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Abstract. Edge computing and edge intelligence have gained significant traction8

in recent years due to the proliferation of Internet of Things (IoT) devices, the expo-9

nential growth of data generated at the network edge, and the demand for real-time10

and context-aware applications. Despite its promising potential, the application of11

Artificial Intelligence (AI) on the edge faces many challenges, such as edge comput-12

ing resource constraints, heterogeneity of edge devices, scalability issues, security13

and privacy concerns, etc. The paper addresses the challenges of deploying deep14

neural networks (DNNs) for edge intelligence and traffic object detection and recog-15

nition on a video captured by edge device cameras. The primary aim is to analyze16

resource consumption and achieve resource-awareness, optimizing computational17

resources across diverse edge devices within the edge-fog computing continuum18

while maintaining high object detection and recognition accuracy. To accomplish19

this goal, a methodology is proposed and implemented that exploits the edge-to-fog20

paradigm to distribute the inference workload across multiple tiers of the distributed21

system architecture. The edge-fog related solutions are implemented and evaluated22

in several use cases on datasets encompassing real-world traffic scenarios and traf-23

fic objects’ recognition problems, revealing the feasibility of deploying DNNs for24

object recognition on resource-constrained edge devices. The proposed edge-to-fog25

methodology demonstrates enhancements in recognition accuracy and resource uti-26

lization, validating the viability of both edge-only and edge-fog based approaches.27

Furthermore, experimental results demonstrate the system’s adaptability to dynamic28

traffic scenarios, ensuring real-time recognition performance even in challenging29

environments.30

Keywords: Resource awareness, Traffic Object Recognition, Edge AI, Distributed31

Neural Networks, Edge-Fog Computing Continuum.32

1. Introduction33

Edge computing refers to the paradigm of processing data near its source or point of col-34

lection, rather than relying solely on centralized cloud servers. Edge intelligence involves35

the integration of artificial intelligence (AI) and machine learning (ML) algorithms into36

edge devices, enabling them to perform data analytics and decision-making tasks locally.37

By bringing computation and intelligence closer to the data source, edge computing and38

edge intelligence offer numerous benefits, including reduced latency, improved bandwidth39

⋆ The paper is an extension of the paper presented at RAW 2023 workshop
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efficiency, enhanced privacy and security, and increased resilience to network failures. AI1

on edge devices and infrastructure powers real-time, context-aware, and intelligent appli-2

cations across various fields, such as healthcare, smart cities, industrial automation, trans-3

portation, and agriculture. However, its potential comes with challenges, including limited4

resources, diverse device architectures, scalability difficulties, and concerns around secu-5

rity and privacy. The evolution of edge AI across the edge-fog computing continuum has6

been extensively explored in recent literature, highlighting the significance of distributed7

ML and AI in enabling real-time decision-making [20]. It underscores the importance of8

integrating ML and AI algorithms into edge devices and fog nodes to facilitate intelligent9

data processing, minimizing latency and network bandwidth usage [8].10

In recent years, the rapid proliferation of Internet of Things (IoT) devices, includ-11

ing microcontrollers, single-board computers and smartphones, equipped with built-in or12

externally connected cameras, has led to their ubiquitous usage across a myriad of appli-13

cations requiring detection and recognition of objects on the real-time video streams. This14

widespread adoption has heralded the advent of edge intelligent systems across diverse15

domains, with a notable emphasis on traffic object detection and recognition. Accurately16

identifying and classifying traffic objects, such as cars, trucks, motorcycles, bicycles, and17

pedestrians, is crucial for efficient traffic management, advanced driver assistance sys-18

tems (ADAS), and autonomous driving. There is an increasing reliance on ML and deep19

learning (DL) algorithms for video stream analysis for object detection and classification20

in safety-critical embedded systems and IoT applications, such as autonomous driving21

systems, surveillance systems and security robots. It emphasizes the need for ML/DL22

technologies to meet strict timing requirements in real-time systems while maintaining23

accuracy, given the potentially catastrophic consequences of missed deadlines. Bian et al.24

in [2] aim to provide a comprehensive exploration of state-of-the-art results in ML/DL-25

based scheduling techniques, accuracy trade-offs, and security considerations in real-time26

IoT systems. The potential of Deep Neural Networks (DNNs) to perform efficiently on27

edge IoT devices is particularly significant, as it harnesses the computational power and28

availability of these widely used devices. Exploring the intersection of advanced neural29

network architectures, real-time data processing, and distributed computing paradigms30

is essential for developing innovative solutions for traffic object detection, classification,31

and recognition. By combining the proximity and processing capabilities of edge devices,32

such as smartphones and microcontrollers, with fog servers and cloud infrastructure, re-33

search efforts aim to enhance the efficiency, accuracy, and responsiveness of traffic object34

detection systems.35

This paper addresses the challenges of training and deploying DNNs for traffic object36

detection and recognition across various edge devices, including Android smartphones,37

microcontrollers, and single-board computers. The focus is on distributing computational38

and inference tasks between IoT devices at the far edge, edge servers, and fog servers. We39

examine different deployment strategies, balancing trade-offs between model size, infer-40

ence speed, power consumption, and accuracy. Specifically, we evaluate two approaches:41

(1) quantizing and optimizing the DNN model as TensorFlow Lite for direct deployment42

on edge devices, and (2) deploying the original DNN model on an edge or fog server.43

We also explore distributing the object recognition task by dividing it into two inference44

stages: object detection performed at the edge and object recognition of the detected items45

carried out on the fog server.46
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Through a series of experiments on traffic object detection and recognition, we eval-1

uate the performance, accuracy, and resource consumption across different platforms, in-2

cluding microcontrollers, smartphones, single-board computers, and commodity servers,3

under various video data parameters and configurations. The results offer valuable insights4

into the practicality and efficiency of distributing DNNs for traffic object recognition from5

the edge to the fog. These findings support resource-aware edge intelligence by optimizing6

computational resource usage while preserving high recognition accuracy. Furthermore,7

this research lays the groundwork for developing intelligent transportation systems that8

harness the potential of edge devices, such as Android smartphones and microcontrollers,9

along with fog computing infrastructure, to improve traffic safety and management.10

This paper represents the extended version of the paper presented at the RAW 202311

Workshop [19].Besides significant extension of the related work section and detailed ex-12

planation of the traffic object detection and recognition solutions implemented and pre-13

sented in the original paper, the main contribution of this paper lies in a new use case for14

traffic object detection over novel edge devices using a TinyML approach. This involves15

deploying the traffic object detection solution on a microcontroller (Arduino Nano 3316

BLE Sense) and a single-board computer (Raspberry Pi 4). Various DNN models suitable17

for object detection and recognition tasks have been utilized in their original versions and18

subsequently optimized, quantified and compressed to enable deployment on mentioned19

edge devices. Extensive experiments have been conducted to evaluate the performance20

and accuracy of these applications concerning machine learning tasks. The experiments21

also assessed resource usage, including memory and processing time. The results have22

been described and analysed in detail. The extended paper provides thorough insights23

into the implementation and experimental evaluation of various traffic object detection24

and recognition tasks in different distributed configurations. It also covers the distribution25

of tasks across the edge-fog computing continuum, from microcontrollers and single-26

board computers to smartphones and fog servers (PCs).27

The paper is structured as follows. Section II presents related research work in edge28

computing and edge intelligence related to object detection and recognition from video29

streams. Section III presents several strategies and corresponding applications for deploy-30

ment of DNN for traffic object detection and recognition across various edge devices and31

a fog server. Section IV presents the experimental evaluation for various traffic object de-32

tection scenarios and discusses the evaluation results. Section V gives concluding remarks33

and directions for future research.34

2. Related Work35

A growing body of research has focused on harnessing the power of edge devices, such as36

IoT devices and edge servers, to perform real-time object detection and recognition tasks37

at the network edge, minimizing latency and bandwidth consumption. The convergence of38

edge computing and DL methods and techniques has enabled the deployment of resource-39

efficient object detection and recognition models directly on edge devices, facilitating40

autonomous decision-making and edge AI applications.41

Singh and Gill in [18] gives the extensive review of the unique characteristics and42

advantages of deploying AI algorithms directly on edge devices, enabling real-time infer-43

ence and decision-making at the network edge. Furthermore, the survey discusses the di-44
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verse applications of Edge AI across domains such as smart cities, healthcare, autonomous1

vehicles, and industrial automation, highlighting its transformative potential in enhanc-2

ing efficiency, scalability, and privacy in distributed computing environments. The article3

delves into the challenges and open research issues associated with Edge AI, such as4

resource constraints, security concerns, and algorithmic optimizations.5

The need to integrate ML techniques into resource-constrained embedded devices,6

facilitated by advancements in technologies like the IoT and edge computing has given7

rise to TinyML, an embedded ML technique, a by enabling ML applications on low-cost,8

resource-constrained devices. However, implementing TinyML comes with challenges9

such as processing capacity optimization and maintaining model accuracy [9].10

Shuvo et al. in [17] address the challenges of deploying DNNs on edge devices. It11

highlights the computational complexity and memory requirements of DNNs, which often12

necessitate cloud-based processing, leading to latency issues and security concerns. The13

paper explores optimization techniques at both hardware and software levels to enable14

efficient DNN deployment on edge devices, focusing on four research directions: novel15

DL architecture and algorithm design, optimization of existing DL methods, algorithm-16

hardware co-design, and efficient accelerator design. Through a comprehensive review,17

the paper provides insights into state-of-the-art tools and techniques for efficient edge in-18

ference, aiming to facilitate the integration of artificial intelligence capabilities into next-19

generation edge devices.20

The research on the distribution of DNNs for resource-aware systems has gained sig-21

nificant attention in recent years. Several studies have explored different approaches and22

strategies for optimizing the training and deployment of DNNs in various domains. In the23

context of object detection and recognition from edge to cloud, several relevant research24

papers provide valuable insights and inspiration. Bittencourt et al. [3] discuss the inte-25

gration and challenges of the IoT, fog, and cloud continuum, highlighting the need for26

efficient resource utilization. Lockhart et al. [12] propose Scission, a performance-driven27

and context-aware cloud-edge distribution approach for DNNs, emphasizing the impor-28

tance of considering context and performance in distribution decisions. Cho et al. [4]29

present a study on DNN model deployment on distributed edges, focusing on distributed30

inference across edge devices.31

Lin et al. [11] propose a distributed DNN deployment approach from the edge to the32

cloud for smart devices, addressing the challenges of efficient utilization of resources in33

different computing tiers. McNamee et al. [14] advocate for adaptive DNNs in edge com-34

puting, emphasizing the need for dynamic adaptation to optimize resource usage. Ren et35

al. [16] provide a survey on collaborative DNN inference for edge intelligence, exploring36

the collaborative aspects of inference across edge devices. Hanhirova et al. [6] charac-37

terize the latency and throughput of convolutional neural networks (CNN) for mobile38

computer vision, providing insights into the perfor-mance aspects of DNNs on resource-39

constrained devices.40

Lee et al. [10] propose Transprecise Object Detection (TOD) for maximizing real-41

time accuracy on the edge, highlighting the importance of accurate object detection for42

edge scenarios. Parthasarathy et al. [15]introduce DEFER, a distributed edge inference43

approach for DNNs, focusing on resource-efficient inference in distributed edge environ-44

ments. Teerapittayanon et al. [21] investigate distributed DNNs over the cloud, edge, and45
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end devices, highlighting the trade-offs between resource utilization and computational1

capabilities across different components of the system architecture.2

In line with our research, Dharani et al. in [5] present the utilisation of TinyML and3

TensorFlow Lite on a mobile phones for image classification, but without more extensive4

experimental evaluation and discussions. Akhtar et al. in [1] introduce multiple real-time5

deployable cost-efficient solutions for motorbike detection using state-of-the-art embed-6

ded edge devices, addressing the critical need for accurate and real-time traffic surveil-7

lance and road safety. The paper presents an improved baseline accuracy of motorbike8

detection by developing a custom network based on YOLOv5, offering practical insights9

for real-world implementation.10

The aforementioned papers contribute to the understanding of resource aware DNN11

deployment and optimization techniques in various contexts. Our research aims to provide12

insights into the efficient training and deployment of DNNs for traffic object detection,13

classification and recognition, considering the resource utilization from edge to fog in the14

context of edge devices with various computing capabilities and resources available.15

3. Traffic Object Detection and Recognition Across the Edge-Fog16

Continuum17

DNNs have shown promising results in various computer vision tasks, including object18

detection and recognition. In this section we present three case studies related to distri-19

bution of DNN-based software components in the context of traffic object detection and20

recognition.21

3.1. Traffic Object Recognition22

To recognize traffic objects captured by a camera on Android smartphones, we implement23

two approaches: the first executes entirely on the edge device, while the second divides the24

process between the edge device and a fog node. The training of the DNN model is based25

on the TensorFlow Object Detection API and specifically utilizes the SSD MobileNet26

V2 320x320 coco17 tpu-8 pre-trained model. To enhance the training process, we have27

utilized video data captured from an Android phone camera, as well as publicly available28

traffic video datasets such as the Udacity Self Driving Car Dataset [22], INRIA Graz-0229

(IG02)[13], and the Bike-rider Detector dataset [23]. Manual labeling was applied to these30

datasets when necessary to ensure accurate annotation of traffic objects, for detection of31

cars, trucks, motorcycles, bicycles, and pedestrians.32

The first approach we propose utilizes the computing power and resources available33

solely on the smartphone, making it an offline approach. This method does not require34

a network connection for traffic object recognition within the Android application. To35

accommodate the limited resources available on the smartphone, the TensorFlow model36

used for recognition is quantized and converted to TensorFlow Lite form. By optimizing37

the model, we ensure that it can efficiently operate on the smartphone without compro-38

mising its performance. The trained model is integrated into the Android application,39

enabling real-time traffic object recognition directly on the smartphone without the need40

for an internet connection (Figure1). The Figure 2 illustrates the execution flow of object41
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Fig. 1. Android application for traffic object recognition

recognition conducted within an Android application. Once the camera image is avail-1

able, it is sent to the detector component. In offline mode, the LocalDetector component2

is employed, utilizing a TensorFlow Lite model deployed on the Android smartphone.3

Prior to inputting the image into the model, specific preparations, including scaling and4

rotation, must be completed. Furthermore, after detection, it is crucial to parse the results5

and generate objects that will be used for GUI creation.6

The second approach utilizes the advantages of fog computing by offloading part of7

the processing to a fog server. In this method, the video captured by the smartphone cam-8

era undergoes preprocessing within the Android application. These preprocessing steps9

may include scaling, rotation, and filtering of the captured images to enhance the quality10

and clarity of the input data. The preprocessed images are then encoded in Base64 for-11

mat and sent to the fog server through a Web socket using the SocketIO library. The fog12

server, implemented with Flask/Python, hosts the original TensorFlow model, which con-13

ducts object recognition on the received images. The results of this recognition process14

are returned to the Android application in JSON format, providing real-time feedback and15

visualization of the recognized traffic objects.16

The execution flow of object recognition in edge-fog scenario is illustrated in Figure17

3. The client application captures an image from the camera and processes it before send-18

ing it to the server. This processing includes scaling, rotation (considering the device’s19

sensor), and encoding the image into Base64 format (as a string). The image is trans-20

mitted to the server as an emitted event indicating that it is ready for processing. Upon21

receipt, the server decodes the Base64 string to reconstruct the image. On the server side,22

the TensorFlow library is utilized to run the model and perform object detection within23

the frame. The identified objects are then returned to the client in JSON format.24

The second method distributes the computational workload between the smartphone25

and the fog server, offloading resource-intensive tasks to a more powerful computing in-26

frastructure. This approach enhances the accuracy and robustness of traffic object recog-27

nition, particularly in situations where the smartphone’s resources are limited. Addition-28

ally, leveraging fog computing alleviates the strain on the smartphone’s battery and pro-29
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Fig. 2. The sequence diagram during the detection process on Android smartphone.

Fig. 3. Sequence diagram for the server-based object detection
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cessing capabilities, resulting in better performance and an improved user experience.1

Both methods provide unique advantages regarding resource utilization, real-time per-2

formance, and accuracy, addressing various requirements and constraints, which are ex-3

perimentally evaluated and discussed in the following section. The source code of An-4

droid application implementing traffic object recognition using both method is available5

at https://github.com/drstojanovic/camera.6

3.2. Car Model Recognition7

The second use case is related to car model recognition. To tackle the specific challenge8

of car model recognition, we propose a two-stage approach that leverages both edge and9

fog computing resources. Our method is built on the pre-trained convolutional neural10

network MobileNet V2, known for its outstanding performance across various computer11

vision tasks. For training the model specifically for car model recognition, we employ the12

Stanford Cars Dataset, which contains over 16,000 images and includes more than 19013

different car classes.14

The execution flow for recognizing car models is illustrated in Figure 4. As depicted,15

the process occurs in multiple phases, with some tasks handled on the edge side (client)16

and others on the fog side (server).

Fig. 4. Execution flow of a car model recognition

17

Since an existing object detector is used, it will return detections for all five classes18

of traffic objects: cars, trucks, motorcycles, bikes, and pedestrians. The first step is to19

filter out only the class of interest—cars. After capturing the image from the camera, the20

following steps are taken:21

1. Object detection is conducted using an edge model, which discards all objects not22

belonging to the ”car” class.23

https://github.com/drstojanovic/camera
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2. Based on the detections, the image is cropped, creating a list of car crops.1

3. Each crop is then encoded in Base64 format, and this list of strings is sent to the2

server.3

4. Upon receipt, the server decodes the list back into images. Each crop is resized to fit4

the model’s input size (192x192 in this application).5

5. The model is then executed on each crop, providing a list of potential classes for each6

image.7

6. The results are formatted in JSON, resulting in a list of lists whose length corresponds8

to the number of detected cars or crops obtained.9

7. On the edge side, the detection results are merged with the classification results from10

the server, and a bounding box is drawn around each car, displaying the recognized11

class.12

The high-level flow of the car model recognition is illustrated in Figure 5. In the first

Fig. 5. The steps performed for car model detection.

13

stage of our approach, the Android application takes advantage of edge computing capa-14

bilities to detect cars and determine their positions within the video images. We employ15

a TensorFlow Lite model, like the one used in the previous implementation, to perform16

this initial car detection task on the smartphone. Once the cars are identified, the corre-17

sponding regions of interest (ROIs) are extracted from the video frames and preprocessed18

to enhance their quality and suitability for subsequent recognition.19

The preprocessed and cropped car images are then sent from the Android application20

to the fog server. The fog server application handles the second stage of the car model21

recognition process. It employs a trained TensorFlow model, specifically designed for the22
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Stanford Cars Dataset, to identify the model of each car in the received images and sends1

the results back to the Android application (Figure6). The fog server’s superior compu-2

tational resources and processing power allow it to perform more intensive tasks, such3

as detailed car type classification. To enable communication between the Android appli-

Fig. 6. Car model detection in the Android application

4

cation and the fog server, we use WebSockets. This approach facilitates real-time, bidi-5

rectional communication, allowing for the efficient transfer of preprocessed car images6

from the smartphone to the server and the return of recognition results to the mobile ap-7

plication. By utilizing WebSockets, we ensure a seamless and responsive user experience8

throughout the car model recognition process.9

By leveraging both edge and fog computing resources, our two-stage approach op-10

timizes the distribution of computational tasks. The edge computing performed on the11

smartphone efficiently detects cars and extracts relevant regions of interest (ROIs), which12

reduces the volume of data sent to the fog server. This strategy minimizes bandwidth us-13

age and latency. The more resource-intensive task of car model recognition is offloaded14

to the fog server, taking advantage of its greater computational capabilities and trained15

model. This approach maximizes the utilization of computing resources and enhances the16

overall performance and accuracy of car model recognition in our system. The source code17

for traffic object recognition server is available at GitHub link https://github.com/drstojanovic/trafficAssistantServer18

while its docker image can be pulled from https://hub.docker.com/r/stefan2708/taserver.19

3.3. Vehicle detection on microcontrollers and single-board computers20

The third use case focuses on vehicle detection on low-resource edge devices, such as21

microcontrollers and single-board computers. The goal is to detect and recognize cars in22

video streams captured by integrated cameras. This involves implementing various object23

detection model architectures and optimizing them for execution on devices like the Ar-24

duino Nano 33 BLE Sense and Raspberry Pi 4. Part of the model training and evaluation25

https://github.com/drstojanovic/trafficAssistantServer
https://hub.docker.com/r/stefan2708/ta_server
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was conducted using the Edge Impulse platform [7], an online MLOps platform that sup-1

ports the training, testing, and deployment of ML/DL models across a wide range of edge2

devices. Additionally, transfer learning was applied using TensorFlow Lite Model Maker.3

The training dataset, consisting of 499 images with a total of 4,281 vehicles, was sourced4

from Kaggle. In addition to collecting data directly from the edge devices, datasets were5

also uploaded to the Edge Impulse platform in YOLO txt format. In this format, each im-6

age has an associated .txt file listing the detected objects, where each line in the file repre-7

sents a single object, containing its class and the normalized coordinates of its bounding8

box.9

The initial implementation of vehicle detection was performed on the Arduino Nano10

33 BLE Sense, a resource-constrained edge device. Given the limited capabilities of this11

development board, the trained models operate on smaller image dimensions. However,12

increasing image size leads to longer inference times and larger model sizes. Unfortu-13

nately, due to the dataset containing small objects, models trained on low-resolution im-14

ages yielded poor results. For the Arduino Nano application, two models, FOMO Mo-15

bileNetV2 0.1 and FOMO MobileNetV2 0.35 were trained. The values 0.1 and 0.35 rep-16

resent the alpha parameters in the MobileNetV2 architecture, indicating the network’s17

width by scaling the number of channels in each layer. These hyperparameters help bal-18

ance model size, computational efficiency, and accuracy. FOMO models were trained for19

various numbers of epochs using both RGB and Grayscale images, with various hyperpa-20

rameter configurations, to find the optimal trade-off between performance and accuracy.21

The Edge Impulse platform was used to generate binary files for model inference on the22

Arduino device. Inference can be initiated with the command edge-impulse-run-impulse.23

Object detection results from the OV7675 camera attached to the Arduino Nano are dis-24

played in the browser, as shown in Figure 7. The Raspberry Pi 4 Model B (RPi) offers

Fig. 7. Object detection from Arduino camera shown in browser

25

greater computing resources, enabling the training of a broader range of models. Beyond26

the FOMO algorithms, the following models were also trained using the Edge Impulse27

platform:28
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1. MobileNetV2 SSD FPN-Lite: This model was pre-trained on the COCO 2017 dataset1

with images of size 320x320. It consists of three parts:2

– Basic network (MobileNetV2): Provides high-level features for classification or3

detection. By removing the fully connected and softmax layers and adding a de-4

tection network, the model can determine object locations in the image.5

– Detection network (Single Shot Detector, SSD): Detects multiple objects in an6

image using a single convolutional network. SSD models are faster and more7

efficient as they simultaneously predict object classes and regions containing ob-8

jects.9

– Feature Pyramid Network (FPN): Utilizes an input image of a single size to gen-10

erate feature maps for different sizes, facilitating the detection of objects of vari-11

ous sizes.12

2. YOLOv5: This model, part of the You Only Look Once (YOLO) family, performs13

object detection in a single pass. Introduced in 2020, YOLOv5 incorporates the Ef-14

ficientDet architecture, built on EfficientNet, to optimize both resource usage and15

accuracy. Unlike its predecessor, YOLOv5 abandons anchor-based detection, instead16

relying on a convolutional layer to predict bounding box coordinates directly.17

YOLOv5 is used in the transfer learning process, leveraging prior training on a larger18

dataset. This enables the model to learn from a broader data set and improve its generaliza-19

tion capabilities. During the training of the YOLOv5 model on Edge Impulse, the model20

size can be selected: XS, S, M, and L. Due to resource limitations, the smallest model with21

1.9M parameters, sized at 3.78 MB, was chosen. Models from Edge Impulse are down-22

loaded in the EIM (Edge Impulse Model) format. EIM files are binary files for Linux and23

macOS that encapsulate the complete impulse built on the Edge Impulse platform, includ-24

ing signal processing, model, and inference blocks. EIM files are architecture-specific and25

allow direct inference execution on the RPi device.26

Inference on the RPi device is performed on images generated using a camera con-27

nected to the Arduino development board. Frames are captured on the Arduino and trans-28

mitted to the RPi device using serial communication. The OV7675 camera records images29

sized at 320x240 in RGB565 format. Within the Python script on the RPi device, bytes are30

read from the serial port, and conversion from RGB565 to RGB888 format is carried out.31

The converted image is passed to the run_inference function, which performs pre-32

processing and inference (Figure 8). TensorFlow Lite Model Maker 1 is a library designed33

for training TensorFlowLite models with custom datasets. It leverages transfer learning to34

minimize the amount of training data required and reduce training time. For object detec-35

tion, the library offers five versions of EfficientDet-Lite models, each differing in memory36

usage, detection latency, and mean Average Precision (mAP). These models are deployed37

on the RPi for real-time vehicle detection. In this setup, frames transmitted from the Ar-38

duino Nano’s camera are used for detection. However, the inference process differs here,39

as it utilizes the TensorFlowLite Interpreter, which requires a tensor as input. This neces-40

sitates preprocessing the image and generating a tensor with the correct shape and data41

type. Finally, the function completes the process by drawing bounding boxes and sav-42

ing the annotated image. The source code of the Arduino Nano and RPi applications are43

available at https://github.com/drstojanovic/object-detection-rpi.44

1 https://www.tensorflow.org/lite/models/modify/model maker

https://github.com/drstojanovic/object-detection-rpi
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Fig. 8. Detection of vehicles using DL models deployed on RPi

4. Resource-Aware Experimental Evaluation1

This section presents an experimental evaluation of previously described use cases and the2

corresponding methods for distributing DNNs in traffic object detection and recognition.3

In the first use case, we assess two solutions: one executed entirely within the Android4

application using a TensorFlow Lite model, and the other performed on the fog server. In5

the third use case, we evaluate solutions implemented on Arduino Nano and Raspberry Pi6

(RPi) devices. To measure performance, accuracy, and resource consumption (CPU, mem-7

ory, and energy), we conduct experiments using various video data parameters and con-8

figurations. The objective is to explore the trade-offs between different approaches across9

the edge-fog computing continuum and analyze their behavior under varying conditions.10

For evaluation, we use representative datasets that include a variety of traffic scenarios11

and object types, ensuring coverage of diverse lighting conditions, weather patterns, and12

traffic densities.13

4.1. Smartphone and Server implementation14

To evaluate the Android application solution, we measure its performance and accuracy15

directly on the smartphone. The computational requirements, including CPU usage, mem-16

ory consumption, and energy consumption, are analyzed using the Android Profiler tool.17

Furthermore, we assess the accuracy of traffic object recognition by comparing the appli-18

cation’s outputs with ground truth annotations from the datasets.19

Similarly, for the fog server solution, we assess its performance, accuracy, and re-20

source consumption. The server’s computational requirements, such as CPU usage, mem-21

ory utilization, and energy consumption, are analyzed. Additionally, the recognition re-22

sults from the fog server are compared with ground truth annotations to evaluate the so-23

lution’s accuracy. A timeline diagram illustrating CPU and memory consumption, along24

with energy usage for traffic object recognition performed on the Android smartphone25

and the fog server, is presented in Figure 9. The maximum CPU utilization during local26

detection on the Android smartphone reached 33%, while server-based detection peaked27

at 14%. The maximum RAM usage during local detection was 316 MB, compared to 24028

MB for server-based detection. The TensorFlow model size is 11.2 MB; however, with29

model quantization, it can be reduced to 3.2 MB.30
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Fig. 9. CPU, memory, and energy usage for edge (smartphone) and edge server solutions

During the experimental evaluation, we varied the video data parameters and con-1

figurations to analyze the performance of both solutions under different conditions. This2

involved adjusting factors such as video resolution, frame rate, lighting conditions, and3

traffic densities. By conducting experiments across a range of scenarios, we aim to pro-4

vide a thorough assessment of each solution’s performance and resource utilization. The5

experimental evaluation is carried out using appropriate benchmarking tools and metrics6

to ensure reliable and meaningful results. We measure the execution time, resource uti-7

lization, and accuracy of both solutions across various datasets and configurations. The8

collected data is analyzed and compared to identify the strengths and weaknesses of each9

approach. For all experiments, a Google Pixel 4 phone was used, while the server appli-10

cation ran on a Lenovo Legion laptop (CPU: i5-9300H, RAM: 16.0 GB, GPU: NVIDIA11

GeForce GTX 1650). The server is configured on a local network to facilitate access by12

the mobile application.13

The first experiment aimed to assess the accuracy of recognition with varying image14

resolutions and object sizes. The phone’s camera was directed at a computer monitor dis-15

playing an image of a car that consistently shrank in size. Testing was conducted for both16

operational modes at each of the four available resolutions in the application settings. The17

image quality was set to the maximum (100 %, with no compression). The reliability of18

detection, expressed as percentages, is presented in Table 1. This experiment showed that19

the reliability values for detection, and thus the overall detection quality, are quite compa-20

rable for both edge detection and server-based detection. A slight advantage was noted for21

edge detection at lower image resolutions, likely because of the extra image processing22

involved in sending the image to the server (such as encoding and decoding in Base6423

format). One potential solution to improve performance is to use a more advanced image24

transport method, like implementing one of the transfer protocols specifically designed for25

image handling. We also assessed how performance (execution speed) depends on image26

resolution and image quality, with values expressed in milliseconds (ms). This experiment27

aimed to evaluate the impact of image compression on detection speed and image size.28
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Table 1. Dependency of detection accuracy on image resolution and object size

Object size Resolution
640 x 640 512 x 512 300 x 300 160 x 160
Edge Fog Edge Fog Edge Fog Edge Fog

100% 98.9 97.8 98.7 98.7 98.9 98.3 90 84.3
80% 95.4 95 95.1 95.4 94.7 93.1 82.4 82.1
50% 89.2 90 87.4 88.7 89.9 87.9 83.4 80.5
30% 47.1 42.3 40.1 32.8 31.7 19.7 23.1 17.4
15% 12.3 12.7 10.7 12.1 10.2 2.1 7.4 1.8

The phone’s camera was directed at a computer monitor displaying a consistent image of1

a car. Testing was conducted for both operating modes across all four available resolutions2

and image quality settings of 100 %, 70 %, 50 %, 30 %, and 20 % achieved through JPEG3

image compression.4

Table 2 illustrates how detection speed varies with changes in image characteristics.5

The rows represent a decrease in image quality, while the columns show a reduction in6

resolution. The values are presented in milliseconds, and it is evident that local detection7

operates at a significantly higher speed compared to server-based detection.8

Table 2. Dependency of performance (speed of execution) on image resolution and image
quality (in ms)

Quality Resolution
640 x 640 512 x 512 300 x 300 160 x 160
Edge Fog Edge Fog Edge Fog Edge Fog

100% 61.4 153.2 58 137 55.9 103.2 45.8 83.9
70% 56.5 112.2 50.4 99.8 43.9 87.7 43 76.9
50% 55.5 108.2 49.8 98.9 43.6 86.7 42.9 76.4
30% 55.3 103.8 49.1 93.1 43.4 84.7 43.4 75
20% 54.4 101.8 48.9 90.2 43.9 84.1 42.8 74.9

Regarding local detection, the difference in detection speed between settings A (640x6409

resolution and 100 % quality) and settings B (160x160 resolution and 20 % quality)10

amounts to 18.6 milliseconds per frame. Although the difference is difficult to measure11

precisely, it is evident that the detection quality for smaller objects is noticeably lower12

with settings B.13

When it comes to server-based detection, internet connection speed becomes a sig-14

nificant factor. Since a GPU was utilized, the model execution itself was short ( 45ms),15

with most of the time being spent on image transportation. During the testing, an internet16

speed of 55.8 Mbps for download and 7.7 Mbps for upload was used. In the case of edge17

detection, the byte size of the image does not have as much influence as it does for server-18

based detection, as each image is transported to the server, and any reduction in image19

size contributes to increased detection speed. The difference in detection speed between20

settings A (640x640 resolution and 100 % quality) and settings B (160x160 resolution21
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and 20 % quality) amounts to 78.3 milliseconds per frame. A significant degradation in1

detection quality on the server compared to edge detection was observed when decreasing2

the image resolution.3

By assessing the performance, accuracy, and resource consumption of both the An-4

droid application and the fog server solutions, we aim to shed light on the trade-offs asso-5

ciated with each approach. This experimental evaluation will enhance our understanding6

of how these distribution methods perform in traffic object recognition tasks. Ultimately,7

this analysis will aid in choosing the most suitable solution based on specific require-8

ments, including resource availability, real-time performance, and accuracy.9

4.2. Arduino Nano and RPi Solutions for Object Detection10

Testing and evaluating vehicle detection models involved comparing key parameters es-11

sential for implementing AI at the edge. Resource utilization metrics, such as RAM and12

flash memory usage, are particularly important for edge devices. Additionally, the time re-13

quired for object detection is critical for real-time decision-making scenarios. A compari-14

son of model accuracy was also conducted. The objective is to compare models developed15

using the Edge Impulse platform and TensorFlow Lite tools, exploring various combina-16

tions of preprocessing and hyperparameters. Furthermore, this comparison encompasses17

devices with differing resources, specifically the Arduino Nano and RPi.18

The comparison between the FOMO 0.1 and FOMO 0.35 models on the Arduino19

Nano has been conducted. All results are presented for the quantized versions of the mod-20

els, utilizing integer 8-bit values. The EON model format was chosen due to its lower re-21

source overhead compared to TFLite models. Figure 10 illustrates the comparison of these22

models across different image sizes, focusing on model accuracy and inference time. The23

diagrams indicate that the accuracy of the FOMO 0.1 and FOMO 0.35 models is compa-24

rable across all image sizes. However, FOMO 0.1 shows significantly better performance25

for smaller dimensions, such as 64x64, whereas the advantage shifts toward the FOMO26

0.35 algorithm for larger dimensions. Inference time increases with image size, reach-27

ing 3 seconds for dimensions of 160x160. Furthermore, the inference time of the FOMO28

0.35 model diverges considerably from that of the FOMO 0.1 model as the dimensions29

increase.30

Figure 11 illustrates the memory utilization for the same models. Although flash mem-31

ory usage remains consistent across various image dimensions, maximum RAM utiliza-32

tion rises sharply as the dimensions increase. The diagram also shows the available RAM33

on the Arduino development board; models that exceed this limit cannot be executed on34

the device.35

The evaluation of the models executed on the Raspberry Pi includes those generated36

on Edge Impulse as well as models created using TensorFlow Model Maker. Figure 1237

illustrates the changes in accuracy and inference time for different models with varying38

image sizes. The YOLOv5 model demonstrates superior accuracy in all scenarios, except39

for the smallest image size. However, in terms of object detection speed, the YOLOv540

algorithm requires up to seven times longer to make decisions compared to the FOMO41

algorithms.42

The resource utilization diagram (Figure 13) reveals that the maximum RAM usage43

with FOMO algorithms exceeds that of the YOLO algorithm at higher dimensions. Flash44
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Fig. 10. Comparison of NN models based on accuracy and inference time.

Fig. 11. Comparison of NN models based on memory utilization

Fig. 12. Comparison of NN models based on accuracy and inference time on RPi
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memory utilization remains consistent across all dimensions. Notably, the FOMO algo-1

rithms require approximately 70 KB, while the YOLOv5 model occupies 1.8 MB. On

Fig. 13. Comparison of NN models based on memory utilization on RPi

2

Edge Impulse, several model optimizations are available. Figure 14 illustrates the differ-3

ences between EON models with float32 values and their quantized versions using int84

values. Notably, quantization has a substantial effect on the size of the MobileNetV2 SSD5

and YOLOv5 models, as well as on inference time. The numerical comparison of the

Fig. 14. Comparison between float32 and int8 NN model versions

6

models’ size and inference time values is given in Table 3. The comparison of models7

compiled using EON and TensorFlow Lite compilers is shown in Figure 15, and pre-8

sented in Table 4). The objective of the EON compiler is to reduce resource overhead,9

while maintaining unchanged accuracy and inference time. The values are presented for10
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Table 3. The NN model size and inference time values

Model size (float32) Model size (int8) Inference time (float32) Inference time (int8)
MobileNetV2 SSD 11 MB 3 MB 404 ms 249 ms
FOMO 0.1 66.9 KB 64.4 KB 14 ms 11 ms
FOMO 0.35 102.7 KB 78.5 KB 18 ms 14 ms
YOLOv5 3.5 MB 1.9 MB 128 ms 81ms

the int8 versions of the models. Resource optimization using the EON compiler is not1

supported for YOLOv5.

Fig. 15. Comparison of EON and TensorFlowLite models

2

Table 4. Review of memory utilization for EON and TensorFlow Lite models

RAM (EON) RAM (TensorFlowLite) Flash (EON) RAM (TensorFlowLite)
MobileNetV2 SSD / / 2.8 MB 3 MB
FOMO 0.1 1.2 MB 1.4 MB 64.4 KB 94.4 KB
FOMO 0.35 1.2 MB 1.4 MB 110.5 KB 78.5 KB
YOLOv5 817.5 KB 817.5 KB 1.9 MB 1.9 MB

TensorFlow Model Maker enables training of five versions of EfficientDet models (1-3

5). The results of the trained EfficientDet2 model are presented in Table 5. Due to the4

potential loss of model accuracy resulting from optimization, an evaluation of the Tensor-5

Flow Lite model is provided using mAP (mean Average Precision) metric for evaluation.6

The analysis of the results concludes that the differences in accuracy between TensorFlow7

and TensorFlow Lite models are nearly indistinguishable. The TensorFlow model’s pre-8

cision is 45.35 %. At a 50 % overlap threshold, the model’s precision is 81.3 %, while9

for a 75 % overlap threshold, the value is nearly halved. Detection precision for differ-10
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Table 5. Evaluation of the TensorFlowLite model

TensorFlow model TensorFlow Lite model
AP 0.4535 0.4426
AP50 0.81 0.8
AP75 0.48 0.46
APs 0.003 0.0027
APm 0.35 0.3
APl 0.66 0.65
ARmax1 0.08 0.08
ARmax10 0.5 0.5
ARmax100 0.58 0.54
ARs 0.06 0.045
ARm 0.55 0.49
ARl 0.75 0.71
AP car/ 0.45 0.44

ent sizes (APs – small, APm – medium, APl – large) indicates that the model performs1

well with larger objects. Additionally, the model exhibits better accuracy when there are2

multiple objects in the image (ARmax10, ARmax100). There is room for improvement in3

detecting small objects and under very strict overlap criteria.4

EfficientDet 0 and 2 versions were deployed on the RPi device, and a comparison5

of inference time and model size is given in Figure 16. Memory analysis during the ob-

Fig. 16. Comparison of EfficientDet 0 and 2

6

ject detection process was performed and the results are given in Table 6. Both models7

require a similar amount of memory, with only minor differences in usage. EfficientDet8

0 consumes slightly fewer resources than EfficientDet 2; however, both models func-9

tion effectively within the available system resources. Through comprehensive testing10
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Table 6. Memory utilization of EfficientDet models (in KB)

total used free shared buff/cache available
EfficientDet 0 3794 599 1937 75 1256 3043
EfficientDet 2 3794 613 1915 80 1265 3025

and evaluation of NN models created using various tools, significant advancements in1

technologies for deploying models on edge devices have become apparent. By leveraging2

advanced optimization techniques, it is feasible to execute complex model architectures3

on resource-constrained devices. For example, models trained on Edge Impulse occupy4

considerably less space and consume fewer resources compared to TensorFlow Lite mod-5

els. Conversely, the strength of the TensorFlow Lite framework lies in its broader selection6

of model architectures and the ability to utilize established models for object detection.7

5. Conclusions8

The proposed approach and experimental evaluations provide valuable insights into the9

challenges and opportunities of deploying DNNs for traffic object detection and recog-10

nition across the edge-fog computing continuum. One of the key takeaways is that dis-11

tributing tasks between edge devices and fog servers offers a balanced trade-off between12

performance, resource consumption, and accuracy. By leveraging edge devices like smart-13

phones for object detection, we can reduce data transmission and latency. We found that14

current smartphones perform well in both accuracy and speed, with only 33% CPU uti-15

lization during inference. This raises the question of whether offloading detection tasks to16

the fog is necessary, given that the communication overhead may outweigh any potential17

performance benefits. The results suggest that, in many cases, performing both detection18

and recognition on the mobile device itself is a more efficient strategy, especially for real-19

time applications.20

Meanwhile, the fog server, with its higher computational capacity, is well-suited well-21

suited for more complex tasks such as car model recognition, where detailed feature ex-22

traction and processing are required. This delegation not only reduces the computational23

burden on edge devices like smartphones or embedded platforms but also enables the24

deployment of heavier models that might otherwise exceed the capabilities of smaller25

devices. For instance, running computationally intensive architectures such as YOLOv526

or EfficientDet on the fog server ensures that these models can operate without com-27

promising performance or requiring extensive optimization, as would be necessary on28

edge devices. This division of labor improves the system’s overall efficiency by allowing29

lightweight tasks, such as object detection, to occur locally on edge devices while offload-30

ing more demanding tasks to the fog server. Consequently, the combination of fast local31

inference with sophisticated fog-based recognition creates a robust pipeline that balances32

speed and accuracy across different layers of the edge-fog continuum.33

While the smartphone proved capable, the resource constrained embedded devices,34

such as RPi or Arduino Nano, could still benefit from fog or cloud offloading, especially35

for complex models. However, our focus in this study was on evaluating lightweight archi-36

tectures directly on these devices. Future research could explore hybrid approaches, where37

RPi or Arduino devices collaborate with fog or cloud systems for more demanding tasks,38
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striking a balance between local processing and offloading. We found that the quantized1

and minimized model deployed on Arduino Nano, RPI device, and Android smartphones2

achieved reasonable performance with efficient resource usage. The use of quantization3

and model optimization techniques, especially through TensorFlow Lite and Edge Im-4

pulse, proved crucial for deploying DNNs on resource-constrained devices like the Ar-5

duino Nano and RPi. Our results show that while Edge Impulse models consume fewer6

resources, TensorFlow Lite offers greater flexibility through access to a wider variety of7

model architectures. The experiments also highlighted the trade-offs between model size,8

inference time, and accuracy, emphasizing the importance of fine-tuning hyperparameters9

based on the specific hardware and use case.10

The ability to achieve near real-time detection using optimized models demonstrates11

that modern AI technologies can effectively run on low-power edge devices. Our findings12

suggest that combining edge and fog computing provides a scalable and efficient way to13

implement more demanding AI solutions, such as specific object recognition on video14

stream. The experiments also revealed that model size and computational overhead must15

be carefully managed, particularly on microcontrollers, where even slight increases in16

image resolution or model complexity can lead to significant resource constraints.17

However, there are still several avenues for future research in this area. Some potential18

directions include:19

– Exploration of federated learning techniques tailored for object detection and recog-20

nition tasks at the edge for aggregating model updates from distributed edge nodes21

efficiently while accounting for resource constraints.22

– Investigation of online continual learning techniques for adaptive object detection and23

recognition at the edge that enable edge devices to incrementally learn from streaming24

data while retaining knowledge learned from previous tasks.25

– Research resource-efficient model adaptation techniques in edge-fog environments26

that dynamically adjust model complexity and capacity based on available computa-27

tional resources and streaming data characteristics.28

–29

By further exploring these research directions, we can continue to advance the field30

of DNN model distribution and slicing across the edge-fog-cloud computing continuum,31

enabling resource-aware and efficient object detection, classification and recognition sys-32

tems for various real-world applications.33
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cations, challenges, and future research directions. Multimedia Tools and Applications32

83(10), 29015–29045 (2024), https://doi.org/10.1007/s11042-023-16740-9,33

dOI: 10.1007/s11042-023-16740-934

10. Lee, J.K., Varghese, B., Woods, R., Vandierendonck, H.: Tod: Transprecise object detection35

to maximize real-time accuracy on the edge. In: Proceeding of the 5th EEE 5th International36

Conference on Fog and Edge Computing. pp. 53–60 (2021)37

11. Lin, C.Y., Wang, T.C., Chen, K.C., Lee, B.Y., Kuo, J.J.: Distributed deep neural network de-38

ployment for smart devices from the edge to the cloud. In: Proceedings of the ACM Mobi-39

Hoc Workshop on Pervasive Systems in the IoT Era. p. 43–48. PERSIST-IoT ’19, Association40

for Computing Machinery, New York, NY, USA (2019), https://doi.org/10.1145/41

3331052.333247742

12. Lockhart, L., Harvey, P., Imai, P., Willis, P., Varghese, B.: Scission: Performance-driven43

and context-aware cloud-edge distribution of deep neural networks. In: Proceedings of the44

IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). pp. 257–45

268. Leicester, United Kingdom (2020)46

13. Marszałek, M., Schmid, C.: Inria annotations for graz-02 dataset (2007), https://lear.47

inrialpes.fr/people/marszalek/data/ig02/, accessed: 2024-10-148

14. McNamee, F., Dustdar, S., Kilpatrick, P., Shi, W., Spence, I., Varghese, B.: The case for adap-49

tive deep neural networks in edge computing. In: Proceedings of the IEEE 14th International50

Conference on Cloud Computing (CLOUD). pp. 43–52 (2021)51

https://www.mdpi.com/2227-7390/12/7/1103
https://www.mdpi.com/2227-7390/12/7/1103
https://www.mdpi.com/2227-7390/12/7/1103
https://doi.org/10.1007/s42979-023-02304-z
https://doi.org/10.1007/s42979-023-02304-z
https://doi.org/10.1007/s42979-023-02304-z
https://api.semanticscholar.org/CorpusID:254366602
https://api.semanticscholar.org/CorpusID:254366602
https://api.semanticscholar.org/CorpusID:254366602
https://www.sciencedirect.com/science/article/pii/S254266052200155X
https://www.sciencedirect.com/science/article/pii/S254266052200155X
https://www.sciencedirect.com/science/article/pii/S254266052200155X
https://doi.org/10.1007/s11042-023-16740-9
https://doi.org/10.1145/3331052.3332477
https://doi.org/10.1145/3331052.3332477
https://doi.org/10.1145/3331052.3332477
https://lear.inrialpes.fr/people/marszalek/data/ig02/
https://lear.inrialpes.fr/people/marszalek/data/ig02/
https://lear.inrialpes.fr/people/marszalek/data/ig02/
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