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Abstract. Aiming at the problems such as small key space and incomplete color
channel encryption in traditional image encryption, this paper proposes a novel im-
age encryption algorithm based on generative adversarial network (GAN) and DNA
dynamic encoding. This paper introduces GAN into random key generation, and
uses GAN to learn and train the random key generated by hyperchaotic system. A
parallel chaotic system is used to generate two sets of pseudo-random sequences,
and DNA dynamic encoding is introduced to further transform them to generate a
new sequence. The pixel-level diffusion and scrambling of images within and be-
tween channels are carried out by using random sequences. The experimental results
show that the randomness of GAN can significantly expand the key space, and the
proposed algorithm has significant advantages in the security and anti-attack ability
of ciphertext images.

Keywords: image encryption, generative adversarial network, DNA dynamic en-
coding, hyperchaotic system.

1. Introduction

Image has been widely used in Internet because of its characteristics of large amount of
information and convenient transmission. Due to the characteristics of parallel informa-
tion processing, optical information system has shown incomparable advantages of digital
information system in mass information processing, especially the more complex the im-
age processing and the more information, the more obvious this advantage. Night vision
technology uses the two conditions of low light and infrared light to convert the low light
or infrared light information invisible to the human eye from the target into visible light
that can be felt by the human eye through signal sensing, acquisition, processing and dis-
play technology [1,2]. Among them, low-light level TV and low-light night vision play
an important role in the monitoring of the enemy’s fixed targets and the warning and se-
curity of our important targets [3,4]. However, because the low-light level image contains
key information such as public security, military and space technology, the importance of
protecting low-light level image from malicious attacks has gradually become prominent,
and the encryption technology of low-light level image has been widely concerned by the
international academic circle. In addition, unlike the visible image, the low-light image
has complex noise, fuzzy texture characteristics, uneven illumination, low signal-to-noise
ratio and less gray level. The traditional visible image encryption technology directly uses
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the random sequence generated by chaotic system to encrypt, which has shortcomings in
security. With the deepening of the research, the security risks brought by the linear rela-
tionship of optical transformation are gradually exposed [5,6].

Chaotic systems are highly sensitive to initial values and control parameters, with
ergodicity, pseudo-randomness and unpredictability, so they have been widely used in
image encryption [7,8]. The nonlinear characteristics of chaotic systems can effectively
offset the security risks caused by linear transformations in optical encryption. However,
some chaotic based encryption schemes often have some shortcomings [9], such as short
cycle length caused by the limited precision of computers, which is one of the important
problems of chaotic key stream generators [10]. In order to solve the randomness and
security of keys, researchers have proposed many key generation schemes for chaotic
systems or various other technologies [11,12].

With the rapid development of artificial intelligence technology, deep learning has
been widely used in various fields of information security. Image information security in
the era of artificial intelligence has attracted more and more attention from researchers
[13]. Since generative adversarial networks (GANs) were first proposed in 2014 [14],
GANs have become a hot topic in computer vision [15], natural language processing, and
malicious attack detection [16]. Due to the randomness and difference of GAN training
results, this paper uses chaotic sequences as training sets and control generators to obtain
data samples with more randomness than chaotic sequences, so as to avoid problems such
as long iteration period and time consuming of high-dimensional chaotic systems. It can
obtain more random data samples than chaotic sequences, and speed up the generation
of key, which saves time for batch encryption of low-light level images, and can meet
the needs of real-time processing of low-light level images containing important military
secrets.

Chaotic systems began to be applied to image encryption in the 1990s. Since then,
image encryption based on chaotic system has been paid more and more attention. In re-
cent years, researchers are still committed to improving the rationality, practicability and
security of chaotic image encryption. Sekar et al. [17] designed an image encryption al-
gorithm based on Deoxyribo Nucleic Acid (DNA) sequence manipulation and space-time
chaos. The plaintext image was first converted into a DNA matrix and then scrambled.
After multiple DNA sequence operations, the resulting matrix was finally converted into
a ciphertext image. In 2019, using discrete chaotic mapping, Wang et al. [18] proposed an
image encryption algorithm based on DNA sequence manipulation. The algorithm scram-
bled DNA horizontally and generated ciphertext images by XOR of scrambles matrix.
In 2023, Li et al. [19] designed an image encryption algorithm using DNA computing,
chaotic system and hash algorithm, which carried out DNA-level scrambling and diffu-
sion of plaintext images. With the development of image encryption technology, there
are also researchers working on related cryptanalysis work. For scramble-only image en-
cryption algorithms, Wang et al. [20] proved that such encryption algorithms were not
secure. In 2018, for the hyperchaotic image encryption algorithm using DNA comput-
ing, Fang et al. [21] pointed out the rationality, practicability and security problems, and
cracked it through a selective plaintext attack. For the relevant tests that were often used
to evaluate the security of image encryption algorithms, Zhang et al. [22] confirmed that
these tests were only necessary conditions to ensure the security of the algorithm, but
not sufficient conditions. For the image encryption algorithm based on chaotic mapping
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and DNA coding, Yang et al. [23] simplified it into a substitution-scrambling structure
and used selective plaintext attacks to crack it. In addition, it was particularly noteworthy
that Singh et al. [24] reviewed some representative works in the field of image encryp-
tion and its cryptanalysis, and classified and summarized these works. More importantly,
they also pointed out some challenging problems in the field of image encryption and its
cryptanalysis.

There is no doubt that the problems identified in cryptanalysis work will be taken se-
riously by researchers when designing new image encryption algorithms. Therefore, the
cryptanalysis of image encryption algorithm can promote the development and perfec-
tion of image encryption technology. So a novel image encryption algorithm based on
generative adversarial network (GAN) and DNA dynamic encoding is proposed in this
paper.

2. Related Works

In view of the low efficiency and poor security of traditional encryption algorithms, re-
searchers have proposed many efficient image encryption algorithms based on the ran-
domness of low-dimensional chaotic systems [25]. However, the structure of
low-dimensional chaotic systems is too simple, which makes the generated pseudo-random
sequences vulnerable to attacks. Yu et al. [26] proposed an image encryption algorithm
based on the hyperchaotic system. The pseudo-random sequence generated by the hy-
perchaotic system had good randomness and wide range, which made the security of the
encryption method significantly improved compared with the traditional low-dimensional
chaotic system, but the image anti-attack ability was weak. Ouguissi et al. [27] intro-
duced scrambling methods such as Arnold transform and bit combination scrambling re-
spectively to improve security, but changing pixel positions did not destroy the statistical
characteristics of the original image, resulting in low anti-statistical attack capability of
the encrypted image. Wang et al. [28] put forward a synchronous scrambling diffusion al-
gorithm based on bit-plane decomposition technology. This method had good encryption
effect, but did not consider the problem of uneven distribution of bit-plane information.
Wei et al. [29] proposed a selective encryption method based on the bit-plane information
distribution. The algorithm had small computation, but had general security performance
and low key space.

2.1. Randomness of Neural Networks

An artificial neural network consists of a large number of neurons connected to each
other, each node represents a specific output function, and the connections between dif-
ferent nodes represent a weighted value of the signal passing through that connection. The
output of the network is determined by the connection mode, weight value and excitation
function of the network [30].

Suppose that the input X = (x1, x2, · · · , xn) is a vector of length n, and the output
Y = (y1, y2, · · · , yn) is the result of training the neural network. Ve and Ws are the
weights of the input layer and the output layer. Voe and W0,s are input and output errors
respectively. The forward training model of the neural network structure is:
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yi = g(w0,s +

n∑
j=1

Zj ·Ws,j). (1)

Where w0,s is the offset of the output layer. Ws,j represents the weight of the hidden
layer node j to the output layer. The calculation formula from the hidden layer to the
output layer is as follows:

Zj = F (Voe,j + xk · Ve,j). (2)

Where 1 ≤ j ≤ n, 1 ≤ k ≤ n. Zj represents the j − th hidden layer node. Voe,j

represents the bias of the j − th node. Ve,j represents the weight of the j − th node. In
order to make the network more powerful and generate a nonlinear mapping from input
to output, the activation function selects the nonlinear function F (θ) = tanh(0θ) so that
it can learn complex data. The training error is:

eri = yi − xi. (3)

The backpropagation gradient process is:
σ0,i = a · eri i = 1, 2, · · · , n

σh,j = Zj(1− Zj)

n∑
i=1

σ0,iWs,j k = 1, 2, · · · , n (4)

The training process iterates by updating each weight and bias by backpropagating
the gradient. Since there are many different neuron connections in a neural network, the
overall behavior of the network system depends on the characteristics of each neuron and
the interactions of different neurons. When the internal parameters of the neural network
are randomly initialized, the stochastic gradient descent algorithm ensures the training
randomization of different objects. Moreover, with the further complexity of the depth
and structure of the neural network, the complexity of the internal parameter combination
increases exponentially, which makes the parameter change of each neuron affect the
output of the whole network. According to this characteristic, the randomness of neural
network is used to further expand the random selection space of key and improve the
security of encryption algorithm.

2.2. The Generation of Chaotic Sequences

For the plaintext image P with size M×N , its hash value K is calculated by Keccak algo-
rithm [31] and equally divided into 32 bytes, that is, k1, k2, · · · , k32. Using the following
formula:

hi = ((kj+1 ⊕ kj+2 ⊕ kj+3) + kj+4 + kj+5 + kj+6)/256. (5)
x0 = x′

0 + 1 + abs(round(h1)− h1)

y0 = y′0 + 1 + abs(round(h2)− h2)

z0 = z′0 + 1 + abs(round(h3)− h3)

(6)
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The initial state values x0, y0, z0 of the chaotic system are calculated. Where, i =
1, 2, 3, y = 6(i − 1), ⊕ is the bitwise XOR operation. x′

0, y′0, z′0 are the given value.,
abs(r) is the absolute value of the parameter r, and round(r) is the rounding of the
parameter r. Input x0, y0, z0 into the Lorenz chaotic system to generate chaotic sequences
x, y, z. The used Lorenz chaos system is:

ẋ = a(y − x)

ẏ = −xz + bx− y

ż = xy − cz

(7)

System control parameter is (a, b, c) = (10, 28, 8/3). Finally, we adopt,
X = mod(floor(1010 × (x− floor(x))), N) + 1

Y = mod(floor(1010 × (y − floor(y))),M) + 1

Z = mod(floor(1010 × (z − floor(z))), 256)

(8)

Convert x, y, z to the sequence X , Y , Z. Where mod(r1, r2) is to perform modular
r2 operation on the parameter r1, and floor(r) is to round down the parameter r.

2.3. GAN Key Generation Method

The randomness of key has become an important factor affecting the security of cryp-
tosystem. GAN is a class of artificial intelligence algorithms for unsupervised machine
learning, which consists of two neural networks that compete with each other in a zero-
sum game framework [32].

min
G

max
D

v(G,D) = Ex∼pd
(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))))]. (9)

Where G is the generating network. D is the discrimination network. v(G,D) is the
loss function. x is the training set. Ex∼pd

is the distribution of the actual input data.
logD(x) is the judgment value of the discriminator. D(x) is the D network model used
to determine whether the actual data and training z are noise from the input G network
model. Ez∼pz(z) is the distribution of noise data. log(1−D(G(z)) is the judgment value
of the generated data. G(z) is the data generated for the G network model. Through
continuous game of maximum and minimum values, G network model and D network
model are optimized alternately until the two models reach Nash equilibrium.

Quantum dots and quantum cellular automata are novel nanoelectronic devices that
transmit information through coulomb interactions [33]. Compared with traditional tech-
nology, quantum cellular automata has the advantages of ultra-high integration, ultra-low
power consumption and leadless integration. In recent years, scholars at home and abroad
have used the structure of cellular neural networks and quantum cellular automata to
construct QCNN on the basis of Schrodinger equation. Due to the quantum interaction
between quantum dots, QCNN can obtain complex linear dynamic properties from the
polarizability and quantum phase of each quantum cellular automaton, which can be used
to construct nanoscale hyperchaotic oscillators. For a QCNN coupling two elements, it
can be described by the following differential equation:
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ġ1 = −2a1

√
1− g21 sinh1. (10)

ḣ1 = (−b1(g1 − g2) + 2a1g1 cosh1)/
√
1− g21 . (11)

ġ2 = −2a2

√
1− g22 sinh2. (12)

ḣ2 = (−b2(g2 − g1) + 2a2g2 cosh2)/
√
1− g22 . (13)

In the formula, g1, g2 are the polarizability. h1, h2 are the quantum phase. a1, a2 are
the proportional coefficients of the energy between the midpoints of each unit. b1, b2 are
the weighted influencing factors of the differences in the polarizability of adjacent units.
When a1 = a2 = 0.28, b1 = 0.7, b2 = 0.3, the system is in a chaotic state.

Because QCNN is a high order hyperchaotic system, the iteration speed is slow and
the computation is large. The hyperchaotic random matrix generated by QCNN is input
into GAN as the training set, and the random data is learned to be used as the secure GAN
key pool of the encryption system. The random numbers generated after training have
similar characteristics to the random numbers generated by the chaotic system, that is, the
new random numbers also have chaotic characteristics. The sensitivity is that when differ-
ent chaotic random sequences generated by QCNN with different initial values or control
parameters are used as learning objects, GANs will also learn and generate completely
different random numbers. However, the random numbers generated by GANs also have
some characteristics that are different from those of chaotic systems. For example, be-
cause the learning and training process is unsupervised, the generated random sequence
of numbers is not subject to human control, that is, it has non-repeatability. In short, GAN
key generation method can effectively improve the speed of key generation on the premise
of guaranteeing the key characteristics.

3. Proposed Image Encryption Method

The GAN key generation method is applied to a new low-light level image encryption
algorithm, and a 2-D coordinate pointer calculation method is designed. In each encryp-
tion, a specific location is calculated from the key pool using the plaintext related control
parameters and user-set parameters, and then different random sequences are obtained
from the key as scrambled keys. Only one scrambling encryption framework is given in
the description of the algorithm in this paper, but in practice each scrambling operation is
to set different operations related to plaintext and users, and the attacker cannot break the
encryption algorithm through known plaintext or select plaintext attacks.

The key generated by chaotic system is trained by GAN to obtain GAN key pool,
and two chaotic random phase masks are selected from GAN key pool for diffusion stage.
The overall encryption process is shown in Figure 1. RM1 and RM2 are two phase masks.
The original image is scrambled first, and then double random phase fractional Fourier
transform (FFT) [34] is performed to obtain the final ciphertext image.
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Fig. 1. Proposed encryption process

3.1. Pixel Replacement Based on DNA Dynamic Encoding

DNA dynamic encoding is performed on scrambled image T . Each pixel is encoded into 4
bases using different coding rules to obtain the DNA encoding sequence E. The encoding
rule Ri,j for each pixel depends on the location (i, j) of the pixel Ti,j and the sequence
Z.

Ri,j = (mod((i− 1)×N + j, 8)⊕mod(Z(i−1)×N+j , 8)) + 1. (14)

Where i = 1, 2, · · · ,M , j = 1, 2, · · · , N . The DNA sequence was downloaded from
the GenBank database and 4 ×M ×N bases are intercepted. DNA XOR operations are
performed on these bases with the DNA encoding sequence E. Finally, encoding rule is
used to decode the DNA of the operation result and reassemble it into an intermediate
ciphertext image I .

3.2. Pixel Row Diffusion

It reorganizes the sequence Z into an M×N matrix in a column-first manner. Row spread
operations are carried out in the direction of rows in the form of column vectors.

C ′
1 = I1 ⊕ IN ⊕ IN−1 ⊕ Z1

C ′
2 = I2 ⊕ C ′

1 ⊕ IN ⊕ Z2

C ′
i = Ii ⊕ C ′

i−1 ⊕ C ′
i−2 ⊕ Zi

(15)

Where, C ′
i is the i − th column of the middle ciphertext image C ′ obtained after the

row diffusion operation. Ii and Zi are columns I and Z, respectively, i = 3, 4, · · · , N .
Then the column diffusion operation is carried out to obtain the final ciphertext image C.

C1 = C ′
1 ⊕ C ′

M ⊕ C ′
M−1 ⊕ Z1

C2 = C ′
2 ⊕ C1 ⊕ C ′

M ⊕ Z2

Ci = C ′
i ⊕ Ci−1 ⊕ Ci−2 ⊕ Zi

(16)

Where Ci is row i− th of C obtained after the column diffusion operation. C ′
i and Zi

are row i− th of C ′ and Z respectively, i = 3, 4, · · · ,M .
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Case 1. When the chaotic sequence x is converted to sequence X , the modulus used
by the original formula (6) is 256, not the column number N of the image.

Analysis. X in matrix form is used to implement line-by-line scrambling of pixels.
Therefore, the Josef traversal variable step size should have a value range of [1, N ], not
[1, 256]. Otherwise, when N ≫ 256, the scrambling of pixels will be limited to a small
range. The same is true for the transformation of chaotic sequence y.

Case 2. The DNA encoding rule Rij is calculated according to the original formula
(14), and its value range is [0, 7]. In addition, the chaotic sequence element used in the
original formula (14) is Z(i−1)×N+1.

Analysis. According to Algorithm 1, the value range of the coding rule should be
[1, 8]. In addition, in order to maximize the randomness and dynamics of the encoding
rules, Z should be used more fully. Therefore, Rij should be calculated using Z(i−1)×N+j

in equation (14).

Algorithm 1 Pixel diffusion effect elimination algorithm
Input: the ciphertext image C with size M ×N .
step 1: When i ∈ [3,M ], it repeats operation C1(i, :) = C(i, :)⊕ C(i− 1, :)⊕ C(i− 2, :).
step 2: Execute operation C1(2, :) = C(2, :)⊕ C(1, :)⊕ C1(M, :).
step 3: Execute operation C1(1, :) = C(1, :)⊕ C1(M, :)⊕ C1(M − 1, :).
step 4: When j ∈ [3, N ], it repeats operation C2(:, j) = C1(:, j)⊕C1(:, j− 1)⊕C1(:, j− 2).
step 5: Execute operation C2(:, 2) = C1(:, 2)⊕ C1(:, 1)⊕ C2(:, N).
step 6: Execute operation C2(:, 1) = C1(:, 1)⊕ C2(:, N)⊕ C2(:, N − 1).

Case 3. The description of the diffusion process is inconsistent. In addition, if the
number of rows or columns in the input image is less than 4, the diffusion process will
not work properly.

Analysis. According to the display of row scrambling, it can be seen from the formula
(15) that the row diffusion is carried out in the form of column vectors. That is, at the
same time, the pixels on a column are correspondingly spread to other columns, which is
to spread the column in the direction of the row. When the formula (15) is explained in
the original paper, Pi also represents the i row of the image matrix. Similarly, columns
can be diffused using equation (15).

The problem of the diffusion process not working properly is discussed only N < 4;
M < 4 is similar. When N = 1, PN−1 in equation (15) is meaningless. When N = 2,
equation (15) degenerates to:

P ′
i =


(P2 ⊕Q1)mod256, i = 1

P1mod256, i = 2 (17)

Obviously, this is also the result of unreasonable and meaningless diffusion. When
N = 3, equation (15) degenerates into:
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P ′
i =


(P1 ⊕ P3 ⊕ P2 ⊕Q1)mod256, i = 1

(P2 ⊕ P ′
1 ⊕ P1 ⊕Q1)mod256, i = 2

(P2 ⊕ P ′
2 ⊕ P ′

1 ⊕Q3)mod256, i = 3
(18)

According to equation (18), diffusion is irreversible. So if it knows P ′ and Q, it can
only find P3, it can not find P1 and P2. In addition, the module 256 operation in equation
(15) is also redundant. Q2 should also be used when diffusing P2.

Case 4. GAN-DNADE downloads DNA sequences from the GenBank database and
intercepts 4×M ×N bases.

Analysis. To encrypt a plaintext image with a size of M × N , the encryptor must
obtain at least 4 × M × N bases securely from the GenBank database. The same goes
for the decryption party to complete the decryption. In other words, a plaintext image
with a size of M × N is transmitted through an insecure channel, and GAN-DNADE is
selected to achieve the encryption protection of the image, and both the encryptor and the
decryptor need to securely download at least the same length of data from a third party.
Obviously, this design makes encryption pointless. A reasonable design is to use a chaotic
system to generate the required base data.

Case 5. By simple processing of ciphertext images, the encryption structure can be
degraded from scramble-replace-diffusion structure to scramble-replace structure.

Analysis. As can be seen from equations (14) and (15), the diffusion process of GAN-
DNADE not only has the effect of pixel diffusion, but also has the effect of pixel replace-
ment caused by the difference with chaotic matrix Z. Since the ciphertext image C is
known, C ′

i ⊕ Zi can be obtained according to equation (16).

C ′
i ⊕ Zi = Ci ⊕ Ci−1 ⊕ Ci−2. (19)

Where i = 3, 4, · · · ,M . The same can be done for row 1 and row 2 as in equation
(20).


C ′

1 ⊕ ZN ⊕ ZN−1 ⊕ Z1 = C1 ⊕ (C ′
N ⊕ ZN )⊕ (C ′

N−1 ⊕ ZN−1)

(C ′
2 ⊕ Z2 ⊕ ZN = C2 ⊕ C1 ⊕ (C ′

N ⊕ ZN ) (20)

At this time, although C ′ can not be directly obtained, the pixel diffusion effect of the
column diffusion process can be completely eliminated, so that the processed ciphertext
only has the replacement effect generated by the XOR with Z. Similarly, the pixel dif-
fusion effect of the line diffusion process can also be eliminated, and finally a ciphertext
image with only pixel replacement effect can be obtained. At this point, GAN-DNADE
has degenerated into a scramble-replace replacement structure. However, the encryption
effect of continuous secondary replacement is no different from that of a single replace-
ment.

3.3. Multi-scale Feature Extraction and Fusion Module

In order to obtain more context information based on the existing image data and improve
the feature extraction effect in the image, according to the idea of ASPP (Atrous Spatial
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Pyramid Pooling) module, multi-scale features are extracted in parallel by using cavity
convolution with different expansion rates, and the extracted multi-scale feature maps are
fused. The specific structure of the multi-scale feature extraction and fusion module used
by the network in this paper is shown in Figure 2. In figure 2, k is the convolution kernel
size, s is the step size, p is the filling range, and d is the expansion rate. The features are
extracted by using cavity convolution with expansion rates of 6, 12, and 18 respectively. In
order to prevent the convolution degradation caused by excessive void rate, it is fused with
the features after global average pooling. The use of this module increases the receptive
field and obtains more context information, which helps to improve the feature extraction
ability of the model for boundary details.

Fig. 2. Multi-scale feature extraction fusion diagram

In this paper, the features of different scales extracted by different expansion rates are
spliced, and then 1×1 convolution is used to transform them into fixed-size feature maps.
Because of the fusion of features of different scales, the ability of the network to extract
features in the image is improved, and the loss of feature information is reduced, which is
conducive to the subsequent sampling and recovery of detail information on the decoder.

3.4. Attention Module

At present, image semantic segmentation networks based on deep learning usually adopt
multi-scale feature fusion or U-Net structure fusion of low-level and high-level seman-
tic features, without considering the relation and correlation between each position or
channel of feature map. Therefore, the network in this paper respectively conducts cor-
relation modeling for the location dimension and channel dimension of the feature map.
Firstly, Non-local [35] structure is used to achieve correlation modeling for the location
of the feature space. Then a Non-local structure is used to model the correlation between
channels, and the output results of the two modules are added and fused to obtain the
global dependency relationship between features, and improve the ability of the network
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to distinguish between normal organization areas, abnormal organization areas and back-
grounds. It improves the segmentation effect of the transition region between normal and
abnormal organization, and alleviates the adverse effects of void multiple on network
learning to a certain extent.

In order to make use of the correlation between features of different regions and en-
hance each other’s expression of their features, the network in this paper uses a modeling
method similar to that in Non-local to model the location, as shown in Figure 3. Firstly,
the correlation strength matrix between the features of any two points is calculated, that is,
the original feature A is convolved to obtain the feature B (dimension is (H ×W )×C ′)
and the feature C (dimension is C ′ × (H ×W )), and the matrix product is carried out to
obtain the correlation strength matrix between the features of any two points (dimension
is (H ×W ) × (H ×W )). After softmax normalization operation, the attention diagram
S of each position for other positions is obtained. The more similar the two features, the
greater the response value. The response value in the location attention map is used as the
weight to fuse the feature D, and the feature can be selectively enhanced or suppressed
by the correlation between pixels.

Fig. 3. Location attention module block diagram

For feature graph S ∈ RN×N ,

Sij =
exp(BiCj)∑N
i=1 exp(BiCj)

. (21)

Where, C is the number of characteristic channels. H and W are the height and width
of the feature graph. N = H ×W . S is the influence of the i− th position on the j − th
position, that is, the degree of correlation/correlation between the i− th position and the
j − th position, the larger the more similar.

Location attention module output feature map E ∈ RC×H×W :

Ej = α

N∑
i=1

(SijDi) +Aj . (22)

Where α is the scale coefficient, initialized to 0, and updated weights are assigned
by gradual learning. E is the weighted sum of all location feature similarity and original
location, with global context information.

The feature maps between different channels can be regarded as responses to specific
categories, and there are certain dependencies between different responses. In order to



1684 Xi Wang

model this dependency explicitly, inspired by the Non-local module, the network in this
paper conducts similar attention modeling for the channel dimension, as shown in Figure
4.

Fig. 4. Channel attention module diagram

By modeling the relationship between channels, the specific semantic response ca-
pability under channels is enhanced. The specific process is similar to location atten-
tion modeling, but the difference is that when obtaining the feature attention diagram
X ∈ RC×C , dimensionality transformation and matrix product of any two channel fea-
tures are performed to obtain the correlation strength of any two channels. The attention
diagram between channels is also obtained through softmax operation. The attention force
weighting between channels is used for fusion, so that each channel has a global associa-
tion, and the features of stronger semantic response are obtained. The specific calculation
process is as follows:

xij =
exp(AiAj)∑C
i=1 exp(AiAj)

. (23)

Ej = β

C∑
i=1

(xijAi) +Aj . (24)

Where C is the number of characteristic channels. H and W are the height and width
of the feature graph. xij is the influence of channel i on channel j. β is the scale coeffi-
cient, initialized to 0, updated by iterative learning, and the final output E is the weighted
sum of each channel feature and the original feature. In this paper, we strengthen the
sensitivity of the network to the boundary by means of intra-class feature response and
interclass feature suppression.

3.5. Cryptographic Analysis

Based on the above analysis, GAN-DNADE can be described as:

C = f3(f2(f1(P,K),K),K). (25)

Where f1(r1, r2) represents the scrambling operation of input image r1 under the
control of secret key r2. f2(r1, r2) indicates the replacement of r1 under the control of
r2. f3(r1, r2) indicates the diffusion operation performed on r1 under the control of r2.
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A simple processing of C can deform GAN-DNADE into a scramble-replace structure.
Therefore, equation (25) can be further simplified as:

C = f ′
2(f1(P,K),K). (26)

f ′
2(r1, r2) indicates the replacement of r1 under the control of r2. The following only

discusses GAN-DNADE with the pixel diffusion effect eliminated. The scrambling proce-
dure has no encryption effect on plaintext images with a single pixel value. For a plaintext
image with a single pixel value, equation (26) can be simplified as:

O = f ′
2(I,K). (27)

Where I represents the input plaintext image of a single pixel value. O indicates the
output ciphertext image. Therefore, f ′

2(r1, r2) can be determined using the plaintext im-
age with a single pixel value and its corresponding ciphertext image, that is, the equivalent
replacement matrix ES can be determined. Taking a plaintext image of size 2 × 2 as an
example, it uses the following formula:

P 0 =

[
0 0
0 0

]
(28)

and corresponding ciphertext image:

C0 =

[
c0,1 c0,2
c0,3 c0,4

]
(29)

It can determine the result of the replacement of 0 value pixel at each position. That
is, the 0 value pixel is replaced by c0,1 at (1, 1), c0,2 at (1, 2), c0,3 at (2, 1), and c0,4 at
(2, 2). Similarly, a plaintext image with a single pixel value of v = 1, 2, · · · , 255 and its
corresponding ciphertext image can be used to determine the replacement result of a pixel
with a value of v at each position.

P v =

[
v v
v v

]
(30)

Cv =

[
cv,1 cv,2
cv,3 cv,4

]
(31)

By stretching all Cv into one-dimensional row vectors and arranging them from top
to bottom, an equivalent replacement matrix is obtained for any ciphertext image of size
2× 2.

ES =


c0,1 c0,2 c0,3 c0,4
c1,1 c1,2 c1,3 c1,4

...
...

...
...

c255,1 c255,2 c255,3 c255,4

 (32)

Therefore, for any ciphertext image with a size of 2×2 and generated by K, the pixel
replacement effect can be eliminated by ES . Similarly, the above cryptanalysis procedure
can be applied to a ciphertext image of size M×N to construct an equivalent replacement
matrix of size 256× (M ×N).
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ES =


c0,1 c0,2 · · · c0,M×N−1 c0,M×N

c0,1 c1,2 · · · c1,M×N−1 c1,M×N

...
...

. . .
...

...
c255,1 c255,2 · · · c255,M×N−1 c255,M×N

 (33)

In the first example of ES , each pixel c∗i (i = 1, 2, · · · ,M × N) of any ciphertext
image is found, thus determining the value of each pixel before the replacement operation.
In this way, the pixel replacement effect of the GAN-DNADE can be eliminated, further
degrading it to only pixel scrambling effect. Scramble-only image encryption algorithm
has been proved to be insecure. In this paper, a simpler method is chosen to obtain the
equivalent scramble-matrix ES . First, replace the first 255 pixels of an all-zero valued
plaintext image of size M × N with 1, 2, · · · , 255. After obtaining the corresponding
ciphertext image, the pixel diffusion and replacement effect of the ciphertext image are
eliminated. The processed ciphertext image has only pixel scrambling effect, in which the
corresponding position of each non-zero plaintext pixel can be found. In this way, it is
possible to determine the position of the first 255 non-zero pixels of the plaintext image
after scrambling. Similarly, the position of the remaining M ×N − 255 plaintext pixels
can be determined after scrambling. The position of up to 255 pixels can be determined
at a time, so a maximum of floor(M × N/255) + 1 selected plaintext image and its
corresponding ciphertext image are required to determine ES .

As can be seen the above analysis, GAN-DNADE can be fully cracked using up to
256floor(M ×N/255)+1 selective plaintext images and their corresponding ciphertext
images. The following is a specific selective plaintext attack algorithm.

Algorithm 2 Selective plaintext attack algorithm
Input: To restore the ciphertext image C of the plaintext image, the size of which is M ×N .
step 1: When v ∈ [1, 256], it repeats operations:
(a) A plaintext image P v−1 with a single pixel value of v−1 is constructed, and its corresponding
ciphertext image Cv−1 is obtained by encryption.
(b) Calling the Algorithm 1 to eliminate the pixel diffusion effect of Cv−1, stretch Cv−1 into a
one-dimensional row vector, and let ES(v, :) = Cv−1.
step 2: Determine the number of plaintext image q required to obtain the equivalent scrambling
matrix EP .
step 3: When w ∈ [1, q], it repeats operations:
(a) Construct the w − th selected plaintext image Pw required for EP acquisition, and encrypt
to obtain its corresponding ciphertext image Cw.
(b) Calling the Algorithm 1 to eliminate the effect of Cw pixel diffusion.
(c) Using ES to eliminate the pixel replacement effect of Cw.
(d) Finding the corresponding position of each plaintext image non-zero value pixel in Cw and
save it to EP .
step 4: Algorithm 1 is invoked to eliminate the pixel diffusion effect of C and C2 is obtained.
step 5: Using ES to eliminate the pixel substitution effect of C2, C3 is obtained.
step 6: Using EP to eliminate the pixel substitution effect of C3, PR is obtained.
Output: Recovering plaintext images PR as well as ES and EP .
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3.6. Image Decryption Process

The decryption process is the inverse process of the encryption process, which is mainly
divided into three steps: pixel level inverse diffusion, reverse bit level scrambling dif-
fusion, and pixel level inverse scrambling of the image. When the receiver receives the
ciphertext image C ′, and the two sequences Z1 and Z2, the decryption process can be
implemented by following steps:

Step 1. Decompose the secret image C ′ to the three-color channel, denoted as CR,
CG and CB , splice the color channel image and carry out pixel-level inverse diffusion to
obtain the pixel matrix P . The pixel matrix is decomposed into 8 bit planes, and the bits
between bit planes are diffused in reverse bit level.

Step 2. The vertical reverse diffuses bits of the bit planes 2, 4, 6, 8, while the lateral
reverse diffuses bits of the bit planes 1, 3, 5, 7, converting bit-level bits to the pixel level.

Step 3. Channel image R is transformed by inverse Arnold to get PR, channel image
G is transformed by inverse Zigzag to get PG, channel image B is transformed by inverse
row and column to get PB , and finally three color channel images are merged to get
decrypted image.

4. Experimental Results and Analysis

Based on Pycharm 202.1 1.1 platform, three standard test images of 512 × 512 TIF for-
mat color Lena, Baboon and Peppers are selected for simulation test. Firstly, the proposed
algorithm is used to encrypt the test image. The three color plaintext images and corre-
sponding ciphertext images are shown in Figure 5. The encrypted image presents random
noise distribution and no meaningful information can be obtained visually, indicating that
the random effect of the encryption algorithm can ensure the security of ciphertext images.

4.1. Key Space Analysis

Key space refers to the value space of the key of the encryption algorithm. In order to
resist brute force attacks, the key space should be at least 2100 to ensure the security of
encryption [11]. In the proposed encryption algorithm, 156-bit key is required as the ini-
tial value to generate two chaotic sequences, so the corresponding key space is 2312. The
parameters of each neuron in the neural network, such as weight, bias and other informa-
tion, can be used as a key needed to encrypt an image. Since the weight of each neuron
ranges from negative infinity to positive infinity, in order to facilitate the calculation of
the key space, the weight of each neuron is quantified to a space of 256 sizes, so that
the increased encryption complexity of each neuron is 28. The number of neurons used
for training in this paper is 10, and each neuron has two weight information. Therefore,
the key space expanded by 2160 after neural network randomization, corresponding to the
increased key space of the two sequences is 2320. Therefore, the total key space of this
algorithm is 2632.

The advantage of adding GAN is that the processing of neural network is equivalent
to an extra layer of key protection. If the attacker cannot provide the training set, learning
rate and the initial weight set by the neural network during random initialization, it is im-
possible to obtain the same neural network, and then the correct scrambling and diffusion
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Fig. 5. Three test images and corresponding ciphertext images
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sequence cannot be obtained, and finally the decryption of ciphertext images cannot be
realized. At the same time, the number, weight, bias and other information of neurons
in the neural network will affect the size of the key space. The more neurons, the larger
the key space, the better the performance of resisting violent attacks. Table 1 shows the
key space comparison of several existing color image encryption algorithms. It can be
seen that the key space of the proposed algorithm is higher than that of other methods.
Therefore, the proposed algorithm has a better ability to resist brute force attacks.

Table 1. Key space comparison with different algorithms

Item Reference [36] Reference [37] Reference [38] GAN-DNADE

Key space calculation (1014)4 × 108 (1016)7 × 1015 × 1017 (252)10 (2156)2 × 2320

Key space size ≈ 2535 ≈ 2515 2520 2632

4.2. Histogram Analysis

The histogram of the image is mainly used to reflect the probability of each gray level in
the image, and is the main index to evaluate the ability of statistical analysis. The original
image distribution has obvious features, and the image encryption system should do its
best to eliminate these features and make the histogram of the encrypted image gently
distributed as much as possible.

Figure 6 shows the histogram of pixel distribution of Lena image before and after
encryption. Compared with the original image, the histogram distribution of the encrypted
three-channel image is uniform, indicating that the frequency of different pixels in the
ciphertext image is very close, and the distribution law of image pixels is difficult to
analyze, thus ensuring the ability of the algorithm to resist statistical attacks and known
ciphertext attacks.

4.3. Pixel Correlation Analysis

Usually digital images have strong correlations in horizontal, vertical, and diagonal di-
rections. In order to avoid statistical attacks, encrypted images must eliminate the strong
correlation of pixels in all directions to avoid attackers using channel correlation to restore
the channel image and then restore the original image. In the experiment, 1000 pairs of
horizontal, vertical and diagonal pixels of ciphertext three-channel images are selected to
test the correlation between their adjacent pixels. When the plaintext image has a high
correlation between adjacent pixels, the adjacent pixels of the plaintext three-channel im-
age are centrally distributed on the diagonal, and the correlation coefficient is close to
1; otherwise, the value is close to 0. Table 2 compares the correlation coefficients of the
plaintext images and their encrypted images of the four algorithms. Compared with other
methods, the correlation coefficients of the proposed algorithm in the horizontal, vertical
and diagonal directions of ciphertext images are significantly reduced, and the correlation
distribution further presents a random state, indicating that the proposed algorithm has
better encryption effect and scrambling performance in terms of pixel correlation.
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Fig. 6. Histogram analysis. (a) encrypted Lena image. (b) histogram of the red channel.
(c) histogram of the green channel. (d) histogram of the blue channel

Table 2. Correlation coefficients of adjacent pixels of plaintext/ciphertext images of four
algorithms

Image Method Horizontal vertical diagonal

Lena Raw image 0.9752 0.9869 0.9627
Lena Reference [36] -0.0002 -0.0023 -0.0021
Lena Reference [37] -0.0003 0.0006 -0.0068
Lena Reference [38] 0.0005 0.0010 0.0005
Lena GAN-DNADE -0.0001 -0.0014 -0.0012
Baboon Raw image 0.9459 0.8672 0.8577
Baboon Reference [36] -0.0045 -0.0002 0.0001
Baboon Reference [37] -0.0031 -0.0002 0.0001
Baboon Reference [38] 0.0014 0.0014 0.0029
Baboon GAN-DNADE -0.0013 0.0009 -0.0034
Peppers Raw image 0.9649 0.9678 0.9572
Peppers Reference [36] -0.0008 -0.0067 0.0069
Peppers Reference [37] -0.0048 0.0052 0.0037
Peppers Reference [38] 0.0045 0.0002 0.0025
Peppers GAN-DNADE -0.0032 -0.0001 -0.0031
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4.4. Information Entropy Analysis

Information entropy is one of the important indicators to measure system uncertainty,
which is mainly used to evaluate the unpredictability of color images. If the image pix-
els with gray level of 256 are evenly distributed, the maximum theoretical information
entropy is 8.

In order to test the ability of the proposed algorithm to resist entropy attack, Lena,
Baboon and Peppers were selected for the test in the experiment. The three images were
encrypted and the information entropy was calculated respectively. The average informa-
tion entropy of the three-channel ciphertext image is shown in Table 3. It can be seen that
the average information entropy of the color channel images R, G and B of the cipher-
text image is close to the ideal value 8, indicating that the encrypted image obtained by
the algorithm in this paper is similar to other methods and has high uncertainty, which is
sufficient to resist the information entropy attack.

Table 3. Average entropy results

Test image Reference [36] Reference [37] Reference [38] GAN-DNADE

Lena 7.9982 7.9996 7.9993 7.9997
Baboon 7.9979 7.9991 7.9988 7.9995
Peppers 7.9975 7.9992 7.9994 7.9995

4.5. Analysis of Anti-attack Capability

Selective plaintext attack among various attack types has obviously stronger cracking abil-
ity. If the encryption algorithm can resist selected-plaintext attacks, it can also effectively
resist other types of attacks.

Relevant studies verify that if a secure encryption system can effectively generate ran-
dom permutation and diffusion on all-black and all-white images, it has a high ability
to resist plaintext attacks. To this end, the experiment verifies the anti-selective plaintext
attack capability of the algorithm by encrypting all-black and all-white images, and the
results are shown in Table 4. According to the security analysis results in Table 4, the pro-
posed algorithm can effectively generate permutation and diffusion sequences to realize
image encryption, and each evaluation index is close to the theoretical value of ciphertext
image security, indicating that the proposed algorithm has a high ability to resist selected
plaintext attacks.

Anti-differential Attack Analysis The number of pixel change rate (NPCR) and the
unified average changing intensity (UACI) are important indicators for testing differential
attacks.

NPCR =
1

M ×N

M∑
i=1

N∑
j=1

D(i, j)× 100%. (34)
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Table 4. Encryption security analysis of all black/all white images

security analysis all black all white

Horizontal correlation 0.0022 -0.0009
Vertical correlation -0.0017 0.0008
Diagonal correlation -0.0034 0.0018
NPCR/% 99.6202 99.6329
UACI/% 33.4552 33.4356
information entropy 7.9993 7.9994

UACI =
1

M ×N

M∑
i=1

N∑
j=1

|C1(i, j)− C2(i, j)|
255

× 100%. (35)

D(i, j) =


0, C1(i, j) = C2(i, j)

1, C1(i, j) ̸= C2(i, j) (36)

Where C1(i, j) and C2(i, j) are the pixel values at the encrypted image (i, j) before
and after randomly changing any pixel values of the image. A larger NPCR value indi-
cates that the encryption algorithm is more sensitive to changes in the original image.
Similarly, a larger UACI value also predicts a larger average change intensity of images.
The experiment compares the NPCR value and UACI value of the ciphertext image after
encryption and the ciphertext image generated after pixel change by randomly changing
any pixel value of the image. The results are shown in Table 5. The average NPCR and
UACI values of the proposed algorithm are 99.64% and 33.49% respectively. Compared
with other methods, the performance of the proposed algorithm is improved to some ex-
tent, indicating that the proposed algorithm has improved the capability of anti-differential
attack compared with the existing methods.

Table 5. Anti-differential attack analysis of 3 test images%

Image Method NPCR UACI

Lena Reference [36] 99.6524 33.4558
Lena Reference [37] 99.6098 33.4567
Lena Reference [38] 99.6574 33.4657
Lena GAN-DNADE 99.6351 33.5158
Baboon Reference [36] 99.6086 33.4467
Baboon Reference [37] 99.6061 33.4583
Baboon Reference [38] 99.6604 33.4660
Baboon GAN-DNADE 99.6295 33.4616
Peppers Reference [36] 99.6321 33.4519
Peppers Reference [37] 99.5999 33.3697
Peppers Reference [38] 99.6285 33.4639
Peppers GAN-DNADE 99.6397 33.4781
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Anti-noise Attack Analysis In order to verify the robustness of images, the experimental
data of Lena ciphertext images under different intensity noise attacks are compared with
those of other algorithms. The results of anti-noise attacks are shown in Table 6.

Table 6. Anti-noise attack analysis for Lena

Salt-and-pepper noise 0.01 0.05 0.10

MSE (GAN-DNADE) 84.32 408.74 803.57
PSNR (GAN-DNADE) 28.90 25.33 21.54
MSE (Reference [36]) 85.47 410.02 807.97
PSNR (Reference [36]) 28.82 22.01 19.06
MSE (Reference [37]) 107.31 538.93 1060.71
PSNR (Reference [37]) 35.67 45.93 20.77
MSE (Reference [38]) 96.14 255.71 896.32
PSNR (Reference [38]) 27.94 21.58 16.94

With the increase of noise intensity, the means quare error (MSE) value of Lena im-
age gradually increases, and the PSNR value gradually decreases. The results show that
with the increase of noise attack intensity, the number of error pixels in decrypted images
increases gradually, and the quality of image recovery decreases. After adding salt and
pepper noise, the MSE and PSNR values of the proposed algorithm are improved com-
pared with other literatures, indicating that the proposed algorithm has better robustness
against noise attacks.

Anti-clipping Attack Analysis Ulteriorly, the experimental data of Lena ciphertext im-
ages under different reduction size attacks are compared with those of other algorithms.
The experimental results are shown in Table 7 and Figure 7. As can be seen from Table
7, as the clipping size increases, more information is lost in ciphertext images. The larger
the value of MSE is, the smaller the value of PSNR is, indicating that the number of er-
ror pixels in the clipped and decrypted image is increasing compared with the original
image, and the recovery effect is worse. At the same time, under different clipping sizes,
the MSE and PSNR values of the proposed algorithm are significantly better than those of
other literatures, which indicates that the proposed algorithm has better robustness against
clipping attacks.

In addition to the security of the encryption algorithm, the encryption speed is also an
important index in the practical application process. Tables 8,9,10 lists the time required
to encrypt the three images using this algorithm. As can be seen from tables, compared
with other encryption algorithms, the proposed GAN-DNADE in this paper meets the
needs of fast encryption.

5. Conclusion

In this paper, a new scheme based on GAN key generation is proposed, and a plaintext
related image encryption algorithm is designed according to the generated GAN key pool.
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Table 7. Anti-clipping attack analysis for Lena

Clipping attack 1/16 1/4 1/2

MSE (GAN-DNADE) 322.53 1098.64 2278.10
PSNR (GAN-DNADE) 21.98 21.89 14.93
MSE (Reference [36]) 345.94 1275.10 2377.42
PSNR (Reference [36]) 22.75 17.08 14.37
MSE (Reference [37]) 579.99 2289.91 4578.35
PSNR (Reference [37]) 20.58 20.82 11.59
MSE (Reference [38]) 467.25 1788.63 3678.71
PSNR (Reference [38]) 19.35 19.61 11.55

Fig. 7. The encrypted images and their decrypted images after data loss. (a) 1/16 clipping.
(b) 1/2 clipping. (c) decrypted image with 1/16 clipping. (d) decrypted image with 1/2
clipping.

Table 8. Encryption time comparison for Lena

Method size time/s

Reference [36] 512× 512 1.533
Reference [37] 512× 512 1.247
Reference [38] 512× 512 0.956
GAN-DNADE 512× 512 0.165
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Table 9. Encryption time comparison for Baboon

Method size time/s

Reference [36] 512× 512 1.469
Reference [37] 512× 512 1.188
Reference [38] 512× 512 0.831
GAN-DNADE 512× 512 0.154

Table 10. Encryption time comparison for Peppers

Method size time/s

Reference [36] 512× 512 1.381
Reference [37] 512× 512 1.092
Reference [38] 512× 512 0.766
GAN-DNADE 512× 512 0.122

Learning chaotic random keys of GAN-DNADE using GANs. The main conclusions are
as follows:

1. The scheme in this paper trains and generates GAN key pool, which not only has the
advantage of chaotic random key, but also has the feature of non-repeatability, which
greatly improves the key generation speed and increases the security of the encryption
system.

2. The random phase mask used in the algorithm based on GAN key pool is related to
plaintext, so it can resist the attacks of known plaintext and selected plaintext.

3. The encryption scheme proposed in this paper can effectively improve the nonlinear
characteristics of low-light level image encryption through chaotic system, so that the
encryption scheme can effectively cope with various statistical analysis.

4. The key generation method is not only suitable for the image encryption algorithm
proposed in this paper, but also can be applied to other encryption schemes.
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