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Abstract: As the Internet of Things (IoT) nodes become one of the cornerstones of Industry 4.0, 14 
they tend to be incorporated into every aspect of production automation. This paper addresses the 15 
challenge of designing low-power IoT nodes based on standardized components for deployment in 16 
remote, off-grid, industrial, and hazardous environments where energy efficiency and autonomy are 17 
critical. The proposed design integrates hardware-software co-design, replacing standard hardware 18 
setup with energy-efficient components, solar-powered batteries, and dynamic working modes to 19 
reduce energy consumption. Software elements were designed with the possibility of over-the-air 20 
updates and reconfiguration. Next, battery charging routines are optimized, and the node is inte- 21 
grated into a cloud-based digital twin with centralized control over the complete operation cycle. 22 
The proposed node architecture achieves an energy reduction of up to 50% and, in some configu- 23 
rations, reduces consumption by up to one-tenth compared to conventional designs. The additional 24 
result is a set of design recommendations when the standard components must be adapted for harsh 25 
environments. 26 

Keywords: internet of things, resource awareness, industry 4.0, hardware-software codesign 27 

1. Introduction and Background 28 

The IoT represents a world of relatively small devices connected to networks that 29 
can capture, use, and exchange data [1]. This emerging paradigm has spread over business 30 
integration [2] and industrial automation in recent years. It created benefits for smart man- 31 
ufacturing [3] and Industry 4.0 [4], fueling the advances considered the new industrial 32 
revolution. Integrating IoT devices with increased computing power brought benefits not 33 
envisioned a decade ago [5]. Installing such devices to the production lines initially facil- 34 
itates the data exchange with control systems. As a primary consequence, the reaction of 35 
the complete production systems becomes faster, better, and more accurate. With more 36 
extensive and detailed data sets, the production enterprises could initiate the changes in 37 
the planning process and give an additional plus to the production [6].  38 
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Our research group has designed software components for different manufacturing 39 
systems for over a decade. The research has been focused on solutions targeting the plan- 40 
ning [7], execution [8], development [9], and deployment [10] of the software for indus- 41 
trial systems at various levels according to ISA-95 (ISA – International Society of Auto- 42 
mation) standards [11]. The requirements and challenges vary from level to level, but 43 
operational efficiency is a must. The research presented in this paper focuses on ISA-95 44 
levels 0 and 1. Levels 0 and 1 consist of sensor networks, actuators, and other devices that 45 
bring data to IoT nodes. Such nodes sometimes operate in complex and demanding envi- 46 
ronments, aiming to be self-sustainable as much as possible. In such a case, the design 47 
must consider that the device will run in harsh exploitation using minimal power and 48 
network resources. 49 

 50 

 51 
Figure 1 Developed IoT node before sealing in the safety Ex e casing 52 

 53 
Industrial hazardous areas, such as processing refineries, are the parts of the plants 54 

and industrial facilities where the environmental effects could permanently damage hu- 55 
man health or threaten safety by emitting harmful gases or chemicals and where small 56 
parameter changes could cause an explosion [14]. This environment implies that any for- 57 
eign object brought in (such as sensors and IoT nodes) must be designed with minimal 58 
environmental impact. In this light, any additional wiring and connection to different 59 
pieces of equipment is a source of high potential risk. Safety standards [15] imply that 60 
equipment must be packed into Ex e enclosures (Figure 1). The complete node and all 61 
communication devices, batteries, and charge controllers should be in the verified casings 62 
(ideally in the same casing), and the node's building and operational costs should be the 63 
lowest possible.  64 

The IoT nodes are considered to communicate with Edge computers. Since the com- 65 
munication between the IoT and Edge layer must be set up and maintained, selecting the 66 
wireless network will avoid additional wiring. This connection is also essential to make 67 
remote OTA (Over-the-air) configuration and management highly efficient.  68 

An effective wireless connection is especially needed for mobile nodes in vehicles 69 
that carry dangerous or explosive materials. These vehicles need constant monitoring of 70 
the transported substance. Unlike stationary devices, mobile devices’ location must be 71 
monitored in addition to all the standard values. It is essential to note that Edge computers 72 
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in such a scenario are usually not in the same network or physically close, so the proper 73 
communication protocol must be defined or chosen. 74 

To meet the requirement for such a node, we started the research that resulted in a 75 
new architecture. The architecture employs all the benefits of the IoT concepts, supported 76 
by general resource awareness. Initial results are presented as conference papers [12] and 77 
[13], and this work represents their direct extension. The focus of the work [12] was on 78 
the battery charging routines and hardware design that examines energy consumption in 79 
different working nodes. The result is the hardware setup, which should allow the IoT 80 
system to work for as long as possible.  81 

Another founding block for this research is the modular software development ap- 82 
proach, which was initially described in the paper [13]. Necessary changes in hardware 83 
design must be followed with new approaches in software development to make the com- 84 
plete system effective. Description of the IoT node’s software platform, the routines for 85 
transitions to sleep mode, node update, and configuration steps are included from [13] 86 
and extended to make the complete picture of the developed IoT node. 87 

Besides many custom-built solutions in the market and the literature, the main re- 88 
quirement was to stay with the widely used components, which are easily affordable 89 
worldwide and backed up by comprehensive support communities. Many existing (en- 90 
tirely off-grid) designs were built on high-end components that are either too expensive, 91 
not easily replaceable, or without a broad enough support network. Having in mind main- 92 
tainability, together with the focus on low energy consumption, the following main design 93 
goals are formulated: 94 

• Base the design on the standard components proven in the industrial envi- 95 
ronment to reuse standardized solutions and increase maintainability 96 
• Identify the top energy consumers within the standard IoT node and replace 97 
them with the appropriate external components. In this way, energy consumption 98 
should be reduced, and the maintainability level should remain the same  99 
• Introduce redundancy for the critical elements of the design. This will in- 100 
crease the system’s availability and general readiness (such as transmission mod- 101 
ules and sensors) 102 
• Introduce new working modes for the existing IoT component – to improve 103 
system readiness and reduce energy consumption 104 
• Include battery charging strategies as described in [12] 105 
• Create an easily adaptable software model that will allow node behavior 106 
change without installation or restart – to improve both maintainability and energy 107 
consumption 108 
• Support runtime changes of the working modes and make the system highly 109 
responsive to the update requests 110 
• Integrate the node into the digital twin to make the complete system more 111 
controllable 112 

All the requirements align with designing the IoT node with a higher readiness, bet- 113 
ter maintainability, higher stability, and lower energy consumption. This paper presents 114 
the results achieved in line with these guidelines. Section 2 represents a review of the 115 
research whose concepts were adopted and updated during the development of the IoT 116 
node. After that, hardware and software designs and energy management are elaborated 117 
in the materials and methods sections. In the section Results, measured and estimated 118 
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values are compared with the expected energy levels suggested by the default designs to 119 
document used components. Ultimately, all benefits, challenges, and suggestions for fur- 120 
ther research are pointed out. 121 

2. Related Work 122 

This research aims to define the energy and process-efficient IoT node that should 123 
work in hazardous areas with contradictory requirements by exploring advances in hard- 124 
ware and software. Analyzing energy usage, the IoT node spends some power during 125 
standby, some when collecting data, some when processing them, and finally, when trans- 126 
mitting to the Edge level. Since energy reduction could be achieved in every step, we 127 
checked many studies to create a promising approach for the overall node design. 128 

Study [16] advocates using power-saving modes and introducing execution cycles 129 
with multiple sleep modes. This approach is constantly evolving, and [17] further intro- 130 
duces a complex model of sleep states where each is used in separate process steps. In 131 
[18], the advantages of decentralized IoT architecture were pointed out. We considered 132 
this concept when developing general-purpose nodes that can perform different roles by 133 
employing different software setups. This is in line with the recent findings presented in 134 
[19] where one of the main recommendations is to create IoT networks based on the low- 135 
est possible number of node types and processes.  136 

Looking at the software side of the design, we focused on two main aspects: building 137 
a highly adaptable software model that could be easily extended and employing control 138 
mechanisms that could reconfigure real-time execution by changing the control flags. We 139 
accepted the idea behind the task allocation algorithm to reduce the time required to pro- 140 
cess the high workload in IoT [20]. The control process sets up a set of activation flags 141 
that activate only necessary parts of the processing loop in specific loops. The same prin- 142 
ciple was used when we tried to optimize the data processing routine and the size of syn- 143 
chronization queues in runtime.  144 

The study [21] brought the dependency inversion principle when the driver routines 145 
for new sensors are developed. With this approach, the data collection part of the program 146 
could be developed faster and with significantly fewer changes in the complete system. 147 
Since our IoT node tends to be as general as possible, this approach enables flexibility 148 
when integrating new sensors. The mentioned work brings a complete energy-efficient 149 
framework based on several more design concepts, which could be obtained only up to 150 
some portion due to different programming paradigms used in the current software design 151 
of the suggested solution. 152 

The contribution of the previous study is also by raising awareness of general energy 153 
consumption reduction through software design. The research [22] initially raised the at- 154 
tention of so-called energy bugs and hotspots resulting from the software design and 155 
scheduled task execution. Further research from the same authors [23] provides a deeper 156 
analysis of inter- and intra-task energy hotspots, with use cases and guidelines for mini- 157 
mizing their impact. The suggestions are integrated into the primary execution model and 158 
battery charging algorithms, similarly as suggested in [24]. They have been implemented 159 
in the presented solution by decoupling the data collection and processing from the data 160 
transmission routine.  161 

Data transmission is critical since it uses a sizable part of the energy. The studies 162 
[25, 26] give us an insight into the expected power consumption modes for the data 163 
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transmission phase when different scenarios and technologies are deployed. The general 164 
suggestion is to keep transmission devices in the lowest possible energy regime as long 165 
as possible. In the ideal case, the suggestion is to keep transmission equipment in sleep 166 
mode for more than 99% of the time, regardless of the technology used. 167 

For primary data transmission technology, LoRaWAN (Long Range Wide Area Net- 168 
working) was a choice for our solution due to a higher transmission range and a longer 169 
battery lifespan compared with similar technologies [27]. LoRaWAN is usually not the 170 
first choice for the data transmission mechanism. Bluetooth-enabled devices are consid- 171 
ered a standard solution, but their limited range could not be used as communication com- 172 
ponents in the expected exploitation conditions. However, “design principles for selecting 173 
hardware components subject to varying environmental conditions and application re- 174 
quirements” are inherited from [28]. An excellent example of the usage of LoRaWAN 175 
technology is presented in [29]. It describes the IoT node used in water management sys- 176 
tems. The presented node works outdoors and has proven to use LoRa (Long-Range) 177 
technologies for its reliability and excellent power consumption rate.  178 

The IoT nodes are intended to work as a part of a more comprehensive system, and 179 
it is necessary to define the environment that would allow fast recovery when the IoT 180 
node needs to get refreshed or reconfigured. Firstly, the set of recommendations for the 181 
software update processes in different IoT levels has been defined [7]. It was followed by 182 
the establishment of a digital twin structure, which was recognized as a need to support 183 
development and testing and later support when the system was in active usage [10]. Dur- 184 
ing the research, dark launch expanded with feature flag deployment, which looked inter- 185 
esting, with the possibility of a broader application [30]. It was based on the concept that 186 
specific software features were enabled or disabled based on the value of the correspond- 187 
ing flags. The feature would be active only when the flag was set. The flag could be set 188 
or reset through the external interface, and the software behavior could be changed with- 189 
out restarting or reinstalling. Based on the feature flags approach, we designed the ESP32 190 
node’s main loop and all other software tasks.  191 

The paper [31] describes a highly scalable solution that organizes IoT nodes for 192 
monitoring hazardous areas. It envisions a case where the set of static IoT nodes is active 193 
simultaneously with the set of mobile nodes and where the network can perform self- 194 
healing up to some point. The next crucial point in the research [31] is an effective alarm- 195 
ing process. The research defines the concept of “smart alerting for potential hazard 196 
avoidance.” The design rules and the algorithms for raising alarms were adapted when 197 
system parts reported problematic values, switched to backup routines, or stopped re- 198 
sponding.  199 

IoT nodes based on ESP32 microcontrollers whose communication part is based on 200 
MQTT (Message Queuing Telemetry Transport) protocol are proven as a choice that 201 
could support heavy computational requests. The research presented in [32] demonstrates 202 
the usage of such a combination in the system dedicated to monitoring self-generated 203 
energy during trading activities based on the Ethereum blockchain, which makes it appli- 204 
cable for sensor network support. 205 

The security in such systems is not at the highest possible level, and future work will 206 
focus on this. Currently, the developed system relies on the standard security features 207 
integrated into used components and protocols. According to [33], this is assumed to be 208 
a potential security concern. Compared to other computing devices, IoT nodes have lower 209 
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processing power, so specialized countermeasures against network attacks should be de- 210 
signed [33]. Furthermore, the research presented in [34] explains all negative aspects of 211 
the MQTT-SN (Message Queuing Telemetry Transport for Sensor Networks) protocol in 212 
detail. 213 

When it comes to energy management, the second part is charging strategies. In [35], 214 
the authors discussed traditional charging control methods, such as constant current, volt- 215 
age, pulse charging, and software-enabled battery management systems. We used some 216 
principles of fuzzy logic charging as the extension of standard threshold-based charging, 217 
such as an adaptive standard low threshold. The approach presented in [35] that we found 218 
interesting is the predictive control model of energy storage systems. The study presented 219 
in [36] explains 26 different battery charging strategies. This was important to us since it 220 
explicitly focused on the charging characteristics of Li-ion batteries. It comprehensively 221 
explains controlled features, cut-off conditions, and observed parameters. The suggested 222 
multi-step-ahead predictions based on accumulated parameter values would help deter- 223 
mine the right time to start charging. This approach was a base for our alarm-based and 224 
controlled charging scenario.  225 

With the anticipated growth of battery management systems by more than 50% an- 226 
nually until 2030 [37], this research area is considered highly important and with the ex- 227 
pected high-level improvements. This research also indicates the importance of machine 228 
learning and building an adaptive battery management system that should consider mul- 229 
tiple parameters for their operations. 230 

 231 
Table 1 The main features of similar solutions from literature 232 

Feature WaterGrid-Sense [29] 
E-Nose application 

[38] 
Fire detection [39] Presented solution 

Transmission 

protocols 
LoRaWAN LoRaWAN 

LoRaWAN, GPRS 

optionally Wi-Fi and 

Bluetooth 

LoRaWAN, GPRS 

optionally Wi-Fi and Blue-

tooth 

LoRaWAN pro-

tocol class 
A 

Probably B, based 

on the model 

Probably B, based on 

the model 
C 

Sensors 
Fixed package of two sen-

sors 
N-IGSS sensor node 

Maximum 4 per de-

vice, various 

Maximum 4 per device, 

various 

Processing unit 
Microchip, non-specified 

model 
ESP32 ESP32 ESP32 

Battery 3.7V, 1000mAh 
Battery, non-speci-

fied 
Battery, non-specified 3.6V, 3500mAh 

Battery charging 
Whenever sunlight de-

tected 
Not Implemented Not Implemented 

Adaptive charging algo-

rithm 

Power option External solar panel 
Possible installation 

of solar panel 

Possible installation of 

solar panel 

Integrated or external solar 

panel 

  233 
Looking at the literature, many IoT-based solutions based on a single node can be 234 

found. The most similar that we could identify are Water-Grid Sense [29], E-Nose appli- 235 
cation to detect pollution hazards [38], and forest fire detection system [39] (Table 1). All 236 
these solutions are based on LoRaWAN as the primary communication channel. The fire 237 
detection system and our solution include a GPRS module as the backup channel. Forest 238 
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fire detection solutions anticipate higher energy consumption due to the higher usage rate 239 
of GPRS; thus, they work at a much higher voltage level than others. E-nose and fire 240 
detection applications did not focus on effective battery management but higher-volume 241 
data usage. Regarding dimension, Water-Grid Sense is the smallest device, but it uses a 242 
fixed package of two sensors optimized for low consumption. It encloses a smaller battery 243 
and, as with our system, comes with a charging module. The difference in favor of our 244 
solution is that we use an adaptive charging algorithm that ensures longer battery life. At 245 
the same time, Water-Grid Sense charges the battery whenever sunlight is detected. The 246 
option of the external solar panel is available in all solutions. Water-Grid sense theoreti- 247 
cally could use an internal solar panel as our solution, but currently, this is impossible 248 
since their casing is the smallest possible.  249 

To create an energy-efficient IoT node dedicated to the specific setup, we had to 250 
support a complex co-design, including hardware elements, execution mode adaptation, 251 
new software design and update principles, and the definition of an adaptive battery 252 
charging approach. Referenced work exposed brilliant ideas but primarily focused on a 253 
single area of interest. At the same time, we aimed to combine all available techniques to 254 
make the IoT node as energy-efficient as possible. 255 

3. Hardware Design  256 

As the introduction summarized, the main direction of the design process was to 257 
create an IoT node based on standardized and worldwide available hardware components. 258 
The solution should be solar-powered, battery-based, and equipped with some wireless 259 
data emission device to integrate with higher levels. To reduce energy consumption, the 260 
IoT system should be based on a hardware platform that enables active and hiber- 261 
nate/sleep mode work. The node must be able to alternate working modes periodically or 262 
as the result of specific signals. In the active mode, it should periodically check sensors, 263 
read and process sensor data, and then send the retrieved values to the upper level. Further, 264 
the selected components must have enough processing power, a standardized operating 265 
system, and data storage capacity to integrate into the digital twin and enable remote di- 266 
agnostics and control. 267 

 268 

3.1. Hardware Components 269 

The market offers several microcontrollers that could act as the core for the IoT 270 
nodes. Considering previous requirements, as the base component for the designed IoT 271 
node, the ESP32-WROOM-32 SoC module has been chosen [41]. It is widely used in 272 
industrial environments, and its modular design (Figure 2) supports work in different op- 273 
eration modes defined by the states of internal components (Table 2). Its processing unit 274 
consists of two central ESP32 cores and an ultra-low-power coprocessor (ULP coproces- 275 
sor), which controls work in sleep mode. The ULP coprocessor is further supported with 276 
a real-time clock memory (RTC memory), primarily used for saving and keeping values 277 
during sleep mode. This memory allows active sensor data collection while two execution 278 
cores are inactive. The connectivity part of ESP32 consists of the wireless radio, Wi-Fi, 279 
and Bluetooth modules. For our design, integrated network modules were not adequate. 280 
To make ESP32 usable in the off-grid setup, these modules should be based on protocols 281 
with a much higher communication range, such as LoRaWAN and GSM (Global System 282 
for Mobile Communications). Integrated Wi-Fi and Bluetooth could be used in a 283 
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production plant environment, but when it comes to the range and energy usage, they are 284 
not appropriate for remote areas. To keep the data exchange secure, ESP32 has integrated 285 
IEEE 802.11 standard security features, secure boot flash encryption, and essential power 286 
management to ensure the component’s sleep mode activity. These basic features ensure 287 
enough security to be integrated with digital twins and to be updated OTA. 288 

 289 

 290 
Figure 2 ESP 32 - main building blocks 291 

  292 
Table 2 ESP32 – comparison of active components in standard modes 293 

Component Active mode 
Modem 

sleep 

Light 

sleep 

Deep 

sleep 
Hibernation 

ESP 32 cores + + paused   

RTC memory + + + + + 

ULP Coprocessor + + + +  

Radio, Wi-Fi, and 

Bluetooth 
+     

      294 
Alongside network communication components, ESP32 offers a powerful peripheral 295 

interface set that supports data collection from other hardware devices and sensors. Two 296 
interfaces are supported in this category: I2C and RS485. ESP32 natively supports I2C 297 
and comes with dedicated pins and communication routines. RS485 is a bit more critical 298 
for communication and usage in hazardous areas. It is a protocol that supports asynchro- 299 
nous serial communication with multiple devices and is suitable for industrial environ- 300 
ments since it can connect to 32 devices with a cable 1200m long. It is less prone to 301 
electrical noise.  302 

Aside from ESP32, a few more components were necessary to complete the IoT 303 
node. The protected lithium-ion battery of type 18650, with a capacity of 3500mAh and 304 
working on 3.6V, was chosen. The battery is supplemented with a charge controller and 305 
an adequate solar panel. Supporting the battery charging process is critical for such nodes, 306 
so the chosen solar panels must be strong enough to enable successful recharge. 307 

The complete hardware design – ESP32, battery, GSM unit, LoRaWAN module, 308 
charger, and optional solar panel- are combined as a single device and enclosed in the 309 
proper casing, certified for use in hazardous areas (Figure 3). Since the GSM and Lo- 310 
RaWAN modules are used because of their range, the choice of ESP32 microcontroller 311 
was a bit challenging. In the market, many similar devices, including support for I2C and 312 
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RS485, could be considered good candidates for the base component. Table 3 shows a 313 
brief comparison of their most essential features.  314 

   315 

 316 
Figure 3 IoT node for hazardous areas – left [13]: schematic display with interac- 317 

tion between software and hardware elements, right: the look of the assembled device 318 
 319 
Table 3 Comparison of ESP32 and similar microcontrollers (extracted from [43]) 320 

Controller 
Clock Speed 

(MHz) 

Flash Memory 

(MB) 

Maximal Operating 

Voltage 

Price ratio 

(against ESP32) 

ESP32 240 4 3.6 1 

Raspberry Pi Pico 133 2 5.5 1 

STM32 480 2 3.6 3 

Arduino Nano 16 0.03 5 2 

Teensy 600 8 5 3.5 

nRF52840 64 2 3.6 2 

    321 
ESP32 is one of the cheapest chipsets in the market and offers worldwide support 322 

with a strong and responsive community. There are faster components like STM32 and 323 
Teensy, but they are more expensive. ESP32 is second best in memory capacity and third 324 
in the clock speed category, but it is the cheapest and works at the lowest voltage level. 325 
In that light, it is also one of the components with the lowest energy consumption. The 326 
advantage of Raspberry Pi, STM32, Teensy, and nRF52840 is that the ARM architecture 327 
offers the base for more advanced software and hardware platforms, but with the current 328 
setup, taking into consideration all the mentioned aspects (speed, data capacity, energy 329 
consumption, and support community), ESP32 has been considered as the optimal choice. 330 

 331 

3.2. Working Modes 332 

The mode when all components are running is considered active, while all the other 333 
modes are considered sleep modes (Figure 4). In active mode, the controller has maximal 334 
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processing power, and all communication means are active. Consequently, it uses the 335 
most possible amount of energy and should be rarely used in configurations when energy 336 
efficiency is the primary goal. 337 

 338 
Figure 4 Comparison of active elements in ESP32 standard working modes and 339 

Controlled Active Mode  340 
 341 
Each sleep mode has a distinct set of active components. In modem sleep, periph- 342 

erals and communication elements are disabled, while core and memory are active with 343 
the ULP processor and RTC and RTC peripherals. Modem sleep is used when the node 344 
actively collects sensor data and processes them locally without uploading them over the 345 
network. This mode had the potential for standard use but was not adopted because no 346 
external control was possible. The light sleep mode is designed to spare more energy since 347 
the core and memory are paused. It allows fast wake-up upon the signal's arrival or after 348 
the timer has elapsed. Its intended use is when the node only collects data from the sensor 349 
array. 350 
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Deep sleep and hibernate modes are intended for use when a node is in the state 351 
when waiting for the following command but with the ability to change its state as fast as 352 
possible. In deep sleep mode, RTC parts and ULP coprocessors are only active, waiting 353 
for the signals from the sensors. In hibernate mode, RTC is the only part that stays active. 354 
So, in hibernate mode, everything is shut down in the node, and the node will wake up 355 
only after a predefined time. 356 

The working modes described are native to ESP32, and switching between them is 357 
fully supported. Since the device spares significantly more energy when in active mode, 358 
keeping the active mode as short as possible and switching between appropriate sleep 359 
modes when necessary is essential. Keeping the node in the lowest sleep mode will sig- 360 
nificantly reduce energy use. 361 

However, for our implementation, we needed to slightly modify the mode system 362 
and introduce a new working mode – the so-called controlled active module (CAM). 363 
CAM is intended to replace active mode, modem sleep, and light sleep mode. The main 364 
idea is to switch off the complete network communication subset in ESP32 since they are 365 
not used. At the same time, the peripherals block will be kept active, allowing communi- 366 
cation using external components and enabling the node to communicate with other pieces 367 
of software. The activity of processing cores could be controlled through the software 368 
routines, enabling the fast change of the state of active components. With this approach, 369 
the node will have processing cores active for more time compared to the default active 370 
mode for the same amount of energy. 371 

 372 

3.3. Communication Channels 373 

As stated before, the ESP32’s communication channels had to be disabled because 374 
of limited range and high energy consumption and replaced by LoRaWAN and GSM 375 
modules. Considering all the previously described criteria, the LoRaWAN was the best 376 
fit for the design. It defines the communication on the network level and supports the 377 
protocol, which runs on the physical level and provides data exchange over long distances. 378 
Overall, the LoRaWAN technology stack positively impacts the battery lifecycle, network 379 
capacity, quality of service, safety, and security. It ensures stable bidirectional low-speed 380 
communication between mobile devices and offers the possibility to develop specialized 381 
and localized services. The data transfer speed is between 0.3 and 50kbps, which is as- 382 
sumed to be a compromise between the connection range and the maximum message 383 
length [44].  384 

The main drawback is that the communication under the LoRaWAN protocol does 385 
not support data exchange between IoT nodes or other terminal devices. It supports com- 386 
munication between IoT nodes and LoRa gateway devices and vice versa. In LoRaWAN 387 
networks, it is possible to have three categories of node devices: A, B, and C. Only class 388 
C, or bidirectional end devices, has been considered for the presented node design. After 389 
every data package has been sent, the class C device has two short message receive time 390 
windows.  391 

Since the IoT nodes run in off-grid areas, they must have a backup communication 392 
channel. When the LoRa channel gets interrupted or out of use, the node must be able to 393 
continue sending collected data. The backup channel was realized on a SIM-based (Sub- 394 
scriber Identification Module) GPRS/UMTS (General Packet Radio Service/Universal 395 
Mobile Telecommunications System) connection.  396 
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The system automatically switches to backup communication when the primary 397 
channel gets disconnected. Communication in the backup channel is much more expen- 398 
sive since it requires a billable connection via a mobile network operator. The added cost 399 
is related to energy consumption. The GPRS/UMTS module uses more energy for its 400 
work than the LoRa devices. For this reason, the switch to the backup communication 401 
channel is the automatic switch to the alarm state. If the main channel becomes operative 402 
again, the system automatically switches back to the LoRa connection and returns to nor- 403 
mal operation mode. 404 

4. Software Design 405 

The software component of the IoT node design is developed on top of the Fre- 406 
eRTOS [47] operating system. It is compatible with and supported by an ESP32 micro- 407 
controller. Its main advantage is that it fully supports multitasking, catering to the latest 408 
requirements of IoT devices. 409 

 410 

4.1. Software Processes 411 

The software implementation of ESP32-based nodes is designed around the main 412 
task: the core revolving routine. It could call other tasks for execution, and their number 413 
is not limited. Additional tasks can either be controlled by the main task or triggered in 414 
response to specific environmental signals. The main task consists of five steps (Figure 415 
5), where each step calls specific tasks: 416 

• Flow control is responsible for reading configurations and setting up process 417 
flags and parameters, making the main loop go only through the necessary steps.  418 

• Setup facilitates the configuration of control flags and enables or disables spe- 419 
cific aspects of the system. It is responsible for switching between execution 420 
nodes, managing the update process, and reporting data back to the digital twin 421 

• The collection step manages communication with sensors and retrieves meas- 422 
ured data. 423 

• Processing is where collected data are verified and packed into synchronization 424 
objects. The created objects are then placed into synchronization queues and pre- 425 
pared for transmission.  426 

• Transmission is when prepared synchronization objects are dequeued and sent 427 
through the network using appropriate communication. 428 

Various tasks are implemented in every step to facilitate the IoT node's operation. 429 
These tasks fall into three main categories: setup and maintenance (indicated by red 430 
graphic elements in Figure 5), data processing (light blue elements), sensor communica- 431 
tion (green elements), and data transmission tasks (amber elements). Namely, as ex- 432 
plained in detail in [13]: 433 

• The all_param task encompasses a set of routines and data structures re- 434 
sponsible for managing system setup parameters.  435 
• The battery_charger task monitors the battery level and controls the charg- 436 
ing procedure, ensuring the IoT node maintains sufficient power for uninterrupted 437 
operation. 438 
• The external event handler is the gateway for controlling the external net- 439 
work. It is responsible for receiving and processing commands from the cloud or 440 



Resource-Aware Design of IoT Node         13 

 

other controlling devices and forcing processes such as OTA updates, immediate 441 
battery charging, or a change of the execution mode. 442 
• The alarm handler raises alarms when specific parameters reach predefined 443 
critical values. As a result of its action, the node could go to the hibernate node, or 444 
communication with a faulted external device could be terminated. 445 
• I2C_comm and RS485_comm facilitate data exchange between the IoT 446 
node and connected sensors using one of the protocols. They ensure efficient com- 447 
munication and promptly support exchange routines.  448 
• The GPS_comm task handles communication with the GPS (Global Posi- 449 
tioning System) module. Accurate device positioning is crucial when the node is 450 
installed on a moving object, such as a barge transporting crude oil in rivers. 451 
• Processing step runs data_pack and telemetry_pack processes. They are 452 
responsible for packing sensor readings (data_pack) or node’s status parameters 453 
(telemetry_pack) into synchronization objects. 454 
• The MQTT_SN_comm task manages the synchronization queue's capacity 455 
and occupancy. It coordinates write processes from data producers and read pro- 456 
cesses from data consumer tasks. 457 
• LoRa_comm task supervises communication between the IoT node and the 458 
Edge computer using the LoRaWAN protocol. 459 
• GSM_comm task oversees the backup communication channel between the 460 
IoT node and the Edge computer. 461 

 462 

 463 
Figure 5 Main loop and support tasks running in the realized IoT node (as in [13]) 464 

 465 

4.2. Message Protocols 466 

Devices at the Edge level are considered much more potent than IoT nodes and can 467 
run more advanced software and communication equipment. This led to choosing the 468 
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correct communication protocol focused on data delivered to the consuming Edge devices 469 
not by their network addresses but as a function of their contents and interests. 470 

The IoT node and Edge layer communication is realized using the MQTT-SN 471 
(MQTT for Sensor Networks) protocol (Figure 6). It is a sub-variant of MQTT modified 472 
for the wireless communication environment, characterized by low bandwidth, high link 473 
failures, and short message length [46]. Since MQTT-SN is perfected for low-cost, bat- 474 
tery-operated devices with limited processing and storage resources, it could fully support 475 
the IoT node's hibernate mode and the LoRaWAN class C protocol.  476 

 477 

 478 
Figure 6 Place of IoT nodes in broader ISA-95 technology stack and data exchange 479 

means between layers (as introduced in [14]) 480 
 481 
The connection between Edge and upper levels could be fulfilled using MQTT, 482 

which is an open and lightweight publish/subscribe protocol designed specifically for ma- 483 
chine-to-machine and mobile applications [45]. The MQTT protocol is adequate since a 484 
stable wired connection connects the Edge and cloud levels. Since variants of the same 485 
protocol are used across the entire system, the whole structure has certain advantages in 486 
system response to hazardous events, overall system reliability, data security, traffic re- 487 
duction in the Edge-client connection, and the background for introducing digital twins. 488 

 489 

4.3. Task Synchronization Mechanism 490 

The management of configuration parameters within the FreeRTOS environment 491 
relies on established and widely recognized mechanisms. Specifically, semaphores regu- 492 
late access to shared resources and effectively facilitate data exchange among tasks. To 493 
improve efficiency, the IoT node uses internal synchronization queues (set up as the in- 494 
ternal variables in all_param tasks) between collection and processing and between pro- 495 
cessing and transmission steps. This way, steps that consume less energy could be per- 496 
formed several times before the next step, which consumes more energy, would run. With 497 
this approach, energy consumption in controlled active mode could be further reduced.  498 

As previously elucidated, the primary objective of the IoT node centers around cap- 499 
turing data from sensors via RS485 or I2C interfaces. Periodic data retrieval occurs con- 500 
currently through the RS485_comm and I2C_comm tasks. These tasks write data to the 501 
same message queue, guarded by semaphore. Consequently, data processing could remain 502 
dormant until the queue is filled up and only switch to an active state. Once the buffer 503 
contains enough data, the loop task proceeds with data validation and processing. The 504 
processed values are then written in the message queue for transmission to the edge level.  505 

This process is supported by I2C_comm and RS485_comm tasks. They execute con- 506 
currently and write the values they read from sensors to the same message queue. At the 507 
same time, task MQTT_SN_comm reads the items from the queue and prepares them to 508 
be sent to the cloud (Figure 7). Using the three tasks mentioned, the semaphore approach 509 
avoids eventual read/write hazards during concurrent access to the mqtt_msg queue. 510 
Every task that should access the message queue waits until it is free and only enters the 511 
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critical section. The task releases the message queue when the read or write is done, and 512 
the next task can access it. 513 

 514 
Figure 7 Data flow from sensors to transmission elements through message queues 515 

and processing tasks 516 
 517 

Message queues are also used for data transmission, one for LoRaWAN and another 518 
for the GSM module. The LoRa message queue does not need synchronization since each 519 
data producer has only one data producer and consumer. On the other hand, the message 520 
queue dedicated to the GSM module must be synchronized in the same way as the mes- 521 
sage queue used for data collection from the sensors. It can receive data directly from the 522 
processing step or data that failed to be sent using LoRa_comm. 523 

5. Battery Charging Routines 524 

An ideal energy consumption scenario involves standardized functionalities that 525 
maintain consistent energy usage levels over an extended period. However, practical con- 526 
straints often prevent such ideal conditions [36]. As previously discussed, different data 527 
transmission devices exhibit significant variations in energy consumption. For instance, 528 
scenarios involving updates or lost connections to sensor devices result in increased en- 529 
ergy usage beyond the baseline. Furthermore, distinct active and sleep modes consume 530 
varying amounts of energy depending on the volume of workload nodes have to perform. 531 
Also, transitions between modes can trigger consumption peaks if specific initialization 532 
procedures are required. As outlined earlier, energy usage during node operation depends 533 
on the working mode and the frequency of necessary actions. 534 

When evaluating data usage across the three phases of the node’s cycles, data pro- 535 
cessing and data collection use a similar amount of energy. Compared to data transmis- 536 
sion, data collection and processing use much less energy. Data transmission modules 537 
exhibit substantial differences in range, speed, and data package volume, but in any case, 538 
data transmission remains the most demanding energy task [37-40]. The battery's energy 539 
level should always be adequate to ensure proper node operation fitness. For this reason, 540 
a separate set of routines is developed and integrated into the IoT node’s software model. 541 
It is intended to drive the charge controller and execute chosen charging strategies.  542 

 543 

5.1. Automatic Charging  544 

The charging process periodically checks the battery's energy level in the automatic 545 
charging mode. It starts if it reaches a standard low battery level (SL). The node continues 546 
its operation while the battery is charging, and when it reaches a standard high level (SH), 547 
the charging process stops. The charging controller is a separate component and does not 548 
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affect the work of any other IoT node element. This approach could be problematic when 549 
the node’s charging routine depends on solar power. Sunlight is available at most 50% of 550 
the time, and the periods of active sunlight are not constant. Furthermore, the effect of the 551 
other natural elements and construction properties of the device could reduce the period 552 
of sunlight exposure.  553 

 554 
Figure 8 Ideal consumption setup with automatic charging mode  555 

 556 
Whenever the charging controller starts or stops the charging process, it sends this 557 

information to the edge level using the telemetry call with a timestamp. These data are 558 
collected at higher levels and used to analyze node functionality and act as a base for 559 
future improved charging modes. They could also be used to identify malfunctions early. 560 
The default charging process, if applied constantly, is envisioned to ensure longer battery 561 
life. The best use case for most available battery types is if their power level varies be- 562 
tween SL and SH thresholds, following the process as presented in Figure 8 .  563 

 564 

5.2. Alarm-Based and Controlled Charging 565 

An automatic charging scenario is not always possible. First, it could be triggered at 566 
night or when the sunlight is not bright enough. Then, the solar panel will not generate 567 
enough power to raise the battery's energy level. When charging starts, but the energy 568 
level is still going down, the alarm signal from the IoT node will trigger. The signal will 569 
be received and registered at the edge level. Since the charging controller frequently reads 570 
the battery's energy level, it could continue to trigger alarms that indicate that the energy 571 
level is still reducing despite initiating the charging process (Figure 9, block “Report 572 
charging issue”). If the energy level continues to reduce, it will eventually reach CL 573 
(Charging Required Level). At that moment, the IoT node will send a higher priority 574 
alarm to the Edge computer and reconfigure its operation strategy by reducing the number 575 
of data transmission operations. If the battery level continues to degrade, after some time, 576 
it will reach the alarm low (AL) threshold (Figure 10, left). This is considered the highest- 577 
level alarm, and the node will stop all its operations and switch to hibernation sleep mode. 578 
Up to that time, based on the data received in the Edge and then forwarded to the cloud 579 
level, the operation engineers could decide what to do with the affected IoT node. 580 
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One of the simplest ways to prevent this situation is to enable the calculation of the 581 
energy use depending on the time of the day and the introduction of an additional method 582 
that will check if the charging process should start (Figure 9, block “start charging,” line 583 
28). SL would be increased by some percentage (like 10 or 20%). In this case, the charging 584 
routine will check the remaining time until sunset and the increased SL. If the energy 585 
level falls to SL+10% and the remaining period of the day is, i.e., 10% sunlight, the charg- 586 
ing process will start immediately. This simple and effective approach allows for addi- 587 
tional charging periods with the lowest possible effect on battery life. The problem with 588 
such an approach is that the node must have daily information about sunrise and sunset 589 
and run more complex checks.  590 

 591 

 592 
Figure 9 Charging controller routine incorporating alarm-based and controlled charging 593 

(pseudocode) 594 
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The charging controller's next operation mode is the controlled mode. This mode is 595 
initiated from the edge level and intended to instantly trigger the charging process. Re- 596 
gardless of the current battery level, the charging process will start immediately when the 597 
control signal is received and the flag_forced_charging is set.  598 

The mentioned control signal is followed by the requested high level (RH in the 599 
further text); the battery will be charged until the requested level is reached, regardless of 600 
the value set for SH (Figure 10, suitable; Figure 9, block “stop charging,” line 41). This 601 
process does not change the SH level but is omitted during a single charging run. When 602 
the battery level reaches RH, the charging process stops, and the node returns to the alarm- 603 
based mode. The battery could lose power in the controlled charging mode, as in the au- 604 
tomated charging mode. In this case, the same alarm procedure will run. Eventually, the 605 
charging controller could be disabled by setting flag_charging_active to false. This hap- 606 
pens regularly when the IoT node is connected to the power grid, but this situation is 607 
outside the scope of our paper. 608 

 609 

    610 
Figure 10 Battery recharge after the intensive drain (left) and the battery charging in 611 

controlled mode (right) 612 
 613 

5.3. Short Term Improvements 614 

As explained, making the charging process more adaptive and efficient is essential. 615 
Considering that the transition to controlled charging mode with the predefined RH could 616 
be triggered from the higher levels at any time, bringing a dose of safety, the process will 617 
be automated to ensure less frequent (ideally never-happening) situations when the IoT 618 
node goes to the alarm state. The charging controller regularly reads the battery status and 619 
uploads (and stores locally) these data for further analysis. The average energy consump- 620 
tion per hour (ACH) is calculated based on this. Since the node reads data from the sensors 621 
during standard periods, the actual energy consumption could be an additional input for 622 
deciding when to start charging. 623 

The next improvement will be for the method running in the node that decides when 624 
to start charging (Figure 9, block “start charging,” line 28). The update method will cal- 625 
culate the sum of SL and the value resulting from multiplying ACH by the number of 626 
hours until sunrise. If this sum is higher than the battery's current energy, the charging 627 
process could start immediately, significantly reducing the risk of the transition to the 628 
alarm state. Further improvements would include the weather report and checking if the 629 
potential period with less sunlight is ahead. This way, the charging process could run up 630 
to a higher threshold than SH, bringing the battery a higher operational period. It is 631 
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important to note that the charging frequency depends on the battery capacity and the 632 
effectiveness of the solar panel and the charging component. With the standardized work- 633 
ing mode, with two RS485 sensors attached and a LoRa module used for data transmis- 634 
sion, our node will need one charge weekly or bi-weekly. This period is long, and the 635 
weather could change several times. Also, if there is a need to use more expensive energy, 636 
GPRS communication channel energy will be drained much faster. Thus, the possibility 637 
to react fast and run charging is a necessity. 638 

6. Results 639 

The proposed solution is based on the ESP32 series of devices with added commu- 640 
nication and power supply components (Figure 11). The node is designed to be robust 641 
from the physical perspective, with easily reconfigurable hardware execution modes, and 642 
flexible from the software design point of view. Operationally, it should run using the 643 
lowest possible amount of energy while acquiring data from different interfaces. Since 644 
the system has not only the ESP32 but also other components, the measurement must be 645 
done in correlation with the entire system, not only the processor itself. The overall power 646 
consumption combines the consumption of sensors (the setup with two RS485 inductive 647 
distance sensors with a maximal 10Hz measuring rate), ESP32, and internal and external 648 
communication modules. The usual test setup was with 100 execution setup daily. 649 

The measurement has been performed in the laboratory and simulated field condi- 650 
tions. The measured objective was the water level in the water tanks. We tested energy 651 
consumption in the laboratory with regulated temperature settings. In the simulated field 652 
conditions, we mainly tested battery charging routines. Simulated field conditions were 653 
performed at the rooftop of the Faculty of Sciences, Niš, Serbia, where solar exposure is 654 
somewhat average for Southern Europe – between 1.5 kWh/m2 in January and 6.5 655 
kWh/m2 in July [48]. Since solar panels are usually certified for 1kWh/m2, the node is 656 
usually charged with the nominal current. The node ran constant readings from the sensors 657 
while the data processing and transmission frequency were controlled from the Edge com- 658 
puter. The node is automatically reconfigured when the battery level reaches critical val- 659 
ues. Digital multimeters GDM-8255A [49] were used as measuring equipment in the la- 660 
boratory, and UNI-T UT71C [50] for the fieldwork. 661 

 662 

6.1. ESP32 Default Energy Levels  663 

The default energy consumption data can be found in the related product datasheet 664 
[41]. The consumption analysis started with the measurement for the node based entirely 665 
on ESP32, where its internal communication modules are used. The software part is equal 666 
in this and the setup with the external communication modules, so the execution mode is 667 
assumed to be constant in the system. Internal modules are used only for the testbench 668 
since they are unsuitable for remote areas. 669 

The values shown in Table 4 represent standard energy consumption levels meas- 670 
ured in laboratory conditions and vary by some percentage compared to the values from 671 
the producer data sheet. Furthermore, some additional differences could be introduced 672 
due to the influence of connected sensors. In the examined case, the node was connected 673 
to different RS485-based sensors (Figure 11). 674 

 675 
 676 
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Table 4 Expected values for energy consumption in ESP32-based nodes [42]. 677 
    678 

Power mode Description Typical power consumption 

Power off 
CHIP_PU is set to a low level; the chip 

is powered off 
0.1 µA 

Hibernation RTC timer only 5 µA 

Deep sleep 
From only RTC timer + RTC memory to 

ULP co-processor is powered on 
10 – 150 µA 

Light sleep ESP32 core is paused 0.8 mA 

Modem sleep ESP32 core is powered 

Slow speed:2-4 mA 

Normal speed: 20-25 mA 

Max speed: 30-50 mA 

Active (RF working) 

Receive - Transmit BT/BLE 

Transmit 802.11g 

Transmit 802.11b, OFDM 54 Mbps 

Transmit 802.11.b, DSSS 1 Mbps 

95-130 mA 

180 mA 

190 mA 

240 mA 

 679 

6.2. Measured Values 680 

As mentioned in the introduction, the opposing requirements for the designed nodes 681 
are that they should be as ready as possible and use the lowest possible amount of energy. 682 
In an important event, the node must immediately wake up, raise an alarm, and take the 683 
necessary action. Deactivating the data transmission part is how to keep the ESP32 active 684 
but use less power. This will not affect data processing and sensor connectivity, but the 685 
consumption will be lower in CAM mode, as defined in 3.2. With the new working mode, 686 
the node will be active in remote areas with lower power consumption compared with 687 
standard active mode and modem sleep. The complete execution setup includes switching 688 
between sleep modes and the CAM mode.  689 

 690 

 691 
Figure 11 Finalized IoT node with one RS485-based sensor attached 692 

 693 
As seen from Table 5, if the standard active mode were used, the lowest possible 694 

consumption would be at least 100 mA. The power consumption in CAM mode was up 695 
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to 36 mA, while the modem sleep with active processing cores worked between 45 and 696 
50 mA. This means that CAM mode could successfully replace parts of the processing 697 
routine where both active and modem sleep modes are running. The measured values for 698 
modes with active processing outdoors were close to lab measurement, with a difference 699 
of not more than 10%.  700 

 701 
Table 5 Comparison of measured values for the IoT consumption (Setup A – im- 702 

proved design with CAM and external communication modules, Setup B – design relying 703 
only on ESP32 internal modes and modules) 704 

Process Operation setup 
Setup A 

lab (mA) 

Setup A 

field (mA) 

Setup B 

lab (mA) 

Setup B 

field (mA) 

Light sleep + Sensors 
Light sleep 

ESP32 core is paused 
7.5 8.4 7.8 8.5 

Data processing only (ac-

tive mode) 

Setup A – CAM 

Setup B – Active mode 
32 36 >100 >100 

Data processing only 

(modem sleep) 

Setup A – CAM 

Setup – Modem sleep 
32 36 50 50 

Collection + Processing 
CAM/Active mode + 2 RS485 

Each RS485 < 20 mA 
69 72 149 160 

Transmission only 

(worst case) 

Setup A: GSM 

Setup B: Wi-Fi DSSS 
480 412 270 290 

Full cycle (standard case) 
Setup A: CAM + Sensors+ LoRaWAN 

Setup B: Active Mode + Sensors + Wi-Fi 
98 104 200 200 

Full cycle (worst case) 
Setup A: CAM + Sensors+ GSM 

Setup B: Active + Sensors + Wi-Fi DSSS 
560 524 430 460 

 705 
The subsequent measurement is to connect sensors and measure the energy spent for 706 

data collection and processing at once. The sensors are connected to ESP32 through the 707 
RS485 interface. In this case, the total measured power consumption in CAM mode is 69 708 
to 72 mA. The active components are ESP32 and two RS485 sensor arrays, whose con- 709 
sumption level is a maximum of 20 mA per sensor. In this case, the computed consump- 710 
tion was 36 + 2x20 = 76 mA. Still, the measured values remained around 70 mA in the 711 
laboratory and just above this level in simulated field conditions (72 average, 78 mA 712 
max). Compared to standard ESP32 active mode, the difference is significant, where con- 713 
sumption is usually at 150-160 mA but could hit 200 mA if unoptimized software loops 714 
are used.  715 

The collection-only scenario was checked when the ESP32 was put into light sleep 716 
mode. The node in light sleep mode with attached sensors uses around 8 mA regardless 717 
of the scenario. The measurement in field conditions shows an average energy need of 718 
less than 10% more. In the period when the node needs to perform data collection period- 719 
ically, light sleep mode is the logical choice. The ESP32 core and memory will be paused, 720 
but with RTC components active, the node can react to requests. The consumption in light 721 
sleep mode is as low as 7.5 mA with a peak value of 8.5. The consumption of the ESP32 722 
itself is about one mA (0.8 mA as per documentation), but, simultaneously, the battery 723 
should also power sensors on stand-by, thus the difference.  724 
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The following important measurement is the consumption level when all cycle ele- 725 
ments run – data collection, processing, and transmission. In a setup with only ESP32 726 
components as the transmission device, the Wi-Fi in SoftAP (software-enabled access 727 
point) or STA (station) mode is enabled. In this case, the total consumption reaches 200 728 
mA (compared with 190 mA from documentation). The usage is at the expected level, yet 729 
another argument for using the CAM is against using the full active mode as much as 730 
possible. So, from the calculation, it could be concluded that the communication part of 731 
the ESP32, in the measured case, uses energy equivalent to 110 mA. 732 

LoRaWAN is the communication carrier for complete cycle measurement with 733 
CAM mode. Specifically, as the communication part of the LoRaWAN module, SX1268 734 
[51] was installed. It uses 22 mA for data transmission and five mA for data reception. 735 
As mentioned, the LoRa works in class C since the node must operate in active and sleep 736 
modes. The measured value for the LoRa communication, when data are taken from the 737 
message queue and emitted, is at the level of 28 mA for transmission and 6.4 mA for 738 
reception. The overall energy used when the complete cycle is active with the LoRa part 739 
is around 100 mA, significantly under 200 mA, measured if Wi-Fi was running (Figure 740 
12). 741 

 742 
Figure 12 Comparison of energy consumption for proposed (Setup A) and standard (Setup B) con- 743 

figurations 744 

In the case of regular use, the LoRa is more efficient than internal communication 745 
modules. In urgent cases, the system needs communication to contact the device outside 746 
the internal network. LoRaWAN or integrated Wi-Fi and Bluetooth will not be helpful 747 
when the communication is broken down. The GSM module is introduced to manage such 748 
an event. The consumption of the GSM module is significantly higher than anything else, 749 
and the maximal measured level in field condition was 412 mA (345 mA as in specifica- 750 
tion) when active and 21 mA when idle (19 mA as in specification). Measured values in 751 
the lab were higher (around 480 mA) because connection establishing takes longer. The 752 
used GSM module is SIM800H [52] with GPRS data mode (1Rx, 4Tx) on EGSM900. 753 
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Measured values are higher than specified but in the acceptable ratio. Setting up the con- 754 
nection could be the critical point in both LoRaWAN and GPRS data modules. It could 755 
take some time to execute, and the power consumption could be high during that period. 756 
The average of the GPRS module was 580 mA, while the theoretical peak could reach 757 
even 2000 mA. This fact is one of the reasons why introducing message queues and re- 758 
ducing the number of data transmission calls (when possible) is also essential. 759 

When checking the complete cycle consumption with GSM, the average values are 760 
much higher than in any other setup. It was up to 560 mA in the lab, while outside reaches 761 
almost 530. Compared to GPS, the energy used in configuration with Wi-Fi running in 762 
DSSS mode was not more than 460. This is the only category where process-level updates 763 
do not bring benefits since the transmission part uses way higher amount of energy. This 764 
case clearly shows the importance of message queues and reducing transmission calls. 765 
The transmission mode could be adjusted to shrink the drawback of GPRS data module 766 
usage. Since the GPRS could manage a higher data volume, the system could decrease 767 
the number of transmissions and thus reduce overall energy consumption.  768 

 769 

6.3. Consumption Analysis for Different Execution Modes 770 

Measuring the energy consumption for the different elements of the IoT node offers 771 
a realistic overview of the energy consumption reduction rate. These values could also 772 
estimate energy consumption for various system configurations. By employing buffers, 773 
the number of data processing and transmitting operations would be reduced, positively 774 
impacting the consumed energy level. Table 6 and Figure 13 show proposed energy-sav- 775 
ing configurations and maximal measured values for every step in the process that will be 776 
used for estimate. In this case, the measurements have been done only in the laboratory. 777 

 778 
Table 6 Maximal measured values (in mA) for every step in the node operation 779 

System configuration 
Sensor 

reading 
Sleep1 Processing Sleep2 Transmission Sleep 

A + LoRaWAN 40 - 36 - 28 8 

A + Wi-Fi 40 - 36 - 110 8 

A + GPRS 40 - 36 - 412 8 

B + LoRaWAN 40 - 36 8 28 8 

B+ Wi-Fi 40 - 36 8 110 8 

B + GPRS 40 - 36 8 412 8 

C + LoRaWAN 40 8 36 8 28 8 

C + Wi-Fi 40 8 36 8 110 8 

C + GPRS 40 8 36 8 412 8 

 780 
The execution modes are named A, B, and C. The difference is in the usage of mes- 781 

sage buffers. In execution mode A, there are no buffers. Each data collection is followed 782 
by data processing and transmission. Operation mode B introduced a buffer before data 783 
transmission. This means the node will read the data, process them, and put them into the 784 
queue. Data will be sent to the Edge level when the queue is full. Execution mode C is 785 
the update of mode B and brings an additional buffer between data collection and pro- 786 
cessing.  787 
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The maximal measured value for the sensor reading segment was close to 40mA, 788 
which was used as the estimation value. For the processing part, the baseline value of 789 
36mA was considered, while all sleep modes were calculated as having the top consump- 790 
tion level of 8mA. Transmission rates were acquired as 28mA for the LoRaWAN module, 791 
110 for Wi-Fi, and 412 for the GPRS external module. 792 

 793 

 794 
Figure 13 Different configuration variants supported by IoT node, derived from gen- 795 

eral state-based energy consumption model 796 
 797 
The primary operation mode (Figure 13, A) is the sequence read-process-transmit 798 

followed by the sleep period. Depending on the current process or state of the overall 799 
system, the node could go either in the CAM or light sleep mode. This way, the node does 800 
not need to store any data locally and can go to sleep mode at the lowest cost possible. 801 

Since the part of the process that consumes a considerable amount of energy is the 802 
transmission part, introducing a buffer before sending data to the Edge level brings the 803 
best gain. The node would wake up periodically, read sensor data, process them, and store 804 
them in the internal buffer (Figure 13, B). This will reduce the number of data transmis- 805 
sions every cycle. This is especially important when using the GPRS module since its 806 
connection setting-up part could quickly drain the battery. Note the difference in setup A 807 
with GPRS when the measured value of 61600 mA was much greater than the estimated 808 
49600. It is partly due to indoor conditions, but the consumption is significant. More than 809 
five times compared with LoRaWAN and about 2.5 times with Wi-Fi.  810 

With the buffer introduced between the data collection and data processing parts 811 
(Figure 13, C) sensors will read data periodically, pump them to the message queue, and 812 
the system will transit to sleep mode. After several iterations, the processing part will get 813 
activated. It will take the data from the queue, process it, and then store it in the queue 814 
before transmission. Data transmission will run when enough data gets stored in the sec- 815 
ond queue. 816 

The analysis was based on 100 complete work cycles to provide a more comprehen- 817 
sive overview of the proposed solution's expected effect. The energy usage was lowest 818 
when the configuration variant C was applied, and the LoRaWAN was used as the 819 
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communication module. The worst case from the energy consumption point of view was 820 
when strategy A was applied, and the GPRS was used for data transmission.  821 

A comparison between these three variants is shown in Table 7. The estimate was 822 
calculated on the base of 100 sensor reading cycles. Comparing one variant, it is evident 823 
that the lowest consumption is in configuration with the LoRaWAN as a transmitting 824 
device. The difference is more significant in variant A than in B and C. The number of 825 
total transmissions is in direct proportion to the energy use, so the best effect is with the 826 
default operation mode. In variant A, the system with the LoRaWAN uses slightly above 827 
one-half of the energy used by the system with the ESP32 native Wi-Fi (50.64%). The 828 
energy usage is the highest with the configurations with the GPRS transmitter. Variant A 829 
uses more than five times more energy than the configuration with the LoRaWAN and 830 
more than 2.5 times more than the native Wi-Fi transmitter. 831 

 832 
Table 7 Effects of proposed node configuration variants equivalent to 100 cycles 833 

Configuration 

variant 

Communication 

module 

Estimated 

(mA) 

Measured 

(mA) 

Transmission 

count 

Comparison with na-

tive setup (Wi-Fi) 

Comparison with 

native variant (A) 

A LoRaWAN 11200 11800 100 50.64% 100% 

A ESP32 Radio 19400 23300 100 100% 100% 

A GPRS 49600 61600 100 264.38% 100% 

B LoRaWAN 8760 8820 10 88.47% 74.75% 

B ESP32 Radio 9580 9970 10 100% 42.79% 

B GPRS 12600 13800 10 138.42% 22.40% 

C LoRaWAN 5276 5282 1 97.87% 44.76% 

C ESP32 Radio 5358 5397 1 100% 23.16% 

C GPRS 5660 5780 1 107.09% 9.38% 

 834 
Variants B and C have the most significant effect when the GPRS is used. Since the 835 

amount of time required for data acquisition is always the same, the number of data trans- 836 
missions in variant B is reduced. In contrast, in variant C, further reductions are achieved 837 
by joining the processing part for 10 data acquisitions. In that way, in variant B, the data 838 
are transmitted only ten times for 100 reading cycles, and in variant C, only once. Variant 839 
C brings the most minor differences between configurations with different communica- 840 
tion modules. It is on the level of 10% (107.09% vs 97.87%). For variant B, this difference 841 
is almost 50% (138.42% vs 88.47%). In variant C, the configuration with the GPRS uses 842 
less than one-tenth (9.38%) of energy compared to variant A. For the Wi-Fi as the trans- 843 
mitting module, the energy usage is reduced to a quarter (23.16%), and for the Lo- 844 
RaWAN-based configuration, it is close to half (44.76%). 845 

This proves that buffer use is effective whenever possible, which means that the 846 
delay of transmitted data is not problematic for the entire system's efficiency in every 847 
case. By adjusting the count of cycles in the digital twin and pushing the update to the 848 
end node, the energy consumption could be adjusted in the node without physical access. 849 

7. Discussion and Future Work 850 

The primary purpose of the proposed system is to run in a remote and hazardous 851 
area as efficiently as possible. The system must operate on batteries and use every 852 
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opportunity to reduce energy usage. To achieve this goal, the following set of improve- 853 
ments was realized over the standardized ESP32-based IoT node: 854 
• The new active working mode will be introduced by disabling modules that con- 855 

sume high energy values. 856 
• Define the transition to the adequate sleep mode, depending on the node’s usage 857 

cycle stage. 858 
• Add external communication components that are more suitable for the expected 859 

use and have lower energy consumption. 860 
• Enable redundancy whenever possible to make the system more dependable. 861 
• Create an adaptive software model that will allow easy reconfiguration of the sys- 862 

tem’s working mode without needing restart or hardware replacement. 863 
• Introduce data buffers between system segments and make the operation of the 864 

more significant energy consumers less frequent. 865 
Having in mind the requested purpose, the designed IoT node must be not only en- 866 

ergy efficient but also highly dependable. It should be able to supervise various errors, 867 
failures, and technical problems adequately. Hardware and software design modifications 868 
were implemented during the proposed node's work. Hardware-level interventions are 869 
mostly related to the installation of redundant parts – both sensors and communication 870 
lines. In that sense, the IoT node has two I2C and two RS485 communication channels, 871 
while the transmitting device based on the LoRaWAN is backed up with the GPRS mod- 872 
ule. 873 

Regarding future improvement, the widest open point is data security. ESP32 runs 874 
with integrated IEEE 802.11 security for IoT nodes, but it has been proven that this level 875 
is not enough in every case. So, improvements in this area would be one of the future 876 
research directions. For the moment, an additional security measure is that access to IoT 877 
nodes is possible only through the Edge level or, in exceptional cases, through a device 878 
that has an authentication token provided. 879 

The effect of the implemented updates is presented in Table 5. The node's power 880 
consumption is closer to modem sleep than active mode. This is expected since the com- 881 
munication part uses a massive portion of energy. With sensors enabled, measured con- 882 
sumption is around 70 mA, which is between one-half and one-third of the consumption 883 
when the ESP32 is active. When the complete system is operational, the consumption of 884 
the designed IoT node is about one-half compared to the node running on the ESP32 in 885 
fully active mode (98 mA vs 200 mA).  886 

Improvements to the rest of the system are made at the software level. The crucial 887 
point was the implementation of setup routines that could directly influence the behavior 888 
of the main loop and change the execution variant of the node only by setting the feature 889 
flags. The control over these processes was moved to the cloud to create a digital twin. 890 
From this point, the updates could be directly passed down to the IoT nodes through the 891 
Edge computer. In that way, the control is centralized, and the status of each node will be 892 
successfully kept on the cloud. 893 

Thanks to this feature, the node can easily switch operation modes and return to a 894 
more energy-efficient configuration. In variant A (Figure 13), the node runs the collec- 895 
tion-processing-transmitting sequence followed by the sleep period. In this mode, there is 896 
no need to store the collected data locally since they are once uploaded to a higher level. 897 
This mode uses the highest energy value but ensures the exact data reporting process.  898 
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 899 

 900 
Figure 14 Comparison of energy consumption across a different combination of var- 901 

iants and communication devices (The X-axis represents the number of data collection 902 
events from sensors, and the Y-axis is energy consumption in mA) 903 

 904 
Configuration variant B is intended to reduce the number of data transmissions, but 905 

it cannot be used in every case. It could be used only when the acceptable delay between 906 
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data retrieval and transmission is long enough. The highest gain of this approach is when 907 
the GPRS data transmission method must be used since it consumes a significant amount 908 
of energy while setting up a connection to the network. 909 

Configuration variant C is the best solution from the point of view of energy con- 910 
sumption, but it brings additional limitations. First, the time until data are uploaded to the 911 
Edge level is even higher. Second, since the data processing part does not follow every 912 
data collection, there is some risk that potentially wrong values could be discovered later 913 
than in cases B and C. 914 

In the end, sometimes, IoT nodes must be on constant alert and run actively as much 915 
as possible. Since the consumption in fully active nodes is far from acceptable, one solu- 916 
tion for the ESP32-based systems is the introduction of CAM when only radio, Wi-Fi, 917 
and Bluetooth are disabled. In that way, the system could stay in an active state longer 918 
and use less energy. The working mode would be the most like configuration variant B in 919 
this case. 920 

As can be seen, each of the three working modes has advantages and disadvantages, 921 
and the operation mode would probably need to be adjusted during the node's life cycle. 922 
The possibility of changing the node behavior through the software interface would help 923 
in this case. The use of the mentioned digital twin is crucially important here. The end 924 
user could adjust node behavior in the digital twin, run the simulations on data transfer 925 
and energy consumption, and then push the change to the actual node.  926 

Figure 14 Compares energy consumption with different operation modes and com- 927 
munication modules enabled. Subfigures A, C, and E (of Figure 14) show the effect of 928 
buffering when the same transmission module is used. The energy use is the highest in 929 
the case without buffering (configuration A). When the pre-transmit buffer is included 930 
(scenario B), energy is reduced up to some point, and with the second buffer, the reduction 931 
is more significant. Scenario C with LoRaWAN is at an energy usage level of 42.63% 932 
compared to scenario A with the same communication module (20122 mA vs 47200 mA). 933 
The difference between scenarios A and C with the integrated Wi-Fi module is 21.71% 934 
(20237 mA vs 93200 mA). The biggest gain is with GPRS, where the energy needed for 935 
scenario C is only 8.36% (20620 mA vs 246400 mA). 936 

When comparing the same operating scenario against different communication mod- 937 
ules (Figure 14 – B, D, and F), the most significant difference is for scenario A. The 938 
introduction of a buffer would close the gaps. For scenario C, the power usage with the 939 
GPRS module is less than 3% higher than with LoRaWAN.  940 

This result is promising for implementing the nodes running in an off-grid regime. 941 
When they operate in near real-time with the most effective configuration (scenario A and 942 
with LoRaWAN), the node uses a predictable amount of energy. The battery could last 943 
several more days without recharging than the design based only on ESP32. The node 944 
must adapt its behavior if the external conditions worsen or the LoRaWAN module stops 945 
working correctly. So, it should switch to more energy-consuming communication de- 946 
vices, such as the GPRS. With the consumption estimate, the node could calculate the 947 
remaining energy and raise the appropriate alarm. Depending on the battery charging rate, 948 
buffering could be turned on, and the message queue size could be adjusted. In this way, 949 
the node could reduce energy consumption on the cost of near real-time reporting.  950 

In the cloud system, in the database layer, each IoT node has been represented by 951 
the configuration data sequence. These data are sensor addresses, retrieval and retention 952 
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period, boundary (minimal and maximal), or set of accepted values. The copy of all these 953 
data is then moved to the memory of the IoT node connected to specific sensors. In this 954 
way, every IoT node is fully aware of all connected sensors and their behavior. In this 955 
situation, verifying the sensor or connection line failure is more accessible. The most 956 
common conditions are when the IoT receives data from a sensor in an irregular interval, 957 
with values out of bounds, or when no response from the sensor can be detected. The 958 
response to all the mentioned scenarios could be predefined in the IoT node software, 959 
making the system reaction faster and more predictable. Also, the software change, if 960 
needed, is a much easier task in IoT than at the sensor network level. 961 

 962 

7.1. Comparison with Industrial Standard Solution 963 

Since IoT is an essential element of the Industry 4.0 landscape, many successful 964 
solutions are available. During the development process, we designed our solution based 965 
on our experience with Cassia [53], Aegex [54], and BARTEC [55], and with special 966 
requirements faced in hazardous and remote areas for the device with low build, mainte- 967 
nance, and operational costs (Table 8). 968 

The usual approach for hazardous areas is gateway-centric architecture. This means 969 
that the complete system consists of multiple devices, some of which are sensors, some 970 
of which are concentration nodes, and some of which are gateways. Such approaches 971 
bring robust and very potent solutions, but from an explorational point of view, they are 972 
more convenient for more extensive facilities with constant human presence. The gate- 973 
way-centric approach comes with dedicated on-site supporting hardware. The three IoT 974 
systems have their own hardware devices for monitoring and maintenance. Our solution 975 
could be monitored by any device with LoRaWAN connectivity, authorized through our 976 
cloud, and installed with dedicated software. Another advantage of gateway-centric ar- 977 
chitecture is the possibility of extending the system over the API, while the presented 978 
solution only supports application-level software updates. Our solution has been devel- 979 
oped to work in IoT-centric mode, where only one type of node plays a leading role in 980 
data collection, aggregation, and transmission processes. 981 

Regarding connectivity and supported sensors, Aegex and BARTEC support manu- 982 
facturer-specific sensors as separate devices that could be added to a network plug-and- 983 
play manner using LAN, Bluetooth, or Wi-Fi. At the same time, Cassia's solution relies 984 
only on Bluetooth for connection. On the other hand, our solution works on a bit lower 985 
level, offering I2C and RS485 connectivity for any low-level sensor with such possibility. 986 
Our solution allows connecting to 4 sensors, the same as the Aegex solution. Aegex so- 987 
lution would need a gateway for each IoT node, while our solution gateway node is un- 988 
necessary. 989 

The most similar solution to our node is BARTEC HY LOG. It is a complete system 990 
in one enclosure dedicated to monitoring the quantity of hydrogen. This device also sup- 991 
ports GSM connectivity and GPS tracking by default, but it is committed to only one task. 992 
Like our IoT node, it has an incorporated solar panel and can run independently from a 993 
wired power supply. Other systems support integration with GSM, GPS, and solar-pow- 994 
ered battery power supplies, but only through external devices, which makes the system 995 
much more extensive and complex for installation. 996 

The proposed solution is a complete system in one device, intended to work without 997 
human intervention and with the possibility of connecting to any sensor running supported 998 
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connection interfaces. It offers software-level flexibility, which means that the nodes in 999 
the same network can perform different tasks. Since all nodes are equal, maintenance 1000 
constantly replaces a malfunctioned device with a new one and initiates the OTA setup. 1001 

 1002 
Table 8 The main features of similar industrial solutions 1003 

Feature Cassia [53] Aegex [54] BARTEC [55] Presented solution 

Architecture type Gateway-centric 
Gateway-centric 

and IoT-centric 

Gateway-centric and 

partly IoT-centric 
IoT-centric 

On-site hardware 

support 

Cassia IoT Access 

Controller with Blue-

tooth plug-and-play 

Custom-built, in-

trinsically safe 

tablet device, 

Wi-Fi connected 

Custom-build An-

droid-base smartphone 

None specific, but any device sup-

porting LoRaWAN standard 

Software extensi-

bility 

Application-level  

API level  

Application-level 

API level  

Application-level  

API level  
Application-level 

Sensor connec-

tivity 

Separate sensors with 

Bluetooth connectivity 

Specific sup-

ported sensors  

Plug-and-Play 

(LAN, Bluetooth, 

Wi-Fi) 

Specific supported 

sensors 

Plug-and-Play (LAN, 

Bluetooth, Wi-Fi) 

Any sensor able to connect I2C or 

RS485 

Software level adaptation 

Number of sen-

sors per device 
Practically unlimited 

8 sensors per 

gateway or 4 per 

endpoint device 

Practically unlimited, 

1 for BARTEC HY 

LOG 

4 per device 

GSM module External Integrated 
External, except BAR-

TEC HY LOG 
Integrated 

GPS module External Integrated 
External, except BAR-

TEC HY LOG 
Integrated 

Power option 
AC or DC with battery 

backup 

AC or DC with 

battery backup 

External solar 

system 

AC, 

Replaceable battery or 

solar for BARTEC 

HYLOG 

Integrated or external solar system 

 1004 

7.2. Reliability Analysis and Next Steps 1005 

Future work will enhance IoT nodes by employing redundancy and reliability im- 1006 
provement schemes, such as failure partners. In this way, nodes will be able to cover more 1007 
scenarios that are outside their current niche. Currently, redundancy is supported on a 1008 
sensor level. A single IoT node can monitor multiple sensor devices of the same type 1009 
(usually two), and they can act as failure partners. In this scenario, the operation node 1010 
uses one sensor until its return values are within a predefined range. When the sensor 1011 
returns unbalanced or out of the predefined range values, the IoT node will raise the alarm 1012 
and switch to the backup sensor. This complete control is done on the software level. It is 1013 
worth mentioning that such an approach will result in lower energy consumption but with 1014 
lower flexibility.  1015 

The update of the failure partner scenario at the sensor level will be the approach 1016 
when both sensors are active simultaneously. In this case, the IoT node compares results, 1017 
and when one of them starts generating invalid values, the IoT node completely switches 1018 
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to the one that functions correctly. The sensor in a failure state could then be shut down, 1019 
and an adequate alarm could be generated. When the sensor malfunction gets repaired or 1020 
replaced, it will send the notification signal to the IoT node, which will start the recovery 1021 
procedure. This approach does not guarantee 100% reliability since there is always a 1022 
chance that both sensors could go to the failure state. In this case, the system will react by 1023 
raising the highest priority alarm. The same type of alarm will also be raised when the 1024 
sensor gets to an error state, but no redundancy device is installed. When only one sensor 1025 
is present and it fails, the situation is beyond software-directed recovery, and physical 1026 
intervention must be done. This update will also be entirely on a software level. 1027 

One of the limits is the possibility of replacing the processing and communication 1028 
modules. They are in the device casing, so any repair or replacement action would require 1029 
node disconnection and replacement. For this reason, introducing redundant IoT nodes 1030 
will be one of the possible solutions. Another possibility for improvement would be re- 1031 
configuring the complete network by introducing different IoT nodes with different roles. 1032 
When one would be used only for data collection, the others could be used for data pro- 1033 
cessing and transmission. This way, the system would be more robust and reliable but at 1034 
a higher maintenance cost since more nodes must be employed and more software vari- 1035 
ants must be maintained. Such an improvement would move the architecture towards a 1036 
gateway-centric model, but with all nodes running the same hardware. 1037 

The introduction of redundant IoT nodes is the solution to handle cases with hard- 1038 
ware errors. In a configuration with two IoT nodes, both have an equal structure and have 1039 
the same software installed. One of them acts as a master, and the other one is a slave. 1040 
The configuration with master and slave IoT nodes is a shift away from IoT-centric design 1041 
since both nodes must be connected to the same set of sensors over the communication 1042 
line. This would result in more expensive solutions and a significant shift to gateway- 1043 
centric architecture. Compared to redundant partner design, the difference is that only the 1044 
master can trigger data exchange with the Edge level. At the same time, the slave will 1045 
only listen to the traffic and receive the data sent by the sensors. In this situation, the 1046 
master IoT node is active, and the slave is in the so-called sniffer mode. When the IoT 1047 
node is in the sniffer node, it sends no data to higher levels (Edge computer). 1048 

When the slave node does not receive the keep-alive message for the predefined 1049 
period, it will try to connect to the master node (ping). If there is no response from the 1050 
master node, the slave will switch to the active (master) mode. At that moment, the former 1051 
slave IoT node will take over the complete functionality of the former master and set up 1052 
all the functions needed for the sensor and Edge layers. This procedure will be executed 1053 
without human intervention, and when such an incident happens, the new master node 1054 
will send a high-level alarm to the Edge layer. Also, regarding software updates or hard- 1055 
ware replacements, one node could be shut down for updates while the other will continue 1056 
to collect measurements. Research in this direction would also switch the deployment 1057 
paradigm to gateway-centric design, bringing higher reliability but at a higher mainte- 1058 
nance cost. With such an update, the solution will be more suitable for more extensive 1059 
deployments and leave the niche it currently holds. Expanding communication to higher 1060 
levels will focus on security. Currently, both ESP32 and additional communication mod- 1061 
ules support basic 802.11 security standards. Since this could be easily broken, one of the 1062 
focuses for the next phase will be the acquisition of advanced security protocols for IoT 1063 
devices. 1064 
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The presented research was focused on the design of the single node. In terms of 1065 
scalability, it is equal to the scalability of its building blocks. The most important feature 1066 
of the design is the possibility of integrating the IoT node into broader systems. The node 1067 
can communicate with the environment using two channels (LoRaWAN and GSM) and, 1068 
optionally, two channels that come as part of ESP32 (Wi-Fi and Bluetooth). The proposed 1069 
IoT nodes could theoretically cover unlimited sensing devices by participating in the more 1070 
comprehensive network. Each IoT node could connect to RS485 and I2C and transmit 1071 
data to the Edge level. Using the MQTT-SN protocol, the designed IoT node can connect 1072 
to every system that supports such communication. 1073 

Improvements in the battery charging algorithm would be necessary for future de- 1074 
sign improvements. As the first step, we introduced externally controlled charging, which 1075 
could be triggered from the Cloud or Edge level and force the IoT node to start to charge 1076 
the battery. Next, we replaced simple threshold-based charging with an improved process 1077 
that considers the current battery level, the estimated energy consumption, and the time 1078 
until the next sunrise. The focus is currently on defining the method based on the im- 1079 
proved techniques and machine learning to define autonomous models, which will ensure, 1080 
if possible, IoT node operation in the off-grid environment.  1081 

8. Conclusions 1082 

The paper introduces a novel combination of energy-efficient hardware selection 1083 
and adaptive software control to manage power consumption autonomously. Multiple 1084 
limitation factors, such as casing design, cost, and the worldwide availability of used 1085 
components, drove the design request. The starting point was a solely used ESP32, and 1086 
during the development, the inefficient hardware elements were replaced, and an autono- 1087 
mous power supply system was integrated. This was a challenge because used compo- 1088 
nents were often designed to run in factory conditions without power or connectivity lim- 1089 
itations. Thanks to the advanced operating system of the ESP32 node, further improve- 1090 
ments were made through the set of software implementations and updates, including the 1091 
definition of the optimized working mode. By integrating hardware and software optimi- 1092 
zations, this work improves upon traditional IoT designs for Industry 4.0, offering en- 1093 
hanced efficiency for deployment in remote and hazardous environments. This research 1094 
was conducted in parallel with investigating diverse deployment strategies for client soft- 1095 
ware across various ISA-95 layers. Throughout this process, the node was integrated into 1096 
a digital twin structure in the cloud, and the possibility of the software OTA update and 1097 
monitoring was enabled. Overall, all software design and hardware configuration optimi- 1098 
zations aimed to enhance energy efficiency (Table 9), and this goal was achieved by: 1099 

• Implementing different battery charging routines to maximize energy collec- 1100 
tion effectiveness. Since the standard battery charging routine triggers relatively 1101 
rarely (once a week or bi-weekly), automatic charging could start at night or in bad 1102 
weather, resulting in no energy gain. To suppress this, a controlled charging mode, 1103 
initiated from the Edge level, was implemented, which could trigger battery charge 1104 
on demand, by a predefined schedule, or based on the weather forecast. 1105 
• Utilizing external low-power communication components. The LoRaWAN 1106 
component for real-time transmission reduces energy use by nearly half (50.64%). 1107 
• Defining a new controlled active mode optimized for the anticipated use. The 1108 
new mode with the communication part disabled utilizes 72% of the energy used 1109 
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in comparable modem sleep mode (36 mA vs. 50 mA) and only 40% of the power 1110 
that would model sleep mode with active sensors (69 mA vs. 149-200 mA) would 1111 
use. A similar ratio applies when sensors and the LoRaWAN module are active – 1112 
98 mA vs. 200 mA when ESP32 is in standard active mode with sensors enabled. 1113 
• Implementing adaptive software that ensures seamless transitions between 1114 
active and sleep modes. Based on the required measurement, processing, and trans- 1115 
mission frequencies, the controlling software will decide when to switch the active 1116 
components off and reduce energy consumption. 1117 
• Integration into digital twin that allows early warning mechanisms and OTA 1118 
updates. The frequency of transmission of node health parameters to digital twin 1119 
could be configured, but their size is the equivalent of a single packet containing 1120 
data collected from sensors. Usually, it is enough to run such a telemetry for once 1121 
after 1000 data collection cycles. The additional energy consumption caused by 1122 
such a process would be less than 0.1%.  1123 
• Using message buffers to reduce the number of data transmissions. For the 1124 
most common scenario with LoRaWAN, using a buffer of size ten will result in an 1125 
energy reduction of 25%, while using a buffer of size 100 will result in a reduction 1126 
of up to 55%. When a message buffer of size 100 is used, the total energy con- 1127 
sumption will be very close regardless of the transmission module used.  1128 

The more notable gain is when GPRS is used for transmission. If a buffer of only 1129 
ten messages were used, only 22.40% of the initially required energy would be used. In 1130 
contrast, with a buffer size of 100, the consumption will be reduced to 9.38%. Notably, 1131 
this approach introduces a trade-off: while it reduces energy usage, reporting to the Edge 1132 
layer will be less frequent. 1133 
 1134 

Table 9 Energy-saving enhancements 1135 

Update Compared element 
Energy  

Reduction 

CAM Mode ESP32 Light Sleep 20 – 30% 

CAM Mode ESP32 Active Mode 45 – 55% 

CAM + Sensors 
Sensor reading and ESP32 processing in ac-

tive mode 
50 – 70% 

LoRaWAN ESP32 integrated Wi-Fi 50% 

Transmission buffer of 

size 100 

Immediate transmission upon processing. 

The used energy is nearly equal regardless 

of the transmission device 

55 – 90% 

 1136 
Continued improvement efforts are directed toward enhancing system reliability, 1137 

fault tolerance, information security, and overall system readiness and availability. As a 1138 
preliminary step, we envision enhancing reliability by introducing additional redundancy 1139 
at the IoT level, bolstering robustness and error resilience. Further improvements to the 1140 
battery charging subsystem will also run in parallel with ongoing node development, aim- 1141 
ing to extend battery life and mitigate the risk of power depletion. An ancillary outcome 1142 
of this research is a set of design recommendations formulated during the enhancement 1143 
process: 1144 
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• Standardized Components: Adhere to proven standardized components 1145 
that have demonstrated reliability in real-world conditions. 1146 
• Module Disabling and Replacement: Permanently disable or replace mod- 1147 
ules that fail to meet performance expectations. 1148 
• Feature Flags for Dark Mode: Introduce feature flags to enable dark mode 1149 
in regular software operations (not exclusively for software updates). 1150 
• Message Queues and Buffering: External management of message queues 1151 
and buffering must be employed to adapt the node's operation dynamically. 1152 
• Integration with Digital Twins: Enable permanent monitoring by integrat- 1153 
ing IoT nodes with digital twins. 1154 

While the presented node operates within a specific industrial context, the solutions 1155 
it embodies transcend disciplinary boundaries. Authors must remain receptive to diverse 1156 
concepts, regardless of their research origins. This study underscores the ongoing need to 1157 
continually enhance energy-efficient component usage, evaluating and incorporating so- 1158 
lutions as they prove sufficient. 1159 
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Nomenclature 1170 

Acronym Description 

ACH Average energy Consumption per Hour 

AL Alarm Low energy level in battery. 

CAM Controlled Active Mode 

CL Charging required Level 

ESP32 Low-power microcontrollers are widely used in IoT applications. 

Ex e 
The class of device enclosure constructed and certified as explosion-

protected according to the Increased Safety standard. 

FreeRTOS 
Free Real Time Operation System. Operation system native to ESP32 

controller 

GPRS 
General Packet Radio Service, data transfer standard for mobile net-

works 

GPS Global Positioning System. Satellite-based radio navigation system. 

GSM 
Global System for Mobile communications, standard for mobile net-

works 

I2C 
Inter-Integrated Circuit. Serial communication bus used to attach 

lower speed sensors 

IEEE Institute of Electrical and Electronics Engineers 
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IoT Internet of Things 

ISA-95 
Standard from the International Society of Automation for developing 

an automated interface between enterprise and control systems.  

LoRa 
Low Radiation. Network protocol to wirelessly connect battery-pow-

ered devices. 

MQTT  Message Queuing Telemetry Transport protocol 

MQTT-SN  Message Queuing Telemetry Transport for Sensor Networks protocol 

OTA 
Over-The-Air. Update to an embedded system that is delivered 

through a wireless network 

RH Requested High level. Battery level where charging should stop. 

RS485 
Recommended Standard #485. The standard for serial communication 

between devices 

RTC Real-Time Clock 

SH Standard High battery level 

SIM 
Subscriber Identification Module. The card is used to enable mobile 

communication for devices. 

SL Standard Low Battery Level 

ULP 
Ultra-Low Power. Processing unit optimized for low energy consump-

tion. 

UMTS 
Universal Mobile Telecommunication System. Cellular system for 

network based on GSM 

 1171 
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