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Abstract. In this paper we conducted thorough analysis of research papers focused9

on resource aware problems and using one of the following formulations: integer10

linear programming (ILP), greedy algorithms (GrA), dynamic programming (DP),11

evolutionary algorithms (EA) and machine learning (ML). Basing on such general12

problem formulations we identified actual research tasks considered in many dif-13

ferent domains. Furthermore, we analyzed each of these problems in terms of: re-14

sources being considered/subject to optimization, specific optimization algorithms,15

if applicable, and domains. Finally, based on over 1701 research papers, we as-16

sessed which particular resources like: time, cost, energy, human, computer, natural17

resources, data/information are used in which problems formulations, which formu-18

lations and resources are used and considered in which application/domains. It can19

serve as reference for algorithms in particular domains or, conversely, looking for20

unexplored approaches in specific contexts.21

Keywords: resource aware problems, resource, domain, integer linear program-22

ming, greedy approach, dynamic programming, evolutionary algorithm, machine23

learning.24

1. Introduction and Motivation25

Research in various domains is inevitably linked with specific resources as well as opti-26

mization problems. Such optimization problems are typically expressed as multi-objective27

optimization that involves metrics referring to the given domain, in particular resources in28

a given domain. We can distinguish physical resources such as computers, interconnects,29

cooling systems, human resources in a cloud computing center as well as more general30

resources such as time, energy, budget etc. We shall note that in optimization problems31

certain metrics are often linked to particular physical, problem specific resources e.g.:32

performance or power consumption of a computer node. These, in turn, can be reflected33

in metrics describing such a resource, i.e., execution time and energy used within a par-34

ticular period. These can then be used in a multi-objective optimization. We shall note35

that optimization often involves trade-offs, e.g., performance vs energy [36,45], perfor-36

mance vs security [120], performance vs storage [79], performance vs memory [18,13],37

performance vs ease of programming/development effort [84].38

1 the total number of over 190 citations includes also references to related work.
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While researching the topic of resource aware optimization we observed that in the1

literature there are several review papers considering specific resources within a particular2

domain. These include, for example:3

– renewable energy [8,122]4

– human resources management [69,23,59],5

– computer systems, e.g., cloud computing [68,4],6

– telecommunication [152],7

– education [180],8

– natural resources management [138,22],9

– tourism [118,55,151],10

– manufacturing [132],11

– health [73,158],12

– transport [115],13

– space [117],14

– disaster management [20,3].15

We also identified some research papers on multidisciplinary (design) optimization, e.g.,16

[37]. On the hand, to the best of our knowledge, there is no research on applicability of17

specific optimization problem formulations across various domains, with consideration of18

resources and metrics.19

In this paper, we aim at conducting cross-domain analysis of research works that in-20

volve resource aware problems, in terms of resources / metrics considered, problem for-21

mulations and domains they target.22

This paper is a very significantly extended version of workshop paper [39] that extends23

it in the following aspects:24

1. Considering a new set of research works fetched from a reliable scientific database25

– Scopus. While the former paper considered approximately 70 works, we have now26

considered more than 190 research papers.27

2. Involving other problem formulations such as a more general evolutionary algorithm28

concept (versus genetic algorithms considered before) as well as the popular and29

important machine learning.30

3. Final classification of the research versus a larger number of resources: 8 vs 7 as well31

as applications/domains: 15 vs 8, for a more thorough analysis.32

The outline of the paper is as follows. Section 2 details the methodology we used33

for selection of research papers used as input for subsequent analysis. Section 3 contains34

analysis of identified resource aware problems across domains with identification of re-35

sources, metrics and problem formulations. Section 4 includes comprehensive analysis36

of the previous problem descriptions with cross linking resources and problem formula-37

tions, applications/domains and problem formulations as well as resources and domains.38

Finally, Section 5 contains summary and outline of possible future work.39

2. Methodology for Selection of Source Scientific Works40

In this paper we build on and significantly extend the results originally obtained in pa-41

per [39]. In that work, analysis was based on selected scientific papers found by the42
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standard Google search engine returned for querying for combinations of a given prob-1

lem formulation and phrases: resource, resource-aware problems. The original problem2

formulations included: integer linear programming, dynamic programming, greedy ap-3

proach as well as genetic algorithm. Furthermore, this input data set has been extended4

with selected results returned by the Bing search engine, queried about resource aware5

computing and resource aware computing problems.6

In this paper, we significantly extended our previous input data set by adding scien-7

tific papers returned by the Scopus database. We used an extended query which specified:8

integer linear programming (ILP), dynamic programming (DP), greedy approach, evo-9

lutionary algorithm (EA) (that encompasses the previously considered class of genetic10

algorithms) as well as the widely popular nowadays machine learning (ML). Specifically,11

for each of these formulations, we ran a query as follows: <problem formulation> AND12

<"resource" OR "resource aware problems"> and sorted the results by relevance. Scopus13

provides details on how relevance is computed2 which considers: Number of hits, how14

significant the word is, position in the document and occurrence in title, keywords etc.,15

proximity of terms and completeness in terms of the words from the query. Finally, out16

of each of these queries we analyzed top 50 works in terms of problems in specific do-17

mains, using the given problem formulation. This has increased the number of sources18

considered very considerably. Additionally, several new applications/domains have been19

distinguished, along with new general type resources identified in the works.20

3. Resource-aware Problems Across Domains with Resources and21

Problem Formulations22

3.1. Resources, Formulations and Applications/Domains23

Within this paper we use the term resource in a broad context that encompasses two24

classes of assets, that can refer to both physical and non-physical forms:25

1. problem specific resources – entities and assets that show up in the context of an op-26

timization problem in a given domain. For instance, in the case of resource allocation27

in cloud computing, such resources would include: computational nodes with CPUs,28

GPUs, storage, network, applications.29

2. general resources – entities and assets that are of interest in optimization problems30

in potentially various domains that can exist either in a physical or in a non-physical31

form. Examples of these include: time, monetary/other cost, energy used, etc. As32

indicated before, these can in fact be metrics describing the use of particular physical33

resources e.g. response/execution time of an application run in a computer system at34

the given cost with a certain amount of energy used within the execution time frame.35

In order to classify problems considered in possibly various domains, we have decided36

to distinguish selected, frequently used problem formulations/approaches used for stating37

problems formally which can be subsequently solved using specific algorithms. The for-38

mulations we distinguish are as follows: integer linear programming (ILP); dynamic pro-39

gramming (DP); greedy approach (GrA); evolutionary algorithms (EA), including genetic40

2 https://service.elsevier.com/app/answers/detail/a_id/14182/supporthub/scopus/
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algorithms (GA) considered previously in paper [39] as well as the very popular machine1

learning (ML).2

Furthermore, we aim at assignment of specific optimization problems considered in3

research works to particular domains, i.e., cloud systems, grid systems, IoT, medical,4

education, manufacturing etc.5

3.2. Classification of Problems in Terms of Resources, Formulations and Domains6

Classification of the research works, selected using the methodology outlined in Section 2,7

was performed separately by problem formulation. Then, we recorded all found problem8

domains in the given formulation in the respective tables. For each considered paper, we9

identified a given specific optimization problem and classified it in terms of: resources /10

metrics used, formulation3 adopted (possibly more detailed description when applicable)11

and assignment to a particular domain. Classification of these is included in Tables 1,2,3,4,12

5 for ILP, GrA, DP, EA and ML respectively.13

Table 1: Selected resource-aware problems by resources / metrics and domain, using ILP
formulation

problem description resources / metrics formulation domain bib
allocating resources for
fighting forest fires

human resources;
time; financial cost

ILP wildfire sup-
pression; wild-
fire simulation

[145]

Mixed-Integer Linear
Programming for Re-
source Constrained Project
Scheduling Problem

jobs; projects; time;
resources for execut-
ing jobs

ILP general cross
domain applica-
ble

[9]

minimization of: electricity
cost, CO2 emission, energy
import, fossil resource us-
age, maximization of: em-
ployment, social acceptance

solar energy; wind
energy; coal energy;
natural gas energy;
hydroelectric energy;
nuclear energy

MOMILP energy sector [193]

allocation of health care re-
sources (treatments, popula-
tion, healthcare programs)

health care re-
sources; financial
cost

ILP healthcare
domain; max-
imization of
benefit

[48]

finding the minimum power
loss configuration of the net-
work

power distribution
network resources

ILP resource op-
timization in
power distribu-
tion networks

[24]

site selection of a wind
power plant

energy; power plant ILP energy sector [10]

Continued on next page

3 for explanation of less frequently appearing abbreviations see Appendix A
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Table 1 – continued from previous page
problem description resources / metrics formulation domain bib

decision-CPM network in
order to obtain an overall op-
timum including time, cost,
quality and safety in a road
building project

time; cost; quality;
safety

ILP road construc-
tion

[150]

scheduling resources in sys-
tems that integrate humans
with hardware and software
components

staff; time; cost; re-
sources assigned by
staff

ILP hospital re-
source man-
agement;
simulation

[155]

data assignment optimiza-
tion in a hybrid heteroge-
neous environment

computer resources;
time

ILP high per-
formance
computing

[21]

cloudlet selection in the
multi-cloudlet environment,
selection of cloudlet(s), se-
lection of VMs for cloudlets

computing; storage;
network

ILP cloud comput-
ing

[102]

Data-center power-aware
management, efficient
utilization of available
resources

data-center re-
sources; power;
time

ILP high per-
formance
computing

[58]
[154]

scheduling of satellite obser-
vations

observation capabili-
ties of satellites; mis-
sion time constraints

ILP satellite Earth
observations

[34]

hospital capacity assessment hospital resources;
number of patients;
treatment time

MILP healthcare [30]

agricultural water manage-
ment under uncertainty

water resources;
ecological wa-
ter requirements;
uncertainty levels

MILP agriculture; wa-
ter allocation

[184]

preventive maintenance
scheduling

cost; reliability; re-
sources;

MILP generic pre-
ventive mainte-
nance

[111]

mobile workforce schedul-
ing

traveling cost; action
cost; teams; task

MILP mobile work-
force schedul-
ing

[192]

Volt/var optimization of un-
balanced power distribution
networks

transformers; reac-
tive power resources;
embedded generators

MILP power distribu-
tion networks

[25]

selection of an appropriate
agent in a military con-
frontation

properties of combat
agents; properties of
combat forces

MILP military opera-
tions

[15]

Continued on next page
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Table 1 – continued from previous page
problem description resources / metrics formulation domain bib

allocation and sequencing of
elective operations on hospi-
tal operating rooms

operations; human
resources; time;
schedule

MILP healthcare [107]

continuous berth allocation quayside resources;
vessels; time;

ILP ship terminal
management

[181]

bus scheduling bus seats demand;
bus seats supply;

MILP public transport
scheduling

[116]

optimization of building en-
ergy use

electricity sources;
electricity cost; grid
power import/export
schedule

MILP smart grid;
smart home

[71]

carrier optimization in wire-
less localization networks

network resources;
power allocation;
spectrum allocation

MILP wireless net-
works

[183]

optimization of humanitar-
ian aid resource distribution
time

distance; vehi-
cle density; travel
time; aid resources
demand

MILP disaster re-
sponse

[2]

telescope network schedul-
ing

astronomers; reser-
vations; preferences

ILP astronomy [93]

planning and operations of
renewable energy-based dis-
tributed power systems

energy cost; energy
supply availability;
energy sources; op-
timal energy source
sizes

ILP smart grid; re-
newable energy

[41]

optimization of multi-period
investment planning in street
lighting systems

energy savings; bud-
get constraints; state
of the system; avail-
able technologies

MILP streetlight
systems; invest-
ment planning

[144]

optimal selection and sizing
of a smart building system

thermal storages;
electrical storages;
heating and cooling
systems; renewable
energy sources;
policies; cost

MILP low-energy
building design

[11]

dynamic optimal nurse
scheduling

nurses; tasks; con-
straints; locations;
preferences; work
regulations

ILP healthcare [72]
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Table 2: Selected resource-aware problems by resources / metrics and domain, using
greedy formulation

problem description resources / metrics formulation domain bib
dynamic multi-user resource
allocation in the downlink
of OFDMA system, power
consumption minimization

communication
channels; power
consumption

GrA resource
allocation;
telecomm.

[121]

scheduling of flows from
various applications in
overload states, downlink
scheduling

throughput; loss;
time (delay)

GrkA resource
allocation;
telecomm.

[53]

preparation of educational
schedule in the higher edu-
cation

human resources;
classes; courses;
time; cost

GrA education [133]

allocating resources in Vir-
tual Sensor Networks, max-
imizing revenue of multi-
ple concurrent applications’
schedule

processing power;
bandwidth; storage;
time; energy

GrA Virtual Sensor
Networks

[27]

Set Covering Problem as a
template for resource man-
agement

generic resources;
time

wGrA resource man-
agement

[156]

Maximizing utility and rev-
enue of hardware resources
in virtual machine allocation

processing power;
memory; storage

GrA datacenter
provisioning

[136]
[137]

Reducing task duplication in
task scheduling on heteroge-
neous distributed systems

computational re-
sources

GrA distributed
computing

[1]

Task offloading and resource
allocation in power network
monitoring (PIoT)

computational
resources; communi-
cation resources

GrA power net-
work moni-
toring

[98]

Resource-aware fluid
scheduling

computational
resources; commu-
nication resources;
fluids

GrA physics mod-
eling

[182]

task scheduling in a cloud
computing environment,
with time and energy
constraints

energy consumption;
time

GrA cloud com-
puting

[165]

radio resource allocation
and interference manage-
ment

link performance;
cell throughput

GrA telecomm. [161]

Continued on next page



8 Paweł Czarnul and Mariusz Matuszek

Table 2 – continued from previous page
problem description resources formulation domain bib

allocation of resources for
data traffic in 5G networks

network resources;
quality of service;
resource scheduling

GrA telecomm. [47]

allocation of resources for
online teaching

course resources;
network; bandwidth;
delay

GrA online educa-
tion

[173]

dynamic battlefield resource
scheduling

campaign resources GrA military [160]

combinatorial auctions in ef-
ficient cloud resource allo-
cation

cloud resources; re-
source pricing

aGrA cloud com-
puting

[35]

computing resource
scheduling in the
computing-aware network

computing resources;
QoS attributes; net-
work; tasks

dGrA edge com-
puting; IoT;
internet-of-
vehicles

[95]

allocation or constrained
resources to multi-activity
projects

human resources;
equipment; materi-
als;

GrA manufacturing
industry

[100]

HW/SW partitioning in SoC
design

task criticality;
time savings; task
frequency; task area

GrA System-on-
Chip design

[167]

relief resource allocation to
areas of disaster

equity constraint;
relief resource
demand; relief
resources

GrA relief opera-
tions

[61]

Table 3: Selected resource-aware problems by resources / metrics and domain, using dy-
namic programming formulation

problem description resources / metrics formulation domain bib
agriculture and natural re-
sources management

natural resources DP agriculture;
natural re-
sources

[86]

scheduling water resources;
minimization of cost of run-
ning a hydroelectric system

water resources; cost DP power sys-
tems

[32]

stochastic resource alloca-
tion

generic resources; fi-
nancial cost; time

DP general
resource
allocation

[56]

stochastic resource alloca-
tion

ships; weapons;
time; security

DP military real-
time naval op-
erations

[130]

Continued on next page
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Table 3 – continued from previous page
problem description resources / metrics formulation domain bib

HPC compute nodes alloca-
tion

application specific
resources; accelera-
tors; storage

DP HPC [29]

dynamic code loading grid resources; power
consumption

DP dynamic re-
configuration
of servers

[119]

Balancing resources in
robotic vision

computational
power; bandwidth;
responsiveness

DP balanced
utilization of
computing
resources

[125]

integration of low cost wear-
able sensors, processing of
sensors’ data at the cloud
edge

energy; bandwidth;
processing power;
measurement quality

DP healthcare;
clinical-level
continu-
ous patient
monitoring

[6]

Seamless image manipula-
tion

still images DP image pro-
cessing

[12]

task scheduling and resource
allocation in distributed sys-
tems

computing resources;
cost

DP distributed
processing

[63]
[142]
[131]

planning water resources
management systems under
uncertainty

water resources DIRSDP water re-
sources
management

[105]

hydraulics and water re-
sources simulating, optimiz-
ing water transfer system

water resources DP agriculture;
water con-
sumption

[110]

stochastic dynamic pro-
gramming for military
applications

military resources; fi-
nancial cost

DP determining
soldiers/ med-
ical support
location

[80]

data center resource dy-
namic scheduling for energy
optimization, emission re-
duction

energy; time; com-
putational resources;
physical resources

DP data center
optimization

[97]

finding the optimal bidding
strategy for a firm

resources available to
the firm

infinite
horizon
semi-Markov
DP

public tenders
in oligopolis-
tic market

[70]

bandwidth allocation in
OFDM systems with rate
constraint to minimize
transmission power

bandwidth; user pro-
files

aDP telecomm. [75]

Continued on next page
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Table 3 – continued from previous page
problem description resources / metrics formulation domain bib

sensor resource manage-
ment

time to acquire tar-
get; target priorities;
sensor field of view

sDP surveilance
(civil and
military)

[171]

optimization of energy pur-
chase and production

energy sources DP energy market [109]

dynamic fleet management vehicles; vehicle
states; customer
demands

aDP vehicle fleet
management

[64]

optimization of resource al-
location in a factory

production line re-
sources; profit

DP industry [172]

price management, maxi-
mizing revenue

customer; resource
(requests)

aDP & sDP price manage-
ment systems

[57]

optimization of water treat-
ment and allocation

water resource; re-
source state

DP environmental
resources al-
location

[187]

resource allocation in R&D
projects

project; activities;
cost;

DP cost optimiza-
tion in R&D
projects

[87]

resource allocation to cloud
storage

storage; efficiency;
load

aDP cloud com-
puting

[141]

operation of a water reser-
voir system

water reservoirs;
reservoir state;
operation policy

DP water re-
source plan-
ning

[17]

resource-constrained project
scheduling

resources; resource
availability

aDP with
Markov deci-
sion process

applicable to
many fields

[175]

resource allocation in indus-
trial maintenance

human resources;
equipment; time

DP heavy indus-
try

[62]

finding optimal preventive
maintenance budget in
power distribution network
with reliability constraints

maintenance re-
sources; reliability
constraints

DP power dis-
tribution
networks

[14]

resource allocation in sliced
5G radio access networks

rate; latency; reliabil-
ity; separation

DP with hier-
archical auc-
tion

telecomm. [153]

assembly line balancing resource constraints;
task precedence rela-
tions

DP manufacturing [135]

optimization of regional in-
dustrial structure develop-
ment

labor; capital;
energy; natural
resources; techno-
logical progress

grey DP economy [126]

Continued on next page
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Table 3 – continued from previous page
problem description resources / metrics formulation domain bib

reducing stochastic errors
in accelerometers and gyro-
scopic sensors

computational re-
sources

DP metrology [113]

Table 4: Selected resource-aware problems by resources / metrics and domain, using evo-
lutionary algorithms

problem description resources / metrics formulation domain bib
resource provisioning and
scheduling in uncertain
cloud environments

financial cost; time;
deadlines imposed

GA cloud comput-
ing

[31]

resource-constrained project
scheduling with transfer
times

generic resources;
transfer time

GA cross domain
applicable prob-
lem formulation

[82]

resource constrained multi-
project scheduling

generic resources;
time

GA cross domain
applicable prob-
lem formulation

[66]

resource constrained project
scheduling - comparison of
GAs

generic resources;
time

multiple GA cross domain
applicable prob-
lem formulation

[60]
[5]
[101]

GA parameter
tuning

[162]

decomposition
based GA

[43]

quantum
inspired GA

[149]

Elitist GA [94]
construction scheduling generic resources;

bridge; time
GA general problem

formulation;
bridge construc-
tion

[163]

troops-to-tasks problem military resources;
time

GA military field
applications

[52,51]

grid resource allocation grid resources; time GA grid computing [49]
regional drinking water sup-
ply

water resources; fi-
nancial cost; ecolog-
ical value; energy

GA water resource
research

[166]

groundwater management water resources; fi-
nancial cost; environ-
mental value; time

GA water resource
research

[88]

surgery scheduling hospital resources;
time

GA healthcare sec-
tor

[143]

Continued on next page
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Table 4 – continued from previous page
problem description resources / metrics formulation domain bib

scheduling problems on
flexible manufacturing
systems (FMS)

machines; storage
buffers; material;
tool-changing de-
vices; fixtures;
pallets; time

GA+PSO manufacturing
system

[54]

protection of marine envi-
ronment and allocation of
response vessels to mini-
mize costs of oil spill at sea

cost; time; environ-
mental burden

GA environmental
protection

[194]

Power aware resource re-
configuration

resources; power
consumption

GA cloud comput-
ing

[44]

processing of time-
constrained workflows
in mobile edge computing

resources; power
limitations

GA mobile edge
computing

[83]

power-aware allocation of
virtual machines in a cloud

energy; power con-
sumption

GA cloud comput-
ing; virtualiza-
tion

[134]

Solving resource constraints
in fog computing

fog computing re-
sources

GA Fog-cloud com-
puting; Internet
of Things

[74]

virtual network embedding
onto underlying physical in-
frastructure

physical infras-
tructure; network
topology

GA network virtual-
ization

[190]

scheduling in grid resource
management

grid resources; cost;
time

EA + learning grid computing [159]

design of combinational
logic circuits

circuit; gate; cost;
time

EA electronics [185]

dynamic multicast routing
with network coding

network topology;
cost; time

EA telecomm. [176]

multi-agent coalition forma-
tion

agents; tasks; cost;
time

IMOEA multi-agent pro-
cessing

[177]

employment level planning
for assigned construction
project lead time

human resources;
project; time

GA+HEA project manage-
ment

[146]

optimization of subcarrier
allocation and transmit
power

network; time EA telecomm. [99]

multi-period dynamic emer-
gency resource scheduling

roads; time MOEA/D-
mdERS

post-disaster
emergency re-
source schedul-
ing

[189]

resource planning and
scheduling of payload

space resources PEA space (satellite) [96]

Continued on next page
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Table 4 – continued from previous page
problem description resources / metrics formulation domain bib

order quantities in a multi-
item inventory with con-
straints on storage space and
capital

storage; cost two-phase EA retail [81]

1

Table 5: Selected resource-aware problems by resources / metrics and domain, using ma-
chine learning formulation

problem description resources / metrics formulation domain bib
resource allocation, opti-
mization of the downlink
communication [76], re-
source allocation for 5G
[140], medium access con-
trol in 6G [89]

network resources sML, RL wireless
systems;
telecomm.

[76]
[140]
[89]

fog computing resource
management review

cost; energy;
throughput; time;
task

NN, RL, DT,
etc.

fog computing [50]

resource planning system
for grocery retail delivery
services

groceries; customer;
driver; cost

ML grocery retail [178]

highlighting geologic sweet
spots for multiple US on-
shore basins

natural resources ML geology [28]

ML for tourism informa-
tion system, optimization of
economy of scenic spots

cost; tourism re-
sources

GBDT,
Lambdamart

tourism; econ-
omy

[191]

using ML for hydrological
modeling, flood forecasting,
drought prediction, water re-
source management

water resources; cost;
time

ANNs,
RMTs, DL,
RNNs, LSTM

water resources
management

[128]

compression of quantum
data

information ML quantum com-
puting

[127]

identification of groundwa-
ter potential zones

water resources EBM, GAMI-
net

water resource
research

[40]

pronominal coreference res-
olution using machine learn-
ing

text corpus KNN, LR,
XGBoost

languge re-
search

[16]

machine learning-based
handoff management in 5G
networks

energy; network
topology; resource
allocation

ML wireless
networks;
telecomm.

[139]

Continued on next page
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Table 5 – continued from previous page
problem description resources / metrics formulation domain bib

interpretable machine learn-
ing methods and their ap-
plications in the field of in-
formation resource manage-
ment

information re-
sources

RMs, DTs,
attention
mechanisms,
PDP, ICE,
PFI, LIME,
SHAP

public opinion
research; so-
cial network
user behavior;
healthcare;
scientometric
research

[106]

soil moisture prediction
through machine learning

natural resources ML environmental;
water resources
management

[85]

ML based employee
engagement, appraisal,
organizational culture pre-
diction [147], recruitment
procedures[77]

human resources DTs,
LR[147],
sML[77]

human resource
systems man-
agement

[147]
[77]

mineral resource estimation,
exploration

natural resources SVM, SVR,
and ANN
used for
MRE, mostly
RF, neuro-
fuzzy, SVM,
and ANN ML

management
of natural re-
sources

[108]
[46]
[26]

multi-core resource manage-
ment

computer resources RL, ANNs computer
resource man-
agement

[112]

water quality prediction water resources; time DNNs water research [157]
[104]

workload prediction in
serverless environments

computer resources;
cost

LSTM,
ARIMA,
VAR

serverless com-
puting

[123]

sharing digital education
training resources[179],
personalized learning[168]

information; training
resources; students

SVMs, DT,
NNs

education [179]
[168]

increasing the resource ef-
ficiency of screw-fastening
process

screws; cost DT, SVM,
ANNs

manufacturing [114]

predicting confirmed cases
and trend, classification and
diagnosis, medical manage-
ment

medical resources ML medical [7]

Continued on next page
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Table 5 – continued from previous page
problem description resources / metrics formulation domain bib

resource provisions,
scheduling, alloca-
tion, energy effi-
ciency, resource[164]
management[67] resource
scheduling[103]

cloud resources;
time; cost; energy

regression,
NNs, DTs,
RL, SVM

cloud resource
management

[164]
[67]
[103]

resource-efficient computa-
tion offloading in IoT de-
vices

computer resources;
time

ML + back-
ward induc-
tion

IoT; edge com-
puting; cloud
computing

[19]

project resource allocation project resources;
cost; time

SVM project manage-
ment

[148]

water availability prediction natural resources;
natural phenomena

NNs, LSTM,
SVM, etc.

water research [104]

intrusion detection system
for IoT

computer resources;
time; memory

logistic re-
gression,
passive-
aggressive
classifiers;
perception

IoT [42]

vehicular network resource
allocation strategy

vehicles; network;
cost; time

DL, RL, re-
gression

vehicular dis-
tributed system

[124]

1

Additionally, during research we have encountered works that consider various and2

mixed formulations. Selected examples of these are shown in Table 6, described in terms3

of the same features as works in the previous tables.4

Table 6: Selected resource-aware problems by resources / metrics, mixed formulations

problem description resources / metrics formulation domain bib
scheduling service based
workflow applications with
changeable service avail-
ability

time; cost ILP, GA,
GAIN,
divide-and-
conquer

scientific
workflows;
business
workflows;
mixed work-
flows

[38]

performance and energy
trade-off analysis for run-
ning parallel applications
on heterogeneous multi
processing systems

execution time; en-
ergy

(Halton num-
ber) sampling
of configura-
tion space for
Pareto front
generation

HPC [36]

Continued on next page
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Table 6 – continued from previous page
problem description resources / metrics formulation domain bib

performance-energy op-
timization for parallel
applications using power
capping, for CPUs and
GPUs

time; energy linear config-
uration space
exploration

HPC [91,90,92]

tugboat allocation optimiza-
tion in container terminals

vessels; tugboats;
time

combined GA
+ ant colony
optimization

marine re-
search

[169]

approximate DP for re-
source management in
multi-cloud environments

cloud resources;
time; revenue

approximate
DP, RL

cloud re-
source man-
agement

[129]

allocation method of wind
resources under the back-
ground of carbon neutraliza-
tion

natural resources; en-
ergy; cost

EA, LP wind en-
ergy; natural
resource man-
agement

[188]

comb jamming resource al-
location algorithm

data/information greedy + EA telecomm. [174]

optimal financial investment
of limited resources in enter-
prise

risk; benefit; time; fi-
nancial resources

DP and GA investment
management;
financial

[65]

virtual network function
(VNF) scheduling and
deployment

resource cost; delay-
satisfied request ratio

ILP + greedy software-
defined
networks;
telecomm.

[186]

optimal multi-resource allo-
cation in big data mining
model training

resources; tasks;
parallelism; resource
constraints

greedy + GA big data
model train-
ing

[170]

1

We shall note that performing the extended search for the articles from the Scopus2

database, we generally identified different articles than those in the original paper [39].3

There was almost no overlap between current and previous search results. On the other4

hand, though, the set of domains of identified problems in the two searches mostly matched.5

4. Summary of Problem Formulations, Resources and Domains6

Based on the classification of the research works shown in the previous section, we can7

now perform comprehensive analysis concerning:8

1. which resources are used in particular problem formulations referring to practical9

applications,10

2. which problem formulations are typically used in particular applications and do-11

mains,12
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3. which resources typically occur in the context of a given application and domain1

which in fact denotes which of these are considered in the process of an optimization2

problem in a given domain.3

Such analysis allows us to draw conclusions regarding whether:4

1. a particular problem formulation is used in the majority of domains,5

2. there are formulations that are specific for particular applications/domains,6

3. there is a resource that is used only with a specific problem formulation.7

It should be noted that this analysis was performed for the source data used within8

this paper and outlined in Tables 1 through 6. This does mean that the following results9

reflect the source data analyzed in the paper rather than the whole set of existing research10

works.11

We shall note during preparation of the following summary results we considered the12

most frequently occurring resources, without problem-specific ones, as well as applica-13

tions. Integration of the results from the aforementioned tables required relevant gener-14

alization of terms used by respective authors in specific problem formulations. Further-15

more, in the following Tables 7 and 8, we counted occurrences of terms corresponding to16

resources and domains per article i.e. possibly several energy-related terms in an article17

shown before would be counted as one reference to energy. In Table 9 we placed counts of18

relevant tuples of a resource and a domain and there can be several such tuples resulting19

from one article.20

Resources considered with various problem formulations are shown in Table 7.21

Table 7: Resources identified in various problem formulations, notation: I/M – I denotes
the number of occurrences in individual formulations, M – denotes the number of occur-
rences in mixed formulations

resource IL
P

G
rA

D
P

E
A

M
L

su
m

time 11/2 7/3 5/2 22/2 8/1 63

monetary resources 10/3 1/2 6/1 9/2 9/ 43

energy 13/1 3/ 5/ 4/1 3/ 30

human resources 10/ 2/ 2/ 1/ 4/ 19

computer, network, stor-
age

8/ 17/ 11/1 6/ 8/1 52

natural resources 5/1 / 8/ 2/1 7/ 24

Continued on next page
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Table 7 – continued from previous page

resource IL
P

G
rA

D
P

E
A

M
L

su
m

resources in general
problem formulations

6/ 6/ 6/ 8/ / 26

data/information / /1 1/ /1 4/ 7

sum 70 42 48 59 45 264

1

Applications that are considered in various problem formulations are presented in2

Table 8.3

Table 8: Applications for which selected problem formulations are used, notation: I/M –
I denotes the number of occurrences in individual formulations, M – denotes the number
of occurrences in mixed formulations

application IL
P

G
rA

D
P

E
A

M
L

su
m

power/energy 6/ 1/ 3/ / / 10

general resource man-
agement

4/1 3/ 4/ 10/1 / 23

computer resource man-
agement

3/1 8/1 6/1 10/2 9/1 42

communication 1/1 5/2 2/ 3/1 4/ 19

education / 2/ / / 1/ 3

natural resources man-
agement

3/1 / 8/ 3/1 8/ 24

military applications 1/ 1/ 3/ 1/ / 6

retail / / 2/ 1/ 2/ 5

tourism 1/ / 1/ / 1/ 3

manufacturing / 1/ 4/ 2/ 1/ 8

medical/health 5/ / 4/ 1/ 3/ 13

Continued on next page
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Table 8 – continued from previous page

application IL
P

G
rA

D
P

E
A

M
L

su
m

human resources man-
agement

2/ 1/ / / 1/ 4

transport 3/ / 1/ 1/1 / 6

space 2/ / / 1/ / 3

disaster management 1/ 1/ / 1/ / 3

sum 36 26 39 40 31 172

1

Additionally, we identify how resources are considered within selected applications/domains.2

Such assessment, based on the reviewed papers, is included in Table 9.3

Table 9: Resources identified in selected applications/domains

resource po
w

er
/e

ne
rg

y

ge
ne

ra
lr

es
m

gm
t

co
m

pu
te

r
re

sm
gm

t

co
m

m
un

ic
at

io
n

ed
uc

at
io

n
na

tr
es

m
gm

t
m

ili
ta

ry
re

ta
il

to
ur

is
m

m
an

uf
ac

tu
ri

ng
m

ed
ic

al
/h

ea
lth

hu
m

an
re

sm
gm

t
tr

an
sp

or
t

sp
ac

e
di

sa
st

er
m

an
ag

em
en

t
su

m
time / 10/1 16/3 6/1 2/ 4/ 2/ 1/ / 5/ 4/ 2/ 4/1 1/ 3/ 66

monetary resources 4/ 4/1 8/1 2/1 1/ 5/1 1/ 2/ 1/ 3/ 2/ 3/ 3/ 1/ 3/ 47

energy 9/ / 12/2 6/ / 4/1 / / / / 1/ / 1/ / / 36

human resources / 1/ / 1/ 2/ / 2/ 2/ 1/ 2/ 6/ 4/ 2/ 1/ 4/ 28

computer, network, stor-
age

7/ / 32/1 14/ 2/ / 1/ / / / 2/ / 1/ / / 60

natural resources 11/ / / / / 22/ / / / / / / / / / 33

resources in general
problem formulations

/ 14/ 2/ 1/ / 1/ / / / 1/ 2/ / 2/ / / 23

Continued on next page
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Table 9 – continued from previous page

resource po
w

er
/e

ne
rg

y

ge
ne

ra
lr

es
m

gm
t

co
m

pu
te

r
re

sm
gm

t

co
m

m
un

ic
at

io
n

ed
uc

at
io

n
na

tr
es

m
gm

t
m

ili
ta

ry
re

ta
il

to
ur

is
m

m
an

uf
ac

tu
ri

ng
m

ed
ic

al
/h

ea
lth

hu
m

an
re

sm
gm

t
tr

an
sp

or
t

sp
ac

e
di

sa
st

er
m

an
ag

em
en

t
su

m

data/information / 2/ / 1/ 3/ / / / / / / 1/ / / / 7

sum 31 33 77 33 10 38 6 5 2 11 17 10 14 3 10 300

1

Based on this analysis we can draw the following conclusions:2

1. All the problem formulations are similarly frequent across applications (total), as can3

be seen from Table 8. The same can be seen across the resources used, as shown in4

Table 7.5

2. Not surprisingly, as shown in Tables 7 and 9, time and cost are the most frequently6

addressed non-physical resources, followed by energy. Out of the physical resources,7

computer, network and storage devices are most frequently considered. Across appli-8

cations/domains, computer system management, natural resource management, gen-9

eral universally applicable resource management problems, and communication are10

the most frequently considered ones.11

3. ML targets all but general resources and appears in most of the specific contexts, as12

it is linked to particular applications. This also emphasizes its popularity nowadays.13

4. While data/information as a resource is present during optimization using GrA+EA,14

DP and ML, it is not as frequently considered as the other resources like time, energy,15

cost.16

5. From Table 8 we can see that within the set of papers analyzed, papers on tourism17

tend to use ILP, DP and ML approaches rather than GrA and EA. Retail domain seems18

to omit ILP and GrA formulations. While we know that ML can be used for disaster19

management e.g. in [33,78], this has not been visible in our set of papers, suggesting20

it is an area worthy of further exploration. The same would apply to military and21

space domains.22

6. From Table 9 we can see that time and cost are practically considered in all identified23

fields, there is room for further energy-aware research in many fields, including: edu-24

cation, retail, tourism, manufacturing and transport. While, in some of these, energy25

aspects can be considered within costs, energy considerations, especially concern-26

ing environmental impact, are becoming more and more important and are likely27

to require more direct exposure. Other interesting cross resource domain combina-28

tions that could be further explored, in our opinion, include: more focus on human29

resources in the computer resources management, as well as more focus on consid-30

eration of natural resources in contexts other than those specifically focused on nat-31

ural resource management, as visible in Table 9. Finally, data/information per se is32
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not deeply present as a resource in other domain-specific areas, other than in works1

specifically focused on general resource management models and algorithms, educa-2

tion, communication and social contexts.3

5. Summary and Future Work4

We were able to identify resources and metrics used in various problem formulations as5

well as problem formulations typically used in a given application/domain. Additionally,6

we mapped particular resources to applications/domains which allows to draw conclu-7

sions about their perceived importance.8

Resource identification in Table 9 shows that time and monetary resources are al-9

ways considered as important, while energy is explicitly considered in 1/3rd of domains10

and natural resources are given even less direct consideration. It would be interesting to11

conduct a similar literature survey in, e.g., five years and check, whether increased aware-12

ness of energy cost and of demand pressure on natural resources will be reflected in the13

repeated survey findings. Furthermore, the search for source research works could be ex-14

tended to include other scientific (indexing) databases, including: ACM DL, IEEE Xplore,15

Web of Science etc.16

Ongoing research in this field has a potential for new formulations. Such occurrences17

could trigger a new research to amend our findings.18
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A. Abbreviations18

aDP – approximate Dynamic Programming; aGrA – adaptive Greedy Algorithm; ANN –19

Artificial Neural Network; ARIMA – Auto Regressive Integrated Moving Average; dGrA20

– dynamic Greedy Algorithm; DIRSDP – Dual Interval Robust Stochastic Dynamic Pro-21

gramming; DNN – Deep Neural Network; DT – Decision Trees; EBM – Explainable22

Boosting Machine; GBDT – Gradient Boosting Decision Trees; GrkA – Greedy knapsack23

Algorithm; HEA – Hybrid Evolutionary Algorithm; ICE – Individual Conditional Expec-24

tation; IMOEA – Improved Multi-Objective Evolutionary Algorithm; KNN – k-nearest25

neighbors; LIME – Local Interpretable Model-agnostic Explanations; LP – Linear Pro-26

gramming; LR – Logistic Regression LSTM – Long Short-Term Memory; MILP – Mixed27

Integer Linear Programming MOEA/D-mdERS – Multi-Objective Evolutionary Algo-28

rithm for Dynamic multi-period dynamic Emergency Resource Scheduling; MOMILP –29

Multi Objective MILP; MRE – Most Relevant Explanation; NN – Neural Network; PDP30

– Partial Dependence Plot; PEA – Plasmodium Evolutionary Algorithm; PFI – Permu-31

tation Feature Importance; PSO – Particle Swarm Optimization; RF – Random Forest;32

RL – Reinforcement Learning; RMT – Regression and Model Trees; RNN – Recurrent33

Neural Network; sDP – stochastic Dynamic Programming SHAP – SHapley Additive ex-34

Planations; sML – supervised Machine Learning; SVM – Support Vector Machine; SVR35

– Super Vector Regression; VAR – Vector Auto Regression; wGrA – weighted Greedy36
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