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Abstract. Animal intelligent breeding utilizes advanced technology and intelligent
systems to monitor, analyze, and optimize animal growth environments and man-
agement, which can enhance breeding efficiency and animal health levels. In this
paper, we propose a new multi-object real-time tracking within deep framework
for intelligent breeding of animal (MRT-IB), which consists of semantic feature
extraction module, center point prediction module, and object and trajectory cali-
bration module. MRT-IB reduces the difficulty of modeling animal trajectories by
performing animal detection on consecutive frames, resulting in higher robustness
in real farming scenarios compared to traditional multi-object tracking schemes that
directly model animal motion trajectories.

Keywords: animal intelligent breeding, multi-object real-time tracking, object and
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1. Introduction

Intelligent breeding is an innovative approach that integrates advanced technology with
animal husbandry practices [4,21,19]. It improves farming efficiency and animal welfare
by continuously and automatically monitoring animal behavior and taking timely and
appropriate measures when anomalies are detected. Intelligent breeding technology is
supported by advanced artificial intelligence algorithms and hardware systems, including
various sensors such as microphones, cameras, accelerometers, and global positioning
systems. These sensors continuously collect biological response data from animals, such
as sound, behavior, movement, and location. Then, by analyzing these data and extracting
features relevant to target behaviors, machine learning models are trained to achieve real-
time detection, tracking, and monitoring of abnormal animal behavior [17,22,8]. Once
the system detects abnormal behavior or health issues, it immediately issues alerts and
takes corresponding actions, such as alerting veterinarians or automatically adjusting the
animals’ environmental conditions. This real-time monitoring and intervention help farm
managers promptly identify and address issues, thereby improving animal welfare and
production efficiency.
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In recent years, with the rapid development and widespread application of deep neural
networks, numerous real-time animal monitoring algorithms based on multi-object track-
ing have been proposed for smart farming. Ahrendt et al. designed a tracking system for
free-range animals, using partial animal images to establish a 5D Gaussian model for in-
dividual animal targets. This system can track at least 3 animals over long time spans
[1]. Martin et. al proposed a multi-object tracking method based on joint kernel corre-
lation filtering. They designed a joint filter based on a pure target appearance model of
kernel correlation filtering, effectively addressing the problem of poor algorithm perfor-
mance in cases of severe target occlusion and complex environmental backgrounds [25].
Matthews et al. proposed a multi-object tracking algorithm using the Hungarian algo-
rithm to match detection results from adjacent frames. The algorithm performed well in
detecting individual targets and tracking consecutive frames in 3D video sequences of
group-raised pigs, achieving an overall tracking accuracy of 89% for pig targets [18]. Van
der Zande proposed a multi-object tracking algorithm based on optical flow and inter-
frame interpolation for tracking dairy cows during rumination, achieving a final accuracy
of 89.12% [27]. Philipp et al. proposed a multi-object tracking algorithm based on multi-
feature detection and target association. They used color and texture features for adaptive
detection of animals, edge features for image segmentation, and the Kuhn-Munkres algo-
rithm to determine the association between animal targets and their mask image regions.
Experimental results showed that the algorithm has strong robustness and meets real-time
tracking requirements for multi-object tracking [5]. Zhang et al. combined a CNN-based
object detection model with a deep correlation filtering tracking algorithm to track all pig
targets’ trajectory coordinates in structured pigsty environments. Test results showed that
the tracking accuracy reached 94.72% [28]. Ali et al. proposed a multi-object tracking
algorithm based on object detection, locating the positions of detected targets in single-
image video frames, and then connecting the trajectories of detected targets in consecu-
tive frames. Experimental results showed that the best tracking accuracy of 92.68% was
achieved with a synchronous search for subsequent frames of 9 frames and a tracking
duration of 30 frames [2].

In current research combining computer vision technology with the animal husbandry,
researchers mostly focus on introducing computer vision technology to address specific
problems within the farming process. This approach often yields relatively good results.
However, experiments in these studies often require artificially imposed constraints. For
instance, in the detection of hoof problems in cattle, researchers limit the number and
poses of cattle in a video segment. They then detect, record, and calculate the frequency
of each cow’s hoof strikes to infer whether the cow is lame based on empirical data. While
this method can achieve high detection accuracy, the manual recording of identities for
each detected cow increases the burden on farming personnel. Many studies also attempt
to use detection networks to simultaneously detect the behavior of multiple animals in
images, aiming to improve farming accuracy by monitoring the daily status of livestock.
These efforts often yield highly accurate behavior detection results. However, since these
methods cannot distinguish between different animals within a video segment, they can
only provide the number of animals exhibiting a particular behavior at a given time, with-
out capturing the specific behavioral changes of individual animals over time. Therefore,
further research is needed in current computer vision technology applied in the farming
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industry to continuously identify and differentiate between different animals over a period
of time, in order to obtain more precise records of animal status information.

To this end, we propose a new multi-object real-time tracking based on feature con-
sistency for intelligent breeding of animal (MRT-IB), which comprises three parts, i.e.,
semantic feature extraction module, center point prediction module, and object and tra-
jectory calibration module. Specifically, In the tracking task, MRT-IB considers the simi-
larity of theposition and appearance of the same animal between consecutive frames.and
the differences from other animals, and proposes a multi-objecttracking scheme that uses
animal detection results and animal position and appearance semantic features as similar-
ity criteria. Based on this, acenter point prediction module is designed to use the continu-
ity of animalposition in the video to assist in detection and tracking. This schemereduces
the difficulty of modeling animal trajectories by performinganimal detection on consecu-
tive frames,and is more robust thantraditional multi-object tracking schemes that directly
model animaltrajectories in real farm scenes. At the same time, experimental results on-
multiple farm scene datasets demonstrate that the center point predictionmodule can ef-
fectively improve the detection and tracking accuracy ofmany similar animals appearing
in the same scene. Finally, a plethora of experiments validate the effectiveness of MRT-IB
in the intelligent breeding of animal.

Section 2 reviews existing smart farming methodologies, particularly focusing on
computer vision techniques for livestock monitoring. Section 3 introduces MAR-IB (Multi-
Animal Recognition with Individual Behavior) and its methodology for addressing indi-
vidual animal identification challenges in video streams. Section 4 presents experimen-
tal results evaluating MAR-IB’s performance in real-world farming scenarios. Finally,
Section 5 draws conclusions on MAR-IB’s effectiveness and implications for livestock
management in smart farming.

2. Related Works

In this section, we will introduce researches on computer vision technology and livestock
intelligent breeding.

2.1. Computer vision technology

Computer vision technology is an extremely important branch of artificial intelligence,
and it can now be divided into three most basic tasks: Image Classification, Object Detec-
tion, and Image Segmentation. In response to different task scenarios and requirements,
research in computer vision has continuously refined, leading to the emergence of tasks
such as Multiple Object Tracking (MOT) and Action Recognition [11].

For image classification algorithms, traditional methods such as KNN, SVM, and the
Mixture of Gaussians model dominated the field before 2012, offering better performance
in classification tasks. However, after the neural network-based AlexNet achieved a per-
formance far exceeding traditional algorithms in the ImageNet LSVRC-2012, neural net-
works became the mainstream in the field of image classification [15]. Subsequent models
like VGGNet, GoogLeNet, ResNet, and EfficientNet have continuously pushed the upper
limits of classification task performance [21]. Recently, classifiers based on Transform-
ers have reached the state of the art on major public datasets, becoming a new research
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hotspot. Regarding object detection algorithms, the current mainstream algorithms are all
based on deep learning. Object detection algorithms can be divided into two-stage object
detection algorithms and one-stage object detection algorithms based on the algorithm’s
phase. Two-stage object detection algorithms require an additional Region Proposal Net-
work (RPN) module; the most classic algorithms in this category are the R-CNN series,
such as Fast R-CNN and Mask R-CNN [19]. One-stage object detection algorithms do
not have an extra region proposal module and are trained end-to-end. A highly classic al-
gorithm in this category is the YOLO series, including YOLOv3 and YOLOv4. Other al-
gorithms like SSD, CenterNet, M2Det, and EfficientDet also have their innovative aspects
[22]. Image segmentation algorithms can be divided into two major categories: Seman-
tic Segmentation and Instance Segmentation. Semantic segmentation only requires the
segmentation of objects of different types without distinguishing between different indi-
viduals of the same category. Classic algorithms include FCN, U-Net, PSPNet, DeepLab
v3 Plus [8]. Instance segmentation, on the other hand, needs to differentiate between dif-
ferent individuals of the same category. Currently, the most popular algorithms are Mask
R-CNN, SOLO v2 [23].

Multi-Object Tracking (MOT) algorithms can be divided into two subtasks: object
detection and data association. Object detection algorithms are used to identify the ob-
jects that need to be tracked; data association algorithms assign identity identifiers (IDs)
to the detected objects, ensuring that the same object is assigned the same ID across dif-
ferent image frames. These two tasks can be completed by a single network or by two
independent networks in cascade. Based on the way these two subtasks are completed,
the current mainstream deep learning-based multi-object tracking algorithms can be di-
vided into two categories: single-step MOT and two-step MOT. Single-step MOT uses a
single network to complete the detection and tracking tasks of objects, usually outputting
information such as category, bounding box, ID, etc., through a detection head, for exam-
ple, FairMOT, which has achieved high performance on multiple datasets [24]. Two-step
MOT separates object detection and data association, so the actual focus of the work is
on the data association task, such as Sort, DeepSort, and MOTDT, graph neural network
algorithms [9]. The final implementation of the algorithm can be completed through the
cascade of a detector and an associator, for example, the classic YOLOv4+Deepsort al-
gorithm. Some algorithms delegate most of the work to the detector, such as Trackot++
proposed by Philipp Bergmann et al., pushing the limit of detection-based tracking [5].
Action recognition algorithms, in a narrow sense, only require the classification of indi-
vidual videos or sequential images, such as the classic Two-Stream algorithm. However,
in a broader sense, action recognition algorithms can be further divided into temporal
action detection algorithms and spatiotemporal action detection algorithms. These corre-
sponding tasks are more challenging, as they require the analysis and processing of long
videos and can actually be considered a part of video content understanding. Among the
most classic algorithms in this field are R-C3D, BMN, and TSP [3].

2.2. Livestock intelligent breeding

Current research combining livestock farming with computer vision often focuses on spe-
cific scenarios, where researchers apply various deep neural networks to the study of
animal husbandry for multiple purposes within the breeding process. Object detection
networks are primarily used by researchers for the detection of specific animals, such as
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pigs, cattle, and sheep. There are also studies that apply detection networks to the iden-
tification of animal abnormalities. For example, Kang et al. developed a dairy cow limp
scoring system, using a deep learning-based object detection network for the localization
of cow hooves in videos, with an average precision of 87.0% [13]. The study then used the
detected positions of cow hooves from consecutive frames as input, calculating the dif-
ference in lift-off and ground contact times of a specific cow’s hooves to determine if the
cow was limping. Cermek et al. used YOLOv2 on RGB images to detect the occurrence
of digital dermatitis in cattle through digital image detection, achieving an accuracy rate
of 88% [6]. Yang et al. employed Faster R-CNN and extracted the occupation index (the
ratio of the head to the feeding area) as a spatial feature to identify the feeding behavior of
multiple pigs [26]. Chen et al. used Inception and LSTM to extract spatiotemporal features
for identifying pig feeding behavior at the group level [7]. This study proposed an image
processing algorithm based on maximum entropy segmentation, HSV (hue, saturation,
and value) color space transformation, and template matching, calculating the roundness
of the head, the ratio of the head to the feeding area, the cumulative pixel count of head
movement, and the distance from the head to the numbered pig’s back to determine the
identity and feeding time of each pig. These studies demonstrate the great potential of
computer vision systems in identifying dairy cows with digital dermatitis, reducing the
incidence of skin disease, and improving animal welfare.In addition to using deep neural
algorithms to directly achieve research objectives, some studies combine deep neural net-
works with other algorithms in an attempt to achieve better results. For example, Lee et
al. proposed the use of deep learning methods to remove backgrounds or detect objects
in order to eliminate unnecessary noise and thus enable better post-processing analysisn
[16]. They first processed video frames using some image enhancement methods, such
as treating moving frames in the video with a Gaussian mixture model. Subsequently,
they utilized TinyYOLOv3 to detect individual pigs in each selected frame, and then seg-
mented the detected pigs. By using automatic image thresholding to complete the size
calculation of the pigs, they achieved better results than simply using a segmentation de-
tection model like Mask R-CNN [12]. These methods, which do not employ end-to-end
deep learning approaches, often have better detection accuracy than their corresponding
end-to-end deep learning algorithms by proposing hybrid models like the one mentioned
above. Regarding the application of tracking technology in the breeding industry, since
traditional computer vision tracking technology mainly relies on trajectory fitting to track
detected objects, in animal husbandry, researchers primarily complete tracking tasks by
directly contacting the breeding animals. For instance, distinguishing different animals
by applying pigmented markings on their bodies, tracking them with the human eye, and
then recording the status of animals with different markings at different time points [14].
Alternatively, animals are fitted with electronic devices such as ear tags based on RFID
technology, and signals are received by a receiver to obtain information corresponding
to different animals. With the increasing concern for animal welfare in recent years, and
considering that methods like ear tags, which involve direct contact with animals, can
cause injury during the contact process or be damaged during the animal’s movement,
researchers are also looking for ways to complete tracking tasks without contacting the
animals. Su et al. applied a single-object tracking network based on the Siamese mecha-
nism to track individual goats in surveillance videos, successfully tracking a specific goat
even when multiple goats appeared in the same video segment [20]. Gan et al. applied the
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Deepsort, a multi-object tracking framework based on detection, to the task of tracking
multiple pigs in a pen. By leveraging the prior knowledge that the number of pigs in a pen
is constant, they introduced a trajectory state correction mechanism to build a real-time
pig tracking system [10]. Although deep learning-based tracking frameworks emerged
relatively late compared to object detection frameworks, and the difficulty of data anno-
tation is high, there is limited work combining livestock farming with single-object and
multi-object tracking algorithms. However, the existing work indicates that tracking tasks
have significant application scenarios in animal husbandry. They can effectively handle
real-time tracking tasks for specific individuals or groups of animals, improving the effi-
ciency of breeders and reducing their workload.

The widespread application of computer vision research in the field of animal hus-
bandry primarily focuses on utilizing anchor-based detection architectures to identify
animals in specific scenes within a single frame of an image. This approach requires
researchers to manually adjust anchor parameters according to different scenes to accom-
modate changes in the environment and does not efficiently analyze detection results over
time down to the level of individual animals. Additionally, detection networks tend to
focus excessively on extracting features related to the current frame, neglecting the con-
tinuous information present in video frames, which can be used to assist in detection and
tracking. These issues are also the focus of the research in this paper. The reliance on
anchor-based detection architectures, while effective in many cases, can be limiting when
it comes to adapting to dynamic environments and varying animal behaviors. The need for
manual tuning of anchor parameters can be labor-intensive and may not always result in
optimal detection performance, especially when there are significant changes in the scene
or when the lighting conditions vary. Moreover, the focus on per-frame feature extraction
can lead to the loss of valuable temporal information that is inherent in video data. This
continuous information can provide context that helps in understanding the behavior and
movement patterns of animals over time, which is crucial for accurate tracking and iden-
tification of individual animals. To address these challenges, the research presented in this
paper aims to explore alternative approaches that can better leverage the temporal dimen-
sion of video data, potentially improving the accuracy and efficiency of animal detection
and tracking in various farming scenarios. By incorporating methods that can capture and
utilize the temporal coherence between frames, the goal is to develop a more robust and
automated system for animal monitoring in the context of livestock farming.

3. Multi-object Real-time Tracking for Intelligent Breeding of
Animal

In this section, a new multi-object real-time tracking based on feature consistency is pro-
posed for intelligent breeding of animal (MRT-IB), which comprises three parts, i.e., se-
mantic feature extraction module, center point prediction module, and object and trajec-
tory calibration module. The main mathematical notations used in the paper are listed in
Table 1.

3.1. Semantic feature extraction module

DLA-34 network is composed of multiple modules, each of which includes a series of
convolutional layers and residual connections. It is capable of fusing feature maps from
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Table 1. Frequently used notations

Notations Description

f(·) the feature extractor
vt the t-th video frame in the breeding farm
zt the deep semantic representation of vt

Ht the heatmap spatiotemporal feature
H̄t the predicted spatiotemporal feature
P t the predicted center heatmap P t

z̄t the fusion representations z̄t

ai an animal in the t-th video frame
τi the trajectory of the animal ai

ei feature vector of the animal ai

dij the similarity between the i-th animal in the current frame and the j-th active trajectory in the current system.
Lk the detection box loss
α,β the balance coefficients

shallow and deep layers, allowing the network to simultaneously learn high-level semantic
information and low-level detail information. This aggregation of multi-scale features
helps the network to better understand the content of images, especially when dealing
with complex structures and diverse textures in the environment of breeding farms.

Therefore, MRT-IB utilizes the DLA-34, which has been pre-trained on the COCO
detection dataset, as the feature extractor f(·) to learn deep semantic representations of
video frames. Specifically, given the t-th video frame vt in the breeding farm, the deep
semantic representation zt is obtained via:

zt = f(vt) (1)

3.2. Center point prediction module

Fig. 1. The structure of center point prediction

The appearance and position of each object in surveillance videos exhibit a certain de-
gree of continuity, which can be leveraged to assist detection in the current frame. Many
related works in video detection and multi-object tracking have attempted to model the
similarity of object appearances across consecutive frames using Siamese networks or at-
tention mechanisms to enhance the network’s detection capabilities in the current frame.
This paper optimizes the complex process of feature similarity learning into directly pre-
dicting the positions of each object in the current frame. Additionally, an anchor-free



1852 Fei Wang et al.

architecture can utilize the center layer to directly detect the position of the object. There-
fore, this paper designs the center point prediction module to generate the center points
of the current frame’s center layer based on the output of the previous frame, as shown in
the fig. 1.

Specifically, the center point prediction module first needs to dimensionally expand
the centers of the previous n frames. Then, by concatenating along the expanded dimen-
sions, a heatmap spatiotemporal tensor Ht with dimensions of n × 1 × H × W is ob-
tained, which contains information about the changing positions of various animals in
the video over time. In surveillance videos, if the animals are far apart from each other,
the movement trajectories of each animal can be considered as independent trajectories.
When animals are in close proximity, due to the constraints of their volume, the trajec-
tories of the animals may have spatial relative relationships that could potentially influ-
ence each other. To capture these spatial relative relationships, this study considers using
convolutional kernels for acquisition. Therefore, the center point prediction module se-
lects ConvLSTM to process the animal heatmap spatiotemporal tensor, which can extract
spatial features and perform temporal feature processing through h hidden layers, thus
addressing the length and width of the current heatmap. ConvLSTM first performs h spa-
tiotemporal convolution operations to extract the spatiotemporal hidden layer features of
the movement trajectories of each animal within the spatiotemporal tensor. After obtain-
ing the spatiotemporal hidden layer features, it reverses the output of each hidden layer
to obtain a predicted spatiotemporal feature H̄t. Subsequently, the center point prediction
module utilizes a convolutional layer to decode this predicted spatiotemporal feature into
the predicted center heatmap P t with dimensions of 1×H ×W for the current frame.

H̄t = ConvLSTM(Ht) (2)

P t = Conv(H̄t) (3)

Then, the Hadamard product is utilized to aggregate the predicted center heatmap P t

and deep semantic representations for obtaining fusion representations z̄t.

z̄t = zt ◦ P t (4)

Such a method can strengthen the features in the semantic representation that are related
to the object’s position, while suppressing background features unrelated to the object,
thereby enhancing the performance of animal detection. Finally, we utilize the detection
network to generate detection boxes and appearance feature vectors for each animal in the
current frame, which are used for subsequent multi-object trajectory matching.

3.3. Object and trajectory calibration module

For an animal ai in the t-th video frame, MRT-IB designates the position of the animal ai
as the center coordinates of the detection box [xi, yi]. The appearance of the animal ai
consists of two parts: first, the size of the animal, represented by the width and height of
the detection box [wi, hi]. The second part is the appearance feature vector ei. In MRT-IB,
the detection box and the feature vector are used as information to distinguish between
different animals. The trajectory quintuple τi for ai is defined as follows:



Multi-object Real-time Tracking... 1853

τi = [xi, yi, wi, hi, ei] (5)

where each value in the trajectory τi represents the detection box information and feature
vector of the matched object for animal ai in the t− 1 frame.

Due to the inherent continuity in the movement trajectories and size changes of an-
imals, MRT-IB considers using the Kalman filter algorithm to obtain the best estimate
of the animal’s detection box when matching with the trajectory. Taking the horizontal
coordinate xt

i of animal ai at time step t as an example, let the best estimate of the hori-
zontal coordinate after Kalman filtering for animal ai and trajectory j be denoted as xij .
In consecutive frames, an animal’s movement trajectory can be considered as uniform
linear motion. Generally, the greater the speed, the greater the distance of position change
should be, and vice versa. If there is a certain contradiction between these two values,
it indicates that the current observation may be affected by some noise. The discrepancy
can be corrected using the relationship between position and velocity information to ob-
tain the best estimated mean xij . The algorithm can first obtain the predicted value st

of the animal in its current state, where t represents the current state, x̄ij represents the
predicted position, and v̄ij represents the predicted velocity.

st =

[
x̄ij

v̄ij

]
(6)

Based on the relationship between velocity and displacement, under the condition
that the video frame rate is sufficiently high, it can be approximated that each animal is
undergoing uniform motion. Ignoring acceleration, the state transition equation for st can
be derived as follows:

st =

[
1 ∆t
0 1

]
st−1 = Fst−1 (7)

The state transition matrix is denoted as F , and the relationship between velocity
and displacement in any adjacent frames can be defined as mutually constraining R, rep-
resented by the covariance of position information x and velocity information v. Since
the actual state transition of animals may be affected by external factors such as sudden
movements or collisions, leading to certain variations in their state distribution, a noise
distribution is introduced with its covariance Qt represented as shown below.

Rt = F tRt−1(F t−1)T +Qt (8)

Rt =

[∑
xx

∑
xv∑

vx

∑
vv

]
(9)

Simultaneously, based on the detection network, one can obtain the observed values
of the current positions of the animals. These observed values are influenced by various
factors such as the precision of the detection network itself, the posture of the animals
during detection, and the background, and thus often have certain deviations. Let the
mean of the observed value distribution be mt and the variance be U t. Meanwhile, since
it is not possible to directly obtain the animals’ velocities from the detection network,
the Kalman filter introduces an observation matrix Kt, which allows the algorithm to
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derive the predicted observation value Ktst from the current state’s predicted value st. To
reconcile the predicted value Ktst with the observed value mt and have their distributions
multiplied, resulting in a new distribution, the Kalman gain K is used, as shown below.

K = RtRt(Rt)T (RtRt(Ht)T + U t)−1 (10)[
xij

vij

]
= sk +HtK(mt −Htst) (11)

The final value of
[
xij

vij

]
is the best estimate of the match between object ai and

trajectory j after being processed by the Kalman filter. Other parameters can be derived
in a similar manner to obtain an optimal estimated quadruple [xi, yi, wi, hi]. The loU
(largest overlapping Union) algorithm is then used to calculate the similarity between the
current trajectory and the detection box dbij .

Furthermore, for any given animal ai, an appearance feature vector ei can be extracted.
To represent the similarity between it and the most recently matched feature vector along
the trajectory, the cosine metric can be employed as follows:

deij =
eiej

∥ei∥ ∥ej∥
(12)

After obtaining the similarity between animal ai and trajectory j on the detection box,
and the similarity between the appearance feature vectors, we have:

dij = wbd
b
ij + wed

e
ij (13)

where dij denotes the similarity between the i-th animal in the current frame and the j-th
active trajectory in the current system.

3.4. Overall loss function

During the object extraction phase, a re-ID branch is introduced for extracting animal
appearance features. After this branch extracts the feature vector of the animal, a fully
connected network is used to obtain a confidence vector P = {p(c)|c ∈ [1, N ]}, where
N is the total number of ID labels used to distinguish different animals during training.
For the animal ai, there is a one-hot vector V i(c) used to indicate its assigned ID label.
The cross-entropy loss function for classification constraint is as follows:

Lr = −
∑
c

∑
i

V i(c) log(p(c)) (14)

The center point prediction requires supervision during training to enable the module
to infer the current frame’s predicted heatmap P through the heatmap spatiotemporal
tensor I . To this end, MRT-IB employs the structural similarity loss function (SSIM)
as a constraint, which quantifies the similarity between two images by comparing their
brightness, contrast, and structural information. The label heatmap is denoted as P̂ , with
the brightness of the heatmap represented by its mean µ and the contrast represented by
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its variance σ. The structural relationship between the predicted heatmap and the label
heatmap is captured by their covariance Σpp̂. The SSIM loss function Lp is given by:

Lp =
(2µpµp̂ + c1)(2σpp̂ + c2)

(µ2
p + µ2

p̂ + c1)(σ2
p + σ2

p̂ + c2)
(15)

where µP and µP̂ are the mean values of the predicted and label heatmaps, respectively,
ΣPP̂ is their covariance, and c1 and c2 are constants to prevent instability when the mean
or covariance are near zero.

Furthermore, MRT-IB employs a detection box loss to guide the accurate detection of
animals:

Lk = − 1

N

{
(1− p̂xyc) log(p̂xyc) pxyc = 1

(1− p̂xyc)p̂xyc log(p̂xyc) otherwise

}
(16)

where p̂xyc denotes represents the output of the detection box at position [x, y] for the
category c.

According to the aforementioned losses, the overall loss function of MRT-IB is de-
fined:

L = Lr + αLp + βLk (17)

where α and β are trade-off parameters.

4. Experiments

4.1. Set up

Dataset: The performance of the MRT-IB in animal detection is verified based on two
datasets. The first is the MOT (Multiple-object Tracking Challenge) pedestrian tracking
dataset, which is one of the most authoritative datasets in the field of multi-object tracking.
It is used to demonstrate the robustness of the algorithm. The second dataset consists
of sheep in farm surveillance videos, which is used to explore the effectiveness of the
algorithm in research on multi-object tracking of animals in farms. Unlike general tasks
such as detection and classification, where the division of training and validation data
often follows a 4:1 ratio in favor of the training set, or using five-fold cross-validation,
the effectiveness of multi-object tracking models is typically validated by arranging the
dataset in sequential order of video frames. The images from the first half of each video
sequence are used for training, while the images from the latter half are used to validate
the model’s performance.

Metric: (1) Multiple Object Tracking Accuracy (MOTA): It is used to evaluate the
tracking process over a period of time, accounting for detection errors and track switches.
By defining the total number of objects at any time t as Gt, the number of false positives as
Nt, the number of false negatives as Pt, and the number of track switches as It, the higher
the MOTA, the more accurate the onject detection and the more stable the assignment. The
MOTA is calculated using the following formula:

MOTA = 1−
∑

t (Nt + Pt + It)∑
t Gt

(18)
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(2) The IDF1 Score (IDF1): It is used to assess the correctness of track assignment
over a period of time. By defining the correctly assigned detections in a period as T , false
positives as N , and false negatives as M , the IDF1 is higher if the ID assignment of the
detected objects is more accurate during the multi-object tracking process. The calculation
formula for IDF1 is given by:

IDF1 =
2T

2T +M +N
(19)

(3) ID Switch(IDs): It is used to evaluate the stability of tracks over a period of time,
and the formula is as follows:

IDs =
∑
t

It (20)

Furthermore, Recall and Precision are also used to verify the effectiveness of MAR-IB.
Implementation details: MRT-IB is conducted in the Ubuntu 18.04 operating envi-

ronment. The model is implemented using Python 3.7 and the PyTorch 3.6 framework,
and both training and testing of the model are completed on CUDA 10.1 with an RTX
3080. In the experiment, MRT-IB utilizes the DLA-34 network, which has been pre-
trained on the COCO detection dataset, as the backbone for feature extraction. The initial
learning rate during the training process is set to 10−3, which is reduced to 10−4 when the
training reaches the 20-th epoch, with a total of 30 epochs for training. Throughout the
training process, images in the dataset undergo standard data augmentation procedures
such as rotation, flipping, and color space transformations.

4.2. Analysis of Object and Trajectory Matching

In MRT-IB, to verify the effectiveness of the object and trajectory matching, three meth-
ods for calculating similarity between the object and trajectory are discussed, as shown in
Table 2: (1) the first method directly calculates the IoU distance between the object detec-
tion box and the trajectory box recorded in the trajectory, (2) the second method predicts
the position of the trajectory in the current frame using the Kalman filtering algorithm,
and also filters the object position when matching the object and trajectory. Then, the oU
distance is used for similarity calculation. (3) the third method calculates the cosine dis-
tance between the feature vector recorded in the trajectory and the feature vector of the
object in the current frame for similarity calculation.

There are some observations obtained from the results in Table 2: (1) In the context
of surveillance video in a breeding farm, the MRT-IB method can achieve satisfactory
tracking results by simply using the Intersection over Union (IoU) distance to calculate
the similarity between each object and the detection boxes of the matched objects in the
previous frame. This is because in a breeding farm, the movements of the animals are rel-
atively slow for the majority of the time. With a fast detection frame rate, the changes in
the detection boxes of the same animal between adjacent frames are not significant, thus
yielding fairly good tracking outcomes. However, when sheep flock together or move to-
wards each other, the detection boxes of different sheep are in close proximity, which
makes it easier for the IDs of different sheep to be swapped. Therefore, the ID swapping
is noticeably higher in the IoU-only scheme compared to other methods. (2) MRT-IB can
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associate objects based on the appearance feature information of different animals, thus
effectively improving the IDF1 and IDs. However, the degree of improvement is not as
significant as that of the Kalman filter model. This indicates that in the context of animal
breeding, the motion information of animals plays a more substantial role in enhancing
tracking accuracy compared to their appearance information. This is largely due to the
fact that the appearance similarity among animals in breeding farms is not as high. More-
over, if an animal is occluded in one posture and then reappears in a different posture, its
appearance information actually undergoes significant changes. Considering feature in-
formation in such cases could lead to misguidance. On the other hand, by introducing the
re-ID branch to utilize appearance information during the tracking process, the detection
model’s ability to extract object features can be effectively enhanced, thereby improving
the detection results of the objects. (3) The combination of the Kalman filter and IoU
achieves the best matching because during the association process between each sheep’s
detection box and the detection boxes saved in the trajectory, it predicts the current de-
tection box parameters for that trajectory based on the changes of past detection boxes.
By combining the current frame’s detection box of each sheep and filtering it, an opti-
mal estimated value is obtained, effectively improving the accuracy of target-trajectory
association. As a result, both IDF1 and IDs are significantly enhanced.

Table 2. Analysis of object and trajectory matching in MRT-IB in terms of the animal
dataset

method MOTA IDF1 Recall Precision IDs

IoU 0.8020 0.8210 0.8770 0.9710 121
IoU+ Feature similarity 0.8240 0.8420 0.8770 0.9710 94
IoU+ Kalman filtering 0.8420 0.8770 0.8770 0.9710 98

4.3. Convergence Analysis of MRT-IB with respect to Animal Dataset

In the performance evaluation of the MRT-IB algorithm applied to an animal dataset, we
conducted a thorough convergence analysis. This analysis aimed to explore the perfor-
mance of the algorithm in key performance indicators such as Precision, Multiple Object
Tracking Accuracy (MOTA), and Loss as the number of iterations increased.

From the Fig. 2, it can be observed that the algorithm’s Precision rapidly improved in
the initial stages, growing from around 0.4 to close to 0.9, demonstrating the algorithm’s
efficient capability in identifying animal targets. This swift enhancement indicates that
the MRT-IB effectively distinguishes targets from the background when processing the
animal dataset, thereby reducing false positives and false negatives.

Similarly, the MOTA metric also shows an upward trend, gradually increasing from a
lower baseline to above 0.8, reflecting the algorithm’s accuracy and stability in tracking
multiple animal targets. The improvement in MOTA suggests that the MRT-IB algorithm
can effectively maintain the tracking of targets, even under the complex and variable be-
haviors of animals.

The decreasing trend in the Loss value further confirms the improvement in algorithm
performance. In the early stages of iteration, the Loss value significantly reduced, indi-
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Fig. 2. Convergence Analysis of MRT-IB Performance on Animal Dataset

cating that the gap between the model’s predictions and the actual annotations is quickly
narrowing. As iterations progress, the Loss value tends to stabilize, suggesting that the
model has converged to a more accurate predictive state.

Overall, the convergence analysis of MRT-IB on the animal dataset reveals its po-
tential in multi-object tracking tasks. With an increase in the number of iterations, the
algorithm shows significant improvement in key indicators such as Precision, MOTA,
and Loss, ultimately reaching a stable high-performance state. These results indicate that
MRT-IB is a promising algorithm suitable for animal behavior analysis and other scenar-
ios requiring precise multi-object tracking.

4.4. Effectiveness of Center Point Prediction

The current multi-object tracking model, FairMOT [29], primarily considers the use of lo-
cation and appearance information extracted by the detection network to associate targets
with trajectories across consecutive frames. However, it overlooks the potential of utiliz-
ing this information during the detection phase to assist, thereby better aiding detection-
based multi-object tracking models in completing tracking tasks. In previous experiments,
it was observed that detection-based models could achieve fairly good results by relying
solely on the position information, and the accuracy of the detection results could sig-
nificantly enhance tracking precision. Therefore, this paper considers the introduction of
a Central Point Prediction Module into the detection network to explore the impact of
incorporating position-based multi-frame information during the detection phase on the
results of multi-object tracking. This module can leverage the continuity of individual
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animal trajectories in the video and the relative relationships between multiple animal
trajectories to predict the positions of each animal in the current frame. By combining
these predictions with the semantic features of animals extracted from the current frame
image by the feature extraction network, it can assist in animal detection and tracking.
The experimental results are shown in Table 3

From the comparative experiments, it can be seen that in MOT-16 and MOT-20, MRT-
IB has improved MOTA by 1.0 and 1.3 points, respectively. However, IDS has only shown
a slight increase compared to the baseline model. In contrast, in MOT-17, MRT-IB has en-
hanced MOTA by 1.9 points, while ID has decreased by approximately 25% compared
to the baseline model. This indicates that in MOT-16 and MOT-20, although MRT-IB
can improve the baseline model’s MOTA, it is mainly due to the enhancement of the
model’s detection capabilities. This is evident from the recall and precision rates of the
two datasets, where recall has increased while precision has slightly decreased. Through
MRT-IB, the baseline model is better able to detect targets that were previously unde-
tected, but it also introduces some false positives. In the case of MOT-17, MRT-IB not
only improves the model’s detection capabilities but also enhances its trajectory mainte-
nance capabilities. Unlike the first two datasets, MRT-IB shows a decrease in recall, while
the precision increases.

The results above indicate that MRT-IB can leverage the continuity of object posi-
tions to enhance the tracking performance of the model in two aspects. On one hand,
when an object that has appeared before is missed by the original model in the current
frame, MRT-IB will strengthen such targets, thereby reducing the model’s false negatives.
However, this may also lead to the detection of targets that should have disappeared in
the current frame, resulting in false positives. Such false positives can cause the tracking
model to assign new IDs to these targets, thus weakening the model’s trajectory main-
tenance capability. On the other hand, when the original model produces false positives
in the current frame, these targets, having not appeared before, will be relatively weak-
ened, thereby improving the model’s precision. But this could also lead to the weakening
of new targets that should have been detected, which in turn reduces the recall rate of
the tracking model. Meanwhile, as MRT-IB can improve detection precision, it can ef-
fectively enhance the tracking model’s ability to maintain trajectories. Across the three
datasets, MRT-IB has effectively increased the model’s IDF1, indicating that MRT-IB can
provide more precise information for the association phase, thereby helping the tracking
model to improve the accuracy of matching trajectories to targets during tracking.

Table 3. Enhancement of the Central Point Prediction on the MOT Dataset for the Base-
line Model FairMOT

method(dataset) MOTA IDF1 Recall Precision IDs

FairMOT(MOT-16) 0.6760 0.6940 0.7340 0.9370 456
MRT-IB(MOT-16) 0.6860 0.7050 0.7500 0.9310 479
FairMOT(MOT-17) 0.6930 0.7350 0.7800 0.9110 477
MRT-IB(MOT-17) 0.7140 0.7490 0.7680 0.9410 357
FairMOT(MOT-20) 0.7290 0.7210 0.7640 0.9610 2900
MRT-IB(MOT-20) 0.7424 0.7300 0.7830 0.9550 3014
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Fig. 3. Influence of noise and threshold on center point prediction

4.5. Influence of noise and threshold on Center Point Prediction

In real tracking scenarios, networks often encounter situations of missed detections and
false alarms. However, during training, using real labels directly cannot simulate the
missed detections and false alarms that occur in real scenarios. Therefore, it is neces-
sary to process the input heatmaps during training to simulate missed detections and false
alarms, thereby improving the robustness of the position prediction network. One intuitive
method is to directly train with continuous sequences of images. When training the posi-
tion prediction network, the heatmaps generated by the model in the previous few frames
are used directly as the input to the position prediction network. Although this method
allows the position prediction model to use the network’s output during training, thereby
improving robustness, it introduces fixed temporal continuity during training, which can
lead to decreased generalization performance and overfitting. Additionally, in the early
stages of training the detection network, the quality of the output of the detection network
is not guaranteed, which can lead to the position prediction module learning irreversible
noise. Therefore, during the training phase, for any frame image, this study extracts the
true keypoint heatmaps of the previous frames and adds noise to these labels to simulate
missed detections and false alarms. Specifically, this is achieved by randomly removing
annotated points from the heatmap to simulate missed detections, while randomly adding
new annotated points near the annotated points to simulate false alarms. This approach al-
lows for the use of random image inputs during training to avoid the model being affected
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(a) (b)

(c) (d)

Fig. 4. The sensitivity analysis of parameters α and β on the animal dataset for MAR-IB

by fixed temporal data. During testing, the network produces small responses for many
regions without targets. Although these responses do not appear in the results due to not
reaching a predefined threshold, they can introduce considerable noise if the unprocessed
keypoint heatmaps are directly fed into the central position module.

From the results in Fig 3, it can be observed that without threshold processing, multi-
object tracking metrics experience a significant decline, while not adding noise to the
labels also leads to a slight decrease in multi-object tracking metrics. To further analyze
the experimental results at a deeper level, it is necessary to compare the various detection
metrics with the trajectory matching metrics, as shown in Table 4.

Considering the responses in the heatmaps that do not reach a certain threshold dur-
ing the testing process greatly reduces the accuracy of the tracking network, resulting in
numerous false alarms. Consequently, many IDs are erroneously assigned, further weak-
ening the network’s ability to maintain trajectories. As a result, all metrics for multi-object
tracking experience a significant decrease. However, after adding noise to the training la-
bels, the tracking model effectively improves both recall and precision. This indicates
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Table 4. Influence of noise and threshold on center point prediction in multi-object track-
ing scenario

method noise+threshold noise threshold

Recall 0.7680 0.7660 0.7580
IDs 16.52 15.85 16.26

a notable enhancement in the detection capability of the tracking model, as well as an
increase in precision in trajectory assignment and maintenance.

4.6. Parameter Analysis

Fig. 4 presents the outcomes of the sensitivity analysis for the trade-off parameters α and
β within the MAR-IB framework when applied to the animal dataset. These parameters
were confined to the values within sets {0.0001, 0.001, 0.01, 0.1} and {0.001, 0.01, 0.1, 1}.
The graphical representation in Fig. 4 highlights the resilience of MAR-IB to variations in
α and β. Notably, the model exhibits consistent and reliable performance across different
parameter settings, with an optimal balance achieved when α and β are both set to 0.001
and 1. This suggests that the model is relatively insensitive to fine-tuning of these parame-
ters, which is advantageous for practical applications where computational resources may
be limited or where the dataset’s complexity necessitates a more straightforward tuning
process.

5. Conclusion

In this paper, MRT-IB first highlights the limitations of current object detection algorithms
in farm imagery, which are unable to automatically associate detection results of specific
animals across consecutive frames for statistical analysis. It then introduces a detection-
based multi-object tracking scheme that leverages the continuity of individual animals’
movement trajectories and appearance changes in farm imagery, as well as the differ-
ences in position and appearance among different animals, to associate detection results.
Furthermore, it proposes enhancing the detection capability in multi-object tracking by
utilizing animal position information. Finally, this chapter designs multiple control ex-
periments for the multi-object tracking model in farm imagery. The experimental results
show that in the process of multi-object tracking of animals in farms, the animals’ po-
sitions can effectively serve as a reference for data association. The animal appearance
information extracted by the re-ID branch can effectively supplement the animal position
information, improving the network’s feature extraction ability and leading to more ac-
curate detection results. Through ablation experiments on pedestrian datasets and animal
tracking datasets, the chapter demonstrates that the model based on center point predic-
tion proposed in this study can further effectively utilize object position information to
enhance the model’s detection capability and help the tracking model achieve more pre-
cise animal ID associations. The performance improvement of this module in multi-object
tracking models is evident in multiple scenarios, proving the robustness of the model.
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