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Abstract. This paper introduces spatio-temporal-based multi-level aggregation net-
work (ST-MANet) for action recognition. It utilizes the correlations between differ-
ent spatial positions and the correlations between different temporal positions on the
feature map to explore long-range spatial and temporal dependencies, respectively,
generating the spatial and temporal attention map that assigns different weights to
features at different spatial and temporal locations. Additionally, a multi-scale ap-
proach is introduced, proposing a multi-scale behavior recognition framework that
models various visual rhythms while capturing multi-scale spatiotemporal informa-
tion. A spatial diversity constraint is then proposed, encouraging spatial attention
maps at different scales to focus on distinct areas. This ensures a greater empha-
sis on spatial information unique to each scale, thereby incorporating more diverse
spatial information into multi-scale features. Finally, ST-MANet is compared with
existing approaches, demonstrating high accuracy on the three datasets.

Keywords: Action recognition, spatial and temporal attention, multi-level aggrega-
tion network.

1. Introduction

With the development of information technology, videos have become an indispensable
medium in our lives due to their powerful content delivery and expressive capabilities.
The widespread deployment of image capture devices and the growth of computer net-
works have led to an explosive increase and dissemination of videos. These massive video
datasets hold significant value, but traditional manual analysis is hindered by subjective
factors and inefficiency. Therefore, utilizing computer technology for the analysis, un-
derstanding, and information mining of video content is a crucial topic in the field of
computer vision and has been a forefront direction of research in recent years. Due to
various factors such as different video data collection methods, diverse scenes, and var-
ied content, designing manual features for algorithms is time-consuming and challenging
to apply widely across multiple tasks. Deep learning technologies have undergone rapid
development on computer vision, face recognition, and semantic segmentation, demon-
strating superiority compared to traditional algorithms [2,6,15].

In human action recognition, behavior instances exhibit a complex temporal structure,
especially with different behavior categories naturally having distinct visual rhythms, such
as clapping and walking. This poses challenges for behavior recognition [13,11,10]. In
certain situations, different behavior categories may look very similar in appearance, such
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as walking, jogging, and running. The visual information of these behaviors is closely
related, making accurate classification challenging based solely on appearance. In such
cases, visual rhythm becomes a crucial factor in distinguishing them. Moreover, even
for the same behavior, individual differences in factors like age, energy, and mood mean
that each performer may execute these actions according to their own rhythm. For in-
stance, older individuals typically move more slowly than younger ones, and individuals
with greater weight generally exhibit slower movements than those with lesser weight.
Therefore, precisely modeling the intra-class differences in the visual rhythm of action
behaviors significantly enhance the performance of behavior recognition. In recent years,
researchers have begun to explore the aspect of visual rhythm. The SlowFast Network is
one such example, consisting of two pathways known as the Fast pathway and the Slow
pathway [5]. It incorporates hard-coded visual rhythm at the input level, enabling the two
pathways to sample frames at different rates. At each stage of the network, there is a lat-
eral connection between the two pathways, facilitating the fusion of features from the Fast
pathway into the Slow pathway. However, this hard-coded approach requires more input
frames, and the temporal scale is limited to manually set and tuned values. While employ-
ing more pathways may enhance performance, it also comes with a significant increase in
computational complexity, potentially making the network overly intricate. Considering
a lot of utilized methods, i.e., C3D [22] and I3D [1], usually involve many operations
of temporal convolution. That is, as the network depth increases, the temporal receptive
field also expands. Therefore, multi-depth features in a method can be captured infor-
mation covering various visual rhythms and possess different temporal receptive fields,
indicating diverse temporal scales. Additionally, these features at different depths also en-
compass multi-scale spatial information. Meanwhile, the success of multi-scale features
has been demonstrated in tasks like object detection [8] and pedestrian re-identification
[9]. Feature extraction in deep CNNs is a process that transforms features from low levels
into high levels. While deeper network layers can extract global information with highly
discriminative features, they inevitably lose detailed information. Shallow features, on
the other hand, maintain high resolution and weak semantics, serving as a complement to
deep features.

Inspired by these considerations, we introduce a spatio-temporal-based multi-level
aggregation network (ST-MANet) for action recognition. Specifically, ST-MANet, based
on the self-attention mechanism, designs a temporal aggregation module to leverage the
temporal correlations within videos. It aims to extract more temporal-related informa-
tion and aggregate temporal information effectively. Subsequently, a temporal aggrega-
tion network is constructed based on the temporal aggregation module, consisting of two
parts: the main branch and the temporal aggregation branch. The interaction between
these branches further explores temporal information in the video, enhancing the net-
work’s temporal modeling capabilities and improving the accuracy of behavior recogni-
tion. Following this, a spatial attention module based on the self-attention mechanism is
introduced. It evaluates the correlations between different spatial positions in the feature
map, assessing the importance of each position and assigning different weights to different
spatial locations. Furthermore, a multi-scale approach is incorporated, proposing a multi-
scale behavior recognition framework that models various visual rhythms while capturing
multi-scale spatiotemporal information. On this basis, a spatial diversity constraint is in-
troduced to focus spatial attention at different scales on distinct spatial locations. This
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ensures that different scales of spatial attention concentrate on spatial information unique
to each scale, allowing for a more diverse representation of spatial information in multi-
scale features. Finally, experimental results demonstrate the effectiveness of ST-MANet
compared to existing approaches, showcasing high accuracy across three datasets.

The contributions of ST-MANet are threefold:
(1) A temporal aggregation module, designed through the self-attention mechanism,

effectively extracts and aggregates temporal information from videos, significantly en-
hancing the network’s ability to capture action sequence changes and thereby improving
the accuracy of behavior recognition.

(2) By introducing a spatial attention module and a multi-scale approach, ST-MANet
is capable of capturing unique spatial information at different scales, and through the spa-
tial diversity constraint, ensures the comprehensiveness and diversity of this information,
further strengthening the model’s ability to recognize actions in complex scenes.

(3) Experimental results demonstrate the effectiveness of ST-MANet compared to ex-
isting approaches, showcasing high accuracy across three datasets in action recognition
tasks.

The remaining sections of ST-MANet are organized as follows: Section II offers an
extensive review of current methods in human action recognition. Section III detail the
key components and the methodology behind ST-MANet. Section IV presents a detailed
account of the experimental results and evaluations conducted to validate the efficacy of
ST-MANet. Finally, Section VI concludes the paper by summarizing the key findings and
contributions of ST-MANet.

2. Related Works

2.1. Dual-stream based methods

Dual-stream based methods incorporate both spatial and temporal information, which en-
hances behavior recognition in video analysis. Karpathy et al. propose the dual-stream
network architecture to extract action features at different resolutions in two streams,
extending convolutional neural networks into the realm of videos [14]. Simonyan et al.
introduce the use of optical flow information to extract temporal features and provide a
new direction for action recognition, which divides the model into two parts, with one part
processing individual video frames for spatial information extraction, and the other part
taking dense optical flow from consecutive frames for temporal feature extraction [19].
The classification results from both streams are combined with the Softmax to capture fi-
nal action recognition results. Although the dual-stream network utilizing complex optical
flow achieved superior results on public datasets at the time, it still had room for improve-
ment as the network only utilized a small portion of information from the entire video.
Building upon this, Wang et al. design a network based on the temporal segment (TSN)
[26]. In the data processing stage, TSN divides video data into multiple segments. Each
segment undergoes feature recognition based on the dual-stream network. The spatial and
temporal stream scores from each segment are then aggregated to obtain the overall spa-
tial and temporal scores for the entire video. Finally, the two scores are fused to yield
the ultimate result. TSN effectively utilizes video information by uniformly extracting ac-
tion features across different slices of the entire video, enhancing recognition accuracy.
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However, TSN’s fusion of information from different segments is only evident in the
model’s final stage, simply consolidating recognition results without capturing more nu-
anced temporal information from the feature extraction results. Sun et al. propose a novel
LSTM structure and multimodal training approach to train networks [20]. They employed
two streams to jointly train the input and optical flow gates in the network, departing from
traditional methods that treated the two streams as independent training networks. Tran
et al. introduce 3D CNNs in video recognition, asserting that 3D convolution kernels are
more suitable for temporal features in video data [22]. They conducted tests on the opti-
mal size for the third dimension (depth) based on Simonyan et al.’s recommended 3 × 3
2D convolution kernel and provided the most suitable three-dimensional convolution ker-
nel and network architecture for video convolution. Carreira et al. present a dual-stream
Inflated 3D ConvNet (I3D) based on dilated 2D convolutions [1]. They applied 3D convo-
lutions in both streams, expanding the design and parameters of deep image classification
convolutional networks seamlessly for video spatiotemporal feature extraction.

Dual-stream based methods have been a cornerstone in the field of action recogni-
tion due to their ability to capture both spatial and temporal information from videos.
The spatial stream typically processes individual frames to extract features from the vi-
sual content, while the temporal stream exploits optical flow to analyze motion patterns
over time. This dual approach has proven to be highly effective in distinguishing complex
actions and interactions. However, the process of extracting optical flow is computation-
ally intensive. It involves estimating the motion of objects between consecutive frames,
which can be particularly challenging in videos with large motion variations, occlusions,
or changes in illumination. Despite the significant progress in developing efficient optical
flow algorithms, the computational demands remain a bottleneck for real-time applica-
tions and deployment on resource-constrained devices.

2.2. Behaviour rhythm based methods

Behaviour rhythm based methods aim to leverage the temporal structure and variations
of actions within video sequences to enhance the performance of action recognition in
videos. Wang et al. point out that the spatial stream of the dual-stream network is influ-
enced by samples with similar backgrounds, and the temporal stream struggles to differen-
tiate actions with similar trajectories in a short period [27]. Moreover, the two streams fail
to deeply integrate spatial and temporal features. To address these issues, they proposed
the Spatiotemporal Pyramid Network. In the temporal module, fixed-interval sampling
is applied to the optical flow of the entire video, with the sampling intervals randomly
determined to obtain features under different action rhythms. Zhang et al. introduce the
Dynamic Temporal Pyramid Network (DTPN), based on multiscale modeling [30]. They
directly employed inputs with five different random frame rates to extract features, de-
signed a dual-branch multiscale temporal feature structure to handle intrinsic time scale
differences in actions, and created a fusion module for different scale feature maps. This
demonstrated the significance of both local and global features for video recognition. Fe-
ichtenhofer et al. propose the SlowFast network, training two different structures with
data at two frame rates, sampling input frames with a larger interval to extract spatiotem-
poral features [5]. The latter, at a higher frame rate, samples frames with a smaller time
gap on the same video segment. Similar to dual-stream networks, a fusion mechanism
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is employed to integrate information from both pathways to obtain the final classifica-
tion result. Yang et al. introduce the concept of visual rhythm and statistically analyzed
the visual rhythms of different actions [28]. They proposed the Temporal Pyramid Net-
work (TPN), which samples image features at different ratios to extract hierarchical action
rhythms. A feature aggregation module is utilized to fuse the rhythm features. Inspired by
machine learning feature selection methods, Facebook AI Research introduced the X3D
extension structure for efficient video recognition [4]. This structure expands the model in
three dimensions based on a 2D convolutional network, providing a meaningful reference
example for further extension of efficient video recognition models.

The behavior rhythm-based methods for video action recognition represent a signif-
icant advancement in the field by focusing on the temporal dynamics of actions within
a video sequence. These methods analyze the variations in human behavior over time to
capture the rhythm and patterns that define different actions. By sampling videos at multi-
ple rates and at different time intervals, these approaches can extract a rich set of features
that encapsulate the nuances of human motion, leading to more accurate recognition of
actions. However, the computational expense of such an approach is a significant draw-
back. The need for multiple video samplings and the subsequent processing to extract
features at various rates results in a substantial increase in the data volume that needs to
be handled. This not only slows down the training process but also requires substantial
computational resources, which can be a limiting factor for large-scale video analysis.

2.3. Differential feature based Methods

This type of method directly acquires action features by utilizing the differential informa-
tion between adjacent data points and features, significantly reducing the computational
load involved in data processing and model training. Differential calculations are divided
into RGB differential and feature differential. RGB differential, resembling optical flow
in representing motion information, can capture certain action details, and its extraction
method is often more efficient. It is frequently used to complement spatial features ex-
tracted based on RGB frames. For example, in the Temporal Segment Network (TSN)
[26], differential feature extraction is added to the original image features in the spatial
stream, and experimental results demonstrate the effectiveness of their combined features
for video action recognition. Lin et al. propose the Temporal Shift Module (TSM), suitable
for spatiotemporal feature extraction, where features of certain channels are temporally
shifted to fill gaps in the time dimension, achieving an effect similar to extracting differ-
ential features [17]. Liu et al. introduced TEINet, which includes an action enhancement
module and a time-increasing interaction module [18]. The action enhancement mod-
ule represents motion information by computing the differential feature maps of adjacent
frames, and the time module further performs convolution operations on features channel-
wise, capturing temporal information. Jiang et al. propose a channel-wise action module
for action feature extraction [12]. It calculates the differential features between different
dimensional channel features, connects the differential results of each channel, and ap-
plies 2D convolution to obtain the final action feature information. Li et al. presented a
temporal excitation and aggregation network, similar to the aforementioned methods, with
the distinction that the aggregation module divides features into multiple slices [16]. Each
slice’s features undergo convolutional operations before subtraction. The action extraction
module also conducts differential calculations on the features in the initial network layer,
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enhancing the model’s video recognition performance via multiple uses of differential
features. In the temporal difference network proposed by Wang et al., appearance features
are extracted in the lower-level network, introducing the short-term temporal difference
module [25]. Meanwhile, temporal features are extracted in the higher-level network, in-
troducing the long-term temporal difference module. Both modules employ differential
techniques for RGB frames and features separately.

Despite the notable achievements in video action recognition through the use of differ-
ential information for feature extraction, these methods encounter several challenges. The
RGB differential, which excels at capturing motion details, may fall short when it comes
to complex actions that require a deeper understanding of semantic information. Addi-
tionally, while differential methods effectively capture local changes, they may struggle
with long-term dependencies in videos, such as those addressed by the Temporal Seg-
ment Network (TSN). The challenge of effectively fusing features from multiple mod-
ules within network architectures like TEINet and others is significant, as is the design of
these fusion strategies, which are critical to the final recognition performance but prone to
information loss or redundancy. Computational resource optimization remains an issue,
especially when dealing with large-scale video data, despite the computational benefits
offered by differential calculations. The modular design of networks, although success-
ful for specific tasks, may have limited generalization capabilities when applied to other
action recognition tasks. Furthermore, the short-term and long-term temporal difference
modules introduced in temporal difference networks, while handling features at different
time scales, may not adapt well to rapid or nonlinear motion dynamics in videos. Lastly,
the performance of these methods is heavily dependent on the quality and diversity of
the training datasets, with biases or insufficiencies potentially leading to reduced general-
ization capabilities. In summary, while differential information provides valuable insights
for action feature extraction, a range of challenges must be addressed to ensure robust and
generalizable models in practical applications.

3. Spatio-Temporal-based Multi-level Aggregation Network for
Action Recognition

A spatio-temporal-based multi-level aggregation network (ST-MANet) is proposed for
action recognition, which contains the baseline network, the temporal-based deep aggre-
gation network, and the spatio-based deep aggregation network. The main mathematical
notations used in the paper are listed in Table 1.

3.1. Baseline Network

ST-MANet utilizes 3D ResNet-50 as the baseline network for human action recognition,
which is composed of five stages, as shown in Fig. 1.

Specifically, stage 1 of 3D ResNet-50 consists of a convolutional layer, a time step of
1, and a spatial step of 2, followed by BN and ReLU layers in sequence, where the convo-
lutional layer extracts features and reduces spatio-temporal dimensions. The Batch Nor-
malization layer prevents the occurrence of gradient vanishing and accelerates network
convergence. The ReLU layer enhances the expressive power of the extracted features.



ST-MANet 1829

Fig. 1. The illustration of the proposed ST-MANet

Table 1. Frequently used notations

Notations Description

Zi the feature map from the i-th stage of 3D ResNet-50
Zi−1

TDA the feature map from the i-th stage of temporal-based deep aggregation network
Zi

c the concatenation feature of Zi and Zi−1
TDA

Ai
t the temporal attention matrix

Ai
s the spatio attention matrix

Z̄i
t the temporally aggregated feature map

Z̄i the final output of the i-th stage of 3D ResNet-50
f(·) the cosine similarity function
Si(·) the downsampling function
Con(·) the fusion function
Lce the cross-entropy loss
Ls the spatial diversity constraint
Lt the temporal diversity constraint
λ1,λ2 the balance coefficients
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The subsequent four stages contain 3, 4, 6, and 3 Bottleneck Residual Blocks, respec-
tively, where each block is a concatenation of three convolutional blocks. The first convo-
lutional block consists of a convolutional layer, BN layer, and a ReLU layer. The output
channel number is the same as the input channel number, aiming to promote interaction
between different channels. The second convolutional block consists of a convolutional
layer, a BN layer, and ReLU layer. The channel number is again the same as the input
channel number, intended to expand the spatio-temporal receptive field of the network.
The third convolutional block consists of a convolutional layer, a BN layer, and a ReLU
layer. The output channel number is four times the input channel number. Each bottle-
neck residual block is constructed with a residual structure, stacked together to form the
different stages of 3D ResNet-50. The feature space and temporal resolution of the output
from each stage are reduced by a factor of two, while the channel dimension is doubled,
giving the network powerful abstract feature extraction capabilities.

3.2. Temporal-based Deep Aggregation Network

Considering the varying contributions of video frames at different time points to ac-
tion recognition, ST-MANet employs a visual self-attention mechanism to construct a
temporal-based deep aggregation network (TDA), aiming to enhance the capturing of
temporal information in action videos.

Specifically, TDA employs a dual-branch design, with inputs originating from the
ResNet-50 branch and the temporal-based deep aggregation network branch, which is
shown in Fig. 2. The ResNet-50 branch retains the relative temporal relationships of the
original input and transfers information to the temporal-based deep aggregation network
branch. TDA makes full use of a self-attention mechanism to aggregate and enhance the
mining of temporal information about actions, which not only is temporal information
reinforced, but also contributes to the extraction of holistic features.

Fig. 2. Temporal-based deep aggregation network

More specifically, given the feature map from the i-th stage of 3D ResNet-50, Zi ∈
RC×T×W×H , and the feature map from the previous temporal-based deep aggregation
network, Zi−1

TDA ∈ RC/2×T×W×H , as the input of the i-th temporal-based deep aggrega-
tion network, where C is channel number. T , W , and H are the time steps, the width, and
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the height, respectively. TDA concatenates Zi and Zi−1
TDA along the channel dimension to

obtain the concatenation feature Zi
c ∈ R3C/2×T×W×H , and then computes the temporal

attention matrix Ai
t via:

Ai
t = softmax(ϕ(Zi

c)⊗ (ϖ(Zi
c)) (1)

where ϕ(·) and ϖ(·) denote reshaping operations to obtain the feature map with the size
of (T × 3/2(CWH)) and (3/2(CWH)×T ), respectively. The elements in Ai represent
the degree of correlation between features at each moment in time. Moments with strong
correlations to other moments in the feature map have higher time attention scores, and
vice versa. It is worth noting that the convolutional kernel sizes used here are 3 × 1 ×
1, which, compared to the commonly used 1 × 1 × 1 kernels in visual self-attention
mechanisms, have a larger size along the time dimension. This results in a larger temporal
receptive field, providing stronger temporal modeling capabilities.

Next, the feature map Zi−1
TDA, after the τ(·) operation, is multiplied element-wise with

the temporal attention matrix Ai
t, normalized using the softmax function, and further pro-

cessed by the ϵ(·) operation to obtain the temporally aggregated feature map Zi
TDA:

Zi
TDA = ϵ(softmax(Ai

t ⊗ τ(Zi−1
TDA))) (2)

where τ(·) denote the reshaping operation to obtain the feature map with the size of
(T×3/2(CWH)). ϵ(·) first reshapes the feature map back to a size of 3C/2×T×W×H ,
then passes it through a convolutional layer with a kernel size of 3 × 1 × 1, followed by
a pooling layer to output the temporally aggregated feature Xi

TDA. It is worth noting
that for the final TDA, ϵ(·) does not include a pooling layer to ensure that the ResNet-50
branch and the temporal-based deep aggregation network branch outputs have the same
dimensions for subsequent feature fusion.

Similarly, after the σ(·) operation, the feature map Zi is multiplied element-wise with
the attention map Ai

t. Subsequently, it undergoes the softmax activation function and the
ϵ(·) operation, and then is element-wise added with the Xi to obtain the temporally ag-
gregated feature map Z̄i

t :

Z̄i
t = Zi + ϵ((softmax(Ai

t ⊗ σ(Zi)))) (3)

where σ(·) denotes the reshape operation to obtain the feature map with the size of (T ×
CWH).

TDA uncovers additional temporal correlation information within videos, exploring
long-range dependencies over time and consolidating temporal information. Notably, at
each stage, the output from the upper part of the temporal aggregation module is integrated
into the main branch, reinforcing temporal information in the primary pathway. The intro-
duction of the temporal aggregation module enhances the temporal modeling capabilities
of 3D ResNet-50. Additionally, the interaction between the two branches delves into more
information within the video.

3.3. Spatio-based Deep Aggregation Network

To focus on regions containing more discriminative information, ST-MANet designs the
spatio-based deep aggregation network(SDA) to calculate the correlation between differ-
ent spatial positions in the feature map, as illustrated in Fig. 3.
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Fig. 3. Spatio-based deep aggregation network

Specifically, given the feature map from the i-th stage of 3D ResNet-50,
Zi ∈ RC×T×W×H , as the input of the i-th spatio-based deep aggregation network, SDA
computes the spatio attention matrix Ai

s via:

Ai
s = softmax(α(Zi)⊗ β(Zi)) (4)

where α(·) and β(·) denote reshaping operations to obtain the feature map with the size
of (WH ⊗ CT ) and the size of (CT ⊗WH), respectively. The elements in Ai

s indicate
the correlation between features at each spatial position in Zi and features at other spatial
positions. In other words, positions with strong correlations to other spatial positions in
the feature map have higher spatial attention scores, and vice versa.

Then, the spatially enhanced feature map Z̄i
s is obtained from:

Z̄i
s = π(softmax(Ai

s ⊗ η(Zi))) (5)

Where η(·) and π(·) denote reshaping operations to obtain the feature map with the size
of (WH ⊗ CT ) and the size of C × T ×W ×H , respectively.

SDA unveils additional spatial correlation information within images, exploring intri-
cate dependencies across different regions and consolidating spatial information. Notably,
in each processing stage, the output from the upper part of the spatial aggregation module
is seamlessly integrated into the main branch, fortifying spatial information in the primary
pathway. The incorporation of the spatial aggregation module elevates the spatial model-
ing capabilities of the 3D ResNet. Moreover, the interaction between the two branches
delves into a richer trove of information within the image. This synergistic approach en-
hances explorations in nuanced spatial relationships and dependencies.

3.4. The multi-level fusion loss of ST-MANet

Convolutional neural networks generate hierarchical feature maps through repeated pool-
ing and subsampling operations. As the hierarchy goes deeper, the receptive field becomes
larger, indicating stronger representational capabilities but leading to the loss of detailed
spatial information. In other words, deep features in convolutional neural networks pos-
sess high-level visual perception but discard some crucial local information. Shallow lay-
ers, on the other hand, exhibit higher spatial resolution features, preserving fundamental
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details of the image but lacking semantic understanding. To enhance the overall expressive
power of the network, ST-MANet introduces temporal and spatial diversity constraints for
different depths, which aims to encourage attention matrices at different depths to focus
on distinct temporal and spatial information.

Considering that temporal and spatial attention matrices also have different dimen-
sions, a downsampling operation is applied to the attention matrices of shallower layers
to ensure that all attention matrices have the same size:

Āi = Si(Ai), i = 2, 3, 4, 5 (6)

where i represents the i-th stage of ResNet-50 and Āi represents the attention matrix after
downsampling for the i-th stage of 3D ResNet-50. Si(·) is the downsampling function of
the i-th stage of ResNet-50. Then, ST-MANet minimizes the cosine similarity between
the aligned attention matrices to maximize the differences at different network depths in
terms of time and space:

Lt =
∑

(i,j)∈δ

f(Āi
t, Ā

j
t )

Ls =
∑

(i,j)∈δ

f(Āi
s, Ā

j
s)

(7)

where Ls and Lt represent the spatial and temporal diversity constraints, δ = {(i, j) |
i, j ∈ Z, 2 ≤ i, j ≤ 5, i ̸= j}, where i and j denote the stages of the network. This
constraint is computed only for stages 2 and onwards. f(·) denotes the cosine similarity
function. During training, the spatial and temporal diversity constraints tend to decrease,
encouraging a reduction in the cosine similarity of the spatial and temporal attention maps
across different stages. This reduction further contributes to compelling the network to
focus on distinct the spatial and temporal locations at various stages. This enhances the
diversity of the spatial and temporal information within multi-scale features.

Meanwhile, ST-MANet fuses four feature maps of different depths by cascading along
the channel dimension to obtain a comprehensive and good fusion representation Z for
the classification of action recognition;

Z = Con(Z2;Z3;Z4;Z5) (8)

where Z̄i = Zi ⊕ Z̄i
t ⊕ Z̄i

s denotes final output of the i-th stage of 3D ResNet-50, which
fully aggregates spatio-temporal information in each layer.

The multi-level fusion loss of ST-MANet is defined:

L = Lce + λ1Ls + λ2Lt (9)

where Lce is the cross-entropy loss. Ls is the spatial diversity constraint. Lt is the tempo-
ral diversity constraint. λ1 and λ2 are the balance coefficients.

4. Experiments

4.1. Set up

Dataset and metric: The performance of the ST-MANet in action recognition is verified
based on three popular datasets, i.e., UCF-101, HMDB-51, and Diving 48. The compre-
hensive statistical details for each dataset are provided in Table 2. Building upon prior
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research, the evaluation of performance relies on accuracy as the primary metric, with
higher values indicating superior performance.

– UCF-101 is a coarse-grained description of the action recognition. It contains 13320
action videos spanning 101 distinct classes.

– HMDB-51 is a coarse-grained description of the action recognition. It contains 6849
action videos spanning 51 distinct classes.

– Diving 48 is a fine-grained description of the action recognition. It contains 18404
action videos spanning 48 distinct classes.

Table 2. Statistical Details For Each Dataset

Dataset Sample Class Type

Ucf-101 13320 101 Coarse-Grained Description
Hmdb-51 6849 51 Coarse-Grained Description
Diving 48 18404 48 Fine-Grained Description

Implementation Details: ST-MANet conducts preprocessing and data augmentation
on the input video data. Initially, it randomly samples continuous video segments of 64
frames from the videos. Subsequently, the video segments undergo subsampling with a
stride of 2, resulting in frame sequences of 32 frames. Next, random cropping is applied to
the frames, with the length and width set between 0.5 and 1 times the length of the shorter
side of the original video frame. Finally, a spatial scale transformation is applied to resize
both the length and width of the frame sequences to 112. To increase training samples,
random horizontal flipping is employed as a data augmentation technique. During the
training process, the paper utilizes batch SGD to train the ST-MANet, employing cross-
entropy loss function with a momentum coefficient of 0.9 and 32 batch size. The network
parameters are initialized using the Kaiming initialization strategy. The initial learning
rate is set at 0.01, and every 15 epochs, the learning rate is decayed by a factor of 0.1. The
entire training process spans 90 epochs. In contrast to the preprocessing of data before
training, during testing, the entire video is first divided into multiple continuous video
segments of 64 frames each. These segments then undergo subsampling with a stride of 2,
resulting in multiple video frame sequences of 32 frames. Subsequently, central cropping
is applied to each frame sequence. Finally, multiple frame sequences of a video are input
into the network.

4.2. Comparison with baselines

Comparison methods: Eight baseline methods are compared to evaluate the performance
of ST-MANet in the experiments, including TCNet [19], LFSNet [23], TSNet [26], LTNet
[24], MRNet[7], RMRNet [21], MVTNet [3], and A3DNet [29].

Comparison results: Table 3 presents a comparison of experiment outcomes regard-
ing accuracy on the three few-shot datasets. Specifically, ST-MANet outperforms eight
baseline methods across both settings, which proves effectiveness and superiority in the
action recognition. The seasons are fourfold. (1) ST-MANet designs temporal-based deep
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Table 3. Comparison of ST-MANet to top-performing methods on three datasets in terms
of the accuracy

Method UCF-101 HMDB-51 Diving 48

TCNet 0.8200 0.5940 0.5222
LFSNet 0.8580 0.5492 0.5645
TSNet 0.8640 0.5881 0.5987
LTNet 0.9270 0.6720 0.6719
MRNet 0.8440 0.5900 0.5904
RMRNet 0.9418 0.6275 0.6668
MVTNet 0.9040 0.5460 0.6048
A3DNet 0.9260 0.6126 0.6521
ST-MANet 0.9605 0.6872 0.7215

aggregation network to enhances the temporal information in the 3D RestNet-50 and in-
corporates a temporal aggregation branch for exploring and aggregate additional tem-
poral information. (2) ST-MANet designs the spatial-based deep aggregation network
to strengthen discriminative spatial information relevant to action recognition. (3) ST-
MANet introduces a multi-level fusion strategy to model various visual rhythms and ex-
plore multi-scale temporal and spatial information concurrently. (4) By introducing tem-
poral and spatial diversity constraints, ST-MANet encourages temporal and spatial atten-
tion at multiple scales to focus on different positions, ensuring that the ultimately fused
multi-scale features contain more comprehensive and complete spatiotemporal informa-
tion.

In addition, there are four observations. (1) TCNet and TSNet, while leveraging the
powerful dual-stream architecture, struggle with capturing long-term temporal dynamics
due to their focus on optical flow between adjacent frames. This limitation suggests the
need for more advanced mechanisms that can handle temporal dependencies over larger
time spans. Furthermore, their spatial stream networks, which are crucial for understand-
ing the context and structure within each frame, could benefit from more innovative de-
signs to better extract relevant spatial features. (2) LFSNet’s adoption of the C3D network,
although it offers a straightforward and efficient architecture, falls short in delving deeper
into the intricate spatiotemporal relationships present in videos. LTNet’s enhancement to
include more frames is a step in the right direction, yet the network’s overall simplicity
may not be sufficient to fully harness the rich information encoded in video sequences.
This points towards the necessity for more complex and sophisticated network structures
that can integrate information from multiple frames effectively and robustly. (3) MRNet’s
focus on refining the GRU for temporal exploration is commendable, but the inherent
challenges in extracting spatial information using RNN-based methods cannot be over-
looked. ST-MANet’s integration of a spatial attention module with 3D ResNet-50 repre-
sents a significant advancement, as it allows the network to adaptively focus on relevant
regions within the frame, leading to a more nuanced understanding of the spatial content.
This underscores the importance of attention mechanisms in enhancing the model’s abil-
ity to discern and prioritize spatial information. (4) RMRNet’s investigation into residual
frames is an innovative approach to bolster the motion capture capabilities of 3D con-
volutional networks. However, the lack of structural innovation and the reliance on 3D
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ResNet-18 for temporal feature extraction may limit the network’s overall performance.
This indicates that while residual frames can offer valuable insights into motion, the un-
derlying model architecture must also be optimized to ensure comprehensive temporal
analysis. In summary, these observations reveal that while current networks have made
strides in video action recognition, there is still much room for improvement. The key lies
in striking a balance between the complexity of the network, which allows for thorough
spatiotemporal feature extraction, and the efficiency required for practical applications.
Future research should focus on developing architectures that can effectively handle long-
term temporal dependencies, innovate in spatial feature extraction, and integrate attention
mechanisms to refine the model’s focus on critical information. By addressing these as-
pects, we can expect significant advancements in the field of video action recognition,
leading to more accurate and efficient models capable of understanding and analyzing the
rich content of video data.

4.3. Ablation Study

Table 4. Ablation experiments of each component in ST-MANet

3D ResNet-50 TDA SDA MF Accuracy
√

0.8317√ √
0.8945√ √
0.9012√ √ √
0.9278√ √
0.8416√ √ √ √
0.9605

We conducts five ablation experiments about 3D ResNet-50, TDA (temporal-based
deep aggregation network), SDA (spatial-based deep aggregation network), and MF (multi-
level fusion strategy). Specifically, (1) ST-MANet utilizes 3D ResNet-50 to extract fea-
tures for performing action recognition tasks. (2) ST-MANet intergrades 3D ResNet-50
and the temporal-based deep aggregation network to extract features for performing action
recognition tasks. (3) ST-MANet intergrades 3D ResNet-50 and the spatial-based deep
aggregation network to extract features for performing action recognition tasks. (4) ST-
MANet intergrades 3D ResNet-50, the temporal-based deep aggregation network and the
spatial-based deep aggregation network to extract features for performing action recogni-
tion tasks. (5) ST-MANet intergrades 3D ResNet-50 and the multi-level fusion strategy to
extract features for performing action recognition tasks.

As shown in Table 4, there are six conclusions: (a) The Effectiveness of 3D ResNet-50
as a Basic Feature Extractor: Through experiment (1), we found that using 3D ResNet-
50 alone for action recognition tasks, the model can effectively extract spatiotemporal
features. This indicates that 3D ResNet-50, as a deep learning base network, has good
performance in the field of action recognition. However, its performance may be limited
by the rigidity of the network structure, which may not fully capture the complex spa-
tiotemporal information in videos. (b)The Complementary Role of the Temporal-Based
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Deep Aggregation Network (TDA): In experiment (2), by integrating 3D ResNet-50 with
the Temporal-Based Deep Aggregation Network (TDA), the model’s performance in ac-
tion recognition tasks was improved compared to using 3D ResNet-50 alone. This sug-
gests that TDA can effectively supplement the temporal feature extraction capabilities of
3D ResNet-50, enhancing the model’s ability to capture the temporal sequence changes
in actions. (c) The Integration Effect of the Spatial-Based Deep Aggregation Network
(SDA): In experiment (3), the model’s performance was also enhanced by combining
3D ResNet-50 with the Spatial-Based Deep Aggregation Network (SDA). This indicates
that SDA effectively strengthens the feature extraction in the spatial dimension, enabling
the model to better understand spatial relationships and layouts in videos. (d) Signif-
icant Improvement with Spatiotemporal Fusion Strategy: In experiment (4), by fusing
both Temporal-Based and Spatial-Based Deep Aggregation Networks, the model’s per-
formance in action recognition tasks reached its peak. This result confirms the importance
of joint optimization of spatiotemporal information for enhancing the accuracy of action
recognition, where spatiotemporal fusion strategy can more comprehensively capture the
complex spatiotemporal features in videos. (e) Further Optimization with Multi-Level
Fusion Strategy (MF): in experiment (5), by introducing the Multi-Level Fusion Strategy
(MF) in conjunction with 3D ResNet-50, the model’s performance was further optimized
in some cases. This indicates that the Multi-Level Fusion Strategy can more meticulously
integrate spatiotemporal information at different levels, providing richer feature represen-
tations for action recognition tasks. (f) the combined effect of these modules transcends
the sum of their individual contributions, highlighting the synergy and complementarity
inherent in ST-MANet’s design. This observation underscores the rationality and effec-
tiveness of the modules within ST-MANet, demonstrating their collective power in en-
hancing the model’s accuracy and performance. Such a finding not only validates the
architectural choices made in ST-MANet but also offers insights into the importance of
holistic system design in achieving superior results in action recognition tasks.

4.4. The effectiveness of multi-level fusion

To delve deeper into the contributions of each stage within ST-MANet to the overall
performance of action recognition, we conducted a comparative analysis. This analysis
involved directly classifying features extracted from individual stages and then comparing
these results with the outcomes obtained from features that have undergone multi-level
fusion. The detailed results of this comparison are presented in Table 4.

These are some observations: (1) The top-level features, which are the output of the
deepest layers in the network, are found to contain rich semantic information that is crucial
for understanding the actions within the videos. These features have undergone a series
of transformations and aggregations that enable them to capture complex patterns and re-
lationships present in the data. On the other hand, features from the shallower layers tend
to lack the sophistication to adequately model semantic information. They exhibit limited
reasoning capabilities when it comes to processing both temporal and spatial information,
which is evident from the decreasing trend in recognition accuracy as we move towards
shallower features. (2) The features extracted from Stage 5 represent a turning point in this
analysis. At this stage, the features have been fused from both the main branch and the
temporal aggregation branch. This fusion results in a rich amalgamation of temporal and
spatial information, alongside semantic insights. As a result, Stage 5 features achieve the
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Fig. 4. Contribution ablation of each stage of in ST-MANet

highest accuracy among the single-scale features, indicating the importance of the tem-
poral aggregation module in enhancing the network’s temporal modeling capabilities. (3)
The multi-level fusion strategy takes this a step further by integrating features from mul-
tiple stages of the network. Temporally, this strategy spans a wide range of information,
capturing various visual rhythms and exploring multiple time scales. This comprehensive
temporal coverage allows the network to recognize actions that may vary in speed and du-
ration. Spatially, the fused features not only include deeply learned, highly discriminative
information but also incorporate finer details from the shallower layers. This combination
of deep and shallow features ensures that the model can leverage both the nuanced un-
derstanding of the scene’s layout and the broader context of the action being performed.
Consequently, the multi-level fusion strategy stands out as the most effective approach,
achieving the highest accuracy in the action recognition task. This strategy exemplifies
the power of combining diverse types of information at different levels of abstraction,
which is a key principle in designing deep learning models for complex tasks such as
video action recognition. By harnessing the collective strength of features from various
stages, ST-MANet is able to outperform other approaches and set a new benchmark for
accuracy in the field.

4.5. Parameter Analysis

Fig. 5 illustrates the results of the analysis experiments investigating the influence of
trade-off parameters λ1 and λ2 and learning rate r on three datasets. Specifically, we
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(a) UCF-101 (b) UCF-101

(c) HMDB-51 (d) HMDB-51

(e) Diving 48 (f) Diving 48

Fig. 5. The sensitivity analysis of parameters λ1 and λ2 and learning rate r on three
datasets for ST-MANet
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Fig. 6. Comparison of computational complexity and accuracy of ST-MANet and 3D
ResNet-50 in terms of three datasets

constrained λ1 and λ2 within the set {0, 0.0001, 0.001, 0.01, 0.1, 1}. Throughout the ex-
periments, one parameter was maintained at a constant value while the other was varied.
The results displayed in Fig. 5 demonstrate the robustness of ST-MANet to changes in λ1

and λ2. The performance consistently remains satisfactory, particularly when λ1 is set to
0.01 and λ2 is set to 0.001. As a result, for the three datasets, ST-MANet is configured
with λ1 = 0.01 and λ2 = 0.001 in the experiments. This configuration has been empir-
ically determined to yield a high level of accuracy, suggesting that it effectively weights
the different components of the network’s loss function in a manner that is conducive to
learning robust action recognition features. The parameters λ1 and λ2 play a crucial role
in the network by controlling the balance between certain regularization terms and the
overall loss. The optimal values found in this study provide a valuable reference for fu-
ture research and applications of ST-MANet, as they offer a blueprint for achieving high
performance with a reasonable computational cost.

In addition to the qualitative assessment of the ST-MANet’s performance, we have
conducted a quantitative analysis to evaluate its computational efficiency and effective-
ness. This analysis includes a direct comparison of the floating-point operations required
by ST-MANet and the 3D-ResNet-50 architecture when applied to the UCF-101 dataset,
a benchmark for action recognition research. As illustrated in Table 6, the implementation
of ST-MANet results in an approximate 24% increase in floating-point operations when
contrasted with the 3D ResNet-50. This increase is attributed to the additional temporal
and spatial modules integrated into ST-MANet, which are designed to enhance the net-
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work’s ability to capture complex spatiotemporal features within videos. Despite this rise
in computational demand, it is important to note that the computational footprint of both
ST-MANet and 3D ResNet-50 remains relatively comparable. This suggests that while
ST-MANet is more computationally intensive, the increase is not prohibitive and is jus-
tified by the performance gains. The accuracy improvements achieved by ST-MANet are
particularly noteworthy. On the UCF-101 dataset, ST-MANet demonstrates a 12.88% in-
crease in accuracy over the baseline 3D ResNet-50. This significant leap in performance
underscores the value of the network’s advanced feature extraction capabilities, partic-
ularly its ability to model the intricate temporal dynamics that are critical for accurate
action recognition. In conclusion, while ST-MANet does require more computational re-
sources than 3D ResNet-50, the increase is moderate and does not lead to a significant
disparity in computational requirements. The substantial improvement in accuracy, espe-
cially on challenging datasets like UCF-101, is a testament to the network’s advanced fea-
ture aggregation and modeling capabilities. This makes ST-MANet a compelling choice
for applications where high accuracy in action recognition is paramount, justifying the
additional computational investment.

5. Conclusion

This paper introduces ST-MANet, a novel spatio-temporal-based multi-level aggregation
network for action recognition.Specifically, by leveraging correlations between differ-
ent spatial and temporal positions on the feature map, ST-MANet effectively explores
long-range spatial and temporal dependencies, generating spatial and temporal attention
maps that assign varying weights to features at different locations. Moreover, the inte-
gration of a multi-scale approach enables the modeling of various visual rhythms and the
capture of multi-scale spatiotemporal information. The proposed spatial diversity con-
straint further enhances the network’s ability to focus on distinct spatial areas at different
scales, thereby incorporating more diverse spatial information into multi-scale features.
Experimental results demonstrate the effectiveness of ST-MANet compared to existing
approaches, showcasing high accuracy across three datasets. In the future, there are sev-
eral promising avenues for future research. Firstly, exploring more sophisticated attention
mechanisms could further improve the network’s ability to capture salient spatial and
temporal features. Additionally, investigating ways to incorporate domain knowledge or
context information may enhance the model’s robustness in real-world scenarios. Further-
more, extending the application of ST-MANet to other related tasks beyond action recog-
nition, such as anomaly detection or event localization, could offer valuable insights into
its broader applicability and effectiveness. Overall, ST-MANet presents a strong foun-
dation for advancing the state-of-the-art in spatio-temporal-based action recognition and
opens up exciting possibilities for future research in the field.
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