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Abstract. As global traffic continues to grow, the identification of areas of particu-
lar significance, known as Zones of Interest (ZOI), becomes crucial for optimizing
transportation systems and analyzing mobility patterns. In the maritime domain, ef-
fective ZOIs discovery is essential for enhancing route planning, improving safety
measures, and managing resources efficiently. Within the context of trajectory min-
ing, these ZOIs provide valuable insights into movement behaviors and operational
efficiencies. In this paper, we present a framework for discovering and annotating
ZOIs within maritime trajectories. The proposed approach involves processing raw
positional data to initially identify candidate ZOIs, which are subsequently refined
using contextual information. By leveraging real georeferenced vessels trajectories,
collected from thousands of commercial ships, this framework proposes a structure
of elements that will be implemented as part of the TNTM French project. While
this research contributes to maritime field by providing a method for ZOIs discov-
ery and annotation, it can be generalized to various application domains that may
leverage of mobility data analytics.
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1. Introduction

Trajectory mining or trajectory data mining is an interdisciplinary research area that
focuses on analyzing and extracting knowledge from trajectory data, which comprises
spatio-temporal information collected from moving objects, such as GPS logs, mobile
phone signals, and surveillance cameras. Trajectory mining has been widely applied in
various domains, such as transportation, urban planning, social network analysis, or envi-
ronmental monitoring.

For the specific maritime transportation domain, as global traffic continues to grow,
accounting for over 80% of transportation transactions worldwide [6], the characterization
of vessel trajectories is an activity of major importance.

In this paper, we focus on specific points of a trajectory, that is, Zones of Interest
(ZOI). A ZOI denotes a geographical area that attracts particular attention for various
reasons, such as significant events, research endeavors, or specific actions aligned with
stakeholder priorities.

⋆ This paper is an extended paper of the published DC paper ”Automatic Discovery of Zones of Interests with
Maritime Trajectory Mining” in ADBIS2023 conference
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In the maritime domain, ZOIs are essential for optimizing routes, assessing risks, and
identifying commercial opportunities. For instance, maritime carriers can leverage ZOI
knowledge to evaluate risks related to weather conditions or illicit activities and capitalize
on commercial prospects like servicing booming ports or supplying raw materials.

The increasing availability of GPS data and the proliferation of Location-Based Ser-
vices have enabled the extraction of valuable insights from trajectory data. Effective ZOI
discovery within maritime trajectories can lead to significant benefits, such as identify-
ing optimal docking locations, which is vital given the high costs associated with boat
docking. This can significantly impact overall trajectory expenses [12], allowing mar-
itime operators to strategically allocate resources and minimize unnecessary expenses
[5]. Moreover, ZOI discovery contributes to optimizing trajectories, enhancing efficiency,
and reducing fuel consumption. Adherence to site-specific environmental and security
regulations, such as constraints on pollutant emissions (e.g., CO2, NO2, SO2) and the
designation of protected areas, further underscores the importance of ZOI knowledge.

Given the significant role that ZOIs play in maritime trajectories, it is crucial to de-
velop a methodology for their automatic discovery and labeling. This paves the way for
the semantic annotation of trajectories, leading to a better understanding of maritime ac-
tivities and improvements in maritime transport efficiency through a data-driven approach.

In this paper, we describe a framework for the discovery, description, and annotation
of ZOIs within maritime trajectories. This framework is developed as part of the TNTM
project [10] which aims to optimize the transportation system and address environmen-
tal concerns in line with the International Maritime Organization’s strategy for reducing
Greenhouse Gas emissions from ships [8]. The methodology behind the framework is
data-driven, relying on raw trajectory data mining and contextual metadata for ZOI label-
ing.

The rest of this paper is organized as follows: In Section 2, we outline the research is-
sues and define formally a ZOI. In Section 3, we review related works in the field. Section
4 offers a detailed description of the framework, emphasizing its structure and compo-
nents. We discuss a simple use case to demonstrate the main benefits of our framework in
Section 5. Finally, Section 6 concludes the paper by highlighting ongoing work and future
research directions.

2. Problem statement

Formally, a ZOI can be defined and modelled as an extension of the Open Geospatial Con-
sortium (OGC) features data model [11], representing spatial objects that are significant
for various stakeholders. In the maritime domain, ZOIs include not only areas within the
sea but also coastal objects such as ports, oil and fuel stocking tanks, and other related
infrastructures. A ZOI comprises two essential dimensions: the physical or spatial aspect
and the logical or contextual representation. The first dimension involves defining and
delineating the geographical area of interest, capturing its spatial boundaries. The con-
textual aspect provides descriptive insight into the activities corresponding to the ZOI.
Hence, there is a necessity for a solution that encompasses both the physical and logical
representations of ZOIs, ensuring an effective approach to ZOI discovery and annotation.

Figure 1 illustrates the ZOI data model, an extension of the OGC features data model,
defining a ZOI and highlighting its physical and contextual dimensions.



Maritime Trajectory Mining: An Automatic Zones of Interests Discovery... 1965

Fig. 1. ZOI data model extended from OGC features model

Framework Overview To meet the spatial and contextual dimensions of a ZOI cri-
teria, we propose a threefold framework to process and transform raw maritime spatio-
temporal trajectory data, collected from vessels and/or containers, into ZOI-wise trajec-
tory data where every ZOI is annotated. In the first step we identify crucial stop points
from raw trajectory data, which delineate primitive boundaries shapes of ZOIs. These
shapes are then used to retrieve surface metadata from Volunteered Geographic Informa-
tion (VGI) sources, such as OpenStreetMap1 (OSM). OSM is particularly valuable due to
its extensive and continuously updated geographic database. Finally, we use this contex-
tual data to refine the ZOIs shapes and classify the activities they represent. The whole
process is detailed in Section 4.

Challenges To develop this framework effectively, we face three primary challenges
categories:

1. ZOI Discovery:
Locating ZOIs within spatio-temporal trajectory data and accurately constructing
their shapes is complex due to the dynamic nature of maritime activities. Factors
such as swell waves, port management tasks, dock activities, changes in vessel paths,
and weather conditions contribute to this complexity.
Challenge examples: Locating ZOIs within trajectory data ; Delineating precise ZOI
boundaries due to their dynamic nature

2. ZOI Annotation:
Classifying the types of activities within ZOIs is another challenge. Indeed, classifica-
tion requires a basis, and to our knowledge, no public ZOI types database exists. Thus,
we need to construct a database of annotated ZOIs to unlock benefits like optimized
docking costs, improved trajectories, reduced shipping emissions, and enhanced lo-
gistical ecosystems.

1 https://www.openstreetmap.org

https://www.openstreetmap.org
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Challenge examples: Classification based on semi-structured data ; Utilizing unla-
belled data for training ; Identifying possible ZOI types and classes

3. Contextual Data Quality:
Collecting contextual metadata from VGI sources, such as OpenStreetMap, presents
quality issues [9], including lack of usable data, imprecise forms, missing tags, het-
erogeneity of tags, and ’expansionist’ relationships. Preparing a tag dataset for ZOI
classification based on their tags poses additional challenges, such as selecting repre-
sentative zones and processing tags manually or semi-automatically.
Challenge examples: Inconsistencies in data representation and tagging ; Challenges
in ensuring data accuracy and completeness ; Heterogeneity in data quality and tag
distribution across different regions

3. Related work

Trajectory mining as discussed is widely applied in various domains, such as transporta-
tion, urban planning, social network analysis, environmental monitoring, etc. Within this
broad context, the discovery and analysis of ZOIs have not gained yet significant attention
in trajectory mining, despite their potential applications across various fields. This section
delves into existing literature related to ZOI discovery and comparable studies that par-
tially address this topic, discussing the gaps and challenges that our proposed framework
aims to address.

To the best of our knowledge, the literature does not provide works specifically dedi-
cated to the discovery and annotation of ZOIs. Most of the existing works focus on stops
detection within trajectories, which can imply that a stop represents a significant point
in the trajectory. However, stops alone do not necessarily indicate meaningful places or
ZOIs, as they lack contextual semantics and do not specify the nature or type of these
places. Despite the emphasis of these works on stops extraction within trajectories, we
propose a comparative analysis to highlight the gaps targeted by this work. This frame-
work not only identifies ZOIs but also precisely delineates their physical boundaries and
annotates them with contextual information, specifically targeting the maritime domain
where there is a lack of on-ground data to aid in context, classification, and annotation of
ZOIs.

The SMoT model [1] enriches trajectories with semantic geographical information
by extracting moves and stops using predefined geometries on the ground. This method
efficiently identifies moves and stops, enriching trajectory data with semantic information.
However, SMoT relies on predefined geometries, limiting its adaptability. An improved
version, CB-SMoT [14], extracts additional stops not considered by SMoT as long as they
do not necessary intersect with the predefined regions. While CB-SMoT enhances SMoT
by identifying more stops, it remains dependent on predefined geometries.

Trajectory analysis using the Mobility Context Cube [13] integrates some contextual
data, precisely points of interest opening hours, with extracted stops to classify real stops
from fake ones using an SVM classifier. This approach effectively combines limited con-
textual data with trajectory analysis but does not address the precise spatial shape of ZOIs
or extensive contextual dimension. This work primarily focuses on urban mobility con-
texts.
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The framework proposed by Bisone [3] for extracting the operational behaviors of
emergency vehicles using GPS data to optimize fleet management and route planning. It
focuses on optimizing operational behaviors and utilizes GPS data to identify vehicles
activities based on operational contexts. However, this work relies on physical devices
installed inside the emergency vehicles - such as handbrake detection for instance - to ex-
tract stops, more precise shapes and contextual identification of ZOIs. This highly impacts
the framework adaptability and applicability to other cases or scenarios as it is specifically
limited to emergency vehicles’ data.

DJ-Cluster [15] extends the DBSCAN algorithm to extract significant locations or
ZOIs based on trajectory data by introducing density-joinable clusters. This method is
effective for identifying significant locations using density-based clustering but focuses
solely on spatial aspects, neglecting temporal, precise ZOI shape and contextual dimen-
sions.

ST-DBSCAN [2] considers both spatial and non-spatial aspects of data to extract
stops within trajectories. It integrates non-spatial dimensions with spatial data, providing
a more comprehensive approach to stop extraction. Despite this, it lacks focus on precise
ZOI shape delineation and lacks contextual data integration for annotation. Similarly, T-
DBSCAN [4] combines temporal and spatial dimensions to mine stops from trajectories.
While effective in combining temporal and spatial data for stop extraction, it does not
address precise ZOI shape delineation or contextual information integration.

This Paper presents an extended and refined version of our previous work on trajec-
tory mining and ZOIs discovery [7], introducing a matured and enhanced framework that
addresses several gaps in the related works. Table 1 offers a summarized view of the re-
lated works drawbacks, and presents how our framework benefits from each of the related
works. Our framework addresses the gaps identified in the existing literature by provid-
ing comprehensive ZOI discovery, precise spatial shape determination, contextual aspect
identification, and cross-domain adaptability, without relying on information from prede-
fined ZOIs. This integrated approach ensures an effective solution for ZOI detection and
classification within spatio-temporal trajectory data. While the description of our frame-
work is tailored for maritime data in this paper, the methodology is broadly applicable to
various transportation domains, including vehicular and pedestrian trajectories.

4. Framework Proposal

In this section, we present an extended version of our previous framework [7], designed
to identify ZOIs within trajectory data. While this work mainly focuses on the maritime
domain, the framework is adaptable across different domains. Our approach includes sev-
eral steps to detect, outline, and classify ZOIs efficiently. By combining raw trajectory
data with contextual on-ground information and industry expertise, we aim to improve
the accuracy and precision of ZOI detection and characterization. Our framework unfolds
in three phases:

1. Extraction of starts and stops from trajectory data. We use a custom density-based
algorithm, that we name STC-DBSCAN (see 4.1), to extract stop points within raw
vessels and/or containers trajectories. Then, we conduct a second clustering layer to
identify the most important stops areas, which form the initial shape of the ZOIs.
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Table 1. Benefits and limitations of related works

Work Stop
Extraction

Precise ZOI
Spatial Shape

Contextual
Aspect

Cross-
Domain

Non-
Predefined
ZOI Info

SMoT [1] ✓ ✓ ✓
CB-SMoT [14] ✓ ✓

Mobility Context
Cube [13]

✓ ✓

Emergency
Vehicles Activity
Identification [3]

✓ ✓ ✓ ✓

DJ-Cluster [15] ✓ ✓ ✓
ST-DBSCAN [2] ✓ ✓ ✓
T-DBSCAN [4] ✓ ✓ ✓

This Framework ✓ ✓ ✓ ✓ ✓

2. Context retrieving and ZOI shape refinement. We leverage the constructed shapes
to retrieve on-ground contextual data from open geographical base, particularly, Open-
StreetMap (OSM). More specifically, we extract textual metadata (OSM tags) asso-
ciated with all the objects located within or intersect with the initial ZOIs shapes. We
then refine and construct a more realistic shape using the OSM objects’ polygons.

3. ZOI description and annotation. We use the textual content of OSM tags to create a
ZOI classification model. We then run all the extracted ZOI into this model to describe
and annotate them.

The overall framework is depicted in Figure 2. For clarity, a simplified view of the
framework is provided. Each step, indicated by a colored rectangle, is detailed in its cor-
responding subsection. The threefold splitting ensures a comprehensive approach to ZOI
detection, refinement, and annotation, leveraging trajectory data, on-ground contextual
data, and domain-specific knowledge.

4.1. Step 1: start/stop detection

The initial step of the framework involves detecting start and stop points from raw trajec-
tory data, followed by a clustering process to extract the initial shapes of ZOIs. This step
employs two algorithms, each designed to achieve one of the aforementioned objectives.
The process of Step 1 is depicted in Figure 3.

Start & Stop detection To extract stops positions from raw trajectory data, we lever-
age the STC-DBSCAN algorithm, which we previously introduced in [7]. As described
in Algorithm 1, STC-DBSCAN extends the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) method to identify potential stop points based on density. It
subsequently refines these points by evaluating their density levels and temporal charac-
teristics to distinguish between genuine stops and slowdown areas.

DBSCAN is a well-known clustering algorithm used to identify clusters of varying
shapes and sizes in spatial data. It regroups points that are closely packed together while
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Fig. 2. ZOI Discovery and Annotation Framework

Fig. 3. Framework Step 1 : Start & stop detection

marking points that lie alone in low-density regions as outliers. By examining the den-
sity of data points in a given neighborhood, DBSCAN can effectively detect clusters and
distinguish noise, making it suitable for applications where the data contains clusters of
arbitrary shapes and noise.

Although the STC-DBSCAN algorithm has not yet undergone formal testing, we have
initiated the development of a benchmark. Our objective is to compare our algorithm’s
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Algorithm 1: Brief representation of the SpatioTemporal Clustering - DBSCAN
Algorithm (STC-DBSCAN)

Data: T : trajectory points, t1 : spatial threshold, t2 : temporal threshold
Result: ST : Trips, S : Stops
if consecutive points are within the threshold distance then

Delineate stop zone beginning;
else

Delineate the end of stop zone if already initiated, then start a trip
end
for ( each stop zone z ) {

if z represents high density (BboxDiagDistance < t1) && (cumulatedTime in z > t2)
then

Validate the stop zone
else

Represents a slowdown area in the current trip
end

}

performance with that of several well-known algorithms in the context of start-stop ex-
traction from raw trajectory data.

Stop positions clustering After extracting stops from all trajectories, we proceed to a
clustering phase to identify areas of high stop density. Using the extracted stops as input,
we apply the DBSCAN algorithm to cluster regions with concentrated stop occurrences,
as the DBSCAN is suitable to construct clusters of arbitrary shapes. This step is crucial
because individual stops within a trajectory do not necessarily indicate the existence of a
ZOI. The reasons for individual stops can vary widely and may not always signify areas of
importance. However, by identifying clusters with high stop density, we can more reliably
locate areas likely to represent ZOIs. This allows us to establish the initial shape of the
ZOI.

4.2. Step 2: Context retrieving and ZOI shape refining

Through the first step of the framework, we have identified areas of significance within
maritime trajectories. These areas may be offshore (vessels paths or stops for instance), or
on the coast (docking, container loading or unloading for instance). These zones hold sig-
nificance, yet lack clear identification or identity. While their importance is evident, they
require human intervention to ascertain their precise nature each time they are encoun-
tered. In order to enhance the discovery process and automate it, as well as to annotate
our ZOIs, we retrieve meaningful contextual data that can help in ZOI identification.

Furthermore, the stop position clustering algorithm from step 1 provides coarse ZOI
shapes. These shapes are determined by the raw trajectories dataset and hold two main
drawbacks : 1) the shapes are dependent of several maritime factors such as changes in
vessels paths or weather conditions, and 2) the shapes are not geographically refined as
they do not detect nor encompass human buildings such as ports or docks.

The second step of our framework aims to achieve such goals through VGI context
retrieving. The detail of this step is presented in Figure 4.
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Fig. 4. Framework Step 2 : ZOI shape refining

The second step is divided into two main processes. The first process, named ”step
2” in Figure 4 consists in implementing on-ground information retrieval over the initial
ZOI shapes extracted in step 1. This process runs queries on VGI resources to extract
contextual tags metadata, and precise polygons shapes. The second process, termed ”Sig-
nificant data extraction with NLP” involves constructing a list of keywords to facilitate
VGI querying and, subsequently, in sub-section 4.3, to establish a set of ZOI types or
classes. Each process is described in detail below.

VGI Context Retrieving To extract contextual metadata from the initial ZOIs, we
run customized queries over the OSM database using the Overpass API tool2. The API
retrieves relevant on-ground textual and geographical information (called tags), providing
valuable insights about the ZOIs. Additionally, we use this metadata to construct refined
ZOIs shapes using the actual OSM objects presents within these areas.

This process faces significant challenges due to data quality issues within the OSM
database as discussed in section 2. The structure of OSM data, consisting of nodes, ways,
and relations, does not consistently provide accurate logical representations of objects
and their relationships. For instance, while attempting to retrieve objects present within a
ZOI, the relations can expand extensively and retrieve irrelevant data and objects, posing
a significant risk if integrated into a larger system or environment for further processing.
We present an illustrative example in Figure 5. We consider a scenario where a small ZOI
inadvertently retrieves data encompassing the entirety of the Arabian Sea. This occurrence
illustrates the challenges of using such semi-structured data, especially the relation tags.
Such anomalies highlight the need for careful consideration and mitigation strategies to
address data quality issues effectively.

Significant Data Extraction with NLP To take up this challenge, we propose an
adapted workflow that enhances the overall framework and specifically targets this phase
and its issues. The main idea of this part is to build a list of keywords that specifically
target maritime objects or infrastructures, and to use this list as a filtration basis aimed at
restricting the scope of OSM queries research and their relations expansion.

2 https://overpass-turbo.eu

https://overpass-turbo.eu
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Fig. 5. Example of data quality issues

By incorporating specific keywords, we establish criteria that ensure only relevant
objects are retrieved using the OSM Overpass engine. This approach mitigates the risk of
extensive expansion caused by relations in the OSM data. By enforcing a requirement for
objects to contain at least one of the specified keywords, we streamline the query process
to prioritize the retrieval of useful data and mitigate quality issues. For instance, missing
tags in some objects, variations in tag presence across objects, and data heterogeneity
arising from multiple languages and regional verification practices.

To address these challenges, we propose a solution focused on the semi-automatic
generation of a keywords database. In an initial version of our framework, we suggest se-
lecting a representative sample of the largest and most active ports from the OSM dataset.
By conducting data profiling on these ports, we aim to extract statistics on tag usage to
identify consistent keywords indicative of port-related features. Additionally, while in-
dustrial keywords are essential, their indiscriminate usage may lead to inaccurate results
due to the widespread presence of industrial zones worldwide. Hence, careful selection
and refinement of keywords, along with tailored queries designed for OSM, are crucial
for effectively leveraging the dataset for ZOI discovery and annotation.

4.3. Step 3: ZOI annotation

The final part of our framework involves three main processes: the reconstruction, classi-
fication and annotation of the ZOIs. The detail of this step is presented in Figure 6.

ZOI shape reconstruction Through the filtration process from step 2, we identify
relevant on-ground objects inside a ZOI and extract their shapes. Then we merge the
initial ZOI shape with the shapes of these objects and create a refined and final shape that
accurately represents the ZOI.

With this final process we construct final ZOIs shapes that hold maritime and human
meanings. Infrastructures such as port, docks, terminals, canals, are added to the initials
ZOIs shapes, allowing a more precise contextual annotation of each ZOI.
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Fig. 6. Framework Step 3 : ZOI annotation

ZOI Classification The second process of this step consists in classifying each ZOI.
This classification process is done using a list of ZOI classes which is built from two
main sources. First, using the tags database from step 2, we conduct a clustering phase
to identify potential ZOI classes. These classes are then validated and refined through
expertise and business knowledge. In the TNTM french project, these classes will be
validated by the main maritime transportation authority leading the project.

Once a list of maritime ZOI classes, or types, are defined, we plan to use large lan-
guage models (LLMs) like BERT, embedding techniques such as Word2Vec or TF-IDF,
and various text classification methods to classify each ZOI. These methods will lever-
age the tags and data extracted from step 2 to predict the class of each ZOI, ensuring a
comprehensive and accurate annotation process.

ZOI Annotation At the conclusion of our framework, we merge the final shape of
our ZOI with its predicted class. This integration results in an annotated ZOI, offering
both spatial and contextual representation. Additionally, this annotation serves as valuable
feedback for enhancing the classification model iteratively and progressively.

5. Experiments

The experiments for this study are conducted using a set of maritime trajectory data from
the TNTM project. These data hold vessels and/or containers positions. Currently, our
framework effectively detects and delineates ZOIs, and extract OSM tags and shapes.
This section presents a simple use case with experimental results, focusing on demon-
strating the capabilities and outcomes of our framework through some ZOIs identification
examples.
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5.1. Initial ZOI Shape Construction

The first part of our framework involves detecting and extracting stops from trajectory
data and constructing initial ZOI shapes. Figure 7 illustrates this process with the STC-
DBSCAN algorithm. With a focus on the Jawaharlal Nehru port, India, we identify sig-
nificant stop points and delineate initial ZOI shapes from several raw trajectories. Sub-
figure 7a, represents different stops identified by the STC-DBSCAN algorithm. Rounded
points represent different vessels and/or containers positions, while star-shaped points
represent the detected stops. Sub-figure 7b represents the construction of the initial ZOI
shape using the DBSCAN algorithm over the detected stops. As we discussed in previous
sections, this shape is raw and do not encompass human activities and infrastructure. The
next steps consists in refining this ZOI shape to include the totality of the Jawaharlal
Nehru port infrastructures.

(a) Stops detected with STC-DBSCAN
algorithm

(b) Initial ZOI shapes extracted with
DBSCAN algorithm

Fig. 7. Stops detection and initial ZOI construction: example of the Jawaharlal Nehru
port

5.2. ZOI Shape Refinement and Context Retrieval

The second part of our framework refines the initial ZOI shapes using contextual data
retrieved from OSM. We extract textual metadata associated with the objects located or
intersect with the initial ZOI shapes and reconstruct more precise and realistic ZOI shapes.
Figure 8 illustrates two perspectives of the refined shape of the Jawaharlal Nehru port
ZOI, along with its retrieved description. On the left, sub-figure 8a displays the shapes
on a satellite map. We see the retrieved objects shapes related to the initial ZOI, such as
buildings, roads, as well as the docks where the ship are anchored. The pin-shaped objects
represent various ZOI-related OSM node objects, as also correspond to the defined stops
clusters within the ZOI. These objects contribute to constituting the final ZOI shape. In
sub-figure 8b, we see the descriptive texts of the ZOI. Here, for example, we display the
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textual information from the polygon presenting main shape of the Jawaharlal Nehru
port, providing further insights about the ZOI characteristics.

(a) Transportation Map View (b) OSM Tags descriptions

Fig. 8. ZOI shape refining using VGI Context Retrieving: example of the Jawaharlal
Nehru port

5.3. ZOI Annotation

The final part of our framework involves the classification and annotation of the ZOIs. By
utilizing the textual content of OSM tags, we feed a trained ZOI classification model to
classify and annotate the ZOIs. Sub-figure 8b depicts the retrieved contextual information
that aids in the classification and annotation of these ZOIs. The classification model is
currently under development, and we discuss this topic in the following subsection.

5.4. Discussion

The objective of this paper is to propose and demonstrate a framework for the discov-
ery and annotation of ZOIs. Although the benchmarking of the stop extraction algorithm
and the text classification model for ZOI classification are currently under development,
these are not the primary objectives of this paper. The main challenge in conducting an
extensive practical comparison study of the proposed framework is the lack of existing
frameworks in the literature that cover the dimensions of ZOI discovery and annotation
as comprehensively as ours. While individual components, such as the stop extraction al-
gorithm and the text classification model, can be benchmarked and compared to existing
literature, this paper focuses on demonstrating the overall framework for ZOI discovery
and annotation.
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The elements presented in this section highlight examples of the outcomes of our
framework in identifying and refining ZOIs within maritime trajectories. The precise
shapes and contextual descriptions of ZOIs are crucial for realizing the benefits men-
tioned previously. Future work will involve benchmarking the stop extraction algorithm
and the text classification model to further validate and enhance the proposed framework.

6. Conclusion

Analysis/mining ship trajectories plays a crucial role for various purposes such as pre-
venting vessel collision or optimizing vessel energy consumption, to cite a few.

This paper describes a machine-learning based approach and framework for the dis-
covery, refinement and annotation of Zones of Interest (aka ZOI) in a maritime trajectory.
Our approach integrates trajectory analysis with contextual data and business insights,
providing accurate and precise ZOI characterization. The framework consists mainly of a
three-step process: (1) extraction of stops to devise the initial ZOI shape, (2) shape refine-
ment by means of keyword-based contextual data retrieval, and (3) ZOIs’ classification
and annotation.

We believe this framework may bring a useful piece in the maritime trajectory mining
landscape, but also, in other mobility application domains. As a future work, we envision
benchmarking of the framework components and its deployment with real world data
vessel trajectories, supplied by the TNTM consortium.
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3. Bisone, Frédérick, Étienne, Laurent, Devogele, Thomas: Modélisation et extraction de la
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Abelló, A., Vassiliadis, P., Romero, O., Wrembel, R., Bugiotti, F., Gamper, J., Vargas Solar, G.,
Zumpano, E. (eds.) New Trends in Database and Information Systems. pp. 684–692. Springer
Nature Switzerland, Cham (2023)

8. International Maritime Organization: 2023 IMO Strategy on Reduction of GHG Emis-
sions from Ships. https://www.imo.org/en/OurWork/Environment/Pages/
2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.
aspx (2023), accessed on July 19, 2024

9. Kaur, J., Singh, J., Sehra, S.S., Rai, H.S.: Systematic literature review of data quality within
openstreetmap. In: 2017 International Conference on Next Generation Computing and Infor-
mation Systems (ICNGCIS). pp. 177–182 (2017)

10. Pôle Mer Méditerranée: Transformation Numérique du Transport Maritime. https:
//polemermediterranee.com/domaines-dactions-strategiques/
transformation-numerique-du-transport-maritime/ (2022), accessed
on July 20, 2024

11. W3C Group, OGC Document Number: OGC 15-107: Open Geospatial Con-
sortium (OGC) features data model. https://www.w3.org/TR/sdw-bp/
#spatial-things-features-and-geometry (2023), accessed on July 22, 2024

12. Wilmsmeier, G., Hoffmann, J., Sanchez, R.J.: The impact of port characteristics
on international maritime transport costs. Research in Transportation Economics 16,
117–140 (2006), https://www.sciencedirect.com/science/article/pii/
S0739885906160060, port Economics

13. Wu, T., Shen, H., Qin, J., Xiang, L.: Extracting stops from spatio-temporal trajectories
within dynamic contextual features. Sustainability 13(2) (2021), https://www.mdpi.
com/2071-1050/13/2/690

14. Xiu-Li, Z., Wei-Xiang, X.: A clustering-based approach for discovering interesting places in a
single trajectory. In: 2009 Second International Conference on Intelligent Computation Tech-
nology and Automation. vol. 3, pp. 429–432 (2009)

15. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personally mean-
ingful places: An interactive clustering approach. ACM Trans. Inf. Syst. 25(3), 12–es (jul
2007), https://doi.org/10.1145/1247715.1247718

Omar Boucelma is a full Professor in Computer Science at Aix-Marseille University. He
has a background in statistics (data analysis) and data management and has been conduct-
ing R&D projects in core databases and geospatial systems and applications. As part of his
international research and educational activities, he was a visiting research fellow at CU
Boulder, NUS Singapore and UNICAMP (Brazil). He has been involved in several French
and (DARPA) American research projects, involving academia and/or industry. His recent
works relate to geospatial entity matching, data streams and mobility data analytics.

Etienne Thuillier received a DUT (Technology degree) in computer sciences from the
IUT of Lannion, France, in 2010 and the title of engineer in computer sciences (M.S.
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