3

5

6

7

8

https://doi.org/******

Research on Problem Formulations in Resource-aware Problems Across Scientific Domains and Applications

Paweł Czarnul and Mariusz Matuszek

Faculty of Electronics, Telecommunications and Informatics Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk, Poland pczarnul@eti.pg.edu.pl, mrm@eti.pg.edu.pl

Abstract. In this paper we conducted thorough analysis of research papers focused 9 on resource aware problems and using one of the following formulations: integer 10 linear programming (ILP), greedy algorithms (GrA), dynamic programming (DP), 11 evolutionary algorithms (EA) and machine learning (ML). Basing on such general 12 problem formulations we identified actual research tasks considered in many dif-13 ferent domains. Furthermore, we analyzed each of these problems in terms of: resources being considered/subject to optimization, specific optimization algorithms, 15 if applicable, and domains. Finally, based on over 170^1 research papers, we as-16 sessed which particular resources like: time, cost, energy, human, computer, natural 17 resources, data/information are used in which problems formulations, which formu-18 lations and resources are used and considered in which application/domains. It can 19 serve as reference for algorithms in particular domains or, conversely, looking for 20 unexplored approaches in specific contexts. 21

Keywords: resource aware problems, resource, domain, integer linear programming, greedy approach, dynamic programming, evolutionary algorithm, machine
 learning.

1. Introduction and Motivation

Research in various domains is inevitably linked with specific resources as well as opti-26 mization problems. Such optimization problems are typically expressed as multi-objective 27 optimization that involves metrics referring to the given domain, in particular resources in 28 a given domain. We can distinguish physical resources such as computers, interconnects, 29 cooling systems, human resources in a cloud computing center as well as more general 30 resources such as time, energy, budget etc. We shall note that in optimization problems 31 certain metrics are often linked to particular physical, problem specific resources e.g.: 32 performance or power consumption of a computer node. These, in turn, can be reflected 33 in metrics describing such a resource, i.e., execution time and energy used within a par-34 ticular period. These can then be used in a multi-objective optimization. We shall note 35 that optimization often involves trade-offs, e.g., performance vs energy [36,45], perfor-36 mance vs security [120], performance vs storage [79], performance vs memory [18,13], 37 performance vs ease of programming/development effort [84]. 38

¹ the total number of over 190 citations includes also references to related work.

- 2 Paweł Czarnul and Mariusz Matuszek
- While researching the topic of resource aware optimization we observed that in the
- ² literature there are several review papers considering specific resources within a particular
- ³ domain. These include, for example:
- 4 renewable energy [8,122]
- ⁵ human resources management [69,23,59],
- 6 computer systems, e.g., cloud computing [68,4],
- telecommunication [152],
- ⁸ education [180],
- natural resources management [138,22],
- ¹⁰ tourism [118,55,151],
- manufacturing [132],
- ¹² health [73,158],
- ¹³ transport [115],
- ¹⁴ space [117],
- disaster management [20,3].

¹⁶ We also identified some research papers on multidisciplinary (design) optimization, e.g.,

¹⁷ [37]. On the hand, to the best of our knowledge, there is no research on applicability of

specific optimization problem formulations across various domains, with consideration of
 resources and metrics.

In this paper, we aim at conducting cross-domain analysis of research works that involve resource aware problems, in terms of resources / metrics considered, problem formulations and domains they target.

This paper is a very significantly extended version of workshop paper [39] that extends it in the following aspects:

Considering a new set of research works fetched from a reliable scientific database
 Scopus. While the former paper considered approximately 70 works, we have now
 considered more than 190 research papers.

Involving other problem formulations such as a more general evolutionary algorithm
 concept (versus genetic algorithms considered before) as well as the popular and
 important machine learning.

31 3. Final classification of the research versus a larger number of resources: 8 vs 7 as well
 as applications/domains: 15 vs 8, for a more thorough analysis.

The outline of the paper is as follows. Section 2 details the methodology we used for selection of research papers used as input for subsequent analysis. Section 3 contains analysis of identified resource aware problems across domains with identification of resources, metrics and problem formulations. Section 4 includes comprehensive analysis of the previous problem descriptions with cross linking resources and problem formulations, applications/domains and problem formulations as well as resources and domains. Finally, Section 5 contains summary and outline of possible future work.

40 2. Methodology for Selection of Source Scientific Works

In this paper we build on and significantly extend the results originally obtained in paper [39]. In that work, analysis was based on selected scientific papers found by the standard Google search engine returned for querying for combinations of a given prob lem formulation and phrases: *resource, resource-aware problems*. The original problem
 formulations included: integer linear programming, dynamic programming, greedy ap proach as well as genetic algorithm. Furthermore, this input data set has been extended
 with selected results returned by the Bing search engine, queried about *resource aware computing* and *resource aware computing problems*.

In this paper, we significantly extended our previous input data set by adding scien-7 tific papers returned by the Scopus database. We used an extended query which specified: integer linear programming (ILP), dynamic programming (DP), greedy approach, evo-9 lutionary algorithm (EA) (that encompasses the previously considered class of genetic 10 algorithms) as well as the widely popular nowadays machine learning (ML). Specifically, 11 for each of these formulations, we ran a query as follows: cproblem formulation> AND 12 <"resource" OR "resource aware problems"> and sorted the results by relevance. Scopus 13 provides details on how relevance is computed² which considers: Number of hits, how 14 significant the word is, position in the document and occurrence in title, keywords etc., 15 proximity of terms and completeness in terms of the words from the query. Finally, out 16 of each of these queries we analyzed top 50 works in terms of problems in specific do-17 mains, using the given problem formulation. This has increased the number of sources 18 considered very considerably. Additionally, several new applications/domains have been 19 distinguished, along with new general type resources identified in the works. 20

Resource-aware Problems Across Domains with Resources and Problem Formulations

23 3.1. Resources, Formulations and Applications/Domains

Within this paper we use the term resource in a broad context that encompasses two
 classes of assets, that can refer to both physical and non-physical forms:

 problem specific resources – entities and assets that show up in the context of an optimization problem in a given domain. For instance, in the case of resource allocation in cloud computing, such resources would include: computational nodes with CPUs, GPUs, storage, network, applications.

 2. general resources – entities and assets that are of interest in optimization problems in potentially various domains that can exist either in a physical or in a non-physical form. Examples of these include: time, monetary/other cost, energy used, etc. As indicated before, these can in fact be metrics describing the use of particular physical resources e.g. response/execution time of an application run in a computer system at the given cost with a certain amount of energy used within the execution time frame.

In order to classify problems considered in possibly various domains, we have decided to distinguish selected, frequently used problem formulations/approaches used for stating problems formally which can be subsequently solved using specific algorithms. The formulations we distinguish are as follows: integer linear programming (ILP); dynamic programming (DP); greedy approach (GrA); evolutionary algorithms (EA), including genetic

² https://service.elsevier.com/app/answers/detail/a_id/14182/supporthub/scopus/

- 4 Paweł Czarnul and Mariusz Matuszek
- algorithms (GA) considered previously in paper [39] as well as the very popular machine
 learning (ML).
- ³ Furthermore, we aim at assignment of specific optimization problems considered in
- 4 research works to particular domains, i.e., cloud systems, grid systems, IoT, medical,
- ⁵ education, manufacturing etc.

6 **3.2.** Classification of Problems in Terms of Resources, Formulations and Domains

⁷ Classification of the research works, selected using the methodology outlined in Section 2,
⁸ was performed separately by problem formulation. Then, we recorded all found problem
⁹ domains in the given formulation in the respective tables. For each considered paper, we
¹⁰ identified a given specific optimization problem and classified it in terms of: resources /
¹¹ metrics used, formulation³ adopted (possibly more detailed description when applicable)
¹² and assignment to a particular domain. Classification of these is included in Tables 1,2,3,4,
¹³ 5 for ILP, GrA, DP, EA and ML respectively.

Table 1: Selected resource-aware problems by resources / metrics and domain, using ILP formulation

problem description	resources / metrics	formulation	domain	bib
allocating resources for	human resources;	ILP	wildfire sup-	[145]
fighting forest fires	time; financial cost		pression; wild-	
			fire simulation	
Mixed-Integer Linear		ILP	general cross	[9]
Programming for Re-	resources for execut-		domain applica-	
source Constrained Project	ing jobs		ble	
Scheduling Problem				
minimization of: electricity	solar energy; wind	MOMILP	energy sector	[193]
cost, CO2 emission, energy				
import, fossil resource us-				
age, maximization of: em-	hydroelectric energy;			
ployment, social acceptance	nuclear energy			
allocation of health care re-		ILP	healthcare	[48]
sources (treatments, popula-	sources; financial		domain; max-	
tion, healthcare programs)	cost		imization of	
			benefit	
finding the minimum power	-	ILP	resource op-	[24]
loss configuration of the net-	network resources		timization in	
work			power distribu-	
			tion networks	
site selection of a wind	energy; power plant	ILP	energy sector	[10]
power plant				
			Continued on ne	xt page

³ for explanation of less frequently appearing abbreviations see Appendix A

Research on Problem Formulations in Resource-aware Problems...

	e 1 – continued from			
	resources / metrics		domain	bib
decision-CPM network in		ILP	road construc-	[150]
order to obtain an overall op-			tion	
timum including time, cost,				
quality and safety in a road				
building project				
scheduling resources in sys-		ILP	hospital re-	[155]
tems that integrate humans			source man-	
with hardware and software	staff		agement;	
components			simulation	
data assignment optimiza-	- · ·	ILP		[21]
tion in a hybrid heteroge-	time		formance	
neous environment			computing	
cloudlet selection in the		ILP	cloud comput-	[102]
multi-cloudlet environment,	network		ing	
selection of cloudlet(s), se-				
lection of VMs for cloudlets				
Data-center power-aware		ILP		[58]
management, efficient			formance	[154]
utilization of available	time		computing	
resources				
scheduling of satellite obser-		ILP	satellite Earth	[34]
vations	ties of satellites; mis-		observations	
	sion time constraints			
hospital capacity assessment	-	MILP	healthcare	[30]
	number of patients;			
	treatment time			
agricultural water manage-		MILP	agriculture; wa-	[184]
ment under uncertainty	ecological wa-		ter allocation	
	ter requirements;			
	uncertainty levels			
-	cost; reliability; re-	MILP	generic pre-	[111]
scheduling	sources;		ventive mainte-	
			nance	
mobile workforce schedul-		MILP	mobile work-	[192]
ing	cost; teams; task		force schedul-	
			ing	
Volt/var optimization of un-		MILP	power distribu-	[25]
balanced power distribution	-		tion networks	
networks	embedded generators			
selection of an appropriate			military opera-	[15]
agent in a military con-			tions	
frontation	combat forces			
			Continued on ne	ext page

 Table 1 – continued from previous page

Table 1 – continued from previous page						
problem description	resources / metrics	formulation	domain	bib		
allocation and sequencing of		MILP	healthcare	[107]		
elective operations on hospi-						
tal operating rooms	schedule					
continuous berth allocation	quayside resources;	ILP	ship terminal	[181]		
	vessels; time;		management			
bus scheduling	bus seats demand;	MILP	public transport	[116]		
	bus seats supply;		scheduling			
optimization of building en-			smart grid;	[71]		
ergy use	electricity cost; grid		smart home			
	power import/export					
	schedule					
carrier optimization in wire-		MILP		[183]		
less localization networks	power allocation;		works			
	spectrum allocation			[0]		
optimization of humanitar-	the second se	MILP	disaster re-	[2]		
ian aid resource distribution			sponse			
time	time; aid resources					
	demand	чъ		[02]		
telescope network schedul-		ILP	astronomy	[93]		
ing	vations; preferences	ΠЪ		F 4 1 3		
planning and operations of		ILP	smart grid; re-	[41]		
renewable energy-based dis-			newable energy			
tributed power systems	energy sources; op-					
	timal energy source sizes					
optimization of multi-period		MIL D	streetlight	[144]		
investment planning in street		WIILF	systems; invest-	[144]		
lighting systems	of the system; avail-		ment planning			
ingitting systems	able technologies		ment planning			
optimal selection and sizing		MILD	low-energy	[11]		
of a smart building system	electrical storages;	IVIIL/I	building design	[11]		
or a smart bunding system	heating and cooling		building design			
	systems; renewable					
	energy sources;					
	policies; cost					
dynamic optimal nurse	nurses; tasks; con-	П.Р	healthcare	[72]		
scheduling	straints; locations;	11/1	neurineure	L'~J		
seneduling	preferences; work					
	regulations					

Table 2: Selected resource-aware	problems by	resources /	metrics	and domai	n, using
greedy formulation					

dynamic multi-user resource allocation in the downlink channels; power consumption minimization scheduling of flows from throughput; loss; durous applications in time (delay) overload states, downlink scheduling preparation of educational human resources; cation allocating resources in Vir- processing power; dual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- time; energy ple concurrent applications' scheduleGrAresource allocation; telecomm.[13]Set Covering Problem as a gement Maximizing utility and rev- processing power; fuitals scheduling on heteroge- sourcesGrAVirtual Sensor virtual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- time; energy ple concurrent applications' schedule[13]Set Covering Problem as a gement maximizing utility and rev- processing power; scheduleGrAresource man- agement datacenter provisioning [137]Reducing task duplication in computing on heteroge- sources neous distributed systems Task offloading and resource computational schedulingGrAgrAresource- allocation in computational schedulingresources; communi- computing neous distributed systems Task scheduling in a cloud energy consumption; (computing environment, time with time and energy constraints radio resource allocation link performance; GrAGrAcloud com- puting[165] uting[165] puting[165] putingcontinued on next pagelink performance; GrAGrAcloud com- puting		resources / metrics	formulation	domain	bib
of OFDMA system, power consumption consumption minimization scheduling of flows from throughput; loss; various applications in time (delay) overload states, downlink scheduling preparation of educational schedule in the higher edu- classes; courses; cation time; cost allocating resources in Vir- tual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- ple concurrent applications' schedule Set Covering Problem as a generic resources; template for resource man- time agement Maximizing utility and rev- processing power; multime; cost allocation resources memory; storage in virtual machine allocation Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource Resource-aware fluid computational scheduling task scheduling in a cloud energy constraints radio resource allocation in time and energy constraints radio resource allocation in time and energy constraints radio resource allocation in the freence manage- cell throughput ment in time and energy constraints radio resource allocation in the freence manage- cell throughput in ent in the freence manage- cell throughput in ent in the freence manage- cell throughput in ent in the freence manage- constraints radio resources allocation interference manage- cell throughput in ent in the freence manage- in the freence manage- cell throughput in ent in the freence manage- in th			GrA	resource	[121]
consumption minimization scheduling of flows from traious applications in time (delay)GrkAresource allocation; telecomm.various applications overload states, downlinktime (delay)GrAresource[53] allocation; telecomm.preparation of educational scheduling preparation of educational human resources; cationhuman resources; toressing power; GrAGrAeducation[133]schedule in the higher edu- classes; courses; time; cost allocating resources in Vir- processing power; scheduleGrAVirtual Sensor[27]tual Sensor Networks, max- binzing revenue of multi- ple concurrent applications' schedulesenergy time; energy time; energy ple concurrent applications' scheduleGrAresource man- agement datacenter[156] agement agementMaximizing utility and rev- enue of hardware resources in virtual machine allocation neducing task duplication in computational re- task scheduling on heteroge- sources computing neous distributed systems Task offloading and resource computational resources; communi- incation resources; fluidsGrApower net- physics mod- eling[98]task scheduling the and energy constraints radio resource allocation interference manage- ecell throughput mentGrAcloud com- puting[161]		· •		allocation;	
scheduling of flows from throughput; loss; GrA resource [53] various applications in time (delay) overload states, downlink scheduling preparation of educational human resources; GrA education [133] schedule in the higher edu- classes; courses; time; cost allocating resources in Vir- tual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- processing power; fuids resource man- agement aduptication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource computational scheduling task cuplication in computational allocation in power network resources; communi- monitoring (PIoT) cation resources; fuids task scheduling in a cloud energy constraints radio resource allocation and interference manage- cell throughput ment ent ent energy constraints radio resource allocation and interference manage- cell throughput ment ent energy consumption; fuids		consumption		telecomm.	
various applications in time (delay) overload states, downlink scheduling preparation of educational schedule in the higher edu- cation time; cost allocating resources in Vir- cation time; cost allocating resources in Vir- processing power; tual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- time; energy ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- processing power; in virtual machine allocation Reducing task duplication in computational action resources neous distributed systems Task offloading and resource sources computational scheduling nonitoring (PIoT) cation resources; task scheduling in a cloud energy constraints radio resource allocation int time and energy constraints radio resource allocation ad interference manage- ent					
overload states, downlink scheduling preparation of educational schedule in the higher edu- classes; courses; cation time; cost allocating resources in Vir- processing power; tual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- time; energy ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- processing power; GrA datacenter [136] enue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational re- ousu distributed systems Task offloading and resource scheduling allocation in power network resources; commun- mication resources; fluids task scheduling in a cloud computational scheduling in a cloud computing net time and energy constraints radio resource allocation and interference manage- cell throughput ment teats	-		GrkA		[53]
scheduling preparation of educational schedule in the higher edu- cation time; cost allocating resources in Vir- processing power; imizing revenue of multi- time; energy ple concurrent applications' schedule Set Covering Problem as a generic resources; Maximizing utility and rev- enue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational allocation in power network Task offloading and resource scheduling scheduling necous distributed systems Task offloading and resources Resource-aware fluid scheduling in a cloud computing net time interference allocation addition resources interference annage- cell throughput ment interference manage- interference manage- interference manage- cell throughput interference manage- interference manage- interference manage- interference manage- cell throughput interference manage- interference manage- interferenc		time (delay)		allocation;	
preparation of educational human resources; schedule in the higher edu- classes; courses; cation time; cost allocating resources in Vir- tual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- time; energy ple concurrent applications' schedule Set Covering Problem as a generic resources; template for resource man- agement Maximizing utility and rev- processing power; enue of hardware resources neous distributed systems Task offloading and resource Resource-aware fluid scheduling in a cloud energy constraints task scheduling in a cloud energy constraints task interference manage- cell throughput ment protein the higher edu- classes; courses; time time task scheduling in a cloud and interference manage- cell throughput ment protein the time task scheduling in a cloud tereformance; time task scheduling in a cloud task scheduling				telecomm.	
schedule in the higher edu- cation in the higher edu- cation classes; courses; time; cost processing power; tual Sensor Networks, max- bandwidth; storage; imizing revenue of multi- time; energy bandwidth; storage; imizing revenue of multi- ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement maximizing utility and rev- processing power; enue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource computational allocation in power network resources; communi- cation resources; communi- nication resources; communi- nication resources; fluids task scheduling in a cloud energy consumption; computing environment, with time and energy constraints radio resource allocation link performance; and interference manage- cell throughput	e				
cation time; cost processing power; GrA Virtual Sensor [27] tual Sensor Networks, maximizing revenue of multiple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource management agement time agement time agement maximizing utility and revenue of hardware resources in virtual machine allocation reducing task duplication in computational resources sources sources task scheduling on heterogeneous distributed systems Task offloading and resource computational resources fluid scheduling in a cloud computational resources; fluid scheduling in a cloud energy constraints radio resource allocation and interference manage cell throughput ment link performance; GrA telecomm. [161]			GrA	education	[133]
allocating resources in Vir- tual Sensor Networks, max- imizing revenue of multi- ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- enue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational re- neous distributed systems Task offloading and resource allocation in power network monitoring (PIoT) Resource-aware fluid scheduling in a cloud task scheduling in a cloud computing environment, with time and energy constraints radio resource allocation and interference manage- ment allocation resource allocation and interference manage- ment					
tual Sensor Networks, max- imizing revenue of multi- ple concurrent applications' schedulebandwidth; storage; time; energyNetworksSet Covering Problem as a generic resources; umplate for resource man- agementgeneric resources; timewGrAresource man- agementMaximizing utility and rev- enue of hardware resources in virtual machine allocation resourcesprocessing power; memory; storageGrAdatacenter[136] (137]Reducing task duplication in task scheduling on heteroge- nonitoring (PIoT)computational resources; communi- cation resourcesGrAdistributed[1] (11]Resource-aware schedulingfluidsGrApower net- work moni- toring[98] (182]task scheduling in a cloud with time and energy constraints radio resource allocationenergy consumption; cell throughputGrAcloud com- puting[165] (161]					
imizing revenue of multi- ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- enue of hardware resources in virtual machine allocation Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource allocation in power network resources; communi- monitoring (PIoT) cation resources; fluids task scheduling in a cloud computational resources; commun- nication resources; fluids task scheduling in a cloud computing environment, with time and energy constraints radio resource allocation link performance; GrA telecomm. [161] and interference manage- cell throughput			GrA		[27]
ple concurrent applications' schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- genue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource computational allocation in power network resources; communi- monitoring (PIoT) cation resources Resource-aware fluid computational scheduling in a cloud energy consumption; computing environment, with time and energy constraints radio resource allocation and interference manage- cell throughput ment (156) GrA resource man- agement agement agement GrA power net- grA distributed [1] computational GrA power net- grA distributed [1] computing filids fra telecomm. [161]				Networks	
schedule Set Covering Problem as a generic resources; wGrA resource man- agement Maximizing utility and rev- agement Maximizing utility and rev- enue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource computational allocation in power network resources; communi- monitoring (PIoT) cation resources Resource-aware fluid computational scheduling in a cloud energy consumption; computing environment, time with time and energy constraints radio resource allocation and interference manage- cell throughput ment scheduling resource allocation and interference manage- cell throughput		time; energy			
Set Covering Problem as a template for resource man- agement[156] agement[156] agementMaximizing utility and rev- enue of hardware resources in virtual machine allocation Reducing task duplication in task scheduling on heteroge- neous distributed systemsprocessing power; GrAGrAdatacenter provisioning distributed[137]Task offloading and resource allocation in power network resources, resources; communi- monitoring (PIoT)GrApower net- work moni- toring[98]Resource-aware schedulingcomputational resources; communi- nication resources; fluidsGrApower net- using[182]task scheduling in a cloud computing environment, with time and energy constraints radio resource allocation and interference manage- mentlink performance; cell throughputGrAtelecomm.[161]					
template for resource man- agement Maximizing utility and rev- enue of hardware resources in virtual machine allocation Reducing task duplication in cask scheduling on heteroge- neous distributed systems Task offloading and resource allocation in power network Resource-aware scheduling task scheduling in a cloud computational scheduling in a cloud computational task scheduling in a cloud computing time time time time time time time time					1170
agement Maximizing utility and rev- enue of hardware resources in virtual machine allocation Reducing task duplication in reducing task duplication in resources neous distributed systems Task offloading and resource allocation in power network resources; communi- monitoring (PIoT) Resource-aware scheduling task scheduling in a cloud computational scheduling in a cloud computational resources; commun- nication resources; fluids task scheduling in a cloud computational scheduling in a cloud computational resources; commun- nication resources; fluids task scheduling in a cloud computational computational scheduling in a cloud computational computational resources; commun- nication resources; fluids task scheduling in a cloud computational computing environment, with time and energy constraints radio resource allocation and interference manage- and interference manage- cell throughput ment Adatacenter GrA and interference manage- and interferenc			wGrA		[156]
Maximizing utility and revenessing power; enue of hardware resources in virtual machine allocation Reducing task duplication in computation in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource allocation in power network resources; communi- cation resources; communi- incation resources; fluidsGrAdatacenter provisioning[136] [137]Resource-aware schedulingfluid energy constraints radio resource allocationcomputational resources; column nication resources; fluidsGrAdistributed provisioning[137]GrApower net- (98][98] work moni- toringResource-aware schedulingfluid energy consumption; fluidsGrAphysics mod- eling[182] putingtask scheduling in a cloud computing environment, with time and energy constraints radio resource allocation and interference manage- cell throughputfluid performance; fluidsGrAcloud com- puting[161]	-	time		agement	
enue of hardware resources memory; storage in virtual machine allocation Reducing task duplication in computational retask scheduling on heteroge- neous distributed systems computational allocation in power network resources; communi- cation resources computational resources computational resources computational resources computational resources; communi- nonitoring (PIoT) cation resources; communi- cation resources; communi- nication resources; communi- nication resources; communi- computing environment, time and energy constraints radio resource allocation link performance; and interference manage- ment link performance; and link performance; and interference manage- ment link performance; and link performance; and interference manage- ment link performance; and link perfor	0		C . A	1	[126]
in virtual machine allocation Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource computational allocation in power network resources; communi- monitoring (PIoT) cation resources Resource-aware fluid computational scheduling in a cloud energy consumption; computing environment, with time and energy constraints radio resource allocation and interference manage- ment link performance; GrA telecomm. [161]			GIA		
Reducing task duplication in computational re- task scheduling on heteroge- neous distributed systems Task offloading and resource computational allocation in power network resources; communi- monitoring (PIoT) cation resources Resource-aware fluid computational computational resources; commu- nication resources; commu- nication resources; fluids task scheduling in a cloud energy consumption; GrA cloud com- puting environment, time and energy constraints radio resource allocation link performance; GrA telecomm. [161]		memory; storage		provisioning	[137]
task scheduling on heteroge- neous distributed systems Task offloading and resource allocation in power network monitoring (PIoT) Resource-aware fluid scheduling task scheduling in a cloud computing environment, with time and energy constraints radio resource allocation and interference manage- cell throughput ment cation resources communi- cation resources communi- cation resources communi- cation resources communi- cation resources communi- cation resources communi- cation resources communi- cation resources communi- cation resources communi- nication resources; fluids computing constraints radio resource allocation computing constraints radio resource allocation computing communi- cell throughput communi- cell throughput communi- cel		commutational re-	Cal	distributed	[1]
neous distributed systems Task offloading and resource allocation in power network monitoring (PIoT) Resource-aware scheduling task scheduling in a cloud computing mication resources; fluids task scheduling in a cloud computing environment, with time and energy constraints radio resource allocation link performance; GrA GrA GrA cloud com- puting GrA telecomm. [161] 161]			UIA		[1]
Task offloading and resource allocation in power network monitoring (PIoT)computational resources; communi- cation resourcesGrApower work moni- toring[98]Resource-aware schedulingfluid computational resources; commu- nication fluidsGrAphysics mod- eling[182]task scheduling in a cloud computing environment, with time and energy constraints radio resource allocationenergy consumption; timeGrAcloud com- puting[165]and interference mentlink cell throughput mentgrAtelecomm.[161]	C C	sources		computing	
allocation in power network resources; communi- monitoring (PIoT) cation resources Resource-aware fluid computational resources; commu- nication resources; commu- nication resources; fluids task scheduling in a cloud energy consumption; GrA cloud com- computing environment, time cloud energy consumption; GrA cloud com- with time and energy constraints radio resource allocation link performance; GrA telecomm. [161] and interference manage- cell throughput		computational	GrA	nower net-	1981
monitoring (PIoT)cation resourcestoringResource-awarefluidcomputationalGrAphysics mod-schedulingresources; commu-elingelingincationresources; commu-fluidsfluidstask scheduling in a cloudenergy consumption;GrAcloud com-computingenvironment,timeputingwithtimeandenergyfluidsconstraintslinkperformance;GrAtelecomm.radioresource allocationlinkperformance;GrAandinterferencemanage-cell throughputfloid			UIA	1°	[70]
Resource-aware fluid computational scheduling fresources; communication resources; fluids task scheduling in a cloud energy consumption; GrA cloud computing environment, time and energy constraints radio resource allocation link performance; GrA telecomm. [161] and interference manage- cell throughput					
scheduling resources; commu- nication resources; fluids task scheduling in a cloud energy consumption; computing environment, with time and energy constraints radio resource allocation link performance; and interference manage- cell throughput energy consumption (GrA cloud com- puting puting [165] (165] puting [165] (165) (165] (165] (165)			GrA		[182]
nication resources; fluids task scheduling in a cloud energy consumption; computing environment, with time and energy constraints radio resource allocation link performance; and interference manage- ment GrA telecomm. [165]		-	GITT		[102]
fluids task scheduling in a cloud computing environment, with time and energy constraints radio resource allocation and interference manage- ment cloud com- time GrA cloud com- puting GrA telecomm. [165] GrA telecomm. [161]	Servers	· · · · · · · · · · · · · · · · · · ·		•B	
task scheduling in a cloud energy consumption; GrA cloud com- computing environment, time cloud energy constraints radio resource allocation link performance; GrA telecomm. [161] and interference manage- ment cell throughput		,			
computing environment, time puting puting with time and energy constraints radio resource allocation link performance; GrA telecomm. [161] and interference manage- cell throughput ment	task scheduling in a cloud		GrA	cloud com-	[165]
with time and energy constraints radio resource allocation and interference manage- ment cell throughput [161]	-				
constraints radio resource allocation and interference manage- ment cell throughput [161]	1 0 /				
and interference manage- cell throughput ment					
and interference manage- cell throughput ment	radio resource allocation	link performance;	GrA	telecomm.	[161]
ment	and interference manage-				-
Continued on next page		~ 1			
			C	Continued on ne	xt page

Table 2 – continued from previous page					
problem description	resources	formulation	domain	bib	
allocation of resources for	network resources;	GrA	telecomm.	[47]	
data traffic in 5G networks	quality of service;				
	resource scheduling				
allocation of resources for	course resources;	GrA	online educa-	[173]	
online teaching	network; bandwidth;		tion		
	delay				
dynamic battlefield resource	campaign resources	GrA	military	[160]	
scheduling					
combinatorial auctions in ef-	cloud resources; re-	aGrA	cloud com-	[35]	
ficient cloud resource allo-	source pricing		puting		
cation					
computing resource	computing resources;	dGrA	edge com-	[95]	
scheduling in the	QoS attributes; net-		puting; IoT;		
computing-aware network	work; tasks		internet-of-		
			vehicles		
allocation or constrained	human resources;	GrA	manufacturing	[100]	
resources to multi-activity			industry		
projects	als;				
HW/SW partitioning in SoC	-			[167]	
design	time savings; task		Chip design		
	frequency; task area				
relief resource allocation to			relief opera-	[61]	
areas of disaster	relief resource		tions		
	demand; relief				
	resources				

Table 2 – continued from previous page

Table 3: Selected resource-aware problems by resources / metrics and domain, using dynamic programming formulation

problem description	resources / metrics	formulation	domain	bib	
agriculture and natural re-	natural resources	DP	agriculture;	[86]	
sources management			natural re-		
			sources		
scheduling water resources;	water resources; cost	DP	power sys-	[32]	
minimization of cost of run-			tems		
ning a hydroelectric system					
stochastic resource alloca-	generic resources; fi-	DP	general	[56]	
tion	nancial cost; time		resource		
			allocation		
stochastic resource alloca-	ships; weapons;	DP	military real-	[130]	
tion	time; security		time naval op-		
			erations		
Continued on next page					

	3 – continued from			
problem description	resources / metrics		domain	bib
HPC compute nodes alloca-		DP	HPC	[29]
tion	resources; accelera-			
	tors; storage			
dynamic code loading	grid resources; power	DP	dynamic re-	[119]
	consumption		configuration	
			of servers	
Balancing resources in	computational	DP	balanced	[125]
robotic vision	power; bandwidth;		utilization of	
	responsiveness		computing	
			resources	
integration of low cost wear-	energy; bandwidth;	DP	healthcare;	[6]
able sensors, processing of			clinical-level	
sensors' data at the cloud			continu-	
edge	The association of the second		ous patient	
			monitoring	
Seamless image manipula-	still images	DP	image pro-	[12]
tion	sum muges		cessing	[12]
task scheduling and resource	computing resources:	DP	distributed	[63]
allocation in distributed sys-				[142]
tems	COSt		processing	[131]
planning water resources	water resources	DIRSDP	water re-	[105]
management systems under		DIKSDI	sources	[105]
uncertainty				
hydraulics and water re-	water resources	DP	management agriculture;	[110]
sources simulating, optimiz-	water resources	Dr	water con-	[110]
ing water transfer system			sumption	1001
	military resources; fi-	DP		[80]
	nancial cost		soldiers/ med-	
applications			ical support	
		DD	location	1071
data center resource dy-		DP	data center	[97]
namic scheduling for energy			optimization	
optimization, emission re-	physical resources			
duction				
finding the optimal bidding			public tenders	
strategy for a firm	the firm	horizon	in oligopolis-	
		semi-Markov	tic market	
		DP		
	bandwidth; user pro-	aDP	telecomm.	[75]
OFDM systems with rate				
constraint to minimize				
transmission power				
		(Continued on ne	xt page
·				-

Table 3 -	continued	from	previous	nage
Table 5	commucu	nom	previous	page

	3 – continued from			
problem description	resources / metrics		domain	bib
sensor resource manage-	time to acquire tar-		surveilance	[171]
ment	get; target priorities;		(civil and	
	sensor field of view		military)	
optimization of energy pur-	energy sources	DP	energy market	[109]
chase and production				
dynamic fleet management	vehicles; vehicle	aDP	vehicle fleet	[64]
	states; customer		management	
	demands			
optimization of resource al-		DP	industry	[172]
location in a factory	sources; profit			
price management, maxi-	customer; resource	aDP & sDP	price manage-	[57]
mizing revenue	(requests)		ment systems	
optimization of water treat-	water resource; re-	DP	environmental	[187]
ment and allocation	source state		resources al-	
			location	
resource allocation in R&D	project; activities;	DP	cost optimiza-	[87]
projects	cost;		tion in R&D	
			projects	
resource allocation to cloud	storage; efficiency;	aDP	cloud com-	[141]
storage	load		puting	
operation of a water reser-	water reservoirs;	DP	water re-	[17]
voir system	reservoir state;		source plan-	
	operation policy		ning	
resource-constrained project	resources; resource	aDP with	applicable to	[175]
scheduling	availability	Markov deci-	many fields	
-		sion process	-	
resource allocation in indus-	human resources;	DP	heavy indus-	[62]
trial maintenance	equipment; time		try	
finding optimal preventive	maintenance re-	DP	power dis-	[14]
maintenance budget in	sources; reliability		tribution	
power distribution network	constraints		networks	
with reliability constraints				
resource allocation in sliced	rate; latency; reliabil-	DP with hier-	telecomm.	[153]
5G radio access networks	ity; separation	archical auc-		
		tion		
assembly line balancing	resource constraints;	DP	manufacturing	[135]
	task precedence rela-			_
	tions			
optimization of regional in-	labor; capital;	grey DP	economy	[126]
dustrial structure develop-	energy; natural		-	_
ment	resources; techno-			
	logical progress			
		C	Continued on ne	xt page

Table 3 – continued from previous page

Research on Problem Formulations in Resource-aware Problems...

problem description	resources / metrics	formulation	domain	bib		
reducing stochastic errors	computational re-	DP	metrology	[113]		
in accelerometers and gyro-	sources					
scopic sensors						

Table 3 – continued from previous page

Table 4: Selected resource-aware problems by resources / metrics and domain, using evolutionary algorithms

problem description	resources / metrics		domain	bib
resource provisioning and		GA	cloud comput-	[31]
scheduling in uncertain	deadlines imposed		ing	
cloud environments				
resource-constrained project		GA	cross domain	[82]
scheduling with transfer	transfer time		applicable prob-	
times			lem formulation	
resource constrained multi-		GA	cross domain	[66]
project scheduling	time		applicable prob-	
			lem formulation	
resource constrained project		multiple GA	cross domain	
scheduling - comparison of	time		applicable prob-	
GAs			lem formulation	
		GA parameter		[162]
		tuning		
		decomposition		[43]
		based GA		54.407
		quantum		[149]
		inspired GA		50.13
		Elitist GA		[94]
construction scheduling	generic resources;	GA	general problem	[163]
	bridge; time		formulation;	
			bridge construc-	
	•1•.	C •	tion	550 513
troops-to-tasks problem	military resources;	GA		[52,51]
	time		applications	E 4 0 1
grid resource allocation	grid resources; time	GA	grid computing	
regional drinking water sup-	water resources; fi-	GA	water resource	[166]
ply	nancial cost; ecolog-		research	
	ical value; energy	C •		1001
groundwater management	water resources; fi-	GA	water resource	[88]
	nancial cost; environ-		research	
	mental value; time	C •	1 1.1	[1.40]
surgery scheduling	hospital resources;	GA	healthcare sec-	[143]
	time		tor	
			Continued on ne	ext page

11

Table 4 – continued from previous page								
problem description	resources / metrics		domain	bib				
U		GA+PSO	manufacturing	[54]				
flexible manufacturing	buffers; material;		system					
systems (FMS)	tool-changing de-							
	vices; fixtures;							
	pallets; time							
protection of marine envi-		GA	environmental	[194]				
ronment and allocation of	mental burden		protection					
response vessels to mini-								
mize costs of oil spill at sea								
Power aware resource re-	resources; power	GA	cloud comput-	[44]				
configuration	consumption		ing					
processing of time-	resources; power	GA	mobile edge	[83]				
	limitations		computing					
in mobile edge computing								
power-aware allocation of		GA	cloud comput-	[134]				
virtual machines in a cloud	sumption		ing; virtualiza-					
			tion					
Solving resource constraints	fog computing re-	GA	Fog-cloud com-	[74]				
in fog computing	sources		puting; Internet					
			of Things					
virtual network embedding		GA	network virtual-	[190]				
onto underlying physical in-			ization					
frastructure	topology							
scheduling in grid resource	grid resources; cost;	EA + learning	grid computing	[159]				
management	time							
design of combinational	circuit; gate; cost;	EA	electronics	[185]				
logic circuits	time							
dynamic multicast routing	network topology;	EA	telecomm.	[176]				
with network coding	cost; time							
multi-agent coalition forma-	agents; tasks; cost;	IMOEA	multi-agent pro-	[177]				
tion	time		cessing					
employment level planning		GA+HEA	project manage-	[146]				
for assigned construction	project; time		ment					
project lead time								
optimization of subcarrier	the second se	EA	telecomm.	[99]				
allocation and transmit								
power								
multi-period dynamic emer-	roads; time	MOEA/D-	post-disaster	[189]				
gency resource scheduling		mdERS	emergency re-					
			source schedul-					
			ing					
resource planning and	space resources	PEA	space (satellite)	[96]				
scheduling of payload								
			Continued on ne	xt page				
L								

Table 4 – continued from	i previous page
--------------------------	-----------------

Research on Problem Formulations in Resource-aware Problems... 1

problem description	resources / metrics	formulation	domain	bib
order quantities in a multi-	storage; cost	two-phase EA	retail	[81]
item inventory with con-				
straints on storage space and				
capital				

 Table 4 – continued from previous page

Table 5: Selected resource-aware problems by resources / metrics and domain, using machine learning formulation

1

problem description	resources / metrics	formulation	domain	bib
	network resources	sML, RL	wireless	[76]
mization of the downlink			systems;	[140]
communication [76], re-			telecomm.	[89]
source allocation for 5G				
[140], medium access con-				
trol in 6G [89]				
fog computing resource	cost; energy;	NN, RL, DT,	fog computing	[50]
management review	throughput; time;	etc.		
	task			
resource planning system	groceries; customer;	ML	grocery retail	[178]
for grocery retail delivery	driver; cost			
services				
highlighting geologic sweet	natural resources	ML	geology	[28]
spots for multiple US on-				
shore basins				
ML for tourism informa-	cost; tourism re-	GBDT,	tourism; econ-	[191]
tion system, optimization of	sources	Lambdamart	omy	
economy of scenic spots				
using ML for hydrological	water resources; cost;	ANNs,	water resources	[128]
modeling, flood forecasting,	time	RMTs, DL,	management	
drought prediction, water re-		RNNs, LSTM		
source management				
compression of quantum	information	ML	quantum com-	[127]
data			puting	
identification of groundwa-	water resources	EBM, GAMI-	water resource	[40]
ter potential zones		net	research	
pronominal coreference res-	text corpus	KNN, LR,	00	[16]
olution using machine learn-		XGBoost	search	
ing				
machine learning-based		ML	wireless	[139]
handoff management in 5G			networks;	
networks	allocation		telecomm.	
			Continued on ne	xt page

13

¹⁴ Paweł Czarnul and Mariusz Matuszek

Table 5 – continued from previous page									
problem description	resources / metrics		domain	bib					
interpretable machine learn-		RMs, DTs,	public opinion	[106]					
ing methods and their ap-	sources	attention	research; so-						
plications in the field of in-		mechanisms,	cial network						
formation resource manage-		PDP, ICE,							
ment			healthcare;						
		SHAP	scientometric						
			research						
	natural resources	ML	environmental;	[85]					
through machine learning			water resources						
			management						
	human resources	DTs,	human resource						
engagement, appraisal,		LR[147],	systems man-	[77]					
organizational culture pre-		sML[77]	agement						
diction [147], recruitment									
procedures[77]									
mineral resource estimation,	natural resources		management	[108]					
exploration			of natural re-	[46]					
			sources	[26]					
		MRE, mostly							
		RF, neuro-							
		fuzzy, SVM,							
		and ANN ML RL, ANNs	computer	[110]					
multi-core resource manage- ment	computer resources	KL, AININS	computer resource man-	[112]					
ment									
water quality prediction	water resources; time	DNNs	agement water research	[157]					
water quality prediction	water resources, time	DIVINS	water research	[104]					
workload prediction in	computer resources;	ISTM	serverless com-						
serverless environments	cost	ARIMA,	puting	[125]					
serveness environments	0051	VAR	putting						
sharing digital education	information; training		education	[179]					
	resources; students	NNs		[168]					
personalized learning[168]				[]					
increasing the resource ef-	screws: cost	DT. SVM.	manufacturing	[114]					
ficiency of screw-fastening		ANNs	6						
process									
predicting confirmed cases	medical resources	ML	medical	[7]					
and trend, classification and									
diagnosis, medical manage-									
ment									
			Continued on ne	xt page					
L									

Table 5 – continued from previous page

Research on Problem Formulations in Resource-aware Problems... 15

problem description resources / metrics formulation domain						
problem description					bib	
resource provisions,	cloud	resources;	regression,	cloud resource	[164]	
scheduling, alloca-	time; cost;	energy	NNs, DTs	, management	[67]	
tion, energy effi-			RL, SVM		[103]	
ciency, resource[164]						
management[67] resource						
scheduling[103]						
resource-efficient computa-	computer	resources;	ML + back	- IoT; edge com-	[19]	
tion offloading in IoT de-	time		ward induc	- puting; cloud		
vices			tion	computing		
project resource allocation	project	resources;	SVM	project manage-	[148]	
- ·	cost; time			ment		
water availability prediction	natural	resources;	NNs, LSTM	, water research	[104]	
			SVM, etc.			
intrusion detection system	computer	resources;	logistic re	- IoT	[42]	
for IoT	time; mem	ory	gression,			
	, í	-	passive-			
			aggressive			
			classifiers;			
			perception			
vehicular network resource	vehicles:	network:		- vehicular dis-	[124]	
allocation strategy	cost; time	, , ,	gression	tributed system	L 'J	

Table 5 –	continued	from	previous	page
-----------	-----------	------	----------	------

Additionally, during research we have encountered works that consider various and mixed formulations. Selected examples of these are shown in Table 6, described in terms

⁴ of the same features as works in the previous tables.

1

Table 6: Selected resource-aware problems by resources / metrics, mixed formulations

problem description	resources / metrics	formulation	domain	bib				
scheduling service based	time; cost	ILP, GA,	scientific	[38]				
workflow applications with		GAIN,	workflows;					
changeable service avail-		divide-and-	business					
ability		conquer	workflows;					
		_	mixed work-					
			flows					
performance and energy	execution time; en-	(Halton num-	HPC	[36]				
trade-off analysis for run-	ergy	ber) sampling						
ning parallel applications		of configura-						
on heterogeneous multi		tion space for						
processing systems		Pareto front						
		generation						
	Continued on next page							

Table 6 – continued from previous page								
problem description	resources / metrics	formulation	domain	bib				
performance-energy op-	time; energy	linear config-	HPC	[91,90,92				
timization for parallel		uration space						
applications using power		exploration						
capping, for CPUs and GPUs								
tugboat allocation optimiza-	vessels; tugboats;	combined GA	marine re-	[169]				
tion in container terminals	time	+ ant colony	search					
		optimization						
approximate DP for re-	cloud resources;	approximate	cloud re-	[129]				
source management in	time; revenue	DP, RL	source man-					
multi-cloud environments			agement					
allocation method of wind	natural resources; en-	EA, LP	wind en-	[188]				
resources under the back-	ergy; cost		ergy; natural					
ground of carbon neutraliza-			resource man-					
tion			agement					
comb jamming resource al-	data/information	greedy + EA	telecomm.	[174]				
location algorithm								
optimal financial investment	risk; benefit; time; fi-	DP and GA	investment	[65]				
of limited resources in enter-	nancial resources		management;					
prise			financial					
virtual network function	resource cost; delay-	ILP + greedy	software-	[186]				
(VNF) scheduling and	satisfied request ratio		defined					
deployment			networks;					
			telecomm.					
optimal multi-resource allo-	resources; tasks;	greedy + GA	big data	[170]				
cation in big data mining			model train-					
model training	constraints		ing					

Table 6 – continued from previous page

1

We shall note that performing the extended search for the articles from the Scopus
database, we generally identified different articles than those in the original paper [39].
There was almost no overlap between current and previous search results. On the other
hand, though, the set of domains of identified problems in the two searches mostly matched.

6 4. Summary of Problem Formulations, Resources and Domains

⁷ Based on the classification of the research works shown in the previous section, we can
 ⁸ now perform comprehensive analysis concerning:

- 9 1. which resources are used in particular problem formulations referring to practical
 applications,
- 2. which problem formulations are typically used in particular applications and do mains,

- 1 3. which resources typically occur in the context of a given application and domain
- ² which in fact denotes which of these are considered in the process of an optimization
- ³ problem in a given domain.
- ⁴ Such analysis allows us to draw conclusions regarding whether:
- 5 1. a particular problem formulation is used in the majority of domains,
- 6 2. there are formulations that are specific for particular applications/domains,
- 7 3. there is a resource that is used only with a specific problem formulation.

It should be noted that this analysis was performed for the source data used within
this paper and outlined in Tables 1 through 6. This does mean that the following results
reflect the source data analyzed in the paper rather than the whole set of existing research
works.

We shall note during preparation of the following summary results we considered the 12 most frequently occurring resources, without problem-specific ones, as well as applica-13 tions. Integration of the results from the aforementioned tables required relevant gener-14 alization of terms used by respective authors in specific problem formulations. Further-15 more, in the following Tables 7 and 8, we counted occurrences of terms corresponding to 16 resources and domains per article i.e. possibly several energy-related terms in an article 17 shown before would be counted as one reference to energy. In Table 9 we placed counts of 18 relevant tuples of a resource and a domain and there can be several such tuples resulting 19 from one article. 20

Resources considered with various problem formulations are shown in Table 7.

Table 7: Resources identified in various problem formulations, notation: I/M - I denotes the number of occurrences in individual formulations, M – denotes the number of occurrences in mixed formulations

resource	ILP	GrA	DP	EA	ML	mus	
time	11/2	7/3	5/2	22/2	8/1	63	
monetary resources	10/3	1/2	6/1	9/2	9/	43	
energy	13/1	3/	5/	4/1	3/	30	
human resources	10/	2/	2/	1/	4/	19	
computer, network, stor- age	8/	17/	11/1	6/	8/1	52	
natural resources	5/1	/	8/	2/1	7/	24	
Continued on next page							

1

Table 7 – continued from previous page							
resource	ILP	GrA	DP	EA	ML	sum	
resources in general problem formulations	6/	6/	6/	8/	/	26	
data/information	/	/1	1/	/1	4/	7	
sum	70	42	48	59	45	264	

Applications that are considered in various problem formulations are presented in
 Table 8.

Table 8: Applications for which selected problem formulations are used, notation: I/M - I denotes the number of occurrences in individual formulations, M – denotes the number of occurrences in mixed formulations

application	ILP	GrA	DP	EA	ML	sum	
power/energy	6/	1/	3/	/	/	10	
general resource man- agement	4/1	3/	4/	10/1	/	23	
computer resource man- agement	3/1	8/1	6/1	10/2	9/1	42	
communication	1/1	5/2	2/	3/1	4/	19	
education	/	2/	/	/	1/	3	
natural resources man- agement	3/1	1	8/	3/1	8/	24	
military applications	1/	1/	3/	1/	1	6	
retail	/	1	2/	1/	2/	5	
tourism	1/	1	1/	1	1/	3	
manufacturing	/	1/	4/	2/	1/	8	
medical/health	5/	1	4/	1/	3/	13	
Continued on next page							

Table 8 – continued from previous page							
application	ILP	GrA	DP	EA	ML	sum	
human resources man- agement	2/	1/	/	/	1/	4	
transport	3/	/	1/	1/1	/	6	
space	2/	/	/	1/	/	3	
disaster management	1/	1/	/	1/	/	3	
sum	36	26	39	40	31	172	

 Table 8 – continued from previous page

Additionally, we identify how resources are considered within selected applications/domains.
 Such assessment, based on the reviewed papers, is included in Table 9.

1

resource	power/energy	general res mgmt	computer res mgmt	communication	education	nat res mgmt	military	retail	tourism	manufacturing	medical/health	human res mgmt	transport	space	disaster management	sum
time	/	10/1	16/3	6/1	2/	4/	2/	1/	/	5/	4/	2/	4/1	1/	3/	66
monetary resources	4/	4/1	8/1	2/1	1/	5/1	1/	2/	1/	3/	2/	3/	3/	1/	3/	47
energy	9/	/	12/2	6/	1	4/1	1	1	/	1	1/	1	1/	1	1	36
human resources	/	1/	/	1/	2/	/	2/	2/	1/	2/	6/	4/	2/	1/	4/	28
computer, network, stor- age	7/	/	32/1	14/	2/	/	1/	1	/	1	2/	1	1/	1	/	60
natural resources	11/	/	/	/	1	22/	/	1	/	1	1	1	1	1	1	33
resources in general problem formulations	/	14/	2/	1/	/	1/	/	1	/	1/	2/	/	2/	1	/	23
Continued on next page																

Table 9: Resources identified in selected applications/domains

resource	power/energy	general res mgmt	computer res mgmt	communication	education	nat res mgmt	military	retail	tourism	manufacturing	medical/health	human res mgmt	transport	space	disaster management	sum
data/information	/	2/	/	1/	3/	/	/	/	/	/	/	1/	/	/	/	7
sum	31	33	77	33	10	38	6	5	2	11	17	10	14	3	10	300

	Table 9	- continued	from [•]	previous [*]	page
--	---------	-------------	-------------------	-----------------------	------

² Based on this analysis we can draw the following conclusions:

All the problem formulations are similarly frequent across applications (total), as can
 be seen from Table 8. The same can be seen across the resources used, as shown in
 Table 7.
 Determining the second part of the most frequently.

8 2. Not surprisingly, as shown in Tables 7 and 9, time and cost are the most frequently
 7 addressed non-physical resources, followed by energy. Out of the physical resources,
 8 computer, network and storage devices are most frequently considered. Across appli 9 cations/domains, computer system management, natural resource management, gen 10 eral universally applicable resource management problems, and communication are
 11 the most frequently considered ones.

- ML targets all but general resources and appears in most of the specific contexts, as
 it is linked to particular applications. This also emphasizes its popularity nowadays.
- 4. While data/information as a resource is present during optimization using GrA+EA,
 DP and ML, it is not as frequently considered as the other resources like time, energy,
 cost.

5. From Table 8 we can see that within the set of papers analyzed, papers on tourism tend to use ILP, DP and ML approaches rather than GrA and EA. Retail domain seems to omit ILP and GrA formulations. While we know that ML can be used for disaster management e.g. in [33,78], this has not been visible in our set of papers, suggesting

management e.g. in [33,78], this has not been visible in our set of papers, suggesting
 it is an area worthy of further exploration. The same would apply to military and
 space domains.

6. From Table 9 we can see that time and cost are practically considered in all identified 23 fields, there is room for further energy-aware research in many fields, including: edu-24 cation, retail, tourism, manufacturing and transport. While, in some of these, energy 25 aspects can be considered within costs, energy considerations, especially concern-26 ing environmental impact, are becoming more and more important and are likely 27 to require more direct exposure. Other interesting cross resource domain combina-28 tions that could be further explored, in our opinion, include: more focus on human 29 resources in the computer resources management, as well as more focus on consid-30 eration of natural resources in contexts other than those specifically focused on nat-31 ural resource management, as visible in Table 9. Finally, data/information per se is 32

not deeply present as a resource in other domain-specific areas, other than in works specifically focused on general resource management models and algorithms, educa-2 tion, communication and social contexts.

5. **Summary and Future Work** 4

We were able to identify resources and metrics used in various problem formulations as well as problem formulations typically used in a given application/domain. Additionally, 6 we mapped particular resources to applications/domains which allows to draw conclusions about their perceived importance. 8

Resource identification in Table 9 shows that time and monetary resources are always considered as important, while energy is explicitly considered in 1/3rd of domains 10 and natural resources are given even less direct consideration. It would be interesting to 11 conduct a similar literature survey in, e.g., five years and check, whether increased aware-12 ness of energy cost and of demand pressure on natural resources will be reflected in the 13 repeated survey findings. Furthermore, the search for source research works could be ex-14 tended to include other scientific (indexing) databases, including: ACM DL, IEEE Xplore, 15 Web of Science etc. 16

Ongoing research in this field has a potential for new formulations. Such occurrences 17 could trigger a new research to amend our findings. 18

Acknowledgements 19

This work is partially supported by CERCIRAS COST Action CA19135 funded by COST. 20

References 21

1

3

- 1. A resource-aware scheduling algorithm with reduced task duplication on heterogeneous com-22 puting systems. J Supercomput 68, 1347-1377 (2014) 23
- 2. Acero Condor, A.A., Ramirez Castañeda, C.M., Taquía Gutiérrez, J.A.: Optimization of hu-24 manitarian aid resource distribution time through mixed integer linear programming. p. 191-25 197 (2023) 26
- 3. Akter, S., Wamba, S.F.: Big data and disaster management: a systematic review and agenda 27 for future research. Annals of Operations Research 283, 939 – 959 (2017) 28
- 4. Al-Ahmad, A.S., Kahtan, H.: Cloud computing review: Features and issues. In: 2018 Interna-29 tional Conference on Smart Computing and Electronic Enterprise (ICSCEE). pp. 1-5 (2018) 30
- 5. Alcaraz, J., Maroto, C.: A Robust Genetic Algorithm for Resource Allocation in Project 31 Scheduling. Annals of Operations Research 102(1), 83–109 (February 2001) 32
- 6. Amiri, D., Anzanpour, A., Azimi, I., Levorato, M., Liljeberg, P., Dutt, N., Rahmani, A.M.: 33 Context-aware sensing via dynamic programming for edge-assisted wearable systems 1 (03 34 2020) 35
- 7. An, Q., Gao, Q., Gao, Z., Qian, Y.: A survey of machine learning technologies for covid-19 36 pandemic. p. 7 - 11. Institute of Electrical and Electronics Engineers Inc. (2022) 37
- 8. Ang, T.Z., Salem, M., Kamarol, M., Das, H.S., Nazari, M.A., Prabaharan, N.: A comprehen-38
- sive study of renewable energy sources: Classifications, challenges and suggestions. Energy 39 Strategy Reviews 43, 100939 (2022) 40

1 2	9.	Araujo, J.A.S.: Mixed-Integer Linear Programming Based Approaches for the Resource Con- strained Project Scheduling Problem. Ph.D. thesis, Universidade Federal de Ouro Preto (De-
3		cember 2019)
4	10.	Ari, E.S., Gencer, C.: Proposal of a novel mixed integer linear programming model for site
5		selection of a wind power plant based on power maximization with use of mixed type wind
6		turbines. Energy & Environment 31(5), 825-841 (2020)
7	11.	Ashouri, A., Fux, S.S., Benz, M.J., Guzzella, L.: Optimal design and operation of building
8		services using mixed-integer linear programming techniques. Energy 59, 365 – 376 (2013)
9	12.	Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: ACM Trans.
10	10	Graph. p. 10. SIGGRAPH (2007)
11	13.	Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-memory trade-
12	14	off based on perfect tables. ACM Trans. Inf. Syst. Secur. 11(4) (Jul 2008)
13	14.	Bacalhau, E.T., Usberti, F.L., Lyra, C.: A dynamic programming approach for optimal alloca-
14	15	tion of maintenance resources on power distribution networks (2013)
15	13.	Baek, S., Moon, S., Kim, H.J.: Entry optimization using mixed integer linear programming. International Journal of Control, Automation and Systems 14(1), 282 – 290 (2016)
16	16	Barbu, E., Muischnek, K., Freienthal, L.: A study in estonian pronominal coreference resolu-
17	10.	tion. Frontiers in Artificial Intelligence and Applications 328, 3 – 10 (2020)
18	17	Bayazit, M., Duranyildiz, I.: An iterative method to optimize the operation of reservoir sys-
19 20	17.	tems. Water Resources Management $1(4)$, $255 - 266$ (1987)
20	18	Bermudo Mera, J.M., Karmakar, A., Verbauwhede, I.: Time-memory trade-off in toom-cook
22	10.	multiplication: an application to module-lattice based cryptography. IACR Transactions on
23		Cryptographic Hardware and Embedded Systems 2020(2), 222–244 (Mar 2020)
24	19.	Bharti, P., Chaudhary, S., Snigdh, I.: A novel machine learning approach to delay efficient
25		offloading strategy for mobile edge computing. Lecture Notes in Electrical Engineering 887,
26		215 – 221 (2023)
27	20.	Bly, J., Francescutti, L.H., Weiss, D.: Disaster management: A state-of-the-art review. In:
28		Farsangi, E.N. (ed.) Natural Hazards, chap. 1. IntechOpen, Rijeka (2020)
29	21.	Boiński, T., Czarnul, P.: Optimization of Data Assignment for Parallel Processing in a Hybrid
30		Heterogeneous Environment Using Integer Linear Programming. The Computer Journal (02
31		2021)
32	22.	Bonnin, M., Azzaro-Pantel, C., Domenech, S.: Optimization of natural resource management:
33		Application to french copper cycle. Journal of Cleaner Production 223, 252–269 (2019)
34	23.	Boon, C., Hartog, D.N.D., Lepak, D.P.: A systematic review of human resource management
35		systems and their measurement. Journal of Management 45(6), 2498-2537 (2019)
36	24.	Borghetti, A.: Mixed Integer Linear Programming Models for Network Reconfiguration and
37		Resource Optimization in Power Distribution Networks, chap. 2, pp. 43–88. John Wiley &
38	25	Sons, Ltd
39	25.	Borghetti, A., Napolitano, F., Nucci, C.A.: Volt/var optimization of unbalanced distribution
40	26	feeders via mixed integer linear programming (2014)
41	20.	Bournas, N., Touré, A., Balboné, M., Zagré, P.S., Ouédraogo, A., Khaled, K., Prikhodko,
42		A., Legault, J.: Use of machine learning techniques on airborne geophysical data for mineral
43	27	resources exploration in burkina faso. Exploration Geophysics 2019(1), 1 – 4 (2019) Bousnina, S., Cesana, M., Ortín, J., Delgado, C., Gállego, J.R., Canales, M.: A greedy ap-
44	21.	proach for resource allocation in virtual sensor networks. In: 2017 Wireless Days. pp. 15–20
45		(2017)
46 47	28	Bowman, J., Tabatabaie, H., Bowman, J.A.: A comparative study of machine learning model
47	20.	results and key geologic parameters for unconventional resource plays. p. 470 – 486. Uncon-
40		ventional Resources Technology Conference (URTEC) (2021)
50	29.	Braun, M., Buchwald, S., Mohr, M., Zwinkau, A.: Dynamic x10: Resource-aware program-
51		ming for higher efficiency. Tech. Rep. 8, Karlsruhe Institute of Technology (2014)

1	30.	Burdett, R.L., Kozan, E., Sinnott, M., Cook, D., Tian, Y.C.: A mixed integer linear programing
2		approach to perform hospital capacity assessments. Expert Systems with Applications 77, 170
3		- 188 (2017)
4	31.	Calzarossa, M.C., Massari, L., Nebbione, G., Della Vedova, M.L., Tessera, D.: Tuning ge-
5		netic algorithms for resource provisioning and scheduling in uncertain cloud environments:
6		Challenges and findings. In: 2019 27th Euromicro International Conference on Parallel, Dis-
7		tributed and Network-Based Processing (PDP). pp. 174–180 (2019)
8	32.	Castellano, A., Martínez, C., Monzón, P., Bazerque, J.A., Ferragut, A., Paganini, F.: Quadratic
9	22	approximate dynamic programming for scheduling water resources: a case study (2020)
10	33.	Chamola, V., Hassija, V., Gupta, S., Goyal, A., Guizani, M., Sikdar, B.: Disaster and pan-
11		demic management using machine learning: A survey. IEEE Internet of Things Journal 8(21),
12	24	16047–16071 (2021)
13	34.	Chen, X., Reinelt, G., Dai, G., Spitz, A.: A mixed integer linear programming model for
14	25	multi-satellite scheduling (2018)
15	35.	Chichin, S., Vo, Q.B., Kowalczyk, R.: Adaptive market mechanism for efficient cloud services
16	26	trading, p. 705 – 712 (2014)
17	30.	Coutinho Demetrios, A.M., De Sensi, D., Lorenzon, A.F., Georgiou, K., Nunez-Yanez, J.,
18		Eder, K., Xavier-de Souza, S.: Performance and energy trade-offs for parallel applications on
19	27	heterogeneous multi-processing systems. Energies 13(9) (2020) Cramer, E.J., Dennis, Jr., J.E., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation
20	57.	
21	38	for multidisciplinary optimization. SIAM Journal on Optimization 4(4), 754–776 (1994) Czarnul, P.: Comparison of selected algorithms for scheduling workflow applications with
22	56.	dynamically changing service availability. J. Zhejiang Univ. Sci. C 15(6), 401–422 (2014)
23 24	39	Czarnul, P., Matuszek, M.: Identification of selected resource-aware problems across scien-
25	57.	tific disciplines and applications. In: Iyenghar, P., Rakić, G. (eds.) Proceedings of the First
26		Workshop on Connecting Education and Research Communities for an Innovative Resource
20		Aware Society (CERCIRAS). CEUR, vol. 3145. Novi Sad, Serbia (September 2021)
28	40	Dahal, K., Sharma, S., Shakya, A., Talchabhadel, R., Adhikari, S., Pokharel, A., Sheng, Z.,
29	10.	Pradhan, A.M.S., Kumar, S.: Identification of groundwater potential zones in data-scarce
30		mountainous region using explainable machine learning. Journal of Hydrology 627 (2023)
31	41.	Dahiru, A.T., Tan, C.W., Salisu, S., Lau, K.Y.: Multi-configurational sizing and analysis in a
32		nanogrid using nested integer linear programming. Journal of Cleaner Production 323 (2021)
33	42.	Data, M., Bakhtiar, F.A.: Resource efficient intrusion detection systems for internet of things
34		using online machine-learning models. p. 297 – 303. Association for Computing Machinery
35		(2023)
36	43.	Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-
37		constrained project-scheduling problem. Operations Research 55(3), 457–469 (2007)
38	44.	Deng, L., Li, Y., Yao, L., Jin, Y., Gu, J.: Power-aware resource reconfiguration using genetic
39		algorithm in cloud computing. Mob. Inf. Syst. 2016, 4859862:1-4859862:9 (2016)
40	45.	Diouani, S., Medromi, H.: Trade-off between performance and energy management in auto-
41		nomic and green data centers. In: Proceedings of the 2nd International Conference on Net-
42		working, Information Systems & Security. NISS19, Association for Computing Machinery,
43		New York, NY, USA (2019)
44	46.	Dumakor-Dupey, N.K., Arya, S.: Machine learning-a review of applications in mineral re-
45		source estimation. Energies 14(14) (2021)
46	47.	Elamaran, E., Sudhakar, B.: Greedy based round robin scheduling solution for data traffic
47		management in 5g. p. 773 – 779 (2019)
48	48.	Epstein, D., Chalabi, Z., Claxton, K., Sculpher, M.: Mathematical programming for the opti-
49	40	mal allocation of health care resources (2005)
50	49.	Ezugwu, A.E., Okoroafor, N.A., Buhari, S.M., Frincu, M.E., Junaidu, S.B.: Grid resource
51		allocation with genetic algorithm using population based on multisets:. Journal of Intelligent
52		Systems 26(1), 169–184 (2017)

- 24 Paweł Czarnul and Mariusz Matuszek
- 50. Fahimullah, M., Ahvar, S., Agarwal, M., Trocan, M.: Machine learning-based solutions for 1 resource management in fog computing. Multimedia Tools and Applications 83(8), 23019 -2 23045 (2024) з 51. Fauske, M.F.: Optimizing the troops-to-tasks problem in military operations planning. Mili-4 tary Operations Research 20(4), 49-57 (2015) 5 52. Fauske, M.F.: Using a genetic algorithm to solve the troops-to-tasks problem in military op-6 erations planning. The Journal of Defense Modeling and Simulation 14(4), 439-446 (2017) 53. Ferdosian, N., Othman, M., Ali, B.M., Lun, K.Y.: Greedy-knapsack algorithm for optimal 8 downlink resource allocation in Ite networks. Wireless Networks 22(5), 1427-1440 (Aug 9 2015) 10 54. Filho, M.G., Barco, C.F., Neto, R.F.T.: Using genetic algorithms to solve scheduling prob-11 12 lems on flexible manufacturing systems (fms): a literature survey, classification and analysis. Flexible Services and Manufacturing Journal 26, 408-431 (2014) 13 55. Foris, D., Popescu, M., Foris, T.: A comprehensive review of the quality approach in tourism. 14 In: Butowski, L. (ed.) Mobilities, Tourism and Travel Behavior, chap. 10. IntechOpen, Rijeka 15 (2017)16 56. Forootani, A., Iervolino, R., Tipaldi, M., Neilson, J.: Approximate dynamic programming for 17 stochastic resource allocation problems. IEEE/CAA Journal of Automatica Sinica 7(4), 975-18 990 (2020) 19 57. Forootani, A., Liuzza, D., Tipaldi, M., Glielmo, L.: Allocating resources via price man-20 agement systems: a dynamic programming-based approach. International Journal of Control 21 94(8), 2123 - 2143 (2021)22 58. García, J.L.B., Mestre, R.G., Viñals, J.T.: An integer linear programming representation for 23 data-center power-aware management (2010) 24 Garengo, P., Sardi, A., Nudurupati, S.S.: Human resource management (hrm) in the perfor-59. 25 mance measurement and management (pmm) domain: a bibliometric review. International 26 Journal of Productivity and Performance Management ahead-of-print (2021) 27 60. Gargiulo, F., Quagliarella, D.: Genetic algorithms for the resource constrained project 28 scheduling problem. In: 2012 IEEE 13th International Symposium on Computational Intelli-29 gence and Informatics (CINTI). pp. 39-47 (2012) 30 61. Ge, H., Liu, N.: An relief resource allocation model with equity constraints. p. 506 - 509 31 (2011)32 62. Ghaeli, M.: A dynamic programming approach for resource allocation in oil and gas industry. 33 Journal of Project Management (Canada) 4(3), 213 - 216 (2019) 34 63. Gianni M., R., Soon-Wook, H.: Cost-aware dynamic resource allocation in distributed com-35 puting infrastructures. International Journal of Contents 2(2) (Jun 2011) 36 64. Godfrey, G.A., Powell, W.B.: An adaptive dynamic programming algorithm for dynamic fleet 37 management, i: Single period travel times. Transportation Science 36(1), 21 - 39 (2002) 38 65. Gong, J.Q., Qin, X.H.: The dynamic programming model for investment decision of enter-39 prise. Applied Mechanics and Materials 519-520, 1466 - 1469 (2014) 40 41 66. Gonçalves, J., Mendes, J., Resende, M.: A genetic algorithm for the resource constrained 42 multi-project scheduling problem. European Journal of Operational Research 189(3), 1171-1190 (2008) 43 67. Goodarzy, S., Nazari, M., Han, R., Keller, E., Rozner, E.: Resource management in cloud com-44 puting using machine learning: A survey, p. 811 – 816. Institute of Electrical and Electronics 45 Engineers Inc. (2020) 46 68. Gourisaria, M.K., Samanta, A., Saha, A., Patra, S.S., Khilar, P.M.: An extensive review on 47 cloud computing. In: Raju, K.S., Senkerik, R., Lanka, S.P., Rajagopal, V. (eds.) Data Engi-48 neering and Communication Technology. pp. 53-78. Springer Nature Singapore, Singapore 49 (2020)50 69. Guest, D.E.: Human resource management and performance: a review and research agenda. 51 The International Journal of Human Resource Management 8(3), 263–276 (1997) 52

1	70.	Gunter, S., Swanson, L.: Semi-markov dynamic programming approach to competitive bid-
2		ding with state space reduction considerations. European Journal of Operational Research
3		32(3), 435 – 447 (1987)
4	71.	Hasnaoui, A., Omari, A., Azzouz, Z.E.: Optimization of building energy based on mixed
5		integer linear programming (2022)
6	72.	Ho, T.W., Yao, J.S., Chang, Y.T., Lai, F., Lai, J.F., Chu, S.M., Liao, W.C., Chiu, H.M.: A
7		platform for dynamic optimal nurse scheduling based on integer linear programming along
8		with multiple criteria constraints. p. 145 – 150 (2018)
9	73.	Hollnagel, H., Malterud, K.: From risk factors to health resources in medical practice.
10		Medicine, Health Care and Philosophy (3), 257–264 (2000)
11	74.	Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., Tafazolli, R.: Pga: A priority-aware ge-
12		netic algorithm for task scheduling in heterogeneous fog-cloud computing. In: IEEE INFO-
13		COM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WK-
14		SHPS). pp. 1–6 (2021)
15	75.	Huang, Z., Zhao, X., He, C., Gu, Y., Zhou, H., Zhao, B.: Fast optimal resource allocation
16		algorithm for multicast ofdm systems (2012)
17	76.	Imtiaz, S., Koudouridis, G.P., Gross, J.: On the feasibility of coordinates-based resource allo-
18		cation through machine learning (2019)
19	77.	Indarapu, S.R.K., Vodithala, S., Kumar, N., Kiran, S., Reddy, S.N., Dorthi, K.: Exploring
20		human resource management intelligence practices using machine learning models. Journal
21		of High Technology Management Research 34(2) (2023)
22	78.	Jiang, Z., Ji, R., Chen, Y., Ji, W.: Machine learning and simulation-based framework for disas-
23		ter preparedness prediction. In: 2021 Winter Simulation Conference (WSC). pp. 1–10 (2021)
24	79.	Jo, H., Kim, Y., Lee, H., Lee, Y., Han, H., Kang, S.: On the trade-off between performance and
25		storage efficiency of replication-based object storage. In: Chen, J., Yang, L. (eds.) Proceedings
26		- 11th IEEE International Conference on Cloud Computing Technology and Science, Cloud-
27		Com 2019, 19th IEEE International Conference on Computer and Information Technology,
28		CIT 2019, 2019 International Workshop on Resource Brokering with Blockchain, RBchain
29		2019 and 2019 Asia-Pacific Services Computing Conference, APSCC 2019. pp. 301-304. In-
30		ternational Conference on Cloud Computing Technology and Science, Institute of Electrical
31		and Electronics Engineers (IEEE), United States (2019)
32	80.	Johansson, R., Mårtenson, C., Suzić, R., Svenson, P.: Stochastic dynamic programming for
33		resource allocation. Tech. rep., FOI - Swedish Defence Research Agency FOI-R-1666-SE,
34		Command and Control Systems (September 2005)
35	81.	Jucan, D., Tudose, L., Bojan, I.: Constrained multi-item inventory systems with quantity dis-
36		counts via evolutionary algorithm. p. 1543 - 1544. Danube Adria Association for Automation
37		and Manufacturing, DAAAM (2009)
38	82.	Kadri, R.L., Boctor, F.F.: An efficient genetic algorithm to solve the resource-constrained
39		project scheduling problem with transfer times: The single mode case. European Journal of
40		Operational Research 265(2), 454–462 (2018)
41	83.	Kai Peng, Bohai Zhao, S.X.Q.H.: Energy- and resource-aware computation offloading for
42		complex tasks in edge environment (2020)
43	84.	Karimi, K.: The feasibility of using opencl instead of openmp for parallel cpu programming
44		(2015)
45	85.	Keerthika, S., Abinaya, N., Jayadharshini, P., Ruthranayaki, J., Vasugi, M., Priyanka, S.: En-
46		hancing soil moisture prediction through machine learning for sustainable resource manage-
47		ment. p. 1175 – 1179. Institute of Electrical and Electronics Engineers Inc. (2023)
48	86.	Kennedy, J.O.: Dynamic programming applications to agriculture and natural resources (1
49		1986)
50	87.	Kepler, C., Blackman, W.: Use of dynamic programming techniques for determining resource
51		allocations among r/d projets: An example. IEEE Transactions on Engineering Management
52		EM-20(1), 2 – 5 (1973)

- 26 Paweł Czarnul and Mariusz Matuszek
- 88. Khalaf, R.M., Hassan, W.H.: Multi-objective groundwater management using genetic algo-1 rithms in kerbala desert area, iraq. IOP Conference Series: Materials Science and Engineering 2 1067(1), 012013 (feb 2021) з 89. Kim, Y., Ahn, S., You, C., Cho, S.: A survey on machine learning-based medium access 4 control technology for 6g requirements. Institute of Electrical and Electronics Engineers Inc. 5 6 (2021)90. Krzywaniak, A., Czarnul, P.: Performance/energy aware optimization of parallel applications 7 on gpus under power capping. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, 8 K. (eds.) Parallel Processing and Applied Mathematics. pp. 123–133. Springer International 9 Publishing, Cham (2020) 10 91. Krzywaniak, A., Czarnul, P., Proficz, J.: Extended investigation of performance-energy trade-11 offs under power capping in hpc environments. In: 2019 International Conference on High 12 Performance Computing Simulation (HPCS). pp. 440-447 (2019) 13 92. Krzywaniak, A., Proficz, J., Czarnul, P.: Analyzing energy/performance trade-offs with power 14 capping for parallel applications on modern multi and many core processors. In: Ganzha, 15 M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2018 Federated Conference on 16 Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-17 12, 2018. Annals of Computer Science and Information Systems, vol. 15, pp. 339-346 (2018) 18 93. Lampoudi, S., Saunders, E., Eastman, J.: An integer linear programming solution to the tele-19 scope network scheduling problem. p. 331 – 337 (2015) 20 94. Lee, J.: Efficient elitist genetic algorithm for resource-constrained project scheduling. Korea 21 Journal of Construction Engineering and Management 8(6), 235–245 (2007) 22 95. Li, H., Han, S., Wu, X., Wang, F.: A novel task of loading and computing resource scheduling 23 strategy in internet of vehicles based on dynamic greedy algorithm. Tehnicki Vjesnik 30(4), 24 1298-1307 (2023) 25 96. Li, J.: Resource planning and scheduling of payload for satellite with plasmodium evolution-26 ary algorithm. Journal of Convergence Information Technology 6(8), 395 – 402 (2011) 27 97. Li, X., Nie, L., Chen, S.: Approximate dynamic programming based data center resource 28 dynamic scheduling for energy optimization. In: 2014 IEEE International Conference onÂ 29 Internet of Things(iThings), and IEEEÂ Green Computing and Communications (GreenCom) 30 and IEEE Cyber, Physical and Social Computing(CPSCom). pp. 494-501. IEEE Computer 31 Society, Los Alamitos, CA, USA (sep 2014) 32 98. Liao, H., Zhou, Z., Zhao, X., Wang, Y.: Learning-based queue-aware task offloading and re-33 source allocation for space-air-ground-integrated power iot. IEEE Internet of Things Journal 34 8(7), 5250–5263 (2021) 35 99. Liu, H.L., Wang, Q.: A hybrid evolutionary algorithm for ofdm resource allocation. p. 43 -36 47 (2013) 37 100. Liu, H., Wang, Y.: A method for multi-project with resource constraints based on greedy 38 strategy. p. 22 - 27 (2009) 39 101. Liu, J., Liu, Y., Shi, Y., Li, J.: Solving resource-constrained project scheduling problem via 40 genetic algorithm. Journal of Computing in Civil Engineering 34(2), 04019055 (2020) 41 102. Liu, L., Fan, Q.: Resource allocation optimization based on mixed integer linear programming 42 in the multi-cloudlet environment. IEEE Access 6, 24533-24542 (2018) 43 103. Liu, Q., Jiang, Y.: A survey of machine learning-based resource scheduling algorithms in 44 cloud computing environment. Lecture Notes in Computer Science (including subseries Lec-45 ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11063 LNCS, 243 46 -252(2018)47 104. Liu, Z., Zhou, J., Yang, X., Zhao, Z., Lv, Y.: Research on water resource modeling based on 48 machine learning technologies. Water (Switzerland) 16(3) (2024) 49 105. Liu, Z., Zhou, Y., Huang, G., Luo, B.: Risk aversion based inexact stochastic dynamic pro-50 51 gramming approach for water resources management planning under uncertainty. Sustainability 11(24) (2019) 52

106. Liu, Z., Wang, J.: Review of interpretable machine learning for information resource manage-

107. Maaroufi, F., Camus, H., Korbaa, O.: A mixed integer linear programming approach to sched-

ment. Data Analysis and Knowledge Discovery 8(1), 16-29 (2024)

1

2

з

ule the operating room. p. 3882 – 3887 (2017) 4 108. Mahboob, M., Celik, T., Genc, B.: Review of machine learning-based mineral resource esti-5 mation. Journal of the Southern African Institute of Mining and Metallurgy 122(11), 655 – 6 7 664(2022)109. Manninen, M.: Short-term optimization method for a local energy system using modified 8 dynamic programming. p. 3225 - 3230 (1982) 9 Mansouri, R., Pudeh, H.T., Yonesi, H.A., Haghiabi, A.H.: Dynamic programming model for 10 110. hydraulics and water resources simulating and optimizing water transfer system (a case study 11 12 in Iran). Journal of Water Supply: Research and Technology-Aqua 66(8), 684–700 (08 2017) 111. Manzini, R., Accorsi, R., Cennerazzo, T., Ferrari, E., Maranesi, F.: The scheduling of main-13 tenance. a resource-constraints mixed integer linear programming model. Computers and In-14 dustrial Engineering 87, 561 - 568 (2015) 15 112. Martinez, J.F., Ipek, E.: Dynamic multicore resource management: A machine learning ap-16 proach. IEEE Micro 29(5), 8-17 (2009) 17 113. Marusenkova, T., Yurchak, I.: A dynamic programming method of calculating the overlapping 18 allan variance. Experience of Designing and Application of CAD Systems in Microelectronics 19 (2019)20 114. Matzka, S.: Using process quality prediction to increase resource efficiency in manufacturing 21 processes. p. 110 - 111. Institute of Electrical and Electronics Engineers Inc. (2018) 22 115. Meixell, M.J., Norbis, M.: A review of the transportation mode choice and carrier selection 23 literature. The International Journal of Logistics Management 19(2), 183–211 (Jan 2008) 24 116. Meng, G., Lai, Y., Yang, F.: An optimal bus scheduling model based on mixed-integer linear 25 programming. p. 2200 - 2204 (2020) 26 117. Meurisse, A., Carpenter, J.: Past, present and future rationale for space resource utilisation. 27 Planetary and Space Science 182, 104853 (2020) 28 118. Miller, G., Torres-Delgado, A.: Measuring sustainable tourism: a state of the art review of 29 sustainable tourism indicators. Journal of Sustainable Tourism 31(7), 1483-1496 (2023) 30 119. Moreau, L., Queinnec, C.: Resource aware programming. ACM Trans. Program. Lang. Syst. 31 27(3), 441-476 (2005) 32 120. Müller, S.: Security trade-offs in Cloud storage systems. Doctoral thesis, Technische Univer-33 sität Berlin, Berlin (2017) 34 121. Najeh, S., Besbes, H., Bouallegue, A.: Greedy algorithm for dynamic resource allocation in 35 downlink of ofdma system. In: 2005 2nd International Symposium on Wireless Communica-36 tion Systems. pp. 475-479 (2005) 37 122. Neha, Joon, R.: Renewable energy sources: A review. Journal of Physics: Conference Series 38 1979(1), 012023 (aug 2021) 39 123. Noble, N.T., Dev, Y.P., Joseph, C.T.: Machine learning based techniques for workload predic-40 tion in serverless environments. Institute of Electrical and Electronics Engineers Inc. (2023) 41 124. Nurcahyani, I., Lee, J.W.: Role of machine learning in resource allocation strategy over ve-42 hicular networks: A survey. Sensors 21(19) (2021) 43 125. Paul, J., Stechele, W., Kröhnert, M., Asfour, T.: Resource-aware programming for robotic vision. CoRR abs/1405.2908 (2014) 45 126. Pei, L.L., Wang, Z.X.: Application of grey dynamic programming model for optimizing re-46 gional industrial structure. p. 285 – 288 (2012) 47 127. Pepper, A., Tischler, N., Pryde, G.J.: A quantum autoencoder: Using machine learning to 48 compress qutrits. Institute of Electrical and Electronics Engineers Inc. (2020) 49 50 128. Perez, G.A.C., Solomatine, D.P.: ADVANCED HYDROINFORMATICS: Machine Learning and Optimization for Water Resources. wiley (2023) 51

- 28 Paweł Czarnul and Mariusz Matuszek
- 129. Pietrabissa, A., Priscoli, F.D., Giorgio, A.D., Giuseppi, A., Panfili, M., Suraci, V.: An approximate dynamic programming approach to resource management in multi-cloud scenarios.
 International Journal of Control 90(3), 492–503 (2017)
- 4 130. Plamondon, P., Chaib-draa, B., Benaskeur, A.R.: A real-time dynamic programming decom position approach to resource allocation. In: 2007 Information, Decision and Control. pp.
 6 308–313 (2007)
- 7 131. Poladian, Vahe; Sousa, J.G.D.S.M.: Dynamic configuration of resource-aware services.
 a carnegie mellon university. journal contribution (2018)
- 9 132. Ponis, S., Aretoulaki, E., Maroutas, T.N., Plakas, G., Dimogiorgi, K.: A systematic literature
 review on additive manufacturing in the context of circular economy. Sustainability 13(11)
 (2021)
- 133. Popov, A.A., Lopateeva, O.N., Ovsyankin, A.K., Satsuk, M.M.: Application of greedy al gorithms for the formation of the educational schedule in the higher education. Journal of
 Physics: Conference Series 1691, 012066 (nov 2020)
- 15 134. Quang-Hung N., Nien P.D., N.N.H.T.N.T.N.: A genetic algorithm for power-aware virtual
 machine allocation in private cloud (2013)
- 135. Quyen, N.T.P., Kuo, R., Chen, J.C., Yang, C.L.: Dynamic programming to solve resource
 constrained assembly line balancing problem in footwear manufacturing. p. 66 70 (2017)
- 136. Rampersaud, S., Grosu, D.: A sharing-aware greedy algorithm for virtual machine maximiza tion. In: 2014 IEEE 13th International Symposium on Network Computing and Applications,
 NCA 2014, Cambridge, MA, USA, 21-23 August, 2014. pp. 113–120 (2014)
- 137. Rampersaud, S., Grosu, D.: An approximation algorithm for sharing-aware virtual machine
 revenue maximization. IEEE Trans. Serv. Comput. 14(1), 1–15 (2021)
- 138. Ramírez-Márquez, C., Posadas-Paredes, T., Raya-Tapia, A.Y., Ponce-Ortega, J.M.: Natural
 resource optimization and sustainability in society 5.0: A comprehensive review. Resources
 13(2) (2024)
- 139. Rani, S., Charaya, S.: Review of resource allocation strategies for handoff in 5g mobile com munication system. vol. 2023-June, p. 1305 1311. Grenze Scientific Society (2023)
- 140. Rani, S., Nainwal, M., Charaya, S.: Analysis of machine learning based resource allocation
 strategies for 5g mobile networks. vol. 2023-June, p. 1987 1993. Grenze Scientific Society
 (2023)
- 141. Ren, C., Wang, T., Li, X., Bai, G.: An improved adaptive dynamic programming algorithm
 for cloud storage resource allocation. Journal of Computational Information Systems 7(15),
 5401 5408 (2011)
- 142. Ricciardi, G., Hwang, S.W.: Cost-aware dynamic resource allocation in distributed computing
 infrastructures. International Journal of Contents 7, 1–5 (06 2011)
- 143. Rivera, G., Cisneros, L., Sánchez-Solís, P., Rangel-Valdez, N., Rodas-Osollo, J.: Genetic al gorithm for scheduling optimization considering heterogeneous containers: A real-world case
 study. Axioms 9(1) (2020)
- 144. Rodríguez, C.C., Romero Quete, A.A., Suvire, G.O., Rivera, S.R.: Optimization of multi period investment planning in street lighting systems by mixed-integer linear programming.
 International Journal for Simulation and Multidisciplinary Design Optimization 14 (2023)
- 145. Rodríguez-Veiga, J., Ginzo-Villamayor, M.J., Casas-Méndez, B.: An integer linear program ming model to select and temporally allocate resources for fighting forest fires. Forests 9(10)
 (2018)
- ⁴⁶ 146. Rogalska, M., Bozejko, W., Hejducki, Z., Wodecki, M.: Development of time couplings
 ⁴⁷ method using evolutionary algorithms. p. 638 643. Vilnius Gediminas Technical University (2008)
- 147. Rudra Kumar, M., Gunjan, V.K.: Machine learning based solutions for human resource systems management. Lecture Notes in Electrical Engineering 828, 1239 1249 (2022)

1	148.	Rudra Kumar, M., Pathak, R., Gunjan, V.K.: Machine learning-based project resource alloca-
2		tion fitment analysis system (ml-prafs). Lecture Notes in Electrical Engineering 834, 1 - 14
3		(2022)
4	149.	Saad, H.M.H., Chakrabortty, R.K., Elsayed, S., Ryan, M.J.: Quantum-inspired genetic algo-
5		rithm for resource-constrained project-scheduling. IEEE Access 9, 38488–38502 (2021)
6	150.	San Cristóbal Mateo, J.R.: An integer linear programming model including time, cost, quality,
7		and safety. IEEE Access 7, 168307-168315 (2019)
8	151.	Shahbaz, M., Bashir, M.F., Bashir, M.A., Shahzad, L.: A bibliometric analysis and system-
9		atic literature review of tourism-environmental degradation nexus. Environmental Science and
10		Pollution Research 28, 58241 - 58257 (2021)
11	152.	Sheykhi, N., Salami, A., Guerrero, J.M., Agundis-Tinajero, G.D., Faghihi, T.: A comprehen-
12		sive review on telecommunication challenges of microgrids secondary control. International
13		Journal of Electrical Power & Energy Systems 140, 108081 (2022)
14	153.	Shi, J., Tian, H., Fan, S., Zhao, P., Zhao, K.: Hierarchical auction and dynamic programming
15		based resource allocation (hadp-ra) algorithm for 5g ran slicing. p. 207 – 212 (2018)
16	154.	Shin, S., Brun, Y., Balasubramanian, H., Henneman, P., Osterweil, L.: Discrete-event simula-
17		tion and integer linear programming for constraint-aware resource scheduling. IEEE Transac-
18		tions on Systems, Man, and Cybernetics: Systems PP, 1-16 (03 2017)
19	155.	Shin, S.Y., Brun, Y., Balasubramanian, H., Henneman, P.L., Osterweil, L.J.: Discrete-event
20		simulation and integer linear programming for constraint-aware resource scheduling. IEEE
21		Transactions on Systems, Man, and Cybernetics: Systems 48(9), 1578–1593 (2018)
22	156.	Singh, H.: Performance Evaluation of Weighted Greedy Algorithm in Resource Management.
23		Master's thesis, University of Windsor, Windsor, Ontario, Canada (2018)
24	157.	Singh, R.I., Lilhore, U.K.: A survey of machine learning models for water quality prediction.
25		p. 1069 – 1074. Institute of Electrical and Electronics Engineers Inc. (2023)
26	158.	Stickley, T., O'Caithain, A., Homer, C.: The value of qualitative methods to public health
27		research, policy and practice. Perspectives in Public Health 142(4), 237-240 (2022)
28	159.	Stucky, K.U., Jakob, W., Quinte, A., Süß, W.: Solving scheduling problems in grid resource
29		management using an evolutionary algorithm. Lecture Notes in Computer Science (including
30		subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4276
31		LNCS - II, 1252 – 1262 (2006)
32	160.	Sun, Y., Yao, P., Zhang, S., Xiao, Y.: Dynamic battlefield resource scheduling model and
33		algorithm with interval parameters. Xitong Gongcheng Lilun yu Shijian/System Engineering
34		Theory and Practice 37(4), 1080 – 1088 (2017)
35	161.	Tao, Y., Sun, J., Shao, S.: Radio resource allocation based on greedy algorithm and successive
36		interference cancellation in device-to-device (d2d) communication. vol. 2013, p. 452 - 458
37		(2013)
38	162.	Tiana, X., Yuanb, S.: Genetic algorithm parameters tuning for resource-constrained project
39		scheduling problem. In: AIP Conference Proceedings. vol. 1955 (2018)
40	163.	Toklu, Y.C.: Application of genetic algorithms to construction scheduling with or without
41		resource constraints. Canadian Journal of Civil Engineering 29(3), 421-429 (2002)
42	164.	Tsakalidou, V.N., Mitsou, P., Papakostas, G.A.: Machine learning for cloud resources manage-
43		ment-an overview. Lecture Notes on Data Engineering and Communications Technologies
44		141, 903 – 915 (2023)
45	165.	Venuthurumilli, P., Mandapati, S.: An energy and deadline aware scheduling using greedy
46		algorithm for cloud computing. Ingénierie des systèmes d information 24, 583–590 (12 2019)
47	166.	Vink, K., Schot, P.: Multiple-objective optimization of drinking water production strategies
48		using a genetic algorithm. Water Resources Research 38(9), 20-1-20-15 (2002)
49	167.	Wang, H., Zhang, H.: Improved hw/sw partitioning algorithm on efficient use of hardware
50		resource. vol. 2, p. 682 – 685 (2010)
51	168.	Wang, L.: Proactive push research on personalized learning resources based on machine learn-
52		ing. p. 986 - 991. Institute of Electrical and Electronics Engineers Inc. (2022)

- 30 Paweł Czarnul and Mariusz Matuszek
- 1 169. Wang, S., Meng, B.: Resource allocation and scheduling problem based on genetic algorithm
 and ant colony optimization. In: Zhou, Z.H., Li, H., Yang, Q. (eds.) Advances in Knowledge
- Discovery and Data Mining. pp. 879–886. Springer Berlin Heidelberg, Berlin, Heidelberg
 (2007)
- ⁵ 170. Wang, Y., Sun, Y., Zhang, Z.: Model training task scheduling algorithm based on greedy ⁶ genetic algorithm for big-data mining. vol. 1168 (2019)
- 7 171. Washburn, R., Schneider, M., Fox, J.: Stochastic dynamic programming based approaches to
 8 sensor resource management. vol. 1, p. 608 615 (2002)
- 9 172. Wen, J.H., Jiang, H., Zhang, M., Yu, X.: Application of dynamic programming in resources
 optimization allocation of factory production line. Key Engineering Materials 474-476, 1632
 11 1637 (2011)
- 173. Wu, L.: Simulation study on optimal allocation model of english online teaching resources
 based on greedy algorithm. p. 643 646 (2023)
- 174. Wu, T., Zou, Q., Yang, Y., Zhang, X., Liu, S.: A hierarchical comb interference resource allo cation algorithm based on greedy strategy and evolutionary algorithm. p. 299 303. Institute
 of Electrical and Electronics Engineers Inc. (2022)
- 175. Xie, F., Li, H., Xu, Z.: An approximate dynamic programming approach to project scheduling
 with uncertain resource availabilities. Applied Mathematical Modelling 97, 226 243 (2021)
- 176. Xing, H., Xu, L., Qu, R., Qu, Z.: A quantum inspired evolutionary algorithm for dynamic
 multicast routing with network coding. p. 186 190. Institute of Electrical and Electronics
 Engineers Inc. (2016)
- 177. Xu, B., Zhang, R., Yu, J.P.: Improved multi-objective evolutionary algorithm for multi-agent
 coalition formation. Journal of Software 8(12), 2991 2995 (2013)
- 178. Yakymchuk, B., Liashenko, O.: Modeling the resource planning system for grocery retail
 using machine learning. Communications in Computer and Information Science 1980, 288 –
 299 (2023)
- 179. Yan, J., Zheng, J.: Open sharing of digital education training resources based on ma chine learning. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
 Telecommunications Engineering, LNICST 388, 142 151 (2021)
- 180. Yang, C., Xiu, Q.: A bibliometric review of education for sustainable development,
 1992–2022. Sustainability 15(14) (2023)
- 181. Yang, J.M., Hu, Z.H., Ding, X.Q., Luo, J.X.: An integer linear programming model for con tinuous berth allocation problem. vol. 4, p. 74 77 (2009)
- 182. Yin, A., Guo, Y., Tang, D.: Resource-aware fluid scheduling with time constraints for clustered
 many-core architectures. Journal of Physics: Conference Series 1971(1), 012090 (jul 2021)
- 183. Yuan, P., Zhang, T.: Mixed integer linear programming for carrier optimization in wireless
 localization networks. vol. 2018-January, p. 1 6 (2017)
- 184. Zhang, C., Guo, P.: An inexact cvar two-stage mixed-integer linear programming approach for
 agricultural water management under uncertainty considering ecological water requirement.
 Ecological Indicators 92, 342 353 (2018)
- 185. Zhang, X., Luo, W.: Evolutionary repair for evolutionary design of combinational logic cir cuits (2012)
- 186. Zhang, Z., Oki, E.: Joint vnf scheduling and deployment: A dynamic scenario. vol. 2022 October, p. 309 314 (2022)
- 187. Zhao, J.J., Liu, B.Y., Wei, F.X.: The application of dynamic programming in the system op timization of environmental problem. Advanced Materials Research 765-767, 3045 3050
 (2013)
- 188. Zhao, Q., Yan, H., Jin, J.: Research on the most efficient use of wind energy resources in
 the context of carbon neutrality: Overview based on evolutionary algorithm. Mathematical
 Problems in Engineering 2022 (2022)

- 189. Zhou, Y., Liu, J., Zhang, Y., Gan, X.: A multi-objective evolutionary algorithm for multiperiod dynamic emergency resource scheduling problems. Transportation Research Part E:
 Logistics and Transportation Review 99, 77 – 95 (2017)
- I90. Zhou, Z., Chang, X., Yang, Y., Li, L.: Resource-aware virtual network parallel embedding
 based on genetic algorithm. 2016 17th International Conference on Parallel and Distributed
 Computing, Applications and Technologies (PDCAT) pp. 81–86 (2016)
- 7 191. Zhuang, X., Jiao, H., Kang, L.: Digital management and optimization of tourism information
 resources based on machine learning. International Transactions on Electrical Energy Systems
 2022 (2022)
- 192. Éles, A., Cabezas, H., Heckl, I.: Heuristic algorithm utilizing mixed-integer linear programming to schedule mobile workforce. Chemical Engineering Transactions 70, 895 900 (2018)
- 193. Özcan, E., Erol, S.: A multi-objective mixed integer linear programming model for energy
 resource allocation problem: The case of turkey. Gazi University Journal of Science 27, 1157

- 15 194. Łazuga, K., Gucma, L.: Genetic algorithm method for solving the optimal allocation of re-
- sponse resources problem on the example of polish zone of the baltic sea. Journal of KONBiN
 38(1), 291–310 (2016)

18 A. Abbreviations

aDP - approximate Dynamic Programming; aGrA - adaptive Greedy Algorithm; ANN -19 Artificial Neural Network; ARIMA – Auto Regressive Integrated Moving Average; dGrA 20 - dynamic Greedy Algorithm; DIRSDP - Dual Interval Robust Stochastic Dynamic Pro-21 gramming; DNN - Deep Neural Network; DT - Decision Trees; EBM - Explainable 22 Boosting Machine; GBDT - Gradient Boosting Decision Trees; GrkA - Greedy knapsack 23 Algorithm; HEA – Hybrid Evolutionary Algorithm; ICE – Individual Conditional Expec-24 tation; IMOEA - Improved Multi-Objective Evolutionary Algorithm; KNN - k-nearest 25 neighbors; LIME – Local Interpretable Model-agnostic Explanations; LP – Linear Pro-26 gramming; LR - Logistic Regression LSTM - Long Short-Term Memory; MILP - Mixed 27 Integer Linear Programming MOEA/D-mdERS – Multi-Objective Evolutionary Algo-28 rithm for Dynamic multi-period dynamic Emergency Resource Scheduling; MOMILP -29 Multi Objective MILP; MRE – Most Relevant Explanation; NN – Neural Network; PDP 30 - Partial Dependence Plot; PEA - Plasmodium Evolutionary Algorithm; PFI - Permu-31 tation Feature Importance; PSO – Particle Swarm Optimization; RF – Random Forest; 32 RL – Reinforcement Learning; RMT – Regression and Model Trees; RNN – Recurrent 33 Neural Network; sDP – stochastic Dynamic Programming SHAP – SHapley Additive ex-34 Planations; sML – supervised Machine Learning; SVM – Support Vector Machine; SVR 35 - Super Vector Regression; VAR - Vector Auto Regression; wGrA - weighted Greedy 36 Algorithm. 37

⁻¹¹⁶⁸⁽²⁰¹⁴⁾