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Abstract. One of the problems of the modern information society is the develop-14

ment of effective complex multiprocessor information systems, taking into account15

the rational use of system resources. The problem of finding the optimal variant16

of a multiprocessor system is presented as a problem of multicriteria optimization17

and makes it possible to search for a trade-off between several alternatives. The18

paper describes several approaches to the comparative assessment of multiproces-19

sor systems, including the search for the non-dominated solutions; narrowing down20

the Pareto space, using the additional expert information; converting the problem21

to single-criteria optimization with convolution of criteria; searching for the opti-22

mal solution that is closest to the reference point. In the paper the authors propose23

a ranking method to evaluate technical solutions. The method is based on ranking24

individual alternatives for each optimization criterion separately, followed by ag-25

gregation of ordered ranked lists. The advantage of using the ranking methods is to26

obtain a complete rating of technical solutions based on their effectiveness, assessed27

by several criteria. The paper has an educational character and considers the prob-28

lem of finding a trade-off between system parameters when looking for technical29

solutions. The practical results of applying different approaches are demonstrated30

using a simple example.31

Keywords: multiprocessor information systems, genetic algorithm, multicriteria32

optimization.33

1. Introduction34

One of the problems of the modern information society is the development of effective35

complex multiprocessor information systems, taking into account the rational use of sys-36

tem resources [18]. Examples of such complex systems are global search systems, new37

⋆ This manuscript is an extended version of a paper published in proceedings of CERCIRAS WS01: 1st
Workshop on Connecting Education and Research Communities for an Innovative Resource Aware Society.



2 Mikhail Tatur et al.

generation information systems “smart home”, “smart city”, “smart government”, cyber-1

physical systems of autonomous transport, robotic enterprises, etc. Different types of sys-2

tem resources can be considered, including technical resources - functional complexity, al-3

gorithmic complexity, hardware complexity, computing performance, mass-dimensional4

characteristics, energy consumption, etc.; operational resources - reliability, safety, ac-5

ceptable service life, etc.; economic resources – cost of the system, cost of maintenance,6

cost of development support and modifications, etc. It is obvious that most of the resources7

available for optimization are closely interconnected and their rational distribution during8

design is only possible using a comprehensive approach.9

A comprehensive approach and the search for a trade off between the key parameters10

of the system for new technical solutions include the following subtasks:11

– determining the scope of possible technical solutions when using a given method (or12

architecture, or concept) of implementation;13

– scientific justification of objective limitations in the design of complex systems;14

– determination of criteria for choosing technical solutions;15

– comparative assessment and ranking of technical solutions:16

– identifying trends in the development of complex information systems, etc.17

These multi-criteria tasks are difficult to formalize and therefore developers often rely18

on their experience in solving similar problems or informal methods of expert assess-19

ments. From formal system analysis tools, methods of mathematical statistics and oper-20

ations research are usually used [8],[4]. The determination of the feasible solution set is21

a major challenge in engineering optimization problems. In multi-criteria problems the22

researcher can often identify the main variables, establish connections between them, i.e.23

build a model that adequately reflects the situation, but the preferred combinations of cri-24

teria cannot be determined on the basis of objective information. For selection the best25

solutions a compromise between various criteria is required.26

In this paper we observe several approaches to solving the technical problem together27

with proposing the method of searching for the optimal multi-criteria ranking of alter-28

natives on the basis of individual single-criterion rankings. The proposed research is the29

extended version of conference paper [18], presented at CERCIRAS 2021 Workshop. Pre-30

vious paper described the basics of the problem of complex assessments of the technical31

solutions and the formal approach for solving this problem, including the methods from32

the theory of Data Mining and Operation Research. It introduced the concept of multicri-33

teria optimization in finding the optimal variant of a multiprocessor system and in search-34

ing for a trade-off between several alternatives. The current study extends the research in35

this direction. Based on a simple example it demonstrates several approaches to search-36

ing and narrowing down the Pareto space, including those involving expert knowledge.37

The approaches for converting a multi-criteria problem to a single-criteria optimization38

problem by criteria convolution, as well as for ranking solutions based on distances to39

the ideal point are described and presented on the example. In the last section it is pro-40

posed a method based on aggregating ordered ranked lists for searching for the effective41

technical solutions, characterized by several system resources. The initial rankings of al-42

ternatives for each criterion are aggregated in order to find the optimal solution. In this43

case a single-criteria minimization problem takes into account the sum of distances of the44

solution candidates to the initial rankings. The proposed method provides more flexibility45



Comprehensive Approach to the Information System Design 3

in selecting the best variant of solution based on several criteria. The method allows to1

take into account both the objective values of criteria and the decision maker preferences.2

The paper notes the advantages and disadvantages of various approaches, as well as3

the dependence of the result on both the initial parameters of the mathematical models4

and the expert preferences. It is noted that the use of the methods for ranking solutions5

allows determining not only the best solution, which is often of primary interest, but a6

complete rating of all solutions, which provides information for decision-making.7

2. Related work8

Multi-criteria decision analysis (MCDA) is a multi-step process consisting of a set of9

methods to structure and formalise decision-making processes in a transparent and con-10

sistent manner. Over the years, MCDA methods and software tools are used for a large11

number of applications from modeling, optimization and decision-making tasks, to per-12

formance’s simulation [10].13

To date, a lot of research has been carried out in the field of multi-criteria decision14

selection [17]. They are aimed to model decision making process and require the partici-15

pation of experts in reaching a decision based on many criteria [9]. The most popular are16

the AHP method, based on pairwise comparison of hierarchical criteria considering dif-17

ference information; ANP method, which is a non-linear and more general type of AHP18

using Markov-chain-based aggregation; FUZZY AHP method with the fuzzy evaluation19

of the alternatives; ELECTE method, based on outranking the relationship of the alterna-20

tives and using pairwise comparison; PRAGMA method, which compares partial profiles21

of alternatives considering all the possible criteria pairs and etc.22

In traditional MCDA methods often the single optimal solution is chosen by collecting23

the DM’s preferences where multicriteria optimization (MCO) and decision-making tasks24

are combined for obtaining a point by point search approach [10]. The final obtained25

solutions must be as close to the true optimal solution as possible and the solution must26

satisfy the preference information.27

When considering multi-criteria task from the point of view of MCO theory, a non-28

dominated set in the criteria space or a Pareto-efficient set in the solution space is usually29

considered. In multicriteria methods, a solution to an MCO problem is understood as a30

single point of a Pareto-efficient set that is preferable for the decision maker. Although31

sometimes MCO methods require finding a small number of solutions that are interesting32

from the decision maker’s point of view [6].33

Methods for solving the MCO problem in the framework of MCDA are extremely34

diverse [11] . There are several ways to classify these methods [17]. Considering the35

decision-making process and the additional information about the preferences of the de-36

cision maker the following classes can be distinguished:37

– methods that do not take into account the preferences of the decision maker (no-38

preference methods);39

– a posteriori methods;40

– a priori methods;41

– interactive methods.42
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In the first class of methods the task is to find some compromise solution, usually in1

the central part of the Pareto front or the construction of a scalar optimization function2

without the participation of decision makers. A posteriori methods involve the decision3

maker entering information about their preferences into the MCO system after a certain4

set of non-dominated solutions has been obtained. In this regard, all methods of this class5

at the first stage construct an approximation of the Pareto set. A priori methods are de-6

signed to overcome the main disadvantage of a posteriori methods associated with the7

construction of the entire reachability set. Here it is assumed that the decision maker8

introduces additional information about his preferences before starting to solve the prob-9

lem, a priori. Most often, this information is formalized in such a way as to reduce a10

multi-criteria problem to a single-criteria one. Examples include the scalar convolution11

method, the e-constraint method [12], lexicographic ordering and goal programming [1].12

Interactive methods consist of a set of iterations, each of which includes an analysis stage13

performed by the decision maker and a calculation stage performed by the MCO system14

[7]. Based on the nature of the information received by the MCO system from the decision15

maker at the analysis stage, classes of interactive methods can be distinguished, in which16

the decision maker directly assigns weighting coefficients to particular optimality criteria;17

imposes restrictions on the values of particular optimality criteria or evaluates the alter-18

natives proposed by the MCO system. The selection of the appropriate MCO method for19

new technical solutions depends on the complexity of the decision space, existence and20

type of expert knowledge and available time. Each MCO method has its own definition of21

best alternative and it is not determined if using same input data in different methods will22

give the same results.23

Our paper makes the overview and comparative assessment of several a posteriori and24

a priori approaches to the selection of best variant of technical system based on several25

criteria, formulating this problem as a MCO task. In the course of describing the methods26

and applying them using a simple example we demonstrate how similar or different results27

might evolve. Together with several popular approaches, the method based on aggregation28

of ordered ranked lists is described. It can be considered as a way of integration between29

MCO and MCDA processes and shows its consistency on a par with well-known methods.30

The method allows searching for solution based on both the available numerical criteria31

values and the expert preferences in ranking alternatives on several criteria.32

The described approaches can be applied to the practical tasks in the area of technical33

system design and can be integrated as the component of a computer system that supports34

engineering decision-making activities.35

3. Comprehensive Approach to System Design of Multiprocessor36

Information Systems37

3.1. Formulation of the System Design Problem38

The scope of application of an information system is mainly determined by both functions39

and technical characteristics, which are specified by numerical or nominal values and40

limitations. For example, the multiprocessor on-board electronics system of a modern car41

or robotic mobile platform has a distributed multiprocessor architecture, which allows42

for real-time control of units (i.e., with a given performance). To provide interprocessor43
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interfaces, a CAN (Controller Area Network) bus is used, which provides sufficient noise1

immunity and reliability of communications. The number of peripheral processors is a2

consequence of the number of terminal devices (i.e., the required functional performance).3

In addition, a consequence of the second order are the parameters of power consumption4

and mass-dimensional characteristics. If the design domain is a distributed computing5

system on a chip (SoC), then the priority relationships of mutual influence will be changed6

and supplemented, perhaps significantly.7

The composition and mutual influence of the specified characteristics (and/or param-8

eters) of the system can be represented in the form of an undirected graph, as shown in9

Fig. 1. In Fig. 1, the graph reflects only qualitative dependencies. Even a quick analysis10

of a fragment of the original graph indicates the close interdependence of parameters in11

the system. Sometimes the named dependencies are obvious, for example, performance12

versus the number of processors, and they are easy to represent in the form of formulas.13

However, this is not always the case. For example, it is difficult (and perhaps impossible)14

to indicate the dependence of the reliability or mechanical layout (weight and dimensions)15

of a microprocessor system on the selected type of interface, although it is obvious to ev-16

ery designer that such a dependence exists. This graph is for demonstration purposes and,17

naturally, can be supplemented with other parameters and connections.18

In general, the task of system design is to find a conceptual solution whose parameters19

will be within acceptable, or better yet, optimal values.20

Fig. 1. Undirected graph, reflecting the subject area of system design
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Fig. 2. A directed graph reflects one of the possible system design scenarios

3.2. System Design Methodology1

The proposed system design methodology is as follows:2

1. The developer (or general designer, or system architect) draws up an initial graph,3

similar to Fig. 1, reflecting two-way relationships in system design in a given subject4

area.5

2. In the undirected graph, the expert identifies key and derived parameters (the reliabil-6

ity parameter is not considered as a key one).7

3. The original graph is modified into a directed one, and the number of mutual (less8

significant) connections is reduced. Ideally, there could be a chain of cause and effect9

relationships. In Fig. 2 on the basis of expert experience and understanding of all the10

restrictions available to him, a special case of relationships are considered. Accord-11

ing to Fig. 2, to ensure a given performance it is necessary to use, for example, 612

processors, which in turn will increase energy consumption by 6 times compared to a13

single-processor implementation. These changes will cause an increase in weight and14

size characteristics and will affect the appearance of the interface.15

4. The found chain is supplemented (detailed) with the necessary (known) quantitative16

data and restrictions. A rapid evaluation of the possibility of achieving the result is17

carried out using known theoretical dependencies, expert knowledge, as well as multi-18

criteria data analysis.19

5. Very often parameters have implicit and mutually exclusive relationships. Therefore,20

it is important to “check feedback” during system design. For example, it may turn21

out that the obtained mass-dimensional characteristics are not consistent with the22
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conceptually accepted interface, or the subject area. In this case, the system design1

process is iteratively repeated until an acceptable system solution is found.2

4. Comparative Evaluation of Multiprocessor Systems as a Problem3

of Multicriteria Optimization4

The greatest difficulty in designing complex multiprocessor information systems lies in5

the need to solve the problem of multicriteria optimization according to multiple opti-6

mization criteria, which are individual system parameters or used system resources. As a7

rule, the criteria are interdependent, i.e. an increase in one of them can lead to a decrease8

in the value for the other. Using multicriteria optimization makes it possible to identify9

compromise or non-dominant solutions, where none of them is better than the other in all10

the parameters under consideration and, therefore, are of equal importance. In this case,11

many solutions are allowed, each of which is acceptable in the absence of preliminary12

information about the importance of the criteria.13

In general, the problem of multicriteria optimization is formulated as follows: Find the14

vector x̄∗ = (x∗
1, x

∗
2, . . . x

∗
n)

T of the values of parameters, which satisfy m inequalities:15

gi(x̄) ≥ 0, i = 1, 2, . . . ,m, (1)

and p equalities16

hi(x̄) = 0, i = 1, 2, . . . , p, (2)

and optimize the vector function17

f(x̄) = [f1(x̄), f2(x̄), . . . , fk(x̄)]
T . (3)

Constraints (1), (2) define the domain G, which contains all feasible solutions to the prob-18

lem. The vector x̄∗ corresponds to the optimal solution in the domain G. In this case, the19

optimality is meant according to the Pareto concept, the formal definition of which from20

the point of view of the maximization problem is as follows [3]:21

The vector of solution x̄∗ is called Pareto-optimal if and only if there is no other vector22

x̄,which dominate x̄∗,i.e. if23

∀i ∈ 1, 2, . . . , k, fi(x̄) ≤ fi(x̄
∗) and ∃i ∈ 1, 2, . . . , k, where fi(x̄) < fi(x̄

∗)

In other words, x̄∗ is Pareto optimal if there are no acceptable vectors x̄, which allow24

you to increase the value of one of the criteria, while not decreasing the value of at least25

one of the remaining criteria. The solution x̄∗ is strictly dominates the solution x̄, if ∀i ∈26

1, 2, . . . , k, fi(x̄) < fi(x̄
∗). In general, the solution to the optimization problem is a set27

of non-dominated solutions. Having a set of several non-dominated solutions obtained28

as a result of multicriteria optimization, it is possible to choose a solution that is most29

preferable for a specific applied problem.30

Consider a demonstration example of solving the problem of comparative evalua-31

tion of multiprocessor systems. Table 1 presents four multiprocessor systems, which are32

characterized by several parameters: the number of processors, performance, dimensions,33

power consumption. We will assume that these systems can programmatically solve the34

same problem, but are implemented in a different design.35
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Table 1. Parameters of multiprocessor systems

System Number of
processors
(items)

Performance
(Gflops)

Dimensions
(Volume, dm3)

Power consumption
(W)

System 1 4/0,04 2,0/0,2 4,0/0,4 20,0/0,2
System 2 8/0,08 3,0/0,3 1,0/0,1 12,0/0,12
System 3 16/0,16 5,0/0,5 3,0/0,3 10,0/0,1
System 4 64/0,64 7,0/0,7 6,0/0,6 40,0/0,4

For clarity and simplicity of reasoning, we use the simplest normalization method,1

when the parameters are reduced to some fixed maximum value (in our case, 100, 10,2

10 and 100, respectively). The normalized values of the parameters of multiprocessor3

systems are shown in Table 1 in the corresponding columns after the sign (/).4

If the number of processors and performance are known, statistically confirmed para-5

metric dependencies (Fig. 3a), then the dependences of dimensions and power consump-6

tion in this example are not visible (Fig. 3b). (Although, in theory, we know that with an7

increase in the number of processors and performance, the power consumption and size8

should increase). But this example deliberately does not provide any information about9

the technology, element base, design, purpose, generation, etc., which directly affects both10

the dimensions and power consumption of the implemented systems.11

Fig. 3. Representation of multiprocessor systems in two-dimensional parameter space

Let perform the assessment of the systems presented in Table 1 based on the concept12

of non-dominated solutions, considering the value of each criterion separately. We will13

assume that it makes no sense to include the number of processors as an individual cri-14

terion, since it is indirectly in the performance of systems. In our case we will perform a15

manual assessment of the systems. To solve more complex problems with a large num-16

ber of alternatives, characterized by a large number of parameters, special methods of17

multicriteria optimization are used [15], [3],[19].18
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In the presented example, the criteria to be optimized correspond to the parameters of1

the system, and the problem of multicriteria optimization in this case can be written in the2

following form:3

Optimize vector function4

F (x) = [x1, x2, x3]

x1 → max, x2 → min, x3 → min
(4)

and a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, a3 ≤ x3 ≤ b3 – allowed parameter range, where5

x1, x2, x3 - performance, dimensions and power consumption.6

Consider Systems 1 and 2, where the value of the performance criterion of System7

2 are higher than the corresponding value of System 1, and the value of the dimensions8

and power consumption criteria for System 2 are lower. Consequently, System 2 has more9

optimal parameter values and thus dominates System 1. If we compare Systems 2 and 3,10

then we see that System 3 has higher performance and less power consumption, while11

its dimensions are larger than the dimensions of System 2. Therefore, Systems 2 and 312

are non-dominated solutions. Likewise, the non-dominated solutions are Systems 2 and13

4, Systems 3 and 4.14

In Fig. 4 the systems under consideration are shown as points in the space of two15

criteria. Non-dominated solutions are connected with a line.

Fig. 4. Graphic presentation of technical solutions in a two-criteria space

16

It should be noted that Systems 2, 3, 4 are not dominant in the specific problem under17

consideration, i.e. they are locally non-dominated solutions. In the case of adding addi-18

tional alternative solutions for multiprocessor systems, the number and composition of19

non-dominated solutions may change, although in this case the solutions will be locally20

non-dominated. According to the analysis System 1 can be excluded from further consid-21

eration due to the fact that it is the dominant solution for all the considered optimization22

criteria.23
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To further narrow down the Pareto set and identify the single best solution, some addi-1

tional information is needed [14]. One of the main types of additional information, often2

used when solving various multicriteria problems, is information about the comparative3

importance of partial criteria, which is usually given in the form of numerical coefficients4

wk ≥ 0, characterizing the importance of partial criterion fi, i = 1, . . . , k. The impor-5

tance coefficients together constitute a weight vector w = (w1, . . . , wk), the components6

of which are usually normalized by the condition
∑

k wk = 1. The most well-known7

methods for calculating coefficients include sequential comparison of criteria by impor-8

tance, pairwise comparison of criteria by absolute or relative importance.9

Using additional information about the importance of criteria, you can narrow down10

the set of non-dominated solutions. Consider two non-dominated solutions y1 = (y11, . . . ,11

y1k) and y2 = (y21, . . . , y2k), where y1p > y2p, y1q < y2q and y1h = y2h for all12

h ̸= p, q. Formally, these alternatives are incomparable in terms of dominance. How-13

ever, for the decision maker (DM), alternative y1 is preferable to y2. This means that14

the p-th partial criterion is more important than the q-th partial criterion with parameters15

rp = y1p − y2p > 0, rq = y2q − y1q > 0. When choosing one of two solutions, the DM16

agrees to lose the value rq according to a less important criterion in order to receive an17

additional gain rp according to a more important criterion.18

The number tpq =
rq

(rp+rq)
is called the proportional coefficient of relative importance19

for the p-th and q-th criteria. At tpq = 0, 5, the values of losses and gains coincide. Thus,20

the set of selected solutions is contained in the restricted Pareto boundary, consisting of21

vectors y′ = f ′(x) = (f ′
1(x), . . . , f

′
k(x)) with components determined by the expres-22

sions:23

f ′
q(x) = tpqfp(x) + (1− tpq)fq(x); f

′
h(x) = fh(x),∀h ̸= q (5)

According to (5), new values of the criteria vector are obtained from the previous24

ones by replacing the less important criterion fq(x) with a convex combination of criteria25

fp(x) and fq(x).26

Consider the application of the above-mentioned method of narrowing the Pareto27

space using the example described in Table 1. Let us consider three previously obtained28

non-dominated solutions, represented by vectors of three criteria values S2 = (0, 3;−0, 1;29

−0, 12), S3 = (0, 5;−0, 3;−0, 1) and S4 = (0, 7;−0, 6;−0, 4), where the values of the30

last two criteria are inverted in order to bring them to the maximization problem.31

Let us assume that the DM considers the first criterion f1 more important than the32

second f2 with a proportional coefficient of relative importance t12 = 0, 8. Recalcu-33

late the second component of each vector Si, i = 2, . . . , 4 using the formula f ′
2(Si) =34

0, 8f1(Si)+0, 2f2(Si). We obtain new vectors S′
2 = (0, 3; 0, 22;−0, 12), S′

3 = (0, 5; 0, 34;35

−0, 1) and S′
4 = (0, 7; 0, 44;−0, 4). It is obvious that solution S′

3 dominates solution S′
2.36

Therefore, in the narrowed Pareto space there will remain two solutions S′
3 and S′

4, which37

correspond to System 3 and System 4.38

5. Approaches to Converting a Multi-Criteria Problem to a39

Single-Criteria One40

One of the ways to solve a multi-criteria problem for selection a technical solution is to41

transform it into a single-criteria one by combining all partial criteria fj(x), j = 1, . . . , k42



Comprehensive Approach to the Information System Design 11

into one general quality criterion f(x) = F (f1(x), f2(x), . . . , fk(x)), which is otherwise1

called criteria convolution. Then the search for the best solution reduces to finding the2

extremum of the single function f(x)3

x∗ ∈ argmaxx∈Xaf(x), (6)

where x is an alternative from the acceptable set Xa.4

As a rule, weighted convolutions of partial criteria for the effectiveness of a technical5

solution are used6

f(x) =

k∑
j=1

wjfj(x)

f(x) =

k∏
j=1

wjfj(x) f(x) =

k∏
j=1

[fj(x)]
wj ,

(7)

where wj ≥ 0 is a weight of the partial criterion fj(x).7

Partial performance criteria are usually normalized in one of the following ways:8

f ′
j(x) =

fj(x)

ymax
j

, f ′
j(x) =

fj(x)

(ymax
j − ymin

j )
, f ′

j(x) =
fj(x)− ymin

j

(ymax
j − ymin

j )
(8)

where ymin
j , ymax

j – minimal and maximal values of the partial criterion fj(x).9

The choice of the weights of the partial criteria in the optimization function (7) can10

influence the result of the optimal solution and is usually set by the DM by a number11

of well-known methods [13]. Consider the implementation of the above approach for the12

example from Table 1. The complex criterion for the comparative assessment of systems13

is a weighted sum of three criteria. In this case, it is necessary to perform the following14

steps:15

1. Bringing the criteria to a single range of values (normalization or scaling of the crite-16

ria):17

x̄i =
xi − xmin

i

xmax
i − xmin

i

,

where xmin
i is the minimal value of i-th criterion, xmax

i is the maximal value of i-th18

criterion. For our example xmin
i = 0 for i = 1, 2, 3 and xmax

1 = 10, xmax
2 = 10,19

xmax
3 = 100.20

2. Selection of weight coefficients w1, w2, w3 for each criterion: performance, dimen-21

sions and power consumption.22

3. Ranking solutions according to a complex criterion F (x) = −w1x̄1+w2x̄2+w3x̄3,23

where the value of w1 is taken with minus sign to convert to the minimization problem24

according to the first criterion.25

The minimum value of the complex criterion corresponds to the most optimal solution.26

The normalized values of the system parameters are presented in Table 1. Let us choose27

the following values of the weight coefficients w1 = w2 = w3 = 1. Let’s calculate28
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the values of the complex criterion for each of the systems S1 = (0, 2; 0, 4; 0, 2), S2 =1

(0, 3; 0, 1; 0, 12), S3 = (0, 5; 0, 3; 0, 1) and S4 = (0, 7; 0, 6; 0, 4)2

F1(x) = −1 ∗ 0, 2 + 1 ∗ 0, 4 + 1 ∗ 0, 2 = 0, 4

F2(x) = −1 ∗ 0, 3 + 1 ∗ 0, 1 + 1 ∗ 0, 12 = −0, 08

F3(x) = −1 ∗ 0, 5 + 1 ∗ 0, 3 + 1 ∗ 0, 1 = −0, 1

F4(x) = −1 ∗ 0, 7 + 1 ∗ 0, 6 + 1 ∗ 0, 4 = 0, 3.

Thus, the systems presented in Table 1 according to the complex criterion can be3

ranked as follows System 3, System 2, System 4 and System 1 in ascending order of the4

criterion value. The most optimal system is System 3.5

The disadvantage of this ranking method is the dependence of the optimal solution on6

the choice of the values of the weight coefficients w1, w2, w3. For example, if the value7

of the weight w1 = 0.5, then System 2 will be selected as the most optimal (Fig. 5).

Fig. 5. Ranking of alternatives according to a complex criterion F (x) with different values
of weight coefficient w1

8

Another approach for solving a multicriteria problem is to search for alternatives with9

given characteristics. In this case, you can indicate the values of partial quality criteria10

y0j , j = 1, . . . , k that are desirable for the DM or the boundaries of their change. The set11

of such values y = (y01 , . . . , y
0
k) is called the reference point. Two characteristic refer-12

ence points are, in particular, ymax = (ymax
1 , . . . , ymax

k ) and ymin = (ymin
1 , . . . , ymin

k ),13

where ymin
i is the minimal value of i-th criterion, ymax

i is the maximal value of i-th14

criterion.15

To solve a multicriteria optimization problem, a search is made for an alternative or16

technical solution that is closest to the reference point. In the multidimensional space of17
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evaluations based on partial quality criteria, a certain proximity measure d[f(x), y0] is1

specified between the points f(x) = (f1(x), f2(x), . . . , fk(x)) and y0 = (y01 , . . . , y
0
k),2

where f(x) is the alternative and y0 is the reference point. Then the optimal solution is3

defined as4

x∗ ∈ argminx∈Xad[ f(x), y0] (9)

Usually one of the metrics of the k-dimensional vector space (Rk, dp) is chosen as a5

proximity measure, such as the weighted Euclidean metric6

d2[f(x), y
0] = [

m∑
j=1

wj(fj(x)− y0j )
2]

1
2 , (10)

where wj is the coefficient of importance of the partial criterion fj(x).7

Setting one or another proximity measure d[f(x), y0] is another possible way of con-8

volving partial criteria and transforming a multicriteria problem into a single-criteria one.9

The disadvantage is that different metrics d[f(x), y0] may correspond to different optimal10

options for the technical solution x∗. Despite the disadvantage, this method for solving a11

multicriteria problem is widely used in practice [13].12

One example of the implementation of multicriteria optimization taking into account13

reference points is the TOPSIS (Technique for Order Preference by Similarity to Ideal14

Solution) method proposed in [5]. The main idea of the method is as follows: after deter-15

mining the “ideal” or best and “ideal-negative” or worst expected states (alternatives), an16

attempt is made to find a solution that would allow one to get as close as possible to the17

“ideal” state and remain as far away from the “ideal-negative” state. The decision-making18

process begins with the evaluation of all alternative solutions according to all criteria. As19

a result, a decision matrix is formed. The method consists of six consecutive steps: 1)20

calculation of the normalized decision matrix; 2) calculation of a weighted normalized21

decision matrix; 3) definition of the “ideal” and “ideal-negative” expected state; 4) cal-22

culation of the metric values; 5) calculation of relative proximity to the “ideal” state; 6)23

ranking of alternatives.24

Mathematical description of the TOPSIS method is as follows:25

Step 1. Formation of a matrix of assessments or decisions (xij)n×k, consisting of n26

alternatives and k criteria, where the element of the matrix xij determines the value of the27

j-th criterion of the i-th alternative.28

Step 2. By normalizing the matrix (xij)n×k forming the matrix R = (rij)n×k as29

follows:30

rij =
xij√∑n
t=1 x

2
tj

, i = 1, 2, . . . , n; j = 1, 2, . . . , k. (11)

Step 3. Calculation of the weighted normalized decision matrix:31

tij = rij · wj , i = 1, 2, . . . , n; j = 1, 2, . . . , k, (12)

where wj – weight coefficient of j-th criterion, j = 1, 2, . . . , k and
∑k

j=1 wj = 1.32
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Step 4. Determination of the worst Aw and best Ab alternative:1

Aw = {⟨max(tij |i = 1, 2, . . . , n)|j ∈ J−⟩,
⟨min(tij |i = 1, 2, . . . , n)|j ∈ J+⟩} ≡ {twj |j = 1, 2, . . . , k},

Ab = {⟨min(tij |i = 1, 2, . . . , n)|j ∈ J−⟩,
⟨max(tij |i = 1, 2, . . . , n)|j ∈ J+⟩} ≡ {tbj |j = 1, 2, . . . , k},

(13)

According to (13) the value of an individual criterion of the worst alternative Aw is2

equal to the maximum value of this criterion for the alternatives under consideration in3

the case of minimizing the criterion (j ∈ J−) and equal to the minimum value of this4

criterion for the alternatives under consideration in the case of maximizing the criterion5

(j ∈ J+). And the reverse reasoning applies to the best alternative Ab.6

Step 5. Calculation of L2-distance between target alternative i and the worst alterna-7

tive Aw8

diw =

√√√√ k∑
j=1

(tij − twj)2, i = 1, 2, . . . , n, (14)

and the distance between i-th alternative and the best alternative Ab9

dib =

√√√√ k∑
j=1

(tij − tbj)2, i = 1, 2, . . . , n, (15)

where diw and dib are distances according to the L2-norm.10

Step 6. Calculation of relative proximity to the ideal solution:11

siw =
diw

(diw + dib)
, 0 ≤ siw ≤ 1, i = 1, 2, . . . , n. (16)

The value siw = 1 if and only if the alternative corresponds to the best state; and siw = 012

if and only if the alternative corresponds to the worst state.13

Step 7. Ranking alternatives by values siw (i = 1, 2, . . . , n).14

Let’s consider the implementation of the TOPSIS method for the example from Ta-15

ble 1. Let us choose the following values of the weight coefficients w1 = w2 = w3 =16

1. According to (12) the values of the weighted normalized decision matrix tij , i =17

1, 2, 3, 4; j = 1, 2, 3 for alternatives Si = tij , i = 1, 2, 3, 4 are the following S1 =18

(0, 2; 0, 4; 0, 2), S2 = (0, 3; 0, 1; 0, 12), S3 = (0, 5; 0, 3; 0, 1) and S4 = (0, 7; 0, 6; 0, 4).19

According to (13) we define the best alternative as20

Ab = (max (0, 2; 0, 3; 0, 5; 0, 7);min (0, 4; 0, 1; 0, 3; 0, 6);min (0, 2; 0, 12; 0, 1; 0, 4)) =

(0.7; 0.1; 0.1)

and the worst alternative as21

Aw = (min (0, 2; 0, 3; 0, 5; 0, 7);max (0, 4; 0, 1; 0, 3; 0, 6);max (0, 2; 0, 12; 0, 1; 0, 4)) =

(0, 2; 0, 6; 0, 4).
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Fig. 6. Illustration of the selection of the best and worst alternatives

The graphical representation of the choice of the best Ab and worst Aw alternatives is1

shown in Fig. 6.2

According to (14) and (15) L2-distances between alternatives Si, i = 1, 2, 3, 4 and3

the worst and best alternatives Aw and Ab are4

d1b =
√

(0, 2− 0.7)2 + (0, 4− 0.1)2 + (0, 2− 0.1)2 =√
0, 25 + 0, 09 + 0, 01 =

√
0, 35 ≈ 0, 2828

d1w =
√

(0, 2− 0, 2)2 + (0, 4− 0, 6)2 + (0, 2− 0, 4)2 =√
0 + 0, 04 + 0, 04 =

√
0, 08 ≈ 0, 5916

5

d2b =
√
(0, 3− 0.7)2 + (0, 1− 0.1)2 + (0, 12− 0.1)2 =√
0, 16 + 0 + 0, 0004 =

√
0, 1604 ≈ 0, 4005

d2w =
√
(0, 3− 0, 2)2 + (0, 1− 0, 6)2 + (0, 12− 0, 4)2 =√

0, 01 + 0, 25 + 0, 0784 =
√
0, 3384 ≈ 0, 5817

6

d3b =
√

(0, 5− 0.7)2 + (0, 3− 0.1)2 + (0, 1− 0.1)2 =√
0, 04 + 0, 04 + 0 =

√
0, 08 ≈ 0, 2828

d3w =
√
(0, 5− 0, 2)2 + (0, 3− 0, 6)2 + (0, 1− 0, 4)2 =√
0, 09 + 0, 09 + 0, 09 =

√
0, 27 ≈ 0, 5196

7

d4b =
√

(0, 7− 0.7)2 + (0, 6− 0.1)2 + (0, 4− 0.1)2 =√
0 + 0, 25 + 0, 09 =

√
0, 34 ≈ 0, 5831

d4w =
√
(0, 7− 0, 2)2 + (0, 6− 0, 6)2 + (0, 4− 0, 4)2 =√

0, 25 + 0 + 0 =
√
0, 25 ≈ 0, 5
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After determining the distances from each alternative to the positive and negative ideal1

solutions, the values of relative proximity to the ideal solution siw are calculated accord-2

ing to (16) and presented in Table 2. According to the values of the relative similarity siw3

in Table 2 the systems are ranked as in the last column and the most optimal system is4

System 3.5

Table 2. Alternatives ranking results

Alternative diw dib siw Rank

S1 0,2828 0,5916 0,3234 4
S2 0,5817 0,4005 0,5922 2
S3 0,5196 0,2828 0,6475 1
S4 0,5 0,5831 0,4616 3

6. Ranking Technical Solutions by Aggregating Ordered Ranked6

Lists7

In addition to known methods in our study we consider another approach for converting8

a multicriteria optimization problem to a single-criteria representation when searching9

for technical solutions. The method is based on ranking individual alternatives for each10

optimization criterion separately, followed by aggregation of ordered ranked lists [2],[16].11

Let there be n alternatives Si, i = 1, . . . , n, each of which is characterized by the val-12

ues of k indicators (criteria) Si = (xi1, . . . , xik), and the indicators can be both quantita-13

tive and qualitative. The values of the criteria belong to the set Xa ⊆ X = X1×· · ·×Xk14

of acceptable values. Heterogeneous values of indicators are usually transformed to a15

single measurement scale.16

According to the method, all alternatives are initially ranked for each of the k criteria,17

where Li is a list of alternatives ordered relative to the values of the i-th criterion. Thus,18

the following single-criteria minimization problem is formulated:19

δ∗ = argmin Φ(δ), (17)

where Φ(δ) =
∑

i d(δ, Li), d is the distance function, and minimization is carried out20

with respect to all possible ordered lists δ of dimension n = |Li|.21

Selecting a suitable distance function d is one of the most important steps of the22

method. Two options were chosen as such functions: Spearman distance and Kendall23

rank distance. The Spearman distance between an ordered list of alternatives Li and any24

ordered list δ can be defined as25

S(δ, Li) =
∑

t∈Li∪δ

|rδ(t)− rLi(t)|, (18)

where rLi(t) – rank of alternative t in the list Li.26
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The smaller the value of the metric S(δ, Li), the more similar the two lists. To take1

into account additional information about the values of the criteria for each alternative a2

weighted Spearman distance is determined3

WS(δ, Li) =
∑

t∈Li∪δ

|M(rδ(t))−M(rLi(t))| · |rδ(t)− rLi(t)|, (19)

where M(A) – value of the i-th criterion of alternative A.4

Kendall’s rank distance is a metric that counts the number of pairwise divergences5

between two ranked sets of feature values. The greater this distance, the more different6

the two characteristics are, and, therefore, the less the dependence between them.7

In the case when the number of alternatives is small, the single-criteria problem (17)8

can be solved by simply searching through the variants of ordered lists and choosing the9

alternative located at the top position of the list as the optimal solution.10

So, for example from Table 1, we can create three ordered lists according to three11

optimization criteria (Table 3), where the last column presents the optimal ranking δ cor-12

responding to the minimum of the functional Φ(δ) = 8.

Table 3. Ranked lists of alternatives

Alternative Performance Dimensions Power consumption Optimal rank

S1 4 3 3 3
S2 3 1 2 2
S3 2 2 1 1
S4 1 4 4 4

13

In order to select the optimal ranking δ, we have applied the simple strategy of calcu-14

lating the Φ(δ) value for all possible permutations of the rankings of alternatives Si, i =15

1, 2, 3, 4 from Table 1. After that the ranking δ corresponding to the minimum value of the16

function Φ(δ) is considered as optimal. The Φ(δ) values for each ranking of alternatives17

are presented in Table 4.18

In Table 4 the values in the column ”Value” is calculated as19

Φ(δ) = S(δ, L1) + S(δ, L2) + S(δ, L3), (20)

where Li, i = 1, 2, 3 are the rankings of alternatives for criteria ”Performance”, ”Di-20

mensions” and ”Power consumption” respectively, and S(δ, Li) is a Spearman distance21

in (18). For example for ranking No. 1 in Table 4 and using single-criteria rankings in22

Table 3 the Spearman distances are calculated as23

S(δ, L1) = |1− 4|+ |2− 3|+ |3− 2|+ |4− 1| = 3 + 1 + 1 + 3 = 8

S(δ, L2) = |1− 3|+ |2− 1|+ |3− 2|+ |4− 4| = 2 + 1 + 1 + 0 = 4

S(δ, L3) = |1− 3|+ |2− 2|+ |3− 1|+ |4− 4| = 2 + 0 + 2 + 0 = 4

and the value of function in (20) is Φ(δ) = 8 + 4 + 4 = 16.24



18 Mikhail Tatur et al.

Table 4. Functional values for all possible rankings

No Ranking Value No Ranking Value

1 (1 2 3 4) 16 13 (3 1 2 4) 8
2 (1 2 4 3) 20 14 (3 1 4 2) 16
3 (1 3 2 4) 14 15 (3 2 1 4) 8
4 (1 3 4 2) 22 16 (3 2 4 1) 16
5 (1 4 2 3) 18 17 (3 4 1 2) 14
6 (1 4 3 2) 22 18 (3 4 2 1) 14
7 (2 1 3 4) 14 19 (4 1 2 3) 10
8 (2 1 4 3) 18 20 (4 1 3 2) 14
9 (2 3 1 4) 12 21 (4 2 1 3) 10

10 (2 3 4 1) 20 22 (4 2 3 1) 14
11 (2 4 1 3) 16 23 (4 3 1 2) 12
12 (2 4 3 1) 20 24 (4 3 2 1) 12

In Table 4 the minimal functional value Φ(δ) = 8 corresponds to the ranking No. 15:1

System 3, System 2, System 1 and System 4. The most optimal system is System 3. The2

same value of functional Φ(δ) also corresponds to the ranking No.13: System 3, System3

1, System 2 and System 4. In case of ambiguity, it makes sense to take into account the4

real criteria values and estimate the optimal ranking according to (19).5

Using Multidimensional Scaling (MDS) to reduce the dimensionality of data the two-6

dimensional representation of all possible rankings from Table 4 and single-criteria rank-7

ings from Table 3 is shown in Fig. 7. In Fig. 7 three single-criteria rankings are marked8

with red circles and it is clearly seen that the rankings No.15 and No.13, marked in bold9

have a minimum total distance to three single-criteria rankings compared to other alter-10

natives.11

In the case of a larger number of alternatives and criteria, it is proposed to solve the12

optimization problem (17) using a genetic algorithm (GA) [15].13

The GA consists of the following steps:14

Step 1. popSize ordered lists of dimension n (the number of alternatives) are ran-15

domly initialized, which form the initial set of possible solutions to the problem. The size16

of the population must be proportional to the number of alternatives and the number of17

unique elements in the original ordered lists Li, i = 1, 2, . . . , k.18

Step 2. Depending on which distance is used, calculate the objective function for19

each element of the population. Then randomly select individuals from the population20

for the next generation of GA using weighted random sampling, where the weights are21

determined according to the values of the fitness (objective) function.22

Step 3. Carrying out crossover operations with probability pcross (transition probabil-23

ity), i.e. two randomly ordered lists can exchange their parts, which start from a random24

position with probability pcross.25

Step 4. The crossover operation only allows the mixing of ordered lists, but to obtain26

radically new solutions it is necessary to use mutations. Mutation operations are per-27

formed with probability pmut (mutation probability). Thus, any list in a population can28

randomly change one or more of its elements.29
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Fig. 7. Graphical representation of all alternative rankings highlighting the optimal ones

Step 5. The algorithm stops if the optimal list does not change for successive several1

generations of the GA or the maximum number of iterations (GA epochs) is reached.2

The advantage of using the described method to solve the problem of selecting the3

optimal technical solution is to obtain a complete rating of technical solutions based on4

their effectiveness, assessed by several criteria. Any number of alternatives with arbitrary5

combinations of GA parameters and/or distance functions can be considered. In addi-6

tion, the researcher can decide how many performance criteria to use to obtain a reliable7

assessment of solutions.8

7. Conclusion9

This paper presents the results of extended research in the field of optimization of tech-10

nical solutions according to many criteria. The problem statement and system design11

methodology are described in general terms. The problem of finding a technical solu-12

tion, which is characterized by various parameters or used system resources, is presented13

as a multicriteria optimization problem that allows one to find Pareto-optimal solutions.14

An approach for narrowing the solution space in order to reduce the uncertainty associ-15

ated with multi-criteria selection and find the optimal technical solution is described and16

demonstrated by example. The approaches for converting a multi-criteria selection prob-17

lem to a single-criteria optimization problem by criteria convolution, as well as for rank-18

ing solutions based on calculating distances to the ideal point are described and presented19

on the example. It is proposed to apply a method based on aggregating ordered ranked20

lists for converting a multicriteria optimization problem to a single-criteria representation21

when searching for technical solutions. A method is based on solving a single-criteria op-22

timization problem, where the optimization functional estimates the sum of the distances23
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of the searched optimal ranking of alternatives to the corresponding rankings for each of1

the criteria under consideration.2

The approaches described in the paper can be used to find a compromise between3

various characteristics of a technical solution in order to select the optimal variant when4

designing multiprocessor information systems. As a result of applying methods for rank-5

ing solutions, it will be possible to determine not only the best solution, which is often6

of primary interest, but a complete rating of all solutions, which provides information for7

further research. The practical results of applying different approaches are demonstrated8

using a simple example.A further direction of research is the analysis and application of9

interactive methods for searching for the optimal technical solution when developing a10

multiprocessor information system.11
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