
Computer Science and Information Systems 00(0):0000–0000 https://doi.org/10.2298/CSIS123456789X

Resource-Aware Design of an IoT Node for Use in 1

Remote Industrial and Hazardous Areas* 2

Petar Rajković 1, *, Milan Vesković 2, Dejan Aleksić 3 and Dragan Janković 1 3

1 University of Niš, Faculty of Electronic Engineering 4
Aleksandra Medvedeva 4, 18104 Niš, Serbia 5

petar.rajkovic@elfak.ni.ac.rs, 6
dragan.jankovic@elfak.ni.ac.rs 7

2 Faculty of Technical Sciences Čačak 8
Svetog Save 65, 32102 Čačak, Serbia 9

milan.veskovic@ftn.kg.ac.rs 10
3 University of Nis, Faculty of Sciences and Mathematics, Department of Physics 11

Višegradska 33, PO BOX 224, 18106 Niš, Serbia 12
alexa@pmf.ni.ac.rs 13

Abstract: As the Internet of Things (IoT) nodes become one of the cornerstones of Industry 4.0, 14
they tend to be incorporated into every aspect of production automation. This paper addresses the 15
challenge of designing low-power IoT nodes based on standardized components for deployment in 16
remote, off-grid, industrial, and hazardous environments where energy efficiency and autonomy are 17
critical. The proposed design integrates hardware-software co-design, replacing standard hardware 18
setup with energy-efficient components, solar-powered batteries, and dynamic working modes to 19
reduce energy consumption. Software elements were designed with the possibility of over-the-air 20
updates and reconfiguration. Next, battery charging routines are optimized, and the node is inte- 21
grated into a cloud-based digital twin with centralized control over the complete operation cycle. 22
The proposed node architecture achieves an energy reduction of up to 50% and, in some configu- 23
rations, reduces consumption by up to one-tenth compared to conventional designs. The additional 24
result is a set of design recommendations when the standard components must be adapted for harsh 25
environments. 26

Keywords: internet of things, resource awareness, industry 4.0, hardware-software codesign 27

1. Introduction and Background 28

The IoT represents a world of relatively small devices connected to networks that 29
can capture, use, and exchange data [1]. This emerging paradigm has spread over business 30
integration [2] and industrial automation in recent years. It created benefits for smart man- 31
ufacturing [3] and Industry 4.0 [4], fueling the advances considered the new industrial 32
revolution. Integrating IoT devices with increased computing power brought benefits not 33
envisioned a decade ago [5]. Installing such devices to the production lines initially facil- 34
itates the data exchange with control systems. As a primary consequence, the reaction of 35
the complete production systems becomes faster, better, and more accurate. With more 36
extensive and detailed data sets, the production enterprises could initiate the changes in 37
the planning process and give an additional plus to the production [6]. 38

* This manuscript is an extended version of the papers published in proceedings of the

CERCIRAS 2023 workshop and SQAMIA 2023 conference

2 Petar Rajković et al.

Our research group has designed software components for different manufacturing 39
systems for over a decade. The research has been focused on solutions targeting the plan- 40
ning [7], execution [8], development [9], and deployment [10] of the software for indus- 41
trial systems at various levels according to ISA-95 (ISA – International Society of Auto- 42
mation) standards [11]. The requirements and challenges vary from level to level, but 43
operational efficiency is a must. The research presented in this paper focuses on ISA-95 44
levels 0 and 1. Levels 0 and 1 consist of sensor networks, actuators, and other devices that 45
bring data to IoT nodes. Such nodes sometimes operate in complex and demanding envi- 46
ronments, aiming to be self-sustainable as much as possible. In such a case, the design 47
must consider that the device will run in harsh exploitation using minimal power and 48
network resources. 49

 50

 51
Figure 1 Developed IoT node before sealing in the safety Ex e casing 52

 53
Industrial hazardous areas, such as processing refineries, are the parts of the plants 54

and industrial facilities where the environmental effects could permanently damage hu- 55
man health or threaten safety by emitting harmful gases or chemicals and where small 56
parameter changes could cause an explosion [14]. This environment implies that any for- 57
eign object brought in (such as sensors and IoT nodes) must be designed with minimal 58
environmental impact. In this light, any additional wiring and connection to different 59
pieces of equipment is a source of high potential risk. Safety standards [15] imply that 60
equipment must be packed into Ex e enclosures (Figure 1). The complete node and all 61
communication devices, batteries, and charge controllers should be in the verified casings 62
(ideally in the same casing), and the node's building and operational costs should be the 63
lowest possible. 64

The IoT nodes are considered to communicate with Edge computers. Since the com- 65
munication between the IoT and Edge layer must be set up and maintained, selecting the 66
wireless network will avoid additional wiring. This connection is also essential to make 67
remote OTA (Over-the-air) configuration and management highly efficient. 68

An effective wireless connection is especially needed for mobile nodes in vehicles 69
that carry dangerous or explosive materials. These vehicles need constant monitoring of 70
the transported substance. Unlike stationary devices, mobile devices’ location must be 71
monitored in addition to all the standard values. It is essential to note that Edge computers 72

Resource-Aware Design of IoT Node 3

in such a scenario are usually not in the same network or physically close, so the proper 73
communication protocol must be defined or chosen. 74

To meet the requirement for such a node, we started the research that resulted in a 75
new architecture. The architecture employs all the benefits of the IoT concepts, supported 76
by general resource awareness. Initial results are presented as conference papers [12] and 77
[13], and this work represents their direct extension. The focus of the work [12] was on 78
the battery charging routines and hardware design that examines energy consumption in 79
different working nodes. The result is the hardware setup, which should allow the IoT 80
system to work for as long as possible. 81

Another founding block for this research is the modular software development ap- 82
proach, which was initially described in the paper [13]. Necessary changes in hardware 83
design must be followed with new approaches in software development to make the com- 84
plete system effective. Description of the IoT node’s software platform, the routines for 85
transitions to sleep mode, node update, and configuration steps are included from [13] 86
and extended to make the complete picture of the developed IoT node. 87

Besides many custom-built solutions in the market and the literature, the main re- 88
quirement was to stay with the widely used components, which are easily affordable 89
worldwide and backed up by comprehensive support communities. Many existing (en- 90
tirely off-grid) designs were built on high-end components that are either too expensive, 91
not easily replaceable, or without a broad enough support network. Having in mind main- 92
tainability, together with the focus on low energy consumption, the following main design 93
goals are formulated: 94

• Base the design on the standard components proven in the industrial envi- 95
ronment to reuse standardized solutions and increase maintainability 96
• Identify the top energy consumers within the standard IoT node and replace 97
them with the appropriate external components. In this way, energy consumption 98
should be reduced, and the maintainability level should remain the same 99
• Introduce redundancy for the critical elements of the design. This will in- 100
crease the system’s availability and general readiness (such as transmission mod- 101
ules and sensors) 102
• Introduce new working modes for the existing IoT component – to improve 103
system readiness and reduce energy consumption 104
• Include battery charging strategies as described in [12] 105
• Create an easily adaptable software model that will allow node behavior 106
change without installation or restart – to improve both maintainability and energy 107
consumption 108
• Support runtime changes of the working modes and make the system highly 109
responsive to the update requests 110
• Integrate the node into the digital twin to make the complete system more 111
controllable 112

All the requirements align with designing the IoT node with a higher readiness, bet- 113
ter maintainability, higher stability, and lower energy consumption. This paper presents 114
the results achieved in line with these guidelines. Section 2 represents a review of the 115
research whose concepts were adopted and updated during the development of the IoT 116
node. After that, hardware and software designs and energy management are elaborated 117
in the materials and methods sections. In the section Results, measured and estimated 118

4 Petar Rajković et al.

values are compared with the expected energy levels suggested by the default designs to 119
document used components. Ultimately, all benefits, challenges, and suggestions for fur- 120
ther research are pointed out. 121

2. Related Work 122

This research aims to define the energy and process-efficient IoT node that should 123
work in hazardous areas with contradictory requirements by exploring advances in hard- 124
ware and software. Analyzing energy usage, the IoT node spends some power during 125
standby, some when collecting data, some when processing them, and finally, when trans- 126
mitting to the Edge level. Since energy reduction could be achieved in every step, we 127
checked many studies to create a promising approach for the overall node design. 128

Study [16] advocates using power-saving modes and introducing execution cycles 129
with multiple sleep modes. This approach is constantly evolving, and [17] further intro- 130
duces a complex model of sleep states where each is used in separate process steps. In 131
[18], the advantages of decentralized IoT architecture were pointed out. We considered 132
this concept when developing general-purpose nodes that can perform different roles by 133
employing different software setups. This is in line with the recent findings presented in 134
[19] where one of the main recommendations is to create IoT networks based on the low- 135
est possible number of node types and processes. 136

Looking at the software side of the design, we focused on two main aspects: building 137
a highly adaptable software model that could be easily extended and employing control 138
mechanisms that could reconfigure real-time execution by changing the control flags. We 139
accepted the idea behind the task allocation algorithm to reduce the time required to pro- 140
cess the high workload in IoT [20]. The control process sets up a set of activation flags 141
that activate only necessary parts of the processing loop in specific loops. The same prin- 142
ciple was used when we tried to optimize the data processing routine and the size of syn- 143
chronization queues in runtime. 144

The study [21] brought the dependency inversion principle when the driver routines 145
for new sensors are developed. With this approach, the data collection part of the program 146
could be developed faster and with significantly fewer changes in the complete system. 147
Since our IoT node tends to be as general as possible, this approach enables flexibility 148
when integrating new sensors. The mentioned work brings a complete energy-efficient 149
framework based on several more design concepts, which could be obtained only up to 150
some portion due to different programming paradigms used in the current software design 151
of the suggested solution. 152

The contribution of the previous study is also by raising awareness of general energy 153
consumption reduction through software design. The research [22] initially raised the at- 154
tention of so-called energy bugs and hotspots resulting from the software design and 155
scheduled task execution. Further research from the same authors [23] provides a deeper 156
analysis of inter- and intra-task energy hotspots, with use cases and guidelines for mini- 157
mizing their impact. The suggestions are integrated into the primary execution model and 158
battery charging algorithms, similarly as suggested in [24]. They have been implemented 159
in the presented solution by decoupling the data collection and processing from the data 160
transmission routine. 161

Data transmission is critical since it uses a sizable part of the energy. The studies 162
[25, 26] give us an insight into the expected power consumption modes for the data 163

Resource-Aware Design of IoT Node 5

transmission phase when different scenarios and technologies are deployed. The general 164
suggestion is to keep transmission devices in the lowest possible energy regime as long 165
as possible. In the ideal case, the suggestion is to keep transmission equipment in sleep 166
mode for more than 99% of the time, regardless of the technology used. 167

For primary data transmission technology, LoRaWAN (Long Range Wide Area Net- 168
working) was a choice for our solution due to a higher transmission range and a longer 169
battery lifespan compared with similar technologies [27]. LoRaWAN is usually not the 170
first choice for the data transmission mechanism. Bluetooth-enabled devices are consid- 171
ered a standard solution, but their limited range could not be used as communication com- 172
ponents in the expected exploitation conditions. However, “design principles for selecting 173
hardware components subject to varying environmental conditions and application re- 174
quirements” are inherited from [28]. An excellent example of the usage of LoRaWAN 175
technology is presented in [29]. It describes the IoT node used in water management sys- 176
tems. The presented node works outdoors and has proven to use LoRa (Long-Range) 177
technologies for its reliability and excellent power consumption rate. 178

The IoT nodes are intended to work as a part of a more comprehensive system, and 179
it is necessary to define the environment that would allow fast recovery when the IoT 180
node needs to get refreshed or reconfigured. Firstly, the set of recommendations for the 181
software update processes in different IoT levels has been defined [7]. It was followed by 182
the establishment of a digital twin structure, which was recognized as a need to support 183
development and testing and later support when the system was in active usage [10]. Dur- 184
ing the research, dark launch expanded with feature flag deployment, which looked inter- 185
esting, with the possibility of a broader application [30]. It was based on the concept that 186
specific software features were enabled or disabled based on the value of the correspond- 187
ing flags. The feature would be active only when the flag was set. The flag could be set 188
or reset through the external interface, and the software behavior could be changed with- 189
out restarting or reinstalling. Based on the feature flags approach, we designed the ESP32 190
node’s main loop and all other software tasks. 191

The paper [31] describes a highly scalable solution that organizes IoT nodes for 192
monitoring hazardous areas. It envisions a case where the set of static IoT nodes is active 193
simultaneously with the set of mobile nodes and where the network can perform self- 194
healing up to some point. The next crucial point in the research [31] is an effective alarm- 195
ing process. The research defines the concept of “smart alerting for potential hazard 196
avoidance.” The design rules and the algorithms for raising alarms were adapted when 197
system parts reported problematic values, switched to backup routines, or stopped re- 198
sponding. 199

IoT nodes based on ESP32 microcontrollers whose communication part is based on 200
MQTT (Message Queuing Telemetry Transport) protocol are proven as a choice that 201
could support heavy computational requests. The research presented in [32] demonstrates 202
the usage of such a combination in the system dedicated to monitoring self-generated 203
energy during trading activities based on the Ethereum blockchain, which makes it appli- 204
cable for sensor network support. 205

The security in such systems is not at the highest possible level, and future work will 206
focus on this. Currently, the developed system relies on the standard security features 207
integrated into used components and protocols. According to [33], this is assumed to be 208
a potential security concern. Compared to other computing devices, IoT nodes have lower 209

6 Petar Rajković et al.

processing power, so specialized countermeasures against network attacks should be de- 210
signed [33]. Furthermore, the research presented in [34] explains all negative aspects of 211
the MQTT-SN (Message Queuing Telemetry Transport for Sensor Networks) protocol in 212
detail. 213

When it comes to energy management, the second part is charging strategies. In [35], 214
the authors discussed traditional charging control methods, such as constant current, volt- 215
age, pulse charging, and software-enabled battery management systems. We used some 216
principles of fuzzy logic charging as the extension of standard threshold-based charging, 217
such as an adaptive standard low threshold. The approach presented in [35] that we found 218
interesting is the predictive control model of energy storage systems. The study presented 219
in [36] explains 26 different battery charging strategies. This was important to us since it 220
explicitly focused on the charging characteristics of Li-ion batteries. It comprehensively 221
explains controlled features, cut-off conditions, and observed parameters. The suggested 222
multi-step-ahead predictions based on accumulated parameter values would help deter- 223
mine the right time to start charging. This approach was a base for our alarm-based and 224
controlled charging scenario. 225

With the anticipated growth of battery management systems by more than 50% an- 226
nually until 2030 [37], this research area is considered highly important and with the ex- 227
pected high-level improvements. This research also indicates the importance of machine 228
learning and building an adaptive battery management system that should consider mul- 229
tiple parameters for their operations. 230

 231
Table 1 The main features of similar solutions from literature 232

Feature WaterGrid-Sense [29]
E-Nose application

[38]
Fire detection [39] Presented solution

Transmission

protocols
LoRaWAN LoRaWAN

LoRaWAN, GPRS

optionally Wi-Fi and

Bluetooth

LoRaWAN, GPRS

optionally Wi-Fi and Blue-

tooth

LoRaWAN pro-

tocol class
A

Probably B, based

on the model

Probably B, based on

the model
C

Sensors
Fixed package of two sen-

sors
N-IGSS sensor node

Maximum 4 per de-

vice, various

Maximum 4 per device,

various

Processing unit
Microchip, non-specified

model
ESP32 ESP32 ESP32

Battery 3.7V, 1000mAh
Battery, non-speci-

fied
Battery, non-specified 3.6V, 3500mAh

Battery charging
Whenever sunlight de-

tected
Not Implemented Not Implemented

Adaptive charging algo-

rithm

Power option External solar panel
Possible installation

of solar panel

Possible installation of

solar panel

Integrated or external solar

panel

 233
Looking at the literature, many IoT-based solutions based on a single node can be 234

found. The most similar that we could identify are Water-Grid Sense [29], E-Nose appli- 235
cation to detect pollution hazards [38], and forest fire detection system [39] (Table 1). All 236
these solutions are based on LoRaWAN as the primary communication channel. The fire 237
detection system and our solution include a GPRS module as the backup channel. Forest 238

Resource-Aware Design of IoT Node 7

fire detection solutions anticipate higher energy consumption due to the higher usage rate 239
of GPRS; thus, they work at a much higher voltage level than others. E-nose and fire 240
detection applications did not focus on effective battery management but higher-volume 241
data usage. Regarding dimension, Water-Grid Sense is the smallest device, but it uses a 242
fixed package of two sensors optimized for low consumption. It encloses a smaller battery 243
and, as with our system, comes with a charging module. The difference in favor of our 244
solution is that we use an adaptive charging algorithm that ensures longer battery life. At 245
the same time, Water-Grid Sense charges the battery whenever sunlight is detected. The 246
option of the external solar panel is available in all solutions. Water-Grid sense theoreti- 247
cally could use an internal solar panel as our solution, but currently, this is impossible 248
since their casing is the smallest possible. 249

To create an energy-efficient IoT node dedicated to the specific setup, we had to 250
support a complex co-design, including hardware elements, execution mode adaptation, 251
new software design and update principles, and the definition of an adaptive battery 252
charging approach. Referenced work exposed brilliant ideas but primarily focused on a 253
single area of interest. At the same time, we aimed to combine all available techniques to 254
make the IoT node as energy-efficient as possible. 255

3. Hardware Design 256

As the introduction summarized, the main direction of the design process was to 257
create an IoT node based on standardized and worldwide available hardware components. 258
The solution should be solar-powered, battery-based, and equipped with some wireless 259
data emission device to integrate with higher levels. To reduce energy consumption, the 260
IoT system should be based on a hardware platform that enables active and hiber- 261
nate/sleep mode work. The node must be able to alternate working modes periodically or 262
as the result of specific signals. In the active mode, it should periodically check sensors, 263
read and process sensor data, and then send the retrieved values to the upper level. Further, 264
the selected components must have enough processing power, a standardized operating 265
system, and data storage capacity to integrate into the digital twin and enable remote di- 266
agnostics and control. 267

 268

3.1. Hardware Components 269

The market offers several microcontrollers that could act as the core for the IoT 270
nodes. Considering previous requirements, as the base component for the designed IoT 271
node, the ESP32-WROOM-32 SoC module has been chosen [41]. It is widely used in 272
industrial environments, and its modular design (Figure 2) supports work in different op- 273
eration modes defined by the states of internal components (Table 2). Its processing unit 274
consists of two central ESP32 cores and an ultra-low-power coprocessor (ULP coproces- 275
sor), which controls work in sleep mode. The ULP coprocessor is further supported with 276
a real-time clock memory (RTC memory), primarily used for saving and keeping values 277
during sleep mode. This memory allows active sensor data collection while two execution 278
cores are inactive. The connectivity part of ESP32 consists of the wireless radio, Wi-Fi, 279
and Bluetooth modules. For our design, integrated network modules were not adequate. 280
To make ESP32 usable in the off-grid setup, these modules should be based on protocols 281
with a much higher communication range, such as LoRaWAN and GSM (Global System 282
for Mobile Communications). Integrated Wi-Fi and Bluetooth could be used in a 283

8 Petar Rajković et al.

production plant environment, but when it comes to the range and energy usage, they are 284
not appropriate for remote areas. To keep the data exchange secure, ESP32 has integrated 285
IEEE 802.11 standard security features, secure boot flash encryption, and essential power 286
management to ensure the component’s sleep mode activity. These basic features ensure 287
enough security to be integrated with digital twins and to be updated OTA. 288

 289

 290
Figure 2 ESP 32 - main building blocks 291

 292
Table 2 ESP32 – comparison of active components in standard modes 293

Component Active mode
Modem

sleep

Light

sleep

Deep

sleep
Hibernation

ESP 32 cores + + paused

RTC memory + + + + +

ULP Coprocessor + + + +

Radio, Wi-Fi, and

Bluetooth
+

 294
Alongside network communication components, ESP32 offers a powerful peripheral 295

interface set that supports data collection from other hardware devices and sensors. Two 296
interfaces are supported in this category: I2C and RS485. ESP32 natively supports I2C 297
and comes with dedicated pins and communication routines. RS485 is a bit more critical 298
for communication and usage in hazardous areas. It is a protocol that supports asynchro- 299
nous serial communication with multiple devices and is suitable for industrial environ- 300
ments since it can connect to 32 devices with a cable 1200m long. It is less prone to 301
electrical noise. 302

Aside from ESP32, a few more components were necessary to complete the IoT 303
node. The protected lithium-ion battery of type 18650, with a capacity of 3500mAh and 304
working on 3.6V, was chosen. The battery is supplemented with a charge controller and 305
an adequate solar panel. Supporting the battery charging process is critical for such nodes, 306
so the chosen solar panels must be strong enough to enable successful recharge. 307

The complete hardware design – ESP32, battery, GSM unit, LoRaWAN module, 308
charger, and optional solar panel- are combined as a single device and enclosed in the 309
proper casing, certified for use in hazardous areas (Figure 3). Since the GSM and Lo- 310
RaWAN modules are used because of their range, the choice of ESP32 microcontroller 311
was a bit challenging. In the market, many similar devices, including support for I2C and 312

Resource-Aware Design of IoT Node 9

RS485, could be considered good candidates for the base component. Table 3 shows a 313
brief comparison of their most essential features. 314

 315

 316
Figure 3 IoT node for hazardous areas – left [13]: schematic display with interac- 317

tion between software and hardware elements, right: the look of the assembled device 318
 319
Table 3 Comparison of ESP32 and similar microcontrollers (extracted from [43]) 320

Controller
Clock Speed

(MHz)

Flash Memory

(MB)

Maximal Operating

Voltage

Price ratio

(against ESP32)

ESP32 240 4 3.6 1

Raspberry Pi Pico 133 2 5.5 1

STM32 480 2 3.6 3

Arduino Nano 16 0.03 5 2

Teensy 600 8 5 3.5

nRF52840 64 2 3.6 2

 321
ESP32 is one of the cheapest chipsets in the market and offers worldwide support 322

with a strong and responsive community. There are faster components like STM32 and 323
Teensy, but they are more expensive. ESP32 is second best in memory capacity and third 324
in the clock speed category, but it is the cheapest and works at the lowest voltage level. 325
In that light, it is also one of the components with the lowest energy consumption. The 326
advantage of Raspberry Pi, STM32, Teensy, and nRF52840 is that the ARM architecture 327
offers the base for more advanced software and hardware platforms, but with the current 328
setup, taking into consideration all the mentioned aspects (speed, data capacity, energy 329
consumption, and support community), ESP32 has been considered as the optimal choice. 330

 331

3.2. Working Modes 332

The mode when all components are running is considered active, while all the other 333
modes are considered sleep modes (Figure 4). In active mode, the controller has maximal 334

10 Petar Rajković et al.

processing power, and all communication means are active. Consequently, it uses the 335
most possible amount of energy and should be rarely used in configurations when energy 336
efficiency is the primary goal. 337

 338
Figure 4 Comparison of active elements in ESP32 standard working modes and 339

Controlled Active Mode 340
 341
Each sleep mode has a distinct set of active components. In modem sleep, periph- 342

erals and communication elements are disabled, while core and memory are active with 343
the ULP processor and RTC and RTC peripherals. Modem sleep is used when the node 344
actively collects sensor data and processes them locally without uploading them over the 345
network. This mode had the potential for standard use but was not adopted because no 346
external control was possible. The light sleep mode is designed to spare more energy since 347
the core and memory are paused. It allows fast wake-up upon the signal's arrival or after 348
the timer has elapsed. Its intended use is when the node only collects data from the sensor 349
array. 350

Resource-Aware Design of IoT Node 11

Deep sleep and hibernate modes are intended for use when a node is in the state 351
when waiting for the following command but with the ability to change its state as fast as 352
possible. In deep sleep mode, RTC parts and ULP coprocessors are only active, waiting 353
for the signals from the sensors. In hibernate mode, RTC is the only part that stays active. 354
So, in hibernate mode, everything is shut down in the node, and the node will wake up 355
only after a predefined time. 356

The working modes described are native to ESP32, and switching between them is 357
fully supported. Since the device spares significantly more energy when in active mode, 358
keeping the active mode as short as possible and switching between appropriate sleep 359
modes when necessary is essential. Keeping the node in the lowest sleep mode will sig- 360
nificantly reduce energy use. 361

However, for our implementation, we needed to slightly modify the mode system 362
and introduce a new working mode – the so-called controlled active module (CAM). 363
CAM is intended to replace active mode, modem sleep, and light sleep mode. The main 364
idea is to switch off the complete network communication subset in ESP32 since they are 365
not used. At the same time, the peripherals block will be kept active, allowing communi- 366
cation using external components and enabling the node to communicate with other pieces 367
of software. The activity of processing cores could be controlled through the software 368
routines, enabling the fast change of the state of active components. With this approach, 369
the node will have processing cores active for more time compared to the default active 370
mode for the same amount of energy. 371

 372

3.3. Communication Channels 373

As stated before, the ESP32’s communication channels had to be disabled because 374
of limited range and high energy consumption and replaced by LoRaWAN and GSM 375
modules. Considering all the previously described criteria, the LoRaWAN was the best 376
fit for the design. It defines the communication on the network level and supports the 377
protocol, which runs on the physical level and provides data exchange over long distances. 378
Overall, the LoRaWAN technology stack positively impacts the battery lifecycle, network 379
capacity, quality of service, safety, and security. It ensures stable bidirectional low-speed 380
communication between mobile devices and offers the possibility to develop specialized 381
and localized services. The data transfer speed is between 0.3 and 50kbps, which is as- 382
sumed to be a compromise between the connection range and the maximum message 383
length [44]. 384

The main drawback is that the communication under the LoRaWAN protocol does 385
not support data exchange between IoT nodes or other terminal devices. It supports com- 386
munication between IoT nodes and LoRa gateway devices and vice versa. In LoRaWAN 387
networks, it is possible to have three categories of node devices: A, B, and C. Only class 388
C, or bidirectional end devices, has been considered for the presented node design. After 389
every data package has been sent, the class C device has two short message receive time 390
windows. 391

Since the IoT nodes run in off-grid areas, they must have a backup communication 392
channel. When the LoRa channel gets interrupted or out of use, the node must be able to 393
continue sending collected data. The backup channel was realized on a SIM-based (Sub- 394
scriber Identification Module) GPRS/UMTS (General Packet Radio Service/Universal 395
Mobile Telecommunications System) connection. 396

12 Petar Rajković et al.

The system automatically switches to backup communication when the primary 397
channel gets disconnected. Communication in the backup channel is much more expen- 398
sive since it requires a billable connection via a mobile network operator. The added cost 399
is related to energy consumption. The GPRS/UMTS module uses more energy for its 400
work than the LoRa devices. For this reason, the switch to the backup communication 401
channel is the automatic switch to the alarm state. If the main channel becomes operative 402
again, the system automatically switches back to the LoRa connection and returns to nor- 403
mal operation mode. 404

4. Software Design 405

The software component of the IoT node design is developed on top of the Fre- 406
eRTOS [47] operating system. It is compatible with and supported by an ESP32 micro- 407
controller. Its main advantage is that it fully supports multitasking, catering to the latest 408
requirements of IoT devices. 409

 410

4.1. Software Processes 411

The software implementation of ESP32-based nodes is designed around the main 412
task: the core revolving routine. It could call other tasks for execution, and their number 413
is not limited. Additional tasks can either be controlled by the main task or triggered in 414
response to specific environmental signals. The main task consists of five steps (Figure 415
5), where each step calls specific tasks: 416

• Flow control is responsible for reading configurations and setting up process 417
flags and parameters, making the main loop go only through the necessary steps. 418

• Setup facilitates the configuration of control flags and enables or disables spe- 419
cific aspects of the system. It is responsible for switching between execution 420
nodes, managing the update process, and reporting data back to the digital twin 421

• The collection step manages communication with sensors and retrieves meas- 422
ured data. 423

• Processing is where collected data are verified and packed into synchronization 424
objects. The created objects are then placed into synchronization queues and pre- 425
pared for transmission. 426

• Transmission is when prepared synchronization objects are dequeued and sent 427
through the network using appropriate communication. 428

Various tasks are implemented in every step to facilitate the IoT node's operation. 429
These tasks fall into three main categories: setup and maintenance (indicated by red 430
graphic elements in Figure 5), data processing (light blue elements), sensor communica- 431
tion (green elements), and data transmission tasks (amber elements). Namely, as ex- 432
plained in detail in [13]: 433

• The all_param task encompasses a set of routines and data structures re- 434
sponsible for managing system setup parameters. 435
• The battery_charger task monitors the battery level and controls the charg- 436
ing procedure, ensuring the IoT node maintains sufficient power for uninterrupted 437
operation. 438
• The external event handler is the gateway for controlling the external net- 439
work. It is responsible for receiving and processing commands from the cloud or 440

Resource-Aware Design of IoT Node 13

other controlling devices and forcing processes such as OTA updates, immediate 441
battery charging, or a change of the execution mode. 442
• The alarm handler raises alarms when specific parameters reach predefined 443
critical values. As a result of its action, the node could go to the hibernate node, or 444
communication with a faulted external device could be terminated. 445
• I2C_comm and RS485_comm facilitate data exchange between the IoT 446
node and connected sensors using one of the protocols. They ensure efficient com- 447
munication and promptly support exchange routines. 448
• The GPS_comm task handles communication with the GPS (Global Posi- 449
tioning System) module. Accurate device positioning is crucial when the node is 450
installed on a moving object, such as a barge transporting crude oil in rivers. 451
• Processing step runs data_pack and telemetry_pack processes. They are 452
responsible for packing sensor readings (data_pack) or node’s status parameters 453
(telemetry_pack) into synchronization objects. 454
• The MQTT_SN_comm task manages the synchronization queue's capacity 455
and occupancy. It coordinates write processes from data producers and read pro- 456
cesses from data consumer tasks. 457
• LoRa_comm task supervises communication between the IoT node and the 458
Edge computer using the LoRaWAN protocol. 459
• GSM_comm task oversees the backup communication channel between the 460
IoT node and the Edge computer. 461

 462

 463
Figure 5 Main loop and support tasks running in the realized IoT node (as in [13]) 464

 465

4.2. Message Protocols 466

Devices at the Edge level are considered much more potent than IoT nodes and can 467
run more advanced software and communication equipment. This led to choosing the 468

14 Petar Rajković et al.

correct communication protocol focused on data delivered to the consuming Edge devices 469
not by their network addresses but as a function of their contents and interests. 470

The IoT node and Edge layer communication is realized using the MQTT-SN 471
(MQTT for Sensor Networks) protocol (Figure 6). It is a sub-variant of MQTT modified 472
for the wireless communication environment, characterized by low bandwidth, high link 473
failures, and short message length [46]. Since MQTT-SN is perfected for low-cost, bat- 474
tery-operated devices with limited processing and storage resources, it could fully support 475
the IoT node's hibernate mode and the LoRaWAN class C protocol. 476

 477

 478
Figure 6 Place of IoT nodes in broader ISA-95 technology stack and data exchange 479

means between layers (as introduced in [14]) 480
 481
The connection between Edge and upper levels could be fulfilled using MQTT, 482

which is an open and lightweight publish/subscribe protocol designed specifically for ma- 483
chine-to-machine and mobile applications [45]. The MQTT protocol is adequate since a 484
stable wired connection connects the Edge and cloud levels. Since variants of the same 485
protocol are used across the entire system, the whole structure has certain advantages in 486
system response to hazardous events, overall system reliability, data security, traffic re- 487
duction in the Edge-client connection, and the background for introducing digital twins. 488

 489

4.3. Task Synchronization Mechanism 490

The management of configuration parameters within the FreeRTOS environment 491
relies on established and widely recognized mechanisms. Specifically, semaphores regu- 492
late access to shared resources and effectively facilitate data exchange among tasks. To 493
improve efficiency, the IoT node uses internal synchronization queues (set up as the in- 494
ternal variables in all_param tasks) between collection and processing and between pro- 495
cessing and transmission steps. This way, steps that consume less energy could be per- 496
formed several times before the next step, which consumes more energy, would run. With 497
this approach, energy consumption in controlled active mode could be further reduced. 498

As previously elucidated, the primary objective of the IoT node centers around cap- 499
turing data from sensors via RS485 or I2C interfaces. Periodic data retrieval occurs con- 500
currently through the RS485_comm and I2C_comm tasks. These tasks write data to the 501
same message queue, guarded by semaphore. Consequently, data processing could remain 502
dormant until the queue is filled up and only switch to an active state. Once the buffer 503
contains enough data, the loop task proceeds with data validation and processing. The 504
processed values are then written in the message queue for transmission to the edge level. 505

This process is supported by I2C_comm and RS485_comm tasks. They execute con- 506
currently and write the values they read from sensors to the same message queue. At the 507
same time, task MQTT_SN_comm reads the items from the queue and prepares them to 508
be sent to the cloud (Figure 7). Using the three tasks mentioned, the semaphore approach 509
avoids eventual read/write hazards during concurrent access to the mqtt_msg queue. 510
Every task that should access the message queue waits until it is free and only enters the 511

Resource-Aware Design of IoT Node 15

critical section. The task releases the message queue when the read or write is done, and 512
the next task can access it. 513

 514
Figure 7 Data flow from sensors to transmission elements through message queues 515

and processing tasks 516
 517

Message queues are also used for data transmission, one for LoRaWAN and another 518
for the GSM module. The LoRa message queue does not need synchronization since each 519
data producer has only one data producer and consumer. On the other hand, the message 520
queue dedicated to the GSM module must be synchronized in the same way as the mes- 521
sage queue used for data collection from the sensors. It can receive data directly from the 522
processing step or data that failed to be sent using LoRa_comm. 523

5. Battery Charging Routines 524

An ideal energy consumption scenario involves standardized functionalities that 525
maintain consistent energy usage levels over an extended period. However, practical con- 526
straints often prevent such ideal conditions [36]. As previously discussed, different data 527
transmission devices exhibit significant variations in energy consumption. For instance, 528
scenarios involving updates or lost connections to sensor devices result in increased en- 529
ergy usage beyond the baseline. Furthermore, distinct active and sleep modes consume 530
varying amounts of energy depending on the volume of workload nodes have to perform. 531
Also, transitions between modes can trigger consumption peaks if specific initialization 532
procedures are required. As outlined earlier, energy usage during node operation depends 533
on the working mode and the frequency of necessary actions. 534

When evaluating data usage across the three phases of the node’s cycles, data pro- 535
cessing and data collection use a similar amount of energy. Compared to data transmis- 536
sion, data collection and processing use much less energy. Data transmission modules 537
exhibit substantial differences in range, speed, and data package volume, but in any case, 538
data transmission remains the most demanding energy task [37-40]. The battery's energy 539
level should always be adequate to ensure proper node operation fitness. For this reason, 540
a separate set of routines is developed and integrated into the IoT node’s software model. 541
It is intended to drive the charge controller and execute chosen charging strategies. 542

 543

5.1. Automatic Charging 544

The charging process periodically checks the battery's energy level in the automatic 545
charging mode. It starts if it reaches a standard low battery level (SL). The node continues 546
its operation while the battery is charging, and when it reaches a standard high level (SH), 547
the charging process stops. The charging controller is a separate component and does not 548

16 Petar Rajković et al.

affect the work of any other IoT node element. This approach could be problematic when 549
the node’s charging routine depends on solar power. Sunlight is available at most 50% of 550
the time, and the periods of active sunlight are not constant. Furthermore, the effect of the 551
other natural elements and construction properties of the device could reduce the period 552
of sunlight exposure. 553

 554
Figure 8 Ideal consumption setup with automatic charging mode 555

 556
Whenever the charging controller starts or stops the charging process, it sends this 557

information to the edge level using the telemetry call with a timestamp. These data are 558
collected at higher levels and used to analyze node functionality and act as a base for 559
future improved charging modes. They could also be used to identify malfunctions early. 560
The default charging process, if applied constantly, is envisioned to ensure longer battery 561
life. The best use case for most available battery types is if their power level varies be- 562
tween SL and SH thresholds, following the process as presented in Figure 8 . 563

 564

5.2. Alarm-Based and Controlled Charging 565

An automatic charging scenario is not always possible. First, it could be triggered at 566
night or when the sunlight is not bright enough. Then, the solar panel will not generate 567
enough power to raise the battery's energy level. When charging starts, but the energy 568
level is still going down, the alarm signal from the IoT node will trigger. The signal will 569
be received and registered at the edge level. Since the charging controller frequently reads 570
the battery's energy level, it could continue to trigger alarms that indicate that the energy 571
level is still reducing despite initiating the charging process (Figure 9, block “Report 572
charging issue”). If the energy level continues to reduce, it will eventually reach CL 573
(Charging Required Level). At that moment, the IoT node will send a higher priority 574
alarm to the Edge computer and reconfigure its operation strategy by reducing the number 575
of data transmission operations. If the battery level continues to degrade, after some time, 576
it will reach the alarm low (AL) threshold (Figure 10, left). This is considered the highest- 577
level alarm, and the node will stop all its operations and switch to hibernation sleep mode. 578
Up to that time, based on the data received in the Edge and then forwarded to the cloud 579
level, the operation engineers could decide what to do with the affected IoT node. 580

Resource-Aware Design of IoT Node 17

One of the simplest ways to prevent this situation is to enable the calculation of the 581
energy use depending on the time of the day and the introduction of an additional method 582
that will check if the charging process should start (Figure 9, block “start charging,” line 583
28). SL would be increased by some percentage (like 10 or 20%). In this case, the charging 584
routine will check the remaining time until sunset and the increased SL. If the energy 585
level falls to SL+10% and the remaining period of the day is, i.e., 10% sunlight, the charg- 586
ing process will start immediately. This simple and effective approach allows for addi- 587
tional charging periods with the lowest possible effect on battery life. The problem with 588
such an approach is that the node must have daily information about sunrise and sunset 589
and run more complex checks. 590

 591

 592
Figure 9 Charging controller routine incorporating alarm-based and controlled charging 593

(pseudocode) 594

18 Petar Rajković et al.

The charging controller's next operation mode is the controlled mode. This mode is 595
initiated from the edge level and intended to instantly trigger the charging process. Re- 596
gardless of the current battery level, the charging process will start immediately when the 597
control signal is received and the flag_forced_charging is set. 598

The mentioned control signal is followed by the requested high level (RH in the 599
further text); the battery will be charged until the requested level is reached, regardless of 600
the value set for SH (Figure 10, suitable; Figure 9, block “stop charging,” line 41). This 601
process does not change the SH level but is omitted during a single charging run. When 602
the battery level reaches RH, the charging process stops, and the node returns to the alarm- 603
based mode. The battery could lose power in the controlled charging mode, as in the au- 604
tomated charging mode. In this case, the same alarm procedure will run. Eventually, the 605
charging controller could be disabled by setting flag_charging_active to false. This hap- 606
pens regularly when the IoT node is connected to the power grid, but this situation is 607
outside the scope of our paper. 608

 609

 610
Figure 10 Battery recharge after the intensive drain (left) and the battery charging in 611

controlled mode (right) 612
 613

5.3. Short Term Improvements 614

As explained, making the charging process more adaptive and efficient is essential. 615
Considering that the transition to controlled charging mode with the predefined RH could 616
be triggered from the higher levels at any time, bringing a dose of safety, the process will 617
be automated to ensure less frequent (ideally never-happening) situations when the IoT 618
node goes to the alarm state. The charging controller regularly reads the battery status and 619
uploads (and stores locally) these data for further analysis. The average energy consump- 620
tion per hour (ACH) is calculated based on this. Since the node reads data from the sensors 621
during standard periods, the actual energy consumption could be an additional input for 622
deciding when to start charging. 623

The next improvement will be for the method running in the node that decides when 624
to start charging (Figure 9, block “start charging,” line 28). The update method will cal- 625
culate the sum of SL and the value resulting from multiplying ACH by the number of 626
hours until sunrise. If this sum is higher than the battery's current energy, the charging 627
process could start immediately, significantly reducing the risk of the transition to the 628
alarm state. Further improvements would include the weather report and checking if the 629
potential period with less sunlight is ahead. This way, the charging process could run up 630
to a higher threshold than SH, bringing the battery a higher operational period. It is 631

MAX

SH

SL

CL

0

RH

AL

MAX

SH

SL

CL

0

RH

AL

Resource-Aware Design of IoT Node 19

important to note that the charging frequency depends on the battery capacity and the 632
effectiveness of the solar panel and the charging component. With the standardized work- 633
ing mode, with two RS485 sensors attached and a LoRa module used for data transmis- 634
sion, our node will need one charge weekly or bi-weekly. This period is long, and the 635
weather could change several times. Also, if there is a need to use more expensive energy, 636
GPRS communication channel energy will be drained much faster. Thus, the possibility 637
to react fast and run charging is a necessity. 638

6. Results 639

The proposed solution is based on the ESP32 series of devices with added commu- 640
nication and power supply components (Figure 11). The node is designed to be robust 641
from the physical perspective, with easily reconfigurable hardware execution modes, and 642
flexible from the software design point of view. Operationally, it should run using the 643
lowest possible amount of energy while acquiring data from different interfaces. Since 644
the system has not only the ESP32 but also other components, the measurement must be 645
done in correlation with the entire system, not only the processor itself. The overall power 646
consumption combines the consumption of sensors (the setup with two RS485 inductive 647
distance sensors with a maximal 10Hz measuring rate), ESP32, and internal and external 648
communication modules. The usual test setup was with 100 execution setup daily. 649

The measurement has been performed in the laboratory and simulated field condi- 650
tions. The measured objective was the water level in the water tanks. We tested energy 651
consumption in the laboratory with regulated temperature settings. In the simulated field 652
conditions, we mainly tested battery charging routines. Simulated field conditions were 653
performed at the rooftop of the Faculty of Sciences, Niš, Serbia, where solar exposure is 654
somewhat average for Southern Europe – between 1.5 kWh/m2 in January and 6.5 655
kWh/m2 in July [48]. Since solar panels are usually certified for 1kWh/m2, the node is 656
usually charged with the nominal current. The node ran constant readings from the sensors 657
while the data processing and transmission frequency were controlled from the Edge com- 658
puter. The node is automatically reconfigured when the battery level reaches critical val- 659
ues. Digital multimeters GDM-8255A [49] were used as measuring equipment in the la- 660
boratory, and UNI-T UT71C [50] for the fieldwork. 661

 662

6.1. ESP32 Default Energy Levels 663

The default energy consumption data can be found in the related product datasheet 664
[41]. The consumption analysis started with the measurement for the node based entirely 665
on ESP32, where its internal communication modules are used. The software part is equal 666
in this and the setup with the external communication modules, so the execution mode is 667
assumed to be constant in the system. Internal modules are used only for the testbench 668
since they are unsuitable for remote areas. 669

The values shown in Table 4 represent standard energy consumption levels meas- 670
ured in laboratory conditions and vary by some percentage compared to the values from 671
the producer data sheet. Furthermore, some additional differences could be introduced 672
due to the influence of connected sensors. In the examined case, the node was connected 673
to different RS485-based sensors (Figure 11). 674

 675
 676

20 Petar Rajković et al.

Table 4 Expected values for energy consumption in ESP32-based nodes [42]. 677
 678

Power mode Description Typical power consumption

Power off
CHIP_PU is set to a low level; the chip

is powered off
0.1 µA

Hibernation RTC timer only 5 µA

Deep sleep
From only RTC timer + RTC memory to

ULP co-processor is powered on
10 – 150 µA

Light sleep ESP32 core is paused 0.8 mA

Modem sleep ESP32 core is powered

Slow speed:2-4 mA

Normal speed: 20-25 mA

Max speed: 30-50 mA

Active (RF working)

Receive - Transmit BT/BLE

Transmit 802.11g

Transmit 802.11b, OFDM 54 Mbps

Transmit 802.11.b, DSSS 1 Mbps

95-130 mA

180 mA

190 mA

240 mA

 679

6.2. Measured Values 680

As mentioned in the introduction, the opposing requirements for the designed nodes 681
are that they should be as ready as possible and use the lowest possible amount of energy. 682
In an important event, the node must immediately wake up, raise an alarm, and take the 683
necessary action. Deactivating the data transmission part is how to keep the ESP32 active 684
but use less power. This will not affect data processing and sensor connectivity, but the 685
consumption will be lower in CAM mode, as defined in 3.2. With the new working mode, 686
the node will be active in remote areas with lower power consumption compared with 687
standard active mode and modem sleep. The complete execution setup includes switching 688
between sleep modes and the CAM mode. 689

 690

 691
Figure 11 Finalized IoT node with one RS485-based sensor attached 692

 693
As seen from Table 5, if the standard active mode were used, the lowest possible 694

consumption would be at least 100 mA. The power consumption in CAM mode was up 695

Resource-Aware Design of IoT Node 21

to 36 mA, while the modem sleep with active processing cores worked between 45 and 696
50 mA. This means that CAM mode could successfully replace parts of the processing 697
routine where both active and modem sleep modes are running. The measured values for 698
modes with active processing outdoors were close to lab measurement, with a difference 699
of not more than 10%. 700

 701
Table 5 Comparison of measured values for the IoT consumption (Setup A – im- 702

proved design with CAM and external communication modules, Setup B – design relying 703
only on ESP32 internal modes and modules) 704

Process Operation setup
Setup A

lab (mA)

Setup A

field (mA)

Setup B

lab (mA)

Setup B

field (mA)

Light sleep + Sensors
Light sleep

ESP32 core is paused
7.5 8.4 7.8 8.5

Data processing only (ac-

tive mode)

Setup A – CAM

Setup B – Active mode
32 36 >100 >100

Data processing only

(modem sleep)

Setup A – CAM

Setup – Modem sleep
32 36 50 50

Collection + Processing
CAM/Active mode + 2 RS485

Each RS485 < 20 mA
69 72 149 160

Transmission only

(worst case)

Setup A: GSM

Setup B: Wi-Fi DSSS
480 412 270 290

Full cycle (standard case)
Setup A: CAM + Sensors+ LoRaWAN

Setup B: Active Mode + Sensors + Wi-Fi
98 104 200 200

Full cycle (worst case)
Setup A: CAM + Sensors+ GSM

Setup B: Active + Sensors + Wi-Fi DSSS
560 524 430 460

 705
The subsequent measurement is to connect sensors and measure the energy spent for 706

data collection and processing at once. The sensors are connected to ESP32 through the 707
RS485 interface. In this case, the total measured power consumption in CAM mode is 69 708
to 72 mA. The active components are ESP32 and two RS485 sensor arrays, whose con- 709
sumption level is a maximum of 20 mA per sensor. In this case, the computed consump- 710
tion was 36 + 2x20 = 76 mA. Still, the measured values remained around 70 mA in the 711
laboratory and just above this level in simulated field conditions (72 average, 78 mA 712
max). Compared to standard ESP32 active mode, the difference is significant, where con- 713
sumption is usually at 150-160 mA but could hit 200 mA if unoptimized software loops 714
are used. 715

The collection-only scenario was checked when the ESP32 was put into light sleep 716
mode. The node in light sleep mode with attached sensors uses around 8 mA regardless 717
of the scenario. The measurement in field conditions shows an average energy need of 718
less than 10% more. In the period when the node needs to perform data collection period- 719
ically, light sleep mode is the logical choice. The ESP32 core and memory will be paused, 720
but with RTC components active, the node can react to requests. The consumption in light 721
sleep mode is as low as 7.5 mA with a peak value of 8.5. The consumption of the ESP32 722
itself is about one mA (0.8 mA as per documentation), but, simultaneously, the battery 723
should also power sensors on stand-by, thus the difference. 724

22 Petar Rajković et al.

The following important measurement is the consumption level when all cycle ele- 725
ments run – data collection, processing, and transmission. In a setup with only ESP32 726
components as the transmission device, the Wi-Fi in SoftAP (software-enabled access 727
point) or STA (station) mode is enabled. In this case, the total consumption reaches 200 728
mA (compared with 190 mA from documentation). The usage is at the expected level, yet 729
another argument for using the CAM is against using the full active mode as much as 730
possible. So, from the calculation, it could be concluded that the communication part of 731
the ESP32, in the measured case, uses energy equivalent to 110 mA. 732

LoRaWAN is the communication carrier for complete cycle measurement with 733
CAM mode. Specifically, as the communication part of the LoRaWAN module, SX1268 734
[51] was installed. It uses 22 mA for data transmission and five mA for data reception. 735
As mentioned, the LoRa works in class C since the node must operate in active and sleep 736
modes. The measured value for the LoRa communication, when data are taken from the 737
message queue and emitted, is at the level of 28 mA for transmission and 6.4 mA for 738
reception. The overall energy used when the complete cycle is active with the LoRa part 739
is around 100 mA, significantly under 200 mA, measured if Wi-Fi was running (Figure 740
12). 741

 742
Figure 12 Comparison of energy consumption for proposed (Setup A) and standard (Setup B) con- 743

figurations 744

In the case of regular use, the LoRa is more efficient than internal communication 745
modules. In urgent cases, the system needs communication to contact the device outside 746
the internal network. LoRaWAN or integrated Wi-Fi and Bluetooth will not be helpful 747
when the communication is broken down. The GSM module is introduced to manage such 748
an event. The consumption of the GSM module is significantly higher than anything else, 749
and the maximal measured level in field condition was 412 mA (345 mA as in specifica- 750
tion) when active and 21 mA when idle (19 mA as in specification). Measured values in 751
the lab were higher (around 480 mA) because connection establishing takes longer. The 752
used GSM module is SIM800H [52] with GPRS data mode (1Rx, 4Tx) on EGSM900. 753

Resource-Aware Design of IoT Node 23

Measured values are higher than specified but in the acceptable ratio. Setting up the con- 754
nection could be the critical point in both LoRaWAN and GPRS data modules. It could 755
take some time to execute, and the power consumption could be high during that period. 756
The average of the GPRS module was 580 mA, while the theoretical peak could reach 757
even 2000 mA. This fact is one of the reasons why introducing message queues and re- 758
ducing the number of data transmission calls (when possible) is also essential. 759

When checking the complete cycle consumption with GSM, the average values are 760
much higher than in any other setup. It was up to 560 mA in the lab, while outside reaches 761
almost 530. Compared to GPS, the energy used in configuration with Wi-Fi running in 762
DSSS mode was not more than 460. This is the only category where process-level updates 763
do not bring benefits since the transmission part uses way higher amount of energy. This 764
case clearly shows the importance of message queues and reducing transmission calls. 765
The transmission mode could be adjusted to shrink the drawback of GPRS data module 766
usage. Since the GPRS could manage a higher data volume, the system could decrease 767
the number of transmissions and thus reduce overall energy consumption. 768

 769

6.3. Consumption Analysis for Different Execution Modes 770

Measuring the energy consumption for the different elements of the IoT node offers 771
a realistic overview of the energy consumption reduction rate. These values could also 772
estimate energy consumption for various system configurations. By employing buffers, 773
the number of data processing and transmitting operations would be reduced, positively 774
impacting the consumed energy level. Table 6 and Figure 13 show proposed energy-sav- 775
ing configurations and maximal measured values for every step in the process that will be 776
used for estimate. In this case, the measurements have been done only in the laboratory. 777

 778
Table 6 Maximal measured values (in mA) for every step in the node operation 779

System configuration
Sensor

reading
Sleep1 Processing Sleep2 Transmission Sleep

A + LoRaWAN 40 - 36 - 28 8

A + Wi-Fi 40 - 36 - 110 8

A + GPRS 40 - 36 - 412 8

B + LoRaWAN 40 - 36 8 28 8

B+ Wi-Fi 40 - 36 8 110 8

B + GPRS 40 - 36 8 412 8

C + LoRaWAN 40 8 36 8 28 8

C + Wi-Fi 40 8 36 8 110 8

C + GPRS 40 8 36 8 412 8

 780
The execution modes are named A, B, and C. The difference is in the usage of mes- 781

sage buffers. In execution mode A, there are no buffers. Each data collection is followed 782
by data processing and transmission. Operation mode B introduced a buffer before data 783
transmission. This means the node will read the data, process them, and put them into the 784
queue. Data will be sent to the Edge level when the queue is full. Execution mode C is 785
the update of mode B and brings an additional buffer between data collection and pro- 786
cessing. 787

24 Petar Rajković et al.

The maximal measured value for the sensor reading segment was close to 40mA, 788
which was used as the estimation value. For the processing part, the baseline value of 789
36mA was considered, while all sleep modes were calculated as having the top consump- 790
tion level of 8mA. Transmission rates were acquired as 28mA for the LoRaWAN module, 791
110 for Wi-Fi, and 412 for the GPRS external module. 792

 793

 794
Figure 13 Different configuration variants supported by IoT node, derived from gen- 795

eral state-based energy consumption model 796
 797
The primary operation mode (Figure 13, A) is the sequence read-process-transmit 798

followed by the sleep period. Depending on the current process or state of the overall 799
system, the node could go either in the CAM or light sleep mode. This way, the node does 800
not need to store any data locally and can go to sleep mode at the lowest cost possible. 801

Since the part of the process that consumes a considerable amount of energy is the 802
transmission part, introducing a buffer before sending data to the Edge level brings the 803
best gain. The node would wake up periodically, read sensor data, process them, and store 804
them in the internal buffer (Figure 13, B). This will reduce the number of data transmis- 805
sions every cycle. This is especially important when using the GPRS module since its 806
connection setting-up part could quickly drain the battery. Note the difference in setup A 807
with GPRS when the measured value of 61600 mA was much greater than the estimated 808
49600. It is partly due to indoor conditions, but the consumption is significant. More than 809
five times compared with LoRaWAN and about 2.5 times with Wi-Fi. 810

With the buffer introduced between the data collection and data processing parts 811
(Figure 13, C) sensors will read data periodically, pump them to the message queue, and 812
the system will transit to sleep mode. After several iterations, the processing part will get 813
activated. It will take the data from the queue, process it, and then store it in the queue 814
before transmission. Data transmission will run when enough data gets stored in the sec- 815
ond queue. 816

The analysis was based on 100 complete work cycles to provide a more comprehen- 817
sive overview of the proposed solution's expected effect. The energy usage was lowest 818
when the configuration variant C was applied, and the LoRaWAN was used as the 819

Resource-Aware Design of IoT Node 25

communication module. The worst case from the energy consumption point of view was 820
when strategy A was applied, and the GPRS was used for data transmission. 821

A comparison between these three variants is shown in Table 7. The estimate was 822
calculated on the base of 100 sensor reading cycles. Comparing one variant, it is evident 823
that the lowest consumption is in configuration with the LoRaWAN as a transmitting 824
device. The difference is more significant in variant A than in B and C. The number of 825
total transmissions is in direct proportion to the energy use, so the best effect is with the 826
default operation mode. In variant A, the system with the LoRaWAN uses slightly above 827
one-half of the energy used by the system with the ESP32 native Wi-Fi (50.64%). The 828
energy usage is the highest with the configurations with the GPRS transmitter. Variant A 829
uses more than five times more energy than the configuration with the LoRaWAN and 830
more than 2.5 times more than the native Wi-Fi transmitter. 831

 832
Table 7 Effects of proposed node configuration variants equivalent to 100 cycles 833

Configuration

variant

Communication

module

Estimated

(mA)

Measured

(mA)

Transmission

count

Comparison with na-

tive setup (Wi-Fi)

Comparison with

native variant (A)

A LoRaWAN 11200 11800 100 50.64% 100%

A ESP32 Radio 19400 23300 100 100% 100%

A GPRS 49600 61600 100 264.38% 100%

B LoRaWAN 8760 8820 10 88.47% 74.75%

B ESP32 Radio 9580 9970 10 100% 42.79%

B GPRS 12600 13800 10 138.42% 22.40%

C LoRaWAN 5276 5282 1 97.87% 44.76%

C ESP32 Radio 5358 5397 1 100% 23.16%

C GPRS 5660 5780 1 107.09% 9.38%

 834
Variants B and C have the most significant effect when the GPRS is used. Since the 835

amount of time required for data acquisition is always the same, the number of data trans- 836
missions in variant B is reduced. In contrast, in variant C, further reductions are achieved 837
by joining the processing part for 10 data acquisitions. In that way, in variant B, the data 838
are transmitted only ten times for 100 reading cycles, and in variant C, only once. Variant 839
C brings the most minor differences between configurations with different communica- 840
tion modules. It is on the level of 10% (107.09% vs 97.87%). For variant B, this difference 841
is almost 50% (138.42% vs 88.47%). In variant C, the configuration with the GPRS uses 842
less than one-tenth (9.38%) of energy compared to variant A. For the Wi-Fi as the trans- 843
mitting module, the energy usage is reduced to a quarter (23.16%), and for the Lo- 844
RaWAN-based configuration, it is close to half (44.76%). 845

This proves that buffer use is effective whenever possible, which means that the 846
delay of transmitted data is not problematic for the entire system's efficiency in every 847
case. By adjusting the count of cycles in the digital twin and pushing the update to the 848
end node, the energy consumption could be adjusted in the node without physical access. 849

7. Discussion and Future Work 850

The primary purpose of the proposed system is to run in a remote and hazardous 851
area as efficiently as possible. The system must operate on batteries and use every 852

26 Petar Rajković et al.

opportunity to reduce energy usage. To achieve this goal, the following set of improve- 853
ments was realized over the standardized ESP32-based IoT node: 854
• The new active working mode will be introduced by disabling modules that con- 855

sume high energy values. 856
• Define the transition to the adequate sleep mode, depending on the node’s usage 857

cycle stage. 858
• Add external communication components that are more suitable for the expected 859

use and have lower energy consumption. 860
• Enable redundancy whenever possible to make the system more dependable. 861
• Create an adaptive software model that will allow easy reconfiguration of the sys- 862

tem’s working mode without needing restart or hardware replacement. 863
• Introduce data buffers between system segments and make the operation of the 864

more significant energy consumers less frequent. 865
Having in mind the requested purpose, the designed IoT node must be not only en- 866

ergy efficient but also highly dependable. It should be able to supervise various errors, 867
failures, and technical problems adequately. Hardware and software design modifications 868
were implemented during the proposed node's work. Hardware-level interventions are 869
mostly related to the installation of redundant parts – both sensors and communication 870
lines. In that sense, the IoT node has two I2C and two RS485 communication channels, 871
while the transmitting device based on the LoRaWAN is backed up with the GPRS mod- 872
ule. 873

Regarding future improvement, the widest open point is data security. ESP32 runs 874
with integrated IEEE 802.11 security for IoT nodes, but it has been proven that this level 875
is not enough in every case. So, improvements in this area would be one of the future 876
research directions. For the moment, an additional security measure is that access to IoT 877
nodes is possible only through the Edge level or, in exceptional cases, through a device 878
that has an authentication token provided. 879

The effect of the implemented updates is presented in Table 5. The node's power 880
consumption is closer to modem sleep than active mode. This is expected since the com- 881
munication part uses a massive portion of energy. With sensors enabled, measured con- 882
sumption is around 70 mA, which is between one-half and one-third of the consumption 883
when the ESP32 is active. When the complete system is operational, the consumption of 884
the designed IoT node is about one-half compared to the node running on the ESP32 in 885
fully active mode (98 mA vs 200 mA). 886

Improvements to the rest of the system are made at the software level. The crucial 887
point was the implementation of setup routines that could directly influence the behavior 888
of the main loop and change the execution variant of the node only by setting the feature 889
flags. The control over these processes was moved to the cloud to create a digital twin. 890
From this point, the updates could be directly passed down to the IoT nodes through the 891
Edge computer. In that way, the control is centralized, and the status of each node will be 892
successfully kept on the cloud. 893

Thanks to this feature, the node can easily switch operation modes and return to a 894
more energy-efficient configuration. In variant A (Figure 13), the node runs the collec- 895
tion-processing-transmitting sequence followed by the sleep period. In this mode, there is 896
no need to store the collected data locally since they are once uploaded to a higher level. 897
This mode uses the highest energy value but ensures the exact data reporting process. 898

Resource-Aware Design of IoT Node 27

 899

 900
Figure 14 Comparison of energy consumption across a different combination of var- 901

iants and communication devices (The X-axis represents the number of data collection 902
events from sensors, and the Y-axis is energy consumption in mA) 903

 904
Configuration variant B is intended to reduce the number of data transmissions, but 905

it cannot be used in every case. It could be used only when the acceptable delay between 906

28 Petar Rajković et al.

data retrieval and transmission is long enough. The highest gain of this approach is when 907
the GPRS data transmission method must be used since it consumes a significant amount 908
of energy while setting up a connection to the network. 909

Configuration variant C is the best solution from the point of view of energy con- 910
sumption, but it brings additional limitations. First, the time until data are uploaded to the 911
Edge level is even higher. Second, since the data processing part does not follow every 912
data collection, there is some risk that potentially wrong values could be discovered later 913
than in cases B and C. 914

In the end, sometimes, IoT nodes must be on constant alert and run actively as much 915
as possible. Since the consumption in fully active nodes is far from acceptable, one solu- 916
tion for the ESP32-based systems is the introduction of CAM when only radio, Wi-Fi, 917
and Bluetooth are disabled. In that way, the system could stay in an active state longer 918
and use less energy. The working mode would be the most like configuration variant B in 919
this case. 920

As can be seen, each of the three working modes has advantages and disadvantages, 921
and the operation mode would probably need to be adjusted during the node's life cycle. 922
The possibility of changing the node behavior through the software interface would help 923
in this case. The use of the mentioned digital twin is crucially important here. The end 924
user could adjust node behavior in the digital twin, run the simulations on data transfer 925
and energy consumption, and then push the change to the actual node. 926

Figure 14 Compares energy consumption with different operation modes and com- 927
munication modules enabled. Subfigures A, C, and E (of Figure 14) show the effect of 928
buffering when the same transmission module is used. The energy use is the highest in 929
the case without buffering (configuration A). When the pre-transmit buffer is included 930
(scenario B), energy is reduced up to some point, and with the second buffer, the reduction 931
is more significant. Scenario C with LoRaWAN is at an energy usage level of 42.63% 932
compared to scenario A with the same communication module (20122 mA vs 47200 mA). 933
The difference between scenarios A and C with the integrated Wi-Fi module is 21.71% 934
(20237 mA vs 93200 mA). The biggest gain is with GPRS, where the energy needed for 935
scenario C is only 8.36% (20620 mA vs 246400 mA). 936

When comparing the same operating scenario against different communication mod- 937
ules (Figure 14 – B, D, and F), the most significant difference is for scenario A. The 938
introduction of a buffer would close the gaps. For scenario C, the power usage with the 939
GPRS module is less than 3% higher than with LoRaWAN. 940

This result is promising for implementing the nodes running in an off-grid regime. 941
When they operate in near real-time with the most effective configuration (scenario A and 942
with LoRaWAN), the node uses a predictable amount of energy. The battery could last 943
several more days without recharging than the design based only on ESP32. The node 944
must adapt its behavior if the external conditions worsen or the LoRaWAN module stops 945
working correctly. So, it should switch to more energy-consuming communication de- 946
vices, such as the GPRS. With the consumption estimate, the node could calculate the 947
remaining energy and raise the appropriate alarm. Depending on the battery charging rate, 948
buffering could be turned on, and the message queue size could be adjusted. In this way, 949
the node could reduce energy consumption on the cost of near real-time reporting. 950

In the cloud system, in the database layer, each IoT node has been represented by 951
the configuration data sequence. These data are sensor addresses, retrieval and retention 952

Resource-Aware Design of IoT Node 29

period, boundary (minimal and maximal), or set of accepted values. The copy of all these 953
data is then moved to the memory of the IoT node connected to specific sensors. In this 954
way, every IoT node is fully aware of all connected sensors and their behavior. In this 955
situation, verifying the sensor or connection line failure is more accessible. The most 956
common conditions are when the IoT receives data from a sensor in an irregular interval, 957
with values out of bounds, or when no response from the sensor can be detected. The 958
response to all the mentioned scenarios could be predefined in the IoT node software, 959
making the system reaction faster and more predictable. Also, the software change, if 960
needed, is a much easier task in IoT than at the sensor network level. 961

 962

7.1. Comparison with Industrial Standard Solution 963

Since IoT is an essential element of the Industry 4.0 landscape, many successful 964
solutions are available. During the development process, we designed our solution based 965
on our experience with Cassia [53], Aegex [54], and BARTEC [55], and with special 966
requirements faced in hazardous and remote areas for the device with low build, mainte- 967
nance, and operational costs (Table 8). 968

The usual approach for hazardous areas is gateway-centric architecture. This means 969
that the complete system consists of multiple devices, some of which are sensors, some 970
of which are concentration nodes, and some of which are gateways. Such approaches 971
bring robust and very potent solutions, but from an explorational point of view, they are 972
more convenient for more extensive facilities with constant human presence. The gate- 973
way-centric approach comes with dedicated on-site supporting hardware. The three IoT 974
systems have their own hardware devices for monitoring and maintenance. Our solution 975
could be monitored by any device with LoRaWAN connectivity, authorized through our 976
cloud, and installed with dedicated software. Another advantage of gateway-centric ar- 977
chitecture is the possibility of extending the system over the API, while the presented 978
solution only supports application-level software updates. Our solution has been devel- 979
oped to work in IoT-centric mode, where only one type of node plays a leading role in 980
data collection, aggregation, and transmission processes. 981

Regarding connectivity and supported sensors, Aegex and BARTEC support manu- 982
facturer-specific sensors as separate devices that could be added to a network plug-and- 983
play manner using LAN, Bluetooth, or Wi-Fi. At the same time, Cassia's solution relies 984
only on Bluetooth for connection. On the other hand, our solution works on a bit lower 985
level, offering I2C and RS485 connectivity for any low-level sensor with such possibility. 986
Our solution allows connecting to 4 sensors, the same as the Aegex solution. Aegex so- 987
lution would need a gateway for each IoT node, while our solution gateway node is un- 988
necessary. 989

The most similar solution to our node is BARTEC HY LOG. It is a complete system 990
in one enclosure dedicated to monitoring the quantity of hydrogen. This device also sup- 991
ports GSM connectivity and GPS tracking by default, but it is committed to only one task. 992
Like our IoT node, it has an incorporated solar panel and can run independently from a 993
wired power supply. Other systems support integration with GSM, GPS, and solar-pow- 994
ered battery power supplies, but only through external devices, which makes the system 995
much more extensive and complex for installation. 996

The proposed solution is a complete system in one device, intended to work without 997
human intervention and with the possibility of connecting to any sensor running supported 998

30 Petar Rajković et al.

connection interfaces. It offers software-level flexibility, which means that the nodes in 999
the same network can perform different tasks. Since all nodes are equal, maintenance 1000
constantly replaces a malfunctioned device with a new one and initiates the OTA setup. 1001

 1002
Table 8 The main features of similar industrial solutions 1003

Feature Cassia [53] Aegex [54] BARTEC [55] Presented solution

Architecture type Gateway-centric
Gateway-centric

and IoT-centric

Gateway-centric and

partly IoT-centric
IoT-centric

On-site hardware

support

Cassia IoT Access

Controller with Blue-

tooth plug-and-play

Custom-built, in-

trinsically safe

tablet device,

Wi-Fi connected

Custom-build An-

droid-base smartphone

None specific, but any device sup-

porting LoRaWAN standard

Software extensi-

bility

Application-level

API level

Application-level

API level

Application-level

API level
Application-level

Sensor connec-

tivity

Separate sensors with

Bluetooth connectivity

Specific sup-

ported sensors

Plug-and-Play

(LAN, Bluetooth,

Wi-Fi)

Specific supported

sensors

Plug-and-Play (LAN,

Bluetooth, Wi-Fi)

Any sensor able to connect I2C or

RS485

Software level adaptation

Number of sen-

sors per device
Practically unlimited

8 sensors per

gateway or 4 per

endpoint device

Practically unlimited,

1 for BARTEC HY

LOG

4 per device

GSM module External Integrated
External, except BAR-

TEC HY LOG
Integrated

GPS module External Integrated
External, except BAR-

TEC HY LOG
Integrated

Power option
AC or DC with battery

backup

AC or DC with

battery backup

External solar

system

AC,

Replaceable battery or

solar for BARTEC

HYLOG

Integrated or external solar system

 1004

7.2. Reliability Analysis and Next Steps 1005

Future work will enhance IoT nodes by employing redundancy and reliability im- 1006
provement schemes, such as failure partners. In this way, nodes will be able to cover more 1007
scenarios that are outside their current niche. Currently, redundancy is supported on a 1008
sensor level. A single IoT node can monitor multiple sensor devices of the same type 1009
(usually two), and they can act as failure partners. In this scenario, the operation node 1010
uses one sensor until its return values are within a predefined range. When the sensor 1011
returns unbalanced or out of the predefined range values, the IoT node will raise the alarm 1012
and switch to the backup sensor. This complete control is done on the software level. It is 1013
worth mentioning that such an approach will result in lower energy consumption but with 1014
lower flexibility. 1015

The update of the failure partner scenario at the sensor level will be the approach 1016
when both sensors are active simultaneously. In this case, the IoT node compares results, 1017
and when one of them starts generating invalid values, the IoT node completely switches 1018

Resource-Aware Design of IoT Node 31

to the one that functions correctly. The sensor in a failure state could then be shut down, 1019
and an adequate alarm could be generated. When the sensor malfunction gets repaired or 1020
replaced, it will send the notification signal to the IoT node, which will start the recovery 1021
procedure. This approach does not guarantee 100% reliability since there is always a 1022
chance that both sensors could go to the failure state. In this case, the system will react by 1023
raising the highest priority alarm. The same type of alarm will also be raised when the 1024
sensor gets to an error state, but no redundancy device is installed. When only one sensor 1025
is present and it fails, the situation is beyond software-directed recovery, and physical 1026
intervention must be done. This update will also be entirely on a software level. 1027

One of the limits is the possibility of replacing the processing and communication 1028
modules. They are in the device casing, so any repair or replacement action would require 1029
node disconnection and replacement. For this reason, introducing redundant IoT nodes 1030
will be one of the possible solutions. Another possibility for improvement would be re- 1031
configuring the complete network by introducing different IoT nodes with different roles. 1032
When one would be used only for data collection, the others could be used for data pro- 1033
cessing and transmission. This way, the system would be more robust and reliable but at 1034
a higher maintenance cost since more nodes must be employed and more software vari- 1035
ants must be maintained. Such an improvement would move the architecture towards a 1036
gateway-centric model, but with all nodes running the same hardware. 1037

The introduction of redundant IoT nodes is the solution to handle cases with hard- 1038
ware errors. In a configuration with two IoT nodes, both have an equal structure and have 1039
the same software installed. One of them acts as a master, and the other one is a slave. 1040
The configuration with master and slave IoT nodes is a shift away from IoT-centric design 1041
since both nodes must be connected to the same set of sensors over the communication 1042
line. This would result in more expensive solutions and a significant shift to gateway- 1043
centric architecture. Compared to redundant partner design, the difference is that only the 1044
master can trigger data exchange with the Edge level. At the same time, the slave will 1045
only listen to the traffic and receive the data sent by the sensors. In this situation, the 1046
master IoT node is active, and the slave is in the so-called sniffer mode. When the IoT 1047
node is in the sniffer node, it sends no data to higher levels (Edge computer). 1048

When the slave node does not receive the keep-alive message for the predefined 1049
period, it will try to connect to the master node (ping). If there is no response from the 1050
master node, the slave will switch to the active (master) mode. At that moment, the former 1051
slave IoT node will take over the complete functionality of the former master and set up 1052
all the functions needed for the sensor and Edge layers. This procedure will be executed 1053
without human intervention, and when such an incident happens, the new master node 1054
will send a high-level alarm to the Edge layer. Also, regarding software updates or hard- 1055
ware replacements, one node could be shut down for updates while the other will continue 1056
to collect measurements. Research in this direction would also switch the deployment 1057
paradigm to gateway-centric design, bringing higher reliability but at a higher mainte- 1058
nance cost. With such an update, the solution will be more suitable for more extensive 1059
deployments and leave the niche it currently holds. Expanding communication to higher 1060
levels will focus on security. Currently, both ESP32 and additional communication mod- 1061
ules support basic 802.11 security standards. Since this could be easily broken, one of the 1062
focuses for the next phase will be the acquisition of advanced security protocols for IoT 1063
devices. 1064

32 Petar Rajković et al.

The presented research was focused on the design of the single node. In terms of 1065
scalability, it is equal to the scalability of its building blocks. The most important feature 1066
of the design is the possibility of integrating the IoT node into broader systems. The node 1067
can communicate with the environment using two channels (LoRaWAN and GSM) and, 1068
optionally, two channels that come as part of ESP32 (Wi-Fi and Bluetooth). The proposed 1069
IoT nodes could theoretically cover unlimited sensing devices by participating in the more 1070
comprehensive network. Each IoT node could connect to RS485 and I2C and transmit 1071
data to the Edge level. Using the MQTT-SN protocol, the designed IoT node can connect 1072
to every system that supports such communication. 1073

Improvements in the battery charging algorithm would be necessary for future de- 1074
sign improvements. As the first step, we introduced externally controlled charging, which 1075
could be triggered from the Cloud or Edge level and force the IoT node to start to charge 1076
the battery. Next, we replaced simple threshold-based charging with an improved process 1077
that considers the current battery level, the estimated energy consumption, and the time 1078
until the next sunrise. The focus is currently on defining the method based on the im- 1079
proved techniques and machine learning to define autonomous models, which will ensure, 1080
if possible, IoT node operation in the off-grid environment. 1081

8. Conclusions 1082

The paper introduces a novel combination of energy-efficient hardware selection 1083
and adaptive software control to manage power consumption autonomously. Multiple 1084
limitation factors, such as casing design, cost, and the worldwide availability of used 1085
components, drove the design request. The starting point was a solely used ESP32, and 1086
during the development, the inefficient hardware elements were replaced, and an autono- 1087
mous power supply system was integrated. This was a challenge because used compo- 1088
nents were often designed to run in factory conditions without power or connectivity lim- 1089
itations. Thanks to the advanced operating system of the ESP32 node, further improve- 1090
ments were made through the set of software implementations and updates, including the 1091
definition of the optimized working mode. By integrating hardware and software optimi- 1092
zations, this work improves upon traditional IoT designs for Industry 4.0, offering en- 1093
hanced efficiency for deployment in remote and hazardous environments. This research 1094
was conducted in parallel with investigating diverse deployment strategies for client soft- 1095
ware across various ISA-95 layers. Throughout this process, the node was integrated into 1096
a digital twin structure in the cloud, and the possibility of the software OTA update and 1097
monitoring was enabled. Overall, all software design and hardware configuration optimi- 1098
zations aimed to enhance energy efficiency (Table 9), and this goal was achieved by: 1099

• Implementing different battery charging routines to maximize energy collec- 1100
tion effectiveness. Since the standard battery charging routine triggers relatively 1101
rarely (once a week or bi-weekly), automatic charging could start at night or in bad 1102
weather, resulting in no energy gain. To suppress this, a controlled charging mode, 1103
initiated from the Edge level, was implemented, which could trigger battery charge 1104
on demand, by a predefined schedule, or based on the weather forecast. 1105
• Utilizing external low-power communication components. The LoRaWAN 1106
component for real-time transmission reduces energy use by nearly half (50.64%). 1107
• Defining a new controlled active mode optimized for the anticipated use. The 1108
new mode with the communication part disabled utilizes 72% of the energy used 1109

Resource-Aware Design of IoT Node 33

in comparable modem sleep mode (36 mA vs. 50 mA) and only 40% of the power 1110
that would model sleep mode with active sensors (69 mA vs. 149-200 mA) would 1111
use. A similar ratio applies when sensors and the LoRaWAN module are active – 1112
98 mA vs. 200 mA when ESP32 is in standard active mode with sensors enabled. 1113
• Implementing adaptive software that ensures seamless transitions between 1114
active and sleep modes. Based on the required measurement, processing, and trans- 1115
mission frequencies, the controlling software will decide when to switch the active 1116
components off and reduce energy consumption. 1117
• Integration into digital twin that allows early warning mechanisms and OTA 1118
updates. The frequency of transmission of node health parameters to digital twin 1119
could be configured, but their size is the equivalent of a single packet containing 1120
data collected from sensors. Usually, it is enough to run such a telemetry for once 1121
after 1000 data collection cycles. The additional energy consumption caused by 1122
such a process would be less than 0.1%. 1123
• Using message buffers to reduce the number of data transmissions. For the 1124
most common scenario with LoRaWAN, using a buffer of size ten will result in an 1125
energy reduction of 25%, while using a buffer of size 100 will result in a reduction 1126
of up to 55%. When a message buffer of size 100 is used, the total energy con- 1127
sumption will be very close regardless of the transmission module used. 1128

The more notable gain is when GPRS is used for transmission. If a buffer of only 1129
ten messages were used, only 22.40% of the initially required energy would be used. In 1130
contrast, with a buffer size of 100, the consumption will be reduced to 9.38%. Notably, 1131
this approach introduces a trade-off: while it reduces energy usage, reporting to the Edge 1132
layer will be less frequent. 1133
 1134

Table 9 Energy-saving enhancements 1135

Update Compared element
Energy

Reduction

CAM Mode ESP32 Light Sleep 20 – 30%

CAM Mode ESP32 Active Mode 45 – 55%

CAM + Sensors
Sensor reading and ESP32 processing in ac-

tive mode
50 – 70%

LoRaWAN ESP32 integrated Wi-Fi 50%

Transmission buffer of

size 100

Immediate transmission upon processing.

The used energy is nearly equal regardless

of the transmission device

55 – 90%

 1136
Continued improvement efforts are directed toward enhancing system reliability, 1137

fault tolerance, information security, and overall system readiness and availability. As a 1138
preliminary step, we envision enhancing reliability by introducing additional redundancy 1139
at the IoT level, bolstering robustness and error resilience. Further improvements to the 1140
battery charging subsystem will also run in parallel with ongoing node development, aim- 1141
ing to extend battery life and mitigate the risk of power depletion. An ancillary outcome 1142
of this research is a set of design recommendations formulated during the enhancement 1143
process: 1144

34 Petar Rajković et al.

• Standardized Components: Adhere to proven standardized components 1145
that have demonstrated reliability in real-world conditions. 1146
• Module Disabling and Replacement: Permanently disable or replace mod- 1147
ules that fail to meet performance expectations. 1148
• Feature Flags for Dark Mode: Introduce feature flags to enable dark mode 1149
in regular software operations (not exclusively for software updates). 1150
• Message Queues and Buffering: External management of message queues 1151
and buffering must be employed to adapt the node's operation dynamically. 1152
• Integration with Digital Twins: Enable permanent monitoring by integrat- 1153
ing IoT nodes with digital twins. 1154

While the presented node operates within a specific industrial context, the solutions 1155
it embodies transcend disciplinary boundaries. Authors must remain receptive to diverse 1156
concepts, regardless of their research origins. This study underscores the ongoing need to 1157
continually enhance energy-efficient component usage, evaluating and incorporating so- 1158
lutions as they prove sufficient. 1159

 1160
 1161
Acknowledgments: This work has been supported by the cost action CA 19135 CERCIRAS (Con- 1162
necting Education and Research Communities for an Innovative Resource Aware Society). This 1163
work has been funded by the Ministry of Education, Science, and Technological Development of 1164
the Republic of Serbia, grant number 451-03-68/2022-14/ 200102 1165

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 1166
study's design, data collection, analysis, interpretation, manuscript writing, or decision to publish 1167
the results. 1168

 1169

Nomenclature 1170

Acronym Description

ACH Average energy Consumption per Hour

AL Alarm Low energy level in battery.

CAM Controlled Active Mode

CL Charging required Level

ESP32 Low-power microcontrollers are widely used in IoT applications.

Ex e
The class of device enclosure constructed and certified as explosion-

protected according to the Increased Safety standard.

FreeRTOS
Free Real Time Operation System. Operation system native to ESP32

controller

GPRS
General Packet Radio Service, data transfer standard for mobile net-

works

GPS Global Positioning System. Satellite-based radio navigation system.

GSM
Global System for Mobile communications, standard for mobile net-

works

I2C
Inter-Integrated Circuit. Serial communication bus used to attach

lower speed sensors

IEEE Institute of Electrical and Electronics Engineers

Resource-Aware Design of IoT Node 35

IoT Internet of Things

ISA-95
Standard from the International Society of Automation for developing

an automated interface between enterprise and control systems.

LoRa
Low Radiation. Network protocol to wirelessly connect battery-pow-

ered devices.

MQTT Message Queuing Telemetry Transport protocol

MQTT-SN Message Queuing Telemetry Transport for Sensor Networks protocol

OTA
Over-The-Air. Update to an embedded system that is delivered

through a wireless network

RH Requested High level. Battery level where charging should stop.

RS485
Recommended Standard #485. The standard for serial communication

between devices

RTC Real-Time Clock

SH Standard High battery level

SIM
Subscriber Identification Module. The card is used to enable mobile

communication for devices.

SL Standard Low Battery Level

ULP
Ultra-Low Power. Processing unit optimized for low energy consump-

tion.

UMTS
Universal Mobile Telecommunication System. Cellular system for

network based on GSM

 1171

References 1172

1. Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of Things is a revolutionary approach for 1173
future technology enhancement: a review. Journal of Big data, 6(1), 1-21. 1174

2. Paiola, M., & Gebauer, H. (2020). Internet of things technologies, digital servitization and business 1175
model innovation in BtoB manufacturing firms. Industrial Marketing Management, 89, 245-264. 1176

3. Qu, Y. J., X. G. Ming, Z. W. Liu, X. Y. Zhang, and Z. T. Hou. "Smart manufacturing systems: state 1177
of the art and future trends." The International Journal of Advanced Manufacturing Technology 103 1178
(2019): 3751-3768. 1179

4. Aheleroff, S., Xu, X., Lu, Y., Aristizabal, M., Velásquez, J. P., Joa, B., & Valencia, Y. (2020). IoT- 1180
enabled smart appliances under industry 4.0: A case study. Advanced engineering informatics, 43, 1181
101043. 1182

5. Brous, P., Janssen, M., & Herder, P. (2020). The dual effects of the Internet of Things (IoT): A 1183
systematic review of the benefits and risks of IoT adoption by organizations. International Journal 1184
of Information Management, 51, 101952. 1185

6. Phuyal, S., Bista, D., & Bista, R. (2020). Challenges, opportunities, and future directions of smart 1186
manufacturing: a state of art review. Sustainable Futures, 2, 100023. 1187

7. Aleksić, D. S., Janković, D. S., & Stoimenov, L. V. (2012). A case study on the object-oriented 1188
framework for modeling product families with the dominant variation of the topology in the one- 1189
of-a-kind production. The International Journal of Advanced Manufacturing Technology, 59, 397- 1190
412. 1191

8. Aleksic, D. S., Jankovic, D. S., & Rajkovic, P. (2017). Product configurators in SME one-of-a-kind 1192
production with the dominant variation of the topology in a hybrid manufacturing cloud. The Inter- 1193
national Journal of Advanced Manufacturing Technology, 92, 2145-2167. 1194

36 Petar Rajković et al.

9. Rajković, P.; Aleksić, D.; Djordjević, A.; Janković, D. Hybrid Software Deployment Strategy for 1195
Complex Industrial Systems. Electronics 2022, 11, 2186. https://doi.org/10.3390/electron- 1196
ics11142186 1197

10. Rajković, P., Aleksić, D., Janković, D., Milenković, A., & Đorđević, A. (2021, September). Re- 1198
source Awareness in Complex Industrial Systems–A Strategy for Software Updates. In Proceedings 1199
of the First Workshop on Connecting Education and Research Communities for an Innovative Re- 1200
source Aware Society (CERCIRAS), Novi Sad, Serbia (Vol. 2). 1201

11. ISA-95 standard page, available online: https://www.isa.org/standards-and-publications/isa-stand- 1202
ards/isa-standards-committees/isa95, last accessed on February 26th, 2023 1203

12. Rajković, P., Aleksić, D., Janković, D. (2024). The Implementation of Battery Charging Strategy 1204
for IoT Nodes. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 1205
2023. Lecture Notes in Computer Science, vol 14352. Springer, Cham. https://doi.org/10.1007/978- 1206
3-031-48803-0_4 1207

13. P. Rajković, A. Djordjević, D.Aleksić, D. Janković, Usage of Modular Software Development for 1208
IoT Nodes— A Case Study, Proceedings of the Tenth Workshop on Software Quality Analysis, 1209
Monitoring, Improvement, and Applications SQAMIA 2023, Bratislava, Slovakia, September 1210
2023, pp. 114-125, (https://ceur-ws.org/Vol-3588/p11.pdf) 1211

14. Guidelines for integrated risk assessment and management in large industrial areas, https://www- 1212
pub.iaea.org/MTCD/publications/PDF/te_994_prn.pdf, last accessed on April 22nd, 2023 1213

15. Increase safety Ex e standards, available online: https://www.nsw.gov.au/testsafe/electrical/explo- 1214
sive-atmosphere/increased-safety, last accessed on February 26th, 2023 1215

16. Andres-Maldonado, P., Lauridsen, M., Ameigeiras, P., & Lopez-Soler, J. M. (2019). Analytical 1216
modeling and experimental validation of NB-IoT device energy consumption. IEEE Internet of 1217
Things Journal, 6(3), 5691-5701. 1218

17. Anbazhagan, S., & Mugelan, R. K. (2024). Energy efficiency optimization of NB-IoT using inte- 1219
grated Proxy & ERAI technique. Results in Engineering, 23, 102419. 1220
https://doi.org/10.1016/j.rineng.2024.102419 1221

18. Mocnej, J., Miškuf, M., Papcun, P., & Zolotová, I. (2018). Impact of edge computing paradigm on 1222
energy consumption in IoT. IFAC-PapersOnLine, 51(6), 162-167. 1223

19. Monteil, T. (2023). Integration of green aspect inside internet of things standard. In 2023 congress 1224
in computer science, computer engineering, & applied computing (CSCE). IEEE. 1225
https://doi.org/10.1109/csce60160.2023.00289 1226

20. Dos Anjos, J. C., Gross, J. L., Matteussi, K. J., González, G. V., Leithardt, V. R., & Geyer, C. F. 1227
(2021). An algorithm to minimize energy consumption and elapsed time for IoT workloads in a 1228
hybrid architecture. Sensors, 21(9), 2914. 1229

21. Uelschen, M.; Schaarschmidt, M. (2022). Software Design of Energy-Aware Peripheral Control for 1230
Sustainable Internet-of-Things Devices. In Proceedings of the 55th Hawaii International Confer- 1231
ence on System Sciences, Maui, HI, USA, 4–7 January 2022. 1232

22. Shekarisaz, M., Thiele, L., & Kargahi, M. (2021). Automatic energy-hotspot detection and elimi- 1233
nation in real-time deeply embedded systems. In 2021 IEEE Real-Time Systems Symposium 1234
(RTSS). IEEE. https://doi.org/10.1109/rtss52674.2021.00020 1235

23. Shekarisaz, M., Kargahi, M., & Thiele, L. (2024). Inter-Task Energy-Hotspot Elimination in Fixed- 1236
Priority Real-Time Embedded Systems. IEEE Transactions on Computer-Aided Design of Inte- 1237
grated Circuits and Systems, 1. https://doi.org/10.1109/tcad.2024.3372447 1238

24. Schaarschmidt, M., Uelschen, M., & Pulvermüller, E. (2022). Hunting energy bugs in embedded 1239
systems: A software-model-in-the-loop approach. Electronics, 11(13), 1937. 1240
https://doi.org/10.3390/electronics11131937 1241

25. Bouguera, T.; Diouris, J.-F.; Chaillout, J.-J.; Jaouadi, R.; Andrieux, G. Energy Consumption Model 1242
for Sensor Nodes Based on LoRa and LoRaWAN. Sensors 2018, 18, 2104. 1243
https://doi.org/10.3390/s18072104 1244

26. Rajab, H., Cinkler, T., & Bouguera, T. (2021). Evaluation of Energy Consumption of LPWAN 1245
Technologies, available at Research Square, DOI: 10.21203/rs.3.rs-343897/v1 1246

Resource-Aware Design of IoT Node 37

27. Al-Kashoash, H. A., & Kemp, A. H. (2016). Comparison of 6LoWPAN and LPWAN for the Inter- 1247
net of Things. Australian Journal of Electrical and Electronics Engineering, 13(4), 268-274. DOI: 1248
10.1080/1448837X.2017.1409920 1249

28. Jeon, K. E., She, J., Xue, J., Kim, S. H., & Park, S. (2019). luXbeacon—A batteryless beacon for 1250
green IoT: Design, modeling, and field tests. IEEE Internet of Things Journal, 6(3), 5001-5012. 1251

29. Khutsoane, O., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2019). Watergrid-sense: A lora- 1252
based sensor node for industrial iot applications. IEEE Sensors Journal, 20(5), 2722-2729. 1253

30. Fowler, M. DarkLaunching, April 2020. 1254

31. Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers' 1255
safety in construction sites with real-time alarming, monitoring, and positioning strategies. Auto- 1256
mation in Construction, 88, 73-86. DOI: 10.1016/j.autcon.2017.12.033 1257

32. Baig, M. J. A., Iqbal, M. T., Jamil, M., & Khan, J. (2021). Design and implementation of an open- 1258
Source IoT and blockchain-based peer-to-peer energy trading platform using ESP32-S2, Node-Red 1259
and, MQTT protocol. Energy reports, 7, 5733-5746. 1260

33. Mcginthy, J. M., & Michaels, A. J. (2019). Secure industrial Internet of Things critical infrastructure 1261
node design. IEEE Internet of Things Journal, 6(5), 8021-8037. 1262

34. Roldán-Gómez, J., Carrillo-Mondéjar, J., Castelo Gómez, J. M., & Ruiz-Villafranca, S. (2022). 1263
Security Analysis of the MQTT-SN Protocol for the Internet of Things. Applied Sciences, 12(21), 1264
10991. 1265

35. Banguero, E., Correcher, A., Pérez-Navarro, Á., Morant, F., & Aristizabal, A. (2018). A review on 1266
battery charging and discharging control 1267

36. Bose, B., Garg, A., Panigrahi, B. K., & Kim, J. (2022). Study on Li-ion battery fast charging strat- 1268
egies: Review, challenges, and proposed charging framework. Journal of Energy Storage, 55, 1269
105507. 1270

37. Battery Management System Market Research Report: By Battery Type, Connectivity, Topology, 1271
Vertical—Global Industry Analysis and Forecast to 2030—Global Industry Analysis and Demand 1272
Forecast to 2030. 1273

38. Kumar, K., Chaudhri, S. N., Rajput, N. S., Shvetsov, A. V., Sahal, R., & Alsamhi, S. H. (2023). An 1274
iot-enabled e-nose for remote detection and monitoring of airborne pollution hazards using lora 1275
network protocol. Sensors, 23(10), 4885. https://doi.org/10.3390/s23104885 1276

39. Muralidhar, T. V., Sandeep, V. V. S., Manohar, P., Krishna, M. L., Ruthvik, K., & Bagwari, S. 1277
(2024). An iot based real time forest fire detection & alerting system using lora communication. In 1278
2024 11th international conference on signal processing and integrated networks (SPIN). IEEE. 1279
https://doi.org/10.1109/spin60856.2024.10512122 1280

40. Ensworth, J. F., & Reynolds, M. S. (2017). BLE-backscatter: Ultralow-power IoT nodes compatible 1281
with Bluetooth 4.0 low energy (BLE) smartphones and tablets. IEEE Transactions on Microwave 1282
Theory and Techniques, 65(9), 3360-3368. OI: 10.1109/TMTT.2017.2687866 1283

41. ESP32-WROOM-32 Datasheet, available online: https://cdn-shop.adafruit.com/product- 1284
files/3320/3320_module_datasheet.pdf last accessed on February 25th, 2023 1285

42. ESP32 Series Datasheet, available online: https://www.espressif.com/sites/default/files/documen- 1286
tation/esp32_datasheet_en.pdf last accessed on February 25th, 2023 1287

43. ESP32 alternatives - finding the best microcontroller for your project needs. (n.d.). Espboards.dev. 1288
available online, https://www.espboards.dev/blog/esp32-alternatives/ last accessed on September 1289
20th, 2024 1290

44. Sundaram, J. P. S., Du, W., & Zhao, Z. (2019). A survey on lora networking: Research problems, 1291
current solutions, and open issues. IEEE Communications Surveys & Tutorials, 22(1), 371-388. 1292
DOI: 10.1109/COMST.2019.2949598 1293

45. Stanford-Clark, A., & Truong, H. L. (2013). Mqtt for sensor networks (mqtt-sn) protocol specifica- 1294
tion. International business machines (IBM) Corporation version, 1(2), 1-28. 1295

38 Petar Rajković et al.

46. Jia, K., Xiao, J., Fan, S., & He, G. (2018). A mqtt/mqtt-sn-based user energy management system 1296
for automated residential demand response: Formal verification and cyber-physical performance 1297
evaluation. Applied Sciences, 8(7), 1035. DOI: doi.org/10.3390/app8071035 1298

47. FreeRTOS resource page, available online: https://www.freertos.org/, last accessed on February 1299
26th, 2023 1300

48. Potić, I., Golić, R., & Joksimović, T. (2016). Analysis of insolation potential of Knjaževac Munic- 1301
ipality (Serbia) using multi-criteria approach. Renewable and Sustainable Energy Reviews, 56, 1302
235–245. https://doi.org/10.1016/j.rser.2015.11.056 1303

49. GDM-8255A Dual Display Digital Multimeter Factsheet, available online: https://www.gwin- 1304
stek.com/en-global/products/detail/GDM-8255A, last accessed on February 25th, 2023 1305

50. UT71C digital multimeter, available online: https://meters.uni-trend.com/product/ut71-series/, last 1306
accessed on February 25th, 2023 1307

51. LoRaWAN module SimTech SX1268 Factsheet, available online: https://www.semtech.com/prod- 1308
ucts/wireless-rf/lora-connect/sx1268, last accessed on February 25th, 2023 1309

52. SimCom SIM800H GSM module resource page, available online: 1310
https://datasheetspdf.com/pdf/823439/SIMCom/SIM800H/1, last accessed on February 25th, 2023 1311

53. Cassia Networks. Industrial IoT Products and Solutions, available online: https://www.cassianet- 1312
works.com/bluetooth-iot-solutions/industrial-iot/, last accessed September 22nd, 2024. 1313

54. Ventulett, T. Aegex IoT Platform for Hazardous Locations, available online: https://aegex.com/im- 1314
ages/uploads/Aegex_IoT_Platform_For_Hazardous_Locations_FINAL-1.pdf /, last accessed Sep- 1315
tember 22nd, 2024. 1316

55. Industrial Internet of Things for hazardous areas: potential for the optimisation of existing plants 1317
Whitepaper, available online: https://bartec.com/fileadmin/2-Products_and_Solutions/2-5- 1318
Smart_Factories/ACS_Whitepaper_EN.pdf, last accessed September 22nd, 2024. 1319

