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Abstract: Complex industrial systems consist of many heterogeneous devices running different 19 
hardware and software in a connected, layer-organized environment. Since all these software 20 
instances must be updated occasionally, and since they could affect the layers under and above, the 21 
definition of deployment strategies that will reduce downtime is necessary. In previous work, we 22 
focused on identifying common problems in software update processes and concentrated on the 23 
most effective update strategies running at the lowest (Internet of Things – IoT) and highest 24 
(Enterprise Resource Planning – ERP) levels. The result was a set of recommendations and 25 
strategies that should help minimize network utilization and processing resources and make the 26 
process as energy-efficient as possible. After that, the core effort of the research is shifted toward 27 
the Manufacturing Execution System (MES) layer – the layer that brings the higher complexity, 28 
both in terms of connectivity and software complexity. Following the actual Industry 4.0 paradigm, 29 
the software in the MES layer becomes even more critical since it is expected to integrate a whole 30 
new set of responsibilities previously belonging to various levels or external solutions. To facilitate 31 
further requests, deployment strategies are reevaluated and enriched with innovative approaches 32 
such as A/B testing and the separate update service. This paper shows the possible further 33 
development of the hybrid software deployment system when applied to the multiconnected levels, 34 
such as the MES. The adaptation shows positive results regarding the network load distribution and 35 
significant effort reduction in cases when a rollback is needed. 36 

 37 
Keywords: Industrial software, Manufacturing Execution Systems, Software deployment strategy, 38 
Resource Awareness, Industry 4.0  39 

1. Introduction and Background 40 

Complex industrial systems represent an exciting conglomerate of various technical 41 

solutions. Knowledge from different engineering sciences is needed to solve the 42 

challenges from process modeling, signal collecting, and processing through plant layout 43 

 
* This manuscript is an extended version of the paper published in the proceedings of the CERCIRAS 2021 

workshop 
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design to raw materials and finished goods transportation, distribution, and storage. 44 

Nowadays, all these aspects are supported by adequate software. Due to significant 45 

differences between diverse aspects of the organization in the industrial facility, the 46 

complete structure is divided into standardized layers. The standard ISA95 [1] defines in 47 

detail how to split the industrial system organization and what the responsibility of each 48 

layer is. Following the standard, the information technology (IT) subsystem in the 49 

industrial environment consists of many heterogeneous devices running different pieces 50 

of software in a connected and layer-organized environment [2] (Figure 1). Starting from 51 

the sensor and actuator layer connected with microcontrollers (in our work, we will 52 

reference it as the IoT layer) [3], through the Edge layer [4][5], via SCADA [6] and 53 

manufacturing execution systems (MES) [7] to enterprise resource planning (ERP) [8], 54 

all pieces of equipment run the software that needs to be updated occasionally.  55 

 56 

 57 
Figure 1 ISA95 levels according to the industrial standard 58 

 59 

Software update, as a process, is an activity that is considered highly problematic in 60 

the industrial environment. From the point of view of the process engineer, it should either 61 

happen never or only in predefined maintenance slots. It came from the experience with 62 

the previous deployment methods, where intensive planning must be done, and some 63 

areas of the industrial facility will be disconnected for a more extended period. If 64 

deployment needs to be reverted or reconfigured, the problem will be even more 65 

significant. 66 

In our previous work, we have been focused on the deployment of the software in the 67 

lowest (the IoT level [9]) and the highest (the ERP level [10]) levels of the system. From 68 

the connectivity point of view, these two layers have been of minor operation complexity 69 

since they maintain connectivity only to nearby levels. IoT nodes are usually connected 70 

only to Edge computers, while the ERP communicates with MES. The main difference 71 

between them is the requirements regarding the volume of the needed resources. In the 72 

IoT area, resource shortages are faced in every aspect of work.  73 

This paper represents the direct extension of the work published in the CERCIRAS 74 

2021 workshop. The definition of the testing environment and the default deployment 75 

strategies used for IoT nodes were the starting point and thus included in this work. This 76 

paper describes the usage of the concepts of the software update approach for a single 77 

node with limited storage space and expands then further on the application at the MES 78 

level. 79 

As mentioned, any deployment strategy must consider energy consumption, storage 80 

space, and processing power. Such an environment requires carefully defined deployment 81 

methods and, even more importantly, backup and restore strategies in case of 82 

unsuccessful deployments. The next step was to generalize the approach described for 83 

IoT nodes and apply it to the ERP layer [10]. In that sense, this paper could be seen as the 84 
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further continuation of the work we described in [10]. Since ERP layer software was built 85 

with more advanced software tools, it offers more possibilities for defining the update 86 

strategy. In that sense, the different software deployment methods were analyzed, and a 87 

set of routines that should improve deployment scenarios was proposed and evaluated. 88 

Deployment strategies, defined in [10], were the next step in our deployment and were 89 

thus used as another starting point in our work. The explained use of advanced strategies 90 

was another building block to define routines for the MES software. The software at the 91 

ERP level shares the complexity, technology stack, and implementation approaches with 92 

MES, which was of significant value for this work. 93 

The next goal is to apply the proposed deployment routines to the MES layer. MES is 94 

the layer that brings the higher complexity into the design, both in terms of connectivity 95 

and software complexity. Following the actual Industry 4.0 paradigm, the software in the 96 

MES layer becomes even more important since it is expected to integrate a whole new set 97 

of responsibilities previously belonging to various levels or external solutions. 98 

Deployment strategies are reevaluated and enriched with innovative approaches to 99 

facilitate further requests. For example, the MES server could be connected to SCADA 100 

on one side and to the ERP on another. In contrast, the clients could be connected directly 101 

to measuring devices in Edge or IoT to register and visualize different measurements. 102 

In this situation, downtime during the update needs to be evaluated through multiple 103 

sides to ensure proper reconnection and operation continuation from various sides. Also, 104 

one must remember that with new requirements under Industry 4.0, the MES software 105 

should offer new functionalities that often come without full specification and where 106 

multiple versions must be simultaneously evaluated. This paper shows the results of the 107 

research that had the following research tasks: 108 

- Test and adapt the deployment strategies suggested in [9] and [10] and try to use 109 

them both for server and client components of the MES level. 110 

- Focus to reduce network load on the MES server side. 111 

- Organize deployment to stop the erroneous deployment as soon as possible. 112 

- Integrate the process of the practical test of new functionalities when the customer 113 

must choose between multiple solutions. 114 

This research relies on our previous work, primarily described in [9] and [10] and 115 

represents its continuation and improvement. 116 

2. Background – Industry 4.0 Paradigm and Existing MES Systems 117 

MES and Industry 4.0 are critical components of the modern manufacturing 118 

landscape. They aim to integrate technology and data to optimize production processes, 119 

improve efficiency, and drive innovation in many new ways. Industry 4.0, the Fourth 120 

Industrial Revolution, represents a radical shift in manufacturing practices.  121 

It involves the digitization and the use of advanced scheduling and execution 122 

algorithms in manufacturing processes, moving away from mass production towards 123 

customized production that caters to individual customer requirements (Figure 2). This 124 

means that a portion of the planning and scheduling will be moved from ERP to the MES 125 

level. Next, MES plays a crucial role in Industry 4.0 by providing real-time visibility, 126 

control, and intelligence across the entire product life cycle value chain. It should allow 127 

for seamless communication, analysis, and data utilization to drive intelligent actions in 128 
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the physical world. This means that the connection from MES will not only go to the 129 

SCADA layer but also directly to Edge, IoT, and sensor networks in some cases. 130 

 131 

 132 
Figure 2 Main elements of Industry 4.0 133 

 134 

With full rights, the new generation of MES and Industry 4.0 is expected to enable 135 

organizations to harness the power of digital technologies and intelligent, connected 136 

systems to revolutionize their manufacturing processes. They would allow organizations 137 

to optimize production processes, improve efficiency, and drive innovation by leveraging 138 

robotics, analytics, artificial intelligence, nanotechnology, the Internet of Things, and 139 

cloud computing. These technologies enable organizations to automate tasks, analyze 140 

data for actionable insights, and connect various parts of the production process for 141 

seamless coordination and optimization. At the same time, it is, more than ever, expected 142 

that software runs with the lowest possible downtime and that all activities run as 143 

smoothly as possible. 144 

While previous work focused on single-connection levels, like IoT and ERP, this 145 

paper will evaluate the application and extension of the existing set of recommendations 146 

for software at the MES level. MES-level software is significantly different from those 147 

running in IoT nodes but closer to ERP systems. First, MES systems usually follow 148 

service-oriented architecture (SOA) with various clients.  149 

These software instances run on servers or in the workstation, with significant 150 

processing power and memory storage compared to IoT nodes. It looks like the MES 151 

systems run in an environment where resources are not the problem, but it is not quite 152 

like that. Depending on the configuration and the set of required operations, MES clients 153 

could weigh up to a few hundred megabytes. It depends, of course, on the implementation 154 

technology and other dependencies. Still, if they are implemented as the thick client, the 155 

usual user requirement, their update process could employ significant network traffic. 156 

Compared to ERP software, MES runs fewer complex algorithms, but it connects 157 

more extended software and services and runs in significantly more numbers and variants 158 

of clients. It is also essential to state that with the current technology demands fueled by 159 
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the Industry 4.0 initiative, the importance of the MES system rose. Nowadays, MES is 160 

often required to provide many functionalities native to other systems. The MES should 161 

now support continuing different reporting, overall equipment effectiveness tracking 162 

(OEE), Andon boards, deeper integration with ERP systems and SCADAs, and ending 163 

various synchronizations with warehouse, packaging, and other systems. 164 

3. Related Work 165 

The existing literature offers various deployment strategies, evaluations, and 166 

recommendations. In most cases, the existing research covers software that runs in layers 167 

such as MES and ERP. Besides, it has been constructive for our current scope of research, 168 

but it was a bit misleading when one tends to define the close-to-universal strategies and 169 

approaches. These higher layers deal with clients transferring significant data and 170 

executing numerous transactions. When defining development strategies for lower levels, 171 

the standard approaches from the literature are not directly implementable due to their 172 

unique limitations.  173 

The most critical points for resource management at lower levels are storage capacity 174 

and data traffic through connecting networks. The overall effect is not the same on all 175 

layers [15]. MES runs in a shop floor environment on devices with processing power 176 

similar to standard computers. 177 

The storage space is not a critical requirement for devices running MES or ERP 178 

software, but they are usually connected to their server using the wireless network. The 179 

wireless networks in the industrial environment could experience different disruptions 180 

because of operating nearby machines generating high-frequency harmonics as well as 181 

other security threats [16]. Data package verification and consistency are critical for MES 182 

and ERP client nodes. When deploying a new version of the software to some device, an 183 

update package, which is of significantly higher volume than usual data traffic, needs to 184 

be distributed via a network, verified, and stored on the destination device, and the old 185 

version needs to be backup in case of rollback [17] [18]Next, the Edge layer's primary 186 

mission is to collect all the data from sensor networks and pass it to the MES. In this case, 187 

the proper buffer implementation ensures smooth software upgrades. 188 

All the mentioned layers are highly heterogeneous, with different pieces of hardware 189 

running the software instances with diverse categories of software. Overall, in the 190 

complete industrial system, the type of used devices, their number, and the amount of 191 

transferred data (per device) could be between 1kB and 1GB. To make the complete 192 

process more demanding, the devices sometimes do not have enough memory to store 193 

two software versions; thus, they would require backup in a different location. This leads 194 

to the situation that sometimes it is nearly impossible to have an upgrade with no, or at 195 

least with very low, downtime [19]. 196 

As with every process, a software update could fail for numerous reasons. In that case, 197 

a complete deployment approach or deployment system needs to provide the possibility 198 

to roll back to the previous version [20]. The rollback will then take more resources and 199 

make the situation even worse, so we need to ensure that system governance successfully 200 

goes through the process [21]. 201 

To reduce the impact of the mentioned problems and potential system downtime, we 202 

aimed to define a more general approach that could be configured to use the combination 203 
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of blue-green [22] and canary deployment [23] styles in combination with both shared 204 

and local backups [24]. This approach looks promising at the IoT level. The approach 205 

was tested in a production environment, and the results were published in [9] and [10]. 206 

Working on a general set of recommendations [9] [10], we conclude that regardless 207 

of the type of software and the operating level, the blue/green approach could be 208 

effectively used at any node (Table 1). New components used to build IoT nodes 209 

increased memory and processing power, so keeping two versions simultaneously would 210 

probably not be a problem. The blue/green approach, per se, could be improved with 211 

additional techniques such as buffers and backup nodes [9] [10]. For example, at all 212 

levels, a blue/green approach supported by the dark mode with feature flags could be used 213 

for server node deployment. This will give flexibility and security; newly developed 214 

features could be gradually turned on until the complete server update is reached. For 215 

clients, blue/green is the primary choice, which could be enriched with buffers and feature 216 

flags if the resource pool and used implementation technology allow. 217 

 218 
Table 1 Elements of the deployment strategy used in various levels (BG – blue/green, DF – dark 219 

mode with feature flags, CS – canary with sentinel node, CB – canary with backup node, IB – 220 
intermediate buffer, (XX) - optionally) (as suggested in [10]) 221 

Level Server Client network Single Client 

Levels 0 and 1 (sensor network) BG + (DF) CB + IB (BG) + IB 

Level 2 (IoT nodes and Edge computers) BG + DF CB / CS + IB BG + IB 

Level 3 (MES) BG + DF CS / CB BG + DF + IB 

Level 4 (ERP) BG + DF CS BG + DF + IB 

 222 

The level of downtime reduction is significantly reduced in this scenario, compared 223 

to standard approaches such as recreate deployment and rolling deployment [27]. In the 224 

recreate deployment, the previous version of the software is shut down, and the new one 225 

starts after the old one has been stopped. Rolling deployment is applicable for complex 226 

systems with multiple servers. It is based on the recreate deployment but applies to 227 

various services. The downtime is exceptionally low, but the length of an upgrade process 228 

depends on the number of servers/nodes in an array, and it could take considerable time. 229 

The proposed deployment strategy will improve overall deployment time even more in 230 

the case of the rolling strategy since the blue/green switch could be done in the close 231 

period; there is no need to wait until all the servers are updated in the sequence. 232 

The new request that does not fit into the proposed framework is to have the possibility 233 

to support simultaneous evaluation of different versions of functionality. Besides, it could 234 

be done through the feature flags, but it will eventually require more consolidation and 235 

stabilization work. The A/B testing deployment approach is included to address such 236 

requests. This approach is used on the client side to improve the development and test 237 

phase and provide the possibility for limited testing in the production environment. This 238 

approach aims to offer different functionalities to some clients and then evaluate the user's 239 

reaction and acceptance. The update is usually done in a few groups of varying sentinel 240 

nodes.  241 

Recreating and rolling deployment are crucial concepts in software development and 242 

operations at the MES level [28]. Recreating refers to rebuilding a software system or 243 

environment from scratch, often to resolve issues or update components. On the other 244 

hand, rolling deployment involves deploying new software versions in a gradual and 245 
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controlled manner, allowing for continuous delivery and minimizing downtime. 246 

Integration with other systems and services traditionally occurs at the end of a 247 

development life cycle, but rapidly developed applications are integrated almost 248 

immediately. Testing occurs during every iteration, enabling stakeholders to quickly 249 

identify and discuss errors, code vulnerabilities, or complications and immediately 250 

resolve them without impacting the development progress. As stated in [29], “integration 251 

with other systems and services traditionally occurs at the end of a development life cycle, 252 

but rapidly developed applications are integrated almost immediately”. This iterative 253 

approach to development and testing is a crucial aspect of recreating and rolling 254 

deployment methodologies. 255 

 256 

 257 
Figure 3: A/B testing deployment  258 

 259 

The use of A/B deployment (Figure 3) strategy has become increasingly popular in 260 

various fields, including technology, marketing, and product development. This strategy 261 

involves testing two different versions, A and B, of a product or service to see which 262 

performs better [25]. The first source highlights the importance of product or service 263 

innovations in engaging customers and improving performance. It suggests that the 264 

market development strategy, which focuses on pursuing additional market segments or 265 

geographical regions, can increase sales but also comes with more risk. The second source 266 

discusses different methods for gaining market share, including product development and 267 

market development [26]. In the Industry 4.0 era, the use of A/B testing deployment is a 268 

comparable advantage within the installations of MES. The installation supports A/B 269 

testing and easy transition to the new version, considered more advanced and 270 

customizable. The A/B testing is widely popular with deployment based on container 271 

technologies, such as Kubernetes [30], since they involve end-users in decision-making 272 

over the new version of the software. 273 

4. Testing Environment 274 

As it has been known, the update process comes with the risk of diverse potential 275 

failures that could leave parts of the system unresponsive, running with unpredictable 276 

behavior, or emitting erroneous data. For this reason, the update process must be executed 277 
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in a highly controllable environment that allows easy and efficient rollbacks in case a 278 

flawed deployment is detected. As stated before, all software components in the industrial 279 

system are usually organized in layers. Layers exchange data with each other using 280 

different software protocols. The mentioned facts make the overall software update 281 

process a bit more complex than within a standard information system environment, and 282 

every error could lead to serious domino effects [11] [12]. Updating software in one layer 283 

could impact the targeted device and other devices in the same and different layers. For 284 

example, the update performed on the device running at the MES level could affect 285 

software instances running in other layers. 286 

The additional limitation point is the expectation for the highest possible performance 287 

and the requirement that software run using as few resources as possible. The complete 288 

system must have a high degree of resource awareness, and both storage space and 289 

network bandwidth usage must be carefully planned during the update process in order 290 

not to reduce the execution of the running components significantly [13][14]. For this 291 

reason, the resolute digital twin is used for testing.  292 

The digital twin (Figure 4) is created partly in the laboratory environment and partly 293 

in the cloud to simulate different connectivity scenarios and have an overview of worse-294 

case scenarios regarding latency and execution. The emulated hardware in a digital twin 295 

is set to the lowest acceptable resource level, which should simulate worse execution 296 

conditions than those in the production environment. The testing digital twin is introduced 297 

during the implementation of the one-of-the-kind production system [32]. As the demo 298 

factory, the plant producing doors and windows is set. 299 

Such a production facility is used for demonstrating since it combines all diverse kinds 300 

of production and needs multiple sensors and precise mechanical units to be integrated. 301 

On the MES, the level needs several diverse types of clients and services. The digital twin 302 

environment used for testing was described in [10] and improved to support more 303 

complex environments. Previous research focused either on IoT nodes, which were 304 

entirely configured in the local network, or on ERP clients, which were all the same and 305 

ran only in the cloud. 306 

The IoT level in the digital twin consists of 100 nodes connected to simulated 307 

instances of sensors and actuators. Each IoT contains a different number of sensors and 308 

actuators, which count within the node and could be anything between a few and 1,000. 309 

The count of 100 gives enough flexibility and complexity to perform testing in the 310 

development phase. The digital twin, an exact mirror replica of the industrial facility 311 

environment, could be created for the production phase. In the default model, following 312 

the ISA95 model, sensors are connected to IoT nodes. Especially after the Industry 4.0 313 

concept brought new requirements for MES systems, a direct connection between MES 314 

clients and measuring sensors could be established, too. 315 

Sensors within one IoT node could be different, and all could run various software. 316 

Sensors could be active either constantly or just for predefined periods. They could collect 317 

very heterogeneous data with varying sample rates during their operation time. All these 318 

facts make the IoT level very dynamic from the operational point of view. They could 319 

increase the probability that the complete node went out of a stable state in case of 320 

problematic deployments.  321 

The available memory space is usually between 1 and 5 MB per device, which is 322 

enough for the necessary software. The nodes in the IoT layer are connected using various 323 
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methods, ranging from cable network connectors to LoRaWAN, which creates an 324 

inconsistent environment in terms of connection speed and quality. The most complex 325 

situation is with LoRa-connected devices since their bandwidth could be only 10-20 kbps. 326 

 327 

 328 
 329 

Figure 4: The composition of the examined system containing all levels of the ISA95 model 330 
 331 

IoT node layers are further connected to Edge computers or Edge nodes. Edge nodes 332 

communicate between the shop floor and hazardous areas on one side and higher levels, 333 

such as MES and enterprise resource planning (ERP), on the other. Edge nodes are 334 
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devices based on Raspberry Pi or similar base sets and are usually connected by a 335 

Wireless network with an effective network speed of around 20 Mbps. Their space 336 

requirements are around 30 MB per node. There were 10 of these nodes in our test 337 

environment. To support testing, the mesh of 10 Edge computers is modeled in digital 338 

twin. Each of them is set to collect data from 10 IoT nodes. 339 

From the resource awareness point of view, software components on MES and ERP 340 

levels are easier to manage. They run on desktop/laptop computers with enough 341 

processing power, disk space, and bandwidth, but resource planning is inevitable even 342 

with them. In our test environment, we used 200 MES clients connected to 4 MES servers 343 

(two load-balancing and two redundant, with the possibility to change the configuration) 344 

and 30 ERP clients connected to the Microsoft Dynamics server. All the clients at this 345 

level are a few hundred megabytes in volume and are located under a gigabyte network. 346 

 347 
Table 2 Different MES clients and their functionalities 348 

MES Client Type Connection within MES Level Connection to other levels/services 

Administrative Server ERP 

Operation Buffer, Server Edge 

Configuration Server ERP, External cloud services 

Management Server, Operation clients Reporting 

Measurement Server IoT, Edge 

 349 

Regarding MES clients, a few diverse types are supported by performing different 350 

connectivity and execution actions (Table 2). Administrative clients perform operations 351 

related to the ERP level. They are responsible for synchronizing operations definitions, 352 

catalog data, material definitions, and other master data needed to exchange data between 353 

MES and ERP properly.  354 

The operation client has a connection to the execution buffer on the MES side and to 355 

the Edge level. The execution buffer is an optional implementation that allows clients to 356 

continue to run when the server is offline. It contains a buffer filled with tasks that must 357 

be executed in the workstation and that collects data generated during the production 358 

process. Once the connection is reestablished, the data flow will resume, and the server-359 

side upgrade will have the lowest possible impact on the clients. 360 

Configuration client is described in detail in [32]. It is used to define new products 361 

and eventually upload these data to cloud services and ERP. Management client acts as a 362 

synchronization node between ERP and operation clients. It is responsible for 363 

downloading production orders from ERP and uploading collected status change data 364 

measurements, etc. Ultimately, the measurement client will provide the interface for 365 

material registration and integration with IoT nodes such as sensors and other 366 

measurement devices. 367 

 368 

5. Transition of Deployment Strategy from IoT to MES node 369 

The software update process for IoT nodes and sensor/actuator devices running in a 370 

production environment is considered particularly sensitive. In industrial automation, 371 

sensors and actuators emerge as fundamental components that underpin efficient, safe, 372 
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and precise operations. These unassuming devices are pivotal in monitoring, controlling, 373 

and optimizing various processes across diverse industries. The update of such small 374 

components requires detailed planning before an update. Thorough planning is needed 375 

because they are, on the one hand, tiny both in size and capacity, and on the other hand, 376 

they are running in a hazardous environment where the only possible connection is 377 

relatively slow LoRa networks with no wiring possible and limited physical access, 378 

(Figure 5). If some physical intervention is needed, the stoppage of the complete 379 

industrial process is often a requirement. 380 

 381 

 382 
 383 

Figure 5: Comparison of building blocks of IOT (left) and MES (right) client nodes 384 
 385 

Besides the slow network, the low-performance hardware is one additional potential 386 

problem. This fact could result in an unacceptable long update process, which could move 387 

the targeted device off the system for an extended period. The last, but not the least 388 

important, is the energy consumption problem. Software updates are an activity that 389 

requires significantly more energy than regular data collection and data transmission 390 

processes. Thus, this process must be planned for when the battery is charged to the 391 

highest possible level and when the eventual rollback will not drain the battery. 392 

At first sight, it looks like there are no common issues or problems between IoT and 393 

MES clients. MES clients have fewer limitations, especially in processing power and 394 

storage capacity. Stating that one can assume that any kind of deployment strategy is 395 

convenient for MES clients. It could be said this from a strictly technical perspective, but 396 

when including different business requirements, it turned out that deployment at the MES 397 

level must be carefully designed, too. Furthermore, the main building blocks for both 398 

clients are similar (Figure 5). In both client types, regardless of different implementation 399 

technologies, Communication, data collection, and the processing block could suffer from 400 

the same problem. The problems with the low energy level are related to IoT, while the 401 

MES clients could suffer from synchronization and compatibility problems. 402 
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Noticing this, we realize that the deployment strategy defined for IoT nodes could 403 

apply to MES clients and be enriched with the experience through the project of ERP 404 

client deployment. but the concepts used for IoT nodes could be applied to the MES 405 

nodes. As it has been presented in Table 1. Blue/green deployment could be used if the 406 

destination node has enough storage space. The difference would be in the specific 407 

implementation technology, but the concept will remain the same. Additionally, an 408 

intermediate buffer, defined at the IoT node level, could be safely applied to the MES 409 

level. The MES nodes implementation is based on the concept from the IoT level and 410 

then enriched with additional features that will bring even further benefits to the MES 411 

level. 412 

Traditionally, the MES nodes usually used some of the classic deployment methods—413 

recreate or rolling deployments. Such an approach has been acceptable in recent years. 414 

Still, due to the manufacturing shift towards Industry 4.0, users started looking at the re-415 

installation process connected with downtime as a problem. In the case of rolling-like 416 

deployment, the issue relates to a long waiting period until the new version becomes fully 417 

available. 418 

Furthermore, such an approach would require an IT assistant in the facility, ready to 419 

help, run an installer, or perform some similar support activity. Since this was not 420 

acceptable anymore, we aimed for an approach already applied in IoT nodes and for its 421 

transition to MES-level software. 422 

5.1. Software Update Approach for IoT and MES Nodes 423 

Looking at the single IoT node, our choice for a software update is a semaphore-based 424 

green/blue approach (Figure 6). This approach is possible with devices storing at least 425 

two software versions simultaneously. In this case, the critical points are typically low 426 

bandwidth and possibly low battery levels. The approaches to solving these two problems 427 

are elaborated further in [34]. 428 

 429 
Figure 6: Semaphore-based blue-green deployment strategy used for IoT nodes [10] 430 

 431 

The problems with applying such an approach at the MES level resemble the IoT 432 

level. First, data storage limitation is not, per se, the main issue, but the device could run 433 

into such a problem when the access rights for the installer are not managed correctly. 434 

The issues with access rights are not present in the IoT node since the vendor is 435 

responsible for hardware and software. At the MES level, the software is installed, in 436 

most cases, on the customer’s equipment, for which the IT security and management team 437 

is responsible for maintenance. 438 
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As mentioned, the problem with low space could appear at the MES level if the 439 

installer has no delete rights for older versions. Since the MES clients could come with a 440 

few hundred megabytes of installed software and generate large log files, the issue with 441 

the space could arise if the delete and backup processes are not managed correctly.  442 

Next, the installation could also create bandwidth problems if not appropriately 443 

managed. For example, in a factory with 200 workstations, each would require an MES 444 

client installed. In some cases, more MES clients could be launched on the same machine. 445 

At least 200 clients will require an update when an updated version is detected. If 446 

distributed from a single spot, as often chosen, the update process could easily make a 447 

bottleneck in the network. Furthermore, the MES client will maintain a connection to 448 

more layers in the ISA95 structure, which could cause further synchronization problems. 449 

For comparison, nodes at the ERP level, closely elaborated in [10], does not have 450 

connections to another system, which makes them much easier to handle. 451 

 452 
Figure 7: Software update sequence with the sleeping sequence 453 

 454 

Coming back from IoT nodes, the base for the deployment approach is a blue/green 455 

strategy. This is the backbone of our update system. It is easy to be implemented in any 456 

technology. The main idea behind the blue/green strategy is to ensure that the target 457 

device always keeps at least two software versions – actual running (version N-1) and 458 

previously verified (version N-2). To reduce the data loss during the switchover, the node 459 

setup is completed by a message queue. Message queue collects data from sensors, and 460 

data are removed from the queue after being processed. The queue could be implemented 461 

as an independent entity to continue collecting data during the switchover. 462 

/* define sleep request event bits */
#define SLP_REQ_BAT_CHARGER_TASK_BIT  ( 1 << 0 ) 
#define SLP_REQ_PARAM_TASK_BIT        ( 1 << 1 ) 
#define SLP_REQ_GPS_TASK_BIT          ( 1 << 2 ) 
#define SLP_REQ_LoRa_TASK_BIT         ( 1 << 3 ) 
#define SLP_REQ_GSM_TASK_BIT          ( 1 << 4 ) 
#define SLP_REQ_MQTT_SENDER_TASK_BIT  ( 1 << 5 ) 
#define SLP_REQ_READ_I2C_TASK_BIT     ( 1 << 6 ) 
#define SLP_REQ_READ_485_TASK_BIT     ( 1 << 7 ) 

/* define sleep  acknowledgement event bits */
#define SLP_ACK_BAT_CHARGER_TASK_BIT  ( 1 << 0 ) 
#define SLP_ACK_PARAM_TASK_BIT        ( 1 << 1 ) 
#define SLP_ACK_GPS_TASK_BIT          ( 1 << 2 ) 
#define SLP_ACK_LoRa_TASK_BIT         ( 1 << 3 ) 
#define SLP_ACK_GSM_TASK_BIT          ( 1 << 4 ) 
#define SLP_ACK_MQTT_SENDER_TASK_BIT  ( 1 << 5 ) 
#define SLP_ACK_READ_I2C_TASK_BIT     ( 1 << 6 ) 
#define SLP_ACK_READ_485_TASK_BIT     ( 1 << 7 ) 

0 0 0 0 0 0 0 0

EventGroupHandle_t ev_req_sleep = NULL;
EventGroupHandle_t ev_ack_sleep = NULL;
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0 0 0 0 0 0 0 0ev_ack_sleep

main
task
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set event bit

0 1 0 0 0 0 0 0ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

read event bit

0 0 0 0 0 0 0 0ev_req_sleep

0 1 0 0 0 0 0 0ev_ack_sleep

set/reset event bit
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The update process starts by replacing version N-2 with the new version N. At that 463 

moment, version N-1 is still active, and the device runs uninterrupted. During that period, 464 

the device experiences higher-than-average network traffic and battery use. Once version 465 

N – 2 is deleted and version N is uploaded and verified, the switchover could start. The 466 

device begins operating version N, but its communication points remain inactive. When 467 

version N is fully up and running, the semaphore opens communication to version N and 468 

stops version N-1.  469 

 470 

 471 
Figure 8 Software update sequence for MES client (expanded from [10]) 472 

 473 

In that case, there is almost no operation downtime, and the complete update process 474 

is seamless for the customer (Figure 7). In a well-orchestrated process, data loss during 475 

the switchover can be effectively mitigated. In the worst-case scenario, only signals 476 
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received during the switchover—typically lasting several seconds—may be lost and left 477 

unprocessed. The switchover is seamlessly executed for IoT nodes by transitioning to 478 

sleep mode. Since sleep modes are an integral part of processing, facilitated by a 479 

dedicated core, transitioning to and from sleep mode is considered a native operation for 480 

IoT nodes. 481 

In many cases, this approach will also be fully applicable to MES nodes. 482 

Unfortunately, not always. Two central problems appeared here with MES clients. First, 483 

as mentioned before, the older version (N – 1) will not be deleted in case of a lack of 484 

privilege. If not managed properly, this will cause a problem with the space on the 485 

destination node. The next problem is the switchover phase. MES clients are much larger 486 

pieces of software with a powerful GUI that maintains integration with different services 487 

on the MES level and even to different Edge, SCADA, and IoT devices. The proper 488 

switchover would require not only the replacement of the client version but also the 489 

reestablishing of connection to other connected instances (Figure 8). This makes the 490 

buffering system even more important here than at other levels. 491 

Blue/green is not a favorable solution; it is only for successful updates. It proves its 492 

value when the update fails. In that case, blue/green offers an effortless way to switch 493 

back to the previous (valid and proven) version N—1. Furthermore, such a rollback will 494 

not require additional data traffic, which is desirable in any scenario and level. Once the 495 

error is solved, version N could be replaced with the next update. 496 

The blue/green setup supports both full and partial version updates. In case of a partial 497 

version update, the new version will be generated when the copy of N-1 gets merged with 498 

new libraries and configuration files. The partial approach is faster and brings a lower 499 

network load. It is helpful for MES-level clients, but it is even more suitable for devices 500 

with more processing power on the IoT level. The easiest way to spot them at the IoT 501 

level is to check if they use GSM modems and LoRa adapters. In brief, partial deployment 502 

is more efficient for more complex software components. 503 

 This approach will not solve every deployment problem. In some cases, it could be 504 

inefficient or even useless. In case of a partial update, it could happen that the deployment 505 

package did not come with all necessary dependencies. Then, the update will fail, leading 506 

to additional data transfer and new version creation. 507 

Next, the new version might be larger than the available space, even after deleting 508 

version N-1. In this situation, the blue/green approach cannot give positive results, and 509 

the update will fail. This would lead to the request for additional intervention and, in the 510 

best case, reducing the deployment to recreation mode. 511 

Since the software is connected to services and other running instances on various 512 

levels, the interface between them might change from time to time. Or even buffer service 513 

needs to be updated. If this happens, blue/green will not help or solve the problem. Such 514 

updates then need to be implemented during planned downtime and meticulously 515 

organized to follow all necessary steps in the required order. 516 

The last but not the least essential problem is when the device runs out of power during 517 

the update process. It could happen to any device, but those running on battery are more 518 

prone to this problem. The mentioned problem is not typical for MES nodes. They are 519 

connected to standard LAN/WLAN or Profibus network and are usually connected to the 520 

continuous power supply. If they lose the power during the update, they will continue to 521 

run the N version after the restart. Also, if the MES client is installed in a battery-running 522 
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device, such as a tablet or laptop, their operation system will be configured to run updates 523 

only if the device is connected to the power grid. 524 

As the clients run in more powerful nodes and more complex environments, their 525 

update process could be enriched with more proficient methods. The methods are feature 526 

flags, dark mode, or A/B testing, which will offer an easy transition to new functionality. 527 

The new version will be the same as the previous one upon the switchover, and then new 528 

functionalities could be gradually enabled. The end user would increasingly receive new 529 

features in this way. In case of a problem, the features could be quickly disabled remotely. 530 

Also, new versions of features could be assigned to specific clients to evaluate, following 531 

the A/B testing strategy. 532 

5.2. Software Update Approach for Devices with Limited Storage Space 533 

To address this challenge, an additional device of the same type, preferably with a 534 

larger storage capacity, is introduced. This backup node is a repository for storing backup 535 

versions of the currently running software. In scenarios where the Internet of Things (IoT) 536 

layer comprises multiple similar or identical nodes, adding an extra device is not 537 

perceived as a drawback but as a justifiable minimal cost. 538 

The same approach applies to Manufacturing Execution System (MES) clients. 539 

However, the key distinction lies in the role assigned to the chosen node. In the MES 540 

environment, the selected node assumes the mantle of a leading or sentinel client 541 

responsible for distributing update packages within its designated group. Utilizing backup 542 

nodes at the MES client level is also feasible, especially in cases where stringent IT 543 

security protocols prohibit the retention of old software versions due to company policies. 544 

The deployment process commences by transferring the new version (version N) to 545 

the backup or sentinel node. Once this operation is completed, the backup node 546 

disseminates version N to all devices running the same software. Notably, this approach 547 

slightly extends overall downtime, as the target node must first halt the previous version 548 

(N – 1), acquire the new version, and subsequently initiate version N. Conversely, no 549 

discernible difference in overall downtime occurs when the backup node acts as a 550 

sentinel. 551 

An inherent drawback of this approach pertains to increased data traffic requirements. 552 

However, this traffic is confined solely to communication between the sentinel or backup 553 

node and the clients within its designated group. An additional advantage emerges during 554 

potential rollback scenarios. After uploading version N to the backup node, deployment 555 

to sensor nodes occurs sequentially. The process begins with the sentinel device 556 

(borrowing from the canary deployment concept), where comprehensive validation under 557 

production conditions occurs. If the new version proves valid, subsequent nodes receive 558 

the update. Conversely, the rollback sequence is limited to the sentinel device if issues 559 

arise. 560 

In the second scenario, continuous uptime on the device is not feasible during the 561 

update process. Specifically, the currently running version (N-1) must transition to sleep 562 

mode and then be removed from the destination device. Subsequently, the new version 563 

(version N) is uploaded, configured, and activated using a wake-up command. Until 564 

version N is fully operational, the node remains in downtime and temporarily unable to 565 

collect or exchange data—an inherent vulnerability that must be managed. 566 
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5.3. Software Update in Edge Layer Affecting IoT and MES Nodes 567 

The simple software update at the Edge level would be managed at the other levels by 568 

employing message queues. Incoming messages to the Edge level will be handled when 569 

it becomes operational again. Messages from the output queues of the Edge level will be 570 

processed until Edge components are offline. The connecting systems will raise an alarm 571 

if all the items are processed. The same will apply if the incoming buffers become fully 572 

loaded.  573 

Considering this, it is crucial to define the buffers as wide and long enough to 574 

accommodate the amount of data that could be generated during more extended 575 

downtimes. In the scenario when the device from the Edge level must remain inactive for 576 

a period of deployment, and when there are no buffers or message queues implemented, 577 

the connected systems will run into an alarm state. Devices at the MES level will raise an 578 

alarm, but they will continue executing other actions that are not connected to the Edge 579 

level. Some functionalities will be temporarily stopped, but most work could continue.  580 

Devices at the IoT level will not be in such an advantageous position in this case. 581 

Without a buffer, devices at the IoT level will get disconnected for the same amount of 582 

time as the Edge level devices. For IoT nodes, this will be a situation of a high alarm 583 

state, and they will execute the following course of events: 584 

- Devices in IoT nodes detect disconnection event 585 

- Devices raise the internal alarm 586 

- Start reconnection procedure in predefined time frames 587 

 588 

Without a buffer enabled, while the Edge level node is not running, IoT nodes will 589 

not have a destination where to send processed data. This will cause significant data loss 590 

for the complete deployment areas, which could be unacceptable if the process consumes 591 

an extensive amount of time. This problematic state will last until the Edge layer node 592 

starts running again. When a node from the Edge layer restarts and returns online, IoT 593 

nodes will get connected again and continue exchanging data.  594 

 595 
Figure 9: Software update scheme with message queue [9] 596 

 597 
In some cases, IoT nodes will not be able to reconnect due to a change in 598 

communication protocol or a hardware error. In these cases, IoT nodes will run a general 599 

alarm, and then the Edge node must be moved back to the previous version. When an 600 

update is needed in both layers, the update notification signal will stop the general alarm, 601 

and then all IoT nodes will be updated one by one. The update will be driven from the 602 

backup node. 603 
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MQTT_SN_commwrite read

take/give
take/give

Version N

sem_mqtt_send

mqtt_msg queue
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One of the commonly used solutions to reduce the necessity for frequent updates 604 

across the levels is the using a buffer between the layers (Figure 9). In this case, the buffer 605 

is implemented as the message queue. In most cases, when the communication protocol 606 

changes, only the synchronization buffer will be updated, while all the nodes in the IoT 607 

layer will continue to work. In this way, downtime will hit only one layer (in this case, 608 

the Edge layer) while the other layers will continue to run without interruptions. 609 
 610 

 611 
Figure 10 Reconnection sequence between IoT, Edge, and MES node 612 

 613 

The introduction of a message queue solves the previously described issue but at the 614 

cost of a bit more complex setup and integration (Figure 10). Figure 10 This shows the 615 

process of integration with the Edge level. The approach is the same for IoT and MES 616 

nodes on opposite sides of the Edge node. The Edge nodes establish communication using 617 

message queues (MQTT in the case of the presented system). MQTT brokers and clients 618 

are installed at the Edge and the MES level. The IoT node needs only the client.  619 

The connection is initiated from the client on one level to the broker on another. When 620 

this communication is established, the broker waits for the client's connection at its level 621 

and accepts the subscription request. In this way, MQTT clients in the IoT and Edge levels 622 

are connected through the broker at the Edge level. Similarly, MQTT clients from the 623 

Edge and MES levels will be connected through the broker at the MES level. 624 

It must be stated that when transferring data using a message queue, data loss could 625 

happen during the software update. Message queues usually contain objects of specific 626 
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types produced on one side and consumed on another. The two most common scenarios 627 

are when the connection between the message queue and one of the sides (producer or 628 

consumer) cannot be established, while another is when the data queue contains objects 629 

of unrecognizable type in the destination. The first situation is handled in a way that stops 630 

the producer until the connection is fully re-established. The second situation happens 631 

mostly when the version of consumer software is replaced in a way that stops supporting 632 

old message formats. In this case, the messages remaining in the queue will be lost. 633 

Synchronization through message queues is an essential aspect of the software update, 634 

but it goes beyond the scope of this paper. 635 

6. Update Mechanism for MES Nodes 636 

The main shift that could be done at the MES level is to integrate the software update 637 

mechanism into the solution. MES architecture, which we exploited in our environments, 638 

is service-oriented architecture (SOA) based on different technologies. On the server side, 639 

multiple services running to achieve necessary functionalities. The current setup is 640 

between single service and microservices since the system consists of main execution and 641 

multiple supporting services. While the supporting services could be turned on and off 642 

independently, the leading execution service must be active to put the system in run mode. 643 

In that sense, the update service is one of the services on the server side that is responsible 644 

for server and client updates. Ideally, the update service is configured to run in the 645 

independent node. It takes care of the order of the update and data buffers during the 646 

update process. 647 

Depending on the requirements, the update service could take care of every single 648 

node in the system or equally distribute the updates depending on the node type. The 649 

update service takes care of sentinel/backup nodes (if configured) and monitors and 650 

switches different feature flags and A/B functionality variants on and off. The approach 651 

with the controllable update mechanism, driven from the single node, applies to any 652 

ISA95 level. Depending on the technology, implementation could be different, but the 653 

concept of maintaining the update process and the configuration from the single point 654 

makes the system fully controllable and maintainable. Moving these functionalities from 655 

the execution service and its connected microservices to an independent node avoids the 656 

well-known problem of the server bottleneck during the update process. In the cases 657 

where the execution service itself triggers and controls the update, the network traffic 658 

significantly rises during a brief period, which could lead to different synchronization 659 

problems.  660 

The additional advantage of implementing such a node is the possibility of connecting 661 

it to the digital twin in the cloud. This feature makes the update over the air and 662 

synchronization with the digital twin possible. Having such a connection, a complete 663 

industrial facility could be controlled remotely, and the existing digital twin would always 664 

be available for any test and analysis. 665 

Both client and server nodes will use the standard network protocols to operate at the 666 

MES and ERP levels. In the lower levels, the accessibility will depend on the 667 

implemented technology. Still, with the appropriate network adapters, the update node 668 

could achieve control also over the instances in Edge and IoT levels. The update node 669 

could also monitor configuration changes in production environments and take adequate 670 



20   Petar Rajković et al. 

 

action when the change is detected. Depending on the configuration or requirement, it 671 

could push the change to a digital twin, raise an alarm for the additional check, or 672 

overwrite the configuration. 673 

 The additional benefit is the more accessible support for testing and verification 674 

before moving the change production environment. As mentioned before, after the 675 

solution has been evaluated to a digital twin, test, or staging environment, the deployment 676 

for production could be ready significantly faster. The access to configurations already 677 

prepared in the digital twin environment allows the update manager to check the 678 

destination clients and easily spot if the local changes have been made. In that case, it 679 

could stop the deployment and raise the alarm to the technician to decide how to proceed. 680 

Alternatively, the update manager could override the configuration in the client machines 681 

and force the update. 682 

The update node could also push the update for the server side. In the MES level, the 683 

server-side SOA system will also store all the actual and previous versions of the clients, 684 

allowing easier recovery and fallback in the case of unsuccessful deployment. In case of 685 

the configuration on multiple server instances, the update manager will track the order of 686 

the update, using the feature flag system to control the start and stop of all microservices. 687 

As has been mentioned, the leading service on the server side is the execution service 688 

required to be active to make the entire system run.  689 

The server side of the update mechanisms is responsible for communicating with 690 

clients and other external systems – such as databases, configuration storage, and other 691 

external services. It could be configured to retrieve data from multiple sources and 692 

prepare the deployment packages according to the status set in the digital twin. As 693 

mentioned, its role is also to monitor the validity of the complete system to check if the 694 

configurations or client versions may change outside of the deployment process and to 695 

raise the alarm in case of misalignments.  696 

Both clients and service exchange ping messages to keep the system communication 697 

status. Ping messages could contain distinct parameters and run in different periods. 698 

While some are used only to check if there are responses on the other side, others could 699 

be used to verify client versions and configurations. At the same time, regular messages 700 

that exchange data are used to maintain connectivity. Every message delivery failure 701 

could trigger an alarm and run the re-assessment process and eventual network 702 

reconfiguration. In some cases, the sentinel clients could take the server role for the group 703 

of clients and maintain connectivity in the alarm mode. 704 

6.1. Update Node Routines 705 

The DeploymentHelper component handles configuration updates in scenarios where 706 

the application reverts to an older version or when a specified time for updating specific 707 

clients has elapsed, necessitating updates for the remaining clients. This component is 708 

situated on the server side, as all configurations for this application reside on the same 709 

machine as the service. Consequently, the service possesses all necessary permissions for 710 

file modification and physical addresses where the files are located. 711 

The base class diagram to support client updates is presented in Figure 11. Instances 712 

of class Update Status Info are used to store the info about the version and application 713 

name. The bare minimum of the data should be maintained for every client. They come 714 
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to the MES or update service as part of ping messages from clients. Combining these 715 

pieces of information with the data in the internal cache, the process that keeps track of 716 

versions could maintain their activity tables regularly. Activity tables are kept in the 717 

update process and periodically synchronized with the digital twin environment. The 718 

objects of this class, either persisted in the memory or in a dedicated location in the file 719 

system, are also used as the contact point for the DeploymentDispatcher. 720 

 721 

 722 
Figure 11 The relations between main entities in the deployment subsystem 723 

 724 

On the single node level, the DeploymentDispatcher is the component responsible for 725 

the entire update process. It could be configured to ping the server or sentinel client to 726 

check for the new version or to wait for the update notification. Once the latest version is 727 

discovered, the update process will start and be executed in UpdateDirector.  728 

The update thread will run in the background and gather all necessary configurations 729 

and binaries from the update node to form the new version of the client. After a new client 730 

is formed, it will trigger the rest of the process and perform possible additional steps, such 731 

as a backup of the previous version and a blue/green switch. When configured in the 732 

sentinel node, this functionality will propagate the installation to other nods in the group. 733 

As the ultimate step of the update process, the information about the software version will 734 

be pushed back to the update node and the digital twin to ensure the proper version info 735 

synchronization.  736 



22   Petar Rajković et al. 

 

It is essential to point out that DeploymentDispatcher could progress both with 737 

complete client updates and partial functionality enabled/disabled. In that way, direct 738 

support for feature flags is implemented. The client could come with an updated version 739 

of the software, but in case of any problem, the additional features could be disabled. 740 

Also, configuration changes could be pushed from the server to ensure the required 741 

reconfiguration. 742 

The update manager instance is created when the application is started. It is constantly 743 

active and periodically checks for recent updates if configured to run in active mode. 744 

During initialization, the update manager checks the application's version and all modules 745 

to ensure the up-to-date application signature is ready for comparison with the version on 746 

the server. 747 

The update manager listens to the server's ping and notification commands in passive 748 

mode. In this scenario, the server notifies the client that the updated version is available, 749 

and the client starts the update process. Also, it is usual to configure both modes in the 750 

same and dedicate each process to a specific part of the update process. For example, the 751 

check for the new client version could be configured in active mode, while the 752 

configuration updates could be passive and pushed by the server instead of the client's 753 

request. 754 

An instance of this class creates an object of the DeploymentDispatcher class and 755 

immediately invokes its primary function, as shown in Figure 12. This function manages 756 

a specific client's update process and could halt software updates if necessary. It is 757 

responsible for initiating the update process as long as the attribute's value that keeps the 758 

loop alive remains unchanged.  759 

This method initially attempts to retrieve the file containing the necessary information 760 

for updating. If that file does not exist, the method returns a false value, indicating that it 761 

failed to obtain the appropriate file. If the file is successfully retrieved, relevant data 762 

required for updating is extracted from it. Subsequently, it checks whether beta updates 763 

are active. If they are and the specified time for this type of update has elapsed, 764 

the UpdatesManifest.xml file is updated. In this file, the active software version is set to 765 

the “beta” version, and updates of this type are marked as inactive. Next, it verifies 766 

whether the current client version matches the version that should be on our machine 767 

(Figure 12). 768 

New client versions must be downloaded if the current client version is missing or 769 

differs from the version in the file while beta updates are inactive. In the case of active 770 

beta updates and the client still not being on the beta version, affirmative information is 771 

returned to download new files, but only if random access permits. This ensures that not 772 

all clients receive the updated value, only those with “luck” (Figure 12). All clients 773 

downloading the updated version exit the function and return a value true. If the random 774 

selection does not choose a client, the thread responsible for updating is put to sleep for 775 

a predefined number of minutes. Afterward, the thread is again put to sleep for a few 776 

seconds, triggering the update check. 777 

The DownloadUpdates method retrieves updates from the corresponding file (the file 778 

path is specified in the update specification). If beta updates are active, it fetches the file 779 

named in BetaFilePath; otherwise, it retrieves the file named in FilePath. BetaFilePath 780 

is used when the A/B deployment must be supported, while for regular deployments, the 781 

filed FilePath directs to the update location. This approach also solves the issue of 782 
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network connection interruptions to the new client, as the update is not applied until it is 783 

fully downloaded locally. Finally, the application that launches the latest client version is 784 

restarted. 785 

 786 

 787 
Figure 12 The sequence of choosing and verifying the correct software version 788 

7. Results and Discussion 789 

This research came out of the project and resulted in developing a complex industrial 790 

monitoring system aimed at all ISA95 levels – from IoT nodes through Edge and MES to 791 

ERP level. During the project, for more than 15 years, our team was focused on different 792 

aspects of development and implementation, starting from the improvements of 793 

CAD/CAM databases [31], through all different implementations at all levels, up to 794 

development for the software update system integrated with the cloud [9] [10]. 795 
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The tests are conducted in a digital environment that resembles the industrial façade 796 

carpentry facility. Section 4 gives all the necessary details in the composition of the test 797 

environment. Such production is interesting since it combines different production types 798 

– from serial production up to one-of-a-kind configured products [32]. At the same time, 799 

such a facility combines processes based on various physical and chemical procedures in 800 

material treatment, thus requiring all kinds of digital interaction, starting from thermal 801 

sensors and actuators through intelligent industrial machines integrated with MES clients 802 

up to ERP software enhanced with different CAD and planning tools (Figure 13) [33]. 803 

 804 

 805 
Figure 13 View on the ERP client - production order definition 806 

 807 

Having experience with diverse types of software developed on different ISA95 808 

levels, we identified the common problems in software updates and tend to generalize the 809 

update architecture, node structure, and processes. The results were preliminarily 810 

evaluated at the IoT and ERP levels because they have limited effects on the rest of the 811 

system, being connected only to the neighboring level. Following the results and 812 

recommendations from the previous work, we decided to expand the update system to the 813 

most challenging MES level (Figure 14). 814 

7.1. Guidelines for Combining Different Deployment Strategies 815 

Our research was led by the request to reduce the potential downtime during the 816 

software update in a challenging environment such as the industrial facility. The actual 817 

criticality of this request is not equal from level to level, but the customer requirement 818 

tends to go to 0 downtime regardless of the software system. To reach this goal, we 819 

decided to replace the standard deployment (stop-copy-run) with a combined strategy that 820 

should employ the benefits from different deployment processes. Looking at the single 821 

node, we aimed for the blue/green deployment as the base concept. 822 
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This concept could be enriched then with feature flags, dark mode, and A/B testing 823 

deployments to fine-tune the update process and to release new functionalities in the 824 

controllable environment. At the level of the node networks, the concepts of canary 825 

deployment were applied to the development of backup and sentinel nodes, which 826 

function as the group leads and will receive the first update and then push forward 827 

deployment into the subsequent nodes in its group. Combining these three well-known 828 

approaches in the proposed way, we tried to benefit from all the positive aspects we could 829 

get: 830 

- Blue-green deployment gives the possibility for a fast version switch. 831 

- Dark mode and feature flags allow simple enabling or turning off single 832 

functionalities. 833 

- A/B testing allows running several feature variants to let the customer decide 834 

which to accept. 835 

- Canary deployment allows prompt identification of deployment errors. 836 

- The presence of a synchronization buffer allows us to keep one layer insulated 837 

and still operative while the connected layers are in downtime or performing an 838 

update. 839 

 840 

 841 
Figure 14 MES client set up in a factory environment - connected to cutting machine and the 842 

signals that bring measurement values 843 
 844 
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The proposed methodology is initially subjected to rigorous testing at the IoT level. 845 

This choice stems from the formidable constraints encountered in this stratum, 846 

encompassing software resources, network bandwidth, and energy consumption 847 

limitations. Additionally, deploying IoT systems in critical and hazardous environments 848 

underscores the need to minimize direct human intervention and avoid installing 849 

supplementary infrastructural components, such as power or network cables. 850 

Complicating matters further, physical access to IoT nodes remains a challenging 851 

endeavor. This challenge arises not solely from technological considerations but also 852 

from mechanical and security protocols. Removing various mechanical elements in 853 

certain instances becomes necessary to reach IoT devices physically. Moreover, these 854 

devices often operate in environments hazardous to human safety, necessitating stringent 855 

procedures for device access. 856 

Previously, a conventional update approach, or recreate deployment, was employed, 857 

wherein the software component was replaced either entirely or partially (via a stop-copy-858 

start process). However, this standard update method posed several issues, which can be 859 

briefly summarized as follows: 860 

- The downtime was always present. If the software component is in the updating 861 

process, the software device cannot be used. 862 

- In case of an erroneous update, software should be restored to its previous 863 

version, which would lead to further downtime. 864 

- The restore process sometimes drains the battery, requiring the personnel member 865 

to go to the hazardous area. 866 

- Connected layers could not continue to work generally since they were flooded 867 

with alarm signals. 868 

 869 
Table 3 The effects of the proposed deployment strategy on the IoT level containing 100 IoT nodes 870 
connected to a single Edge node (TD – time to shut down the software in the node, TU – time to 871 
start the software in the node, TS – time switch between the versions, IS – software instance size 872 
per node, NN – number of nodes). Combined from [9] and [10] 873 

Measurement With recreate deployment With hybrid strategy 

Number of software uploads to IoT level 

– successful deployment 

NN 1 (only to the leading node) 

Number of internal uploads – successful 

deployment 

0 NN 

Number of software uploads -

unsuccessful deployment 

Average 8% of NN 1 to the backup node 

Security check on upload NN 1 (only to backup node) 

Number of internal software uploads – 

unsuccessful deployment 

0 1 

Rollbacks with unsuccessful deployments 8% of NN 1 + 1 

Downtime per node TD + TU (in seconds) TS (in milliseconds) 

Used space for software per node (with 

blue-green approach) 

1 x IS 2 x IS 

Used space for software with buffer node NN x IS NN x IS + IS  

Update distribution Manual or with a task scheduler Optimized by backup node or pushed 

from the cloud 

Downtime when connected layer update If the update is running Until the buffer has data 

 874 
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7.2. Achieved Results 875 

Our results with the proposed combined deployment approach proved our 876 

expectations and varied between different software layers and scenarios. Applying the 877 

proposed strategy reduced the overall downtime and number of unnecessary rollbacks. 878 

This was achieved by the cost of implementing the backup node, the implementation of 879 

the buffer level, and a slight increase in data traffic. Table 3 shows the behavior of the 880 

network of 100 IoT nodes analyzed in a test environment. 881 

Having the configuration with one leading node, the total number of updates coming 882 

from the update node or the cloud to the IoT network will be reduced from the total 883 

number of nodes (NN in further text) to one. The updated version will come from the 884 

outside system to update the node, which will guide the update for the rest of the IoT 885 

nodes. In this way, the bottleneck in communication between the IoT level and the rest of 886 

the system will be reduced or eventually avoided. This way, the number of security checks 887 

will be reduced to only one. In a scenario where every node gets an update outside the 888 

network, a security check will be performed every time due to standard security policies. 889 

The proposed hybrid approach will require more space. If the clients can support 890 

blue/green deployment, they will need twice as much space as in the case of recreate 891 

deployment. One additional slot for the distributed version should be added to the space 892 

required. The sentinel client will use the distribution/sentinel/backup node to download 893 

the updated version and then forward the update. 894 

 895 
Table 4 The estimated effects of the proposed deployment strategy in MES and ERP level (TD – 896 
time to shut down the software in the node, TU – time to start the software in the node, TS – time 897 
switch between the versions, TF – time needed to activate feature flags and A/B features, IS – 898 
software instance size per node, BS – buffer size, NN – total number of nodes, N1 – number of 899 
level 1 nodes (sentinel/backup nodes), G – number of level 2 groups, AG – average number of level 900 
2 nodes per group AG = (NN – N1)/G) 901 

Measurement Recreate deployment Hybrid deployment 

ERP level 

Hybrid deployment 

MES level 

Number of software uploads to 

level 1 nodes – successful 

deployment 

NN N1 1 + (N1 – 1) 

Number of software up-loads to 

level 2 nodes (average per 

group, successful deployments) 

0 AG AG 

Number of software uploads to 

level 1 (rollback needed) 

NN Up to N1 1 

Number of software uploads to 

level 2 (rollback needed) 

0 0 AG 

Security check on upload NN N1 1 

Only in the update node 

Downtime per node TD + TU TS TS + TF 

Total space used NN x IS NN x (2 x IS + BS) + IS NN x (2 x IS + BS) 

Update distribution Manual or with a task 

scheduler 

Optimized by backup 

node 

Over the air 

Downtime when connected 

layer update 

If the update is running Until the buffer has data 0 – ERP 

Until the buffer has data – 

Edge / IoT 
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The concept proposed for IoT nodes in [10], further evolved and applied to the ERP 902 

nodes [10]. With further customization, it is successfully applied to the MES level. The 903 

expected effect is presented in Table 4. Both ERP and MES clients share similarities in 904 

size and software architecture. Both have more extensive software instances than those in 905 

the IoT and Edge levels. Due to the software's mentioned size, update distribution could 906 

cause problems comparable to those from the IoT level, primarily if the update is run 907 

from the same node where the server is running. In that case, the single node should run 908 

NN uploads, which could take significant network resources.  909 

 910 
Figure 15 Differences in deployment approach for ERP (left, as presented in [10]) and MES 911 

clients (right) 912 
 913 

To address this challenge, a strategic division of client nodes into N1 groups by AG 914 

clients is proposed (Figure 15). This approach draws inspiration from the canary 915 

deployment methodology, wherein a dedicated group of clients serves as the initial testing 916 

cohort. During the first iteration, updates are dispatched to sentinel nodes, responsible for 917 

essential testing. Subsequently, these sentinel nodes propagate the verified updates to the 918 

nodes within their respective groups. In the event of an error detected at the sentinel level, 919 

a rollback ensues, ensuring that most clients remain shielded from erroneous software 920 

versions. 921 

This approach undergoes slight adaptation when applied to the MES layer. The 922 

rationale behind this modification lies in the inherent diversity of MES clients. Unlike 923 

ERP clients, which typically exhibit uniform features, MES clients cater to distinct 924 

operational stations, each potentially possessing a significantly separate set of 925 

functionalities. In the MES environment, an initial client group is selected for 926 

deployment. The updated version is relayed to its sentinel node, where thorough 927 

verification occurs. Upon successful verification, the updated version cascades to the 928 
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remaining group members. Subsequently, the verified functionality extends to other 929 

sentinel nodes. 930 

While this approach does not directly reduce total network traffic, it effectively 931 

distributes the load across update and sentinel nodes, mitigating network traffic hotspots. 932 

Anticipated downtime per node may be slightly higher for MES clients due to the 933 

activation of feature flags and A/B functionalities. Additionally, depending on 934 

configuration, MES clients may require time to establish connections with signal sources 935 

from distinct levels. Notably, integrating the update mechanism with the Cloud level and 936 

the digital twin introduces the prospect of fully controllable over-the-air deployment, 937 

potentially paving the way for a transition to software-as-a-service for specific system 938 

elements. 939 

 940 
Table 5 Effects of different client deployment approach to MES and ERP level – 3 groups of 10 941 
clients (STD – standard approach, WoD – Wave of Distribution)  942 

Measurement Recreate 

deployment ERP 

Hybrid deployment 

ERP level (canary 

with sentinel) 

Recreate deployment 

MES 

Hybrid deployment 

MES level (groups with 

sentinel) 

Number of update 

packages sent from the 

server to clients (1st 

WoD) 

30 3 30 1 + 2 

Amount of data sent from 

the server to clients (in 

GB, 1st WoD) 

1.35 0.14 0.75 0.03 + 0.07 

Network traffic peak (in 

%, server outbound, 1st 

WoD) 

100 18.65 78.40 5.67 

Distribution group size 

(2nd WoD) 

- 10 - 10 

Distribution time per 

group of clients (In 

seconds, 1st WoD) 

64.28 7.55 41.19 2.77 + 6.01 

Distribution time per 

group of clients (In 

seconds, 2nd WoD) 

- 17.08  12.55 

Single client 

switchover/update time 

(In seconds) 

32.28 4.58 25.19 (only MES 

functionality) 

31.22 (full 

connectivity) 

2.41 (only MES 

functionality) 

8.67 (full connectivity) 

Single client 

switchover/restart time 

when rollback is needed 

(seconds) 

34.10 6.78 26.49 (only MES 

functionality) 

33.53 (full 

connectivity) 

4.33 (only MES 

functionality) 

9.02 (full connectivity) 

 943 

We compared the update behavior for the array of 30 ERP and 30 MES clients running 944 

in the test environment to evaluate predicted values. They have been split into three 945 

groups of ten clients for the simulation. The findings, presented in Table 5, align with the 946 

estimation from Table 4. Due to their smaller size, MES clients create less network traffic 947 
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than ERP clients. The amount of required space and network peaks are lower for the MES 948 

network.  949 

7.3. Advantages and Drawbacks 950 

 951 

The advantage of the approach shown in this work is that if it is applied to MES nodes, 952 

it results in faster recovery if the deployment error is noticed, compared to the one 953 

presented in [9] and [10]. Usually, it is enough to do the rollback only in one sentinel 954 

node. The next advantage is the possibility of running multiple versions of some 955 

functionality and quickly switching them on or off. Ultimately, integrating with cloud 956 

services and establishing a complete digital twin helps detect errors and change. The 957 

environment we used for the test is a demo digital twin for beta testing.  958 

It is essential to note that two separate times must be measured when the MES client 959 

is started or when the switchover is handled. The most critical moment is when the client 960 

is in running mode and connects to the MES service, allowing it to perform standard MES 961 

functionality – operation execution, labor logging, etc. Next is the moment when the 962 

client is connected to other data sources. In our example, clients are connected to an OPC 963 

(object for process control) server that acts as a system that collects measurements from 964 

the sensors. Generally, these data sources could be different depending on the area of the 965 

industrial facility where the client is running. 966 

The software update challenges discussed in this study constitute only a portion of the 967 

broader complexity. For over fifteen years, we have continuously relied on systems 968 

developed by our research group, honed through rigorous coordination, and field-tested 969 

in partner industrial facilities. The software update process encompasses several critical 970 

dimensions, including compatibility concerns, system stability, data migration intricacies, 971 

and the imperative of user adoption. Addressing compatibility issues necessitates 972 

comprehensive testing across diverse system configurations before deployment. 973 

To this end, we advocate for establishing a dedicated test environment within our 974 

domain or creating a digital twin in the cloud. For instance, transitioning to a different 975 

platform version for Windows application development may introduce incompatibilities 976 

with OPC servers. Similarly, upgrading the database server to a newer version could 977 

disrupt continuous connectivity between MES or ERP systems until the connection driver 978 

is updated. Altering the data structure of messages stored in message queues poses the 979 

risk of data loss for existing records, rendering them unreadable by the current system. 980 

User adoption hinges on effective communication and targeted training to elucidate 981 

the benefits of updates and familiarize users with new features. Soliciting feedback from 982 

users both before and following updates facilitates the identification and resolution of any 983 

emerging issues. The strategic inclusion of A/B deployment techniques further enhances 984 

this process. 985 

The typical application of the proposed software update mechanisms is limited to 986 

some point. This means that the suggested set of updates could not be directly used for 987 

software not developed in the line of the examined software development and deployment 988 

approaches. For example, if the software has no properly exposed extension and 989 

configuration classes, there will not be the possibility to use feature flags or A/B 990 

approaches. On the other hand, blue/green and canary deployments could be implemented 991 

through a committed team supported with the necessary hardware and acquiring specific 992 
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deployment routines. A deeper implementation of the proposed deployment solution 993 

would require additional pieces of software and/or additional adaptation in the target 994 

software. 995 

During the development process, not all pieces of software were designed suitably 996 

and flexibly for such update mechanisms. Initially, the MES software was developed with 997 

fixed configuration files in which content was loaded on system startup, and the update 998 

was not possible while the software was running. This was primarily related to the server 999 

side. Any configuration change used to lead to service restart, which eventually results in 1000 

execution disruption. For this reason, the blue/green deployment was the first that was 1001 

included in the setup. It guaranteed reduced downtime and faster system operational 1002 

availability. On the other hand, the software adaptation for MES clients came a bit later 1003 

since it only needed to restart local clients in the operator’s place, which had a limited 1004 

impact. The next set of updates was the approach that could trigger configuration refresh 1005 

through a database or file reload. With this approach, feature flags and later approaches 1006 

became fully supported, and the software was ready to become a part of the complex 1007 

deployment system, significantly reducing downtime when redeployed.  1008 

Mitigating system disruptions involves judiciously scheduling updates during off-1009 

peak hours and transparently communicating potential downtime to users. Meanwhile, 1010 

prudent planning and rigorous testing of data migration procedures minimize 1011 

complications arising from data transfer. 1012 

In summary, a carefully orchestrated update process, underpinned by thoroughly 1013 

vetted software versions and executed at the opportune moment, constitutes the linchpin 1014 

of a successful upgrade. 1015 

8. Conclusion 1016 

Having more than a decade and a half of experience with industrial systems, our 1017 

research team went through different projects involving software development at all 1018 

ISA95 levels. The challenges in development vary across the levels due to user 1019 

requirements, technical complexity, and performance expectations. All these software 1020 

instances must work in accordance and be a reliable element of the industrial facility. The 1021 

common challenge for all the pieces of software is the system update. Usually, the system 1022 

on one level consists of the server and several dozen or hundreds of clients. When it comes 1023 

to the update, it should be done as fast as possible and with lower resource consumption 1024 

without creating bottlenecks in the facility. 1025 

The research findings significantly advance the formulation of deployment strategies 1026 

for intricate, layered industrial software systems. When deploying software updates, 1027 

several common challenges arise, including downtime, increased network traffic, and 1028 

storage space utilization. At lower levels, energy consumption during the deployment 1029 

process also warrants consideration. 1030 

We introduce additional backup nodes into the system to address the limited storage 1031 

space issue. Although these backup nodes exhibit a slightly larger volume than regular 1032 

IoT nodes, this tradeoff is deemed acceptable given the achieved outcomes. Notably, total 1033 

downtime has been dramatically reduced—from seconds to milliseconds—representing 1034 

a reduction of less than one percent of the initial duration. 1035 
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The approach used in IoT nodes [9], was successfully applied to ERP [10] and MES 1036 

levels by improving the defined hybrid deployment mode. The findings align with those 1037 

observed for IoT nodes, emphasizing the potential incorporation of novel features and 1038 

deployment strategies. This adaptability makes the deployment process for ERP and MES 1039 

clients more user-friendly, fostering higher user acceptance rates. 1040 

We devised a hybrid strategy that amalgamates blue-green, canary, and dark mode 1041 

elements with feature flags, A/B testing, and enhanced standard deployments. This 1042 

strategy is bolstered by an inter-layer buffer and the inclusion of specific nodes—the 1043 

update node on the server side and backup and sentinel nodes on the client side. By 1044 

implementing this approach, we effectively curtailed overall downtime, reducing the 1045 

duration required for system restart to a period proximate to the switchover. Remarkably, 1046 

this reduction translates to less than 10% of the time typically consumed by classic 1047 

deployment methods. The most noticeable improvement is in the case of erroneous 1048 

deployment when the error could be tracked down and stopped in the first sentinel node. 1049 

With the backup/sentinel node active, we reduced the number of software uploads in 1050 

case of an erroneous update to the time needed for two switchovers of the single node. If 1051 

chosen correctly, the initial sentinel node will provide an adequate test environment for 1052 

error detection. Unlike the ERP clients, where the approach was to release the update to 1053 

all sentinel nodes, with MES clients, the strategy was to send the update to a single 1054 

sentinel, and then it would take care of its group. In the worst case, the targeted group 1055 

needs to be reverted, but this will be done inside the group without the need for interaction 1056 

with the server or the update node. 1057 

The changes in the deployment process applied to MES nodes are driven mainly by 1058 

the Industry 4.0 paradigm and the requirements that came with it. MES and Industry 4.0 1059 

are transforming manufacturing practices by digitizing and making processes intelligent, 1060 

enabling organizations to cater to individual customer requirements and achieve 1061 

operational excellence. In short, MES and Industry 4.0 are revolutionizing manufacturing 1062 

by integrating advanced technologies and data-driven systems to create a more 1063 

interconnected and efficient production environment.  1064 

Enhancing the efficiency of the software update process stands as a pivotal element 1065 

within an optimized production environment. The overarching objective is facilitating 1066 

software updates beyond scheduled maintenance windows. Leveraging the proposed 1067 

hybrid deployment method, seamless layer-wide updates become feasible, particularly 1068 

when interactions with other levels remain unchanged. Notably, this approach 1069 

significantly truncates downtime—from hours and minutes to mere seconds and 1070 

milliseconds. Furthermore, our future trajectory involves extending our efforts to the 1071 

Edge level. This strategic expansion aims to devise solutions that mitigate the impact of 1072 

buffering and inter-level communication system modifications more effectively. 1073 
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