic

Java Phased Bi-Weibull
C++ Generalized Pareto
C# Generalized Pareto
Python Generalized Pareto

AvgCyclomatic

Java Generalized Logistic
C++ Wakeby
C# Phased Bi-Exponential
Python Phased Bi-Exponential

MaxNesting

Java Gumber Max
C++ Gumber Max
C# Gumber Max
Python Gumber Max

CountClassCoupled
Java Phased Bi-Weibull
C++ Generalized Logistic
C# Wakeby
Python n/a

PercentLackOfCohesion
Java Uniform
C++ Uniform
C# Uniform
Python n/a

CountDeclMethodAll

Java Wakeby
C++ Wakeby
C# Generealized Pareto
Python Johnson SB

MaxInheritanceTree

Java Gamma
C++ Gumber Max
C# Logistic
Python Johnson SB

Table 5. Best fitted distributions

4. Empirical analysis of derived threshold values

Based on derived threshold values, calculated points were used to set three or four risk
areas. Thresholds are presented in the form of areas.

Areas, as determined in Chapter 3.1, are formed according to the risk that an evaluated
program entity includes irregularities. For example, if a class has 300 lines of code, a very
high risk (VHR) exists that something within the entity is not optimal. This does not
mean that defects are present, but that there may be some irregularities in the context of
different smells or specific technical debts. However, we have to be aware, that combining
different software metrics when evaluating software quality could improve the reliability
of provided results significantly. Values lower than the 70th percentile belong to a low
risk (LR) area, values between the 70th and 80th percentiles form a moderate risk (MR)
area, and values bigger than the 80th percentile and smaller, or equal to the 90th percentile

Systematic comparison of software metrics thresholds 195

Java C++ C# Python

CountLineCode

LR x661 x666 x690 x643
MR 61<x6100 66<x6112 90<x6144 43<x671
HR 100<x6197 112<x6235 144<x6278 71<x6135
VHR x>197 x>235 x>278 x>135

AvgLineCode

LR x69 x68 x610 x68
MR 9<x613 8<x611 10<x614 8<x611
HR 13<x619 11<x618 14<x620 11<x617
VHR x>19 x>18 x>20 x>17

SumCyclomatic

LR x610 x613 x611 x69
MR 10<x617 13<x622 11<x618 9<x616
HR 17<x633 22<x645 18<x636 16<x633
VHR x>33 x>45 x>36 x>33

AvgCyclomatic
LR x62 x62 x61 x62
MR 2<x63 2<x64 1<x63 2<x64
HR x>3 x>4 x>3 x>4

MaxNesting
LR x61 x62 x62 x62
MR 1<x63 2<x63 2<x64 2<x63
HR x>3 x>3 x>4 x>3

CountClassCoupled

LR x65 x66 x611 n/a
MR 5<x67 6<x69 11<x615 n/a
HR 7<x611 9<x614 15<x623 n/a
VHR x>11 x>14 x>23 n/a

PercentLackOfCohesion LR x671 x690 x674 n/a
HR x>71 x>90 x>74 n/a

CountDeclMethodAll

LR x614 x642 x626 x624
MR 14<x624 42<x649 26<x634 24<x651
HR 24<x651 49<x690 34<x660 51<x670
VHR x>51 x>90 x>60 x>70

MaxInheritanceTree
LR x62 x62 x61 x62
MR 2<x63 2<x63 1<x62 2<x64
HR x>3 x>3 x>2 x>4

Table 6. Risk areas (low risk (LH), moderate risk (MR), high risk (HR) and very high
risk (VHR)) based on threshold values

constitute high risk (HR) area, and values that are bigger than determined with the 90th

percentile are considered to be in the area of very high risk (VHR). Table 6 presents the
defined risk areas and corresponding threshold values. The values are shown for nine
software metrics in four programming languages. Where areas are determined with only
two percentiles, i.e. in the case of AvgCyclomatic, MaxNesting and MaxInheritanceTree,
only three areas are given. Values lower than those determined with the 70th percentile are
in the area of low risk (LR), between the 70th and 90th percentile there is a moderate risk
(MR) area, and values in a high risk (HR) area are values bigger than determined with
the 90th percentile. A special case is the metric PercentLackOfCohesion, where only one
area is defined, based on the calculated threshold value. Values that are bigger than the
threshold are in the area of high risk.

As presented within the related work in section 2, different threshold derivation ap-
proaches exist. To allow the comparison, the threshold values have to be derived using
the same benchmark data, the software metric tools with coincidental definitions of im-
plemented software metrics, and, finally, using the same threshold derivation approach.
Therefore, comparison of our results with threshold values provided by Ferreira et al. [10]

196 Tina Beranič and Marjan Heričko

or Filo et al. [12] in a meaningful way is not possible, due primarily to use of different
software metrics’ definitions, followed by varying input data.

4.1. Comparison of derived threshold values

Figures 1, 2, 3 and 4 present threshold values for the 70th, 80th and 90th percentiles of
the same software metrics for different programming languages. A visual comparison of
threshold values for Java, C++, C# and Python is enabled with this. Furthermore, since
the approach for the threshold derivation is based on the frequency of values within the
software, the results also indicate the structure of software written in the four selected
programming languages.

70th 80th 90th

0

100

200

300

61

100

197

66

112

235

90

144

278

43

71

135

Java C++ C# Python

(a) CountLineCode

70th 80th 90th

0

5

10

15

20

9

13

19

8

11

18

10

14

20

8

11

17

Java C++ C# Python

(b) AvgLineCode

Fig. 1. Threshold values of the software metrics CountLineCode and AvgLineCode

Figure 1 illustrates risk areas and threshold values of the 70th, 80th and 90th percentiles
for software metrics CountLineCode and AvgLineCode measuring lines of code in a soft-
ware class. Axis x shows programming languages, and axis y threshold values. In every
figure, there are three lines: green, representing the 70th percentile, orange, representing
the 80th percentile, and red, representing the 90th percentile. Three lines form four risk ar-
eas, while connecting values of the same percentile value among programming languages.
The green color presents a low risk area (LR), orange presents a moderate risk area (MR),
light red color stands for a high risk area (HR), and red presents a very high risk area
(VHR).

As indicated in Figure 1a, the threshold determining very high risk is the highest in
the C# programming language, whereas the smallest is within Python. The same ratio
is also between thresholds formed using the 80th and 70th percentiles. Figure 1b plots
the threshold values for the average size of methods in a class. The values are closer in
comparison to the metric measuring lines of code in a class, but still, values vary. The 90th

percentile is again the highest for C# and the lowest for Python, whereas the values for

Systematic comparison of software metrics thresholds 197

Java and C++ are in between. The derived values show that the most extensive software
classes can be found in the C# programming language, followed by C++, Java and Python
classes. Given the small difference in the average size of methods within a class, we can
conclude that software classes written in C# possess more methods than classes developed
in the Python programming language.

70th 80th 90th

0

20

40

10

17

33

13

22

45

11

18

36

9

16

33

Java C++ C# Python

(a) SumCyclomatic

70th 90th

0

1

2

3

4

2

3

2

4

1

3

2

4

Java C++ C# Python

(b) AvgCyclomatic

Fig. 2. Threshold values of the software metrics SumCyclomatic and AvgCyclomatic

Figure 2 presents the threshold values of the software metrics SumCyclomatic and
AvgCyclomatic. Figure 2a visualizes the thresholds for the sum of cyclomatic complexi-
ties for all the methods in a class. The highest threshold value is derived for the program-
ming language C++, followed by C#, Java and Python. A noticeable leap can be detected
in C++, whereas in other programming languages, the threshold values are rising more
gradually. If we consider a number of methods in classes expressed with software met-
rics CountLineCode and AvgLineCode, we can conclude that methods written in Python
have the highest cyclomatic complexity, whereas the smallest complexity is present in
methods developed in C#. This is also confirmed with threshold values for the metric
AvgCyclomatic in Figure 2b, presenting the average value of the methods in a class. The
AvgCyclomatic is also one of the metrics where derived threshold values are very close.
Because of this, the 80th percentile was excluded, and only three risk areas were formed.

Figure 3 presents threshold values for the software metrics MaxNesting and Max-
InheritanceTree. Figure 3a illustrate the thresholds of a software metric measuring the
maximum nesting level in a class which affects class complexity. The 70th and 90th per-
centiles were included, forming three risk areas. As can be seen, the 90th percentile is the
highest in C# and the lowest, but coinciding, for Java, C++ and Python. Another software
metric that has a thresholds value that is only defined for three areas is MaxInheritance-
Tree, presented in Figure 3b. Based on statistical properties, it is very similar to the metric

198 Tina Beranič and Marjan Heričko

MaxNesting. The 90th percentile is the highest within Python and the lowest in C#, mean-
ing that inheritance hierarchy is the deepest in software projects developed in Python.

70th 90th

0

1

2

3

4

1

3

2

3

2

4

2

3

Java C++ C# Python

(a) MaxNesting

70th 90th

0

1

2

3

4

2

3

2

3

1

22

4

Java C++ C# Python

(b) MaxInheritanceTree

Fig. 3. Threshold values of the software metrics MaxNesting and MaxInheritanceTree

Closely connected to the mentioned metric is also the metric CountDeclMethodAll,
counting methods in the classes, including inherited ones. The threshold values are pre-
sented in Figure 4a. With a 90th percentile value, the C++ threshold set is the biggest,
followed by values derived for Python, C# and the Java programming language. If we
connect the findings to the determined number of methods based on software metrics
CountLineCode and AvgLineCode, we can see that the ranking by values is different,
since the metric CountDeclMethodAll also considers inherited methods. As presented in
Figure 4a, the highest number of methods can be detected in C++, which is due to a bigger
inheritance hierarchy, as presented in Figure 3b. A high number of methods, according to
the metric CountDeclMethodAll, can also be found with Python classes, though they have
the smallest metric value, based on lines of code. Again, this is due to a deeper inheritance
hierarchy. On the other hand, Java classes have fewer methods than classes developed in
Python, according to CountDeclMethodAll, but based on the number of lines of code, the
case is different. Since the inheritance hierarchy for Java is smaller, this is the logical
conclusion.

The threshold values for the software metric CountClassCoupled are presented in
Figure 4. The mentioned metrics were not calculated for Python, since the Understand
tool [35] does not support that calculation. Therefore, the results are only presented for
Java, C++ and C#. Figure 4b presents threshold values for metric measuring coupling
with other classes. The threshold defining the area of the very high risk is the biggest for
C# classes. The lowest is the threshold value for Java, whereas the programming language
C++ is in between. Thresholds indicate that C# classes are the most coupled with others,
which can be related to a large number of lines of code, as seen in Figure 1. On the other

Systematic comparison of software metrics thresholds 199

70th 80th 90th

0

20

40

60

80

100

14

24

51

42
49

90

26
34

60

24

51

70

Java C++ C# Python

(a) CountDeclMethodAll

70th 80th 90th

0

10

20

5
7

11

6

9

14

11

15

23

Java C++ C#

(b) CountClassCoupled

Fig. 4. Threshold values of the software metrics CountClassCoupled and
PercentLackOfCohesion

hand, the coupling is lowest for Java classes. Another aspect that can impact the use of
coupling is also the age of the projects. Since the C# programming language is much
younger that C++, the age could influence the threshold values.

The PercentLackOfCohesion metric measures the lack of cohesion in classes, and is
presented with percentages. The threshold is presented only with one value, that divides
the area into low and high risk, since the threshold was not derived based on percentiles.
The values can be seen in Table 6. The defined threshold values again vary between pro-
gramming languages, and are the highest for C++, where classes that exceed the value
90 present the high risk of containing irregularities. Within C#, the threshold value is the
highest, while the values indicate that the C++ classes are least cohesive, which could be
connected to the high cyclomatic complexity of classes and methods with a large number
of lines. On the other hand, classes in C# are also large, but with a lower cyclomatic com-
plexity, which is reflected in class cohesion. The connection to cyclomatic complexity
can also be confirmed for the Java programming language, where cohesion is better and
complexity lower.

As can be concluded based on the presented analysis, the threshold values of soft-
ware metrics vary between different programming languages. Therefore, they have to be
calculated for each programming language separately.

5. Limitations

In this research, some limitations and potential threats to validity arise. They are presented
here.

We limited ourselves to object-oriented programming languages and software metrics
supported by the used tool. The results may be affected by the tool used for collecting met-
ric values and the corresponding implementation of software metrics. To reduce the threat,

200 Tina Beranič and Marjan Heričko

a single tool was used throughout the entire research, and for all four of the programming
languages. In this way, software metrics were calculated in the same way, regardless of
the programming language.

The results can also be affected by the approach used for deriving the threshold values
of software metrics. With the use of only a single approach for all the metrics and all the
programming languages, the risk of providing inconsistent results was limited. Another
threat surrounds the benchmark data used for derivations. To limit the impact, the data
set was collected in a transparent and systematic way, covering a broad scope of different
properties. Also, the size of the benchmark data was determined based on related work
and good practices.

The definitions of software metrics present a limitation within the research. The vali-
dation of software metrics was not a part of the presented study.

6. Conclusion

Quantification with software metrics is important, especially when we make decisions
related to software quality [1,9], thereby knowing that the reliable thresholds are cru-
cial. Within the presented empirical study, threshold values were derived for nine soft-
ware metrics for four object-oriented programming languages, namely Java, C++, C# and
Python. Using the replicated threshold derivation approach and proposed adjustments,
threshold values were derived considering challenges arising in the software metrics do-
main. Since the approach uses benchmark data, the latter were collected systematically
and transparently, allowing repeatability and supplementation. For each programming lan-
guage, a suite of 100 software projects was selected, which is, according to related work,
an optimal number. Input values were gathered using a single software metric tool, and
threshold values were provided using a single threshold derivation approach by following
well-defined steps.

The main research question driving the presented study was if software metric thresh-
old values vary between different object-oriented programming languages. By this, we
could provide information about whether thresholds have to be derived for each program-
ming language separately, or if a single threshold can be applied to all programming
languages. Thresholds derived for a particular software metric were analyzed and com-
pared to provide the answer. Based on the findings, we can conclude that threshold values
for the same software metric vary among different programming languages. This can be
attributed to different structural properties for programming languages, and established
practices used in a specific community. Therefore, the derivation for each programming
language has to be done separately.

In future work, we plan to use the threshold derivation process to provide threshold
values for other programming languages, and expect to derive threshold values for soft-
ware metrics on different levels, i.e. the method and file levels. Also, we will analyze the
rules and properties of the different programming languages, in order to explain the rea-
sons for the differences. In addition, we plan to study different factors impacting derived
thresholds within each programming language.

Acknowledgments. This work was supported by the Slovenian Research Agency (SRA) under The
Young Researchers Program (SICRIS/SRA code 35512, RO 0796, Program P2-0057).

Systematic comparison of software metrics thresholds 201

References

1. Alves, T.L., Ypma, C., Visser, J.: Deriving metric thresholds from benchmark data. In: 2010
IEEE International Conference on Software Maintenance (2010)

2. Arar, Ö.F., Ayan, K.: Deriving thresholds of software metrics to predict faults on open source
software: Replicated case studies. Expert Systems with Applications 61, 106 – 121 (2016)

3. Benlarbi, S., Emam, K.E., Goel, N., Rai, S.: Thresholds for object-oriented measures. In: Pro-
ceedings 11th International Symposium on Software Reliability Engineering (ISSRE 2000)
(2000)

4. Beranič, T., Heričko, M.: Approaches for software metrics threshold derivation: A preliminary
review. In: Sixth Workshop on Software Quality Analysis, Monitoring, Improvement, and Ap-
plications SQAMIA 2017, Proceedings (2017)

5. Beranič, T., Podgorelec, V., Heričko, M.: Towards a reliable identification of deficient code
with a combination of software metrics. Applied Sciences 8(10) (2018)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transactions
on Software Engineering 20(6), 476–493 (Jun 1994)

7. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-laws in a large object-oriented software
system. IEEE Transactions on Software Engineering 33(10), 687–708 (Oct 2007)

8. Dósea, M., Sant’Anna, C., da Silva, B.C.: How do design decisions affect the distribution of
software metrics? In: Proceedings of the 26th Conference on Program Comprehension (2018)

9. Fenton, N.E., Neil, M.: Software metrics: Roadmap. In: Proceedings of the Conference on The
Future of Software Engineering (2000)

10. Ferreira, K.A., Bigonha, M.A., Bigonha, R.S., Mendes, L.F., Almeida, H.C.: Identifying thresh-
olds for object-oriented software metrics. Journal of Systems and Software 85(2), 244 – 257
(2012)

11. Field, A.: Discovering Statistics Using IBM SPSS Statistics. Sage Publications Ltd., 4th edn.
(2013)

12. Filó, T.G.S., da Silva Bigonha, M.A., Ferreira, K.A.M.: A catalogue of thresholds for object-
oriented software metrics. In: First International Conference on Advances and Trends in Soft-
ware Engineering (2015)

13. Fontana, F.A., Ferme, V., Zanoni, M., Yamashita, A.: Automatic metric thresholds derivation
for code smell detection. In: IEEE/ACM 6th International Workshop on Emerging Trends in
Software Metrics (2015)

14. Gerlec, C., Rakić, G., Budimac, Z., Heričko, M.: A programming language independent frame-
work for metrics-based software evolution and analysis. Computer Science and Information
Systems 9(3), 1155–1186 (2012)

15. Gil, J.Y., Lalouche, G.: When do software complexity metrics mean nothing? – when examined
out of context. Journal of Object Technology 15(1), 2:1–25 (Feb 2016)

16. IBM: Spss. https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-
software (2018), accessed: 2. 2. 2018

17. ISO/IEC/IEEE 24765:2017: ISO/IEC/IEEE International Standard - Systems and software
engineering–Vocabulary pp. 1–541 (2017)

18. Kitchenham, B.: What’s up with software metrics? – a preliminary mapping study. Journal of
Systems and Software 83(1), 37 – 51 (2010)

19. Lanza, M., Marinescu, R.: Object-oriented metrics in practice: Using software metrics to char-
acterize, evaluate, and improve the design of object-oriented systems. Springer-Verlag Berlin
Heidelberg (2006)

20. Lavazza, L., Morasca, S.: An empirical evaluation of distribution-based thresholds for internal
software measures. In: Proceedings of the The 12th International Conference on Predictive
Models and Data Analytics in Software Engineering (2016)

202 Tina Beranič and Marjan Heričko

21. Lima, P., Guerra, E., Meirelles, P., Kanashiro, L., Silva, H., Silveira, F.F.: A metrics suite for
code annotation assessment. Journal of Systems and Software 137, 163 – 183 (2018)

22. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Proceedings of the
2008 International Symposium on Software Testing and Analysis (2008)

23. Lochmann, K.: A benchmarking-inspired approach to determine threshold values for metrics.
SIGSOFT Softw. Eng. Notes 37(6), 1–8 (Nov 2012)

24. Lorenz, M., Kidd, J.: Object-oriented Software Metrics: A Practical Guide. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1994)

25. Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1 edn. (2009)

26. MathWave Technologies: Easyfit. http://www.mathwave.com (2004–2018), accessed: 20. 12.
2017

27. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering SE-2(4),
308–320 (Dec 1976)

28. Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E., Jamshidi, P., Kastner,
C.: Evaluating domain-specific metric thresholds: An empirical study. In: Proceedings of the
2018 International Conference on Technical Debt (2018)

29. Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martı́nez-Perez, F.E., Soubervielle-Montalvo, C.:
Source code metrics: A systematic mapping study. Journal of Systems and Software 128, 164
– 197 (2017)

30. Oliveira, P., Valente, M.T., Lima, F.P.: Extracting relative thresholds for source code metrics. In:
2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE) (2014)

31. Oliveira, P., Lima, F.P., Valente, M.T., Serebrenik, A.: RTTool: A tool for extracting relative
thresholds for source code metrics. In: Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution (2014)

32. R Core Team: R: A language and environment for statistical computing. https://www.R-
project.org (2017), accessed: 13. 12. 2017

33. Rakić, G., Budimac, Z., Savić, M., Ivanović, M.: Towards the formalization of software mea-
surement by involving network theory. In: SQAMIA (2015)

34. Remencius, T., Sillitti, A., Succi, G.: Assessment of software developed by a third-party: A
case study and comparison. Information Sciences 328, 237–249 (2016)

35. Scientific Toolworks Inc.: UnderstandTM. https://scitools.com (1996–2018), accessed: 18. 8.
2018

36. Scientific Toolworks, Inc.: Understand, User Guide and Refrence Manual (2017)
37. Sharma, A., Dubey, S.K.: Comparison of software quality metrics for object-oriented system.

International Journal of Computer Science & Management Studies (IJCSMS) 12, 12–24 (2012)
38. Shatnawi, R., Althebyan, Q.: An empirical study of the effect of power law distribution on the

interpretation of oo metrics. ISRN Software Engineering 2013 (March 2013)
39. SourceForge: https://sourceforge.net (2017), accessed: 16. 8. 2017
40. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.: Qualitas

corpus: A curated collection of java code for empirical studies. In: 2010 Asia Pacific Software
Engineering Conference (APSEC2010). pp. 336–345 (Dec 2010)

41. Vale, G.A.D., Figueiredo, E.M.L.: A method to derive metric thresholds for software product
lines. In: 2015 29th Brazilian Symposium on Software Engineering (2015)

42. Vale, G., Fernandes, E., Figueiredo, E.: On the proposal and evaluation of a benchmark-based
threshold derivation method. Software Quality Journal pp. 1–32 (May 2018)

43. Veado, L., Vale, G., Fernandes, E., Figueiredo, E.: TDTool: Threshold derivation tool. In: Pro-
ceedings of the 20th International Conference on Evaluation and Assessment in Software En-
gineering (2016)

Systematic comparison of software metrics thresholds 203

44. Yamashita, K., Huang, C., Nagappan, M., Kamei, Y., Mockus, A., Hassan, A.E., Ubayashi,
N.: Thresholds for size and complexity metrics: A case study from the perspective of defect
density. In: 2016 IEEE International Conference on Software Quality, Reliability and Security
(QRS) (2016)

45. Zhang, F., Mockus, A., Zou, Y., Khomh, F., Hassan, A.E.: How does context affect the distribu-
tion of software maintainability metrics? In: 2013 IEEE International Conference on Software
Maintenance. pp. 350–359 (Sept 2013)

46. Zou, Y., Kontogiannis, K.: Migration to object oriented platforms: a state transformation ap-
proach. In: International Conference on Software Maintenance, 2002. Proceedings. (2002)

Tina Beranič received a PhD degree in computer science and informatics from the Uni-
versity of Maribor in 2018. She is a Teaching Assistant and a Researcher at the Faculty
of Electrical Engineering and Computer Science, University of Maribor. Her research in-
terests are in the area of software quality, especially the domain of software metrics and
software metrics thresholds. She is working on their involvement in the quality assessment
process.

Marjan Heričko received a PhD degree in computer science and informatics from the
University of Maribor in 1998. He is currently a Full Professor at the Faculty of Electrical
Engineering and Computer Science, University of Maribor, where he is also the Head of
the Institute of Informatics. His main research interests include all aspects of IS develop-
ment with an emphasis on software engineering, software process improvement, software
metrics, and process modeling.

Received: October 12, 2018; Accepted: November 15, 2019.

Computer Science and Information Systems 17(1):205–227 https://doi.org/10.2298/CSIS181220019V

Regression Verification for Automated Evaluation of
Students Programs

Milena Vujošević Janičić1 and Filip Marić1

University of Belgrade, Faculty of Mathematics, Studentski trg 16
11000 Belgrade, Serbia

{milena,filip}@matf.bg.ac.rs

Abstract. Regression verification is a form of software verification based on for-
mal static analysis of code, which is used, since recently, in several domains. In this
paper we examine potentials of using it in one novel domain — in automated eval-
uation of students programs. We propose an approach that provides precise assess-
ment of functional correctness of student programs (while it does not address nor
affect the teaching methodology). We describe our open-source, publicly available
implementation of the approach, which is built on top of the compiler infrastructure
LLVM and the software verification tool LAV. The results of evaluating the pro-
posed approach on two real-world corpora of student programs and on a number
of classic algorithms show that the proposed approach can be used as a precise and
reliable supplementary technique in grading of student programs at introductory
programming courses, algorithms courses and programming competitions.

Keywords: software verification, regression verification, automated evaluation of
student programs, computer-supported education

1. Introduction

Despite many successful applications of software verification techniques, their potential
is still to be explored in a number of new application domains. One domain are program-
ming courses where automated evaluation of student programs is becoming progressively
important. Namely, computer science is recognized as a fundamental field which is de-
livered in both universities and schools [69]. Also, the number of students enrolled at
programming courses has rapidly grown over the last years [3]. Everyone benefits from
automated evaluation [57,79]: the teachers get help in the grading process, while im-
mediate feedback helps students in acquiring knowledge. The importance of automated
evaluation is even more significant in the context of online learning where the adequate
assessment is recognized as a challenging problem since contact with a teacher is minimal
or even non-existent [61,73], while the number of students also grows quickly [56].

It is very important to provide a high quality, objective, precise and reliable automated
evaluation [55]. Automated grading must (i) correctly classify correct and incorrect stu-
dent solutions, (ii) correctly explain mistakes that students make, and (iii) run efficiently
in practice [37]. There are different approaches for automated evaluation of student pro-
grams [2,35,58], considering many important aspects (e.g. functional correctness, code
readability, modularity, complexity, efficiency). Various teachers and universities have
various grading policies depending on such factors. In most cases, functional correctness

206 M. V. Janičić and F. Marić.

is very highly valued [35] and in some educational settings is even essential. Such settings
are commonly encountered at the university level at programming courses for future com-
puter science majors and software engineers. Also, functional correctness is traditionally
a must at IOI and ACM style programming competitions1, which usually deal with prob-
lems that are very similar to problems taught at university level algorithms courses. Such
algorithmic, competition style problems are also highly valued for employment in the
high-end software companies and are usually asked at job interviews. In settings where
students are required to produce fully functionally correct code and where subtle errors
and hidden bugs are not allowed, attention must be put on all corner cases and it should
be ensured that the grading process takes them into account.

Classifying correct and incorrect solutions of algorithmic problems is usually based
on automated testing [17] and grading is performed solely by thorough testing on a num-
ber of test-cases. For example, this holds for online judges — web-platforms devoted to
training for programming contests and interviews [23,31,50,51,65,72]. However, assess-
ing functional correctness only by testing may give a misleading confidence since it may
be error prone: the obtained results are directly influenced by the choice of test cases
[78]. The problem is that the test cases are usually designed according to the expected
solutions, while the teacher cannot predict all possible solutions and all important paths
through a student solution. Moreover, no matter how well test cases are designed, testing
cannot guarantee functional correctness [16]. Therefore, if a reliable automated evalua-
tion is needed, it is necessary to apply some more involved techniques. A more promising
choice are software verification techniques and we propose a verification based approach
for improving classification of correct and incorrect solutions.

In this paper, we propose assessing functional correctness of students solutions by
checking equivalence with teacher solutions. We are interested in showing equivalence
of algorithmic problems that usually have short solutions, but can be very hard and com-
plicated, thus their correctness can often be at stake. We describe how to apply formal
static software verification techniques for assessing different kinds of equivalence of two
programs and we focus on regression verification techniques. Development of regression
verification techniques is often guided by applications in various industrial domains. The
existing algorithms are advanced and there are still no general purpose implementations
that are publicly available. Also, in the context of automated evaluation of programming
assignments, it is necessary to adjust solutions in a way that makes these algorithms ap-
plicable, which also contains some nontrivial steps. Therefore, our work aims at enabling
application of regression verification techniques in automated evaluation of programming
assignments. We describe characteristics of programs that can be evaluated this way. We
provide an open-source implementation of necessary transformations for automating this
process. We present lessons learned from applying regression verification on three differ-
ent corpora: a corpus of student solutions from an introductory programming course for
computer science majors, a corpus of solutions submitted during national programming
competitions, and a corpus of classic algorithms that are usually taught at algorithms
courses. We show that, by our approach, functional correctness of significant amount of
programs in introductory and algorithms courses can be automatically proved. We also
show that our approach makes a good supplementary technique, aimed at the best solu-
tions that successfully passed testing: it can reveal very subtle problems and point stu-

1 IOI: http://ioinformatics.org , ICPC: https://icpc.baylor.edu/

http://ioinformatics.org
https://icpc.baylor.edu/

Regression Verification for Automated Evaluation 207

dents to errors that they are not aware of. In the context of programming competitions,
it can break ties and help differentiating the very best few competitors that qualify for
next rounds. In some situations verification can even fully replace testing, eliminating the
effort necessary to prepare tests.

Overview of the paper. Section 2 contains information about related work. Section
3 introduces our approach and describes its implementation. Section 4 gives results of
experimental evaluation of the proposed approach with discussion of quantitative and
qualitative analysis of capabilities of the approach. It also discusses possible threats to
validity. In Section 5 we compare the proposed approach with other related approaches
and tools. Section 6 gives conclusions and outlines possible directions for future work.

2. Related work

In this section we give a brief overview of related approaches and tools, both in the field
of software verification and in automated evaluation of programming assignments.

Software verification and automated bug finding. Automated software verification
tools aim to automatically check correctness properties of a given program or to find
violations to some common features (the latter is known as automated bug-finding) [9].
There are different automated approaches [13,15,39] and there is a variety of tools based
on these approaches like PEX [71], JPF [75], KLEE [10], CBMC [12], LAV [77]. CBMC
and LAV are general purpose tools for statically verifying user-specified assertions and
locating bugs such as buffer overflows, pointer errors and division by zero. CBMC is
state of the art bounded model checker for C/C++ programs. LAV is primarily aimed
at analysing programs written in the programming language C, but for the purpose of
this work we have extended LAV with some constructs of C++ (used in the context of
programming competitions, and present in our corpus).

Equivalence checking. Functional correctness of a program can be formulated in
terms of precise formal specifications [32,43]. Also, it can be formulated in terms of the
behavior of another program: two programs are equivalent if they exhibit the same be-
havior in all relevant aspects on all input values [26]. This includes checking termination
and complexity of computation, but often only equivalence of outputs is considered [25].
The notion of correctness in this case has several positive aspects: it is not necessary to
formulate a specification and, in general, checking equivalence of two programs is less
computationally demanding than functional verification with respect to a formal speci-
fication [67]. Checking equivalence of two programs was considered already in 1960s
[32], but the progress has been limited and not always practically applicable. Recent ap-
proaches introduced new possibilities [20,27]. There are different variations of program
equivalence [25]. Programs are partially equivalent if any two terminating executions
which start from equal inputs produce equal outputs. Another, weaker, notion of equiv-
alence is k-equivalence — programs are k-equivalent if any two executions where loops
and recursions have at most k iterations or calls, which start on equal inputs, produce
equal outputs. The problem whether two programs are partially equivalent is an undecid-
able problem [68], while the problem whether two programs are k-equivalent (for some
specific k, assuming that finite variable-domains are used) is decidable [25].

Regression verification. Applying testing to check whether two similar programs are
equivalent is widely and intensively used in software development and is called regres-

208 M. V. Janičić and F. Marić.

sion testing [53]. Regression verification [20,67] attempts to achieve the same goals, but
using techniques from formal verification. Here, checking equivalence means formally
proving a mathematical statement about two programs that usually corresponds to some
weaker form of equivalence. If successful, regression verification gives higher reliability
since it guarantees full coverage [27]. Also, that it does not require additional expenses to
develop and maintain a test suite. Since the problem of determining partial equivalence is
undecidable [68], automating this process is challenging. Development of regression ver-
ification techniques is often guided by the application in different concrete areas, like se-
curity verification applications [4,62], multimedia systems [74], backward compatibility
and refactoring [80], cryptographic algorithms [8,59], and hardware design [34]. General
purpose automated regression verification techniques [6,20,27] are developed for large
scale systems. These techniques consist of two steps: efficiently identifying functions that
are affected by changes, and proving functional equivalence of these functions.

Functional correctness in automated evaluation. Automated testing is the most
common way of evaluating student programs [17]. Test cases are usually supplied by the
teacher and/or randomly generated [47]. Testing is used as an evaluation component of a
number of web-based submission and evaluation systems [11,18,23,31,33,50,51,65,72].
Aside from checking functional correctness, testing can also be used for analysing effi-
ciency, memory violations and run-time errors [1]. Software verification techniques are
getting more commonly used in automated evaluation, usually for automated bug finding
or for automated test case generation [36,37,71,78]. One formal approach for assessing
functional correctness of student solutions, is based on rewriting techniques [40]. In this
approach, it is necessary to write a formal specification of a desired solution.

Other important aspects in automated evaluation. There are other important as-
pects that are impossible or difficult to test or to be assessed by verification techniques,
but that have to be taken into account in precise and high quality evaluation. For exam-
ple, these are coding style, the design of the program, modularity, performance issues
and the algorithm used. Therefore, other techniques are required for their assessment
[29,52,54,70,78]. These techniques usually compare a predefined solution to the student
solution. New approaches emphasize the importance of generating useful feedback for
students [24,28,29,38,41,48,60]. Usually, the feedback is generated by failed test-cases
or by peer-feedback [19,42,46]. Some approaches use both reference implementation and
error model consisting of potential corrections to errors that students might make [64]
and with this additional information are capable of making feedback that suggests pos-
sible corrections to incorrect student solution. Another kind of feedback is generated by
computing behavioral similarity between two programs [45]. In this case, different met-
rics are used to calculate similarity to the model solution, which is then used as a measure
of student progress. Machine learning techniques can be used for syntactically classifying
similar solutions [55] or for clustering similar solutions by static and dynamic analysis
[24]. The feedback is then generated by the teacher but only for each group of solutions.

3. Proposed approach and its implementation

In this section we discuss our open-source implementation based on regression verifica-
tion techniques which is implemented on top of the software verification tool LAV [77],
the LLVM system [44] and its C-language front-end Clang. We describe its implementa-

Regression Verification for Automated Evaluation 209

tion, as regression verification techniques are still rather new and advanced, and there are
no implementations that are publicly available. Although regression verification is orig-
inally used for showing equivalence between two versions of the evolving program, we
shall use it to show equivalence between the student and the teacher solution. The same
techniques could be used for showing equivalence between different student solutions.
The techniques described in this section and parts of our implementation can be adapted
to work with other underlying verification systems by making an extension for specifying
that some function calls should be encoded as uninterpreted functions calls.

Finding parts of code that are potentially equivalent is an important task for regression
verification tools. There are different techniques for solving it (based on the analysis of
control flow graphs and function names that preserve equivalent in different versions of
programs [6,20,27]). In our setting, that problem is simple as corresponding functions are
the teacher’s and the student’s solutions.

3.1. Regression verification in LAV

The input to the system LAV is a C program that may contain assertions, which can be
accompanied by some assumptions (given width assert/assume function calls). Such
assumptions are used to limit verification only to the cases allowed by the problem speci-
fication. User can put limits on the input variables in a way that subtle details get ignored
or important preconditions are enforced (e.g., that some array is sorted). By enforcing
additional assumptions, verification can be done against an arbitrary input specification.

In regression verification we try to prove the equivalence between the two solutions
that are encoded by different functions that share the same interface. The implementa-
tion of these functions can be quite different (concerning used algorithms, computation
that can be split into different auxiliary functions, etc.). Figure 1 contains different im-
plementations of the function for finding maximum of three given numbers (these are all
real-world examples, taken from our corpus described in Section 4.1, and reflect the pos-
sible diversity in solutions even for a very simple problem). To check equivalence of the
functions maxA and maxB from Figure 1 using the system LAV, it is sufficient to verify
the program illustrated in Figure 2. Calling the assert function in this program refers
to the equality check of return values of these two functions (for arbitrary input values).
Similarly, the function maxC can be shown to be equivalent to maxA and maxB. How-
ever, the function maxD contains a subtle bug and is not equivalent to the previous three
ones. Since the C language does not allow returning arrays as function results, checking
equivalence of functions that modify arrays is done by multiple assertions (Figure 2).

To verify an assertion, LAV encodes the asserted expression as a first-order logic for-
mula and checks its validity by an underlying SMT solver [7]. We will focus on integer
variables that are modelled either by the theory of linear arithmetic (LA), or by the the-
ory of bit-vector arithmetic (BVA). Although there are important semantic differences
between LA and BVA, in the context of education some of these differences are not rele-
vant (for example, at introductory level, overflows/underflows are usually not considered).
LA is very efficient, but does not support many operators that BVA supports and that are
used in C-programs. For efficiency reason, BVA will be used only when that is necessary.
We will focus on programs containing loops and/or recursive functions, since their treat-
ment is the most delicate aspect in verification. Since loops are not supported in SMT
formulas, functions have to be transformed into some loop-free form. We will consider

210 M. V. Janičić and F. Marić.

int maxA(int x, int y, int z) {
int m = x;
if(y > m) m = y;
if(z > m) m = z;
return m;

}

int maxC(int i, int j, int k) {
int max;
if(i>j && i>k) max= i;
else if(j>k) max = j;
else max = k;
return max;

}

int maxB(int a, int b, int c) {
int max;
max = a;
if (b>max && b>c) max=b;
else if(c>max) max=c;
return max;

}

int maxD(int o, int p, int q) {
if(o>p && o>q)

return o;
else if(p>o && p>q)

return p;
else

return q;
}

Fig. 1. Different implementations for determining the maximum value

#include "maxAB.h"
int main() {
int a, b, c;
scanf("%d%d%d",

&a, &b, &c);
assert(maxA(a,b,c) ==

maxB(a,b,c));
return 0;

}

#include "modifyAB.h"
int main() {
int i; char s[MAX], t[MAX];
scanf("%s",s);
for(i = 0; s[i]; i++)
assume(t[i] == s[i]);

resultA = modifyA(s); resultB = modifyB(t);
assert(resultA == resultB);
for(i = 0; s[i]; i++)
assert(t[i] == s[i]);

return 0;
}

Fig. 2. Checking equivalence of two functions: (left-hand side) functions from the Figure
1 and (right-hand side) functions that modify contents of arrays

two different techniques for loop elimination: (i) loop unrolling for proving k-equivalence
(ii) transforming loops into recursive functions and then using uninterpreted functions to
express the inductive hypothesis [27,67].
K-equivalence by loop unrolling. Functions that contain loops with a fixed upper bound
can be transformed into equivalent functions that do not contain loops. However, unrolling
loops a large number of times may introduce complex formulas that cannot always be
efficiently reasoned about. Checking equivalence of functions with arbitrary loops is a
major challenge and is generally not solvable. Therefore, we must resort to using some
approximation. For example, instead of proving equivalence of two functions we can try
proving their k-equivalence. In such case, loops are unrolled k times, for some given value
k. Figure 3 shows a loop that is unrolled k = 3 times. When proving k-equivalence, the
choice of an appropriate value for k is very important. Higher values of k are giving a
higher level of confidence to the code under evaluation, but increasing k can introduce
scalability issues. On the other hand, some verification tools rely on common experience
that many errors can be discovered in only one loop iteration [5,21]. Note that the number
k often corresponds to the length of the input series for which the algorithm is verified,
although this need not be the case always (for example, in binary search, unrolling loop
for k times guarantees the correctness for the arrays with at most 2k elements). In our
experiments, we usually used k = 5, as for this value the analysis was efficient and results
showed to be reliable. We discuss this choice in more details in Section 4.1. Similar to loop
unrolling is the recursive function call unrolling. However, recursive function unrolling

Regression Verification for Automated Evaluation 211

float mean_valueA(int a[], int n) {
float s = 0;
int i;
for (i=0; i<n; i++)

s += a[i];
return s/n;

}

float mean_valueB(int a[], int n) {
int i;
float m;
m = i = 0;
while(i < n)

m = m + a[i++];
m = m/n;
return m;

}

float mean_valueA_k3(int a[], int n) {
float s = 0; int i;
i = 0;
if(i < n) {
s += a[i];
i++;
if(i < n) {
s += a[i];
i++;
if(i < n) {
s += a[i];
i++;

}
}

}
return s/n;

}

Fig. 3. Calculating the mean value of an array (left-hand side), unrolling k = 3 times a
loop of the function mean valueA (right-hand side)

can lead to significantly slower verification, due to introduced stack-frame modeling, and
due to exponential code growth when there is more than one recursive call.
Partial equivalence by uninterpreted functions. Instead of loop unrolling, in some situ-
ations we can use inductive reasoning to prove partial equivalence between the two func-
tions by using uninterpreted functions to model inductive hypothesis [27]. To succeed in
proving partial equivalence by uninterpreted functions in programs that contain loops it
is necessary to have solutions where entry point, exit condition, and loop invariant are the
same (while the body of the loop can differ).

Preprocessing. There are several constructs in C that complicate elimination of loops
(e.g., break, continue and return), and in the preprocessing phase we automati-
cally transform the program to eliminate such constructs. Also, we transform all loops to
the while loop. Removing return statements is illustrated in Figure 4. If the return
statement occurs within a nested loop, the transformation is applied once for each loop,
starting from the innermost loop. This transformation introduces a special value RET_UNDEF
that cannot occur as the return value of the function. Similar transformations are applied
to eliminate break and continue statements.

while(<cond>) {
....

<return> <val>;
....

}

<retvar> = RET_UNDEF;
while (<cond> && <retvar> == RET_UNDEF) { ...

<retvar> = <val>;
if (<retvar> == RET_UNDEF)

...}
if (<retvar> != RET_UNDEF)

return <retvar>;

Fig. 4. Preprocessing transformations: return statement elimination

Introducing uninterpreted functions. Consider the functions given on top of Figure
5 (also taken from our corpus). After preprocessing the next step is to transform loops
into recursive functions (as illustrated in the middle of Figure 5). An important require-
ment (that is often satisfied) is that the loop changes exactly one variable that is alive
after the loop (its value is read and used before it is eventually changed). In the function

212 M. V. Janičić and F. Marić.

idx_minA, the variable min is such a variable and in the function idx_minB, the vari-
able idx is such a variable. Then, the recursive equivalent of the loop will be a function
whose return value will be exactly that variable. The function can have many input pa-
rameters (the variables that are accessed within the loop, except the ones that are declared
in the loop or are always assigned a value before their value is read). Equivalence of the
recursive functions can be proved by induction on the number of recursive calls made
during their execution. The base case is when no recursive calls are made. As the induc-
tion hypothesis we can assume that the statement will hold for recursive calls i.e., that
recursive calls return the same values. Under that assumption and the definition of the re-
cursive functions it should be proved that the statement holds i.e., that the functions return
the same values in the case when recursive calls are made (in the code on Figure 5, that is
when i < n). The crucial part of the technique is to encode such induction hypothesis
by replacing recursive calls by a call to an uninterpreted function (as illustrated at the bot-
tom of Figure 5). After those replacements, we are left with a loop-free and recursion-free
functions that can be shown equivalent using the techniques for loop-free, recursion-free
programs. Once the recursion is removed, there is no need to have auxiliary functions
representing loops, thus, for simplicity, they can be inlined back (as illustrated on the bot-
tom of Figure 5). A more complicated example from our corpus is given in Figure 6. An
important question is how to order parameters of uninterpreted functions (since solutions
must use the same order of parameters). The names of the variables, and the order of
their declarations can vary between alternative solutions, therefore some kind of semantic
matching between the corresponding variables is needed. Currently, to solve this problem,
our transformation uses a heuristic: parameters are first ordered by their type, and then by
their name. In most cases students use canonical variable names (e.g., min for a mini-
mum value), and the heuristic works. However, when it fails, all possible combinations of
parameter ordering can be checked (usually there are not many parameters).

3.2. Interpreting results of regression verification

When using regression verification in evaluation process, it is crucial to correctly interpret
obtained results and to understand relationship between different evaluation techniques.

Function calls. Inlining is the only fully precise technique for modeling function calls.
Other techniques incur loss of information about the exact program behavior. Therefore,
when other techniques are used, it might not be possible to prove the equivalence.

K-equivalence vs partial equivalence. The fact that functions are k-equivalent for
some value k, does not guarantee that these functions are partially equivalent, or even
k-equivalent for some larger value k. It only guarantees that these functions will give
same outputs for each input value, if restricted to k or less loop iterations. However,
in our experimental evaluation in both our corpora, we did not find two functions that
were k-equivalent and not partially equivalent (with exception to the functions that used
unmodelled library function calls, which were detected independently). This is partially
due to the fact that these programs were also thoroughly tested and checked for bugs
before checked for k-equivalence. However, if two functions are not k-equivalent for some
value k, then that means that these functions are not equivalent. In our corpora, there were
several cases where k-equivalence discovered a bug that the testing missed (Section 4.1).

K-equivalence vs testing. Like testing, k-equivalence can always be applied. Proving
k-equivalence is usually much stronger information than information obtained by testing.

Regression Verification for Automated Evaluation 213

int idx_minA(float a[], int n) {
int min = 0; int i;
for (i = 1; i < n; i++)

if (a[i] <= a[min])
min = i;

return min;
}

int idx_minB(float a[], int n) {
int i, idx; float min;
for (i = 1, min = a[0], idx=0;

i < n; i++)
if (min >= a[i]) {
min = a[i];
idx = i;

}
return idx;

}

float idx_minA(float a[], int n) {
int min = 0; int i = 1;
min = idx_minA_loop(a, n, i, min);
return min;

}

float idx_minA_loop(float a[],
int n,
int i,
int min) {

if (i < n) {
if (a[i] <= a[min])

min = i;
i++;
min = idx_minA_loop(a, n, i, min);

}
return min;

}

float idx_minB(float a[], int n) {
int i, idx; float min;
i = 1, min = a[0], idx=0;
idx = idx_minB_loop(a, n, i, min, idx);
return idx;

}

int idx_minB_loop(float a[], int n,
int i, int min,
int idx) {

if (i < n) {
if (min >= a[i]) {

min = a[i];
idx = i;

}
i++;
idx = idx_minB_loop(a, n, i,

min, idx);
}
return idx;

}

float idx_minA(float a[], int n) {
int min = 0; int i = 1;
if (i < n) {
if (a[i] <= a[min])

min = i;
i++;
min = uf(a, n, i, a[min], min);

}
return min;

}

float idx_minB(float a[], int n) {
int i, idx; float min;
i = 1, min = a[0], idx=0;
if (i < n) {
if (min >= a[i]) {

min = a[i];
idx = i;

}
i++;
idx = uf(a, n, i, min, idx);

}
return idx;

}

Fig. 5. Finding the index of the minimum element: implementation, transformation into
recursive function and replacement by an uninterpreted function

By testing, it is checked that for one single set of inputs the functions give the same
outputs. Here we are not restricted to the possible inputs, but just for the number of loop
iterations. For example, if we prove that functions shown in Figure 3 are k-equivalent
for k = 5, that means that for each array of the size 5 or less, these functions calculate
the same outputs. This is equivalent to testing the functions with Σ5

i=1(2
(sizeof(int)))i

different test cases, which, for sizeof(int) = 32, approximately equals to 1.46 × 1048.
Also, complete path coverage is achieved in all cases were loop iterations are restricted
to k. However, there are situations when checking k-equivalence does not provide better
information compared to testing, like if there is only one input value and the number of
loop iterations together with the resulting values are controlled only by this value.

214 M. V. Janičić and F. Marić.

int strcspnA(char s[], char t[]) {
int i, j;
for(i=0; s[i]; i++) {
for(j=0; t[j]; j++)

if(s[i] == t[j])
return i;

}
return -1;

}

int strcspnA (char s[], char t[]) {
int i, j;
i = 0; int ret1 = RET_UNDEF;
if (s[i] && ret1 == RET_UNDEF) {
j = 0; int ret2 = RET_UNDEF;
if (t[j] && ret2 == RET_UNDEF) {
if (s[i] == t[j]) ret2 = i;
if (ret2 == RET_UNDEF) j++;
ret2 = uf1(ret2, i, j, s, t);

}
if (ret2 != RET_UNDEF) ret1 = ret2;
if (ret1 == RET_UNDEF) i++;
ret1 = uf2(ret1, i, s, t);

}
if (ret1 != RET_UNDEF) return ret1;
return -1;

}

Fig. 6. Transforming a function with double for loop and a return inside

Partial equivalence vs uninterpreted functions. For proving partial equivalence by
uninterpreted functions, it is necessary to perform the described transformation. If equiv-
alence of two transformed functions is proved, then the original functions are also equiv-
alent. Both the entry point to a loop and the loop-exit condition influence the proof of this
equivalence [27]. Therefore, it can be useful to have several model solutions. If equiva-
lence of the two functions cannot be proved, then that does not imply that the original
functions are not equivalent: it may happen that their equivalence only cannot be proved
this way. There is a number of such examples [27], but, in practice, there are many cases
where this technique can be successfully applied (discussed in Section 4.2).

Uninterpreted functions vs k-equivalence. The obvious advantage of using uninter-
preted functions to k-equivalence is that partial equivalence is a stronger property. Also,
using uninterpreted functions is usually more efficient than loop unrolling with a high
value for k. However, uninterpreted functions model only changes captured by a single
scalar return value. Therefore, they cannot be applied when more than one variable is
modified in a loop that is live after the loop, or when the loop modifies values of an array.

4. Evaluation and results

To illustrate applicability of regression verification, we analyzed two corpora of problems
solved by students and a corpus of classic algorithms that are usually taught at introduc-
tory and algorithms courses. Regression verification, in the first context, refers to deter-
mining equivalence of solutions provided by the teacher and by the student, and in the
second between all pairs of different proposed solutions. All experiments were performed
on a computer with an Intel Core i3-4000M on 2.40GHz and with 3.9GB of RAM.

4.1. Verifying student solutions

We have conducted an experimental evaluation on two real-world corpora: one from an
university introductory programming course for computer science majors (we call this
corpus exam corpus), and the other from the national programming competitions (we call
this corpus competition corpus). We chose to use these corpora as automated evaluation

Regression Verification for Automated Evaluation 215

is especially important when the number of enrolled students is large, and these are good
examples of such situations. In both corpora we analyzed the programs that: (i) success-
fully compile; (ii) pass all manually designed test cases (12 per problem for the first, and
between 15 and 25 for the second corpus);2 (iii) where a bug-finding tool (we used LAV)
does not find any bugs. We chose to use such programs since they are expected to be
functionally correct: programs that fail to meet the above requirements are obviously not
functionally equivalent to the model solutions, thus there is no need to further analyze
them. Also, another important reason for using these corpora is that testing (sometimes
enhanced by automated bug finding) is an established approach widely used for auto-
mated evaluation. Therefore, by using corpora that successfully pass manually designed
test cases and where a bug-finding tool does not find any bugs, we wanted to demonstrate
that the proposed approach can add value to preciseness of the automated evaluation.

Both corpora, problem descriptions and the used test cases are publicly available [76].
Statistics showing the number of problems, distribution of number of solutions per prob-
lems, lines of code and cyclomatic complexity [49] are given in Table 1.

Table 1. Distribution of number of solutions per problem, lines of code (LOC) and cyclo-
matic complexity (CC) per solution

Exam corpus
12 problems, 224 solutions, 4104 LOC

Min Max Avg. Med. Std. dev.
Solutions
per prob. 3 44 18.67 18 12.84
LOC
per sol. 5 62 18.32 19 11.54
CC
per sol. 1 17 6.22 6 4.01

Competition corpus
10 problems, 214 solutions, 4857 LOC

Min Max Avg. Med. Std. dev.
Solutions
per prob. 4 39 21.4 22.5 12.26
LOC
per sol. 5 83 22.7 21 11.97
CC
per sol. 1 50 9.01 8 6.86

Classic algorithms
59 problems, 159 solutions, 2007 LOC

Min Max Avg. Med. Std. dev.
Solutions
per prob. 2 7 2.69 2 1.16
LOC
per sol. 3 36 12.78 11 6.95
CC
per sol. 2 28 5.85 4 4.07

A) Description of the corpora
Exam corpus consists of programs written by students, during programming exams

in the programming language C [78]. Originally 1277 solutions to 15 given problems
were collected. Programs that do not compile or do not pass testing (1011 solutions), and
programs that contain memory violations or other bugs (additional 35 solutions) were
eliminated. Three problems (28 solutions) were not suitable for regression verification (in
two cases it was more efficient to thoroughly test these solutions, as described in Section
3.2, while in one case the problem requires complex data structures not supported by our
verification tool). The filtered corpus consists of 12 problems (203 solutions).

Competition corpus consists of programs written by primary school pupils (aged 12
to 16) competing at the national competitions in Serbia (in 2017).3 This competition is
organized in accordance to International Olympiad in Informatics (IOI) guidelines, and
scoring and ranking is done solely based on results obtained by automated testing on test-
cases, prepared in advance. Among four stages, we considered the second and the third

2 Test cases were carefully designed for grading purposes and contain different important usage scenarios. For
all teacher solutions, 100% of code coverage is achieved by these tests, measured by gcov tool [22].

3 The competition is organised by Mathematical Society of Serbia which is a member of European Mathemat-
ical Society. The site of the competition is https://dms.rs/informatika-osnovne-skole/

https://dms.rs/informatika-osnovne-skole/

216 M. V. Janičić and F. Marić.

stage. For the first stage, there was no central repository of solutions, while for the forth
stage there were just a few solutions that passed testing. We considered 10 different prob-
lems with 629 solutions written in C/C++ (that was around 80% of all submitted solutions,
other solutions were written in Pascal, Small Basic and C#). After the programs that do
not compile or pass testing (411 solutions) and the programs where the bug finding tool
detected bugs (4 solutions) were eliminated, the final corpus consists of 214 programs.

Differences between these two corpora. In the exam corpus, student solutions are
required to be robust and report errors for incorrect inputs, while in the competition corpus
it was allowed to assume that the input is always correct (in accordance to the problem
specification). Also, after the testing-phase, student solutions were manually inspected
and modularity, readability and other aspects were additionally graded. On the other hand,
structure and modularity of programs written during competition was quite bad (usually
everything was contained in the main function), which made them harder to verify.

Preparing for verification. To aid verification, the teacher and the student solution
should be represented as separate functions that take their input and return output solely
through function parameters and the return value. However, in most cases the student so-
lution was implemented within a function that reads the data from the standard input and
writes the results on the standard output (especially in the competition corpus). Therefore,
our implementation supports an automatic transformation that does the function extrac-
tion. The transformed programs are also publicly available [76].

The functions that read the input data and contain assertions that teacher and student
solution match (like in the programs from Figure 2) were manually written. In the exam
corpus, these functions were simple, including only necessary assertions, while in the
competition corpus, these functions contained all necessary additional constraints on input
values (imposed by problem descriptions).

B) Results
The results are summarized in Table 2. The problems from both corpora can be divided

into two types. The first type of problems (denoted as A) does not require using loops in
their solutions or only requires the use of bounded loops. For this type of programs, the
used approach is exact, i.e. it does not make neither false positives nor false negatives.
The second type of problems (denoted as B) requires the use of loops in their solutions.
These do not have upper bounds or have high upper bounds that cannot be completely
unrolled due to time and memory limits.

Table 2. The results of regression verification applied on exam and competition corpus

Type of Corpus Num. of Num. of solutions Num. of Equivalent Non-equivalent
problem problems (total / per problem) functions by RV/manually by RV/manually
(A) Problem Exam corpus 6 136 / [3,7,18,31,33,44] 136 129 / 129 7 / 7
requires using Competition corpus 5 88 / [4,4,12,29,39] 88 77 / 80 8 / 8
bounded loops
or no loops Total 11 224 224 206 / 209 15 / 15
(B) Problem Exam corpus
requires using – UF + k-equivalence 2 41 / [20,21] 62 38 + 16 / 54 8 / 8
high upper – only k-equivalence 4 26 / [4,5,7,10] 26 20 / 20 6 / 6
bounds or no Competition corpus
bounds – only k-equivalence 5 126 / [16,20,25,32,33] 126 106 / 111 15 / 15

Total 11 193 214 180 / 185 29 / 29

Regression Verification for Automated Evaluation 217

Exam corpus. The exam corpus contains 6 problems with 136 solutions of type A.
LAV successfully shows equivalence for 129 (correct) solutions and finds 7 solutions
that are not functionally equivalent to the model solutions. The exam corpus contains 6
different problems with 67 solutions of type B.

Partial equivalence using uninterpreted functions: For two problems with 41 solutions
and 62 pairs of checked functions, it was possible to check equivalence by uninter-
preted functions and in 38 cases the equivalence is proved. For remaining 24 func-
tions, equivalence cannot be proved by uninterpreted functions. In these cases, we
checked for k-equivalence for k = 5, and 16 functions are proved k-equivalent, while
8 functions (in five different solutions) are proved to be non k-equivalent.

k-equivalence by loop unrolling: The remaining 4 problems with 26 solutions cannot
be modelled by uninterpreted functions. We tried proving k-equivalence, and decided
to use k = 5 as we find it a reasonable compromise between scalability and reliability
of obtained results (scalability is discussed in Section 4.2). In many cases, k = 5 cor-
responds to equivalence checking of an algorithm that is applied on all arrays of the
maximum size 5 and obtains full path coverage in such cases. Knowing the nature of
these problems, we expected that there should not be a significant difference between,
for example, an array of the size 5 and an array of a bigger size, and our experimen-
tal results confirmed this assumption, showing that even smaller values for k could
have been used without compromising preciseness of the results. LAV successfully
proved k-equivalence of 20 solutions which are indeed functionally equivalent (based
on manual check). For the remaining 6 solutions, LAV proved non k-equivalence. All
non k-equivalent solutions could have been found already with k = 2.

The time for program transformation was negligible. The average time for verification per
solution was 0.7s, while the median value was 0.05s. The LA theory was used whenever
it was possible, as it provides faster verification. Otherwise, BVA was used. For example,
LAV generates formulas and verifies functional equivalence of functions maxA and maxB
(from Figure 1) with respect to the theory of LA and the Z3 SMT solver in 0.02 seconds.
If a solver for the BVA theory is used, then the time necessary for proving this equivalence
is 0.16 seconds with the SMT solver Boolector, and 0.84 seconds with the SMT solver
Z3. In an analogous way, LAV can also prove that the functions maxA and maxD are
not functionally equivalent. The time needed for this is 0.02 seconds in the context of
linear arithmetic, and 0.09 in the context of the theory of bit-vectors. LAV generates a
counterexample (a = 29, b = 29, c = 30), i.e. the values of the variables for which this
equivalence does not hold. This counterexample can be useful for understanding the bug
in the function maxD. Proving partial equivalence by using uninterpreted functions was
usually faster than showing k-equivalence. Proving partial equivalence of functions from
Figure 5 takes 0.028 seconds in the context of LA, and proving 5-equivalence of functions
from Figure 3 takes 0.068 seconds.

Competition corpus. Results for the competition corpus are very similar. Because
of the poor modularity and almost total absence of user defined functions in the code,
on this corpus we could not apply regression verification with uninterpreted functions. In
order to check the claim that similar verification tools can also be used for this purpose, in
addition to LAV, we ran the CBMC tool. As expected, we got the same results. There were
8 solutions in this corpus that contain library function calls that are not precisely modelled

218 M. V. Janičić and F. Marić.

by both tools or that contain advanced C++ concepts (from standard template library) that
are unsupported by both tools. Therefore, these solutions were not considered. The results
are summarized in Table 2. The average time per solution for CBMC was 1.4s, while for
LAV it was 7s. The median value for CBMC was 0.8s and for LAV was 0.7s. We also
applied random testing to all programs in this corpus (we generated fresh 25 random tests
for each task), but random testing detected bugs in only 2 solutions.

C) Discussion
We performed a quantitative analysis of the obtained results to assess in what extent

the proposed approach can add to quality of automated evaluation. We also performed a
detailed qualitative analysis of the obtained results to detect in what situations it can be
expected to get the most from the proposed approach.

Quantitative analysis of results. The percentage of non-equivalent solutions is ap-
proximately the same in both corpora: it is around 10% of all solutions that have been
analyzed (and graded as being functionally correct). It is relatively low since programs
were thoroughly tested and bug finding tool was applied.4 However, it is definitely not
negligible and reveals that in spite of very thorough testing and bug-finding, around 10%
of programs still contain bugs that go undetected. This illustrates the limited power of
these approaches and shows that the proposed approach can add to the quality and preci-
sion of automated evaluation.

Qualitative analysis of results. We manually analyzed all programs that were shown
to be non-equivalent to the model solution, in order to detect what kind of bugs are found
by regression verification. In the following text we summarize such examples.

Completely different logic valid in most cases. There were some solutions that are very
different from the expected solution and which work for most input values. For ex-
ample, one model solution required calculating dx3 e · d

y
3 e while a student submitted a

solution with 47 lines of code that introduced 9 auxiliary variables, with 10 different
branches. Another example (found in several solutions) is comparison of two dates
by converting them to integers, using the formula d+m · 30 + y · 365.

Missing branches. In several cases, students introduced unnecessary branching which
left the input uncovered. One such example is illustrated on Figure 7 where the branch
forK < 5 andR = 5 is missing. It is hard to cover such situations by test-cases, since
the branching is not the part of the problem semantics, but is artificially introduced
by the student. In some cases, branching ends with an else branch and all missing
branches will execute its code. For example, the function maxD in Figure 1 contains
such an error, i.e. the branch for o = p and q < o is missing.

Specific input series. Some errors were due to wrong behavior of programs when the
input series of numbers were specific in some sense, for example, series containing
just a single element or series containing elements in some specific order. Although
such errors could be caught by careful testing, it is hard to predict all such special
inputs in advance. Applying regression verification removes the burden from the test
designer, making grading much more reliable.

4 Automated bug-finding in this context searched for bugs such as buffer overflows, division by zero or null
pointer dereferencing. For the exam corpus, a detailed testing and automated bug finding is described in [78].
The same approach is applied in the case of the competition corpus.

Regression Verification for Automated Evaluation 219

if(K<5 && R<5)
i=(K/2)*(R/2);

else if(K<5 && R>5)
i=(K/2)*(((R-1)/3)+1);

else if(K>=5 && R<5)
i=(((K-1)/3)+1)*(R/2);

else if(K>=5 && R>=5)
i=(((K-1)/3)+1)*(((R-1)/3)+1);

int y;
while (yr > 0) {
y = y + 1;
yr = yr - 3;

}

Fig. 7. A missing branch (left-hand side) and uninitialized variable (right-hand side)

Uninitialized variables. In several cases uninitialized local variables were used, like the
solution from the competition corpus which contained the code shown on Figure 7.
Although the initial value of local variables at run-time cannot be predicted, in many
cases it is zero (and it is usually the correct initial value) and the tests pass.

Potential errors in variable range. In some cases, solutions used constructs that could
potentially introduce integer overflows. In the concrete tasks, limits were such that
those solutions were detected to be safe. However, if the assumptions for the limits are
removed, the verification detects non-equivalence and this could be used to signal po-
tential errors to novice programmers. For example, for sorting three integer variables
some solutions found the minimum, the maximum, and calculated the middle one as
the sum minus the minimum and the maximum. A similar situation was comparing
dates by converting them to integers using the formula 1000 · y+50 ·m+ d or when
maximum/minimum is initialized to arbitrary values (in our corpus, we have seen
minimum being initialized to 1000000000, 454545454, 1000, 9990000, 12345, and
99999999). Regression verification detects these solutions as non-equivalent when no
additional assumptions are given, and that can be used to warn programmers about
bad programming style and potential errors.

Most of the errors were found in programs containing rich branching structure. Programs
that do not contain branching (whether or not they contain loops) and that pass testing,
usually do not contain errors or contain only errors detected by bug finding (buffer-
overflows, division by zero etc.). On the other hand, programs where control flow can
follow various paths are much harder to verify only by testing and applying regression
verification is most beneficial in such situations. A good indicator where regression ver-
ification can be beneficial is the presence of solutions that fail just in a few test cases.
That indicates that some solutions failed only in some branches, and it is reasonable to
expect that the solutions that passed all the tests could also contain errors (in some other
branches that were not covered by test cases).

4.2. Verifying classic algorithms

To illustrate the type of problems that can be assessed by regression verification, we have
applied regression verification to same standard algorithms that are usually covered in
introductory and algorithms courses [14,63]. Detailed problem descriptions and corre-
sponding source codes are available on web page [76] together with the two other corpora.
Statistics summarizing the number of problems and solutions, their length, and cyclomatic
complexity are given in Table 1.

220 M. V. Janičić and F. Marić.

A) Description of the corpus
We applied our approach on some loop free algorithms (most of them based on differ-

ent forms of branching, like branching based on discrete values, intervals, lexicographic
comparison, or hierarchical nested branching) and on some programs with loops, using
the technique of uninterpreted functions (algorithms that calculate statistics, perform lin-
ear search and filter series, map all series elements by applying a given transformation,
and various combinations of such algorithms).K-equivalence can be successfully applied
on a wide set of problems. We examined 15 problems with 59 fundamentally different so-
lutions that yielded 100 pairs that were checked for k-equivalence. For example, we have
considered the problem of finding a sub-array of contiguous elements with the maxi-
mal sum and have shown k-equivalence between the brute-force solution, its optimized
variant based on two-pointer technique, the solution based on Kadane’s (dynamic pro-
gramming) algorithm, the solution based on maximizing the difference between the array
partial sums, and a solution based on the recursively implemented divide-and-conquer
approach.

B) Results
Times needed for showing partial equivalence are summarized in Table 3, showing that if

this approach is applicable, then the verification is usually very fast. Distribution of times
needed for showing k-equivalence for different values of k in more advanced algorithms
using CBMC are summarized in Table 4. Table shows that required verification times
quickly grow. Verifying recursive solutions is the most time consuming: all 10 cases where
the timeout of 60 seconds was violated for k = 5 involved at least one recursive solution.
We also applied LAV on 32 non-recursive solutions (since it does not support recursive
function unrolling) and the results were very similar.

Table 3. Partial equivalence of classic algorithms: number of problems, solutions and
checked pairs of solutions; minimum, maximum and median time in seconds

Group name Num. of problems Num. of solutions Num. of pairs Min. Max. Median
Loop free programs 14 36 33 0.01 0.27 0.01
Loops – unininterpreted functions 30 64 35 0.01 2.68 0.01

C) Discussion
Proving functional equivalence of two equivalent solutions is more time demanding

than finding a difference between two non-equivalent solutions. The reason is that in
proving functional equivalence all possible paths through two different solutions must be
analyzed, while for finding a difference all possible paths through solutions are analyzed
only in the worst case. Since our analysis applied on classic algorithms corpus included
only functionally equivalent solutions, this suggests that the same or less amount of time
is needed in case of considering non-equivalent solutions of the proposed problems, which
is an important use-case in context of students solutions.

Regression Verification for Automated Evaluation 221

Table 4. k-equivalence of classic algorithms for different values of k, where each pair of
solutions is checked for equivalence — first row: a number of proved pairs (time out set to
60 seconds) vs. number of all pairs; second row: min.–max.(median) times (in seconds)

Problem name proved/all pairs
(Num. of solutions) min - max (median)

k = 3 k = 4 k = 5 k = 6

1. Search (5) 10/10 10/10 9/10 7/10
0.17 - 9.6 (0.42) 0.23 - 13.79 (2.94) 0.4 - 43.31 (1.86) 0.59 - 21.49 (4.68)

2. Sort (7) 21/21 21/21 13/21 6/21
0.18 - 3.35 (1.44) 0.44 - 22.93 (6.29) 1.56 - 58.07 (38.86) 11.16 - 21.89 (17.57)

3. K-th element (3) 3/3 3/3 2/3 0/3
0.35 - 3.14 (1.03) 1.45 - 55.04 (4.96) 12.34 - 25.87 (19.105) -

4. Majority (3) 3/3 3/3 3/3 3/3
0.12 - 0.31 (0.3) 0.15 - 0.63 (0.63) 0.18 - 1.17 (1.12) 0.26 - 3.82 (2.95)

5. Fibonacci (4) 6/6 6/6 6/6 6/6
0.09 - 0.36 (0.22) 0.1 - 0.72 (0.4) 0.1 - 1.58 (0.78) 0.1 - 3.82 (1.79)

6. Longest increasing 6/6 6/6 6/6 6/6
subsequence (4) 0.14 - 0.22 (0.18) 0.16 - 0.46 (0.34) 0.3 - 1.31 (0.69) 0.53 - 6.32 (2.48)

7. Min. coins (6) 15/15 15/15 15/15 15/15
0.28 - 0.29 (0.28) 0.41 - 0.43 (0.42) 0.9 - 0.93 (0.92) 5.84 - 5.93 (5.86)

8. Stock span (2) 1/1 1/1 1/1 1/1
0.15 - 0.15 (0.15) 0.34 - 0.34 (0.34) 1.14 - 1.14 (1.14) 5.63 - 5.63 (5.63)

9. Max. segment 10/10 10/10 10/10 5/10
- sum (5) 0.12 - 0.56 (0.18) 0.3 - 2.35 (0.56) 0.83 - 24.85 (5.48) 2.79 - 29.56 (20.2)

10. Num. of segments 3/3 3/3 3/3 0/3
(3) 0.21 - 0.25 (0.22) 1.36 - 2.83 (1.66) 13.75 - 56.06 (22.75) -

11. Num. of pairs 3/3 3/3 3/3 3/3
- sum (3) 0.15 - 0.33 (0.24) 0.25 - 0.59 (0.49) 0.66 - 1.69 (1.23) 1.44 - 4.29 (3.78)

12. Num. of pairs 3/3 3/3 3/3 0/3
- diff (3) 0.28 - 0.70 (0.43) 1.78 - 6.45 (3.05) 14.87 - 45.67 (39.9) -

13. MaxPairing (5) 10/10 10/10 10/10 6/10
0.18 - 0.31 (0.26) 0.32 - 1.01 (0.61) 0.66 - 7.99 (1.52) 1.64 - 4.91 (3.19)

14. Longest palindromic 3/3 3/3 3/3 3/3
substring (3) 0.17 - 0.55 (0.41) 0.26 - 1.96 (1.52) 0.4 - 6.84 (5.10) 0.6 - 19.89 (15.43)

15. Prefix - suffix (3) 3/3 3/3 3/3 3/3
0.13 - 0.14 (0.13) 0.16 - 0.20 (0.18) 0.28 - 0.34 (0.28) 0.41 - 0.55 (0.43)

Total (59) 100/100 100/100 90/100 64/100
0.09 - 9.6 (0.28) 0.1 - 55.04 (0.53) 0.1 - 58.07 (1.46) 0.1 - 29.56 (5.27)

4.3. Threats to validity

Our experimental results give good promises for real-world applications in education, but
their generalization to other situations have to be discussed.

Languages C/C++ are present at introductory programming and algorithms courses at
many leading universities, but are not the most popular choices [30]. Although the tools
we use are tailored for C/C++, the proposed approach can be adapted for other languages.

We do not consider equivalence of bigger sized projects, but this issue could be ad-
dressed by showing equivalence of their smaller parts (like modules or functions). The
problem of detecting and aligning parts of code is discussed in regression verification
[6,20,27], but that is an orthogonal problem to the one we studied. Also, different solu-
tions of students projects might be completely different, as such projects are usually not
given by strict specifications, while a certain level of creativity is even expected.

Finally, there is a question of the number of errors that are undetected by testing and
bug finding and are found by regression verification. In our experiments, percentage of
such programs was around 10% in both corpora. Obviously, the percentage depends on

222 M. V. Janičić and F. Marić.

how test-cases are designed, but since our corpora are taken from real-world exams and
competitions, we expect that these are representative or at least very illustrative examples.
By the detailed analysis of the detected errors, we have shown that there are situations
where test cases are very hard or almost impossible to predict in advance. Therefore,
applying the proposed approach releases the burden of creating such tests.

5. Relationship to other approaches

In Section 2 we identified all important aspects of the related work, and here we discuss
them in the context of the proposed approach.

Regression verification techniques customized for specific domains [4,8,34,59,62,74,80]
are usually only semi-automated and require additional information from an expert (like
inductive invariants). However, it is not likely that students, or even teachers, would be
able to provide such expertise. Therefore, these customized techniques do not seem ap-
plicable for the evaluation of student solutions. In regression verification of large systems
[6,20,27], program behavior is usually checked only for k-equivalence [6], while we con-
sider both k-equivalence and partial equivalence in order to get more accurate results. In
regression verification of student programs, the code is usually short and, in contrast to
regression verification of large systems, it is not difficult to determine which functions
should be checked for equivalence. On the other hand, checking equivalence of matched
functions in our context can be very challenging since these functions did not evolve from
the same code and therefore may have a high level of diversity.

The rewriting-based approach [40] for verification of student programs requires for-
mal specifications to be available. An evaluation of this approach was performed on a
corpus consisting of 41 programs (all chosen to be functionally correct) – solutions of
5 different simple problems. The student solutions were transformed manually and the
system successfully verified 27 programs out of 41. The downside of this approach is
that it can be difficult task for a teacher to create formal specifications. In our approach,
code transformations are performed automatically. The corpora used in our evaluation are
bigger and wider, hence lead to more conclusive results.

Concerning evaluation based on automated testing [11,18,23,31,33,50,51,65,72] and
automated bug-finding [36,37,71,78], our approach is complementary and it gives an ad-
ditional confidence on functional correctness of the program. We think that the best way
to use it is to apply it on programs where cheaper techniques such as testing and auto-
mated bug-finding did not discover any bugs. Still, it can also be used complementary to
the grading techniques which do not asses functional correctness (e.g. grading techniques
based solely on machine learning [66]).

Concerning other important aspects that should be taken into account within a de-
tailed evaluation of programs (see Section 2), our approach, in some cases, can be used
for these purposes, too. For example, given that partial equivalence between the student
solution and some particular predefined solution has been proven, it confirms that these
programs share main characteristics of the used algorithms. Also, our approach can be
used for generating failing test-cases (as illustrated in Section 4.1) as a useful feedback
for students, as it is done in approaches based on automated testing. Although the main
purpose of our approach is to provide high-quality and precise grading at final tests or
at competitions, it can be also used as a support for clustering of programs, potentially

Regression Verification for Automated Evaluation 223

leading to a finer feedback for specific clusters (e.g. in synergy with approaches for clas-
sification and clustering of programs based on static or dynamic analysis [24,55]).

6. Conclusions and further work

There is a significant theoretical and practical progress that has been made recently in
the field of regression verification. We have shown that regression verification can be suc-
cessfully used in automated evaluation of programs at introductory programming courses,
more advanced algorithms courses, and programming competitions, and that it can be very
useful for both teachers and students (without affecting the teaching methodology itself).
Showing equivalence with the teacher solution gives a much higher confidence in the cor-
rectness of student program. We find that regression verification should be used as an
extension of classical evaluation process. Moreover, for loop-free programs, regression
verification may even replace testing, as results obtained for such programs are definite.

The implementation of the proposed approach transforms C/C++ programs and pre-
pares them for regression verification. We have shown that our system LAV can be suc-
cessfully used in this context. The presented results have shown that our tools were able
to automatically show some kind of equivalence for almost all student programs that are
equivalent to model solutions (except a few of those that used unmodeled library func-
tions). For loop-free programs, the total equivalence was shown, while for programs with
loops, in some cases a very strong relation of partial equivalence was fully automati-
cally shown, and in all other cases k-equivalence was shown. In 10% of the programs
from the two considered real world corpora regression verification found bugs that were
not previously discovered by testing and automated bug finding. This shows that even
when test-cases are carefully manually crafted and achieve complete code coverage of the
model solutions, testers fail to predict all possible situations where the student solution
might go wrong and bugs can go undetected. Therefore, regression verification can add
to quality and precision of automated evaluation, offering an important complement to
testing and, in some cases, even a good alternative for a hard and time-consuming job of
manually designing test-cases. The precision of the obtained results shows that these tech-
niques could be integrated into a grading system that would be more reliable than those
based on testing. We have analyzed functionally non-equivalent solutions and identified
that we can get the most from regression verification in situations where solutions have
rich branching structure (either imposed by problem definition or artificially introduced
by students). We have described some of the most common sources of bugs and we have
analyzed and described the types of problems that can be efficiently assessed by regres-
sion verification. Uninterpreted functions can be successfully applied to showing partial
equivalence in some cases, but not always.

We are planning to introduce other, more powerful, regression verification techniques
[20] and also to develop new ones, such that regression verification can be successfully
applied to a wider set of problems. We are also planning to improve our tool for automated
transformation of programs and to integrate fully automated regression verification into
our set of techniques for automated evaluation of students programs.
Acknowledgements. This work was partially supported by the Serbian Ministry of Sci-
ence grant 174021 and by the COST action CA15123.

224 M. V. Janičić and F. Marić.

References

1. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-functional
system properties. Information and Software Technology 51(6), 957–976 (2009)

2. Ala-Mutka, K.M.: A Survey of Automated Assessment Approaches for Programming Assign-
ments. Computer Science Education 15, 83–102 (2005)

3. Allen, I.E., Seaman, J.: Learning on demand: Online education in the United Statesf. Tech. rep.,
The Sloan Consortium (2010)

4. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented pro-
grams. In: POPL. pp. 91–102. ACM (2006)

5. Babic, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In: ICSE. pp.
211–220. ACM (2008)

6. Backes, J., Person, S., Rungta, N., Tkachuk, O.: Regression verification using impact sum-
maries. In: SPIN’13. pp. 99–116 (2013)

7. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Hand-
book of Satisfiability. vol. 185, pp. 825–885. IOS Press (2009)

8. Barthe, G., Grégoire, B., Kunz, C., Lakhnech, Y., Béguelin, S.Z.: Automation in computer-
aided cryptography: Proofs, attacks and designs. In: CPP. pp. 7–8 (2012)

9. Beyer, D.: Automatic Verification of C and Java Programs: SV-COMP 2019. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 133–155. Springer (2019)

10. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In: OSDI. pp. 209–224. USENIX (2008)

11. Cheang, B., Kurnia, A., Lim, A., Oon, W.C.: On Automated Grading of Programming Assign-
ments in an Academic Institution. Computers and Education 41(2), 121–131 (2003)

12. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: TACAS. pp.
168–176. Springer (2004)

13. Clarke, E.M.: 25 Years of Model Checking — The Birth of Model Checking. Springer (2008)
14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT (2009)
15. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In: POPL. ACM (1977)
16. Dijkstra, E.: Notes on structured programming. EUT report. WSK, Dept. of Mathematics and

Computing Science, Technische Hogeschool Eindhoven, 2nd ed. edn. (1970)
17. Douce, C., Livingstone, D., Orwell, J.: Automatic Test-based Assessment of Programming: A

Review. Journal on Educational Resources in Computing 5(3) (2005)
18. Ellsworth, C.C., Fenwick, Jr., J.B., Kurtz, B.L.: The Quiver System. In: SIGCSE. ACM (2004)
19. Ertmer, P.A., Richardson, J.C., Belland, B., Camin, D., Connolly, P., Coulthard, G., Lei, K.,

Mong, C.: Using Peer Feedback to Enhance the Quality of Student Online Postings: An Ex-
ploratory Study. Journal of Computer-Mediated Communication 12(2), 412–433 (2007)

20. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verifi-
cation. In: ASE. pp. 349–360. ACM (2014)

21. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended Static
Checking for Java. SIGPLAN Not. 37(5), 234–245 (2002)

22. Foundation, F.S.: Using the GNU Compiler Collection: gcov — a Test Coverage Program
(1988-2019), https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

23. GeeksforGeeks: A CS portal for geeks (2019), https://www.geeksforgeeks.org/
24. Glassman, E.L., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: Overcode: Visualizing variation in

student solutions to programming problems at scale. Comput.-Hum. Interact. 22(2) (2015)
25. Godlin, B.: Regression verification: Theoretical and implementation aspects (2008), masters

Thesis, Technion, Israel Institute of Technology
26. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th Annual Design

Automation Conference. pp. 466–471. DAC ’09, ACM, New York, NY, USA (2009)

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.geeksforgeeks.org/

Regression Verification for Automated Evaluation 225

27. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of similar pro-
grams. Softw. Test., Verif. Reliab. 23(3), 241–258 (2013)

28. Grivokostopoulou, F., Perikos, I., Hatzilygeroudis, I.: An educational system for learning
search algorithms and automatically assessing student performance. International Journal of
Artificial Intelligence in Education (1), 207–240 (2017)

29. Gulwani, S., Radiček, I., Zuleger, F.: Feedback generation for performance problems in intro-
ductory programming assignments. In: FSE. pp. 41–51. ACM (2014)

30. Guo, P.: Python is the Most Popular Introductory Teaching Language at Top U.S. Uni. (2014)
31. HackerRank: For devs, companies and schools. (2019), https://www.hackerrank.com
32. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10) (1969)
33. Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of Test First pro-

gramming. Information and Software Technology 51(1), 182–194 (2009)
34. Huang, S.Y., Cheng, K.T.: Formal equivalence checking and design debugging. Kluwer (1998)
35. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of Recent Systems for Automatic

Assessment of Programming Assignments. In: Koli Calling. pp. 86–93. ACM (2010)
36. Ihantola, P.: Creating and Visualizing Test Data From Programming Exercises. Informatics in

education 6(1), 81–102 (2007)
37. Juniwal, G., Donzé, A., Jensen, J.C., Seshia, S.A.: Cpsgrader: Synthesizing temporal logic

testers for auto-grading an embedded systems laboratory. In: EMSOFT (2014)
38. Kefalas, P., Stamatopoulou, I.: Using screencasts to enhance coding skills: The case of logic

programming. Comput. Sci. Inf. Syst. 15(3), 775–798 (2018)
39. King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19(7) (1976)
40. Kop, C., Nishida, N.: Automatic constrained rewriting induction towards verifying procedural

programs. In: Programming Languages and Systems, LNCS, vol. 8858. Springer (2014)
41. Krusche, S., Seitz, A.: Artemis: An automatic assessment management system for interactive

learning. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Edu-
cation. pp. 284–289. SIGCSE ’18, ACM (2018)

42. Kulkarni, C., Wei, K.P., Le, H., Chia, D., Papadopoulos, K., Cheng, J., Koller, D., Klemmer,
S.R.: Peer and self assessment in massive online classes. Comput.-Hum. Interact. 20(6) (2013)

43. Laski, J., Stanley, W.: Software Verification and Analysis: An Integrated, Hands-On Approach.
Springer, 1 edn. (2009)

44. Lattner, C.: The LLVM Compiler Infrastructure (2012), http://llvm.org/
45. Li, S., Xiao, X., Bassett, B., Xie, T., Tillmann, N.: Measuring code behavioral similarity for

programming and software engineering education. In: ICSE (2016)
46. Luxton-Reilly, A., Simon, Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott, L., Pa-

terson, J., Scott, M.J., Sheard, J., Szabo, C.: Introductory programming: A systematic literature
review. In: Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. pp. 55–106. ITiCSE 2018, ACM (2018)

47. Mandal, A.K., Mandal, C.A., Reade, C.: A System for Automatic Evaluation of C Programs:
Features and Interfaces. IJ. of Web-Based Learning and Teaching Technologies 2(4) (2007)

48. Marin, V.J., Pereira, T., Sridharan, S., Rivero, C.R.: Automated personalized feedback in in-
troductory java programming moocs. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). pp. 1259–1270 (2017)

49. McCabe, T.: Structured testing. Tutorial Texts Series, IEEE (1983)
50. Miguel A. Revilla: Uva online judge. (1995-2019), https://uva.onlinejudge.org/
51. Mike Mirzayanov: Codeforces (2010 - 2019), http://codeforces.com/
52. Moghadam, J.B., Choudhury, R.R., Yin, H., Fox, A.: Autostyle: Toward coding style feedback

at scale. In: ACM Conference on Learning @ Scale. pp. 261–266. L@S, ACM (2015)
53. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley Publishing, 3rd edn.

(2011)
54. Naudé, K.A., Greyling, J.H., Vogts, D.: Marking Student Programs Using Graph Similarity.

Computers and Education 54(2), 545–561 (2010)

https://www.hackerrank.com
http://llvm.org/
https://uva.onlinejudge.org/
http://codeforces.com/

226 M. V. Janičić and F. Marić.

55. Nguyen, A., Piech, C., Huang, J., Guibas, L.: Codewebs: Scalable homework search for mas-
sive open online programming courses. In: WWW. pp. 491–502. ACM (2014)

56. Pappano, L.: The year of the MOOC (2012)
57. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., Paterson,

J.: A Survey of Literature on the Teaching of Intr. Prog. In: WG reports on ITiCSE. ACM (2007)
58. Pieterse, V.: Automated assessment of programming assignments. In: CSERC (2013)
59. Post, H., Sinz, C.: Proving functional equivalence of two AES implementations using bounded

model checking. In: ICST. pp. 31–40 (2009)
60. Rivers, K., Koedinger, K.: Automating hint generation with solution space path construction.

In: 12th Intl. Conf. on Intelligent Tutoring Systems (2014)
61. Rizzardini, R.H., Garca-Pealvo, F.J., Kloos, C.D.: Massive open online courses: Combining

methodologies and architecture for a success learning. JUCS 21(5), 636–637 (2015)
62. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition calculi. In: FM

2014: Formal Methods, LNCS, vol. 8442, pp. 579–594. Springer (2014)
63. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley Professional, 4th edn. (2011)
64. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for introductory

programming assignments. In: PLDI. pp. 15–26. ACM (2013)
65. Sphere Research Labs: Sphere Online Judge (SPOJ) (2019), http://www.spoj.com/
66. Srikant, S., Aggarwal, V.: A system to grade computer programming skills using machine learn-

ing. In: ACM KDD. pp. 1887–1896. ACM (2014)
67. Strichman, O., Godlin, B.: Regression verification - a practical way to verify programs. In:

VSTTE. LNCS, vol. 4171, pp. 496–501. Springer (2005)
68. Strichman, O.: Special issue: program equivalence. Formal Methods in System Design 52(3),

227–228 (Jun 2018), https://doi.org/10.1007/s10703-018-0318-y
69. Stuikys, V., Burbaite, R., Damasevicius, R.: Teaching of computer science topics using meta-

programming-based glos and LEGO robots. Informatics in Education 12(1), 125–142 (2013)
70. Taherkhani, A., Korhonen, A., Malmi, L.: Automatic recognition of students’ sorting algorithm

implementations in a data structures and algorithms course. In: Koli Calling. ACM (2012)
71. Tillmann, N., Halleux, J.: Pex – White Box Test Generation for .NET . In: TAP. LNCS, vol.

4966, pp. 134–153. Springer (2008)
72. Topcoder: Topcoder (2001–2019), https://www.topcoder.com/
73. Valiente, J.A.R., Merino, P.J.M., Dı́az, H.J.P., Ruiz, J.S., Kloos, C.D.: Evaluation of a learning

analytics application for open edX platform. Comput. Sci. Inf. Syst. 14(1), 51–73 (2017)
74. Verdoolaege, S., Palkovic, M., Bruynooghe, M., Janssens, G., Catthoor, F.: Experience with

widening based equiv. checking in realistic multimedia systems. J. Elec. Testing 26(2) (2010)
75. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Automated

Software Eng. 10(2), 203–232 (2003)
76. Vujošević Janičić, M.: LAV (2009 -), http://argo.matf.bg.ac.rs/?content=lav
77. Vujošević Janičić, M., Kuncak, V.: Development and Evaluation of LAV: An SMT-Based Error

Finding Platform. In: VSTTE. pp. 98–113. LNCS, Springer (2012)
78. Vujošević Janičić, M., Nikolić, M., Tošić, D., Kuncak, V.: Software verification and graph

similarity for automated evaluation of students assignments. Inf. and Soft. Tech. 55(6) (2013)
79. Vujošević Janičić, M., Tošić, D.: The Role of Programming Paradigms in the First Program-

ming Courses. The Teaching of Mathematics XI(2), 63–83 (2008)
80. Welsch, Y., Poetzsch-Heffter, A.: A fully abstract trace-based semantics for reasoning about

backward compatibility of class libraries. Sci. Comput. Program. 92, 129–161 (2014)

http://www.spoj.com/
https://doi.org/10.1007/s10703-018-0318-y
https://www.topcoder.com/
http://argo.matf.bg.ac.rs/?content=lav

Regression Verification for Automated Evaluation 227

Milena Vujošević Janičić is currently an assistant professor at the Department of Com-
puter Science, Faculty of Mathematics, University of Belgrade. Her main research inter-
ests are in automated bug finding, model checking and application of software verifica-
tion techniques in different fields. She is a member of the Automated Reasoning GrOup
(ARGO) at the University of Belgrade.

Filip Marić is currently an associate professor at the Department of Computer Science,
Faculty of Mathematics, University of Belgrade. His main research interests are in inter-
active theorem proving and its applications in formalization of mathematics and software
verification. He is also interested in SAT and SMT solving and their applications and in
teaching programming at introductory level. He is a member of the Automated Reasoning
GrOup (ARGO) at the University of Belgrade.

Received: December 20, 2018; Accepted: July 10, 2019.

Computer Science and Information Systems 17(1):229–252 https://doi.org/10.2298/CSIS180717038L

Visualization of path patterns in semantic graphs ?

José Paulo Leal

CRACS & INESC-Tec LA, Faculty of Sciences, University of Porto
Porto, Portugal

zp@dcc.fc.up.pt

Abstract. Graphs with a large number of nodes and edges are difficult to visualize.
Semantic graphs add to the challenge since their nodes and edges have types and
this information must be mirrored in the visualization. A common approach to cope
with this difficulty is to omit certain nodes and edges, displaying sub-graphs of
smaller size. However, other transformations can be used to summarize semantic
graphs and this research explores a particular one, both to reduce the graph’s size
and to focus on its path patterns.
A-graphs are a novel kind of graph designed to highlight path patterns using this
kind of summarization. They are composed of a-nodes connected by a-edges, and
these reflect respectively edges and nodes of the semantic graph.
A-graphs trade the visualization of nodes and edges by the visualization of graph
path patterns involving typed edges. Thus, they are targeted to users that require a
deep understanding of the semantic graph it represents, in particular of its path pat-
terns, rather than to users wanting to browse the semantic graph’s content. A-graphs
help programmers querying the semantic graph or designers of semantic measures
interested in using it as a semantic proxy. Hence, a-graphs are not expected to com-
pete with other forms of semantic graph visualization but rather to be used as a
complementary tool.
This paper provides a precise definition both of a-graphs and of the mapping of se-
mantic graphs into a-graphs. Their visualization is obtained with a-graphs diagrams.
A web application to visualize and interact with these diagrams was implemented
to validate the proposed approach.
Diagrams of well-known semantic graphs are presented to illustrate the use of a-
graphs for discovering path patterns in different settings, such as the visualization of
massive semantic graphs, the codification of SPARQL or the definition of semantic
measures.
The validation with large semantic graphs is the basis for a discussion on the insights
provided by a-graphs on large semantic graphs: the difference between a-graphs and
ontologies, path pattern visualization using a-graphs and the challenges posed by
large semantic graphs.

Keywords: Semantic Graph Visualization, Semantic Graph Summarization, Linked
Data Visualization, Path Pattern Discovery, Semantic Graph Transformation

1. Introduction

Graphs, like most mathematical entities, are inherently visual. In fact, our mathematical
intuition relies heavily on our ability to visualize angles, functions, vectors or geomet-
ric figures. It fails us, for instance, when we try to visualize a hypercube. However, the
? This is an extended version of an article presented at SLATE’18 [16].

230 José Paulo Leal

projection of multidimensional solids in 3- or 2-dimensional spaces gives us an idea of
these entities’ shape. The visualization of the hypercube is an apt metaphor of the key
insight that drives this research: the understanding of a complex entity may be improved
by looking at the shadow it casts.

Graphs have a particular role in visualization since they are the data model of most
diagrams. Diagrams enrich graphs in two ways: a graphical syntax for nodes and edges;
and the layout of nodes and edges on a surface. Different kinds of diagrams have been
developed for many purposes. These diagrammatic languages are used for modeling and
visualizing relationships among entities, even when they are purely abstract.

In spite of their ability to show relationships and symmetries, large diagrams are diffi-
cult to visualize. Too many nodes and too many entangled edges reduce our perception on
the underlying graph. This is particularly the case of the semantic web, where graphs are
growing increasingly larger and denser. Section 2 presents different attempts to provide
visualizations of large semantic graphs, with efficient approaches to process large quanti-
ties of data and methods to abstract them, mostly by omitting nodes and edges with certain
features. These diagrams represent the graphs themselves, and the layout may highlight
general properties, such as symmetry, but usually they do not reveal specific features such
as patterns formed by nodes and edges.

spouseOf

parentOf

Fig. 1. Immediate family relationships graph

Consider the diagram in Figure 1 that depicts immediate family relationships. Nodes
represent persons and there are two types of edges: the dotted edges represent the spouseOf
relationship and the dashed edges represent parentOf. The edges in this graph can be sum-
marized by the a-graph in Figure 2 that represents edge types as nodes. This kind of graph
resembles line graphs [12] that represent adjacencies between edges of a graph, although
a-graphs represent adjacencies between edge types. For that reason, the corresponding a-
graph is much smaller than the original graph. Moreover, even if the number of nodes and
edges increases in the original graph, the structure of the a-graph may remain unchanged.

Visualization of path patterns in semantic graphs 231

For instance, if the immediate family relationship graph was extended to consider all the
humans that ever lived, the corresponding a-graph would still be similar to the one de-
picted in Figure 2.

parentOfspouseOf

Fig. 2. Immediate family relationships a-graph

The novelty of the a-graph approach is the abstraction of large semantic graphs into
a much smaller graph highlighting its path patterns. The abstraction process consist on
mapping semantic graphs into a-graphs, a particular kind of graph with an associated di-
agram type. Sets of edges with the same type are mapped into nodes and sets of nodes
into edges. Section 3 defines a-graphs and their relationship with semantic graphs. It also
introduces the a-graph diagrams used for their visualization and provides small exam-
ples of this kind of diagram. The final subsection compares a-graphs with other forms of
representing the properties of semantic graphs, such as ontologies.

An implementation of the mapping and diagram layout is described in Section 4. It is
deployed as a web application for browsing a-graphs and exporting them as vector images,
such as the diagram shown in Figure 2. It is available online1 and is useful to validate the
proposed approach. Section 5 presents examples of diagrams produced with this tool to
illustrate different techniques to create meaningful visualizations of large semantic graphs
and discover relevant path patterns. Section 6 discusses the relationship between a-graphs
and ontologies, the efficacy and efficiency of a-graphs to display path patterns and the
ability and limitations of the current implementation to manage large semantic graphs.
The last section summarizes the a-graph proposal, highlights its main contributions and
identifies opportunities for future research.

2. Related Work

A-graphs are abstract representations of semantic graphs and thus related to graph sum-
marization [18]. This research field covers a wide variety of graph types, from plain
graphs described by an adjacency matrix to dynamic graphs described by data streams,
encompassing also labelled graphs. Semantic graphs are typed and types of nodes and
edges can be seen as labels.

The most popular approaches to graph summarization involve compression and group-
ing techniques. The former is inspired by information theory concepts, namely minimum

1 http://quilter.dcc.fc.up.pt/antigraph

232 José Paulo Leal

description length (MDL), to detect and compress frequent structures in graphs. The latter
aggregates nodes into supernodes connected by super edges to create a new structure, a
supergraph. In the case of labelled graphs, grouped nodes are structurally close to each
other. Many of these graph summarization approaches are database-centred and only a few
emerged from semantic graphs [18]. For instance, Song et al. [19] proposed an approach
to summarize knowledge graph characterized by graph patterns, called d-summaries, that
produce a supergraph as summarization. None of these approaches reverses edges for
nodes.

Graphs summarization has several applications. Some of these applications are outside
the scope of this research, such as to reduce data volume in storing of massive graphs, to
speedup graphs algorithms and queries. Other applications are in tune with the objectives
of a-graphs, such as to reduce noise in graphs or to support interactive visualization of
massive graphs. However, most approaches to semantic graph visualization described in
the literature do not rely on graph summarization.

Knowledge bases such as WordNet2 [8], Yago3 [15] and DBpedia4 [4], have a massive
amount of information. A typical representation of these knowledge bases are node-link
multigraphs, where each node has a type and nodes are connected by links representing
the relationship between them.

A convenient way to analyze this data is using data visualization. The most common
type of visualization is focused on the analysis of resources, in particular, those with a
high outdegree. The main challenge of semantic graph visualization and management is
related to the graph size. This type of graphs has several thousands of nodes and edges
and is usually very dense.

The literature presents several approaches to handle the visualization and manage-
ment of node-link graphs. Most of the related work on massive graphs visualization is
handled through hierarchical visualization. This type of approach has low memory re-
quirements, however, it depends on the characteristics of the graph. The graph hierarchy
can be extracted using different kinds of methods. Tools such as ASK-GraphView [1],
Tulip [3] and Gephi [5] explore clustering and partitioning methods, creating an abstrac-
tion of the original graph, using graph summarization, that is easier to visualize. Another
technique used to build hierarchies is based on the combination of edge accumulation
with density-based node aggregation [21]. Visual complexity can also be reduced by hub-
based hierarchies, where the graph is fragmented into smaller components, containing
many nodes and edges, making meta nodes, as described in [17]. GrouseFlocks [2] allows
users to manually define their own hierarchies.

There are specific tools when the semantic graph is in Resource Description Frame-
work (RDF) format, however, they require loading the full graph. Some desktop-based
tools, such as Protégé 5 and RDF Gravityare mainly used with purpose of aiding de-
velopers to construct their ontologies, providing also complex graph visualizations. Of
all available tools for linked data visualization the most notable ones are the following.
Fenfire [13] is a generic RDF browser and editor that provides a conventional graph rep-
resentation of the RDF model. The visualization is scalable by focusing on one central

2 https://wordnet.princeton.edu/
3 https://www.mpi-inf.mpg.de/yago-naga/yago
4 http://wiki.dbpedia.org/
5 http://protege.stanford.edu/

Visualization of path patterns in semantic graphs 233

node and its surroundings. RelFinder6 [14] is a tool that extracts from a Linked Open
Data (LOD) source the graph of the relationships between two subjects. It provides an
interactive visualization by supporting systematic analysis of the relationships, such as
highlighting, previewing and filtering features. ZoomRDF [20] is a framework for RDF
data visualization and navigation that uses three special features to support large scale
graphs. It uses space-optimized visualization algorithms that display data as a node-link
diagram using all visual space available. Fish-eye zooming is another feature that allows
the exploration of selected elements details, while providing the global context. The last
feature is the Semantic Degree of Interest assigned to all resources that consider both the
relevance of data and user interactions. LODeX [6] produces a high-level summarization
of a LOD source and its inferred schema using SPARQL endpoints. The representative
summary is both visual and navigable. The platform graphVizdb7 [7] is a tool for efficient
visualization and graph exploration. It is based on a spatial-oriented approach that uses a
disk-based implementation to support interactions with the graph.

3. A-graph definition

The most distinctive feature of a-graphs is that nodes and edges are reversed relatively to
the semantic graphs that generated them. Subsection 3.1 explains the motivation behind
this decision and characterizes the main components of a-graphs, namely a-nodes and
a-edges, as well as their features.

The proposed approach to the visualization of semantic graphs can be divided into
two parts. Firstly, the semantic graph is abstracted to another graph – the a-graph – that
promotes types of edges. Secondly, this abstracted graph is visualized using a special
kind of diagram – the a-graph diagram – that emphasises path patterns. The following
two subsections detail each facet of the a-graph approach.

3.1. Motivation

Nodes have the main role in a graph. Edges connect nodes and establish relationships
among them. The goal of a-graphs is to abstract a given graph, highlighting edges and re-
ducing its size. Hence, in an a-graph nodes and edges are reversed, i.e. an a-node abstracts
edges and an a-edge abstracts nodes.

It is important to note that an a-node abstracts an edge type rather than a single edge.
Hence the order (the number of nodes) of an a-graph is in general much smaller than that
of the graph it abstracts. For instance, the graph of WordNet 2.1 has about 2 million edges
with 27 edge types, hence 27 is the order of the reductions that abstract it.

An a-edge expresses a relationship between a pair of a-nodes, namely that the edge
types it represents can be connected to form a length 2 path. Two edges form a length 2
path when the target of the first is the source of the second. Since an a-edge represents a
set of nodes, the size (the number of edges) of an a-graph is much smaller than the size of
the graph it abstracts. Considering that a-edges can be loops, the number of a-edges is less
or equal to n2, where n is the number of a-nodes. For instance, the size of the WordNet

6 http://www.visualdataweb.org/relfinder.php
7 graphvizdb.imis.athena-innovation.gr/

234 José Paulo Leal

2.1 graph is about half a million but the size of its a-graph is only 214, well below the
maximum of 272 = 729.

The expressiveness of a-nodes and a-edges is increased by adding weights to them.
The weight of an a-node is the percentage of edges with the type it abstracts. For instance,
if a graph has half of its edges of type t then the a-node reflecting t has weight 1/2.
Hence, a-nodes with higher weight reflect edge types that are more frequent in the graph.
Obviously, the sum of a-node weights must be 1.

By the same token, the weight of an a-edge is the percentage of nodes that participate
in length 2 paths involving edge types they have as source and target, respectively. For
instance, if an a-node reflects the edge type t1 and another the edge type t2, and 1/3 of
the nodes are target of t1 and source of t2, then the weight of the a-edge t1 → t2 is 1/3.

One would expect every node to be reflected by an a-edge, but for that to happen the
nodes that are just sources (not the target of any edge) or just targets (not the source of any
edge) must also be abstracted by a-edges. To ensure that all nodes are reflected by a-edges
it is necessary to introduce two special a-nodes: bottom, denoted as ⊥; and top, denoted
by >. The bottom a-node represents a nonexisting edge type that would come before the
start of a path. Conversely, the top a-node represents a nonexisting edge type that would
come after the end of a path. Both special a-nodes have weight 0, thus maintaining the
invariant that the sum of all weights is 1.

The two special a-nodes – bottom and top – allow the definition of a-edges that ab-
stract nodes that are only source or target of edges. These a-nodes are considered special
to differentiate them from regular a-nodes, that have an associated edge type. The a-edge
⊥→ t abstracts the nodes with a null indegree that are sources of edges with type t, and
the a-edge t → > abstracts the nodes with a null outdegree that are targeted by edges of
type t.

In fact, both the indegrees and outdegrees of nodes must be taken into consideration
in the weight of all a-edges. Consider a node n with indegree 2 and outdegree 3. For
instance, if the two incoming edges and the three outgoing are of different types then
the contribution of that node to each a-edge is 1/6. Thus, the weight of an a-edge is the
percentage of connecting nodes in paths formed by the edge types, pondered by their
in(out)degrees. With this definition, the sum of a-edges weights is also 1.

As explained above, the introduction of the special a-nodes bottom and top is essen-
tial to abstract all the nodes of the original graph in a-edges connecting them. One may
wonder what other a-nodes types should be considered. It should be noted that a-nodes
may have a-edge loops if the graph contains homogeneous paths, i.e. paths formed by a
single type of edge. Since the goal of a-graphs is to highlight path patterns, it is important
to distinguish different cases that would be amalgamated by generic a-nodes with loops.

Certainly, not all a-nodes have loops. These are considered shallow a-nodes since they
have at most paths of length 1. In contrast a deep a-node has homogeneous paths of higher
length through its loop. Special cases of deep a-nodes can be also considered: cyclical,
where the loops contain homogeneous cycles, i.e. cycles using only the type of edge
represented by the a-node; and hierarchical, where the loops represent confluent paths,
i.e. where the nodes in homogeneous paths have branching factor above or equal to 2.
These types provide information on the kind of paths formed “within” an a-node, similar
to the information that can be extracted from other a-edges relating different a-nodes.

Visualization of path patterns in semantic graphs 235

In summary, an a-graph is an abstraction of a semantic graph. This does not mean that
an a-graph is a sort of schema. A semantic graph does not comply with its a-graph, it is
the other way round: a-graphs have a functional dependency to semantic graphs. Thus,
the information provided by an a-graph is of a different nature of that of an RDF or OWL
ontology, as discussed in Subsection 6.1.

3.2. Abstraction map

The previous subsection introduced the concepts of a-node, a-edge and their weights, as
well as the map between a semantic graph and the a-graph that it abstracts. This subsection
formalizes those concepts, starting by precising the concept of semantic graph. A semantic
graph G can be defined as a tuple G = (N,E, TN , TE , tN, tE) where:

set of nodes N
set of edges E ⊆ {(s, t) : s ∈ N ∧ t ∈ N}
set of types of nodes9 TN

set of types of edges10 TE

types of nodes tN : N → TN

types of edges tE : E → TE

The a-graph A of graph G is produced by a map defined as

abstract : G →A
(N,E, TN , TE ,MN ,ME) 7→ (N ′, E′,W ′

N ,W ′
E , tN ′)

It should be noted that the a-graph A is an abstraction of a semantic graph G, not itself
a semantic graph. The a-graph A is a tuple where:

set of a-nodes N ′ = TE ∪ {> ⊥}
set of a-edges E′ = E′

0 ∪ E′
⊥ ∪ E′

>
weight of a-nodes wN : N ′ → [0, 1]
weight of a-edges wE : E′ →]0, 1]
type of a-nodes tN ′ : N ′ → T ′ where

T ′ = {shallow deep cyclic hierarchical top bottom}

As defined above, the set of a-nodes is the union of types of edges of G with special
nodes > (top) and ⊥ (bottom). The definition of the set of a-edges is also the union of
three sets, namely the set of regular a-edges E′

0, the set of bottom a-edges E′
⊥, and the set

of top a-edges E′
>.

An ordered pair (⊥, t′) is in the set E′
⊥ if there is an edge of type t′ where the source

node s has a null indegree (deg-(s) = 0).

9 In an RDF graph, this would be set of URIs referring to resources rather than a set of RDFS
classes

10 In an RDF graph, this would be set of URIs referring to properties

236 José Paulo Leal

E′
⊥ = {(⊥, t′) : t′ ∈ TE ∧

(∃(s, t) ∈ E : tE((s, t)) = t′) ∧
deg-(s) = 0 }

Similarly, an ordered pair (s′,>) is in the set E′
> if there is an edge of this type where

the target node t has a null outdegree (deg+(t) = 0).

E′
> = {(s′,>) : s′ ∈ TE ∧

(∃(s, t) ∈ E : tE((s, t)) = s′) ∧
deg+(t) = 0 }

Finally, an ordered pair (s′, t′) of a-nodes is in a set of regular a-edges if there is a
path in the graph involving the two edge types.

E′
0 = {(s′, t′) : s′ ∈ TE ∧ t′ ∈ TE ∧

(∃(s,m) ∈ E : tE((s,m)) = s′) ∧
(∃(m, t) ∈ E : tE((m, t)) = t′) }

By definition, the weight of the special a-nodes, top and bottom, is null; and these are
the only a-nodes with null weight. The nonnull weight of a regular a-node n′ is the ratio
between the number of edges with that type and the total number of edges

wN(n
′) =

]{e : e ∈ E ∧ tE(e) = n′}
]E

The weight of an a-edge must be computed differently when its source s′ or target
t′ have special a-nodes. If the source s′ = ⊥ then the n-tuple Bt′ of nodes to consider
contains those that are sources of an edge of type t′ with a null indegree. The reader
should note that this is an n-tuple rather than a set, where each node s may appear more
than once. The order of the nodes in the n-tuples is immaterial. The purpose of the n-
tuples is merely to count the number of nodes. In all n-tuples Bt′ , as defined below, each
node s is repeated as many times as its outdegree deg+(s).

Bt′ = (s : (s, t) ∈ E ∧ tE((s, t)) = t′ ∧ deg-(s) = 0)

Similarly, if the target t′ = > then the n-tuple of nodes to consider is those that are the
target of an edge of type s′ with a null outdegree. In all n-tuples Ts′ each node t appears
repeated as many times as its indegree deg-(t).

Ts′ = (t : (s, t) ∈ E ∧ tE((s, t)) = s′ ∧ deg+(t) = 0)

Otherwise, if none of them is a special a-node then the nodes to consider are those
that participate in paths of length 2 where the first edge has type s′ and the second has
type t′. In this case the node m appears repeated deg-(m) deg+(m) times.

Visualization of path patterns in semantic graphs 237

Rt′

s′ = (m : (s,m) ∈ E ∧ (m, t) ∈ E ∧ tE((s,m)) = s′ ∧ tE((m, t)) = t′)

The weight of an a-edge wN((s
′, t′)) sums the contribution of n-tuples sets according

to each case. The contribution of each node is pondered with the inverse of its indegrees
or outdegrees, when these are not null. Thus, the definition of weight function is the
following,

wN((s
′, t′)) =


1
]E

∑
s∈Bt′

1
deg+(s) if s′ = ⊥

1
]E

∑
t∈Ts′

1
deg-(t) if t′ = >

1
]E

∑
m∈Rt′

s′

1
deg-(m) deg+(m) otherwise

Finally, the tN ′ function maps a-nodes to a type in T ′. The definition of this function
is based on the concept of graph reduction. A reduction of the graph G by the type t ∈ T
is the largest subgraph of G that has only edges of type t and without disconnected nodes;
i.e. nodes that are not the source or target of edges of type t are removed. It should be
noted that in general a graph reduction Gt has many strongly connected components, in
some cases as many as the number of edges (a value property, for instance). Consider the
following functions defined over the set of G of all graph reductions:

size of the largest path slp : G → N
number of cycles nc : G → N
average branching factor abf : G → R

Using these functions over graph reductions the a-node type function is defined as
follows.

tN ′(n′) =



shallow if n′ ∈ TE ∧ nc(Gn′) = 0

∧ slp(Gn′) < 3

deep if n′ ∈ TE ∧ nc(Gn′) = 0

∧ slp(Gn′) >= 3 ∧ abf(Gn′) < 2

hierarchic if n′ ∈ TE ∧ nc(Gn′) = 0

∧ slp(Gn′) >= 3 ∧ abf(Gn′) >= 2

cycle if n′ ∈ TE ∧ nc(Gn′) > 0

top if n′ = >
bottom if n′ = ⊥

The codomain of tN ′ captures a number of elemental path patterns involving a single
edge type. Shallow a-nodes correspond to paths with a single edge. Deep a-nodes cor-
respond to larger paths such as those resulting from transitive edges. Hierarchic a-nodes
are in fact a special case of deep a-nodes, where paths converge to a single, or a set of,
root nodes; these edges form hierarchies and are particularly interesting for discovering
edges types for path based semantic measures [10]. Finally, cyclic a-nodes are created by
reflexive edges.

238 José Paulo Leal

The constants in the definition of tN ′ require some explanation. The threshold of 0 in
the number of cycles [nc(Gn′)] to distinguish a cycle from other regular types is rather
obvious, but not the threshold of 3 in the size of largest path [slp(Gn′)]. A threshold of
2 was, in fact, the first choice, but there are cases where paths of size 3 occur without
changing the type of an a-node. The most notable example is rdf:type. Since RDF types
have themselves a type (rdfs:Class), length 3 paths are usual in semantic graphs, but
they should be considered shallow and not hierarchic. Finally, with an average branching
factor [abf(Gn′)] above or equal to 2 the paths in a graph reduction form a hierarchy that
is suitable for classification. That is usually the case of rdfs:subClassOf, for instance, that
in conjunction with rdf:type creates a taxonomic relationship [10].

3.3. Diagram language

As explained in the previous Subsection, an a-graph is an abstraction of a semantic graph.
The a-graph diagram language is a visual representation of an a-graph intended to high-
light the path patterns of the abstracted semantic graph. An a-graph has a-nodes of differ-
ent types connected by a-edges.

deepshallow cyclehierar.

Fig. 3. Catalog of a-node types

The type of an a-node is conveyed by its shape. A shallow a-node is represented by a
horizontal rectangle, while a deep a-node is represented by a vertical rectangle. The height
of these rectangles is a visual cue of the path sizes contained in these a-nodes. A cyclical
a-node is represented by a circle or an ellipse, and a hierarchical a-node is represented by
an isosceles trapezoid. The position of these shapes is their geometric center. The a-graph
depicted in Figure 3 is a sort of catalog of a-node types, where the label of each regular
a-node is the type’s name.

The bottom and top a-nodes are represented by a pair of parallel lines rather than
shapes. As can be seen also in Figure 3, the parallel lines that represent each of these a-
nodes have different widths. The bottom a-node has a larger upper line and the top a-node
is the reverse. The bottom and top a-nodes are located respectively at the bottom and top
of the diagram, as their names suggest. This way the paths created by a-edges tend to be
directed upwards.

Unlike a-nodes, a-edges have a single type. Hence, they are represented all by solid
lines with an arrowhead positioned in their middle pointing to the target. Lines connecting
from the bottom a-node, or to top a-node, are straight. All the others are curved so that
a-edges with opposite directions do not overlap.

Visualization of path patterns in semantic graphs 239

A-nodes and a-edges have weights in the [0, 1] interval. Actually, both regular a-nodes
and a-edges have always nonnull weights; special a-nodes (top and bottom) have null
weights by definition. The nonnull weights of regular a-nodes and a-edges are conveyed
graphically too. The weight of an a-node is shown as a transparency, making dimmer
the a-edges representing a smaller number of edges in the abstracted graph. The same
principle applies to weights of a-edges. In this case, the weight is also shown as line
width, making thicker the a-edges that represent a larger number of nodes. The semantic
graph that originated the a-graph in Figure 3 has all edge types with the same number
of edges, hence all a-nodes have the same weight, thus they all have the same shade. A
different thing happens with a-edges; each has a different shade, reflecting their different
weights.

The regular a-nodes in the catalog diagram are not connected to each other, just to bot-
tom and top (with the exception of the cycle). This means that they do not form “joins”.
Using a syntax borrowed from SPARQL, it can be said that the semantic graph that gen-
erated it lacks triple patterns of the form

?a ?p ?b .
?b ?q ?c .

hasSubSectionhasChapter hasSection

Fig. 4. Book structure

The example in Figure 4 represents the structure of books, where a book has chapters
and these have sections. The a-graph of such semantic graph has the properties hasChap-
ter, hasSection and hasSubSection.

In this case “joins” are created using multiple edge types hence the a-nodes have a-
edges connecting them. In particular hasChapter is connected to hasSection and this to
hasSubSection. The reader should note that the three regular a-nodes are connected to the
top, meaning that there are chapters, sections and subsections that are not subdivided, and
that only hasChapter is connected from bottom, meaning that only these are connected
from root elements of the hierarchy.

The previous example reflects a hierarchical structure, although with a different type
of edge for each layer. The example in Figure 2 reflects a semantic graph with a couple of
family relationships, namely spouseOf and parentOf. Their associated a-nodes both have
loops, which means that paths with a single type of edges can be created. The parentOf
a-node has hierarchic as type, meaning that paths of length greater or equal to 3 can be
created and has an average branching factor greater or equal to 2.

The simple patterns identified in the small examples above occur also in larger seman-
tic graphs. Section 4 presents an a-graph browser that allows us to discover combinations
of these patterns in larger examples, as those analyzed in Section 5.

240 José Paulo Leal

4. A-graph browser

This section describes the design and implementation of a web application developed to
validate the concept of a-graph. This web application – the a-graph browser – produces
interactive a-graph diagrams from several data sources and is freely available online11.

The a-graph browser is a Java web application developed with the Google Web Toolkit
(GWT). It is composed of a client front-end running on a web browser and a server back
end. The server is responsible for transforming a semantic graph in RDF format into an
a-graph that is sent to the client. The front end is responsible for laying out diagrams and
managing user interaction, as explained in the following subsections.

4.1. Back end processing

The mapping of semantic graphs into a-graphs is performed in two stages by the back end.
Firstly, a set of graph reductions is produced from the semantic graph triples. Secondly,
the a-graph data is computed by processing these graph reductions.

A graph reduction instance aggregates edges of a single type, that is, the semantic
graph obtained by considering only the edges of that type. It records the nodes that are
sources and those that are targets, and computes their in and outdegrees. The links between
these nodes are also recorded to compute aggregate measures on the reduction such as the
number of cycles, depth and branching factor.

Graph reductions are computed by processing a stream of RDF triples. For each
subject-predicate-object triple the reduction corresponding to its predicate is selected,
with the subject recorded as source and the object as target.

Each reduction corresponds to an a-node. Thus the second stage creates an a-node for
each reduction found in the first stage, assigning it a weight computed as the percentage
of edges in the graph. The top and bottom a-nodes, with null weight, are also created.
Then it iterates over the pairs of reductions to create a-edges.

The computation of a-edges’ weights is more complex than that of a-nodes, as it in-
volves determining the intersection of the targets and source sets of nodes respectively of
the source and target a-nodes of each a-edge. Also, the contribution of each of these nodes
depends both on their in(out)degrees on the reduction. The pairs of a-nodes with nonnull
weights create a-edges.

A-edges connecting a-nodes to top and bottom need also to be considered. These are
created with the nodes that are not fully consumed to create a-edges among regular a-
nodes, following the same approach to compute weights. It should be noted that links
between top and bottom are impossible.

4.2. Diagram layout

A-graphs serialized in JSON are sent to the front end where they are visualized as dia-
grams. The layout of these diagrams is computed using a force-directed algorithm [11].
A-nodes repel each other according to Coulomb’s law as if they were electrically charged
particles with the same signal. A-edges bind them together as springs following Hooke’s
law.
11 http://quilter.dcc.fc.up.pt/antigraph

Visualization of path patterns in semantic graphs 241

The top and bottom a-nodes, as well as the a-edges connecting them, are ignored in
this process. The layout is performed in a rectangular area that acts as a boundary that
confines regular a-nodes. Top and bottom a-nodes are positioned respectively at the top
and bottom of this rectangle, and a-edges connecting then are plotted perpendicularly to
them.

One of the advantages of a force-directed algorithm is that it adjusts to changes, either
of window dimensions or in the number of nodes. This enables the selection of a-nodes,
choosing which to display and which to hide, with the quick readjustment of the layout.
When an a-node is hidden so are the a-edges that link to it. Nevertheless, this algorithm
may introduce undesirable changes due to user actions. To remedy this issue, the incre-
mental layout can be toggled on or off, as explained in the next subsection.

A-graphs with a large number of a-nodes tend to have an even larger number of a-
edges, cluttering the layout. In this case, the natural candidates to hide are those with
smaller weight since they represent a smaller number of edges in the semantic graph. To
simplify this kind of selection the a-graph browser provides a node weight threshold. If
this threshold is provided then a-nodes are sorted by weight and their accumulated weight
is computed in this order. When this value exceeds the threshold the remaining a-nodes
are hidden, as well as the a-edges linking to them.

4.3. User interface

Figure 5 depicts the user interface of the a-graph browser available online. The main part
is the left central region where the diagram is displayed, following the approach described
in the previous subsection. Above this area, there is a toolbar with tools for controlling
the diagram layout. The smaller panel on the right contains a data source selector and
displays the current data source features. The remainder of this subsection describes these
panels in detail.

The a-graph browser has a number of features to control the diagram layout. These
features are accessible through the icons on the header toolbar. To start with, the incre-
mental layout can be toggled on and off using the traffic light icon, on the left of the
toolbar. The icons to its left provide ways to show and hide a-nodes, as well as the a-
edges connecting them. The most relevant (with higher weight) hidden a-node is shown
by pressing the outward spiral icon. Using this tool it is possible to gradually enlarge the
diagram. The reverse tool, bound to the inward spiral icon, hides the least relevant shown
a-node.

The following two icons operate on the currently selected a-node: to show all currently
hidden a-nodes connected to it, or to hide all a-nodes connected to it. A-nodes are selected
just by clicking on them. Clicking an a-node with the mouse’s middle button also toggles
a tool tip hovering the node. This tool tip displays the characteristics of the a-node, such
as label, type and weight.

The hide all and show all tools allow the user to set the layout at the two extremes.
These tools are respectively bound to the icons with an a-graph with no a-nodes and the
a-graph with several a-nodes and a-edges. The header toolbar includes two other icons on
its right side: the camera icon and the life saving icon. The latter opens a help window
expanding the information in this paragraph.

The camera icon produces a vector image of the diagram presented in the browser.
Using the normal browser features, it is possible to obtain a raster image of the diagram.

242 José Paulo Leal

Fig. 5. A-graph browser

However, this kind of image is inadequate for publication since it has a fixed and typi-
cally low resolution. The camera icon activates a feature that produces an SVG file with
the diagram, using the same layout algorithm described above. This conversion uses the
SVGKit12 package, that works well for graphic primitives (e.g. lines, rectangles, ellipses)
but has some limitations regarding fonts and shadows. The vector images look slightly
different from their raster counterparts, but have better quality when printed. The dia-
grams of the next section, as well as those of Subsection 3.3, were produced using this
tool.

The a-graph browser presents a second panel next to the diagram. Depending on the
width of the web browser’s window, this panel may be placed either to the right side (as
in Figure 5) or below the diagram. The panel contains a data source selector and displays
the main features of the current data source.

The upper part of the side panel is used for selecting a semantic graph as data source
for generating an a-graph. It provides three kinds of semantic graph sources: local, remote
and precomputed.

Local sources include small examples for testing the basic features of a-graphs, and
were presented in Subsection 3.3. The dialog box for the selection of local graphs presents
the RDF triples that will be processed to produce the a-graph. These triples are in N-
Triples format in an editable window. The user may modify, add or delete these triples, to
better understand how these changes are reflected on the a-graph diagram.

The remote sources are RDF graphs available on the web in XML/RDF format. This
dialog box presents each graph’s URLs and a threshold – the weight above which a-nodes
are included in the diagram. The last entry of this dialog box allows the user to enter a

12 http://svgkit.sourceforge.net/

Visualization of path patterns in semantic graphs 243

URL to any RDF/XML file available on the web, and assign it an initial threshold. This
threshold may be changed later on the current data source panel.

Both the local and remote data sources are processed on the fly by the server. The
precomputed data sources provide access to larger semantic graphs that require long pro-
cessing times and are already available on the client side. Most of these examples are
analyzed in detail in the next section.

The current data source panel displays its name, threshold and a grid listing its a-
nodes. This grid lists all the a-nodes in the a-graph, showing which are currently visi-
ble, their type and weight. By default, this information is ordered by descending a-node
weight, but the user can change it. The user can also (de)select the visible a-nodes, which
immediately changes the diagram layout. Also, changes in the diagram resulting from the
tools described above are also immediately reflected in this grid.

5. Validation

This section shows with concrete examples how a-graph diagrams emphasize the most
relevant path patterns of a semantic graph. It also explains how the tools in the a-graph
browser help the discovery of path patterns in large semantic graphs, by temporarily hid-
ing some of their a-nodes and the a-edges connecting them, thus producing meaningful
diagrams with a reasonable small size.

The a-graph browser has an example selector on its right top corner. These examples
are divided according to their availability: local examples, with their source text available
for inspection and editing, including the possibility of creating one from scratch; remote
examples, published on the web in RDF formats, including the possibility of providing
a URL; precomputed examples, of large freely available semantic graphs, that require a
much larger processing time. The data sources for these examples must be in RDF format,
either serialized in RDF/XML or in NTriples. The local examples include all a-graphs
presented in Subsection 3.3.

5.1. WordNet

Wordnet[8] 2.1, whose a-graph diagram is depicted in Figure 6, is a much larger graph
than those presented in Subsection 3.3. However, this figure refers only to 95% of Wordnet
2.1 since the 5% least representative edges are omitted. By default, when this example
is selected the threshold is set to 95%, but this value may be edited or removed in the
corresponding field.

The WordNet 2.1 graph has 27 types of nodes and their corresponding a-nodes would
clutter this figure. This approach quickly produces a simple visualization by temporarily
hiding the 2/3 least representative a-nodes, i.e. edge types. It is important to point out that
this is not specific of WordNet. All the semantic graphs tested with the a-graph browser
have most of their paths concentrated in a fairly small number of edge types, hence this
approach can be systematically used to improve the a-graph visualization.

This diagram immediately shows that the edges types that participate in most triples
are from imported namespaces – rdf:type and rdfs:label – since the corresponding a-nodes
are darker. Two a-nodes of the wn20schema namespace stand out from the pack for hav-
ing links to several others, namely hyponymOf and containsWordSense, but the former
participates in more “joins”, as evidenced by the darker a-edges.

244 José Paulo Leal

wn20schema
word

wn20schema
hyponymOf

wn20schema
synsetId

wn20schema
containsWord

wn20schema
tagCount

wn20schema
gloss

rdfs
label

rdf
type

wn20schema
lexicalForm Sense

Fig. 6. An a-graph diagram of WordNet 2.1

WordNet is frequently used as a semantic proxy by path based semantic measures [10].
These measures rely on taxonomic relationships to identify a least common ancestor be-
tween two concept nodes and compute the shortest path between them. Taxonomic rela-
tionships are created using partOf (hierarchical) and isA relationships. For instance, the
RDF and RDFS vocabularies provide the rdf:type and rdfs:subclassOf proper-
ties that can be used to create a taxonomic relationship between typed resources. However,
in this version of WordNet rdf:type is available, but rdfs:subclassOf is missing.

The a-graph diagram in Figure 6 shows how the hierarchic relationship hyponymOf,
complemented with another relationship, can be used to create a taxonomic relationship.
The rdfs:label relationship is connected by an a-edge with hyponymOf, hence they
can be combined to create a taxonomic relationship on words.

Of course, this is not new knowledge. It is well known that WordNet can be used as
a semantic proxy using hyponymOf and another property to create a taxonomic rela-
tionship. The point is that the a-graph diagram highlights the most promising candidates
to create a taxonomic relationship. This should be useful to discover candidates for taxo-
nomic relationships in even larger semantic graphs, such as DBpedia [4].

5.2. Yago

Yago13 [15] is a well known semantic knowledge base derived from several sources, such
as DBPedia, WordNet, and GeoNames. It has over 10 million entities but for this study,
only the core was used and labels were omitted. Still, this corresponds to over 20 million
triples with 60 property types. Hence it produces an a-graph with that order and size 487.
Even with a threshold of 80%, as it is by default on the a-graph browser, it is difficult to
grasp.

The diagram in Figure 7 was obtained by selecting a single a-node, hasArea, the sec-
ond most frequent edge type in this graph. Afterward, it was used the unhide tool to show
a-nodes connected to the one currently selected. The point is to find property types re-
lated to concepts that have an area. Examples of such concepts would be cities, regions or

13 https://www.mpi-inf.mpg.de/yago-naga/yago

Visualization of path patterns in semantic graphs 245

isCitizenOf

livesIn
diedIn

hasArea

isConnectedhappenedIn

isLeaderOf

To

Fig. 7. Yago core - a-nodes connecting to hasArea

Listing 1.1. SPARQL query to count leaders of geographic areas
SELECT COUNT(∗)
WHERE {

? p yago : i s L e a d e r O f ? g .
? g yago : hasArea ? a .

}

countries. In a sense, hasArea can be seen as a defining property for a class of geographic
concepts, although that is not explicit. The diagram shows that these geographic concepts
are connected to other properties, such as livesIn, or isLeaderOf. That is, it is possible to
retrieve information about who lives in or who is the leader of an concept that has an area.
The SPARQL query in Figure 1.1 should produce a nonempty result set. In fact, it was
checked on a Yago SPARQL endpoint14 and the result is 5666.

Listing 1.2. Counting places connected to where something happened
SELECT COUNT(∗)
WHERE {

? s yago : happenedIn ? g .
? g yago : i sConnec t edTo ? p .

}

Also, one can determine the area of entities where something happened, happenedIn,
or that are connected to each other. The type of this last a-node is cyclic, meaning that
its corresponds to a reflexive edge type. These two a-nodes are the only that are directly
connected without using hasArea. Hence, it must be possible to obtain a non empty answer

14 https://linkeddata1.calcul.u-psud.fr/sparql

246 José Paulo Leal

to the query “what places are connected to the place where something happened?”, using
the query in Listing 1.2, and it actually returns 888 solutions.

Surprisingly, the graph also indicates that one should not expect results for the query
“what places are connected to the place of citizenship of x” since these two a-nodes are
not connected. Running the SPARQL query in Listing 1.3 verifies that conclusion as the
result is zero.

Listing 1.3. Are citizens connected to other places?
SELECT COUNT(∗)
WHERE {

? s yago : i s C i t i z e n O f ? g .
? g yago : i sConnec t edTo ? p .

}

5.3. DBLP

dc-terms
references

rdf
type

owl
sameAs

swrc
number

dc
publisher

dc
title

dc-terms
issued

swrc
volume

dc
identifier

swrc
isbn

swrc
pages

rdfs
label

dc
type

rdfs
seeAlso

dc-terms
bibliographic

Citation

Fig. 8. DBLP open bibliographic information on computer science publications

DBLP15 is an on-line reference for open bibliographic information on computer sci-
ence journals and proceedings that publish its data in RDF format. Although it has a
massive size, about 134 million triples, it can be processed by sampling since its RDF file
has a regular structure. It is a sequence of blocks of triples, each block corresponding to a
publication. The diagram depicted in Figure 8 was obtained by processing the initial 1%

15 http://dblp.uni-trier.de/

Visualization of path patterns in semantic graphs 247

of DBLP’s RDF file. This approach was possible since this file keeps in consecutive lines
the triples related to a single author. If it were the case that lines were sorted by property
URL, for instance, then the first 1% of the file would not provide a meaningful represen-
tation of the complete graph. Thus, this approach cannot be applied systematically to any
semantic graph since it assumes a uniform distribution of property URLs in the stream of
triples.

The a-graph of DBLP reveals different patterns. The most simple are the a-nodes on
the left side of the diagram, such as swrc:isbn, dc:publisher and rdf:seeAlso that simply
connect the bottom to the top and not to any other a-node. Most of the other a-nodes have
also an a-edge from the a-node dc-terms:references that thus assumes a pivotal role in
this diagram and is the only cyclic a-node. The only other a-node with a loop is rdf:type,
most probably due to the type of a class. Apart from these cycles formed by edges of
the same type, there are also cycles with mixed types, composed of owl:sameAs and dc-
term:references.

6. Discussion

The goal of a-graphs is to provide visualizations of path patterns in order to give new
insights on large semantic graphs. In this section, we discuss if the concept of a-graph and
the current implementation of the a-graph browser meet this goal. Three main questions
are analyzed: how do a-graphs compare with ontologies in describing semantic graphs?
do a-graphs provide more information regarding paths patterns than classical visualization
tools? can a-graphs be computed in a reasonable time for large semantic graphs?

6.1. A-graphs and ontologies

Ontologies and a-graphs are somehow related in the sense that they both abstract semantic
graphs. Thus, it is relevant to question if these two concepts – ontologies and a-graphs –
overlap or compete in any way.

Semantic graphs are frequently encoded as sets of triples in the Resource Description
Framework (RDF). This framework supports multiple vocabularies, including a vocabu-
lary to describe other vocabularies – RDF Schema (RDFS) – which in turn lays the foun-
dations for a richer ontological language – OWL. RDFS and OWL describe vocabularies
in terms of classes and properties, where classes provide types for nodes and properties
types for edges of semantic graphs, and define hierarchical relationships among those
types.

The definition of semantic graph presented in Subsection 3.2, on which the definition
of a-graphs relies, is also based on types. However, these types are of a different nature.
These node and edge types are not RDFS or OWL classes and properties, and they are
not hierarchically related among themselves. The node and edge types in the definition of
a-graphs are the actual URIs used to label them.

The concept of ontology varies for different communities [9]. In the semantic web,
an ontology is usually understood as a formal definition of a domain of discourse. It
declares a taxonomy of concepts and relationships among them. For instance, an ontology
may declare cat and dog as classes, both as subclasses of pet, and the property hasName
associating pets to their names (strings). RDFS and OWL ontologies are themselves RDF

248 José Paulo Leal

graphs, although not all RDF graphs are ontologies. In fact, most RDF graphs assert facts
on resources using types and properties, such as “Rex is a dog”16, but they do not define
hierarchies of classes (concepts) and properties (relationships).

By using inference with an ontology it is possible to entail new facts from existing
ones, such as “Rex is a pet”. The reverse, to induce an ontology from a collection of facts,
is much more complex. It is possible to process statements such as “Rex is a dog” and
“Fifi is a cat”, “Rex is a pet” and “Fifi is a pet” and induce an ontology similar to the
example in the previous paragraph. However, ontologies are not usually created this way.

Ontologies prescribe how certain semantic graphs must be. They are not summariza-
tions of existing semantic graphs. Also, if an ontology is applicable to a particular seman-
tic graph then the latter should be consistent with the former; and as more facts are added
to the graph that consistency should be preserved without changing the ontology.

An a-graph is, in fact, a summarization of a semantic graph. It maps edges into a-
nodes and nodes into a-edges in a way that the a-graph paths condense several paths of
the semantic graph it abstracts. However, only paths that actually exist in the semantic
graph are abstracted into a-graph paths, not all the paths that would be consistent with the
ontology. Moreover, since a-nodes and a-edges have weights, the path frequency is also
presented by the a-graph, which has no parallel in ontologies. As a semantic graph evolves
and new nodes and edges are added (or removed), its a-graph may change to reflect it. In
some cases, only the weights will be affected, if no kinds of path are created. In other
cases, new a-nodes result from edge types that did not exist before.

In summary, a-graphs and ontologies are different kinds of abstractions. A-graphs ab-
stract paths, highlighting the most frequent ones. Ontologies abstract relationships among
concepts. The two abstractions are non-overlapping and are in fact complementary.

6.2. Path visualization

A-graphs were designed to discover path patterns in semantic graphs. In this particular
point, a-graphs are quite different from other forms of graph visualization, including se-
mantic graph visualization, surveyed in Section 2. These approaches display the actual
paths, connecting a sequence of nodes, but do not reveal patterns in these paths.

A path in an a-graph corresponds to a collection of paths in the semantic graphs it
reflects. Since edges types are replaced by a-nodes, a-graphs put edge types in evidence
and aggregate a large number of nodes in a-edges. Paths built from a single edge type
are condensed in a-nodes types. Hence, a-node types such as hierarchic or cyclic already
condense path patterns.

Weights of a-nodes and a-graphs provide information on their relevance. This extra
information can be used both for visualization and browsing. Weights are translated to
colors and line widths in a-graphs to indicate the relevance of particular path patterns.
Moreover, weights can be used to browse a-graphs and hide the least relevant a-nodes.

The examples analyzed in Section 5 illustrate the ability of a-graphs to reveal infor-
mation about path patterns. Figure 6 immediately shows the existence of a hierarchic edge

16 “Rex is a dog” are two RDF facts. Assuming ex as an alias for a namespace, that sentence would
be represented by the RDF facts
ex:rex ex:hasName ‘‘Rex’’
ex:rex rdf:type ex:dog

Visualization of path patterns in semantic graphs 249

type and the edge types that connect it, which is relevant information for someone build-
ing a semantic measure. Figure 7 displays a number of edge types related to a particular
one that characterizes geographic places. It provides information on the type of path pat-
terns that can be used in SPARQL queries, estimating the possibility of returning non
empty result sets, which is relevant to someone interested in extracting information from
a triple store.

Surely the kind of insight provided by a-graphs is relevant to a specialized group
of users, those interested in path patterns rather than in individual paths. This is an issue
since it makes more difficult a thorough validation of the a-graph browser involving actual
users. The author acknowledges that such validation is necessary to unequivocally prove
the usefulness of a-graphs. However, this kind of users are difficult to find, hence this
validation has yet to be done.

6.3. Visualization of large semantic graphs

Discovering path patterns is particularly important in large semantic graphs. Hence, it is
important to be able to plot a-graph diagrams for such graphs within a reasonable time.
Plotting a-graph diagrams using a force-directed algorithm takes only a few seconds. The
time-consuming part is the mapping between semantic graphs and a-graphs.

The computational complexity of the mapping process described in the previous sec-
tions is linear on the number of triples, nodes, and property types. The first stage has
complexity O(t) where t is the number of triples in the semantic graph and the second
stage as complexity O(p∗n) where p is the number of property types and n the number of
nodes. Nevertheless, to process larger semantic graphs some optimizations are required.

Although the computational complexity of the a-graph mapping is small, processing
large sources takes several days. As explained before, the process has two stages, each
with a different complexity. Consider a large semantic graph with k triples, t edge types
and n different resource nodes, with k and n large (hundred of millions) and t fairly small
(less than a thousand). For the first stage, the complexity is linear on the number of triples,
and the only data are the t reductions. In contrast, for the second stage the complexity is
n × t, both in time and memory. Thus, for larger semantic graphs, the complexity is an
issue, particularly if the graph is too large to keep in memory.

The first stage of the mapping can be parallelized by splitting triples according to the
predicate (edges type). This can achieve a considerable speedup on the first stage but does
not reduce either the number of nodes or the number of types of edges, hence it has no
impact on the second stage.

An obvious way to improve efficiency would be to avoid computing weights alto-
gether, since this is the most time consuming task of the a-graph mapping. Of course, this
would reduce the informative value of a-graphs, that would not highlight the most relevant
path patterns.

An alternative to improve efficiency is sampling. Mapping a small enough subset
(sample) of all the triples in the graph has a significant improvement in performance.
Sampling is acceptable if it produces the same a-graph structure – a-nodes and a-edges –
with a small error on their weights.

A naive approach to sampling would be the random selection of triples. However, a
small (around 1%) random sample of triples typically has an impact on the structure of

250 José Paulo Leal

the a-graph, by not correctly identifying all the a-nodes (a-edges are not usually affected).
A larger sample (around 50%) solves that problem but significantly reduces the efficiency.

The DBLP example presented in Subsection 5.3 shows that this approach can be used
if a small sample of the triples is representative of the complete set. In this case, this was
achieved by considering the subset of triples related to the publications of a few authors.
Unfortunately, in most cases this is impossible, since triples in RDF files are usually either
grouped by edge type or just unordered.

Both approaches, dropping weight evaluation and sampling, have disadvantages and
cannot be used systematically. However, they may be more effective if combined. More
precisely, instead of dropping weight evaluation, an approximation may be computed us-
ing sampling. In this approach, the first stage is processed exactly in the way described in
Subsection 4.1 but the second stage is modified. Hence, the a-nodes and their weights are
computed exactly as they are defined in Subsection 3.2. This means that a-node weights
maintain as invariant that their sum is 1. The same is not true for the second stage, where
a-edges are determined as pairs of a-nodes with nonnull weight.

Computing a-edges weights is the major contributor to the computational complexity
of the second stage. This is due to the fact that, in general, a single node may contribute
to the weight of several a-edges, as explained in Subsection 3.2. If these weights are
computed approximately using sampling then this complexity may be curbed.

Relaxing the computation of a-edge weights may have an impact on the structure
of the a-graph, since some low weight a-edges may be missed. Additionally, it will be
difficult, if not impossible, to maintain invariant the sum of a-edge weights. Everything
considered, it is preferable to risk missing the least relevant a-edges than any a-node, and
the weights of a-edges are less important than those of a-nodes to the visualization and
browsing of a-graph diagrams. In any event, although promising, this approach of relaxing
the computation of a-edges is not yet available and will require further research.

7. Conclusions and future work

Semantic graphs are hard to visualize due to a large number of typed nodes and edges.
The a-graph approach to abstract semantic graphs maps edge information into a-nodes and
node information into a-edges. The abstraction mapping produces a smaller graph that is
easier to visualize and highlights the patterns of paths in the original semantic graph.

A-nodes and a-edges are assigned with weights that reflect the relevance of the edges
and nodes they represent, and that can be used for further abstractions. For instance, a-
nodes with small weights, corresponding to types of edges that seldom occur in the se-
mantic graph, can be omitted to unclutter large a-graph diagrams.

The a-graph diagram is the proposed graphical syntax to represent a-graphs, and thus
visualize the semantic graphs. This kind of diagrams uses different shapes to represent
a-nodes according to their types, and transparency to denote weights. The special a-nodes
top and bottom are represented as parallel lines respectively on the top and bottom of
the diagram. In an a-graph, diagram paths are in general upwards, which facilitates their
detection.

The web application for visualizing and interacting with a-graphs is also an important
contribution of this research. It uses a force-directed algorithm, which allows the incre-
mental layout of the diagram after reposition or removal of a-nodes. This application can

Visualization of path patterns in semantic graphs 251

use data from different sources: local data entered on the interface, remote data available
on the web and precomputed data for a few preprocessed semantic graphs.

The proposed approach still faces the challenge of dealing with massive semantic
graphs with millions of triples, such as those of Yago and DBpedia. The major problem
is due to the computational complexity involving a-edge weights. However, there are ap-
proaches to curb this complexity that are currently being researched. After tackling this
issue, the a-graph browser will be easier to evaluate with real users interested in discover-
ing path patterns in large semantic graphs.

Acknowledgments. I am in debt to the anonymous reviewers for their careful reading of this
manuscript and their many insightful comments and suggestions.

This work is financed by the ERDF European Regional Development Fund through the Op-
erational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme,
by National Funds through the FCT Fundação para a Ciência e a Tecnologia (Portuguese Founda-
tion for Science and Technology) within project POCI-01-0145-FEDER-006961, and by FourEyes.
FourEyes is a Research Line within project TEC4Growth Pervasive Intelligence, Enhancers and
Proofs of Concept with Industrial Impact/NORTE-01- 0145-FEDER-000020 financed by the North
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European Regional Development Fund (ERDF).

References

1. Abello, J., Van Ham, F., Krishnan, N.: Ask-graphview: A large scale graph visualization sys-
tem, Visualization and Computer Graphics, IEEE Transactions on 12 (5), 669–676 (2006)

2. Archambault, D., Munzner, T., Auber, D.: Grouseflocks: Steerable exploration of graph hi-
erarchy space, Visualization and Computer Graphics, IEEE Transactions on 14 (4), 900–913
(2008)

3. Auber, D.: Tulipa huge graph visualization framework, in: Graph Drawing Software, Springer,
105–126 (2004)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus for
a web of open data, Springer, (2007)

5. Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring
and manipulating networks., International Conference on Web and Social Media - ICWSM 8,
361–362 (2009)

6. Benedetti, F., Po, L., Bergamaschi, S.: A visual summary for linked open data sources, in:
International Semantic Web Conference (2014)

7. Bikakis, N., Liagouris, J., Kromida, M., Papastefanatos, G., Sellis, T.: Towards scalable visual
exploration of very large RDF graphs, in: The Semantic Web: ESWC 2015 Satellite Events,
Springer, 9–13 (2015)

8. Fellbaum, C.: WordNet, Wiley Online Library, (1999)
9. Guarino, N., Oberle, D., Staab, S.: What is an ontology?, in: Handbook on ontologies, Springer,

1–17 (2009)
10. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic similarity from natural language

and ontology analysis, Synthesis Lectures on Human Language Technologies 8 (1), 1–254
(2015)

11. Kobourov, S. G. , Spring embedders and force directed graph drawing algorithms, CoRR
abs/1201.3011.
URL http://arxiv.org/abs/1201.3011

12. Harary, F.: Graph Theory, Massachusetts: Addison-Wesley (1972)

252 José Paulo Leal

13. Hastrup, T., Cyganiak, R., Bojars, U.: Browsing linked data with fenfire., in: Linked Data on
the Web (2008)

14. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: Relfinder: Revealing rela-
tionships in rdf knowledge bases, in: Semantic Multimedia, Springer, 182–187 (2009)

15. Hoffart, J.,Suchanek, F. M.,Berberich, K., Weikum,G.: Yago2: A spatially and temporally en-
hanced knowledge base from wikipedia, in: Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, AAAI Press, 3161–3165 (2013)

16. Leal, J.P.: Path Patterns Visualization in Semantic Graphs, in: 7th Symposium on Languages,
Applications and Technologies, SLATE 2018, OASIcs, vol. 62, 15:1–15:15 (2018)

17. Lin, Z., Cao, N., Tong, H., Wang, F., Kang, U., Chau, D. H.: Demonstrating interactive multi-
resolution large graph exploration, in: Data Mining Workshops (ICDMW), 2013 IEEE 13th
International Conference on, IEEE, 1097–1100 (2013)

18. Liu, Y. et al: Graph summarization methods and applications: A survey. ACM Computing Sur-
veys (CSUR), 51.3: 62, (2018)

19. Song, Q. et al.: Mining summaries for knowledge graph search, in IEEE Transactions on
Knowledge and Data Engineering 30, no. 10, 1887–1900 (2018)

20. Zhang, K., Wang, H., Tran, Yu, D. T., Y.: Zoomrdf: semantic fisheye zooming on rdf data, in:
Proceedings of the 19th international conference on World wide web, ACM, 1329–1332 (2010)

21. Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of
large graphs, Visualization and Computer Graphics, IEEE Transactions on 18 (12), 2486–2495
(2012)

José Paulo Leal graduated in mathematics from the Faculty of Sciences of the University
of Porto and earned a Ph.D. in Computer Science from the same institution. His main
research interests are technology enhanced learning, web adaptability, and semantic web.

Received: July 17, 2019; Accepted: October 6, 2019.

Computer Science and Information Systems 17(1):253–269 https://doi.org/10.2298/CSIS190427039E

A Mobile Crowd Sensing Framework for Suspect

Investigation: An Objectivity Analysis and De-

Identification Approach*

ElAlaoui ElAbdallaoui Hasna1,2, ElFazziki Abdelaziz1,3, Ennaji Fatima Zohra1,4,

and Sadgal Mohamed1,5

1 Computing Systems Engineering Laboratory (LISI)
1 Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco

2 h.elalaoui@edu.uca.ac.ma
3 elfazziki@uca.ma

4 f.ennaji@edu.uca.ma
5 sadgal@uca.ma

Abstract. The ubiquity of mobile devices and their advanced features have

increased the use of crowdsourcing in many areas, such as the mobility in the

smart cities. With the advent of high-quality sensors on smartphones, online

communities can easily collect and share information. These information are of

great importance for the institutions, which must analyze the facts by facilitating

the data collecting on crimes and criminals, for example. This paper proposes an

approach to develop a crowdsensing framework allowing a wider collaboration

between the citizens and the authorities. In addition, this framework takes

advantage of an objectivity analysis to ensure the participants’ credibility and the

information reliability, as law enforcement is often affected by unreliable and poor

quality data. In addition, the proposed framework ensures the protection of users'

private data through a de-identification process. Experimental results show that

the proposed framework is an interesting tool to improve the quality of

crowdsensing information in a government context.

Keywords: crowdsourcing, crowdsensing, law enforcement, objectivity analysis,

de-identification.

* It is an extended version of the (8th International Conference on Model and Data Engineering MEDI 2018).

254 ElAlaoui ElAbdallaoui Hasna et al.

1. Introduction

For a long time, everyone was asked to perform organizational tasks, to generate content

or simply to collect useful information. Today, the access to the Internet has enabled

human crowds to be online 24/7, which has spurred the use of human intelligence in

different types of problem solving [1]. Over the past decade, crowdsourcing has

emerged as a powerful paradigm for engaging the crowd in complex tasks [2] that even

powerful computing machines cannot perform. While participants could perform their

tasks on computers, they can now do some of them on their mobile devices. The latter,

being equipped with several integrated sensors (GPS, for example), make it possible to

collect more relevant data in a given context. This technique of data collecting allows

the emergence of the crowdsensing concept, especially mobile crowdsensing [3]. In

addition to playing a leading role in different applications, crowdsensing has also

attracted considerable attention in organizational practice and many institutions and

government organizations have incorporated it into their decision-making policies [4].

By exploiting the new opportunities offered by the new information and communication

technologies, these agencies are making good efforts to strengthen citizen participation.

Several examples testify this and prove that crowdsensing played a key role in solving

many problems: the best-known example is the Boston Marathon attack on April 15th,

2013 [5]. Crowdsensing has rapidly become a form of collaboration that allows

governments (local, state or federal) to use citizens' skills in order to gather or evaluate

information about a situation or a context related to a given event (natural disasters,

crimes, wars, etc.).

Despite the breadth of the various crowdsensing applications mentioned above, a

challenge of how to manage all the information provided by the crowd and ensure or

verify their reliability emerges and requires effective support. Recurring questions about

the concept of the participants’ credibility and the information reliability can be raised.

The success of a participatory activity depends on its quality, especially in critical

contexts such as witnessing crimes or identifying suspects/criminals.

To address this problem, the purpose of this paper is to encourage the public to

participate in activities that fall within the remit of the public authorities; especially e-

participation. Recently, several platforms such as CrimeReports, WikiCrimes or

CrimeMapping [6] have emerged in several countries. These platforms report, on digital

maps, information about the location of crimes or suspects. Such platforms will be of

undeniable added value in developing countries such as Morocco. To do this, we

propose an approach to develop a framework for managing citizen collaboration in

government activities. This framework will be a good support for the authorities

allowing them a rational data management on the crimes and the criminals and an

acceleration in the process of suspects’ identification and localization. So, this

framework will support:

− The collecting of information on crimes and suspects through an e-participatory

infrastructure.

− The information about crimes and suspects can be visualized thanks to online user

interfaces.

− The verification of the participants’ credibility and the reliability of the information

they provide will be done using an objectivity analysis.

A Mobile Crowd Sensing Framework for Suspect Investigation 255

− The anonymity of the participants will be set up using a de-identification process.

The implementation will be carried out using a set of tools. First, the process of de-

identification is based on a k-anonymization algorithm effectively masking the

identifiers of a participant. Subsequently, the objectivity analysis will be based on a K-

Means clustering that brings together location information of a suspect to be processed

by a reliability validation algorithm of each cluster.

The rest of the paper is structured as follows. After a literature review gathering a set

of works developed for suspect identification and localization, we detail the proposed

framework by presenting its structure and its implementation. Experiments and results

are presented in Section 6 before concluding the paper with a discussion and a future

work section.

2. Related Research

In this section, we review the work previously done in the context of suspect

investigations. First, we discuss law enforcement and the integration of the information

technologies. Then, we present some work where the crowdsensing concept was

adopted and we discuss how the latter has been able to strengthen the quality of suspect

investigations. Finally, we present the main methods proposed for verifying the users’

credibility and the reliability of the information that the e-participants provide.

2.1. Law enforcement and information technologies

The identification and the prosecution of criminals have changed considerably and

many tools have been developed to help the authorities find the suspects. By analyzing

the literature, we found a considerable number of works made for similar purposes. For

example, Mali P et al. in [7] propose a system based on the analysis of the images

captured by the CCTV cameras in order to find a correspondence between suspects and

the criminals mugshots registered in the authorities’ databases.

With the aim of promoting generic reports while automating the process of detecting,

and synthesizing information about a crime, Asquith [8] has implemented new

techniques for sharing criminal information through sophisticated sensors. This is

supported by Artificial intelligence algorithms and Natural Language Processing (NLP).

In a similar view, M. I. Pramanik et al. [9] see the Big Data Analytics and its

applications as a potential for effective resolution of complex issues, including criminal

analysis. Most law enforcement and government agencies need to think about adopting

Big Data analytics techniques like Data Mining to cope with the large volume of data

from a variety of data sources. This will help to develop effective strategies to prevent

crime and the formation of criminal networks.

We note that these works neglect or rarely involve citizens who remain important

sources of information in such scenarios. Human potential is a pillar in the suspect

identification process. In other words, the application of crowdsourcing/crowdsensing

has become an increasingly common practice among government authorities who see in

the collaboration with citizens, an important step to take into consideration in any

criminal case. In this part of the paper, we present some previous work that used the

256 ElAlaoui ElAbdallaoui Hasna et al.

crowdsensing concept for suspect identification and/or localization. We also summarize

the main contributions and techniques proposed for verifying the information provided

by the crowd as part of a crowdsensing-based activity.

2.2. Law enforcement and crowdsourcing

Transafe [10] is a system that allows citizens of the city of Melbourne, Australia to

share location-based, time-stamped crime data, as well as their perceptions of security in

a given city location. This data can be used by government agencies such as the public

transit companies. The system also has a user tracking and emergency calls features.

However, this platform, not yet evaluated, does not give details about the crimes and/or

the criminals.

In a similar perspective, CrowdSafe [11] is a crowdsensing-based system for storing

and displaying spatio-temporal data of criminal incidents. CrowdSafe includes other

features such as a Safety Router that guides users through the least dangerous routes.

Thanks to a dashboard, this system will enable better data analysis for smarter and safer

public decision-making. The authors used real data from the Washington DC

metropolitan area, but they did not propose any solutions to verify the reliability of the

information shared on the platform.

On the other hand, Furtado et al. describe the WikiCrimes Web application [12], a

multi-agent system that allows anyone to record and/or search for criminal information

directly on maps. In WikiCrimes, the information is more credible if the user supports

his statement with a document (link to a video, a newspaper article, a police report,

etc.). In addition, the more people confirm a fact, the more it is reliable.

Following the same vision, Hairihan Tong proposed Bian Yi [6], a system dedicated

to crime mapping allowing spatio-temporal visualization. It allows a user to mark on a

Google Map, the location of a crime and all the underlying information (date,

description, etc.).

Despite the importance of this platform (this has been proved through an online

survey), this system has some limitations. For example, when a user submits a crime

report, his contact information or credentials are not requested and remain optional. The

accuracy and the authenticity of the data is still a problem. In addition, the scoring

system (based on increasing or decreasing the reliability score of a report) is a feature

granted only to witnesses who may not perform this task for fear that their identity will

be disclosed.

2.3. User credibility and information reliability

With the explosion and diversity of the information sources, it is difficult to determine

the veracity of any information given that it is done in an open and/or anonymous and

not lucrative way, which is the case for participatory activities. However, this has

repercussions on the quality of the decision-making process, which has led many

researchers to propose some methods of Truth Discovery or Quality Assurance [13,14].

These two concepts aroused great interest in the field of participatory management.

A Mobile Crowd Sensing Framework for Suspect Investigation 257

Li Y, Gao J, Meng C, et al. [14] have classified three methods to explain the general

principle of Truth Discovery: iterative methods, optimization-based methods and

probabilistic graphical model based solutions (PGM). These methods and others have

been successfully applied in crowdsourcing/crowdsensing applications to build mutual

trust between the entities involved such [15] [16] and [17]. In the latter [17], the authors

proposed a system based on fuzzy clustering to improve the quality of human

computing in crowdsourcing applications. This system has been combined with a

Trusted Access Control (TBAC) strategy to decide if a participant has access to a

collaborative work or not.

3. The Framework overview

Taking into account the information received from the crowd is one of the major

challenges in the e-participative activities. However, the ultimate objective is to find the

simplest and the most appropriate way to do so while preserving the confidentiality of

the information, especially in critical initiatives such as the reporting of crimes or the

identification of suspects.

The purpose of this work will be to enable the authorities to develop, collect, analyze

and interpret the data provided by the citizens about a crime situation. In this case, the

use of an objectivity analysis turns out to be a necessity to take into account in the

development of a crowdsensing-based application. This two-level analysis involves

verifying the credibility of the participants, in addition to validating the veracity of the

information they share. In order for the participants to demonstrate commitment and

motivation, and not have this fear of disclosing their identities, a system will ensure the

anonymization of their private information. The framework architecture and the request

analysis and validation process will be presented below.

3.1. The architecture

The framework architecture consists of five components and their interactions are

schematized in Fig. 1.

Fig. 1. The framework architecture

258 ElAlaoui ElAbdallaoui Hasna et al.

The Database Administration Component is linked to all other components and three

databases: 'Authorities database' where the profiles of criminals are stored, 'Crowd

Database' which contains all the participant identification data and finally,

'Crowdsensed Information DB' which is reserved for storing all data collected by the

participants. Given the heterogeneity of the data (structured and unstructured) to be

stored, we adopt a document-oriented database management system and more

specifically MongoDB [18].

Containing two sub-components, the objectivity analysis component supports the

validation of the participants' credibility and the verification of the collected data

reliability. It is linked to the Crowd Management component that manages the

participants’ registration and authentication, and to the CrowdSensing Monitoring

component which manages the collected data such as crime details, suspect locations

and visuals (photos, videos, etc.).

All information about crimes and/or suspects are retrieved by the Data Visualization

component and presented on digital maps that can be viewed by the authorities or the

public through online user interfaces.

3.2. Request analysis and validation process

First, we would like to point out that the proposed framework is generic and is suitable

for any type of crime or criminal incident that can be witnessed by a citizen (theft,

violence and/or armed threat, physical aggression, etc.). Fig. 2 illustrates the process to

be followed by a participant (a citizen) from the issuance of his request to its approval.

Fig. 2. The request analysis and validation

The participant information submission is carried out by an authentication to verify

the user credibility. If the framework judges unfavorably his credibility, his request is

automatically declined, if not, he can participate in the crime management by providing

the information about a crime, the localization or the profiling of a suspect (image,

video, etc.). The submitted information is subject to a verification before its approval.

A Mobile Crowd Sensing Framework for Suspect Investigation 259

4. The De-Identification Process

De-identification, also known as anonymizing data, is the process used to prevent a

person's identity from being linked to information [19]. For example, data produced

during research on human subjects could be de-identified to preserve the privacy of the

participants. It is commonly used in the health field where de-identification is primarily

focused on the protection of patient information [20,21].

The authorities have a database reserved for the personal crowdsensing information

storage (national identifiers, address, etc.). This confidential information must be

provided by a participant before the access enabling. Although the authorities can

benefit from the relevant crowd information, they are wary of disclosing their details

without a guarantee that they will not be intercepted. As a result, these information,

known as Personally Identifiable Information (PII) is critical and vulnerable and needs

to be de-identified. Fig. 3 below shows the process of de-identification followed after

the registration or the authentication of a participant to allow him or not the access to

the framework.

Fig. 3. The de-identification process

4.1. The extraction of identifiers and quasi-identifiers

To begin, we define the attributes that directly designate the identity of an individual

(Identifiers) such as the name and the national identity card number and those who

identify him indirectly (Quasi-Identifiers) such as ZIP code or the date of birth. We

want to point out that a subset of some quasi-identifiers allows the identification of an

individual. In other words, if the QIs are sufficiently well correlated, they can be

combined to create a unique identifier. Table 1 below defines these attributes and their

categories.

Table 1. Identifiers and Quasi-identifiers with their categories and PII

 Category PII

Identifiers Name

Fist Name, Last Name, Surname

IDs

National Identity Card Number, Social

Security Number, Driver’s License

Number, Passport Number

Contact Phone Number, Email Address

Quasi-Identifiers Age Birth Date (year, month, day)

Gender -

Marital Status Not Married (Single, Widowed,

260 ElAlaoui ElAbdallaoui Hasna et al.

Divorced), Married

Contact
Country, City, Department, ZIP, Street

Address

Job Job, Institution or Organization

4.2. The anonymization phase

After identifying and classifying PII, we apply two strategies: pseudonymization [19] to

suppress (replacing with *) or hide (replacing with symbols) identifiers and make

individuals de-identified. Also, we proceed to a k-anonymization process [22] and treat

the data by ensuring that at least k individuals have the same combination of QI values

through generalization and/or deletion techniques. This reduces the probability of

disclosure risk by 1/k. For example, the k-anonymization replaces some original data in

the records with new range values and retains some unchanged values. The new

combination of QI values prevents the identification of the individual and avoids the

destruction of the data records.

Several methods have been established for this purpose [23]. In this paper, we use the

DataFly algorithm [23] known for its minimal execution time and information loss. The

DataFly algorithm is detailed below. It counts the frequency on the QID set (the set of

quasi-identifiers) and if the k-anonymization is not yet satisfied, it generalizes the

attribute having the most distinct values until the k- anonymization is satisfied.

The Datafly Algorithm

Input: {T: the table with private data, k: the k-

anonymity constraint, QID ={Q1,Q2, …,Qn}: the n quasi-

identifiers, suppThreshold: a suppression threshold};

Output: GT: the generalized table

start

 Compute the frequency count (FreqC) of T using QID

 While (FreqC<= k) do

 // Verify if the table T is ready for suppression

 If (FreqC <= suppThreshold) do

 Suppress tuples with FreqC <= suppThreshold

 Else

 Search for attributes t with FreqCt= max(FreqC)

 GT = Generalize table T using t

 End if

A Mobile Crowd Sensing Framework for Suspect Investigation 261

 Compute FreqC

End while

Return: GT

end.

An example of the de-identification achieved using the above-mentioned techniques

is presented in the implementation section. Table 2 and Table 3 are respectively the

private data table and the de-identified data table using some attributes.

Table 2. Identification Data Table

 Identifiers Quasi-Identifiers

Name NIC Phone Age Gender
Marital

Status
Zip Code

1 Name1 NIC1 +2126666

66666

24 M Divorced 10242

2 Name2 NIC2 +2126111

11111

23 F Single 10256

3 Name3 NIC3 +2126000

00000

35 M Single 10440

Table 3. De-Identified Data Table

 Identifiers Quasi-Identifiers

Name NIC Phone Age Gender
Marital

Status
Zip Code

1 * $*$ +2126$$$

$$$$$

[20 :30) M Not

Married

102**

2 * $*$ +2126$$$

$$$$$

[20 :30) F Not

Married

102**

3 * $*$ +2126$$$

$$$$$

[30 :40) M Not

Married

104**

5. The information reliability checking

In a previous work, we were interested in the suspect profiling data transfer, analysis

and processing. However, in this paper, we detail the process of verifying the

information provided by a crowd concerning a crime/suspect locations.

For this, a participant is required to mark on a map, the locations where he identified

a crime or a suspect and the time of the identification. Thus, the information is not

precise and can generate some problems in terms of precision. For example, two people

may be in the same place at the same time but within a few meters. Therefore, instead of

checking each location, we check the entire group of nearby locations. The first step,

then, consists of grouping (clustering) these reported locations before applying the

objectivity analysis.

262 ElAlaoui ElAbdallaoui Hasna et al.

5.1. Locations clustering

There are several clustering algorithms for partitioning the received location data into

subgroups, or more formally into clusters. These “group” together similar observations

(here localizations). To deal with this problem, we chose to use unsupervised learning

methods, specifically the K-Means algorithm [24]. It aims at structuring all types of data

into k groups in order to minimize a defined function. Fig. 4 illustrates this classification

by showing the resulting clusters after applying the K-means algorithm.

Fig. 4. An example of the clusters obtained after applying the K-Means algorithm

5.2. The objectivity analysis algorithm

The objectivity analysis proposed in this paper is based on a simple and probabilistic

algorithm in order to identify the most reliable information among a crime/suspect

locations reported at a given moment. By setting a moment T= t ± ∆t, we define some

parameters for reliability calculation as follows:

− S: the number of participants.

− L: set of information reported at the time T where L= {l0, l1… ln} and li is the ith

cluster of localizations at time T and n is the number of clusters.

The information reliability analysis algorithm

Input: { the information L= {l0, l1… ln} and the number of

participants S };

Output: Identified reliable locations and their scores

Start.

For l0 to ln do

A Mobile Crowd Sensing Framework for Suspect Investigation 263

 RS(li) = |Sli|/|S| where ∑ Rs(li)= 1 and Sli is the

number of people who reported the location li

End For.

Return: the cluster li with the highest reliability score

RS

end.

For each location li, the algorithm deduces the reliability score of the group li as a

function of the current estimation. At the end of n iterations, it returns the cluster with

the highest score, which indicates the most reliable information.

6. The implementation

In this section, three main online user interfaces will be presented: user registration

interface and two data collecting interfaces that enables the e-participants to report

information about a crime or a suspect. These interfaces are adapted for both web and

mobile. For each case, we also present the storage process and the databases structure.

6.1. User registration

Before allowing a participant to report any information, he must first register in the

framework by indicating the information presented in Fig. 5. These information are

anonymized using the de-identification process presented earlier before being stored in

the crowd database.

Fig. 5. User registration interface

264 ElAlaoui ElAbdallaoui Hasna et al.

6.2. Data collecting

The e-participants validated by the access control module are authorized to enquire

information about a crime or a suspect to enable the authorities to progress in their

decision-making process. These information are then structured to be suitable for

storage in a document-oriented database such as MongoDB. In this section, we present

the implemented user interfaces as well as the structure of the documents stored in a

MongoDB database.

Crime description. Fig. 6 illustrates the web interface for loading the information about

a crime and the structure of the crime document (JSON file) that is stored in the

‘Crowdsensed Information Database’ (MongoDB).

Fig. 6. Crime reporting

Suspect identification and localization. By clicking on the 'Add Suspect Information'

button of the crime report form, a participant can add information to assist in

identifiying or locating a suspect. Fig. 7 presents the form to which participants are

redirected to share this data. This latter is structured in a JSON file before being stored

in the MongoDB ‘Crowdsensed Information Database’.

Fig. 7. Suspect identification and localization information

A Mobile Crowd Sensing Framework for Suspect Investigation 265

7. Case Study, Results and Discussion

A simulation of the proposed framework process was performed in an earlier work

using the Anylogic simulator1. The simulation [25] helped to test the proposed

framework in a virtual environment and to get a dataset to apply the objectivity analysis.

In this part, we present the results obtained after the processing and the analysis of

the information reported by the e-participants. First, we will expose the results of the

objectivity analysis (verification of the reliability of the reported locations). Then, the

retained locations are used to generate a spatio-temporal map where all the reliable

localizations are marked. We are interested in the case of suspects but this is also valid

for the information on the crimes. Finally, we discuss the overall contributions of the

proposed framework and its effectiveness.

7.1. Objectivity analysis results

The objectivity analysis and more particularly the information reliability make possible

the data refinements for a better result of the suspect identifying process. Fig. 8 below is

a diagram of two Matlab graphs plotting on the left all the information of a suspect

location reported by the crowd and on the right those filtered and considered reliable by

the OA module.

Fig. 8. Suspect localizations (a) before and (b) after applying the objectivity analysis

1 www.anylogic.com

266 ElAlaoui ElAbdallaoui Hasna et al.

7.2. Suspect spatio-temporal map

Since the location information of a suspect are reported by the e-participants, the

framework only retains the most reliable information (checked by the objectivity

analysis component) to generate a digital map viewable only by the police officers (Fig.

9). This map allows tracking the movements of a suspect.

Fig. 9. Suspect movements spatio-temporal map

7.3. Discussion

The proposed framework differs from the systems discussed in the literature review in

that it is based on both new technologies and the concept of crowdsensing. This

combination is important for the acceleration of the investigation process. In addition,

the proposed framework is not only intented for reporting crimes but also in identifying

and tracking potential suspects. It also incorporates 3 important contributions: the

verification of the e-participants’ credibility before granting them the access to the

different interfaces, the verification of the information reliability through an objectivity

analysis and a de-identification process of users’ private data which must encourage

them to collaborate.

The experimental results obtained prove the effectiveness of the proposed framework

since it allowed a significant reduction of 37.7% of the data that could hinder the

investigation process or slow it down. Also, the generated spatio-temporal map is a

good visual and support for the decision-makers to identify the risky areas (the

dispersion of the crimes in a city) and follow the movements of a suspect.

The major limitations of this research work can be summarized in two major points:

the lack of real data to test and validate the framework in question. Morocco doesn’t

currently make available to the public, data on crimes and/or suspects. Also, and as

mentioned in the section 'Conclusion and Future Work', an integration of a reliable and

secure reward system is a necessity. This will significantly increase the participants’

motivation.

8. Conclusion and Future Work

The low rate of crime reporting in the cities to the authorities and the reduced number of

the authorities’ officials allocated to this task is a major impediment to the smooth

A Mobile Crowd Sensing Framework for Suspect Investigation 267

process of identifying and locating suspects. Therefore, adopting the concept of

crowdsourcing for the information collecting and sharing between the citizens and the

authorities can alleviate this problem. Also, the anonymization of e-participants can

encourage them to collaborate. On the other hand, incorporating an objectivity analysis

into the process can make it more relevant.

The implementation of this complex and spatiotemporal process by means of

datamining tools and the storage of information in a document-oriented database

(MongoDB) make it possible to have an appropriate infrastructure for taking

spatiotemporal information into account relating to the identification and location of

suspects.

In order to make this infrastructure more confidential and secure, we are considering

the integration of the blockchain concept as future work.

References

1. Lease M, Alonso O. Crowdsourcing and Human Computation, Introduction [Internet]. In:

Encyclopedia of Social Network Analysis and Mining (ESNAM). Springer, 304–315 (2014).

Available from: https://www.ischool.utexas.edu/~ml/papers/lease-esnam14.pdf.

2. Howe BJ. The Rise of Crowdsourcing. Wired Mag. 14(6), 1–4 (2006).

3. Guo B, Wang Z, Yu Z, et al. Mobile Crowd Sensing and Computing: The Review of an

Emerging Human-Powered Sensing Paradigm. ACM Comput. Surv. [Internet]. 48(1), 1–31

(2015). Available from: http://dl.acm.org/citation.cfm?doid=2808687.2794400.

4. Cupido K, Ophoff J. A Model of Fundamental Components for an e‑Government

Crowdsourcing Platform. Electron. J. e-Government. 12(2), 141–156 (2014).

5. Brabham DC, Ribisl KM, Kirchner TR, Bernhardt JM. Crowdsourcing applications for

public health. Am. J. Prev. Med. [Internet]. 46(2), 179–187 (2014). Available from:

https://doi.org/10.1016/j.amepre.2013.10.016.

6. Tong H. A crowdsourcing based crime mapping system. (2014).

7. Mali P, Rahane V, Maskar S, Kumbhar A, Wankhade S V. Criminal Tracking System using

CCTV. Imp. J. Interdiscip. Res. [Internet]. 2(7), 2454–1362 (2016). Available from:

http://www.onlinejournal.in.

8. Asquith B james. Crime Intelligence 2.0: Reinforcing Crowdsourcing using Artificial

Intelligence and Mobile Computing [Internet]. (2017). Available from:

https://cloudfront.escholarship.org/dist/prd/content/qt39s3k7bw/qt39s3k7bw.pdf.

9. Pramanik MI, Lau RYK, Yue WT, Ye Y, Li C. Big data analytics for security and criminal

investigations. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. (2017).

10. Hamilton M, Salim F, Cheng E, Choy SL. Transafe: A crowdsourced mobile platform for

crime and safety perception management. Int. Symp. Technol. Soc. Proc. 2015-July (2015).

11. Shah S, Bao F, Lu C-T, Chen I-R. Crowdsafe: Crowd Sourcing of Crime Incidents and Safe

Routing on Mobile Devices. In: ACM SIGSPATIAL GIS’11. , 521–524 (2012).

12. de Oliveira M, D’Orleans J, Caminha C, et al. Collective intelligence in law enforcement –

The WikiCrimes system. Inf. Sci. (Ny). [Internet]. 180(1), 4–17 (2009). Available from:

http://dx.doi.org/10.1016/j.ins.2009.08.004.

13. Pouryazdan M, Kantarci B, Soyata T, Song H. Anchor-Assisted and Vote-Based

Trustworthiness Assurance in Smart City Crowdsensing. IEEE Access. 4, 529–541 (2016).

14. Li Y, Gao J, Meng C, et al. A Survey on Truth Discovery. ACM SigKdd Explor. Newsl.

[Internet]. 17(2), 1–16 (2016). Available from: https://doi.org/10.1145/2897350.2897352.

15. Xu G, Li H, Tan C, Liu D, Dai Y, Yang K. Achieving efficient and privacy-preserving truth

discovery in crowd sensing systems. Comput. Secur. [Internet]. 69, 114–126 (2017).

Available from: https://doi.org/10.1016/j.cose.2016.11.014.

268 ElAlaoui ElAbdallaoui Hasna et al.

16. Huang C, Wang D, Chawla N. Towards time-sensitive truth discovery in social sensing

applications. Proc. - 2015 IEEE 12th Int. Conf. Mob. Ad Hoc Sens. Syst. MASS 2015. , 154–

162 (2015).

17. Folorunso O, Mustapha OA. A fuzzy expert system to Trust-Based Access Control in

crowdsourcing environments. Appl. Comput. Informatics [Internet]. 11(2), 116–129 (2015).

Available from: https://doi.org/10.1016/j.aci.2014.07.001.

18. Sowmya R, Suneetha K R. Data Mining with Big Data [Internet]. In: 2017 11th International

Conference on Intelligent Systems and Control (ISCO). , 246–250 (2017). Available from:

http://ieeexplore.ieee.org/document/7855990/.

19. Khalil M, Ebner M. De-Identification in Learning Analytics. J. Learn. Anal. 3(1), 129–138

(2016).

20. Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with

recurrent neural networks. J. Am. Med. Informatics Assoc. 24(3), 596–606 (2017).

21. Stubbs A, Kotfila C, Uzuner Ö. Automated systems for the de-identification of longitudinal

clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1. J. Biomed. Inform.

58, S11–S19 (2015).

22. Patil D, Mohapatra RK, Babu KS. Evaluation of generalization based K-anonymization

algorithms. Proc. 2017 3rd IEEE Int. Conf. Sensing, Signal Process. Secur. ICSSS 2017. ,

171–175 (2017).

23. Ayala-Rivera V, McDonagh P, Cerqueus T, Murphy L. A Systematic comparison and

evaluation of k-Anonymization algorithms for practitioners. Trans. Data Priv. 7(3), 337–370

(2014).

24. Arora P, Deepali, Varshney S. Analysis of K-Means and K-Medoids Algorithm for Big Data.

In: Physics Procedia. (2016).

25. El Alaoui El Abdallaoui H, El Fazziki A, Ennaji FZ, Sadgal M. A gamification and

objectivity based approach to improve users motivation in mobile crowd sensing. In: Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). (2018).

ELALAOUI ELABDALLAOUI Hasna: Is a computer science engineer, graduated

from the National School of Applied Sciences Marrakesh/Morocco year 2014. After

acquiring scientific and technical knowledge in the computer and information systems

field; especially in designing, modeling and implementing software solutions from both

the architectural and administrative perspectives, she then integrated the Computing

Systems Engineering Laboratory of CADI AYYAD University since January 2016 to

prepare her PhD thesis. Her research interests include e-government applications,

crowdsourcing, image processing, mobile applications, etc.

ELFAZZIKI Abdelaziz: Received the M.S. degree from the University of Nancy,

France, in 1985, and the Ph.D. degree in computer science from CADI AYYAD

University in 2002. He has been with CADI AYYAD University since 1985, where he

is currently a Professor of computer science. He has been responsible for the master’s

degree program in information system engineering since 2006. He was the Director of

the Computer Systems Engineering Laboratory between 2011 and 2015. He has co-

authored several papers on agent-based image processing, and is the main Author of

over 20 papers in software engineering and data analytics field. His research interests

are related to software engineering, decision support, big data, data analytics,

crowdsourcing, and e-government. In the MDA field, he has been involved in agent-

based systems, service-oriented systems, and decision support systems.

A Mobile Crowd Sensing Framework for Suspect Investigation 269

ENNAJI Fatima Zohra: Is a computer science engineer, graduated from the National

School of Applied Sciences Marrakesh/Morocco at 2014 and finished her PhD in 2019.

She joined in 2015 the Computing Systems Engineering Laboratory of CADI AYYAD

University. Her thesis includes many research interests like social media, sentiment

analysis, data mining, Big Data Analytics, crowdsourcing, social CRM, etc. She

participated in many international conferences and published many articles in

international journals.

SADGAL Mohamed: is professor of computer science at Cadi Ayyad University,

Morocco, and researcher on computer vision with the Vision team at the LISI

Laboratory. His research interests include object recognition, image understanding,

video analysis, multi-agent architectures for vision systems, 3D modelling, virtual an

augmented reality, among other topics. Before Marrakech, he was in Lyon (France),

working as Engineer in different computer Departments between 1988 and 1994. He

obtained a PhD in 1989 from Claude Bernard University, Lyon, France.

Received: April 27, 2018; Accepted: September 12, 2019

Computer Science and Information Systems 17(1):271–292 https://doi.org/10.2298/CSIS190430040E

Verification and Testing of Safety-Critical Airborne

Systems: a Model-based Methodology

Mounia Elqortobi1, Warda El-Khouly1, Amine Rahj1, Jamal Bentahar1 and

Rachida Dssouli1

1 Concordia University, Quebec, Canada

m_elqort@ mail.concordia.ca,

warda_elkholy@yahoo.com

{amine.rahj, jamal.bentahar, rachida.dssouli}@ concordia.ca

Abstract. In this paper, we address the issues of safety-critical software

verification and testing that are key requirements for achieving DO-178C and DO-

331 regulatory compliance for airborne systems. Formal verification and testing

are considered two different activities within airborne standards and they belong

to two different levels in the avionics software development cycle. The objective

is to integrate model-based verification and model-based testing within a single

framework and to capture the benefits of their cross-fertilization. This is achieved

by proposing a new methodology for the verification and testing of parallel

communicating agents based on formal models. In this work, properties are

extracted from requirements and formally verified at the design level, while the

verified properties are propagated to the implementation level and checked via

testing. The contributions of this paper are a methodology that integrates

verification and testing, formal verification of some safety critical software

properties, and a testing method for Modified Condition/Decision Coverage

(MC/DC). The results of formal verification and testing can be used as evidence

for avionics software certification.

Keywords: Model-based Verification, Model Checking, Communication Graph,

Methodology, Model-based Testing, Partial Reachability Graph, MC/DC

(Modified Condition/Decision Coverage).

Sponsored by NSERC/CRD CMC CS Canada. Project CRIAQ AVIO 604, CRDPJ

463076-14.

1. Introduction

Developing safety-critical software requires rigorous processes. To prevent catastrophic

events, the avionics industry has introduced a rigorous certification process, described in

the RTCA [1, 2] standard. The DO-178C standard [1] includes a supplement on formal

methods called DO-333. In the DO-333 standard, a formal method is defined as “a

formal model combined with a formal analysis”. The DO-178C and its supplement have

been successfully applied into the production of software systems at Dassault-Aviation

and Airbus [3]. The motivation of this work is to increase software dependability by

integrating formal verification techniques with testing and to capture the benefits of

mailto:m_elqort@mail.concordia.ca

272 Mounia Elqortobi et al.

their cross-fertilization. In addition, formal verification and test results can be used as

evidence for certification. Although model-based testing [5, 6] and verification activities

[3, 4, 5] are natural approaches to the certification of avionics software, the integrated

model-based engineering approach is not yet well studied in the literature, and several

challenges still need to be addressed [4, 7, 12, 14].

We propose a model-driven approach that encompasses two main levels:

verification/design and validation/implementation. As shown in figure 1, in the first

level, we adopt model checking, a formal and fully automatic technique for model-

based verification. It is a natural choice for a rigorous verification of avionics systems

against desirable properties, including safety and liveness. In the second level, we

transform the finite state machine (FSM) verification model [9, 10, 11] into an Extended

Finite State Machine (EFSM) testing model that is an FSM-like model extended with

variables [16]. We generate both local test cases for each EFSM component modeled as

agent in its context of communication, and global test cases for a Communicating

EFSM (CEFSM) model. The CEFSM is a composition of EFSMs. The test generation

method satisfies the Modified Condition/Decision Coverage (MC/DC) criterion, all

Definition-Use (DU)-paths, and ensure that the verified properties hold in the

implementation. The selection of coverage criteria is based on the satisfaction of DO

178C for MC/DC and on the use of middle ground structural coverage for all DU-paths.

Using a better structural coverage criterion, such as all-paths, is often impractical.

Model–based verification and model-based testing are still very active research

domains [5, 6, 14, 16, 23, 24, 25]. They are considered as two distinct research areas

and supported by different research communities. EFSM-based testing and

Communicating EFSM have been extensively studied [18, 19, 20, 21, 23, 25]. A more

recent research area is test generation based on model checking, with several

publications [17, 22, 26, 27, 28, 29] discussing that topic. The principle is basically to

generate counterexamples or witness traces that can be used to derive test cases. The

major problems in all the published work are related to performance, the notion of test

coverage or test efficiency, non-determinism, and the abstraction level of test cases,

derived from counterexamples and witness traces, that need more refinement to be

accurate and be utilized to test implementations [17, 29]. To the authors’ best

knowledge, there is no work on the methodologies that link testing and verification in

the same framework.

The rest of the paper is organized as follows. In Section 2, we present an overview of

the proposed approach and our case study about a landing gear system [11]. This is

followed by a summary of our model-based verification system, formal modeling of our

case study, and our experimental results verifying the correctness of the modeled

landing gear system against desirable properties including safety and liveness in Section

3. We then present our model-based testing and show how to automatically generate test

cases in Section 4. In Section 5, we cover the details of MC/DC criterion and how to

integrate non executable paths. We offer our discussion, conclusions, and identify future

work in Section 6.

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 273

2. The Proposed Methodology and Case Study

2.1. The Proposed Methodology

We introduce the proposed verification and testing framework in this sub-section. The

methodology begins with formally modeling the safety-critical airborne system from the

given informal requirement specifications, producing an FSM-like model as described

in Figure 1. We assume that a correct informal specification exists. Next, it proceeds to

refine and encode the obtained model using ISPL+ (an extended version of the input

language of the symbolic model checker MCMAS+ introduced in [9]) to verify agent-

based intelligent systems.

ISPL+

Informal Specification

Test cases

properties Model for TestingModel for Verification

General purpose model
FSM-like Model

Modeling

Test Cases
generation

Model Checking
MACMAS+

Refinement and Model
transformation

System Under Test
SUT

Witness
Simulation

Violation
Simulation

Test Results
Analysis

Design level
Verification

Implementation Level
Testing

Document
Activity
System

CTL

Manual extraction of properties
Legend

Validation of Properties via Testing

Fig 1. Overview of our Approach

Parallel with this step, our approach extracts and expresses the system requirements

in the form of temporal properties using Computation Tree Logic (CTL) [8]. MCMAS+

automatically checks whether the model satisfies the intended properties and graphically

produces witness-examples or counter-examples [12, 13]. The produced witness-

examples prove the satisfaction of properties while the produced counter-examples

guide designers to detect and repair design errors in the formal system model. In the

validation/implementation level, our approach automatically transforms the formal

models into a reduced Communicating Extended Finite State Machine (CEFSM) that

uses our developed algorithms and tools to automatically generate abstract test cases.

These algorithms and tools address the conformity of the implementation under test to

Low-Level Requirements (LLR), instead of to high-level requirements as in existing

automated test generation techniques; thereby allowing them to be more applicable and

efficient for the satisfaction of avionics standards. After assigning values to the required

data sets, the generated test cases are transformed into concrete ones with respect to the

274 Mounia Elqortobi et al.

expressed properties. The concrete test cases are then applied to the implementation

under test. The Modified Condition/Decision Coverage (MC/DC) criterion is integrated

into the test generation algorithm to satisfy the requirements of the DO-178C [1, 30,

31]. Finally, our approach analyzes the obtained test results and compares them with the

produced witness-examples to validate our properties via testing.

2.2. Case study: Landing Gear System

Our case study, a landing gear system for an aircraft, was proposed by Frédéric Boniol

and Virginie Wiels in [11] as a representative scenario for complex industrial needs.

The case study is very rich as it is not restricted to software and includes complex

system modeling. The landing system is responsible for maneuvering landing gears and

attached doors. It consists of three landing packages situated in the front, right, and left

part of the aircraft. Each landing package includes a door, a landing-gear and related

hydraulic cylinders. A door can be open or closed, while the gear can be retracted,

extended, or maneuvered. The landing system can be controlled by a software package

and can be in two modes: normal or emergency. In outgoing and retraction situations,

the normal mode is the default. The emergency mode is deployed to handle failure

situations. This work only considers the outgoing sequence and its normal and

emergency modes. The architecture of the system consists of three parts (see Figure 2):

1) a pilot part; 2) a mechanical part that incorporates the mechanical devices and three

landing packages; and 3) a digital part that includes the control unit software.

Regarding the pilot part, a pilot has a button switch at her/ his disposal with two
positions: UP or DOWN. When the button switch goes from UP to DOWN, the

outgoing sequence is initialized. The pilot has three lights in the cockpit that reflect the

current status of the gears and doors. These lights are as follows:

• One green light, indicates that “gears are locked down”;

• One orange light, indicates that “gears are maneuvering”; and

• One red light, indicates a “landing gear system failure”.

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 275

Fig 2. General Architecture of the Landing Gear System

Before initializing the outgoing sequence, all the landing gears are locked in their up

position and all the lights are off. In case of failure (i.e., the red light is on), the pilot

manually pulls the mechanical handle to deploy the emergency hydraulic system. The

expected consequence of this deployment is to lock the gears in the down location.

When all gears are successfully extended and all accompanying sensors are valid, the

green light must be lit. Regarding the mechanical part, the motion of landing gears and

doors is performed by a set of hydraulic cylinders such that the cylinder position

basically corresponds to the door or landing gear location. For example, when a door is

open, the corresponding cylinder is extended. The hydraulic power of these cylinders is

supplied by a set of electro-valves. The digital part is in charge of sending an electrical

order to activate each electro-valve. Notably, the three doors (and their gears) are

controlled in parallel by the same electro-valve. The digital part plays an intermediate

role between the pilot part and the mechanical part. Specifically, the software embedded

in the digital part is responsible for controlling the gears and doors, detecting anomalies,

and informing the pilot about the status of the system through a set of lights. It also

generates commands directed to the hydraulic system to open or close the doors and

extend or retract the gears with respect to the values of employed sensors and captures

the pilot orders.

3. Model-based Verification

3.1. Modeling the Landing Gear System

In this section, we show how our model M can formally model the landing gear system.

In our modeling, we specifically consider the normal and emergency modes of the

landing gear system without going into low-level details regarding the mechanical

devices of sensors and electro-valves. To achieve this aim, we introduce three agent

machine models: Mp for pilot, Mc for control unit, and Me for emergency. The pilot

276 Mounia Elqortobi et al.

agent machine model Mp models the behavior of the pilot part and the control unit agent

machine model Mc models the behavior of the digital part. The emergency agent

machine model Me models the behavior of the emergency system. Instead of adding

another agent machine to model the behavior of the hydraulic cylinders, we depend on

the status of doors and gears to directly represent the status of the employed cylinders.

This is because the description above states that the doors’ cylinders are extended when

the doors are open, and a similar relation holds between gears and their cylinders.

In the published case study paper, there are two types of requirements and the authors

classify them as strong and weak. The weak requirements that did not consider deadline

constraints/time constraints. Although we selected the weak requirements, the time

constraints are abstractly represented in our model where each transition takes one-time

unit as in all standard abstracted temporal models.

Figures 3, 4, and 5 show the EFSM models of the pilot, control unit, and emergency

agent machines, respectively. In each figure, we introduce the input and output of each

transition in a tabular form where the symbols “?” and “!” refer to the process of

receiving and sending an action. The output of a transition can be directly assigned by

the shared and unshared variables when there is no explicit output action. Given that, it

is easy to define the Boolean predicate of each transition using the conjunction operator

between its input and its output.

Label Input, output & predicate

Pt1 ? LandingSpecs(speed, distance)
! PressDownButton

Pt2 ? PressDownButtonAck
! wforOangeLight

Pt3 ? OrangeLightOn
! OrangeLightOnAck

Pt4 ? GreenLightOn
! GreenLightOnAck

Pt5 ? ConfirmGearDeployment
! DeploymentStatusSccess

Pt5 ? RedLightOn
! RedLightOnAck

Pt7 ? ConfirmGearDeploymentError
! InitializeEmergencySystem

Pt8 ? GreenLightOnMe

! GreenLightOnMeAck

Pt9 ? ConfirmGearDeploymentMe

! DeploymentStatusSuccess

Idle

wforOrange

OrangeLight

GreenLight redLight

cforDeployment wforGreenLight

GreenLight

cforDeployment

Down

Pt1

Pt4

Pt3

Pt2

Pt6

Pt7

Pt8

Pt
9

Pt5

Fig 3. Pilot Agent Machine model, Mp

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 277

Idle

Initialized

DoorOpening

DoorOpened

GearExtending

OrangeLight

DoorClosedError DoorClosed

RedLight

GearNotDeployed

GreenLight

GearDeployed

Ct2

Ct1

Ct3

Ct4

Ct5

Ct9 Ct6

Ct7Ct10

Ct8Ct11

Label Input, Output & Predicate

Ct1 ? PressDownButton
! PressDownButtonAck

Ct2 ? ProcessReceivedCommand
! OpenGearDoors

Ct3 ? OpenGearDoorsAck
! OutgoingGears

Ct4 ? OutgoingGearsAck
! OrangeLightOn

Ct5 ? OrangeLightOnAck
! CloseGearDoors

Ct6 ? CloseGearDoorsAck
! DoorsCloseSuccess

Ct7 ? GearsExtended
! GreenLightOn

Ct8 ? GreenLightOnAck
! ControlUnitDisconnected

Ct9 ? CloseGearDoorsError
! DoorsCloseError

Ct10 ? GearsNotExtended
! RedLightOn

Ct11 ? RedLightOnAck
! ControlUnitDisconnedted

Fig 4. Controller Agent Machine model, Mc

Label Input, Output & Predicate

Et1 ? InitializeEmergencySystem
! OpenGearDoors

Et2 ? OpenGearDoorsAck
! OutgoingGears

Et3 ? OutgoingGearsAck
! VerifyGearsPosition

Et4 ? VerifyGearsPositionAck
! LockDoorsMechanicaly

Et5 ? LockDoorsMecanicalyAck
! GreenLightOn

Et6 ? GreenLightOnAck
! GearStatusExtended

Idle

DoorOpened

Initialized

GearExtendingMechanicaly

GreenLight

DoorClosedMechanicaly

GearLockReleased

Et1

Et2

Et3

Et4

Et5

Et6

Fig 5. Emergency Agent Machine model, Me

3.2. Validating

To perform the verification, we introduce the MCMAS tool. This is a symbolic model

checker that extends MCMAS, a model checker for Multi-Agent Systems (MAS) that

uses Ordered Binary Decision Diagrams (OBDD) [12, 13]. MCMAS takes two inputs: a

model description for the system to be verified and a set of properties specified by

278 Mounia Elqortobi et al.

different logics such as CTL and CTLC [9, 10]. The inputs of MACMAS are formatted

by the ISPL language which is used to describe the communicating MAS to be checked

and encode the desired specifications. The ISPL+ is a dedicated programming language

for interpreted systems that formalize MASs (Fagin & Halpern, 1994). MCMAS+

automatically evaluates the truth value of the encoded specifications and produces

counterexamples that can be analyzed graphically for false specifications. MCMAS can

also provide witness executions for the satisfied specifications and graphical interactive

simulations. For clarity, we introduce the syntax of CTL that is given by the following

grammar rules:

 where:

1) (the set of atomic propositions) is an atomic proposition and is the

existential quantifier on paths.

2) , and are temporal operators standing for “next”, “globally”, and

“until”, respectively.

3) The Boolean operators and are defined and used in the usual way.

To validate our model M (a composition of Mp, Mc, and Me) we need to perform the

review and tracing activities. As a first validation activity, we must review the model

with the wide range of features implemented in the MCMAS+ graphical user interface

[10]. This graphical interface specifically highlights syntax errors, automatically

displays content, and assists and supports text marking and formatting. After fixing all

the highlighted errors, we have a clear and error-free encoding model. Tracing the

activity allows us to track the behavior of the encoded model. The MCMAS+ tool offers

an Explicit Interactive Mode. This tool starts with the initial state and offers all the

transitions available at this state and gives the possibility to choose the transitions. After

we select one of these transitions, the tool moves to the reachable state connected with

the initial state by this transition and then displays the available transitions at the new

state. This step allows us to evaluate whether the model is progressing as we intended. If

an error is detected, we return to our encoding and update it. This process continues

until we reach the end state. Then, we start again from the initial state and select another

transition. Our graphical interface supports a new feature, which displays the whole

model. By completing these two activities, we ensure that our encoding model exactly

captures the intended behavior of the landing gear system. In fact, these two activities

are key to ensuring that the model is correct; otherwise, errors in the design model could

jeopardize the entire activity of the design formal verification using a model checking

technique.

3.3. Model checking

According to the model checking technique, we must formally: 1) model the system

underlying the verification process; and 2) express the requirements. The correctness of

these requirements has been proven on the modeled system using MCMAS+. We have

just shown how we complete the first activity. For the second activity, we used the

Computation Tree Logic (CTL) [8] supported by the MCMAS+ model checker tool [12]

to express the following requirements:

https://www.sciencedirect.com/science/article/pii/S0957417416307138?via%3Dihub#bib0025

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 279

In [11], a set of requirements is presented with respect to the normal mode. The

requirement called R11bis states that “when the command line is working (normal

mode), if the landing gear command handle has been pushed DOWN and stays DOWN,

then eventually the gears will be locked down and the doors will be seen closed”. We

expressed this requirement in the three different CTL formulae , and .

The first formula () can be read as follows: along all computation paths through

all states, when the button is pressed down, then along all computation paths in the

future the gears will be extended and the doors will be closed. The second formula ()

can be read as follows: there exists a computation path such that in all its states the gears

will be not extended, and the doors will be not closed until the button is pressed down.

The third formula () can be read as follows: along all computation paths in the

future, the gears will be not extended, and the doors will be not closed if the button has

never been pressed down before. The CTL formula expresses the safety

requirement, which plays an important role in avoiding a bad situation. This bad

situation in the fourth formula can be read as follows: the button has been pressed down

and along all paths; the green light is never lit. The last CTL formula expresses the

liveness requirement and can be read as follows: along all computation paths, the green

light can be eventually lit. The quantifier ranging over all computation paths (“A”)

enables us to check the status of both normal and emergency modes. For example, the

liveness formula allows us to check the status of the good thing (‘green light’) that will

happen eventually in each mode. All these formulas are evaluated to true on the model

M using MCMAS+. Therefore, our design model is error-free and it is strong, as it

achieves the safety and liveness requirements required in both modes. We can also

report some statistical results, such as that the execution time of verifying these

formulas is 0.298 seconds and the memory consumed is 6 Megabytes.

4. Model-based Test Generation Approach

The goal is to generate, starting from the verification model, a set of test cases for the

verified properties, apply them to the implementation under test and to then analyze the

test results. The main idea is to demonstrate that the verified properties are properly

propagated from the design level to the implementation level, and that they hold true

within the Implementation Under Test (IUT). This demonstration requires model

transformation, local and global test sequence generation, testing and test results’

analysis. The approach both verifies the properties at the design level and demonstrates

280 Mounia Elqortobi et al.

their validity at the implementation level using global test sequences, allowing the

satisfaction of DO 178C by generating local test sequences with the required coverage

criteria. In addition, we extend the set of paths to include additional paths to satisfy

MC/DC.

4.1. Model Transformation

In model checking, a simple FSM is often used. Testing can use richer modeling

techniques such as Extended Finite State Machines (EFSM). To use our test case

generation techniques and tools with well-defined coverage criterion such as MC/DC

[30, 31], we transform the verification model into a testing model. The notion of shared

variables used in our verification model can be transformed into input parameters in the

EFSM model. The interaction mode considered here is message passing. The discussion

to use one model or two can take place. The solution for avoiding the use of a single

model is to manually extract one model for verification and one model for testing. In

this case, two different quality assurance groups should be involved, and the two models

should cover the same set of requirements to satisfy the need for independency between

verification and testing activities. The model transformation can show the equivalence

between two models in this case.

4.2. Global Test Sequence Generation

Several approaches to generate global test sequences are based on or are otherwise

similar to the work of Bourhfir and Cavalli [18, 19, 20, 23, 32, and 33]. We propose a

test generation technique for parallel communicating agents. The generation of test

sequences starts with the verification model. We first model each agent in its context

and then create a list of transitions for the communication between a pair of agents. We

use a transition-marking algorithm that marks every transition involved in the

communication as an EFSM, along with its context. This technique generates local test

sequences for each agent. Next, we compose the obtained EFSMs to build a global

system M that is in fact a Communicating Extended Finite State Machines (CEFSMs)

(see Figure 8).

4.3. Test Generation Process for the Case Study

In this case study and for the sake of readability, the EFSMs are only a partial

representation of a landing gear system.

Following the DO-178C standards, the satisfaction of the MC/DC criterion is

mandatory, and it is used as a criterion in this paper for test sequence generation. The

MC/DC is a widely used and known coverage criterion in software avionics [30, 31].

The figure 6 describes the test generation process. To generate global test sequences,

we first derive the local test sequences for each EFSM. Second, we obtain the

communication graph from all EFSMs (see figure 7). Third, guided by the

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 281

communication graph, we obtain the global system, or the CEFSM. Finally, from the

local test sequences and the CEFSM, we generate the global test sequences. The

following sections will detail the different steps of the test generation for the case study.

 Fig 6. Test Generation Process

Communication Graph. To generate global test sequences for a global system

composed of several agents, we need to abstract an EFSM agent into an abstract state

and identify the communication transitions and their parameters that are used for

communication. The communication graph represents the interaction between the

different EFSMs (see Figure 7). For our case study, it is assumed that the

communication between the machines Mp, Mc and Me is two-way. Figure 7 visualizes

the communication graph with the representation of each machine by an abstract state.

Mp

Me Mc

Mp.P8(Me.GreenLight)
Mp.P3(Mc.OrangeLight);
Mp.P4(Mc.GreenLight);
Mp.P6(Mc.RedLight)

 Fig 7. Communication graph representation

Global Model with Communication Points. Using the EFSMs (Figures 3, 4, and 5)

and guided by the communication graph (Figure 7), we obtain (by composition) the

global system model with its communication points (Figure 8). Figure 8 represents the

composite system model M with its communication points, labels and transitions, and

the input and output lists. We can see that the Mc and Mp agents start at the same time. It

is in fact a parallel communicating system. The transitions representing the

communication among agents are shown in orange, green, and red to represent the

landing gear system lights of the same color. Similarly, a computation graph is also a

composition of its constituents.

282 Mounia Elqortobi et al.

start

C0
E0

E1

E2

E3

E4

E5

E6

P0

P1

P2

P3

P4

P5

C1

C2

C3

C4

C5 C7C6

C9

C11

C8

C10

P6

P7

P8

P9

activateEmergencySystem

RedLight

GreenLight

OrangeLight

GreenLight

Ct1

Ct2

Ct3

Ct4

Ct5
Ct6

Ct7

C
t
8

Ct10Ct9

Ct11

Pt1

Pt2

Pt3

Pt5

Pt4 Pt6

Pt7

Pt8

Pt9

Et1

Et2

Et3

Et4

Et5

Et6

Fig 6. System model M: Composed of Mp, Mc, and Me with communication points

Algorithm. In this section, we briefly describe the test generation algorithm and its

application to the case study. More specifically, we extend our algorithm to generate the

test sequences that satisfy the MC/DC criterion. To generate executable test sequences,

we need the final model with all the aforementioned information, the local test

sequences, as well as the communication graph. The algorithm given in [18 and 31],

called the generation of def-use executables, defines four different variable usages:

assignment-use (A-usage), input-use (I-usage), computational-use (C-usage), and

predicate-use (P-usage). These variable usages enable the links between the test

sequences of each machine and help check the test sequences’ executability. The

algorithm provides a full set of executable and non-executable test sequences that will

go through all the possible transitions existing in the system under test. We generate the

paths linking two states from different machines by marking them as communication or

synchronization points.

The Generated Test Sequences. To generate the test sequences, we first need to

identify the communication variables. In the case of landing gear system, the variables

are:

{Start, activateEmergencySystem, OrangeLight(on,off), GreenLight(on,off),

RedLight(on,off) }

These variables indicate the possible communication between the agents. For example,

if activeEmergencySystem is on, it means that the RedLight variable is also on. This is

the only time the emergency system will be called upon. To identify the communication

points, the input and output list for each transition is defined. The related input and

output lists, as well as the predicates, are described in Figures 3, 4, and 5. They are used

as inputs for the algorithm to generate the global test sequence. In general, a test case is

composed of the following elements: <preamble, target, postamble>. Preamble and

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 283

Postamble might be empty. The preamble is the sequence of transitions used to reach

the target transition for testing as given in Table 1.

Table 1 shows examples of the application of the algorithm using the landing gear

case study. It identifies the different usage lists enabling the identification of executable

test sequences. Table 2 shows an example of executable test sequences to reach specific

transitions in the system model. The chosen transitions represent a case of parallelism.

Table 1. Example of usage lists and preamble for specific transitions of the landing gear system

Trans. A-usage I-usage P-usage

Pt2 OrangeLight - -

Pt4 - GreenLight Ct11 OreenLight on

Ct11 - GreenLight on ; OrangeLight off GreenLight on

Trans Preamble

Pt2 Pt1

Pt4 Pt1, Pt2, Pt3, [Ct11]

Ct11 Ct1, Ct2, Ct3, Ct4, Ct5, Ct9, Ct10

Table 2. Executable test sequences of the landing gear system

Transition Executable test sequence

Pt5 Pt1, Pt2, Pt3, Ct1, Ct2, Ct3, Ct4, Ct5, Ct9, Ct10, Pt4, Pt5

Table 3 presents an example of non-executable test sequences. These are non-

executable because they need a preamble execution from another agent to reach the

desired transition and render the sequence executable. Table 4 shows the parallelism in

the executable test sequences required to make the transitions shown in Table 3

executable.

Table 3. Non-executable test sequence of the landing gear system

Transition Non-executable test sequences

Pt5 Pt1, Pt2, Pt3, Pt4, Pt5

Table 4. Parallelism shown for executable test sequences Pt5 of the landing gear system

 Executable test sequences – Pt5

Mp Pt1, Pt2, Pt3 P4, Pt5

Mc Ct1, Ct2, Ct3, Ct4, Ct5 Ct9, Ct10

In the following sections, we will verify the different properties obtained from the

validation phase.

284 Mounia Elqortobi et al.

4.4. Witness Properties’ Verification

Table 5 shows specific executable test sequences for a selection of witness properties

for liveness. Due to a limitation in all model checker tools in terms of generating

witness-examples and counter-examples that include the universal operator “A”, we

used other formulas that achieve the same requirement and allow MCMAS+ to generate

witness-examples.

The executable test sequences are given by the input and output information, as well

as by the transitions for which that input and output information proved the witness-

example to be true.

The executable test sequences represent the transition in which the witness-example

holds. Hence, these are all the possible transitions forming a path needed to render a test

sequence executable, up to the mentioned transition. For example, EF GreenLight holds

true when a sequence executes up to transition Pt5 (refer to Table 4 for the complete

executable test sequence).

Table 5. Executable test sequences for witness-examples for liveness properties

Witness-example for liveness

properties

 Executable test sequences

EF GreenLight Sequences leading to transitions:

Mp: Pt4 – Pt5 – Pt8;

Mc: Ct10 – Ct11

Me: Et5 – Et6

EF (RedLight && EF GreenLight) Sequences leading to transitions:

Mp: Pt8 – Pt9;

Mc: none;

Me: Et5 – Et6

EF (PressedDown && EF

GreenLight)

Sequences leading to transitions:

Mp: Pt4 – Pt5 – Pt8 – Pt9

Mc: Ct10 – Ct11;

Me: Et5 – Et6

4.5. Properties’ Verification

Several properties are defined in Table 6 to verify whether the used algorithm validates

the properties. The two executable test sequences shown in Table 2 were analyzed with

regards to those properties. Both executable test sequences for transitions Pt5 and Pt9

verify all the properties identified so far. Table 6 confirms that all the global test

sequences generated render the defined properties true.

According the algorithm used in [18], none of the executable test sequences validate

the given properties. However, those that represent the full paths in the global system do

validate them, being the paths generated for transitions Pt5 and Pt9. This implies that

through that algorithm, only a set of test sequences can validate the different properties,

and not necessarily all of them.

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 285

Table 6. LGS properties validated with the executable test sequences

CTL Status

 True

True

 True

 True

 True

5. MC/DC

In order to comply with the avionics standard DO-178C, the proposed test generation

algorithm needs to satisfy the modified condition/decision coverage (MC/DC) criterion.

This will ensure that all possible conditions are tested. Therefore, we use a graph

expansion mechanism to handle this type of coverage.

5.1. Handling MC/DC criterion

MC/DC is applied using binary values, and every condition will have a value of true or

false. It is probable that some MC/DC test cases are not feasible within the system [31].

This means that some test cases’ execution will fail.

The following requirements should be satisfied in MC/DC-based testing. For all

decisions, at least once: 1) all possible outcomes are covered; 2) all possible outcomes

for all conditions are covered; and 3) all conditions impacting the decision’s outcomes

are covered [30, 31].

In other words, all the outcomes of every decision, as well as the conditions within

those decisions, should be executed at least once. By doing so, all paths regarding

possible values taken by the system under test will be executed. For example, in the

global system, a single decision must be made at P3 to move further to P4 or P6 as

follows:

If (OrangeLight is on and GreenLight is off and RedLight is off)

 Return light status (RedLight or GreenLight on) from the controller;

EndIf;

To satisfy the MC/DC criterion, we need to visualize a path as binary decisions and

conditions. The algorithm will analyze a path with all possible conditions as binary as

follows:

Decision → go to controller

 Conditions

→ if (OrangeLight is on/off)

→ if (GreenLight is on/off)

→ if (RedLight is on/off)

286 Mounia Elqortobi et al.

Another representation would be that the executable paths consist of all green

transitions, and the non-executable ones are all red. The additional non-executable paths

that will ultimately generate errors are partially red. For example, a path consisting of

the values orange on / green off / red off will be part of a feasible path. However, going

to the next state is impossible if within a path the values are orange on/green off/red on.

Those additional paths exist to satisfy the MC/DC criterion. The objective is to render

all the paths by considering the binary possibilities for each condition found in a

decision, based on whether the orange light is on or off. However, the two other lights

should be taken into consideration for conformity.

There are three conditions to consider within this decision: whether the OrangeLight

is on, the GreenLight is off, and the RedLight is off. This translates to the following

possibilities shown in Table 7, in which true and false are on and off, respectively:

Table 7. Possible binary values and possible outputs

OrangeLight GreenLight RedLight Output

True False False Go to controller

False True False Error

False False True Error

True True False Error

True False True Error

False True True Error

True True True Error

False False False Idle

There is a value in executing test sequences from MC/DC criterion that result in an

error, as it ensures that a test sequence will fail. As such, we also cover the possible of

faulty signals being sent to the pilot, the controller, and the emergency agent. The errors

are the result of a status or a state that is not naturally feasible by the system. To

generate test sequences for MC/DC criterion [30, 31], we need to identify a way to

consider the binary sequence and condense it into one single segment. This will enable

the generation of MC/DC test sequences using model-checking. For example, we could

add information in the input and output values for transition Pt3 by adding the different

possibilities covered through MC/DC criterion and use that information to generate the

required test sequences.

5.2. Test Generation Algorithm Satisfying MC/DC Criterion

The proposed test generation algorithm generates feasible test sequences. To satisfy the

MC/DC criterion, the test generation algorithm must be modified and all of the decision

branches need to be tested. For each binary decision, two paths will be generated for

each simple condition involved in that decision. To integrate this coverage criterion, we

need to pin-point in the algorithm the parts necessary to identify all DU-paths. For each

element in the preamble list, we add a binary set of possibilities to satisfy the MC/DC

criterion. This binary set will represent the possibilities for each information influencing

a decision [30, 31].

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 287

There are several ways to approach this issue, for example: 1) create a standalone

procedure executed at the end, that will have access to all the paths created initially, and

generate additional ones to satisfy MC/DC criterion; 2) integrate MC/DC coverage

while the paths are being generated to cover all feasible and non-executable paths

related to a decision; or 3) analyze the non-executable paths and choose the ones

satisfying the MC/DC criterion, using a hybrid approach based on approach number 2.

The third approach is the one we selected. The algorithm that generates local test

sequences is sketched as follows:

(1) Transform the EFSM to data flow graph G using graph rewriting.

(2) Expand the graph by an expansion mechanism; use state decomposition

and graph splitting to handle MC/DC coverage criterion

(3) Select input values for each input parameter that can affect the control flow.

(4) Generate executable DU-paths according to data flow graph G and remove

redundant paths. Append the state identification sequence and post amble

(return to the initial state) to each DU-path to form a complete test path.

(5) Check test path executability; if non-executable, use cycle analysis to make it

executable, discard if non-executable. This is done during the generation of

a path.

(6) Verify if there are uncovered transitions, add test paths to cover them.

Handling MC/DC criterion in the Extended FSM Test Generation algorithm is

explained in the following five steps.

Step 1: Define a second variable of binary values called vMCDC. This variable will

take the values that will conform to the coverage’s criterion. This variable will be used

solely for MC/DC criterion satisfaction for test case generation.

Step 2: In the test generation algorithm, add all possible values for the identified

input parameters that satisfy the MC/DC criterion and that are not already covered by

the algorithm in its original state. Next, call a procedure that will analyze the discarded

paths to ensure that they would not be involved in any MC/DC. Step (4) is used to

analyze non-executable paths.

Algorithm EFTG (Extended FSM Test Generation)
(1) Read an EFSM specification;

(2) Generate the dataflow graph G from the EFSM specification;

(3) Choose a value for each input parameter influencing the control flow,

augment the scope to consider the possible values for MC/DC;

(4) If the path is still non-executable, conduct the Analyze-discarded-path(P)

procedure.

Step 3: Create procedure Analyze-discarded-path(P). This procedure will use the

binary variable vMCDC and evaluate the information of path P to determine if it should

be removed or not.
Analyze-discarded-path(P)
(1) Define binary values table with accepted values for green-orange-red

states;

(2) For each variable, in every transition in the discarded path, compare the

values with the binary table for green-orange-red-gear;

(3) If the values conform to the table, discard the non-executable path;

288 Mounia Elqortobi et al.

(4) If they do not conform, add this path to the MC/DC list of conformances

(use the same logic for executable paths and flag them for MC/DC

satisfiability).

Step 4: In the procedure executable-DU-path-generation, we add another loop to take

into consideration vMCDC to identify the paths between transitions.

Procedure Executable-DU-Path-Generation (flowgraph G)
(1) Take in the MC/DC variables from the vMCDC variables;

(2) Generate all possible paths (call to Find-All-Paths (T,U, vMCDC)

for each variable that has an A-use in T, and each transition U that has a P-

use or a C-use.

Step 5: we replace the procedure handle-executability in order to not discard non-

executable paths and call it procedure handle-executability-MCDC. If a path is non

executable, it will not be removed. This is rather complicated as the algorithm is sound

in making sure that all non-executable paths are confirmed twice as non-executable, and

are then discarded. Another possibility is to add a condition that allows us to identify

from which variable a path has been defined. If it was from a vMCDC variable, then we

will not remove the non-executable path. Satisfying MC/DC criterion will result in

adding several non-executable paths. This step is needed to ensure that erroneous paths

are handled correctly, which will control both the satisfaction of the properties and the

alternatives triggered by glitches or possible malfunctions.

6. Discussion and conclusion

Business case studies play a fundamental role in the progress and development of

formal methods and help prospective users and designers demonstrate the application of

different formal methods to model, verify, and test concrete, complex systems. In

addition, they help to compare different formal techniques in terms of performance and

ease of use. Relevant proposals have been put forward to model and formally analyze

the landing gear system, a complex real-life case study published in [11]. Specifically,

these proposals have suggested:

• Formal modeling methods including the Event-B methods [34, 35, 36, 37, 42],

abstract state machines (ASM) [38, 43], and the Fiacre formal language [39, 40];

• Verification techniques including a proof theory [34, 35, 37, 43] and model

checking [35, 39, 41, 40, 43]; and

• A test case generation technique [41], a run-time monitoring approach [40, 41], and

a simulation technique [44].

These proposals provide only a partial solution with a unique objective, either

modeling, verification, or testing. Moreover, these proposals do not consider all the

industrial requirements of the case study. For example, a formal verification using

model checking is used mainly to verify properties at the design level; the verified

properties may not be propagated to the implementation stage. Therefore, testing of

these properties is still needed. Although model-based testing and verification activities,

as shown in DO-178C and DO-333, are natural approaches to the certification of

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 289

avionics software, combining formal verification and testing in a single framework is

still in its infancy and needs further investigation.

The proposed methodology and its application show that the integration of software

quality assurance activities is needed to achieve software certification in the airborne

industry. There are more challenges to overcome to be able to automate all the activities

of the methodology. The avionics software has several types of inputs such as data from

various actuators, and high volume of outputs. Both data input selection and trace

analysis constitute real challenges and need more research and innovation to address

them properly. Some hybrid modeling of the diversity of data input is needed. The

oracle problem needs more data mining and intelligence for analyzing and for

correlating outputs and searches in artifacts, such as requirement specifications, logs and

test architectures. More efficient algorithms will also advance work in this field.

Acknowledgement. We would like to thank the reviewers and Dr. M. El Menshawy for their

useful comments. This work was funded in part by NSERC/CRD CMC CS Canada and Project

CRIAQ AVIO 604, CRDPJ 463076-14.

References

[1] http://www.rtca.org. RTCA/DO-178C (2011) "Software Considerations in Airborne
Systems and Equipment Certification", December 13, DO-332 Object-Oriented
Technology and Related Techniques Supplement to DO-178C and DO-278A, DO-
331 Model-Based Development and Verification Supplement to DO-178C and DO-
278A, DO-333 Formal Methods Supplement to DO-178C and DO-278A

[2] Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA
DO-178B) information: conceptual model and UML profile, Journal of Software &
Systems Modeling, Volume 10, Issue 3, pp. 337-367, 2011

[3] Moy, M., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or Formal
Verification: DO-178C Alternatives and Industrial Experience, Journal of IEEE
Software, Volume 30, Issue 3, pp. 50-57, 2013

[4] John Rushby, “New Challenges in Certification for Aircraft Software”, Proceedings
of the 9th ACM International Conference on Embedded Software, pp. 211-218,
2011, www.csl.sri.com/users/rushby/papers/emsoft11.pdf

[5] Peleska, J., Siegel, M.: Test Automation of Safety-Critical Reactive Systems. South
African Computer Jounal 19, pp. 53-77. (1997):

[6] Jan Peleska (2013): Industrial-Strength Model-Based Testing - State of the Art and
Current Challenges. MBT 2013: 3-28

[7] Gotzhein, R., Khendek, F.: Compositional Testing of Communication Systems.
LNCS 3964, pp. 227 – 244 (2006) Gotzhein, R., Khendek, F.: Compositional
Testing of Communication Systems. LNCS 3964, pp. 227 – 244 (2006)

[8] Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press,
Massachusetts (1999)

[9] El-Kholy, W., Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Conditional
commitments: Reasoning and model checking. ACM Trans. on Soft. Eng. and
Metho. 24(2), 9:1–9:49 (2014)

[10] El-Kholy, W., El-Menshawy, M., Bentahar, J., Qu, H., Dssouli, R.: Formal
specification and automatic verification of conditional commitments. IEEE
Intelligent Systems 30(2), 36–44 (2015)

[11] Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Virginie
Wiels, Ameur, Y.A., Schewe, K.D. (eds.) Proceeding of 4th International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z.

http://www.rtca.org/

290 Mounia Elqortobi et al.

Communications in Computer and Information Science, vol. 433, pp. 1–18.
Springer (2014)

[12] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the
verification of multiagent systems. CAV. LNCS, vol. 5643, pp. 682–688. Springer
(2009)

[13] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the
verification of multiagent systems. J. International Journal on Software Tools for
Technology Transfer, 2017, Vol.19, N°1

[14] Berrada, I., Castanet R., Felix P.: Testing Communicating Systems: a Model, a
Methodology, and a Tool. LNCS 3502, pp. 111–128 (2005)

[15] Kalaji, A.S., Hierons, R.M., and Swift, S.: Generating feasible transition paths for
testing from an extended finite state machine(EFSM), International Conference on
Software Testing Verification and Validation, ICST, pp.230–239, 2009.

[16] Clarke, E., Wing, J.: Formal Methods: State of the Art and Future Directions. ACM
Computing Surveys, Vol. 28, No. 4 (1996)

[17] Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey.
Softw. Test., Verif. Reliab. 19(3): 215-261 (2009)

[18] Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: A test case generation
approach for conformance testing of SDL systems. Computer Communications,
vol.24, no.3-4, pp.319–333, 2001

[19] Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: Automatic executable test case
generation for extended finite state machine protocols. IWTCS (1997)

[20] Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: A guided incremental test case
generation procedure for conformance testing for CEFSM specified protocols.
IWTCS (1998)

[21] Aichernig B. K., Delgado, C. D.: From Faults Via Test Purposes to Test Cases: On
the Fault-Based Testing of Concurrent Systems. LNCS 3922, pp. 324–338 (2006)

[22] Paul, E. Black.: Modeling and Marshaling: Making Tests From Model Checker
Counterexamples. In Proc. of the 19th Digital Avionics Systems Conference, pages
1.B.3–1–1.B.3–6 vol.1, 2000.

[23] Yin, X., Jiangyuan, Y., Wang, Z., Shi, X., Wu, J.: Modeling and Testing of
Network Protocols with Parallel State Machines, IEICE Transactions on
Information and Systems E98. D(12) :2091-2104, 2015

[24] Utting, M., Pretschner, A., Legeard, B.: A taxonomy on model-based testing.
University of Waikato, Hamilton, New Zealand (2006)

[25] Bochman, G. V., Khendek, F.: Test Selection Based on Finite State Models. IEEE
Transactions on Software Engineering (1991)

[26] Clarke, E., Veith, H.: Counterexamples revisited: Principles, algorithms,
applications. In Verification: Theory and Practice, volume 2772 of Lecture Notes in
Computer Science, pages 208–224, 2004.

[27] Clarke, E., Grumberg, O., McMillan, K. L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In Proceedings of the
32st Conference on Design Automation (DAC), pages 427–432. ACM Press, 1995

[28] Jéron, T., Morel, M.: Test generation derived from model-checking. In CAV ’99:
Proceedings of the 11th International Conference on Computer Aided Verification,
pages 108–121, London, UK, 1999. Springer-Verlag. ISBN 3-540-66202-2

[29] Fraser, G., Wotawa, F., Ammann, P.: Issues in using model checkers for test case
generation. Journal of Systems and Software 82(9): 1403-1418 (2009)

[30] Ackermann, C.: MC/DC in a nutshell, Fraunhofer CESE, Maryland USA, 2006

[31] Prestschner, A.: Compositional generation of MC/DC integration test suites,
Elsevier Science B.V, 2003

[32] Jiangyuan, Y., Wang, Z., Yin, X., Shi, X., Wu, J.: Reachability Graph Based
Hierarchical Test Generation for Network Protocols Modeled as Parallel Finite
State Machines. 2013 22nd International Conference on Computer Communication
and Networks (ICCCN), 1-9 (2013)

https://www.researchgate.net/journal/0916-8532_IEICE_Transactions_on_Information_and_Systems
https://www.researchgate.net/journal/0916-8532_IEICE_Transactions_on_Information_and_Systems

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 291

[33] Besse, C., Cavalli, A., Kim, M., Zadi, F. : Automated generation of interoperability
tests. Testing of Communicating Systems XIV, 169-184, 2002

[34] Su, W., Abrial, J-R. Aircraft landing gear system: Approaches with Event-B to the
modeling of an industrial system. In Boniol, F., Virginie Wiels, Ameur, Y.A.,
Schewe, K.D. editors, ABZ: The Landing Gear Case Study, volume 433, pages 19–
35, 2014.

[35] Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J. and Michael Leuschel.
Validation of the ABZ landing gear system using ProB. In Boniol, F., Virginie
Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case Study,
volume 433, pages 66–79, 2014.

[36] Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In Boniol, F.,
Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case
Study, volume 433, pages 80–94, 2014.

[37] Méry M., Kumar Singh, N.: Modeling an aircraft landing system in Event-B. In
Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing
Gear Case Study, volume 433, pages 154–159, 2014.

[38] Kossak, F., Landing gear system: An ASM-based solution for the ABZ case study.
In Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The
Landing Gear Case Study, volume 433, pages 142–147, 2014.

[39] Dhaussy, Ph., Teodorov C.: Context-aware verification of a landing gear system. In
Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing
Gear Case Study, volume 433, pages 52–65, 2014.

[40] Berthomieu, B., Dal Zilio, S., Fronc, L.: Model-checking real-time properties of an
aircraft landing gear system using Fiacre. In Boniol, F., Virginie Wiels, Ameur,
Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case Study, volume 433,
pages 110–125, 2014.

[41] Arcaini, P., Gargantini, A., Riccobene, E.: Offline model-based testing and runtime
monitoring of the sensor voting module. In Boniol, F., Virginie Wiels, Ameur,
Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case Study, volume 433,
pages 95–109, 2014.

[42] Banach, R.: The landing gear case study in hybrid Event-B. In Frédéric Boniol,
Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe, editors, ABZ: The
Landing Gear Case Study, volume 433, pages 126–141, 2014.

[43] Arcaini, P., Gargantini, A., Riccobene, E.: Modeling and analyzing using ASMs:
The landing gear system case study. In Boniol, F., Virginie Wiels, Ameur, Y.A.,
Schewe, K.D., editors, ABZ: The Landing Gear Case Study, volume 433, pages
36–51, 2014.

[44] Savicks, V., Butler, B., Colley, J.: Co-simulation environment for Rodin: Landing
gear case study. In Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors,
ABZ: The Landing Gear Case Study, volume 433, pages 148–153, 2014.

Mounia Elqortobi is a Ph.D. degree student in Information Systems Engineering,

Concordia University. She received her M. Eng. in QSE and bachelor’s degree in CSE

from Concordia University (2015, 2010).

Warda EI-Kholy received her PhD degree in Information Systems Engineering from

Concordia University, she is a lecturer in Menofia University, Egypt.

Amine Rahj is a master’s degree student in Quality Systems Engineering, Concordia

University. He received his bachelor’s degree (2015) from INPT, Morocco.

292 Mounia Elqortobi et al.

Jamal Bentahar is a Full Professor with Concordia Institute for Information Systems

Engineering, Concordia University, Canada. His research interests include services

computing, applied game theory, computational logics, model checking, multiagent

systems, and software engineering.

Rachida Dssouli is Full professor and founding Director of Concordia Institute for

Information Systems Engineering (CIISE), Concordia University. Her research area is

in Testing and Verification.

Received: April 30, 2019; Accepted: September 17, 2019

Computer Science and Information Systems 17(1):293–313 https://doi.org/10.2298/CSIS190430041C

Business Process Specification, Verification, and
Deployment in a Mono-Cloud, Multi-Edge Context

Saoussen Cheikhrouhou1, Slim Kallel1, Ikbel Guidara2, and Zakaria Maamar3

1 ReDCAD
University of Sfax

Sfax, Tunisia
saoussen.cheikhrouhou@redcad.tn

slim.kallel@redcad.tn
2 LIRIS

Claude Bernard Lyon 1 University
Lyon, France

ikbel.guidara@liris.cnrs.fr
3 College of Technological Innovation

Zayed University
Dubai, U.A.E

zakaria.maamar@zu.ac.ae

Abstract. Despite the prevalence of cloud and edge computing, ensuring the satis-
faction of time-constrained business processes, remains challenging. Indeed, some
cloud/edge-based resources might not be available when needed leading to delay-
ing the execution of these processes’ tasks and/or the transfer of these processes’
data. This paper presents an approach for specifying, verifying, and deploying time-
constrained business processes in a mono-cloud, multi-edge context. First, the spec-
ification and verification of processes happen at design-time and run-time to ensure
that these processes’ tasks and data are continuously placed in a way that would
mitigate the violation of time constraints. This mitigation might require moving
tasks and/or data from one host to another to reduce time latency, for example. A
host could be either a cloud, an edge, or any. Finally, the deployment of processes
using a real case-study allowed to confirm the benefits of the early specification and
verification of these processes in mitigating time constraints violations.

Keywords: Business process, Cloud, Edge, Time constraint, Violation.

1. Introduction

Until recently cloud computing has been praised for both offering elastic (on-demand) re-
sources and adopting pay-as-you-go model [20]. These 2 characteristics made cloud com-
puting extremely popular among Information and Communication Technologies (ICT)
practitioners who deployed software applications around the concept of Everything-as-
a-Service (*aaS) that cloud computing embraces. Unfortunately, with the continuous
advances in ICT and organizations’ changing needs, cloud computing has shown some
signs of “fatigue” when for instance, real-time applications call for almost zero time-
latency. Transferring data to distant clouds is a potential source of delay and opens doors
to unwanted interceptions. Luckily edge computing has been introduced to address some

294 Cheikhrouhou et al.

clouds’ concerns like latency and security. According to Maamar et al. [16], edge and
cloud are expected to work hand-in-hand and not compete.

In conjunction with embracing the latest ICT, all organizations capitalize on their
Business Processes (BP) to remain competitive, cut costs, and sustain their growth.
Referred to as know-how, “...a business process consists of a set of activities that are per-
formed in coordination in an organizational and technical environment. These activities
jointly realize a business goal. Each business process is enacted by a single organiza-
tion, but it may interact with business processes performed by other organizations.” [22].
A BP consists of tasks connected together with respect to a particular process model
that BP engineers define at design-time. At run-time, the process’s tasks are assigned to
persons/machines for manual/automated execution. Different works suggest fragmenting
BPs and deploying them over the clouds to tap into their elasticity and pay-as-you-go
benefits [23]. However, deploying fragmented BPs over the cloud [14] could fail when
constraints like temporal are not satisfied resulting into financial penalties, for example.

In line with the works on cloud-driven BP fragmentation, we presented in [5] an ap-
proach to formally specify and verify cloud resources allocation to BPs using Timed
Petri-Net (TPN). Our objective was to ensure that this allocation does not violate any
temporal constraints on BPs. We also presented how BP correctness is formally verified
with respect to such constraints. In this paper we extend this approach by fragmenting
and deploying free-of-violations time-constrained BPs in a mono-cloud and multi-edge
context. We resort to cloud-edge collaboration by verifying at both design-time and run-
time where data should be placed (cloud, edge, or either) and where tasks should run as
well (cloud, edge, or either). Satisfying temporal constraints in the context of cloud is
thoroughly discussed in the literature [4, 12, 13, 19]. However, this remains unexplored in
the context of cloud/edge, which constitutes one of our main contributions in this paper.

The remainder of this paper is organized as follows. Section 2 introduces a motivating
example. Section 3 briefly presents the approach for verification of cloud- and edge-based
resource allocation at both design-time and run-time. We detail the design-time stage in
Section 4 and the run-time stage in Section 5. Section 6 gives implementation details.
Section 7 discusses related work. Finally, concluding remarks and future work are drawn
and presented, respectively, in Section 8.

2. Motivating example

Timely responses to customers’ requests are a key competitive advantage in any econ-
omy. Many organizations tap into lead time to sustain this advantage despite the existence
of many factors that they cannot, sometimes, control like unannounced strikes and bad
weather. Consequences of late delivery are multiple ranging from financial penalties to
angry customers and market-share shrinkage. Amazon.com perfectly illustrates how this
giant online-retailer achieves its targets by offering competitive prices despite limited
lead times. Amazon.com embraces many ICT gadgets like drones in conjunction with
customer care best-practices like return policies. On December 7th, 2016, Amazon.com
announced its first drone-based air delivery in Cambridge, UK with a shipment lasting
13 minutes from purchase to drop-off4. This would not have happened if Amazon.com

4 www.engadget.com/2016/12/14/amazon-completes-its-first-drone-powered-delivery.
www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

Time-constrained business processes 295

does not operate warehouses in different parts of the world, Cambridge in this case. The
objective is to be “close” to customers to avoid potential delivery delays. Collecting data
on shipping BPs for the sake of tracking could also benefit from the concept of “close-
ness” that edge computing promotes. Indeed, sending these data to remote cloud servers
for processing could limit Amazon.com’s promptness. By the time the data arrives to
these servers, it could become obsolete, be subject to unauthorized collection, and have
consumed unnecessary bandwidth. This becomes acute in the case of drone delivery when
instant response to unforeseen events (e.g., wind speed) is a must. In the rest of this paper,
we illustrate how a delivery BP could benefit from cloud/edge collaboration. To this end,
a set of what-if analysis will be carried out to decide which parts of the BP should reside
in the cloud, which parts of the BP should reside in the edge, and which parts of the BP
should reside in either. This what-if analysis along with cloud/edge collaboration will be
illustrated in the rest of this paper using drone-based delivery BP whose tasks are listed
in Table 1.

Table 1. Tasks defining drone-based delivery BP

Task Description
t1 collect and verify delivery instructions
t2 pick items from robot-smart warehouse
t3 define drone position
t4 process drone position and other details
t5 update logbook of flying/delivering drones
t6 analyse received information
t7 send instructions to drone to avoid accidents or violations
t8 update drone position
t9 notify customer about item arrival

3. Approach in a nutshell

This section introduces the main concepts and definitions related to TPNs. Afterwards, it
presents the foundations of the proposed approach.

3.1. Time Petri-Nets

A PN is formed upon a mathematical theory that uses automated tools to offer an accurate
modeling and analysis of systems’ behaviors [3]. Initially, PNs were a formal language
without any reference to time or probability. However, for many critical applications, time
is a must-have and designers should consider it when analyzing the correct behavior and
performance of these applications. TPNs integrate clocks and temporal constraints into
transitions to help describe and analyze properly time-dependent systems. TPNs associate
a firing time interval [a,b] with each transition, where a and b are rational numbers such
that 0 ≤ a ≤ b and a 6= ∞. Times a and b for t are relative to the moment at which
t was enabled; a and b are referred to as earliest-firing-time and latest-firing-time of t,
respectively. Formally, a TPN is a tuple Y = (P, Tr, Pre, Post, M0, IS) where (P, Tr, Pre,

296 Cheikhrouhou et al.

Post,M0) is a PN and IS: Tr→ Q∗∗(Q∗∪{∞}) is a static interval function that associates
each Tr with a time interval IS (Tr)= [min,max] so, that, Q∗ is the set of positive rational
numbers. Readers are referred to [3] for more details about TPNs.

3.2. Foundations

Our approach puts forward recommendations about the “ideal” placement of a BP’s tasks
and data in a mono-cloud, multi-edge context. Should the recommendations violate any
time constraint at design- and/or run-time, then the violations should have a limited impact
on completing the BP. By limited we mean an acceptable overtime with respect to some
thresholds that BP engineers could set, e.g., 10 extra minutes are still acceptable. Our
approach spans over BP design-time (Fig. 1) and run-time (Fig. 2) having each a set of
dedicated stages.

At design-time, 4 stages namely specification, placement, transformation, and verifi-
cation, take place.

Fig. 1. Stages of the approach at design-time

The specification stage consists of modeling the BP enriched with time constraints on
tasks and data. The placement stage takes as input the time-constrained process model
and available cloud and edge devices to assign this BP’s tasks and data to these devices.
This assignment is reported into what we call a placement map. The transformation stage
uses some in-house rules to convert the placement map into a transformed process model
that is, in fact, a TPN. Our rules address Business Process Model and Notation (BPMN)
constructs, temporal constraints, and time related to transferring data from cloud to edge
and vice-versa. Finally, the verification stage checks if the TPN process model contains

Time-constrained business processes 297

any time violations that needs to be fixed by going back to the placement stage. Otherwise,
we proceed with the run-time verification.

At run-time, 3 stages namely execution, ongoing verification, and ongoing placement
take place. A BP execution engine will run BP instances. A log is also used during run-
time to capture the BP’s instance execution progress and outcomes.

Fig. 2. Stages of the approach at run-time

The execution stage instantiates the BP’s process model so, that, process instances are
run over an execution engine. Concurrently to the execution stage, the under-execution
BP instances are subject to verification to ensure that no time-constraints are violated.
This ongoing verification stage could produce a list of violations so, that, corrective ac-
tions are taken to avoid additional violations that could impact the rest of tasks and/or
data, and hence, more penalties. The corrective actions are identified thanks to the on-
going placement stage that will put forward additional recommendations about potential
changes related to where future tasks and/or data should be re-placed. The implementation
of these recommendations will be again reflected on the placement map.

298 Cheikhrouhou et al.

4. Design-time specification and verification

Since the definition of a BP’s temporal constraints over tasks and data during the spec-
ification stage may lead to deadlocks or unmet deadlines, designers could resort to for-
mal languages to ensure this definition correctness. In this section, we detail further the
design-time transformation and verification stages.

4.1. Specification stage

The engineer designs the BP’s model using any modeling language, although we recom-
mend BPMN. Then, he defines the time constraints on this BP’s tasks [7, 8] and data.

1. Temporal constraints on tasks. First, we consider intra-task temporal constraint of
type execution duration. Let s(t) (resp., e(t)) be the starting (resp., the ending) time of
a task t. Let d be a relative time value representing the duration of this task. Duration
constraint is defined as per Equation 1:

Duration(t,d) def
= e(t)− s(t) ≤ d (1)

Afterwards, we consider inter-task temporal constraints of type execution dependency
that could be:

– Start-to-Finish (SF): tj can not finish until ti has started within a given time
interval.

– Start-to-Start (SS): tj can not begin before ti starts within a time interval.
– Finish-to-Start (FS): tj can not begin before ti ends within a time interval. As per

Equation 2, tj should start its execution no later than MaxD time units and no
earlier than MinD time units after ti ends.

TD(FS, ti, tj ,MinD,MaxD)
def
=MinD ≤ s(tj)− e(ti) ≤MaxD (2)

– Finish-to-Finish (FF): tj can not finish until ti has finished within a time interval.
2. Temporal constraints on data. We consider freshness to define the allowable time

for a data to remain valid (adapted from [16]) when it is exchanged between tasks
that could be running in separate hosts (e.g., any data received 2 seconds from its
expected arrival time is not valid). Let ti be the task producing data dataij that task
tj will consume. Formally, data freshness is defined as per Equation 3:

FreshData(dataij , ti, tj ,MaxV alue)
def
= produce(ti, dataij)

&consume(tj , dataij)&s(tj)− e(ti) ≤MaxV alue
(3)

Let’s recall the case study. The engineer can propose the temporal constraints on BP’s
tasks and data as per Table 2. For example, FS temporal dependency is specified between
t4 and t8. In addition, the data that t4 produces needs to be consumed by t5 in less than
5 seconds.

Time-constrained business processes 299

Table 2. Case study’s temporal constraints on tasks and data

task duration temporal dependency data freshness
t1 10 milliseconds
t2 10 milliseconds TD(FS,t1,t2,1 millisecond,5 milliseconds)
t3 12 minutes
t4 10 milliseconds
t5 10 milliseconds FreshData(t4,t5,5 seconds)
t6 10 milliseconds
t7 10 milliseconds FreshData(t6,t7,5 seconds)
t8 10 milliseconds TD(FS,t4,t8,1 millisecond,8 milliseconds) FreshData(t7,t8,5 seconds)
t9 10 milliseconds

4.2. Placement stage

The engineer proceeds with a first assignment of the BP’s tasks and data to cloud/edges.
This assignment results into a placement map that considers how critical the tasks are
(i.e., must execute), how dependent the tasks are, what time constraints are imposed on
tasks and data (e.g., duration and freshness), and any other time-related details (e.g., data
transfer between hosts). How good this first assignment will be checked out during the
verification stage (e.g., no time constraints’ violation). However it is worth noting that the
placement stage could be triggered again if the verification stage reports any temporal vi-
olation. These violations are manually analyzed by BP engineers to identify their causes.
Consequently, the engineer can come along with some corrective actions that would ad-
dress these violations like reassigning some tasks/data from cloud to edge and vice versa.
It is highly recommended to address any violation prior to executing the BP.

Table 3 presents an initial placement that the BP engineer could come up with. For
example, “send instructions to drone to avoid accidents or violations” task is deployed on
the edge device to be each time near to the drone while flying since the decision of chang-
ing position of drone should be made as quickly as possible. Indeed, The use of edge
nodes is to reduce the overall response time and traffic to distant clouds. Contrarily, send-
ing instructions to edge nodes will be forwarded to “ update logbook of flying/delivering
drones” task, which is deployed on the cloud, where high volumes of data can be pro-
cessed.

Table 3. Initial placement of drone-based delivery BP’s tasks

task placement
t1, t2, t5, t6, t9 cloud
t4, t7 edge

4.3. Transformation stage

This stage relies on a set of rules defined in compliance with model-driven engineering
principles. The objective is to convert a time-constrained BPMN process into a TPN model.

300 Cheikhrouhou et al.

It all begins by transforming BPMN basic elements like start/end events, tasks, and
gateways into TPN. Readers are referred to [6] for a complete description of the transfor-
mation rules. We focus on rules related to BP task placement. For instance, a task with an
execution duration will be transformed into 1 place and 2 transitions labeled with clocks
depending on the task’s duration (Fig. 3 (a)). The duration is set by the engineer depend-
ing on whether the task will run on either the cloud or the edge as per the placement map.
Fig. 3 also includes the transformation of some temporal dependencies between tasks such
as SS, FS, and FF.
Let us now focus on the transformation rules for data placement. For a given data datai,
it can be produced by a task ti that runs on a certain host (hc to refer to cloud) and will
be consumed by another task tj that runs on a different host (hy to refer to edge). In this
case, datai should be transferred from one host to another and hence, latency time (ldi

hx:hy
)

needs to be considered. Data latency is transformed into 2 places and 1 transition as per
Fig. 3 (b).

Time-constrained business processes 301

Fig. 3. Illustration of some transformation rules

302 Cheikhrouhou et al.

4.4. Verification stage

Depending on a BP complexity, software testing and/or manual checks could turn out in-
sufficient and hence, time constraints violations could still arise. To address this concern,
we propose model checking as an accurate and exhaustive verification alternative [2]. The
BP engineer checks the correctness of the time-constrained, TPN-based process model
using a model checker like TIme petri Net Analyzer (TINA) [3].

If the check reports any temporal violation, a list of violations (could be based on
counter-examples) is reported and the designer is referred back to the placement stage. At
this stage, a threshold could be put to limit the number of times the designer has to initi-
ate this stage. Otherwise, the designer proceeds with executing the BP. Violations at this
stage could refer to deadlocks due to temporal inconsistencies (e.g., a task minimum du-
ration exceeding the maximum delay of initiating a dependent task) and missed deadlines
(e.g., process ending in 5h but the designer has set 4h as a maximum).

Concretely, we formally verify a TPN-based process model with respect to the follow-
ing properties: deadlock freshness, process deadlines, and data freshness. These properties
are written in State/Event Linear time Temporal Logic (S/E LTL [17]).

– ♦ (- dead) : to check that a process is free of deadlocks.
– ♦ (- notdeadline process) : to verify if a deadline has been met. This means that

notdeadline process place (associated with an observer for the deadline property) is
false throughout the whole path leading to this place.

– ♦ (- notfresh data) : to verify if the freshness time fdatai related to datai has been
met. This means that notfresh data place (associated with an observer for the fresh-
ness property) is false throughout the whole path leading to this place.

The verification of the latter properties on the generated TPN of the case study reports
that the process is deadlock free, and meets the deadline (18 minutes), and all data respect
their freshness constraints.

Despite the virtues of design-time model-checking that could guarantee certain free-
of-time violations, many run-time events and actions could happen triggering such viola-
tions. For instance, expected duration times could suddenly change due to power outage
and hence, raising questions about the validity of design-time model-checking. To this
end, we propose run-time verification to monitor process execution. In other words, ver-
ification at design-time is “preventive” rather than “curative”, which backs our run-time
verification.

5. Run-time verification

During execution, current time values like duration and freshness may change resulting
into gaps with the estimated values and thus, can violate time constraints (e.g., a high la-
tency can make data obsolete and a late data arrival can delay a task execution). Thus, BP
instances need to be continuously monitored to ensure the satisfaction of their time con-
straints at run-time. In this section, we detail further run-time’s different stages (Fig. 2).

Time-constrained business processes 303

5.1. Execution stage

A BP instance runs on top of an execution engine that assigns tasks to persons/machines,
transfers data between tasks, stores data, etc. Both the time-constrained process model and
the placement map constitute inputs to the execution stage that continuously updates the
log repository that contains details about instances execution like instance id, exchanged
data, and execution outcome (success or failure).

5.2. Ongoing verification stage

Because of the dynamic nature of environments in which BP instances are executed, we
adopt thresholds that would give engineers some leeway (i.e., extra time) prior to raising
the violation flag. In project management [15], this leeway is known as slack time. We
tap into our previous work on service execution [11] to define thresholds with respect to
a constraint satisfaction model that captures both task duration and data transfer that im-
pacts data freshness (Constraints (4) to (13)). Our objective is to recommend a maximum
threshold for task duration while guaranteeing data freshness.

maximize Duration(tj) (4)

Aggti∈T (Duration(ti)) ≤ deadline,∀ti ∈ T (5)

e(ti) ≤ s(tk),∀tk ∈ T , ti ∈ Pd(tk) (6)

Duration(ti) = EstimatedDuration(ti),∀ti ∈ T , i 6= j (7)

s(ti) +Duration(ti) = e(ti),∀ti ∈ T (8)

e(ti) +MinD ≤ s(tk), ∀ TD(FS, ti, tk,MinD,MaxD) ∈ T D (9)

s(tk) ≤ e(ti) +MaxD, ∀ TD(FS, ti, tk,MinD,MaxD) ∈ T D (10)

e(ti) + Transfer(di) ≤ s(tk), ∀ DD(di, ti, tk, h
s
i , h

s
k) ∈ DD (11)

Duration(tj) ∈ [EstimatedDuration(tj), deadline] (12)

sti, eti ∈ [0, deadline],∀ti ∈ T (13)

The maximum threshold of each task tj is equal to its maximum allowed duration
value (i.e.,Duration(tj)). Constraint (5) guarantees that the global duration constraint is
satisfied. The aggregation function Agg depends on the distinguish characteristics of qual-
ity attributes (i.e., additive, average, multiplicative, and max-Operator) and the structure
of the BP (i.e., structural patterns involved such as sequence, parallel, choice, and loop).
Here, the duration is considered as max-operator quality attribute. Hence, the aggregation
function is as follows:

– Aggti∈T (Duration(ti)) =
n∑

i=1

Duration(ti) for sequence patterns where n is the

number of tasks in the sequence pattern.
– Aggti∈T (Duration(ti)) = maxni=1{Duration(ti)} for parallel patterns where n is

the number of tasks in the parallel pattern.
– Aggti∈T (Duration(ti)) = Duration(tk) for choice patterns where tk is the se-

lected task in the choice pattern.

304 Cheikhrouhou et al.

– Aggti∈T (Duration(ti)) = αiDuration(ti) for loop patterns where αi is the num-
ber of loops of the task ti.

Constraint (6) deals with dependencies between tasks where Pd(tk) denotes the set
of immediate predecessors of the task tk and s(ti) and e(ti) denote the start time and
end time of the task ti, respectively. The duration of each task ti is equal to the estimated
duration specified at design time (Constraint (7)). Moreover, the end time of each task ti
is equal to the sum of its start time and its duration (Constraint (8)). To deal with tempo-
ral dependencies between tasks, we use Constraints (9) and (10) where T D is the set of
temporal dependency. For simplicity, we consider only finish-to-start dependencies. Con-
straint (11) guarantees data freshness where DD is the set of data dependencies between
tasks. DD(datai, ti, tk, h

s
i , h

s
k) denotes the data dependency between the task that pro-

duces the data datai (i.e., task ti) and the task that consumes the data datai (i.e., task tk)
when ti is executed in the host hsi and tk is executed in the host hsk. The time required
to the transfer of the data datai from ti to tk is denoted by Transfer(datai). The do-
main of the maximum duration threshold and the start and the end time are presented in
Constraints (12) and (13), respectively.

The maximum threshold of each task ti is denoted by TM
i . During execution, if one of

the maximum thresholds is exceeded, the global duration is violated and thus, corrective
actions should be taken which will be discussed in the ongoing placement stage. We note
that maximum thresholds have to be recomputed after each violation.

In conjunction with the maximum thresholds, we identify a set of intermediary thresh-
olds for all tasks. They are used to trigger placement actions prior to a global constraint
violation. Each time a deviation exceeds an intermediary threshold, the placement of tasks
is adjusted so, that, possible violations in the remaining non-executed tasks can be either
reduced or prevented. The aim is to avoid delaying the placement until a violation of a
global constraint occurs on the one hand, and, on the other hand avoid triggering place-
ment actions each time a violation is observed, which can decrease the efficiency of the
proposed approach. The intermediary threshold of each task ti is denoted by T I

i that is
the average between the estimated duration value (before the execution) and the maximum
threshold of the same task.

5.3. Ongoing placement

To ensure a continuous execution of the different BP instances while guaranteeing the
satisfaction of all constraints, the BP instances need to continuously react to varying con-
ditions during execution. We present hereafter the ongoing placement of tasks and data
each time a deviation of an intermediary threshold or a violation occurs. To enhance the
efficiency of the placement, we identify a set of alternative hosts for each task. Thus, a
local placement can be easily applied to change the placement of tasks/data and guar-
antee the satisfaction of the different constraints. In case of a deviation/violation during
execution, we propose to change the host of one or more tasks using the alternative hosts.
We note that alternative hosts are updated and re-identified during execution each time a
change occurs in the BP instances.

Time-constrained business processes 305

Alternative hosts Prior to execution, we define a set of alternative hosts for each task ti ∈
T denoted byHalti. Alternative hosts should satisfy the maximum thresholds of their cor-
responding tasks. Hence, an alternative host hj ∈ Halti enables to execute task ti to start
and end its execution without exceeding the maximum temporal thresholds (i.e.,Duration(ti) ≤
TM
i) and guarantee the freshness of data. In fact, since we check the satisfaction of the

transfer time when computing maximum thresholds (Constraint (11) in the model from
Constraints (4) to (13)), all hosts that satisfy the maximum thresholds will guarantee the
satisfaction of the task duration and data freshness at the same time. A host hj that satisfies
the maximum thresholds of its corresponding task is denoted by (hj sat TM

i). Contrarily,
¬(hj sat TM

i) denotes that the maximum threshold is not satisfied by the host hj . In this
latter case, the host will not be considered in the set of alternative hosts of its correspond-
ing task. We note that the set of alternative hosts is updated each time a deviation or a
violation occurs to take into account the new values of the duration of the already exe-
cuted tasks and the new values of the maximum thresholds. We rank the set of alternative
hosts based on the duration of the execution of the tasks in each host. Hence, the host that
guarantees the minimum execution duration will be ranked first and so on. We denote by
Duration(ti)

hj the execution duration of the task ti when it is executed in host hj .

Changing hosts We denote by PM∗ = {hs1, ..., hsi , ..., hsn} the placement map with hsi
is the selected host for the task ti. By ongoing placement denoted by PM∗new, we refer to
changes in the placement map.

Algorithm 1 handles changes in the ongoing placement map. If the execution time
of task ti, while being executed in host hi deviates but does not exceed the intermediary
threshold (T I

i), then this will not affect affect the placement map (lines 4 to 6). If the devi-
ation is between the intermediary and maximum thresholds (line 7), then we proceed with
first, the maximum thresholds and the set of alternative hosts Halti are updated for each
non-executed task considering the values of the already executed tasks (lines 8 and 9)
where Tne denotes the set of non-executed tasks. We note that when updating the thresh-
olds, the execution duration of the already executed tasks are considered in the constraint
satisfaction model from (4) to (13) (Section 5.2). Moreover, the set of alternative hosts
is updated by identifying the new alternative hosts based on the new values of maximum
thresholds. Then, if the first alternative host guarantees a better execution duration than the
initial selected host, it will be considered in the ongoing placement map (lines 10 to 12)
where h1i denotes the best host for the task ti when considering the already executed tasks.
The aim of this step is to avoid the accumulation of deviations during execution in order
to prevent possible violations. If a violation exceeds the maximum threshold (line 15),
then, the ongoing execution is no more satisfactory. In this case, we update the maximum
thresholds and alternative hosts for the non executed tasks (line 17). If there is at least one
host in the set of alternative hosts for a non-executed task, the selected host of this task
will be substituted by the first alternative host (lines 18 to 23).

If the ongoing placement is modified, all thresholds and alternative hosts for all non-
executed tasks will be updated (lines 26 to 30).

306 Cheikhrouhou et al.

Algorithm 1 Ongoing placement
1: Input: Monitoring results of task ti, the placement map PM∗

2: Output: The new placement map PM∗
new

3: PM∗
new = ∅

4: if (hs
i sat T I

i) then
5: PM∗

new = PM∗

6: end if
7: if ¬(hs

i sat T I
i) and (hs

i sat TM
i) then

8: for each ti ∈ Tne do
9: update(TM

i , Halti)
10: if Duration(ti)

h1
i < Duration(ti)

hs
i then

11: PM∗
new = PM∗ \ {hs

i} ∪ {h1
i }

12: end if
13: end for
14: end if
15: if ¬(hs

i sat TM
i) then

16: while PM∗
new = ∅ and ti ∈ Tne do

17: update(TM
i , Halti)

18: if Halti 6= ∅ then
19: PM∗

new = PM∗ \ {hs
i} ∪ {h1

i }
20: break;
21: else
22: move to Ti+1

23: end if
24: end while
25: end if
26: if PM∗

new 6= ∅ then
27: for each ti ∈ Tne do
28: update(T I

i , T
M
i , Halti)

29: end for
30: end if

6. Implementation

This section discusses the implementation work that was carried out in terms of experi-
ments and performance evaluation. In compliance with how our approach is designed, we
discuss the implementation at design-time and then run-time.

6.1. Design-time implementation

We extended the work we presented in [13] that resulted into the development of an
Eclipse plug-in. Using this plug-in, a designer represents a BP’s 2 things: needs of re-
sources (cloud and/or edge resources) and time-constrained activities. Next, a source
model is generated as an XML document. In our work, we focused on implementing rules
that transform BPs into TPN. This is done using an XSLT file containing the transforma-
tion rules. Fig. 4 exhibits an XSLT excerpt that transforms a SS temporal dependency into
2 places and 1 transition with a delay of minFE and maxFE.

Time-constrained business processes 307

Fig. 4. Transformation rule of a SS temporal dependency as XSLT

The result of the transformation is an XML document that describes the generated
TPN. An example of this TPN based on the drone delivery is given in Fig. 5. data1Edge
and data1Cloud places and Tlatency1 transition labeled by the time interval [latencyEC,latencyEC]
specify data transfer time between t 4 (running on edge) and t 5 (running on cloud). We
consider “latencyEC” equals to 200 milliseconds as latency edge to cloud. StartMax2 and
EndMax2 places and FS2 transition labeled by the time interval [m2,M2] with m2= 1
millisecond and M2= 8 milliseconds specify a temporal dependency constraint between
t 4 and t 8.

Finally, we formally verify the matching between the activities, temporal constraints,
and resource temporal constraints. The generated TPN are the inputs for the TINA model
checker.

308 Cheikhrouhou et al.

seq89
[fd67,fd67]

freshd2notfreshd2

seq31

[d3,d3]

End t3

t3

Start t3

[0,0]

seq13

isfreshd1

[fd45,fd45]

freshd1 notfreshd1

deadline

Diverging_ParallelGateway1

[0,0]

seq14

Start t4

[0,0]

t4

[d4,d4]

End t4

Converging_ParallelGateway1

[0,0]

seq56

[d5,d5]

End t5

t5

seq45 Start t5

[0,0]

seq81

Start t6

[0,0] p14 [d6,d6]

End t6

isfreshd2

seq67

[d8,d8]

End t8

t8

Start t8

[0,0]
isfreshd3

[fd78,fd78]

freshd3 notfreshd3
[d7,d7]

End t7 seq78Start t7

[0,0] p15

seq211

[d2,d2]

End t2

t2

Start t2

[0,0]

EndMax1
[m1,M1]

FS1

StartMax1

[d1,d1]

End t1

t1

Start t1

[0,0]

Se

[d9,d9]

End t9
p20

Start t9

[0,0]
Pe

[deadline,deadline]

notdeadline_process

StartMax2
[m2,M2]

FS2 EndMax2

datajEdge datajCloud
[latencyCE,latencyCE] dataiEdge

[latencyEC,latencyEC]
dataiCloud

Fig. 5. Generated TPN of the drone delivery BP

6.2. Run-time implementation

We investigated how our approach behaves at run-time. First, we evaluate the success
rate (I suggest to remove this. This is not the definition of success rate. i.e., converging
“quickly” to optimal solution) and computation time. Thus, constraints (4) to (13) and
algorithm 1 were used to test a BP of 9 tasks generated randomly. As candidate hosts, we
used a mono-cloud with multiple VMs and 10 edges respectively. Constraint satisfaction
models are implemented using the constraint solver Choco5.

First, the success rate is compared to First In First Out (FIFO), in which, the first come
host is first assigned to task without taking into account the host that has the best duration
and the replacement of hosts is delayed until a global violation occurs which can affect the

5 http://www.emn.fr/z-info/choco-solver/

Time-constrained business processes 309

execution of tasks contrarily to our approach which allows enhancing the selected hosts
during execution as soon as a deviation occurs.

Fig. 6 depicts the success rate in response to the number of deviations in process
tasks which are generated randomly at run-time. All deviations are assumed to be less
than the maximum thresholds (see subsection 5.2). The positions of deviations are gener-
ated randomly. Experimental results show that our approach has a higher success rate in
comparison to FIFO approach. Indeed, it reacts to changes as soon as they occur which
increases the likelihood to find a solution. In contrast to FIFO, it might be the case where
no solution is found after a violation which can be caused by multiple deviations.

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	

Su
cc
es
s	R

at
e	
(%

)	

Number	of	devia6ons	

Random	devia6ons	in	tasks	execu6on	

Our	approach	

FIFO	approach	

Fig. 6. Success rate versus number of deviations

Second, we calculate the computation time of our approach. It takes between 7 and
200 milliseconds to find a solution. These time values are taken while considering random
task violations exceeding the maximum thresholds and thus, hosts changing is mandatory
to guarantee the satisfaction of all process constraints. Indeed, solutions can be found by
changing hosts using the alternative hosts (see subsection 5.3). In addition, new placement
actions are taken as soon as deviation occurs in parallel to the execution and does not cause
the interruption of the execution. Results show that the computation time of our approach
is “negligible” compared to the deadline of the expected process. Results also show that
the computation time increases proportionally to the number of deviations in the process.

7. Related work

Our related work consists of 2 parts. The first part is about BP formal specification. The
second part is about BP allocation into clouds. Many works in the literature address the
issue of defining BP formal specification. First, Dijkman et al. in [9] propose a formal
BPMN semantics defined in terms of a transformation to standard PN. The transforma-
tion has been implemented as a tool that generates Petri Net Markup Language (PNML)
code. But, the authors do not consider any temporal dimension in their analysis. Rachdi et
al. [19], propose an approach that takes into account time concepts in BPMN processes.
They present a formal semantics of BPMN defined in terms of transformation to TPN but

310 Cheikhrouhou et al.

without taking into consideration of temporal constraints as in our work nor the notion of
resources. Cheikhrouhou et al.[7, 8] address the problem of formal specification and ver-
ification of temporal constraints of activities using timed automata. But, resources were
not considered. Hachicha et al [12] extend of the BPMN meta-model to optimally man-
age cloud resources. They formalize the resources consumed using a shared knowledge
base. Therefore, the authors propose a semantic framework for BPs enriched by cloud
resources. However, the temporal perspective for BPs is out of reach.

Several works have addressed the specification and formal verification of cloud re-
sources in BPMN. Boubaker et al.[4] validate the consistency of the allocation of cloud
resources using Event- B. The latter is used to formally specify cloud resource allocation
policies in business process models and to verify its accuracy based on user requirements
and resource properties. However, in this work, BPs are not enriched by time constraints.
Ben Halima et al. [13] formally specify temporal constraints on pricing strategies for
cloud resources, especially virtual machines, and on BPMN activities. This specifica-
tion is translated into timed automata to formally verify the correspondence between the
time constraints of the business process and the cloud resources. But, this work does not
deal with constraints on process data nor support automatic BPMN mapping to timed
automata, which can lead to errors during the transformation. Several searches extend
BPMN with time constraints and cloud resource perspectives and use formal verification.
Watahiki et al. [21] extend BPMN to handle time constraints. They also provide an au-
tomatic mapping of extended BPMN to timed automata. This approach aims to verify
certain characteristics, such as deadlock. However, the scope of this article is limited to
a small subset of BPMN elements. In addition, the extension proposed in this work gives
specific temporal constraints to a single task of the business process model and does not
take into account time constraints related to a set of activities such as temporal depen-
dency. There is previous research that aims to check whether the selected cloud resource
meets the time constraints of business processes. Du et al.[10] propose to dynamically ver-
ify the temporal constraints of multiple simultaneous business processes with resources.
However, the work does neither deal with data flow and their temporal constraints, nor
with edge resources. While almost works in the litterature focus only on control flow
verification, process data flow modeling is of similar importance. In [1], the approach
generates a PN process model that captures the control flow along with data aspects of
BPMN process models. The approach detects data-flow errors in BPMN 2.0 process mod-
els, such as missing or unused data and possible deadlocks in the PN model. However, the
approach does not deal with temporal constraints on process data. The approach in [18]
focuses on the resource allocation problem in fog computing based on Priced Timed Petri
nets (PTPN). Provided with a group of pre-allocated resources, the designer can choose
the satisfying resources autonomously while considering both the price and the cost to
execute a process’s tasks as the credibility evaluation of both users and fog resources.
From one hand, the constructed PTPN models of process tasks does not deal with tem-
poral constraints of the process such as deadline nor with cloud resources and the delay
caused by data transfer from one host to another. Furthermore, the PTPNs were used as
a formal background for a proposed algorithm that predicts task completion time. Thus,
no formal verification is proposed and simulation results are presented. To the best of our
knowledge, there is no research attempts to verify process models while addressing both

Time-constrained business processes 311

cloud and edge resource allocation, data flow aspects, and their temporal constraints. Such
verification is scarce at both design-time and run-time.

8. Conclusion

This paper presented an approach to specify, verify, and deploy BPs in a mono-cloud,
multi-edge context. These BPs are bound to time constraints whose satisfaction requires
placing their tasks and data in the appropriate hosts, whether cloud, edge, or either. This
placement is continuous because of the dynamic environment in which BPs are expected
to execute. Indeed, communication networks could become jammed and some computa-
tion resources could become unavailable. Either reason could lead to delays in executing
tasks and/or transferring data. Delays raise time violations, which themselves mean penal-
ties of all types, financial, market share loss, etc. Our specification, verification, and de-
ployment approach happens at both BP design-time and BP run-time involving different
stages such as specification, ongoing placement, verification, and execution. One of the
run-time stages, ongoing placement, included a set of thresholds that give BP engineers
some leeway (i.e., extra time) prior to raising any violation flag. In term of future work,
we would like to extend the proposed approach to deal with several simultaneous changes
in a BP’s tasks and data placement and propose strategies to handle potential conflicts be-
tween corrective actions. Furthermore, we aim to further compare our approach to other
approaches that suggest backup solutions.

References

1. Ahmed Awad, Gero Decker, and Niels Lohmann. Diagnosing and repairing data anomalies in
process models. In Stefanie Rinderle-Ma, Shazia Sadiq, and Frank Leymann, editors, Business
Process Management Workshops, pages 5–16. Springer Berlin Heidelberg, 2010.

2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
3. Bernard Berthomieu and François Vernadat. Time petri nets analysis with TINA. In Proceed-

ings of the Third International Conference on the Quantitative Evaluation of Systems (QEST.
4. Souha Boubaker, Walid Gaaloul, Mohamed Graiet, and Nejib Ben Hadj-Alouane. Event-b

based approach for verifying cloud resource allocation in business process. In Proceedings of
the 2015 IEEE International Conference on Services Computing, SCC, pages 538–545, 2015.

5. Saoussen Cheikhrouhou, Nesrine Chabouh, Slim Kallel, and Zakaria Maamar. Formal specifi-
cation and verification of cloud resource allocation using timed petri-nets. In Proceedings of the
New Trends in Model and Data Engineering - MEDI 2018 International Workshops, DETECT,
MEDI4SG, IWCFS, REMEDY, Marrakesh, Morocco, October 24-26, 2018, pages 40–49, 2018.

6. Saoussen Cheikhrouhou, Nesrine Chabouh, Slim Kallel, and Zakaria Maamar. Transformation
of timed BPMN busines processes and cloud resources into timed Petri-Nets. Technical report,
http://www.redcad.tn/projects/bpmn2tpn/technicalreport-0618.pdf, 2018.

7. Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel. Toward a
time-centric modeling of business processes in BPMN 2.0. In The 15th International Con-
ference on Information Integration and Web-based Applications & Services, IIWAS, page 154,
2013.

8. Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel. The temporal
perspective in business process modeling: a survey and research challenges. Service Oriented
Computing and Applications, 9(1):75–85, 2015.

312 Cheikhrouhou et al.

9. Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and analysis of
bpmn process models using petri nets. Queensland University of Technology, Tech. Rep, 2007.

10. YanHua Du, PengCheng Xiong, YuShun Fan, and Xitong Li. Dynamic checking and solution
to temporal violations in concurrent workflow processes. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 41(6):1166–1181, 2011.

11. I. Guidara, I. Al Jaouhari, and N. Guermouche. Dynamic selection for service composition
based on temporal and qos constraints. In 2016 IEEE International Conference on Services
Computing (SCC), pages 267–274, June 2016.

12. Emna Hachicha and Walid Gaaloul. Towards resource-aware business process development in
the cloud. In Proceedings of the 29th IEEE International Conference on Advanced Information
Networking and Applications, AINA, pages 761–768, 2015.

13. Rania Ben Halima, Imen Zouaghi, Slim Kallel, Walid Gaaloul, and Mohamed Jmaiel. Formal
verification of temporal constraints in business processes and allocated cloud resources. In
Proceedings of the 32nd IEEE International Conference on Advanced Information Networking
and Applications, AINA, 2018.

14. Slim Kallel, Zakaria Maamar, Mohamed Sellami, Noura Faci, Ahmed Ben Arab, Walid
Gaaloul, and Thar Baker. Restriction-based Fragmentation of Business Processes over the
Cloud. Concurrency and Computation: Practice and Experience, 2019.

15. Olivier Lambrechts, Erik Demeulemeester, and Willy Herroelen. Time slack-based techniques
for robust project scheduling subject to resource uncertainty. Annals OR, 186(1):443–464,
2011.

16. Z. Maamar, B. Thar, N. Faci, E. Ugljanin, M. Al Khafajiy, and V. Burégio. Towards a Seamless
Coordination of Cloud and Fog: Illustration through the Internet-of-Things. In Proceedings
of the 34th ACM/SIGAPP Symposium On Applied Computing (SAC’2019), Limassol, Cyprus,
2019.

17. Madhavan Mukund. Linear-time temporal logic and bchi automata, 1997.
18. Lina Ni, Jinquan Zhang, Changjun Jiang, Chungang Yan, and Kan Yu. Resource allocation

strategy in fog computing based on priced timed petri nets. IEEE Internet of Things Journal,
4(5):1216–1228, Oct 2017.

19. Anass Rachdi, Abdeslam En-Nouaary, and Mohamed Dahchour. Liveness and reachability
analysis of BPMN process models. CIT, 24(2):195–207, 2016.

20. Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-optimal scheduling in
hybrid iaas clouds for deadline constrained workloads. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 228–235. IEEE, 2010.

21. Kenji Watahiki, Fuyuki Ishikawa, and Kunihiko Hiraishi. Formal verification of business pro-
cesses with temporal and resource constraints. In Proceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics, Anchorage, Alaska, USA, October 9-12, 2011, pages
1173–1180, 2011.

22. Mathias Weske. Business Process Management - Concepts, Languages, Architectures, 2nd
Edition. Springer, 2012.

23. Xun Xu. From cloud computing to cloud manufacturing. Robotics and Computer-Integrated
Manufacturing, 28(1):75 – 86, 2012.

Saoussen Cheikhrouhou obtained her diploma of engineering in 2009 and master degree
in computer science in 2010 and her Ph.D. in 2015 from National School of Engineering
of Sfax (University of Sfax, Tunisia). She joined the Faculty of Economics and Manage-
ment (Tunisia) as Associate Professor of Computer Science in 2015. Her research interests
include the business process management field and Time-aware Business Processes. More

Time-constrained business processes 313

details are available on her home page:
http://www.redcad.org/members/saoussen.cheikhrouhou/

Slim Kallel obtained his diploma of engineering and masters degree in computer science
from National Engineering School of Sfax (University of Sfax, Tunisia) in 2005 and his
Ph.D. from Darmstadt University of Technology (Germany) in 2011. He joined the Uni-
versity of Sfax as Assistant Professor of Computer Science in 2009. He became an Asso-
ciate Professor in 2012. His work focused on the specification and the implementation of
Time-aware business process, and adaptive systems.

Ikbel Guidara is Assistant Professor at Claude Bernard University of Lyon 1 and mem-
ber of SOC research team at LIRIS-CNRS Lyon-France. Her research interests include
Service-Oriented Computing, Business Process, Quality-of-Service (QoS) driven service
selection and Internet of Things.

Zakaria Maamar is a Professor in the College of Technological Innovation at Zayed
University, Dubai, UAE. His research interests include Internet-of-Things, social com-
puting, and business process management. Zakaria has extensively published in different
peer reviewed journals and conferences, regularly serves on the program and organizing
committees of several international conferences and workshops. He also serves on the
editorial boards of many international journals.

Received: April 30, 2019; Accepted: September 12, 2019.

Computer Science and Information Systems 17(1):315–338 https://doi.org/10.2298/CSIS190501042A

A Tool-assisted Method for the Systematic Construction
of Critical Embedded Systems using Event-B

Pascal André, Christian Attiogbé and Arnaud Lanoix

LS2N CNRS UMR 6004 - University of Nantes
{firstname.lastname}@univ-nantes.fr

Abstract. Embedded control systems combine digital and physical components,
leading to complex interactions and even complexity of their development. In [4]
we proposed a method to build such complex systems in a systematic way. The
overall method starts from an abstract model of the physical environment of the
considered system and its controller. The method consists in a sequence of refine-
ment steps, in the spirit of Event-B, that gradually introduces design details from
an abstract level, until more concrete levels. Two main refinement processes are
distinguished: one to capture the global model, the other to detail it; we provide
through the method the guidelines to accompany these two refinement processes.
But there were a lack of assistance tools. The designers need to be assisted by tools
to guide them, to automate partially the refinements and to help in proving more
easily model properties. We illustrate the method with the landing gear system case
study and choosing the Event-B tool Rodin for illustration; we make it explicit the
tools requirements for such a general method and, we introduce a tool support to
assist the user in applying the method in combination with standard Event-B tool
such as Rodin.
Key words: Embedded control systems; Modelling method; Event-B patterns; Tool

1. Introduction

Engineering complex embedded control systems requires methods and assistance tools.
Without dedicated methods their analysis is painful, inefficient and time-consuming. More
specifically guidelines and tools are required for formal software engineering. Unlike
many other types of software, embedded systems are often developed for specific target
environments (processors, vehicles, medical devices, etc.) and very often they should run
for long times (even years), once they have been implemented in their so-called critical
environments. Therefore, embedded systems and their construction have stringent robust-
ness requirements; accordingly one have to develop them with the sake of reliability at
runtime. There are numerous models for embedded real-time systems [9]; moreover the
target environments of each embedded system do not help the construction or the expan-
sion of dedicated tools and methods. There are many works dealing with semi-formal
models extraction from requirements documents, for example in the scope of the UML
notations[10]. There are also many works around the tabular requirement engineering
method by Parnas[13]; but we are not aware of any results about the synthesis of Event-B
formal models from informal requirments as we are doing in our work.

Considering that i) the requirements for reliability and correct construction of the
models and the derived embedded systems are important concerns, and that ii) the de-

316 Pascal André, Christian Attiogbé and Arnaud Lanoix

velopment of these systems still lacks of methods to guide the developers, we are mo-
tivated to contribute to fill the gap between these needs and the state of the art. Many
researchers underline the need of methods, techniques and tools to support formal model-
ing and more especially for the Event-B approach which addresses the full software devel-
opment process: [8,3,12,23]. We have proposed in [4] a correct-by-construction method
(named Heñcher) dedicated to the construction of critical embedded control systems. This
method, based on Event-B, is intended to guide step by step the specifier or the engineer to
drive its development from requirements to concrete software, defining abstract models,
and refining them in a systematic way. The current article is an extension of that previous
work. We extend that work in two main directions: i) we extend the proposed method
with an assistance tool dedicated to help the users to apply the Heñcher method step by
step and to build quickly the preliminary Event-B models of her/his control systems. The
tool is designed as a companion tool of the already existing Event-B frameworks such as
Rodin or Atelier B for which we provide input models; ii) the Event-B models of the case
study are now totally proved using the Rodin tool.

We present in this article the main components and the background of the tool; it is
designed as an extensible standalone tool that should be compatible and integrable with
Event-B framework. The article is completely reshaped compared to [4] where more space
was given to the method and less to its illustration. Here we emphasise the application of
the method on the Landing Gear System case study.

The article is structured as follows. In Section 2 we introduce the proposed method
through its main steps. In Section 3 we present a benchmark case study, the Landing Gear
System, we illustrate the detailed application of our method on this case study, and we
emphasise issues on tool requirements. Section 4 is devoted to the proposed assistance
tool through its main components and the provided facilities; and its use to illustrate parts
of the case study. In Section 5 we draws some conclusions of this work.

2. A Glimpse of the Heñcher Method

In [4], we presented a stepwise and systematic method (named Heñcher) to construct
critical embedded control systems using Event-B. Complex systems can be constructed
by combining (see [6,7,1]) two classical approaches: 1) horizontal refinement with feature
augmentation where we have to build a global abstract model of a the whole system (a
controller and its physical environment) and 2) structural refinement (making the abstract
structures more and more concrete).

The high-level state space of any control system can be described by the elicita-
tion of the interface variables between the digital part (the controller) and the physi-
cal part (the controlled environment) of the considered system. Fig. 1 depicts a general

input

Controller

Controlled
environment

physical
state

output

aact

sense

aact

react

state

aact

stimulate

aact

monitor

Fig. 1. A generic shape for event-based model of a
control system

principle that may govern the or-
ganisation of event-based models
of control systems. The dashed
ovals are representative of the
parametric events families; They
should be replaced by the effec-
tive events related to the logic of
a specific case study.

An Event-B Assisted Method for Embedded Systems 317

Besides, the identified physical devices to be controlled should be precisely listed.
The behaviour of each one will be specified later.

We summarise here the Heñcher method (detailed in [4]); it starts from this interface
and comprises six steps for guiding the modelling and analysis of the target system. These
steps spawn the two classical Event-B structuring approaches. The horizontal process is
made of 3 steps and the vertical process is made of at least 2 steps (steps 4 and 5).
Step 1: Characterising the abstract model of a considered system.

– Step 1.1: Elicit the controller interface made of three categories of variables describ-
ing the controlled environment (input from sensors, output to actuators, and state for
monitoring). Additional internal variables represent information inside the controller.

– Step 1.2: Elicit the global properties of the system: system properties, including
safety, liveness and non-functional properties.

– Step 1.3: Start with a first abstract model and build a first Event-B abstract model.
– Step 1.4: List the events of the abstract model : sense events, monitor events and stim-

ulate events. These families of events are in compliance with the standard sense-
decision-control of any control system’s cycle. Additionally the behaviour of the phys-
ical part is described with the reaction events family.

Step 2: Extension of the previous abstract model using feature augmentation [6,7,1] to
integrate the controlled environment on the basis of the sense events family.

– Step 2.1: Introduce the physical environment and the reaction events family.
– Step 2.2: Detail the sense events family.

Step 3: Integration of the specific properties. Considering the requirements of the system,
additional specific properties are added to the global model to constrain the functioning
of the system. They may be are reachability properties or non-functional properties.
Step 4: Structural refinement of the global abstract model. New internal B events may
be added to refine the events of each family of events (sense, monitor, or stimulate). The
state space variables may be refined with more details in the invariant.
The model is more refined with the behaviour of the physical part (made of the controlled
devices); this is captured through the reaction events family.
Step 5: Decomposition into software and physical parts. We adopt the A-style decom-
position [2]. The methodological guide to achieve the decomposition is as follows: the
digital part is made with all the events defined in the sense events, the monitor events
and the stimulate events families whereas the physical environment gathers all the events
defined in the reaction events families. Each part must have an abstract view of the other.
Step 6: Refinement of the control software and the physical environment. In addition to
classical but complete refinements in Event-B, we propose some guidelines to assist the
user in applying there refinements steps.

– Step 6.1: Refining the control software. Structural refinements based on the moni-
tor events family should be used to refine the controller. The involved categories of
variables are the input variables, the state variables and the output variables.

– Step 6.2: Refining the controlled (physical) environment. Many cases can be consid-
ered depending on the system to be studied; either the physical devices are already
available, or one has to build the physical devices from the formal models, or one has
to build a part of the physical devices.

318 Pascal André, Christian Attiogbé and Arnaud Lanoix

Proposed modelling patterns When there are sub-modules, the input variables may be
spawned inside the sub-modules.

aact

k_stimulate
Module 1

inp
ut

Controller

. . .

output
aact

spawn

aact

mergek_
output[1]

k_input
[1]

k_
output[n]

k_input
[n]

aact

k_stimulate

Module n

Fig. 2. Modules redundancy

In the same way output variables may be updated by
promotion from the sub-modules if any. Therefore one
have to incorporate successively in the Event-B model
the events to set and modify the output variables; they
describe the result of the behaviour of the control part.
State automata help to catch these behaviours; then the
events of the B models encode the automata.

We give now some recurrent patterns to help in modelling the control part.

i). Composition of several redundant sub-modules: when a controller is made of several
redundant modules, it is straightforward to describe a generic module and use an
indexing function to compose several instances of such modules (see Fig. 2).

– Encasing variables inside modules: the values coming from outside one or sev-
eral modules can be systematically encased inside the modules with a dedicated
event that spawn the events.

– Promoting variables outside a module: in a symmetric way, the values going
outside a module or several modules can be systematically described using a
promotion pattern (with a dedicated event) for merging the output variables of
the internal computing modules.

ii). When the modules are not redundant, each one should be refined separately, but the
treatment we have described for the inputs and outputs variables is the same.

Fig. 3 illustrates the Event-B patterns from the most abstract model (which describes
only the interface of the controller) to the systematic decomposition into two parts: the
Controller and the physical Environment.

3. Applying the Method to the Running Case Study

The proposed method is applied on the Landing Gear (LG) case study, a benchmarking
example proposed at the ABZ’2014 conference to compare different formal methods in
terms of expressivity, performance, and ease of use. in [5].

Mechanical and hydraulic parts

doors
gears

up/down

Pilot interface

actuators

sensors

Digital Part

sensors

actuators front gear box
right gear box

left gear box

Fig. 4. Global architecture of the LG system

A prerequisite for reading this
section is the detailed specification
of this critical embedded system
given A summary of the LG system
is depicted in Fig. 4. The LG sys-
tem is in charge of manoeuvring 3
landing boxes: front, left and right.
Each landing box contains a land-
ing gear, an associated door and the
corresponding hydraulic cylinders
in charge to move gears and doors.

An Event-B Assisted Method for Embedded Systems 319

context
machine LS_0
variables
events
end

refines
refines

refines

Specify Digital
Part interface

1 Add Physical Part
abstraction2 Add Reachability

properties3

Duplicate
computing
 modules

4'

context
machine LS_i
variables
events
end

context
machine LS_j
variables
events
end

context
machine LS_m
variables
events
end

refines
context

machine LS_m
variables
events
end

context

Separate Digital
 and Physical parts

5'

context
machine DP_o
external variables
variables
external events
events
end

machine P_o
external variables
variables
external events
events
end

decomposes

context

machine DP_p
variables
events
end

context
machine DP_s
variables
events
end

Feature augmentation

structural refinem
ent

+

Fig. 3. Synoptic structure of the Heñcher method

The system is made of a controller (the digital part) and the controlled physical environ-
ment (i.e. the 3 landing gear boxes and a pilot interface) which interact via sensors and
actuators.

The sensors provide to the digital part the information on the state of its physical part;
the actuators engage the orders of the controller on the physical part. The physical devices
already exist, we will not build them; the challenge deals with the digital control part only
(see page 2 of [5]). We give the main elements resulting from the successive application
of the steps proposed in the method (Sect. 2).

3.1. Horizontal Process: Building an Abstract Global Model of the System

ha
ndle

 [1
,2,

3]

 g

ea
rs

_
loc

ke
d_

do
wn

 g

ea
rs

_
m

an
eu

ve
rin

g
an

om
aly

 ge
ner

al_
EV

 op
en

_EV

clo
se

_EV

ex
ten

d_
EV

re
tra

ct_
EV

analogical_switch[1,2,3]

gear_extended[FG,LG,RG][1,2,3]

gear_retracted[FG,LG,RG][1,2,3]

gear_shock_absorber[FG,LG,RG][1,2,3]

circuit_pressurized[1,2,3]

door_open[FG,LG,RG][1,2,3]

door_closed[FG,LG,RG][1,2,3]

greenLight
orangeLight
redLight
order
nextOGSeq
...

Digital Part

Fig. 5. The interface of the digital part

The document [5] is helpful
to identify the different vari-
ables at the interface between
the digital part and the physical
part.

320 Pascal André, Christian Attiogbé and Arnaud Lanoix

Step 1: Characterising the abstract model

Step 1.1: Elicitation and modelling of the interface variables The requirement docu-
ment listed several triplicated input variables: handle, analogical switch, gear states, doors
states· · ·
We model them with a type T RIPLE = {1,2,3} used as an index of the function variables
(see Step 1.3):

GEAR = {FG,LG,RG} analogical_switch ∈ T RIPLE→ AnalSWSTAT E
DOOR = {FD,RD,LD} handle ∈ T RIPLE→ HSTAT E
HSTAT E = {hDown,hU p} gear_extended ∈ (T RIPLE×GEAR)→ BOOL
AnalSWSTAT E = {openSW,closedSW} door_closed ∈ (T RIPLE×DOOR)→ BOOL
· · · · · ·
handle ∈ T RIPLE→ HSTAT E analogical_switch ∈ T RIPLE→ AnalSWSTAT E
gear_extended ∈ (T RIPLE×GEAR)→ BOOL door_closed ∈ (T RIPLE×DOOR)→ BOOL

The function variable handle ∈ T RIPLE → HSTAT E captures precisely the require-
ment handlei ∈ {hDown,hU p} with i ∈ {1,2,3}. The state variables are the states of the
gears, doors, anomalies, etc. They are modelled as follows:

gears_locked_down ∈ BOOL ∧ gears_maneuvering ∈ BOOL ∧ anomaly ∈ BOOL ∧·· ·

The output variables hold the values computed for various electro-valves:

general_EV ∈ BOOL ∧ close_EV ∈ BOOL ∧ open_EV ∈ BOOL ∧·· ·

The lights which indicate the position of the gears and doors to the pilot are described
as internal variables: greenLight, orangeLight, redLight. These variables are bound to the
output state variable gears_locked_down with an invariant predicate. Another internal
variable order is used to record the action of the pilot on the handle.

The LG system is controlled digitally in the normal mode until an anomaly is de-
tected. A permanent failure leads to an emergency mode where the system is controlled
analogically. Accordingly the internal boolean variable anomaly is used to denote that an
anomaly has been detected or not.

Step 1.2: Elicitation of the global properties of the LG system Most of the normal mode
requirements are safety properties. Some identified ones are gathered in Table 1.

Step 1.3: Start with a first abstract model The first Event-B abstract model resulting
from Step 1.3, gathers all the variables of the interface, their related invariants and ini-
tialisations. Event-B contexts are used to model the static part with the various sets and
definitions that we have introduced.

An Event-B Assisted Method for Embedded Systems 321

R21 We can not observe a retraction sequence (consequence of the order hU p) if the handle is
down. Using the enumerated set HSTAT E which permits only one value from two for the
variable order.

R31 The gears outgoing event occurs if doors are open locked.
R41 Opening and closing doors electro-valve are not stimulated simultaneously.
R51 It is not possible to stimulate the manoeuvring EV (opening, closure, outgoing or retraction)

without stimulating the general EV.

Table 1. Identified requirements

Step 1.4: The families of events of the abstract model A thorough analysis of the two
action sequences (outgoing sequence and retraction sequence) described in the LG system
helps us to capture the behaviour of the digital part and to derive the events. We use here
state automata to make it clear the interaction between the different components (actions
of the pilot, the controller, the orders received by the environment).

In the sense event family we have listed for example the event sense_gear to mod-
ify the input variable gear_extended listed above. In the same way, we have listed the
other events sense_door, etc. Examples of events we have identified for the control events
family are: stmlt_general_EV to stimulate the general electro valve, stmlt_door_opening,
stmlt_gear_outgoing, stop_stmlt_general_EV, stop_ stmlt_gear_outgoing, etc. Each one
modifies its related variable, for instance the event stop_stmlt_gear_outgoing sets the vari-
able extend_EV to FALSE. Examples of events we classified in the monitor events family
are: monitor_ anomaly, monitor_gears_locked_Down, monitor_ gears_manoeuvring. In the
reaction event family we have Door_openDoor_cl2cu, Gear_extend, Gear_retract, ...

Step 2: Extension of the abstract global model with the event families

We achieve many refinement steps, by feature augmentation, to integrate gradually the
variables and events related to the physical devices: the sensors, the doors and the gears.

Following Step 2.1, we define the behaviours of physical devices. For instance, the
door behaviour is first captured with a state automata; the transitions of the automata
are then described as events. For this purpose we use a transition function doorState ∈
DOOR→ DSTAT E where DSTAT E = {ClosedLocked,ClosedUnlocked,OpenUnloc-
ked} is the enumerated set of the identified door states. The set DOOR contains the three
door identifiers. The function doorState is a total function; this captures the requirement
that all the three doors are controlled via the state transition.

The starting transition of the door behaviour is enabled by the open_EV order given by
the digital part. Therefore there is a synchronisation between the digital part and the mo-
tion of the doors. We only give below the description of the starting event Door_openDoor_-
cl2cu; the other necessary events are similar.

322 Pascal André, Christian Attiogbé and Arnaud Lanoix

event Door_openDoor_cl2cu
/* Door’s Behaviour (for the three doors). The first transition of the Door Automata */
where

@g1 open_EV = T RUE // all the doors Electro Valves are on
@g2 ran(doorState) = {notOpenLocked}

then
@a1 doorState := DOOR×{notOpenNotLocked} // door is being opened

end

The following event describes an event of the control event family.

event stmlt_gear_outgoing
/* stimulate gear outgoing electro valve once the three doors are in the open position */
where

@g0 general_EV = T RUE
@g1 order = hDown
@g2 ran(handle) = {hDown}
@g4 ran(door_open) = {T RUE}
@next nextOGseq = 3
@gano anomaly = FALSE // no anomaly detected
@notretract retract_EV = FALSE

then
@a1 extend_EV := T RUE
@a2 nextOGseq := nextOGseq+ sequenceStep

end

The variable nextOGseq controls the evolution of the outgoing sequence; it indicates
in the event guards, the next step in the outgoing sequence. We note that the events in the
sense event family anticipate their real future specifications, which are related to the phys-
ical part introduced later. When we have introduced the various events families and the
related variables, it becomes clear for us that we have the complete control loop. Follow-
ing Step 2 the properties (listed in Step 1.2 above) are formalised as first order predicates,
integrated into the invariant of the abstract model and, proved along the horizontal refine-
ment. As an example, the requirement R51 is described as follows.

((open_EV = T RUE ∨ close_EV = T RUE ∨ extend_EV = T RUE ∨ retract_EV = T RUE)
⇒ general_EV = T RUE)

To sum up, the global Event-B abstract model results from a series of refinement of
contexts and machines.

Step 3: Dealing with specific properties The properties to be proved (requirements given
in pages 18-19 of the requirement document) are formalised as first order predicates inte-
grated into the invariant of the abstract model and proved along the horizontal refinement.
Most of the normal mode requirements are safety properties. Here are some of the re-
quirements captured in our case study: R22, R32, R42, R5.

R22 In a similar way we cannot observe an outgoing sequence (consequence of the order
hDown) if the handle is up.

order = hU p⇒ ran(handle) 6= {hDown}

An Event-B Assisted Method for Embedded Systems 323

R32 The gears retraction event occurs if doors are open locked
(retract_EV = T RUE⇒ ran(door_open) = {T RUE})

R42 Outgoing and retraction gears electro-valve are not stimulated simultaneously
¬(extend_EV = T RUE ∧ retract_EV = T RUE)

R51 It is not possible to stimulate the manoeuvring EV (opening, closure, outgoing or retraction)
without stimulating the general EV

((open_EV = T RUE ∨ close_EV = T RUE
∨extend_EV = T RUE ∨ retract_EV = T RUE)

⇒ general_EV = T RUE)
In this case study, reachability is another set of the specific properties. Requirement

R1 for instance needs a specific treatment presented in the sequel. We will detail this point
in Section 3.3.

3.2. Vertical Process: Building the Concrete Parts of the LG System

The vertical process includes several refinements (in Step 4) described below following
the proposed method.

Step 4: Structural refinements of the global abstract model

In the requirement document, the inner structure of the digital part is made of two
redundant computing modules. Structural refinement steps overcome the details of the
behaviour of the digital part.
a) Introducing the two computing modules with refinements Both modules have the same
interface (input and output variables) inherited from the abstract model of the digital part.
Each interface variable of a module k (where k ∈ {1,2}) is inherited from a variable
(for instance gear_extended) of the digital part of the abstract model and it is denoted
by k_gear_extended(k) where k is an index. An enumerated set CompModule = {1,2}
is used for the indexes. Therefore each interface variable of the computing modules is
specified with the following shape:

k_gear_extended ∈CompModule→ ((T RIPLE×GEAR)→ BOOL)
The binding between the two modules interface variables and those of the abstract module
is achieved via refinements where new variables and related events are introduced.
b) Spawning the inputs inside the computing modules with refinements We introduced
new events (prefixed with spawn_) to push the value of each input variable (for exam-
ple handle) at the abstract level, in the corresponding variable (for example k_handle) of
each computing module. As the inputs of the modules should be the same, an invariant
is defined in each case of variable spawning in order to guarantee the correctness of the
binding between the input variable of the digital part and the same input of the comput-
ing modules. The following event pattern spawns the variables at the interfaces of the
computing modules.

event spawn_handleDown // spawn handleDown within the k CompModules
where @g1 ran(handle) = {hDown}
then

@a1 k_handle := {1 7→ (T RIPLE× (ran(handle))),2 7→ (T RIPLE× (ran(handle)))}
end

324 Pascal André, Christian Attiogbé and Arnaud Lanoix

We have identified a reusable specification rule: a new event is introduced along with
each new k-indexed variable. This event should copy the variable at high level (the dig-
ital part) into the indexed variables at the low level. Furthermore, the existing events,
whose guards or actions involve the spawned variables, should be refined by extending
their guards and actions in order to satisfy the binding between the variables and the as-
sociated k-indexed variables. One noticeable feature in this case is that when we have a
non-deterministic event of abstract level (as for the value of the sensors), then in the re-
finement the event should be refined (not extended). This is another reusable specification
rule we have identified.

c) Merging the outputs of the computing modules with refinements As depicted in Fig. 2,
the k-indexed output variables are merged using a logical OR to set the corresponding
variable at the output of the digital part. Therefore the event that sets the variable should
be guarded by the availability of the merged value. As explained before, a binding in-
variant should be provided for each variable and the related k-indexed variable. Several
refinements are used to introduce the appropriate events.

d) Specifying the behaviour of the computing modules The two computing modules have
the same behaviour which is made of: the events that monitor the system and set accord-
ingly the state output variables and the input variables of the digital part; and the events
that give orders (control decision) to the physical part through the order output variables.
This results in the k-indexed form of the events related to the three categories of the inter-
face and internal variables.

We can stop the construction of the global model at this stage; however following the
guidelines provided in the method, it remains to perform the decomposition step in the
basis of the sense, monitor, control events families (Step 6). Fortunately, the decomposi-
tion modules of Rodin provide assistance for this purpose. In our case where the event
families structured the model, the Abrial’s style of decompostion which is based on share
variables [2] is the most appropriate. Indeed, the decomposition is precisely based on
the families of events: the reaction family should be used for a (physical) machine while
sense, monitor and control families should be used for another (software) machine.

As far as Step 5 and Step 6 are concerned, there are two main considerations: i)
if we want to use animation capabilities on the global model, the construction should
stop after the refinements of Step 5 without doing the decomposition of the Step 6 ; ii)
if we do not want to use animation capabilities, the construction may be continued with
the decomposition process in Step 6. For our illustration of the case study we experiment
with both considerations. First, in order to keep animation capabilities, we end our process
with the Step 5 ; the Step 6 was not performed for the case study, but only the digital part
is refined with the objective to build the software part; The variables and events which
are specific to the behaviour of the physical part are not refined but we keep them in the
model in order to perform animation of the global model. Second, for the experimentation
of the method, we go through decomposition in Step 6. But in this case, we have two
independent models which should evolve separately, for instance the physical part may
be replaced by a hardware and the control part refined into an executable code without
modifying any elements of the physical part inherited from the decomposition.

An Event-B Assisted Method for Embedded Systems 325

3.3. Handling the Required Properties

We classified the requirements listed in the case study document (see page 18-19 of the
requirement document) in several categories of properties to be proved for the system.

Safety: Requirements R2, R3, R4 and R5 should be considered through safety properties.
Liveness: The requirements R1 are related to liveness (reachability) properties.
Nonfunctional: The requirements R6, R7 and R8 (Failure mode requirements) are related

to nonfunctional properties: management of time constraints.

In the following we deal with liveness (reachability) properties.

Introducing the reachability property (requirement R21 and R22) This is a step of the
horizontal refinement process (with the tag 3 in Fig. 3).
Based on the idea of Lamport’s logical clocks [11], we implement a technique that cap-
tures the reachability requirement R1 given in page 13 of the requirement document. For
that purpose, we introduce the notion of control cycle; this is necessary to reason locally
on relevant events. A control cycle is a period of time during which one can observe sev-
eral events, especially a chain of events denoting an outgoing sequence or a retraction
sequence; a typical control cycle is one starting with an event which denotes the hDown
order and terminating by an event which denotes the fact that “the gears are locked down
and the doors are seen closed”; similarly, another control cycle is started when the handle
triggers an order hU p. A dedicated variable endCycle is used to control the start and the
end of each control cycle.

Assume that we have observable events that occur along the time and that denote
our events of interest1; for instance the starting of an outgoing sequence, a door closed,
a gear locked in a position, etc. Each such event can be stamped with the timestamp
of its occurrence, thus if we have the set of observed events we can define at least a
partial ordering of these events (see Fig. 6). Given a set obsEvents of events and a logical

Time

event event event

Fig. 6. Events and timestamps

clock modelled as a natural number, the occurrences of the events can be ordered by the
timestamp given by the clock. In our case two events cannot happen at the same time. We
use a partial function ldate ∈ obsEvents 7→N to record the timestamps of the events. We
can compare and reason on the timestamps of any events happening during a sequence
and specifically within the specific event sequence called control cycle.

For example, in the normal mode, we observe the event “the door is closed and the
gear extended” (named dcge) at the end of a cycle, if the event “order DOWN is given”
(named downH) occurs and is maintained (no event upH occurs). If these events have

1 These events are not to be confused with Event-B events.

326 Pascal André, Christian Attiogbé and Arnaud Lanoix

respectively the specific timestamps d j and di, then we can compare di and d j and also
examine the events which happen between di and d j. Accordingly the property R1bis of
the requirement is expressed as follows:

∀d j.(((d j ∈ N)∧ (dcge ∈ dom(ldate))∧ (d j = ldate(dcge))
∧(endCycle = T RUE)∧d j < llc)⇒

∃di.((dd ∈ N)∧ (downH ∈ dom(ldate))∧ (di = ldate(downH))∧ (di < d j)∧
∀ii.(ii ∈ N∧di≤ ii∧ ii < d j⇒ ldate∼ [{ii}] 6= {upH})))

The above property expresses that if we reach the end of a control cycle where the
door is closed and the gear extended at a given timestamp (d j), then we should have an
order hDown issued at a timestamp di less that d j and maintained between d j and di; the
outgoing sequence is not interrupted by an order hU p which would start another cycle.
Consequently we have expressed the property R11bis. Property R12bis can be expressed in
a similar manner.

To put in practice in Event-B with Rodin, we defined the set obsEvents in the context
of our machines, and the above property is included in the invariant of the abstract model.

3.4. Experimentation with Rodin and statistics

The main modelling steps of the Landing Gear System case study have been completely
achieved; that is the modelling from very abstract level to more concrete ones, the re-
finements and the decomposition into hardware and software parts. Applying a rigorous
method as we defined, was very helpful to master the complexity of the case study.

Total Auto Manual Review. Undis.
LandingSys5 567 494 73 0 0

Abstract model
Landing_DP_Ctx 0 0 0 0 0
LandingSysDP_A 109 106 3 0 0
LandingSysDP_SWITCH_A 3 3 0 0 0
LandingSysDP_DOOR_A 42 42 0 0 0
LandingSysDP_DOOR_GEAR_A 79 79 0 0 0
LandingSysDP_DOOR_GEAR_TIME_A 2 2 0 0 0

Models of the vertical refinement
LandingSysDP_DGT_R1_In 42 34 8 0 0
LandingSysDP_DGT_R2_INOUT 56 40 16 0 0
LandingSysDP_DGT_R3_DG 234 188 46 0 0

Table 2. Statistics of PO generated and proved with Rodin

The Rodin tool
is very efficient
for proving the
Event-B models;
a very high per-
centage (∼ 87%)
of proof obli-
gations was au-
tomatically dis-
charged. All the
remaining proof
obligations are
proved interac-
tively.

The specifications are available online2. The current version of the Event-B models is
deliberately partial as we chose to focus on representative events instead of being exhaus-
tive. We have used the version 3.4 of Rodin in the last experimentations; the statistics on
Proof Obligations are given in Table 2.

The proofs discharged using the interactive prover are related to the structural refine-
ment and specifically they are related to the binding invariants.

2 hencher.ls2n.fr

hencher.ls2n.fr

An Event-B Assisted Method for Embedded Systems 327

Using the Rodin tool we have modelled and refined the Landing Gear System until to
take account of the main requirements about software part, physical part and some of the
specific properties as explained in Section 3.3. After several steps of vertical refinements
we have a complete model of the Landing Gear system. For the experimentation purpose,
using the Event-B decomposition technique [22], we decompose the last model of the
system into two parts corresponding to the hardware part and the software or control part.
The so-called A-style decomposition, based on the separation of events through different
machines, and implemented as a Rodin plugin [15], was successfully used in this step.

Managing very large models requires a rigorous slicing and several small steps of
refinements. This is the reason why we have introduced many refinements, but it is still
not enough, the slicing can be of finer grain.

Moreover a good naming discipline is necessary at each level of the modelling. It
helps for traceability and to face the complexity due to the size of the model.

As far as the ProB animation tool (integrated in Rodin) is concerned, it is very helpful
to tune the Event-B models; indeed the failure in the animation gives information about
the (bad) states and accordingly the wring part of the model can be rewritten.

3.5. Tooling Concerns

During the above experimentations, we felt need assistance at different steps for different
motivations. We mention some situations where tooling would be helpful, in addition to
Rodin’s facilities, to apply the Heñcher method.

RT1 Starting the process. The first steps are often crucial when applying a method. Assis-
tance is required to answer the users’s question How to start the process?.

RT2 Incremental step-by-step refinement. The Heñcher method is tightly based on refine-
ments. To master the development process in Event-B, the recommended approach is
to proceed with small and well-defined refinement steps; that means the complexity is
not in individual refinements but in the whole refinement process; but there is a lack
of assistance tool to help developers. For instance the developer may be happy with a
highlighting of some parts of its specifications.

RT3 Pattern-based substitutions and automatic refinements for composition and physical
part refinement. This requirement needs a full development when the specifications
are in Rodin.

RT4 Team collaboration. Making it easy for several people to work simultaneously on a
project, versioning, decision traceability are all important concerns when dealing with
big Event-B projects as the one we have studied.

RT5 Overall development process management. When one should stop with a development
step? Is the current state sufficient to start the next step? there is a need of various
metrics to evaluate the quality of ongoing specifications (completeness,...).

RT6 Iterative process of model evolution. Often, one wants to modify an abstract model
(for example adding a variable or an event in the M0 machine), and has the modi-
fication be systematically propagated in the chain of the remaining models and re-
finements. The tool supporting the method should enable such a continuous model
evolution.

328 Pascal André, Christian Attiogbé and Arnaud Lanoix

RT7 Traceability of the refinement chain of a single event. During the development and
proof steps, a practical concern is to review the chain of refinement of a single event
without all the surrounding events. An assistance tool is also needed.

RT8 Securing copy-paste operations. It is often the case, to copy-paste similar events. This
is particularly true when we have systems with redundancies of several instance of
the same objects, like the gears, the doors and the sensors in our case study. Due to
unavoidable human errors, lot of time is spent fighting again undischarged proof obli-
gations. There is a need of a parameterized refactory tool that for instance rewrites an
existing event by substituting some variables with others.

We undertake the development of an assistance tool to provide the main functionalities
we have identified during experimentations. In the next section we introduce the basis of
the design of a web companion tool we have developed to address the requirements RT1
and RT2.

4. An Assistance Tool

In this section we introduce our proposed prototype tool to assist the users of the Heñcher
method. The tool is designed as a companion tool of the existing frameworks such as
Rodin or Atelier B. It helps the users to apply the Heñcher method, and to build more
quickly the preliminary Event-B models, which will be analysed in the dedicated existing
environments.

From the provided interface of a given control system the tool generates in an incre-
mental way, following the steps of the Heñcher method, the Event-B abstract models. The
tool is designed for Event-B users (specifiers/engineers). The inputs of the tool will be
provided by the users; an user-friendly graphical interface is designed for this purpose.
The tool provides the development guidelines of the Heñcher method and some skeletons
of Event-B models as output.

Generation of an Event-B models from a control system interface On the basis of
the interface between a control system and its environment as presented in Section 2, a
specifier should provide the interface variables, the list of controlled devices of its sys-
tem, the global and specific properties required by its systems. From these elements the
specifier will be assisted in building an Event-B machine M0 and then a refined one M1.
The machine M1 can be further refined until more concrete levels but one has to use the
dedicated tool (Rodin for instance).

The collected interface Let an interface made of Xs a set of the input variables, Xo a
set of the output variables, Xc a set of the control variables. In addition, let Xi be a set
of internal variables of the controller; (a part of the control variables are used for the
feedback, the internal variables are the part of the control variables used by the controller
but which are not output as feedback). According to the system at hand, the user should
define the types of each of the previous variables. That means each variable of Xs has its
type in Ts. Therefore for each family X of variables of the interface and the related set of
types TX , we have a type mapping {(σi,τi)} ⊆ X×TX .

An Event-B Assisted Method for Embedded Systems 329

Assume then three type mappings built by the user from its system requirements and
from the variables Xs, Xo, Xc and the related sets of types TXs , TXo , TXc .

4.1. An Overview and the Design of the Tool Assistant

The flowchart in Fig. 7 gives an overview of how the tool assists the user in building the
abstract model in a global process. We will then define the steps of this global process.

Start

Collect the Interface GenerateContext GenerateVariables

BuildInvariantPropertiesGenerateInitialisationsFillAndTypeCheck 1

Event list = {}

Property list = {}

True

FillAndTypeCheck 2
True

BuildSpecificProperties ProveProperties
False

GenerateEvents ProveEvent
False

Fig. 7. Flowchart of the global functioning of the tool

context Ctx0
constants

to be completed by the specifier
sets

Each element of the union TXs ∪ TXo ∪ TXc

axioms
to be completed by the specifier

end

Fig. 8. Event-B context skeleton

Stepwise building of the Event-B
model

Building the context of the model.
From the extracted sets of types TXs ,
TXo , TXc , a context Ctx0 made of the
sets coming from TXs , TXo , TXc is built.
Each carrier set of Ctx0 comes from
TXs ∪ TXo ∪ TXc (see Fig. 8).

The initial Event-B abstract model (Step 1 of the method). The skeleton of the Event-B
abstract model (M0) to build is depicted in Fig. 9.

330 Pascal André, Christian Attiogbé and Arnaud Lanoix

Machine M0
SEES Ctx0
VARIABLES

GenerateVariablesXs ∪ Xo ∪ Xc ∪ Xi
INVARIANTS

BuildInvariantProperties(Xs,Xo,Xc,Xi)
BuildSpecificProperties(Xs,Xo,Xc,Xi,Ps,Pn,Pl)

INITIALISATION

GenerateInitialisations(Xs,Xo,Xc,Xi)
END

Fig. 9. Event-B model skeleton

The functions GenerateVariables, Build-
InvariantProperties, BuildSpecificProp-
erties and GenerateInitialisationSub-
stitutions are used to compute respec-
tively the set of variables, typing in-
variants, specific invariants and de-
fault initialisations for the MO model.
They are elementary functions; most
of them traverse a set, and encode in
Event-B syntax the elements of the
sets.

The function GenerateInitialisations(Xs,Xo,Xc,Xi) works as follows: for each variable
v in Xs∪Xo∪Xc∪Xi, if Tv is a set in Ctx0 corresponding to the type of v then a substitution
v :: Tv is generated. Note that these default initialisations can be modified by the users
to meet its needs.

The global properties of the system. Considering the requirements of the given system
let Ps be the set of the safety properties, Pn be the set of non-functional properties, and
Pl be the set of liveness properties. Each property should be formalised by the user and
incorporated with the assistance tool in the model under construction.

Assistance in horizontal refinement steps

Construction of the events of the abstract model (Step 2 of the method). The current
Event-B abstract model is now extended (that means feature augmentation) with the pre-
vious family of events (sensing events, monitoring events, control events).

Machine M0
. . .
EVENTS

GenerateEvents(Es,Em,Ec)
END

Fig. 10. Event-B model M0

Let Es be the set of sensing events, Em be the set of
monitoring events, Ec be the set of control events, Ea
be a set of reaction events.

The algorithm of GenerateEvents(Es,Em,Ec) is listed
in Fig. 11s:

while (Es 6=∅)∧ (Em 6=∅)∧ (Ec 6=∅) do
Select an event e from Es and update Es (Es =Es−{e})
or
Select an event e from Em and update Em
Select an event e from Ec and update Ec
M0 = AddEvent(M0,BuildEvent(e))

end while
Fig. 11. Events construction adding algorithm

The function BuildEvent(e)
generates a skeleton for each
event name e. This skeleton
should be filled by the user.

An Event-B Assisted Method for Embedded Systems 331

The Event-B abstract model resulting from this stage should now be extended with
the specific properties identified by the user in the system requirements (they have to be
formalised by the user).

We build a web application to implement the starting sequence of the process depicted
in Fig. 7. Its application to a part of the case study is shown in Fig. 12 for the description
of variables. Other informations on the tool can be found on the dedicated website3.

Fig. 12. Interface of the web assistant to help in describing the abstract state

Adding properties to the model is a refinement process (Step 3 of the method). The
informal properties named and described by the user have to be formalised and integrated
in the abstract model. The assistance here consists in selecting for formalisation, each
property from those listed in Psby the user (see Fig. 13).

while (Ps 6=∅) do
Select a property p from Ps
Ps = Ps−{p}) // update Ps
M0 = AddProperty(M0,Formalise(p))
Prove M0

end while
Fig. 13. Properties adding algorithm

The function Formalise(p) enables
one to edit (through a popup for instance)
each involved property. In the same way,
the other specific (reachability and non
functional) properties listed in Pn are in-
tegrated into the refined model M1 using
the algorithm described in Fig. 14. Assis-
tance is provided to the user for selecting

the specific properties to be integrated into the abstract model.
3 hencher.ls2n.fr

332 Pascal André, Christian Attiogbé and Arnaud Lanoix

M1 = M0 // initially M0 is copied; then updated.
while (Pn 6=∅) do

Select a property p from Pn and update Pn
M1 = Addp(M1, f ormalise(p))

end while
Fig. 14. Additional non-functional properties

The function Formalise(p) is as
previously defined. Pn is the set of
non-functional properties.

Fig. 15 illustrates three of the requirements as listed in the web interface of the assis-
tance tool; they appear in the Rodin snapshot depicted in Fig. 16.

Fig. 15. Informal required properties listed in the assistance tool

To improve traceability between, it is better to edit directly the property in Rodin and
to use its label to tag the property in the list of the informal properties.

Fig. 16. Required properties formalised in Rodin interface

The remaining steps of the method, that is the refinement of the control software (Step
6.1 of the method) and the refinement of the controlled environment (Step 6.2) of the

An Event-B Assisted Method for Embedded Systems 333

methods should be achieved within Rodin (or a dedicated Event-B framework). However
we propose some assistance as described in the following section.

Assistance in the vertical refinement process (Step 4, 5) There is no specific tool for the
Step 4. Refining the global abstract model. This steps consists in describing the behaviour
of the devices involved in the case study. This can be done by using automata or the
appropriate models; by encoding these models in Event-B (roughly, the transitions of the
automata are encoded as Event-B events).

Decomposition into software and physical parts (Step 5). The methodological guide to
achieve the decomposition is as follows: the digital part is made with all the events defined
in the sense events (Es), the monitor events (Em) and the stimulate events (Ec) families
whereas the physical environment gathers all the events defined in the reaction events
(Ea) families.

Accordingly we systematically provide the user with the lists of the events that she/he
must select for the decomposition process. The events of the control part are computed
as: Eso f t = Es ∪ Em ∪ Ec; those of the physical part are computed as: Ephys = Ea. These
two lists are then used as the input of the decomposition plugin of Rodin.

The decomposition in Event-B consists in selecting and separating the desired events
into two machines. In our case the model Mcontrol corresponding to the control part is the
projection of M1 on Eso f t . Similarly the model Mphys corresponding to the physical part
is the projection of M1 on the list Ephys (See Fig. 17).

The Rodin tool already provides a decomposition plugin [15] that performs the pro-
jection of the provided machine according to the selected events. Therefore our assistance
tool provides to its users, the lists of events that he/she should select when using the
decomposition plugin of Rodin.

Machine Mso f t
. . .
EVENTS

events from Eso f t
END

Machine Mphys
. . .
EVENTS

events from Ephys
END

Fig. 17. Model decomposition skeleton

At this stage our tool provides much assistance to begin with the modelling in Event-B
using Rodin; but many other tool facilities are provided with the Rodin to help its users.
In the following we show how some of these tools can be used at various stages of our
proposed method to satisfy the tool requirements identified in Sect. 3.5.

4.2. Tool Requirements Handled by Existing Rodin Plugins

We have experimented with some Rodin plugins to put our method in practice. But there
are many other plugins available for Rodin to extend and complete the features of the

334 Pascal André, Christian Attiogbé and Arnaud Lanoix

Rodin. We have studied them, and in the following we report on how some of these exist-
ing plugins can help one to apply the Heñcher method by resolving some of the previously
mentioned requirements (see Section 3.5). Therefore for each of the tool requirements we
advice the available or candidate plugins.

RT2 Incremental step-by-step refinement. Our tool already provides a preliminary assis-
tance in this direction by considering the families of events to be used in each refinement
step.But more remain to be done to gain more flexibility within Event-B; there is a proto-
type plugin on Group refinement 4 which targets the simplification of the refinement links
between abstract machines and their refinements; the idea is to relax the constraints on
introducing dummy variables and their related housekeeping events that are there only to
satisfy the refinement relation.

RT3 Pattern based substitutions and automatic refinements. Some plugins propose to
add (de-)composition features into Event-B/Rodin. The Feature composition plugin [17]
enables one to merge Event-B machines and their seen contexts with the facilities to
highlight multiple declarations of variables or events and to resolve conflicting elements.

RT4 Collaboration: working in parallel, versioning, decision traceability. There exists a
plugin called "team-based development" [19] which allows Event-B models to be stored
in a SVN repository. That plugin allows to share the Event-B specifications but not the
proof effort. The Modularisation plugin 5 may also help here by allowing separate de-
velopment of part of the a global system as sub-modules and then by combining them.
Indeed, this plugin enables one to weave together modules composing a model so that
they work on the same global problem.

R5 Overall development process management. An experimental plugin named Model
critic [14] could be used to evaluate models using informal heuristics of what is typically
a bad practice in model construction. That is a first step to evaluate quality of Event-B
specifications, but it is not enough, to use it into an industrial process.

RT6 Iterative process of model evolution. We identified several plugins that can help
in fulfilling this requirement. The Refactory plugin [18] provides functionalities to re-
name the declaration and all the occurrences of an element of an Event-B model without
modifying its proof state. There is a need for applying the same principle for more com-
plex operations; for instance the insertion of event and its basic refinement through the
chain of refinements, the detection and replacement of all the occurrences of an event in
a model and trough its refinements, but with the smallest impact on the proof effort. The
Transformation patterns plugin [20] could be used to automatise the different steps of the
Heñcher method. From a given Event-B machine, we can produce a new one by applying
some "transformations" : adding new variable, new event, new invariant, finding and using
some event’s guards, ask the user to enter some missing information, etc. No information
is given about the necessary proof effort when using this plugin. The Design pattern plu-
gin [16] is dedicated to reuse former development (as a pattern) in a new development by

4 http://wiki.event-b.org/index.php/Group_refinement_plugin
5 wiki.event-b.org/index.php/Modularisation_Plug-in

http://wiki.event-b.org/index.php/Group_refinement_plugin
wiki.event-b.org/index.php/Modularisation_Plug-in

An Event-B Assisted Method for Embedded Systems 335

matching the corresponding variables and events. This results in a refined machine which
embeds the former development. The proofs of the used pattern would be reused too. The
correctness of the matching is only syntactically checked.

RT7 Traceability of the refinement chain of an event. We have not yet identified any tool
or plugin to help for this concern.

RT8 Securing copy-paste operations. We have not yet identified any tool or plugin to help
for this concern.

Issues on tool development and maintenance We are aware of the effort to be done to
face the recurrent issues on tool development and maintenance. Most of the mentioned
plugins are experimental, and insufficiently documented; they are not all based on the
same (up-to-date) versions of Rodin. Many of them are difficult to install because of the
(incompatible) required dependencies.

Accordingly, the open source policy is a solution to share the development and main-
tenance effort. We envision this solution for the tools we are developing and for the effort
to be devoted to the remaining identified requirements.

5. Conclusion

In this paper we focused on the application of the Heñcher method to the Landing Gear
Case study and paid much attention to the necessary tool support for the method. This led
to the detailed presentation of the design of a companion tool of our method. Then we
showed how the tool was used together with the Rodin tool and plugins to experiment
with the case study. This work extends substantially our previous work presented in [4]
where the proposed method Heñcher was introduced. We proposed the method Heñcher
to guide step by step the construction of embedded control systems with Event-B. We
built on the well-known structure of control systems and on the experiments of several
case studies where the Event-B was used and where some methodological guidelines
was provided [7,6,21]. We provided preliminary assessment in [4]; in this paper the case
study is dealt with more details and we covered all the steps of the proposed method.
The Landing Gear case study is representative of large systems involving the control and
the interaction between software and physical parts. Before going into the presentation
of the assistance tool that we have developed, we emphasised the motivations and the
requirements for the needed tools.

Among the identified tool requirements, we detailed a tool to assist the specifiers in
starting the modelling process, and to assist them during the development process with
Rodin. Yet our Heñcher assistance tool is a prototype developed as a standalone web
application. We experimented with Rodin but, it can be used not only for Rodin.

We have studied other available Rodin plugins that can help in putting into practice
or to implement the remaining identified tool requirements.

Apart from the development of the tools related to facilitating the reuse of existing plu-
gins (template reuse, refactoring, injection of events, etc), the short-term perspectives of
our work are to continue the development of the Heñcher tools and their experimentation

336 Pascal André, Christian Attiogbé and Arnaud Lanoix

with other large scale case studies in combination with the Rodin platform. Our exper-
iment with the Landing Gear case study which has the main features of cyber-physical
systems, will be exploited to deal with more case studies of this category. Indeed there are
other challenges to tackle in this area, such as handling real-time properties, dealing with
the construction of systems built on the basis of digital twins concepts.

The long-term perspective is the provision of a generic development pattern related to
embedded system which will make it more easier to describe requirements and properties
and get the major part of the development generated.

Acknowledgments. Thanks to Léo Cassiau, Geoffrey Desbrosses, Alexis Giraudet, Jean-Christophe
Guérin, Asma Khelifi, Ugo Mahey and Tantely Randriamaharavomanana, Master students at Uni-
versity of Nantes in 2017, who worked with us on the tools.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge University
Press (2010)

2. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete Models:
Application to Event-B. Fundam. Inform. 77(1-2), 1–28 (2007)

3. Alkhammash, E., Butler, M.J., Fathabadi, A.S., Cîrstea, C.: Building Traceable Event-B Mod-
els from Requirements. Sci. Comput. Program. 111, 318–338 (2015), https://doi.org/10.
1016/j.scico.2015.06.002

4. André, P., Attiogbé, C., Lanoix, A.: Systematic Construction of Critical Embedded Systems
Using Event-B. In: Abdelwahed, E.H., Bellatreche, L., Benslimane, D., Golfarelli, M., Jean,
S., Méry, D., Nakamatsu, K., Ordonez, C. (eds.) New Trends in Model and Data Engineer-
ing - MEDI 2018 International Workshops, DETECT, MEDI4SG, IWCFS, REMEDY, Mar-
rakesh, Morocco, October 24-26, 2018, Proceedings. Communications in Computer and In-
formation Science, vol. 929, pp. 200–216. Springer (2018), https://doi.org/10.1007/
978-3-030-02852-7_18

5. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V., Ait Ameur,
Y., Schewe, K.D. (eds.) ABZ2014. CCIS, vol. 433, pp. 1–18. Springer International Publishing
(2014)

6. Damchoom, K., Butler, M.J.: Applying Event and Machine Decomposition to a Flash-Based
Filestore in Event-B. In: 12th Brazilian Symposium on Formal Methods, SBMF 2009. LNCS,
vol. 5902, pp. 134–152. Springer (2009)

7. Damchoom, K., Butler, M.J., Abrial, J.R.: Modelling and Proof of a Tree-Structured File Sys-
tem in Event-B and Rodin. In: 10th International Conference on Formal Engineering Methods,
ICFEM 2008. LNCS, vol. 5256, pp. 25–44. Springer (2008)

8. Hoang, T.S., Snook, C.F., Fathabadi, A.S., Butler, M.J., Ladenberger, L.: Validating and verify-
ing the requirements and design of a haemodialysismachine using the rodin toolset. Sci. Com-
put. Program. 158, 122–147 (2018), https://doi.org/10.1016/j.scico.2017.11.002

9. Jard, C., Roux, O.H. (eds.): Communicating Embedded Systems: Software and Design. Wiley-
ISTE (2009)

10. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of embedded
software. Proceedings of the IEEE 91(1), 145–164 (Jan 2003)

11. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM 21(7), 558–565 (1978)

12. Méry, D., Singh, N.K.: Formal Specification of Medical Systems by Proof-Based Refinement.
ACM Trans. Embedded Comput. Syst. 12(1), 15 (2013)

https://doi.org/10.1016/j.scico.2015.06.002
https://doi.org/10.1016/j.scico.2015.06.002
https://doi.org/10.1007/978-3-030-02852-7_18
https://doi.org/10.1007/978-3-030-02852-7_18
https://doi.org/10.1016/j.scico.2017.11.002

An Event-B Assisted Method for Embedded Systems 337

13. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of Computer
Programming 25(1), 41–61 (1995), citeseer.ist.psu.edu/parnas95functional.html

14. Event-b rodin platform plug-ins: Model critic plug-in, http://wiki.event-b.org/index.
php/Model_Critic, accessed: 2019-03-14

15. Event-b rodin platform plug-ins: Decomposition plug-in, http://wiki.event-b.org/
index.php/Decomposition_Plug-in_User_Guide, accessed: 2019-03-14

16. Event-b rodin platform plug-ins: Design pattern, http://wiki.event-b.org/index.php/
Pattern, accessed: 2019-03-18

17. Event-b rodin platform plug-ins: Feature composition plug-in, http://wiki.event-b.org/
index.php/Feature_Composition_Plug-in, accessed: 2019-03-14

18. Event-b rodin platform plug-ins: Refactoring framework, http://wiki.event-b.org/
index.php/Refactoring_Framework, accessed: 2019-03-14

19. Event-b rodin platform plug-ins: Team-based development, http://wiki.event-b.org/
index.php/Team-based_development, accessed: 2019-03-11

20. Event-b rodin platform plug-ins: Transformation patterns, http://wiki.event-b.org/
index.php/Transformation_patterns, accessed: 2019-03-18

21. Satpathy, M., Ramesh, S., Snook, C.F., Singh, N.K., Butler, M.J.: A Pixed Approach to Rigor-
ous Development of Control Designs. In: 2013 IEEE International Symposium on Computer-
Aided Control System Design, CACSD 2013, Hyderabad, India, August 28-30, 2013. pp. 7–12.
IEEE (2013), https://doi.org/10.1109/CACSD.2013.6663474

22. Silva, R., Butler, M.: Shared Event Composition/Decomposition in Event-B. In: 9th Interna-
tional Symposium onFormal Methods for Components and Objects, FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer (2012)

23. Singh, N.K., Wang, H., Lawford, M., Maibaum, T.S.E., Wassyng, A.: Stepwise formal mod-
elling and reasoning of insulin infusion pump requirements. In: Duffy, V.G. (ed.) Digital
Human Modeling - Applications in Health, Safety, Ergonomics and Risk Management: Er-
gonomics and Health - 6th International Conference, DHM 2015, Held as Part of HCI Inter-
national 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9185, pp. 387–398. Springer (2015), https://doi.org/10.1007/
978-3-319-21070-4_39

Pascal ANDRE received his Ph.D. from the University of Rennes I in 1995. He joined
the Faculty of Sciences of Nantes in 1996 and then, spent 4 years as assistant profes-
sor at INP-HB engineering school (Ivory Coast). He is currently Associate Professor at
the University of Nantes, France. He carries out his research activities in the Reliable
Architecture and Software (AeLoS) team, at the laboratory of digital sciences of Nantes
(LS2N). He published a series of course books on information system design in french.
His main research topics concern the use of formal methods and verification techniques
for software modelling and analysis, particularly in the context of component-based sys-
tems. He also actively work on rigorous approaches for model-driven engineering and
reverse engineering.

Christian ATTIOGBÉ received the Ph.D. degree in Computer Science from the Univer-
sity of Toulouse, Toulouse, France, in 1992. He joined the Faculty of Sciences of Nantes
in 1994 and he is currently Professor at the University of Nantes, Nantes, France. His re-
search interests include formal approaches for software modelling and analysis, correct-
by-construction using refinement, embedded-systems and heterogeneous systems mod-
elling. He published several peer-reviewed papers on these topics. He is the leader of the

citeseer.ist.psu.edu/parnas95functional.html
http://wiki.event-b.org/index.php/Model_Critic
http://wiki.event-b.org/index.php/Model_Critic
http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide
http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide
http://wiki.event-b.org/index.php/Pattern
http://wiki.event-b.org/index.php/Pattern
http://wiki.event-b.org/index.php/Feature_Composition_Plug-in
http://wiki.event-b.org/index.php/Feature_Composition_Plug-in
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Team-based_development
http://wiki.event-b.org/index.php/Team-based_development
http://wiki.event-b.org/index.php/Transformation_patterns
http://wiki.event-b.org/index.php/Transformation_patterns
https://doi.org/10.1109/CACSD.2013.6663474
https://doi.org/10.1007/978-3-319-21070-4_39
https://doi.org/10.1007/978-3-319-21070-4_39

338 Pascal André, Christian Attiogbé and Arnaud Lanoix

Reliable Architecture and Software (AeLoS) team, at the laboratory of digital sciences of
Nantes (LS2N) since 2007.

Arnaud Lanoix received his Ph.D. from the University of Franche-Comté in 2005. He
spent 3 years as a post-doctorate at the LORIA lab (Nancy, University of Lorraine). He
is Associate Professor since 2008 at the Université de Nantes and carries out his research
activities in the Reliable Architecture and Software (AeLoS) team, at the laboratory of
digital sciences of Nantes (LS2N). His main research topics concern the use of formal
methods and verification techniques for software modelling and analysis, particularly in
the context of component-based systems.

Received: May 1, 2019; Accepted: September 13, 2019.

Computer Science and Information Systems 17(1):339–356 https://doi.org/10.2298/CSIS190511043L

Game-based learning and Gamification to improve skills

in early years education *

Rachid Lamrani1, El Hassan Abdelwahed1,2

1Laboratory LISI, Cadi Ayyad University, 40000 Marrakech, Morocco.

rachid.lamrani@ced.uca.ac.ma
2CSEHS, Mohammed VI Polytechnic University, 43150 Benguerir, Morocco.

abdelwahed@uca.ac.ma

Abstract. Early childhood education has become a prevalent public policy issue.

It has a serious impact on the child's personality, upbringing, education,

socialization, development, and academic success from the preschool period to the

university and beyond. In general, traditional teaching methods usually have a

fixed learning structure which disables the child to be motivated, creative and

innovative. Learners receive theoretical rather than practical instructions, which

discourage them from keeping and recalling concepts and information more

quickly. Moreover, traditional teaching usually lacks attracting the full attention of

learners which decreases their interaction, engagement and investment in the

content. Thus, the development of innovative approaches offering better education

is an effective way to address this problem. On the other hand, recent researches in

the fields of cognitive science and educational neuroscience show that play-based

learning is a promising approach to use in early childhood education. Four key

success factors for learning have been identified to strengthen children's skills,

namely attention, active engagement, feedback, and consolidation. Thus, the

proposed approach presents a digital play-based learning approach deploying

serious games augmenting the pedagogical aspect of the Montessori approach.

Our purpose is to improve children's skills in their early years education through

play-based learning and gamification. It aims to provide children with a rich

variety of serious gaming activities and challenging experiences in an interactive

environment. We developed several serious games based on Montessori

pedagogical principal and the four pillars of learning. For the evaluation, we have

chosen a representative sample of children from rural regions.

Keywords: Early childhood education, Serious games, Gamification, Educational

neuroscience, Pillars of learning.

* Extended version of Lamrani R., Abdelwahed E.H., Chraibi S., Qassimi S., Hafidi M. (2018) Gamification

and Serious Games Based Learning for Early Childhood in Rural Areas. In: Abdelwahed E. et al. (eds) New

Trends in Model and Data Engineering. MEDI 2018. Communications in Computer and Information

Science, vol 929. Springer, Cham.

340 Lamrani et al.

1. Introduction

Several studies have reported that early childhood education has a high impact on the

child's socialization, development, and academic success. It also significantly impacts

the socioeconomic outcomes of individuals. Indeed, early childhood is a critical and

important stage where children acquire and develop their social and cognitive skills,

self-esteem, and perception of the world. Early childhood education is an important and

fundamental stage of learning. It is considered as one of the most effective ways of

providing future generations with necessary skills and competencies needed to succeed

in future labor markets.

Cognitive science claims [13] that learning requires being attentive, engaged,

receiving and consolidating information, and giving immediate feedback. However, the

basic traditional education does not respect these basic concepts. For example, it is

insufficient in terms of direct learning. Also, it decreases the child's motivation by

enforcing a preset program and a fixed learning structure to follow. Consequently, the

children are not given the choice to take the lead in choosing the content to be learned.

Therefore, it decreases the child’s motivation, creativity, innovation, then their attention

which implies less engagement and knowledge acquisition.

It is more difficult to motivate the education of children living in rural areas of

Morocco. Young girls are more deprived of schooling than boys living in disadvantaged

areas due to the difficult living conditions (the lack of basic infrastructures, schools

located far-away from the residential areas, etc.), poverty and lack of knowledge in their

familial environment. Our challenging project ties in with many Moroccan

organizations working to combat child school dropping by motivating their early

education and raising awareness in rural areas. In fact, children intuitively learn through

playing and interacting with others in a stimulating environment. It maintains their

motivation, increases their interactions and their choice making.

Actually, recent educational neuroscience researches show that the best way to teach

children is through playing, getting their attention, their engagement, receiving feedback

and consolidating their skills [12]. Early years education should provide children with a

rich variety of play activities and challenging experiences in a stimulating environment.

Indeed, play is an essential activity for children to enhance their creativity and learning

skills. The Playful behaviour can be considered as an exploratory and knowledge-

building element [1]. Besides, playing at a younger age improves our capabilities to deal

with real-life situations and interacting with the real world [2]. For children, playing is

the natural way to improve their future skills starting from their early age [3]. When

they play, they use plenty of their senses to capture and acquire diverse information and

extend their knowledge about their environment. Moreover, children will develop new

skills and abilities (e.g., talking, thinking, etc.) through playing. Also, playing provides

children with the opportunity to boost their attention span, learn to get along with

others, cultivate their creativity and address their social, emotional and cognitive needs.

But also, it develops children's main academic skills like language and mathematics. In

fact, learning through playing is a pedagogical strategy that is increasingly used in

education [37]. The play mechanics create interactive and fun experiences for the

learning player. Indeed, playing allows children to choose their activities and establish

their own ways of doing things. Consequently, it enables them to control their learning

and making new challenges.

 Authors’ Instructions 341

Nowadays, the evolution and development of Information and communication

technologies (ICT) improve the quality of education. It enables a broadcast of the same

content through internet. In our case, it will rapidly widespread the diffusion of digital

pedagogical materials and allow teachers and learners to access them online especially

those living in rural areas. Serious games, IoT, virtual reality, cloud computing and

many other emerging technologies offer the possibility to develop innovative learning

solutions like the mobile and pervasive learning systems.

Our aim is to make use of ICT emerging technologies to develop a playing-based

learning approach that relies on the fundamentals of neuroscience and Montessori

pedagogical principal. In the conventional learning approach, teachers and students are

attached to two separate worlds (the pre-digital generation and the digital generation).

This explains the children’s preference for digital games than traditional ones. In this

regard, our aim is to make use of digitalization and emerging technologies to augment

serious games based on the pedagogical aspect of the Montessori approach.

This paper presents a methodological approach that uses serious games based on the

cognitive of playing and Montessori educational method in order to offer a research-

based solution that makes playtime more stimulating and educational for children.

The rest of the paper is organized as follows: the early childhood education benefits

are described in Section 2. Section 3 provides explanation where educational

neuroscience meets early childhood. Section 4 depicts the concept of learning through

play including the Montessori educational approach. The gamification and serious

games based learning for early childhood containing our proposed approach are

described in Section 5. The implementation and the experimentation results of our

developed serious games are described in Section 6. Finally, the conclusion and future

directions are delineated in Section 7.

2. Early childhood education benefits

The preschool prepares young children for the elementary education. It is considered an

instructive period in the grounding of concepts and constant ideas [32]. During this

phase, different experiences influence outcomes across the entire course of an

individual’s life. Children, who grew up in a rich and supportive environment, are more

likely to achieve their full potential and achieve optimal physical, cognitive, linguistic

and socio-emotional development. In addition, young children mostly benefit from

childhood enrichment program of intellectual activities, emotional reactions, and

behaviors. Consequently, an early childhood education quality can provide essential

experiences for the child’s brain development, therefore, have a direct effect on his

cognitive abilities and future learning capacities [6].

2.1. Long-lasting benefits of preschool

Nowadays, studies conducted in the United States [9, 10] and in the United Kingdom

[11] have shown a positive relationship between childcare quality and child’s

development outcomes. These studies have assessed the quality, quantity, and the type

of childcare at regular intervals. The Cost, Quality, and Outcomes study found that there

342 Lamrani et al.

is a positive relationship between preschool quality and children’s language and

mathematical abilities. The results of the NICHD ECCRN study, covering over 1,300

children from 10 sites from birth, indicated that high-quality care is related to better

cognitive outcomes, less impulsivity, and better social competencies at 4.5 years of age

[10]. The preschool phase helps the children to strengthen the beginning of learning and

success. One of the main good education practices:

• Socialization: It represents a serious matter to familiarize children with others

and strengthen their exchanges. It also allows children to overcome their

shyness and increase their social interactions.

• Concept of Cooperation: It enables sharing, coordinating, and adopting a

comfortable learning condition.

• Passion for Lifelong Learning: Lessons should be given in a fun and

stimulating way that cheers children up to be more attentive and engaged on

their learning process.

• Confidence and Self-Esteem: It offers positive thinking and confidence for

children.

• Develop literacy and numeracy skills: children learn by tuning in to stories,

discussing pictures and drawing shapes. For example, they learn numeracy

abilities by singing and playing music. The proficiency and numeracy abilities

in the preschool affect the child’s scholastic achievement.

3. Where educational neuroscience meets early childhood

Neuroscientists have shown that the brain has a great capacity to adapt to the demands

of its environment: Plasticity [7]. Neuroscience includes all the fundamental disciplines

necessary to explore the anatomy and functioning of the nervous system, and more

specifically, the brain. Over the past fifteen years, this new discipline has continued to

progress in understanding the functionalities of the brain and its surroundings. In fact,

while brain sciences deal with the processes underlying learning, education aims to

apply them in real life and more particularly in school life. However, although there are

obvious bridges between these two disciplines, neuroscience is in the process of being

used in the education realms. Neuroscience synergizes with other disciplines, have

broadened our understanding of the brain in a way that is highly relevant to educational

practices [12]. Cognitive science has identified at least four key factors as pillars of

learning processes and pedagogical strategies [13] [14]. Actually, good learning

involves attention, active engagement; feedback and consolidation (see Fig.1).

Attention mainly modulates brain activity. It is the gateway for learning that enables

children to be focused on choosing and processing relevant information. In the play-

based learning approach, the materials should avoid children to stay stuck and be

distracted from their primary tasks. The main objective is to capture and draw the child's

attention on relevant levels through ludic, ergonomic pedagogical materials. The

 Authors’ Instructions 343

challenge, therefore, is to focus the attention of children during their learning by

inhibiting undesirable behaviours.

Fig. 1. Foundations of the proposed approach.

A passive learner does not learn. The active engagement of the learner underscores

his curiosity and denotes his abilities to be maximally attentive, active, and predictive.

Thus, we should take into account making learning conditions reasonably challenging

that are neither easy nor difficult but adequate to the learner's context. This should

paradoxically lead to increase engagement and cognitive efforts, which means improved

attention. As a matter of fact, preserving commitment means that the teacher must avoid

giving a long lecture, but involve the children, test them frequently, guide them while

allowing them to discover certain aspects by themselves, and reward systematically

their curiosity rather than discourage it.

During the learning activities, the child should have the possibility to test himself the

reliability of his knowledge. The feedback of information is essential and the difference

with the made prediction generate an error signal that would contribute to correct and to

improve the following prediction. Indeed, to err is human. Far from being a fault or a

weakness, the error is inevitable but also necessary and fertile even indispensable in

learning situations. Better an active child who is wrong and learns from his mistakes,

than a passive child. Further, the consolidation considered as knowledge automation

where the brain achieves automation. Consolidation is the act of passing from conscious

treatment with an effort, to automated unconscious treatment and the challenge is to

accomplish the transfer from explicit to implicit.

Correspondingly, the child learns by his emotional intelligence [15] [16], then

develops a link with his teacher, which makes him learn more words and operations. As

344 Lamrani et al.

soon as it grew, he should be initiated at the intelligence logic, which must be

implemented by single organizations and visual methods.

4. Learning through Play

4.1. Play in different ways

There are different types of play that correspond to each stage of a child's learning

progress.

Exploratory play: using physical skills and sensations to learn about materials and their

properties.

Constructive play: using objects and materials (e.g., blocks, playdough, collage

materials, sand and water) enhances their creativity, recognition and solving problems.

Creative play: using open-ended materials such as art materials and natural materials

to encourage fluency, flexibility, originality, imagination, and making novel

connections.

Socio-dramatic play: involves interaction and verbal communication with one or

more play partners regarding the play event.

Physical locomotor play: a range of fine or gross motor skills are practiced involving

all kinds of physical movements.

Language or word play: incorporates rhyme, wordplay and humor.

Play in early childhood performs an important role in learning. It is significant in

cognitive, psychomotor, emotional, social development, and so on. The most commonly

applied pedagogies are Piaget’s constructivism [2] and Vygotsky’s Zone of Proximal

Development [17]. For the Piaget’s constructivism, a child is motivated by their

curiosity to acquire their knowledge through their experiences and other’s influences.

Moreover, the co-operative social interaction of children with adults, promotes

cognitive, and affective development. The Zone of Proximal Development (ZPD) as

proposed by Vygotsky [17] enables problem solving under adult guidance or

collaboration with more skilled peers. One of the main approaches using play to learn is

Montessori. Actually, many applications of constructivist and learning discovery mainly

use Montessori materials.

4.2. The Montessori educational approach

The Montessori educational method has been created by Dr. Maria Montessori in a poor

neighborhood in Rome in 1907. Maria Montessori (1870–1952) was qualified among

the first women to a medical doctor specialized in psychiatry and pediatrics in Italy. She

worked with children with intellectual disabilities, she had an important insight that they

did not require medical treatment to learn but rather an appropriate pedagogy. She

achieved fostering her pupils' self-construction and learning on several stages of

development by engaging with self-directed activities within a prepared environment.

 Authors’ Instructions 345

She continued improving her pedagogy based on a scientific approach of

experimentation and observation for 45 years. Since its initiation, the Montessori

approach has attracted international interest and has spread around the world [37].

Montessori’s educational method has two important aspects: The learning materials;

And the self-directed nature of children’s engagement with those materials [37, 38].

• Each piece of material covers a concept to be learned, containing a self-

correction control, and having a learning process starting from the concrete to

the abstract concepts.

• The learning material triggers a self-directed nature of the child's engagement

with those materials to enhance the learning process under the teacher’s expert

guidance. For example, the child-led manner is expressed through his self-

selection and repeated engagement.

This method potentially benefits from enhancing the development of the learning

process compared to the teaching of the conventional classroom [39]. Arguably, Lillard

and Else-Quest [40] is the most robust evaluation of the Montessori method so far [37].

When the Montessori educational method is rigorously implemented in a school, it

fosters social and academic skills equally or better than those fostered by non-

Montessori schools [40]. The authors [44] conducted a study of 172 children in

Montessori and conventional school classrooms, where the Montessori classrooms

performed best on a wide array of social-emotional and academic dimensions. Indeed,

well-implemented Montessori classrooms have superior outcomes than conventional

ones [45].

4.3. Benefits of Play

A review of more than 40 studies found that play is significantly related to creative

problem solving, co-operative behaviour, logical thinking, IQ scores, and peer group

popularity. Play enhances the progress of early development from 33% to 67% by

increasing adjustment, improving language and reducing social and emotional problems.

Playing occupies a considerable amount of children's daily time and energy. Some of

benefits of play are listed below:

Building imagination and ability, during play, kids typically mimic adults and build

make-believe games that widen their imagination.

Psychological feature Growth, free play has an effect on confidence, intelligence and

communication.

Group Interaction, Group play develops the necessary skills improving self-control

and group integration.

346 Lamrani et al.

5. Gamification and Serious Games Based Learning for Early

Childhood

5.1. Gamification and Serious Games

Gamification aims to transform systems, activities, organizations, and services to a

system that uses the characteristics of game elements [33]. Gamification is a well-

known technique in education, organization engagement, crowdsourcing, commerce,

information retrieval, and so on [34, 35]. It is practical to improve learning processes

especially the learners' motivation [36]. Gamification techniques are benefiting from

advances in ICT. Applications of gamification span a wide range including healthcare,

marketing, management and recruitment, as well as learning and teaching. The relation

between education and gamification is on the rise by making use of learning activities as

a subject to gamification.

The intention is therefore to motivate and involve learners in becoming active

participants in their own learning process. In essence, the pedagogical experience is

transformed into an educational challenge by the use of badges offered in case of

achievement, scoreboards, progression levels and missions. All of these game elements

are integrated to support the learner in achieving their goals and learning objectives. In

summary, gamification uses game mechanics to transform the educational experience

into an effective learning process.

A serious game is a computer application that combines with consistency, both

serious aspects such as learning, or communication intent, with playful springs from the

video game like collaboration, competition and strategy [26, 27]. Actually, their main

use aims to improve users’ skills, engagements and performances [28, 29].

The term "serious gaming" has been used since the 17th century. Serious games were

introduced in the 1970s due to the efforts of pioneers like Clark Abt. The author [52]

published a book entitled Serious Games where he describes the possible uses of games

to learn and simulate situations. He uses the term with reference to card and board

games and role-playing games.

Three main criteria, "G/P/S model", are used for serious games classification [30]:

• G: Gameplay that incorporates all the mechanisms used through the game

rules, player and the game connection, challenges, and so on.

• P: Purpose represents the hidden information on the functions that go beyond

the entertainment provided by the designed games.

• S: Sector, the areas of applications covered by the "Serious Game".

Relevant serious games applications have recently been developed in different

domains including education, training, well-being, advertisement, cultural heritage,

interpersonal communication, and healthcare. Advances in gaming technologies allow

the real-time interactive visualization and simulation of realistic virtual heritage

scenarios, such as reconstructions of ancient sites and virtual museums [18]. Many

research contributions are directed towards taking advantage of the success of video

 Authors’ Instructions 347

games and using them for the benefits of the educational domain [19]. Also, there are a

few research studies and projects that use serious games in the context of preschool to

develop the children's abilities and academic skills in mathematics and languages [20,

21].

In fact, serious games have been used in several domains such as, Tourism [47] to

add value in tourism marketing and management; Energy assumption [48] to positively

influence consumers about their energy assumption. Education [46] where using games

shows positive effect during the learning process by gathering a survey of players using

only two learning games. The authors [49] propose the use of didactic games to improve

the arbitrary memory for preschoolers. Other authors [43] introduce an intervention

program that uses voices and detects gestures to teach colors and shapes to preschoolers.

Another research study [50] aims to use online gamification to promote academic

dissemination. Recent approaches [41, 42, 43] consider applying serious games on

education, our proposal also considers the children's cognitive developments through

playing. Indeed, Montessori educational fundamentals are supported by the current

psychological research [45].

Based on Montessori pedagogical principal and the four pillars of learning, our aim is

to develop a proposed approach that provides children serious games in rural areas.

5.2. Proposed approach

As it was mentioned above, one of the motivating challenges is to elaborate pertinent

solutions addressing the problem of dropping out school in early childhood. In this

context, we have initialized a project aiming to develop innovative solutions to deliver

an accessible early childhood education. Our goal is to eliminate the inequality in the

matter of education and create real opportunities for children, in particular young girls,

in rural areas to have access to education.

The pedagogical method we adopted within our project is based on Montessori

approach [22, 23,24]. It states that the purpose of early childhood education is to raise

the motivation of children in learning.

The Montessori approach distinguishes five categories of activities and skills to

develop (see Fig.2). We aim to develop some serious games enhancing the child’s

learning, such, mathematics and science skills, reading and spelling and so forth.

348 Lamrani et al.

Fig. 2. The montessori approach main activities and skills.

This approach proposes the main learning activities and skills. During learning

activities, the child should be autonomous and be mainly motivated by its natural

curiosity. The fundamental principles of our approach are described as follows:

Fig. 3. Proposed approach structural diagram.

* The child's activity is initiated by his own will and not by his companion's

instructions.

* Repetition of manipulation allows the child to respond to his curiosity and his

personal pursuit.

* The most important part is to learn by doing. The child is encouraged to learn by

practicing.

 Authors’ Instructions 349

* The child absorbs the impressions given by his environment by offering a rich

atmosphere of experiences.

Furthermore, the serious games developed in our project are aligned to the

Montessori approach and with respect to the pillars of learning reflecting the

educational cognitive science point of view. Indeed, errors are considered as phases of

the game and do not prevent children from acquiring skills. In addition, immediate

feedback ensures the quality of what they have learned, which is a very important factor

for effective learning.

6. Implementation

6.1. Architecture and application

The developed serious games can be used in a group of children either in the context of

online learning or blended learning that joins traditional classroom methods. They are

accessible using a mobile device like a smartphone, a pad or a desktop (see Fig. 4).

Presently, we have implemented more than twelve serious games integrating different

Montessori Approach’s main activities and skills. Below, we present some examples of

developed serious games (Tables 1, 2, and 3). Our proposed play-based solution offers a

pervasive learning within mixed aged children.

Fig.4. Main Architecture.

350 Lamrani et al.

Table 1. Serious games concerning the language and the numeracy skills development.

Activities and skills : Language Activities and skills : Numeracy

Development Skills

Game goal and Guidelines: This game

help kids recognizing a letter, numbers shapes,

associate them with phonic sounds, and put

their alphabet knowledge to use in fun

exercises. It has the same pedagogical goal

and it is aligned with the entitled games “The

phonetic alphabet” and “Identifying

alphabets” in Montessori .

Game goal and Guidelines: This game is

about numbers and how to use them and

apply some basic mathematical operations

with quantities (using fruits). This game has

the same pedagogical goal and it is aligned

with the entitled game “Addition using

numerals” in Montessori.

Table 2. Serious games concerning the senses and the life skills improvement.

Activities and skills : Developing the

senses

Activities and skills : Life Skills

Game goal and Guidelines: This

game teaches the kid the colors, their

spelling and their phonetic sound. This

game has the same pedagogical goal

and it is aligned with the entitled game

“Discovering colors” in Montessori

theory.

Game goal and Guidelines: This

game shows the child the importance

of brushing teeth. It has the

same pedagogical goal and it is aligned

with the entitled game “Cleaning teeth”in

Montessori theory.

 Authors’ Instructions 351

Table 3. Serious games concerning Science and geography skills development.

Activities and skills : Introducing

geography

Activities and skills : Introducing

language

Game goal and Guidelines: This

game teaches the child the continents,

the countries and their location by

making their first experience of

geography as concrete and fun.

This game has the same

pedagogical goal and it is aligned with

the entitled game “Introducing a globe

and map “ in Montessori theory.

Game goal and Guidelines: We can use

this game as a starting point to introduce

and practice several things at once (how

to say the names of the letters and about

all the sounds of each letter, etc.).

Children learn by observing, listening and

imitating.

6.2. Evaluation

We have focused on integrating points explained bellow to develop a set of interactive

serious games. The first one concerns the cognitive development by considering the

children’s activity to enhance their intelligence progresses.

The developed serious games promote learning through the children’s experiment,

exploration, learning from mistakes, then understanding and repeating. Experiencing

new way of leaning triggers and activates their neurotransmitters. We have applied our

developed serious games on a group of children having different ages (4 – 6) from

different rural areas as shown below in Table 4.

Table 4. Experimental results.

Identified factors average Motivation

Numeracy Skills
• Recognizing letter, numbers

shapes, and associate them

with phonic sounds.

4.2 3

• How to use numbers to apply

some basic mathematical

operations.

4.3 3

Life Skills • Teaching the correct way to

brush their teeth.

4.1 4

352 Lamrani et al.

Child’s speech and

language development

• Introducing basic French

vocabulary, such as the

alphabet, colours, names, and

so on.

4.2

3

• Correcting the alphabet

spelling.

4.4 2

Geography development • Teaching children the names

of continents.

4.8 4

The evaluation has been conducted evaluating 30 children (40 % girls and 60 %

boys). Thereafter, we have collected the serious games’ sored tracking in order to

analyze the results. At the meantime, and to obtain their reactions, a “stakeholder

feedback session” has been done.

The evaluation considers the instruction of the research study [25]. We have targeted

two indicators. The first is the amount of work performed (it is measured based on the

number of completed games’ levels) and the second one is based on the accumulated

knowledge (resulting from each feedback session). We focus on a certain learning

topics; we developed our solutions including the learning activities and skills. For the

evaluation, we used a scale from 1 to 4, where {1 = “boring”; 2 = “so-so”; 3 = “fun”,

and 4= “awesome”} to measure the children’s learning skills and feedback to the serious

games. Based on the results and tracks gathered during the "feedback session", we were

impressed by the final rendering, a perfect understanding of the content in a short

period.

A score is assigned at each accomplished game’s level, varying from 1 to 5, in fact,

the game does not display scores but rather a reward, which is represented by an

interactive cartoon character.

7. Conclusion and Perspectives

Play is crucial to the development of social, emotional, linguistic and intellectual child's

abilities. It is a great way to discover the world and flourish. In reach of playing, the

child flavour more confident, autonomous and have more pleasure to acquire new

academic skills (mathematics, language, etc.) and social aptitudes (confidence,

communication, etc.). All along playing and doing fun actions, he would be more

motivated and curious to discover the world around him while adopting a positive

attitude towards action.

In addition, play contributes to the shaping of the child's identity through creativity.

Playing is exploring the world outside, having the freedom to decide. It’s the place for

unique experiences, area of innovation and inventiveness. It’s also, consociates children

with their imagination, parents and their surroundings.

Education through play, also known as edutainment, is a combination of education

and amusement. The idea is to enlighten and empower the child by incorporating

learning into various forms of diversion such as television programs, computer games,

and multimedia programs or even through music. The over-the-top decade has seen a

tremendous increase in digital game-based learning, with the flourishing and rising

 Authors’ Instructions 353

prevalence of smart phones and tablets reshaping learners' expectations. As a result, the

use of digital pedagogical materials offers stimulating learning environments are

becoming increasingly desirable.

Nowadays, African countries present a significant number of dropping out of school,

in particular in preschool. This is due to several reasons, such as poverty, growth tuition

fees as well as the lack of security. Learning starts at birth, and the first six years are for

discovering and exploring. Indeed, a strong beginning in the early years provides

individuals with the best and fairest chance to reach their fullest potential. Therefore, it

would be essential for gathering all efforts to find innovative solutions to deliver an

accessible education allowing a gapless learning. Correspondingly, the use of Serious

Games by advantage of their specificities (amusement, divertissement and interactivity),

in both formal and informal curriculum, presents encouraging results. It would impact

classical learning methods, especially in early childhood education.

In this paper, we have presented our propositions and contributions to assure the

development of the children’s early learning, in particular in rural areas. In fact, access

to preschool is the main factor for individuals’ school success and thus social and

economic development of the countries. For early childhood, we propose a Montessori’s

Method based serious games solution. We developed several serious games according to

an agile method. We have identified some factors for the assessment of our solution,

and respectively, the experimentation is carried out on a specific children group from

different regions, in order to evaluate the acceptance and usefulness of our approach.

What we expect in the near future, is that our approach and solution will have great

flexibility and will meet the needs of a large scale of children. Another challenge that

we try to face is about the youth unemployment problem in Northern Africa. To treat

the scourge of youth unemployment, we project to capitalize on the outcomes of the

actual project to develop a pervasive collaborative system to enhance Northern African

youth entrepreneurship through gamification [31].

In future perspectives, we aim to construct an educational recommender system [51]

that uses child-players feedbacks for suggesting learning pathways of serious games that

fit in as much as possible with the profile and motivation of the learners. As well as

working on other evaluation aspects, e.g. evaluating the children's reasoning

improvement.

References

1. Assaf, T.: La place des jeux traditionnels dans l'EPS : analyse socio-historique de 1891 à nos

jours; le cas de la Gironde (2010). Available: http://www.theses.fr/2010BOR21708 (current

May 2019)

2. Piaget, J.: Play, Dreams and Imitation in childhood. New York: W. W. Norton & Company.

(1952)

3. Sheridan, M., Howard, J., Alderson, D.: Play in Early Childhood. Routledge, London (2011)

4. Landry, S.H.: The role of parents in early childhood learning. In: Tremblay, R.E. (ed.)

Encyclopedia on Early Childhood Development (2014)

5. Erola, J., Jalonen, S., Lehti, H.: Parental education, class and income over early life course

and children’s achievement. Res. Soc. Strat. Mobil. 44, 33–43 (2016)

6. Torkel, K.: The Learning Brain: Memory and Brain Development in Children. Oxford

University Press (2012)

354 Lamrani et al.

7. Kolb, B., Gibb, R.: Brain plasticity and behaviour in the developing brain. Journal of the

Canadian Academy of Child and Adolescent Psychiatry, 265–276 (2011)

8. Thompson, R., Nelson, C.: Developmental science and the media: Early brain development.

American Psychologist. 56, 5-15 (2001)

9. The Children of the Cost, Quality, and Outcomes Study Go To School, Available :

http://fpg.unc.edu/sites/fpg.unc.edu/files/resources/reports-and-policy-

briefs/NCEDL_CQO_technical_report.pdf. (current May 2019)

10. Early Child Care and Children’s Development in the Primary Grades: Follow-Up Results

From the NICHD Study of Early Child Care. American Educational Research Journal. 42,

537-570 (2005)

11. Sylva, K., Siraj-Blatchford, I., Taggart, B., Sammons, P., Melhuish, E., Elliot, K., Totsika,

V.: Capturing quality in early childhood through environmental rating scales. Early

Childhood Research Quarterly. 21, 76-92 (2006)

12. Sigman, M., Peña, M., Goldin, A., Ribeiro, S.: Neuroscience and education: prime time to

build the bridge. Nat. Neurosci. 17, 497–502 (2014)

13. Dehaene, S.: Cognitive foundations of learning in school-aged children. Collège de France.

Available: https://www.college-de-france.fr/site/en-stanislas-dehaene/course-2014-

2015.htm. (current May 2019)

14. Jacob B. Feiler, Maureen E. Stabio: Three pillars of educational neuroscience from three

decades of literature, Trends in Neuroscience and Education, Volume 13, Pages 17-25,

(2018)

15. Raver, C., Garner, P., Smith, D.: The roles of emotion regulation and emotion knowledge for

children’s academic readiness: are the links causal? In: Planta, B., Snow, K., Cox, M. (eds.)

School Readiness and the Transition to Kindergarten in the Era of Accountability, pp. 121–

147. Paul H Brookes Publishing, Baltimore (2007)

16. Eggum, N., et al.: Emotion understanding, theory of mind, and prosocial orientation:

relations over time in early childhood. J. Posit. Psychol. 6, 4–16 (2011)

17. Vygotsky, L. S.: Mind in society. Cambridge, MA: MIT Press, (1978)

18. Neto, J., Silva, R., Neto, J., Pereira, J., Fernandes, J.: Solis’Curse - a cultural heritage game

using voice interaction with a virtual agent. In: 2011 Third International Conference on

Games and Virtual Worlds for Serious Applications (2011)

19. Muratet, M., Torguet, P., Jessel, J., Viallet, F.: Towards a serious game to help students learn

computer programming. Int. J. Comput. Games Technol. 2009, 1–12 (2009)

20. Nikiforidou, Z., Pange, J.: Shoes and squares: a computer-based probabilistic game for

preschoolers. In: Procedia - Social and Behavioral Sciences, vol. 2, pp. 3150–3154 (2010)

21. Schuurs, U.: Serious gaming and vocabulary growth. In: De Wannemacker, S., Vander-

cruysse, S., Clarebout, G. (eds.) ITEC/CIP/T 2011. CCIS, vol. 280, pp. 40–46. Springer,

Heidelberg (2012)

22. Lillard, A.: Preschool children’s development in classic montessori, supplemented

montessori, and conventional programs. J. Sch. Psychol. 50, 379–401 (2012)

23. Alvarez, C.: Les lois naturelles de l’enfant. Les Arènes (2016)

24. Pitamic, M.: Teach Me to Do it Myself: Montessori Activities for You and Your Child.

Barron’s Educational Series (2004)

25. Leutenegger S., Edgington J.: A games First Approach to Teaching Introductory

Programming In SIGCSE ’07 : Proceedings of the 38th SIGCSE technical symposium on

Computer science education, 115-118, (2007)

26. Djaouti, D.: Serious Games pour l’éducation: utiliser, créer, faire créer? Tréma 44, 51–64

(2016)

27. Wattanasoontorn, V., Boada, I., García, R., Sbert, M.: Serious games for health. Entertain.

Comput. 4, 231–247 (2013)

28. Giessen, H.: Serious games effects: an overview. Procedia - Soc. Behav. Sci. 174, 2240–

2244 (2015)

 Authors’ Instructions 355

29. Lamrani, R., Abdelwahed, E.H.: Learning through play in pervasive context: a survey. In:

IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA),

Marrakech, pp. 1–8 (2015)

30. Alvarez, J., Damien, D.: An introduction to Serious game Definitions and concepts, In

Proceedings of the Serious Games & Simulation Workshop,Paris, 10-15, (2011)

31. Lamrani, R., Abdelwahed, E.H., Chraibi, S., Qassimi, S., Hafidi, M., El Amrani, A.: Serious

game to enhance and promote youth entrepreneurship. In: Rocha, Á., Serrhini, M.,

Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and

Communication Technologies. Advances in Intelligent Systems and Computing, vol. 520, pp.

77–85. Springer, Cham (2017).

32. Arbianingsih, Rustina, Y., Krianto, T., Ayubi, D.: Developing a health education game for

preschoolers: what should we consider? Enfermería Clínica, 28, 1–4 (2018).

33. Huotari, K., & Hamari, J.: A definition for gamification: Anchoring gamification in the

service marketing literature. In: Electronic Markets, 27(1), 21–31, (2017).

34. Warmelink, H., Koivisto, J., Mayer, I., Vesa, M., & Hamari, J.: Gamification of production

and logistics operations: Status quo and future directions. In: Journal of Business

Research. (2018).

35. Morschheuser, B., Hamari, J., Maedche, A.: Cooperation or Competition - When do people

contribute more? A field experiment on gamification of crowdsourcing. In: International

Journal of Human-Computer Studies (2018), doi: 10.1016/j.ijhcs.2018.10.001.

36. Chung, chih-hung & Shen, Chun-Yi & Qiu, Yu-Zhen.: Students' Acceptance of Gamification

in Higher Education. In: International Journal of Game-Based Learning. (2019)

37. Chloë Marshall: Montessori education: a review of the evidence base. In: npj Science of

Learning volume 2, Article number: 11 (2017)

38. Lillard, A. S.: Preschool children’s development in classic Montessori, supplemented

Montessori, and conventional programs. J. School Psychol. 50, 379–401 (2012).

39. Montessori, M.: The Discovery of the Child. In: Clio Press, Oxford, UK, 1912/1988.

40. Lillard, A. S. & Else-Quest, N.: Evaluating Montessori education. In: Science 313, 1893–

1894 (2016).

41. Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J.:

Putting education in “educational” apps: Lessons from the science of learning. In:

Psychological Science in the Public Interest, 16(1), 3-34, (2015).

42. Johnson, T. M., Ridgers, N. D., Hulteen, R. M., Mellecker, R. R., & Barnett, L. M.: Does

playing a sports active video game improve young children's ball skill competence? In:

Journal of Science and Medicine in Sport. (2015).

43. Lai, N. K., Ang, T. F., Por, L. Y., & Liew, C. S.: Learning through intuitive interface: A case

study on preschool learning. In: Computers & Education, 126, 443–458, (2018).

44. Lillard, A. S.: Preschool children’s development in classic Montessori, supplemented

Montessori, and conventional programs. In: Journal of School Psychology, 50, 379–401,

(2012).

45. Lillard, A. S.: Rethinking Education: Montessori’s Approach. In: Current Directions in

Psychological Science, (2018).

46. Juho Hamari, David J. Shernoff, Elizabeth Rowe, Brianno Coller, Jodi Asbell-Clarke, Teon

Edwards.: Challenging games help students learn: An empirical study on engagement, flow

and immersion in game-based learning,. In Computers in Human Behavior, Volume 54,

Pages 170-179, ISSN 0747-5632, (2016).

47. Feifei Xu, Dimitrios Buhalis, Jessika Weber.: Serious games and the gamification of tourism,

Tourism Management, Volume 60, Pages 244-256, ISSN 0261-5177, (2017).

48. Daniel Johnson, Ella Horton, Rory Mulcahy, Marcus Foth.: Gamification and serious games

within the domain of domestic energy consumption: A systematic review, Renewable and

Sustainable Energy Reviews, Volume 73, Pages 249-264, ISSN 1364-0321, (2017).

https://doi.org/10.1016/j.chb.2015.07.045

356 Lamrani et al.

49. Elena V. Bateneva.: Arbitrary Memory Improvement in Older Preschoolers Using Didactic

Games, Procedia. In: Social and Behavioral Sciences, Volume 233, Pages 259-263, ISSN

1877-0428, (2016).

50. Ming-Shiou Kuo, Tsung-Yen Chuang.: How gamification motivates visits and engagement

for online academic dissemination – An empirical study. In: Computers in Human Behavior,

Volume 55, Part A, Pages 16-27, ISSN 0747-5632, (2016).

51. Sara Qassimi, El Hassan Abdelwahed, Meriem Hafidi and Rachid Lamrani.: A Graph-Based

Model for Tag Recommendations in Clinical Decision Support System. In: The 8th

International Conference on Model and Data Engineering MEDI 2018, pp. 292-300,

Marrakesh, Morocco, October 24-26, (2018).

52. Abt, Clark C.: Serious games .Viking Press New York. (1970)

Rachid LAMRANI holds a Master degree in Computer science from ENSET

Mohammedia, Morocco. He is currently a PhD student in the Department of Computer

Scienc, Laboratory of Computer Systems Engineering (LISI) at Faculty of Semlalia,

University Cadi Ayyad Morocco. His current researches include Educational

Technology, Serious Games, Gamification and Applications, Contextual and Ubiquitous

learning, Learner engagement. He is the author and co-author of peer-reviewed

scientific publications related to his research interests.

El Hassan ABDELWAHED holds a Ph.D. in Computer Science and Robotics from

Montpellier II University France and Doctorat d’Etat in Computer Science from Cadi

Ayyad University Morocco. He is currently a full Professor of computer science a Cadi

Ayyad University and affiliated professor at Mohamed VI Polytechnic University in

Morocco. He was the Head of the Computer Science department from 2005 to 2009 and

the director of the Laboratory of Computer Systems Engineering (LISI) since 2015. His

research interests include Data Science, Context-aware systems, Educational

Technology, Machine Learning, Recommender systems and their applications (Industry

4.0, Disruptive innovation & Smart Education, etc.). He was program chair and a

member of the program committee member of international and National Conferences

and Workshops. He actively contributes in promoting research in Morocco where he

supervises several Ph.D. students and organizes conferences and workshops. He is the

author and co-author of peer-reviewed scientific publications related to his research

interests.

Received: May 11, 2019; Accepted: September 20, 2019

https://doi.org/10.1016/j.sbspro.2016.10.120
https://doi.org/10.1016/j.chb.2015.08.025

CIP – Каталогизација у публикацији

Народна библиотека Србије, Београд

004

COMPUTER Science and Information

Systems : the International journal /

Editor-in-Chief Mirjana Ivanović. – Vol. 17,

No 1 (2020) - . – Novi Sad (Trg D. Obradovića 3):

ComSIS Consortium, 2020 - (Belgrade

: Sigra star). –30 cm

Polugodišnje. – Tekst na engleskom jeziku

ISSN 1820-0214 (Print) 2406-1018 (Online) = Computer

Science and Information Systems

COBISS.SR-ID 112261644

Cover design: V. Štavljanin

Printed by: Sigra star, Belgrade

	proba2
	proba
	Korice Vol 17 No 1
	002 - Unutrasnja korica 2020
	_ComSIS_17_1_naslov_sadrzaj
	A_Editorial
	B_Guest Editorial

	A_681-1810
	Introduction
	Background
	AGM Solution
	AGM Framework Architecture
	AGM meta-model
	Data view
	User interface view
	Process view

	AGM representation
	Interpretation principles

	Implementation and Evaluation
	Data persistence
	Action Scripting Language Implementation
	Defining AGM models
	Reusable components
	Performance considerations
	Reference application
	Evaluation

	Limitations
	AGM limitations
	Research methods limitations
	Construct validity
	Internal and external validity
	Conclusion validity

	Related Work
	Concluding Remarks

	proba

	C_684-1811
	Introduction
	Related work
	Host-Based DMM
	Network-Based DMM

	SDN-Based Distributed Mobility Management
	SR-DMM solution
	SR-DMM: Initial registration
	SR-DMM: Handover operation

	Analytical model
	Signaling cost evaluation
	Packet delivery cost evaluation
	Numerical results

	Experimental evaluation
	Conclusions

