
Computer Science and Information Systems 00(0):0000–0000 https://doi.org/10.2298/CSIS123456789X

Applying a Hybrid Deployment Strategy for 1

Software Updates to the Manufacturing Execution 2

System Layer* 3

 4
Petar Rajković 1, Dejan Aleksić 2, Dragan Janković 1, Aleksandar Milenković 1, and Anđelija 5
Đorđević 1 6

 7
1 University of Niš, Faculty of Electronic Engineering, 8

Aleksandra Medvedeva 4, 18104 Niš, Serbia 9
petar.rajkovic@elfak.ni.ac.rs 10

dragan.jankovic@elfak.ni.ac.rs 11
aleksandar.milenkovic@elfak.ni.ac.rs 12

andjelija.djordjevic@elfak.ni.ac.rs 13
 14

2 University of Niš, Faculty of Science and Mathematics, Department of Physics, 15
Višegradska 33, PO BOX 224, 18106 Niš Serbia 16

alexa@pmf.ni.ac.rs 17
 18

Abstract: Complex industrial systems consist of many heterogeneous devices running different 19
hardware and software in a connected, layer-organized environment. Since all these software 20
instances must be updated occasionally, and since they could affect the layers under and above, the 21
definition of deployment strategies that will reduce downtime is necessary. In previous work, we 22
focused on identifying common problems in software update processes and concentrated on the 23
most effective update strategies running at the lowest (Internet of Things – IoT) and highest 24
(Enterprise Resource Planning – ERP) levels. The result was a set of recommendations and 25
strategies that should help minimize network utilization and processing resources and make the 26
process as energy-efficient as possible. After that, the core effort of the research is shifted toward 27
the Manufacturing Execution System (MES) layer – the layer that brings the higher complexity, 28
both in terms of connectivity and software complexity. Following the actual Industry 4.0 paradigm, 29
the software in the MES layer becomes even more critical since it is expected to integrate a whole 30
new set of responsibilities previously belonging to various levels or external solutions. To facilitate 31
further requests, deployment strategies are reevaluated and enriched with innovative approaches 32
such as A/B testing and the separate update service. This paper shows the possible further 33
development of the hybrid software deployment system when applied to the multiconnected levels, 34
such as the MES. The adaptation shows positive results regarding the network load distribution and 35
significant effort reduction in cases when a rollback is needed. 36

 37
Keywords: Industrial software, Manufacturing Execution Systems, Software deployment strategy, 38
Resource Awareness, Industry 4.0 39

1. Introduction and Background 40

Complex industrial systems represent an exciting conglomerate of various technical 41

solutions. Knowledge from different engineering sciences is needed to solve the 42

challenges from process modeling, signal collecting, and processing through plant layout 43

* This manuscript is an extended version of the paper published in the proceedings of the CERCIRAS 2021

workshop

2 Petar Rajković et al.

design to raw materials and finished goods transportation, distribution, and storage. 44

Nowadays, all these aspects are supported by adequate software. Due to significant 45

differences between diverse aspects of the organization in the industrial facility, the 46

complete structure is divided into standardized layers. The standard ISA95 [1] defines in 47

detail how to split the industrial system organization and what the responsibility of each 48

layer is. Following the standard, the information technology (IT) subsystem in the 49

industrial environment consists of many heterogeneous devices running different pieces 50

of software in a connected and layer-organized environment [2] (Figure 1). Starting from 51

the sensor and actuator layer connected with microcontrollers (in our work, we will 52

reference it as the IoT layer) [3], through the Edge layer [4][5], via SCADA [6] and 53

manufacturing execution systems (MES) [7] to enterprise resource planning (ERP) [8], 54

all pieces of equipment run the software that needs to be updated occasionally. 55

 56

 57
Figure 1 ISA95 levels according to the industrial standard 58

 59

Software update, as a process, is an activity that is considered highly problematic in 60

the industrial environment. From the point of view of the process engineer, it should either 61

happen never or only in predefined maintenance slots. It came from the experience with 62

the previous deployment methods, where intensive planning must be done, and some 63

areas of the industrial facility will be disconnected for a more extended period. If 64

deployment needs to be reverted or reconfigured, the problem will be even more 65

significant. 66

In our previous work, we have been focused on the deployment of the software in the 67

lowest (the IoT level [9]) and the highest (the ERP level [10]) levels of the system. From 68

the connectivity point of view, these two layers have been of minor operation complexity 69

since they maintain connectivity only to nearby levels. IoT nodes are usually connected 70

only to Edge computers, while the ERP communicates with MES. The main difference 71

between them is the requirements regarding the volume of the needed resources. In the 72

IoT area, resource shortages are faced in every aspect of work. 73

This paper represents the direct extension of the work published in the CERCIRAS 74

2021 workshop. The definition of the testing environment and the default deployment 75

strategies used for IoT nodes were the starting point and thus included in this work. This 76

paper describes the usage of the concepts of the software update approach for a single 77

node with limited storage space and expands then further on the application at the MES 78

level. 79

As mentioned, any deployment strategy must consider energy consumption, storage 80

space, and processing power. Such an environment requires carefully defined deployment 81

methods and, even more importantly, backup and restore strategies in case of 82

unsuccessful deployments. The next step was to generalize the approach described for 83

IoT nodes and apply it to the ERP layer [10]. In that sense, this paper could be seen as the 84

Applying a hybrid Deployment Strategy 3

further continuation of the work we described in [10]. Since ERP layer software was built 85

with more advanced software tools, it offers more possibilities for defining the update 86

strategy. In that sense, the different software deployment methods were analyzed, and a 87

set of routines that should improve deployment scenarios was proposed and evaluated. 88

Deployment strategies, defined in [10], were the next step in our deployment and were 89

thus used as another starting point in our work. The explained use of advanced strategies 90

was another building block to define routines for the MES software. The software at the 91

ERP level shares the complexity, technology stack, and implementation approaches with 92

MES, which was of significant value for this work. 93

The next goal is to apply the proposed deployment routines to the MES layer. MES is 94

the layer that brings the higher complexity into the design, both in terms of connectivity 95

and software complexity. Following the actual Industry 4.0 paradigm, the software in the 96

MES layer becomes even more important since it is expected to integrate a whole new set 97

of responsibilities previously belonging to various levels or external solutions. 98

Deployment strategies are reevaluated and enriched with innovative approaches to 99

facilitate further requests. For example, the MES server could be connected to SCADA 100

on one side and to the ERP on another. In contrast, the clients could be connected directly 101

to measuring devices in Edge or IoT to register and visualize different measurements. 102

In this situation, downtime during the update needs to be evaluated through multiple 103

sides to ensure proper reconnection and operation continuation from various sides. Also, 104

one must remember that with new requirements under Industry 4.0, the MES software 105

should offer new functionalities that often come without full specification and where 106

multiple versions must be simultaneously evaluated. This paper shows the results of the 107

research that had the following research tasks: 108

- Test and adapt the deployment strategies suggested in [9] and [10] and try to use 109

them both for server and client components of the MES level. 110

- Focus to reduce network load on the MES server side. 111

- Organize deployment to stop the erroneous deployment as soon as possible. 112

- Integrate the process of the practical test of new functionalities when the customer 113

must choose between multiple solutions. 114

This research relies on our previous work, primarily described in [9] and [10] and 115

represents its continuation and improvement. 116

2. Background – Industry 4.0 Paradigm and Existing MES Systems 117

MES and Industry 4.0 are critical components of the modern manufacturing 118

landscape. They aim to integrate technology and data to optimize production processes, 119

improve efficiency, and drive innovation in many new ways. Industry 4.0, the Fourth 120

Industrial Revolution, represents a radical shift in manufacturing practices. 121

It involves the digitization and the use of advanced scheduling and execution 122

algorithms in manufacturing processes, moving away from mass production towards 123

customized production that caters to individual customer requirements (Figure 2). This 124

means that a portion of the planning and scheduling will be moved from ERP to the MES 125

level. Next, MES plays a crucial role in Industry 4.0 by providing real-time visibility, 126

control, and intelligence across the entire product life cycle value chain. It should allow 127

for seamless communication, analysis, and data utilization to drive intelligent actions in 128

4 Petar Rajković et al.

the physical world. This means that the connection from MES will not only go to the 129

SCADA layer but also directly to Edge, IoT, and sensor networks in some cases. 130

 131

 132
Figure 2 Main elements of Industry 4.0 133

 134

With full rights, the new generation of MES and Industry 4.0 is expected to enable 135

organizations to harness the power of digital technologies and intelligent, connected 136

systems to revolutionize their manufacturing processes. They would allow organizations 137

to optimize production processes, improve efficiency, and drive innovation by leveraging 138

robotics, analytics, artificial intelligence, nanotechnology, the Internet of Things, and 139

cloud computing. These technologies enable organizations to automate tasks, analyze 140

data for actionable insights, and connect various parts of the production process for 141

seamless coordination and optimization. At the same time, it is, more than ever, expected 142

that software runs with the lowest possible downtime and that all activities run as 143

smoothly as possible. 144

While previous work focused on single-connection levels, like IoT and ERP, this 145

paper will evaluate the application and extension of the existing set of recommendations 146

for software at the MES level. MES-level software is significantly different from those 147

running in IoT nodes but closer to ERP systems. First, MES systems usually follow 148

service-oriented architecture (SOA) with various clients. 149

These software instances run on servers or in the workstation, with significant 150

processing power and memory storage compared to IoT nodes. It looks like the MES 151

systems run in an environment where resources are not the problem, but it is not quite 152

like that. Depending on the configuration and the set of required operations, MES clients 153

could weigh up to a few hundred megabytes. It depends, of course, on the implementation 154

technology and other dependencies. Still, if they are implemented as the thick client, the 155

usual user requirement, their update process could employ significant network traffic. 156

Compared to ERP software, MES runs fewer complex algorithms, but it connects 157

more extended software and services and runs in significantly more numbers and variants 158

of clients. It is also essential to state that with the current technology demands fueled by 159

Applying a hybrid Deployment Strategy 5

the Industry 4.0 initiative, the importance of the MES system rose. Nowadays, MES is 160

often required to provide many functionalities native to other systems. The MES should 161

now support continuing different reporting, overall equipment effectiveness tracking 162

(OEE), Andon boards, deeper integration with ERP systems and SCADAs, and ending 163

various synchronizations with warehouse, packaging, and other systems. 164

3. Related Work 165

The existing literature offers various deployment strategies, evaluations, and 166

recommendations. In most cases, the existing research covers software that runs in layers 167

such as MES and ERP. Besides, it has been constructive for our current scope of research, 168

but it was a bit misleading when one tends to define the close-to-universal strategies and 169

approaches. These higher layers deal with clients transferring significant data and 170

executing numerous transactions. When defining development strategies for lower levels, 171

the standard approaches from the literature are not directly implementable due to their 172

unique limitations. 173

The most critical points for resource management at lower levels are storage capacity 174

and data traffic through connecting networks. The overall effect is not the same on all 175

layers [15]. MES runs in a shop floor environment on devices with processing power 176

similar to standard computers. 177

The storage space is not a critical requirement for devices running MES or ERP 178

software, but they are usually connected to their server using the wireless network. The 179

wireless networks in the industrial environment could experience different disruptions 180

because of operating nearby machines generating high-frequency harmonics as well as 181

other security threats [16]. Data package verification and consistency are critical for MES 182

and ERP client nodes. When deploying a new version of the software to some device, an 183

update package, which is of significantly higher volume than usual data traffic, needs to 184

be distributed via a network, verified, and stored on the destination device, and the old 185

version needs to be backup in case of rollback [17] [18]Next, the Edge layer's primary 186

mission is to collect all the data from sensor networks and pass it to the MES. In this case, 187

the proper buffer implementation ensures smooth software upgrades. 188

All the mentioned layers are highly heterogeneous, with different pieces of hardware 189

running the software instances with diverse categories of software. Overall, in the 190

complete industrial system, the type of used devices, their number, and the amount of 191

transferred data (per device) could be between 1kB and 1GB. To make the complete 192

process more demanding, the devices sometimes do not have enough memory to store 193

two software versions; thus, they would require backup in a different location. This leads 194

to the situation that sometimes it is nearly impossible to have an upgrade with no, or at 195

least with very low, downtime [19]. 196

As with every process, a software update could fail for numerous reasons. In that case, 197

a complete deployment approach or deployment system needs to provide the possibility 198

to roll back to the previous version [20]. The rollback will then take more resources and 199

make the situation even worse, so we need to ensure that system governance successfully 200

goes through the process [21]. 201

To reduce the impact of the mentioned problems and potential system downtime, we 202

aimed to define a more general approach that could be configured to use the combination 203

6 Petar Rajković et al.

of blue-green [22] and canary deployment [23] styles in combination with both shared 204

and local backups [24]. This approach looks promising at the IoT level. The approach 205

was tested in a production environment, and the results were published in [9] and [10]. 206

Working on a general set of recommendations [9] [10], we conclude that regardless 207

of the type of software and the operating level, the blue/green approach could be 208

effectively used at any node (Table 1). New components used to build IoT nodes 209

increased memory and processing power, so keeping two versions simultaneously would 210

probably not be a problem. The blue/green approach, per se, could be improved with 211

additional techniques such as buffers and backup nodes [9] [10]. For example, at all 212

levels, a blue/green approach supported by the dark mode with feature flags could be used 213

for server node deployment. This will give flexibility and security; newly developed 214

features could be gradually turned on until the complete server update is reached. For 215

clients, blue/green is the primary choice, which could be enriched with buffers and feature 216

flags if the resource pool and used implementation technology allow. 217

 218
Table 1 Elements of the deployment strategy used in various levels (BG – blue/green, DF – dark 219

mode with feature flags, CS – canary with sentinel node, CB – canary with backup node, IB – 220
intermediate buffer, (XX) - optionally) (as suggested in [10]) 221

Level Server Client network Single Client

Levels 0 and 1 (sensor network) BG + (DF) CB + IB (BG) + IB

Level 2 (IoT nodes and Edge computers) BG + DF CB / CS + IB BG + IB

Level 3 (MES) BG + DF CS / CB BG + DF + IB

Level 4 (ERP) BG + DF CS BG + DF + IB

 222

The level of downtime reduction is significantly reduced in this scenario, compared 223

to standard approaches such as recreate deployment and rolling deployment [27]. In the 224

recreate deployment, the previous version of the software is shut down, and the new one 225

starts after the old one has been stopped. Rolling deployment is applicable for complex 226

systems with multiple servers. It is based on the recreate deployment but applies to 227

various services. The downtime is exceptionally low, but the length of an upgrade process 228

depends on the number of servers/nodes in an array, and it could take considerable time. 229

The proposed deployment strategy will improve overall deployment time even more in 230

the case of the rolling strategy since the blue/green switch could be done in the close 231

period; there is no need to wait until all the servers are updated in the sequence. 232

The new request that does not fit into the proposed framework is to have the possibility 233

to support simultaneous evaluation of different versions of functionality. Besides, it could 234

be done through the feature flags, but it will eventually require more consolidation and 235

stabilization work. The A/B testing deployment approach is included to address such 236

requests. This approach is used on the client side to improve the development and test 237

phase and provide the possibility for limited testing in the production environment. This 238

approach aims to offer different functionalities to some clients and then evaluate the user's 239

reaction and acceptance. The update is usually done in a few groups of varying sentinel 240

nodes. 241

Recreating and rolling deployment are crucial concepts in software development and 242

operations at the MES level [28]. Recreating refers to rebuilding a software system or 243

environment from scratch, often to resolve issues or update components. On the other 244

hand, rolling deployment involves deploying new software versions in a gradual and 245

Applying a hybrid Deployment Strategy 7

controlled manner, allowing for continuous delivery and minimizing downtime. 246

Integration with other systems and services traditionally occurs at the end of a 247

development life cycle, but rapidly developed applications are integrated almost 248

immediately. Testing occurs during every iteration, enabling stakeholders to quickly 249

identify and discuss errors, code vulnerabilities, or complications and immediately 250

resolve them without impacting the development progress. As stated in [29], “integration 251

with other systems and services traditionally occurs at the end of a development life cycle, 252

but rapidly developed applications are integrated almost immediately”. This iterative 253

approach to development and testing is a crucial aspect of recreating and rolling 254

deployment methodologies. 255

 256

 257
Figure 3: A/B testing deployment 258

 259

The use of A/B deployment (Figure 3) strategy has become increasingly popular in 260

various fields, including technology, marketing, and product development. This strategy 261

involves testing two different versions, A and B, of a product or service to see which 262

performs better [25]. The first source highlights the importance of product or service 263

innovations in engaging customers and improving performance. It suggests that the 264

market development strategy, which focuses on pursuing additional market segments or 265

geographical regions, can increase sales but also comes with more risk. The second source 266

discusses different methods for gaining market share, including product development and 267

market development [26]. In the Industry 4.0 era, the use of A/B testing deployment is a 268

comparable advantage within the installations of MES. The installation supports A/B 269

testing and easy transition to the new version, considered more advanced and 270

customizable. The A/B testing is widely popular with deployment based on container 271

technologies, such as Kubernetes [30], since they involve end-users in decision-making 272

over the new version of the software. 273

4. Testing Environment 274

As it has been known, the update process comes with the risk of diverse potential 275

failures that could leave parts of the system unresponsive, running with unpredictable 276

behavior, or emitting erroneous data. For this reason, the update process must be executed 277

8 Petar Rajković et al.

in a highly controllable environment that allows easy and efficient rollbacks in case a 278

flawed deployment is detected. As stated before, all software components in the industrial 279

system are usually organized in layers. Layers exchange data with each other using 280

different software protocols. The mentioned facts make the overall software update 281

process a bit more complex than within a standard information system environment, and 282

every error could lead to serious domino effects [11] [12]. Updating software in one layer 283

could impact the targeted device and other devices in the same and different layers. For 284

example, the update performed on the device running at the MES level could affect 285

software instances running in other layers. 286

The additional limitation point is the expectation for the highest possible performance 287

and the requirement that software run using as few resources as possible. The complete 288

system must have a high degree of resource awareness, and both storage space and 289

network bandwidth usage must be carefully planned during the update process in order 290

not to reduce the execution of the running components significantly [13][14]. For this 291

reason, the resolute digital twin is used for testing. 292

The digital twin (Figure 4) is created partly in the laboratory environment and partly 293

in the cloud to simulate different connectivity scenarios and have an overview of worse-294

case scenarios regarding latency and execution. The emulated hardware in a digital twin 295

is set to the lowest acceptable resource level, which should simulate worse execution 296

conditions than those in the production environment. The testing digital twin is introduced 297

during the implementation of the one-of-the-kind production system [32]. As the demo 298

factory, the plant producing doors and windows is set. 299

Such a production facility is used for demonstrating since it combines all diverse kinds 300

of production and needs multiple sensors and precise mechanical units to be integrated. 301

On the MES, the level needs several diverse types of clients and services. The digital twin 302

environment used for testing was described in [10] and improved to support more 303

complex environments. Previous research focused either on IoT nodes, which were 304

entirely configured in the local network, or on ERP clients, which were all the same and 305

ran only in the cloud. 306

The IoT level in the digital twin consists of 100 nodes connected to simulated 307

instances of sensors and actuators. Each IoT contains a different number of sensors and 308

actuators, which count within the node and could be anything between a few and 1,000. 309

The count of 100 gives enough flexibility and complexity to perform testing in the 310

development phase. The digital twin, an exact mirror replica of the industrial facility 311

environment, could be created for the production phase. In the default model, following 312

the ISA95 model, sensors are connected to IoT nodes. Especially after the Industry 4.0 313

concept brought new requirements for MES systems, a direct connection between MES 314

clients and measuring sensors could be established, too. 315

Sensors within one IoT node could be different, and all could run various software. 316

Sensors could be active either constantly or just for predefined periods. They could collect 317

very heterogeneous data with varying sample rates during their operation time. All these 318

facts make the IoT level very dynamic from the operational point of view. They could 319

increase the probability that the complete node went out of a stable state in case of 320

problematic deployments. 321

The available memory space is usually between 1 and 5 MB per device, which is 322

enough for the necessary software. The nodes in the IoT layer are connected using various 323

Applying a hybrid Deployment Strategy 9

methods, ranging from cable network connectors to LoRaWAN, which creates an 324

inconsistent environment in terms of connection speed and quality. The most complex 325

situation is with LoRa-connected devices since their bandwidth could be only 10-20 kbps. 326

 327

 328
 329

Figure 4: The composition of the examined system containing all levels of the ISA95 model 330
 331

IoT node layers are further connected to Edge computers or Edge nodes. Edge nodes 332

communicate between the shop floor and hazardous areas on one side and higher levels, 333

such as MES and enterprise resource planning (ERP), on the other. Edge nodes are 334

10 Petar Rajković et al.

devices based on Raspberry Pi or similar base sets and are usually connected by a 335

Wireless network with an effective network speed of around 20 Mbps. Their space 336

requirements are around 30 MB per node. There were 10 of these nodes in our test 337

environment. To support testing, the mesh of 10 Edge computers is modeled in digital 338

twin. Each of them is set to collect data from 10 IoT nodes. 339

From the resource awareness point of view, software components on MES and ERP 340

levels are easier to manage. They run on desktop/laptop computers with enough 341

processing power, disk space, and bandwidth, but resource planning is inevitable even 342

with them. In our test environment, we used 200 MES clients connected to 4 MES servers 343

(two load-balancing and two redundant, with the possibility to change the configuration) 344

and 30 ERP clients connected to the Microsoft Dynamics server. All the clients at this 345

level are a few hundred megabytes in volume and are located under a gigabyte network. 346

 347
Table 2 Different MES clients and their functionalities 348

MES Client Type Connection within MES Level Connection to other levels/services

Administrative Server ERP

Operation Buffer, Server Edge

Configuration Server ERP, External cloud services

Management Server, Operation clients Reporting

Measurement Server IoT, Edge

 349

Regarding MES clients, a few diverse types are supported by performing different 350

connectivity and execution actions (Table 2). Administrative clients perform operations 351

related to the ERP level. They are responsible for synchronizing operations definitions, 352

catalog data, material definitions, and other master data needed to exchange data between 353

MES and ERP properly. 354

The operation client has a connection to the execution buffer on the MES side and to 355

the Edge level. The execution buffer is an optional implementation that allows clients to 356

continue to run when the server is offline. It contains a buffer filled with tasks that must 357

be executed in the workstation and that collects data generated during the production 358

process. Once the connection is reestablished, the data flow will resume, and the server-359

side upgrade will have the lowest possible impact on the clients. 360

Configuration client is described in detail in [32]. It is used to define new products 361

and eventually upload these data to cloud services and ERP. Management client acts as a 362

synchronization node between ERP and operation clients. It is responsible for 363

downloading production orders from ERP and uploading collected status change data 364

measurements, etc. Ultimately, the measurement client will provide the interface for 365

material registration and integration with IoT nodes such as sensors and other 366

measurement devices. 367

 368

5. Transition of Deployment Strategy from IoT to MES node 369

The software update process for IoT nodes and sensor/actuator devices running in a 370

production environment is considered particularly sensitive. In industrial automation, 371

sensors and actuators emerge as fundamental components that underpin efficient, safe, 372

Applying a hybrid Deployment Strategy 11

and precise operations. These unassuming devices are pivotal in monitoring, controlling, 373

and optimizing various processes across diverse industries. The update of such small 374

components requires detailed planning before an update. Thorough planning is needed 375

because they are, on the one hand, tiny both in size and capacity, and on the other hand, 376

they are running in a hazardous environment where the only possible connection is 377

relatively slow LoRa networks with no wiring possible and limited physical access, 378

(Figure 5). If some physical intervention is needed, the stoppage of the complete 379

industrial process is often a requirement. 380

 381

 382
 383

Figure 5: Comparison of building blocks of IOT (left) and MES (right) client nodes 384
 385

Besides the slow network, the low-performance hardware is one additional potential 386

problem. This fact could result in an unacceptable long update process, which could move 387

the targeted device off the system for an extended period. The last, but not the least 388

important, is the energy consumption problem. Software updates are an activity that 389

requires significantly more energy than regular data collection and data transmission 390

processes. Thus, this process must be planned for when the battery is charged to the 391

highest possible level and when the eventual rollback will not drain the battery. 392

At first sight, it looks like there are no common issues or problems between IoT and 393

MES clients. MES clients have fewer limitations, especially in processing power and 394

storage capacity. Stating that one can assume that any kind of deployment strategy is 395

convenient for MES clients. It could be said this from a strictly technical perspective, but 396

when including different business requirements, it turned out that deployment at the MES 397

level must be carefully designed, too. Furthermore, the main building blocks for both 398

clients are similar (Figure 5). In both client types, regardless of different implementation 399

technologies, Communication, data collection, and the processing block could suffer from 400

the same problem. The problems with the low energy level are related to IoT, while the 401

MES clients could suffer from synchronization and compatibility problems. 402

12 Petar Rajković et al.

Noticing this, we realize that the deployment strategy defined for IoT nodes could 403

apply to MES clients and be enriched with the experience through the project of ERP 404

client deployment. but the concepts used for IoT nodes could be applied to the MES 405

nodes. As it has been presented in Table 1. Blue/green deployment could be used if the 406

destination node has enough storage space. The difference would be in the specific 407

implementation technology, but the concept will remain the same. Additionally, an 408

intermediate buffer, defined at the IoT node level, could be safely applied to the MES 409

level. The MES nodes implementation is based on the concept from the IoT level and 410

then enriched with additional features that will bring even further benefits to the MES 411

level. 412

Traditionally, the MES nodes usually used some of the classic deployment methods—413

recreate or rolling deployments. Such an approach has been acceptable in recent years. 414

Still, due to the manufacturing shift towards Industry 4.0, users started looking at the re-415

installation process connected with downtime as a problem. In the case of rolling-like 416

deployment, the issue relates to a long waiting period until the new version becomes fully 417

available. 418

Furthermore, such an approach would require an IT assistant in the facility, ready to 419

help, run an installer, or perform some similar support activity. Since this was not 420

acceptable anymore, we aimed for an approach already applied in IoT nodes and for its 421

transition to MES-level software. 422

5.1. Software Update Approach for IoT and MES Nodes 423

Looking at the single IoT node, our choice for a software update is a semaphore-based 424

green/blue approach (Figure 6). This approach is possible with devices storing at least 425

two software versions simultaneously. In this case, the critical points are typically low 426

bandwidth and possibly low battery levels. The approaches to solving these two problems 427

are elaborated further in [34]. 428

 429
Figure 6: Semaphore-based blue-green deployment strategy used for IoT nodes [10] 430

 431

The problems with applying such an approach at the MES level resemble the IoT 432

level. First, data storage limitation is not, per se, the main issue, but the device could run 433

into such a problem when the access rights for the installer are not managed correctly. 434

The issues with access rights are not present in the IoT node since the vendor is 435

responsible for hardware and software. At the MES level, the software is installed, in 436

most cases, on the customer’s equipment, for which the IT security and management team 437

is responsible for maintenance. 438

Applying a hybrid Deployment Strategy 13

As mentioned, the problem with low space could appear at the MES level if the 439

installer has no delete rights for older versions. Since the MES clients could come with a 440

few hundred megabytes of installed software and generate large log files, the issue with 441

the space could arise if the delete and backup processes are not managed correctly. 442

Next, the installation could also create bandwidth problems if not appropriately 443

managed. For example, in a factory with 200 workstations, each would require an MES 444

client installed. In some cases, more MES clients could be launched on the same machine. 445

At least 200 clients will require an update when an updated version is detected. If 446

distributed from a single spot, as often chosen, the update process could easily make a 447

bottleneck in the network. Furthermore, the MES client will maintain a connection to 448

more layers in the ISA95 structure, which could cause further synchronization problems. 449

For comparison, nodes at the ERP level, closely elaborated in [10], does not have 450

connections to another system, which makes them much easier to handle. 451

 452
Figure 7: Software update sequence with the sleeping sequence 453

 454

Coming back from IoT nodes, the base for the deployment approach is a blue/green 455

strategy. This is the backbone of our update system. It is easy to be implemented in any 456

technology. The main idea behind the blue/green strategy is to ensure that the target 457

device always keeps at least two software versions – actual running (version N-1) and 458

previously verified (version N-2). To reduce the data loss during the switchover, the node 459

setup is completed by a message queue. Message queue collects data from sensors, and 460

data are removed from the queue after being processed. The queue could be implemented 461

as an independent entity to continue collecting data during the switchover. 462

/* define sleep request event bits */
#define SLP_REQ_BAT_CHARGER_TASK_BIT (1 << 0)
#define SLP_REQ_PARAM_TASK_BIT (1 << 1)
#define SLP_REQ_GPS_TASK_BIT (1 << 2)
#define SLP_REQ_LoRa_TASK_BIT (1 << 3)
#define SLP_REQ_GSM_TASK_BIT (1 << 4)
#define SLP_REQ_MQTT_SENDER_TASK_BIT (1 << 5)
#define SLP_REQ_READ_I2C_TASK_BIT (1 << 6)
#define SLP_REQ_READ_485_TASK_BIT (1 << 7)

/* define sleep acknowledgement event bits */
#define SLP_ACK_BAT_CHARGER_TASK_BIT (1 << 0)
#define SLP_ACK_PARAM_TASK_BIT (1 << 1)
#define SLP_ACK_GPS_TASK_BIT (1 << 2)
#define SLP_ACK_LoRa_TASK_BIT (1 << 3)
#define SLP_ACK_GSM_TASK_BIT (1 << 4)
#define SLP_ACK_MQTT_SENDER_TASK_BIT (1 << 5)
#define SLP_ACK_READ_I2C_TASK_BIT (1 << 6)
#define SLP_ACK_READ_485_TASK_BIT (1 << 7)

0 0 0 0 0 0 0 0

EventGroupHandle_t ev_req_sleep = NULL;
EventGroupHandle_t ev_ack_sleep = NULL;

ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

main
task

I2C_comm
task

set event bit

0 1 0 0 0 0 0 0ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

read event bit

0 0 0 0 0 0 0 0ev_req_sleep

0 1 0 0 0 0 0 0ev_ack_sleep

set/reset event bit

14 Petar Rajković et al.

The update process starts by replacing version N-2 with the new version N. At that 463

moment, version N-1 is still active, and the device runs uninterrupted. During that period, 464

the device experiences higher-than-average network traffic and battery use. Once version 465

N – 2 is deleted and version N is uploaded and verified, the switchover could start. The 466

device begins operating version N, but its communication points remain inactive. When 467

version N is fully up and running, the semaphore opens communication to version N and 468

stops version N-1. 469

 470

 471
Figure 8 Software update sequence for MES client (expanded from [10]) 472

 473

In that case, there is almost no operation downtime, and the complete update process 474

is seamless for the customer (Figure 7). In a well-orchestrated process, data loss during 475

the switchover can be effectively mitigated. In the worst-case scenario, only signals 476

Applying a hybrid Deployment Strategy 15

received during the switchover—typically lasting several seconds—may be lost and left 477

unprocessed. The switchover is seamlessly executed for IoT nodes by transitioning to 478

sleep mode. Since sleep modes are an integral part of processing, facilitated by a 479

dedicated core, transitioning to and from sleep mode is considered a native operation for 480

IoT nodes. 481

In many cases, this approach will also be fully applicable to MES nodes. 482

Unfortunately, not always. Two central problems appeared here with MES clients. First, 483

as mentioned before, the older version (N – 1) will not be deleted in case of a lack of 484

privilege. If not managed properly, this will cause a problem with the space on the 485

destination node. The next problem is the switchover phase. MES clients are much larger 486

pieces of software with a powerful GUI that maintains integration with different services 487

on the MES level and even to different Edge, SCADA, and IoT devices. The proper 488

switchover would require not only the replacement of the client version but also the 489

reestablishing of connection to other connected instances (Figure 8). This makes the 490

buffering system even more important here than at other levels. 491

Blue/green is not a favorable solution; it is only for successful updates. It proves its 492

value when the update fails. In that case, blue/green offers an effortless way to switch 493

back to the previous (valid and proven) version N—1. Furthermore, such a rollback will 494

not require additional data traffic, which is desirable in any scenario and level. Once the 495

error is solved, version N could be replaced with the next update. 496

The blue/green setup supports both full and partial version updates. In case of a partial 497

version update, the new version will be generated when the copy of N-1 gets merged with 498

new libraries and configuration files. The partial approach is faster and brings a lower 499

network load. It is helpful for MES-level clients, but it is even more suitable for devices 500

with more processing power on the IoT level. The easiest way to spot them at the IoT 501

level is to check if they use GSM modems and LoRa adapters. In brief, partial deployment 502

is more efficient for more complex software components. 503

 This approach will not solve every deployment problem. In some cases, it could be 504

inefficient or even useless. In case of a partial update, it could happen that the deployment 505

package did not come with all necessary dependencies. Then, the update will fail, leading 506

to additional data transfer and new version creation. 507

Next, the new version might be larger than the available space, even after deleting 508

version N-1. In this situation, the blue/green approach cannot give positive results, and 509

the update will fail. This would lead to the request for additional intervention and, in the 510

best case, reducing the deployment to recreation mode. 511

Since the software is connected to services and other running instances on various 512

levels, the interface between them might change from time to time. Or even buffer service 513

needs to be updated. If this happens, blue/green will not help or solve the problem. Such 514

updates then need to be implemented during planned downtime and meticulously 515

organized to follow all necessary steps in the required order. 516

The last but not the least essential problem is when the device runs out of power during 517

the update process. It could happen to any device, but those running on battery are more 518

prone to this problem. The mentioned problem is not typical for MES nodes. They are 519

connected to standard LAN/WLAN or Profibus network and are usually connected to the 520

continuous power supply. If they lose the power during the update, they will continue to 521

run the N version after the restart. Also, if the MES client is installed in a battery-running 522

16 Petar Rajković et al.

device, such as a tablet or laptop, their operation system will be configured to run updates 523

only if the device is connected to the power grid. 524

As the clients run in more powerful nodes and more complex environments, their 525

update process could be enriched with more proficient methods. The methods are feature 526

flags, dark mode, or A/B testing, which will offer an easy transition to new functionality. 527

The new version will be the same as the previous one upon the switchover, and then new 528

functionalities could be gradually enabled. The end user would increasingly receive new 529

features in this way. In case of a problem, the features could be quickly disabled remotely. 530

Also, new versions of features could be assigned to specific clients to evaluate, following 531

the A/B testing strategy. 532

5.2. Software Update Approach for Devices with Limited Storage Space 533

To address this challenge, an additional device of the same type, preferably with a 534

larger storage capacity, is introduced. This backup node is a repository for storing backup 535

versions of the currently running software. In scenarios where the Internet of Things (IoT) 536

layer comprises multiple similar or identical nodes, adding an extra device is not 537

perceived as a drawback but as a justifiable minimal cost. 538

The same approach applies to Manufacturing Execution System (MES) clients. 539

However, the key distinction lies in the role assigned to the chosen node. In the MES 540

environment, the selected node assumes the mantle of a leading or sentinel client 541

responsible for distributing update packages within its designated group. Utilizing backup 542

nodes at the MES client level is also feasible, especially in cases where stringent IT 543

security protocols prohibit the retention of old software versions due to company policies. 544

The deployment process commences by transferring the new version (version N) to 545

the backup or sentinel node. Once this operation is completed, the backup node 546

disseminates version N to all devices running the same software. Notably, this approach 547

slightly extends overall downtime, as the target node must first halt the previous version 548

(N – 1), acquire the new version, and subsequently initiate version N. Conversely, no 549

discernible difference in overall downtime occurs when the backup node acts as a 550

sentinel. 551

An inherent drawback of this approach pertains to increased data traffic requirements. 552

However, this traffic is confined solely to communication between the sentinel or backup 553

node and the clients within its designated group. An additional advantage emerges during 554

potential rollback scenarios. After uploading version N to the backup node, deployment 555

to sensor nodes occurs sequentially. The process begins with the sentinel device 556

(borrowing from the canary deployment concept), where comprehensive validation under 557

production conditions occurs. If the new version proves valid, subsequent nodes receive 558

the update. Conversely, the rollback sequence is limited to the sentinel device if issues 559

arise. 560

In the second scenario, continuous uptime on the device is not feasible during the 561

update process. Specifically, the currently running version (N-1) must transition to sleep 562

mode and then be removed from the destination device. Subsequently, the new version 563

(version N) is uploaded, configured, and activated using a wake-up command. Until 564

version N is fully operational, the node remains in downtime and temporarily unable to 565

collect or exchange data—an inherent vulnerability that must be managed. 566

Applying a hybrid Deployment Strategy 17

5.3. Software Update in Edge Layer Affecting IoT and MES Nodes 567

The simple software update at the Edge level would be managed at the other levels by 568

employing message queues. Incoming messages to the Edge level will be handled when 569

it becomes operational again. Messages from the output queues of the Edge level will be 570

processed until Edge components are offline. The connecting systems will raise an alarm 571

if all the items are processed. The same will apply if the incoming buffers become fully 572

loaded. 573

Considering this, it is crucial to define the buffers as wide and long enough to 574

accommodate the amount of data that could be generated during more extended 575

downtimes. In the scenario when the device from the Edge level must remain inactive for 576

a period of deployment, and when there are no buffers or message queues implemented, 577

the connected systems will run into an alarm state. Devices at the MES level will raise an 578

alarm, but they will continue executing other actions that are not connected to the Edge 579

level. Some functionalities will be temporarily stopped, but most work could continue. 580

Devices at the IoT level will not be in such an advantageous position in this case. 581

Without a buffer, devices at the IoT level will get disconnected for the same amount of 582

time as the Edge level devices. For IoT nodes, this will be a situation of a high alarm 583

state, and they will execute the following course of events: 584

- Devices in IoT nodes detect disconnection event 585

- Devices raise the internal alarm 586

- Start reconnection procedure in predefined time frames 587

 588

Without a buffer enabled, while the Edge level node is not running, IoT nodes will 589

not have a destination where to send processed data. This will cause significant data loss 590

for the complete deployment areas, which could be unacceptable if the process consumes 591

an extensive amount of time. This problematic state will last until the Edge layer node 592

starts running again. When a node from the Edge layer restarts and returns online, IoT 593

nodes will get connected again and continue exchanging data. 594

 595
Figure 9: Software update scheme with message queue [9] 596

 597
In some cases, IoT nodes will not be able to reconnect due to a change in 598

communication protocol or a hardware error. In these cases, IoT nodes will run a general 599

alarm, and then the Edge node must be moved back to the previous version. When an 600

update is needed in both layers, the update notification signal will stop the general alarm, 601

and then all IoT nodes will be updated one by one. The update will be driven from the 602

backup node. 603

Version N-1

MQTT_SN_commwrite read

take/give
take/give

Version N

sem_mqtt_send

mqtt_msg queue

18 Petar Rajković et al.

One of the commonly used solutions to reduce the necessity for frequent updates 604

across the levels is the using a buffer between the layers (Figure 9). In this case, the buffer 605

is implemented as the message queue. In most cases, when the communication protocol 606

changes, only the synchronization buffer will be updated, while all the nodes in the IoT 607

layer will continue to work. In this way, downtime will hit only one layer (in this case, 608

the Edge layer) while the other layers will continue to run without interruptions. 609
 610

 611
Figure 10 Reconnection sequence between IoT, Edge, and MES node 612

 613

The introduction of a message queue solves the previously described issue but at the 614

cost of a bit more complex setup and integration (Figure 10). Figure 10 This shows the 615

process of integration with the Edge level. The approach is the same for IoT and MES 616

nodes on opposite sides of the Edge node. The Edge nodes establish communication using 617

message queues (MQTT in the case of the presented system). MQTT brokers and clients 618

are installed at the Edge and the MES level. The IoT node needs only the client. 619

The connection is initiated from the client on one level to the broker on another. When 620

this communication is established, the broker waits for the client's connection at its level 621

and accepts the subscription request. In this way, MQTT clients in the IoT and Edge levels 622

are connected through the broker at the Edge level. Similarly, MQTT clients from the 623

Edge and MES levels will be connected through the broker at the MES level. 624

It must be stated that when transferring data using a message queue, data loss could 625

happen during the software update. Message queues usually contain objects of specific 626

Applying a hybrid Deployment Strategy 19

types produced on one side and consumed on another. The two most common scenarios 627

are when the connection between the message queue and one of the sides (producer or 628

consumer) cannot be established, while another is when the data queue contains objects 629

of unrecognizable type in the destination. The first situation is handled in a way that stops 630

the producer until the connection is fully re-established. The second situation happens 631

mostly when the version of consumer software is replaced in a way that stops supporting 632

old message formats. In this case, the messages remaining in the queue will be lost. 633

Synchronization through message queues is an essential aspect of the software update, 634

but it goes beyond the scope of this paper. 635

6. Update Mechanism for MES Nodes 636

The main shift that could be done at the MES level is to integrate the software update 637

mechanism into the solution. MES architecture, which we exploited in our environments, 638

is service-oriented architecture (SOA) based on different technologies. On the server side, 639

multiple services running to achieve necessary functionalities. The current setup is 640

between single service and microservices since the system consists of main execution and 641

multiple supporting services. While the supporting services could be turned on and off 642

independently, the leading execution service must be active to put the system in run mode. 643

In that sense, the update service is one of the services on the server side that is responsible 644

for server and client updates. Ideally, the update service is configured to run in the 645

independent node. It takes care of the order of the update and data buffers during the 646

update process. 647

Depending on the requirements, the update service could take care of every single 648

node in the system or equally distribute the updates depending on the node type. The 649

update service takes care of sentinel/backup nodes (if configured) and monitors and 650

switches different feature flags and A/B functionality variants on and off. The approach 651

with the controllable update mechanism, driven from the single node, applies to any 652

ISA95 level. Depending on the technology, implementation could be different, but the 653

concept of maintaining the update process and the configuration from the single point 654

makes the system fully controllable and maintainable. Moving these functionalities from 655

the execution service and its connected microservices to an independent node avoids the 656

well-known problem of the server bottleneck during the update process. In the cases 657

where the execution service itself triggers and controls the update, the network traffic 658

significantly rises during a brief period, which could lead to different synchronization 659

problems. 660

The additional advantage of implementing such a node is the possibility of connecting 661

it to the digital twin in the cloud. This feature makes the update over the air and 662

synchronization with the digital twin possible. Having such a connection, a complete 663

industrial facility could be controlled remotely, and the existing digital twin would always 664

be available for any test and analysis. 665

Both client and server nodes will use the standard network protocols to operate at the 666

MES and ERP levels. In the lower levels, the accessibility will depend on the 667

implemented technology. Still, with the appropriate network adapters, the update node 668

could achieve control also over the instances in Edge and IoT levels. The update node 669

could also monitor configuration changes in production environments and take adequate 670

20 Petar Rajković et al.

action when the change is detected. Depending on the configuration or requirement, it 671

could push the change to a digital twin, raise an alarm for the additional check, or 672

overwrite the configuration. 673

 The additional benefit is the more accessible support for testing and verification 674

before moving the change production environment. As mentioned before, after the 675

solution has been evaluated to a digital twin, test, or staging environment, the deployment 676

for production could be ready significantly faster. The access to configurations already 677

prepared in the digital twin environment allows the update manager to check the 678

destination clients and easily spot if the local changes have been made. In that case, it 679

could stop the deployment and raise the alarm to the technician to decide how to proceed. 680

Alternatively, the update manager could override the configuration in the client machines 681

and force the update. 682

The update node could also push the update for the server side. In the MES level, the 683

server-side SOA system will also store all the actual and previous versions of the clients, 684

allowing easier recovery and fallback in the case of unsuccessful deployment. In case of 685

the configuration on multiple server instances, the update manager will track the order of 686

the update, using the feature flag system to control the start and stop of all microservices. 687

As has been mentioned, the leading service on the server side is the execution service 688

required to be active to make the entire system run. 689

The server side of the update mechanisms is responsible for communicating with 690

clients and other external systems – such as databases, configuration storage, and other 691

external services. It could be configured to retrieve data from multiple sources and 692

prepare the deployment packages according to the status set in the digital twin. As 693

mentioned, its role is also to monitor the validity of the complete system to check if the 694

configurations or client versions may change outside of the deployment process and to 695

raise the alarm in case of misalignments. 696

Both clients and service exchange ping messages to keep the system communication 697

status. Ping messages could contain distinct parameters and run in different periods. 698

While some are used only to check if there are responses on the other side, others could 699

be used to verify client versions and configurations. At the same time, regular messages 700

that exchange data are used to maintain connectivity. Every message delivery failure 701

could trigger an alarm and run the re-assessment process and eventual network 702

reconfiguration. In some cases, the sentinel clients could take the server role for the group 703

of clients and maintain connectivity in the alarm mode. 704

6.1. Update Node Routines 705

The DeploymentHelper component handles configuration updates in scenarios where 706

the application reverts to an older version or when a specified time for updating specific 707

clients has elapsed, necessitating updates for the remaining clients. This component is 708

situated on the server side, as all configurations for this application reside on the same 709

machine as the service. Consequently, the service possesses all necessary permissions for 710

file modification and physical addresses where the files are located. 711

The base class diagram to support client updates is presented in Figure 11. Instances 712

of class Update Status Info are used to store the info about the version and application 713

name. The bare minimum of the data should be maintained for every client. They come 714

Applying a hybrid Deployment Strategy 21

to the MES or update service as part of ping messages from clients. Combining these 715

pieces of information with the data in the internal cache, the process that keeps track of 716

versions could maintain their activity tables regularly. Activity tables are kept in the 717

update process and periodically synchronized with the digital twin environment. The 718

objects of this class, either persisted in the memory or in a dedicated location in the file 719

system, are also used as the contact point for the DeploymentDispatcher. 720

 721

 722
Figure 11 The relations between main entities in the deployment subsystem 723

 724

On the single node level, the DeploymentDispatcher is the component responsible for 725

the entire update process. It could be configured to ping the server or sentinel client to 726

check for the new version or to wait for the update notification. Once the latest version is 727

discovered, the update process will start and be executed in UpdateDirector. 728

The update thread will run in the background and gather all necessary configurations 729

and binaries from the update node to form the new version of the client. After a new client 730

is formed, it will trigger the rest of the process and perform possible additional steps, such 731

as a backup of the previous version and a blue/green switch. When configured in the 732

sentinel node, this functionality will propagate the installation to other nods in the group. 733

As the ultimate step of the update process, the information about the software version will 734

be pushed back to the update node and the digital twin to ensure the proper version info 735

synchronization. 736

22 Petar Rajković et al.

It is essential to point out that DeploymentDispatcher could progress both with 737

complete client updates and partial functionality enabled/disabled. In that way, direct 738

support for feature flags is implemented. The client could come with an updated version 739

of the software, but in case of any problem, the additional features could be disabled. 740

Also, configuration changes could be pushed from the server to ensure the required 741

reconfiguration. 742

The update manager instance is created when the application is started. It is constantly 743

active and periodically checks for recent updates if configured to run in active mode. 744

During initialization, the update manager checks the application's version and all modules 745

to ensure the up-to-date application signature is ready for comparison with the version on 746

the server. 747

The update manager listens to the server's ping and notification commands in passive 748

mode. In this scenario, the server notifies the client that the updated version is available, 749

and the client starts the update process. Also, it is usual to configure both modes in the 750

same and dedicate each process to a specific part of the update process. For example, the 751

check for the new client version could be configured in active mode, while the 752

configuration updates could be passive and pushed by the server instead of the client's 753

request. 754

An instance of this class creates an object of the DeploymentDispatcher class and 755

immediately invokes its primary function, as shown in Figure 12. This function manages 756

a specific client's update process and could halt software updates if necessary. It is 757

responsible for initiating the update process as long as the attribute's value that keeps the 758

loop alive remains unchanged. 759

This method initially attempts to retrieve the file containing the necessary information 760

for updating. If that file does not exist, the method returns a false value, indicating that it 761

failed to obtain the appropriate file. If the file is successfully retrieved, relevant data 762

required for updating is extracted from it. Subsequently, it checks whether beta updates 763

are active. If they are and the specified time for this type of update has elapsed, 764

the UpdatesManifest.xml file is updated. In this file, the active software version is set to 765

the “beta” version, and updates of this type are marked as inactive. Next, it verifies 766

whether the current client version matches the version that should be on our machine 767

(Figure 12). 768

New client versions must be downloaded if the current client version is missing or 769

differs from the version in the file while beta updates are inactive. In the case of active 770

beta updates and the client still not being on the beta version, affirmative information is 771

returned to download new files, but only if random access permits. This ensures that not 772

all clients receive the updated value, only those with “luck” (Figure 12). All clients 773

downloading the updated version exit the function and return a value true. If the random 774

selection does not choose a client, the thread responsible for updating is put to sleep for 775

a predefined number of minutes. Afterward, the thread is again put to sleep for a few 776

seconds, triggering the update check. 777

The DownloadUpdates method retrieves updates from the corresponding file (the file 778

path is specified in the update specification). If beta updates are active, it fetches the file 779

named in BetaFilePath; otherwise, it retrieves the file named in FilePath. BetaFilePath 780

is used when the A/B deployment must be supported, while for regular deployments, the 781

filed FilePath directs to the update location. This approach also solves the issue of 782

Applying a hybrid Deployment Strategy 23

network connection interruptions to the new client, as the update is not applied until it is 783

fully downloaded locally. Finally, the application that launches the latest client version is 784

restarted. 785

 786

 787
Figure 12 The sequence of choosing and verifying the correct software version 788

7. Results and Discussion 789

This research came out of the project and resulted in developing a complex industrial 790

monitoring system aimed at all ISA95 levels – from IoT nodes through Edge and MES to 791

ERP level. During the project, for more than 15 years, our team was focused on different 792

aspects of development and implementation, starting from the improvements of 793

CAD/CAM databases [31], through all different implementations at all levels, up to 794

development for the software update system integrated with the cloud [9] [10]. 795

24 Petar Rajković et al.

The tests are conducted in a digital environment that resembles the industrial façade 796

carpentry facility. Section 4 gives all the necessary details in the composition of the test 797

environment. Such production is interesting since it combines different production types 798

– from serial production up to one-of-a-kind configured products [32]. At the same time, 799

such a facility combines processes based on various physical and chemical procedures in 800

material treatment, thus requiring all kinds of digital interaction, starting from thermal 801

sensors and actuators through intelligent industrial machines integrated with MES clients 802

up to ERP software enhanced with different CAD and planning tools (Figure 13) [33]. 803

 804

 805
Figure 13 View on the ERP client - production order definition 806

 807

Having experience with diverse types of software developed on different ISA95 808

levels, we identified the common problems in software updates and tend to generalize the 809

update architecture, node structure, and processes. The results were preliminarily 810

evaluated at the IoT and ERP levels because they have limited effects on the rest of the 811

system, being connected only to the neighboring level. Following the results and 812

recommendations from the previous work, we decided to expand the update system to the 813

most challenging MES level (Figure 14). 814

7.1. Guidelines for Combining Different Deployment Strategies 815

Our research was led by the request to reduce the potential downtime during the 816

software update in a challenging environment such as the industrial facility. The actual 817

criticality of this request is not equal from level to level, but the customer requirement 818

tends to go to 0 downtime regardless of the software system. To reach this goal, we 819

decided to replace the standard deployment (stop-copy-run) with a combined strategy that 820

should employ the benefits from different deployment processes. Looking at the single 821

node, we aimed for the blue/green deployment as the base concept. 822

Applying a hybrid Deployment Strategy 25

This concept could be enriched then with feature flags, dark mode, and A/B testing 823

deployments to fine-tune the update process and to release new functionalities in the 824

controllable environment. At the level of the node networks, the concepts of canary 825

deployment were applied to the development of backup and sentinel nodes, which 826

function as the group leads and will receive the first update and then push forward 827

deployment into the subsequent nodes in its group. Combining these three well-known 828

approaches in the proposed way, we tried to benefit from all the positive aspects we could 829

get: 830

- Blue-green deployment gives the possibility for a fast version switch. 831

- Dark mode and feature flags allow simple enabling or turning off single 832

functionalities. 833

- A/B testing allows running several feature variants to let the customer decide 834

which to accept. 835

- Canary deployment allows prompt identification of deployment errors. 836

- The presence of a synchronization buffer allows us to keep one layer insulated 837

and still operative while the connected layers are in downtime or performing an 838

update. 839

 840

 841
Figure 14 MES client set up in a factory environment - connected to cutting machine and the 842

signals that bring measurement values 843
 844

26 Petar Rajković et al.

The proposed methodology is initially subjected to rigorous testing at the IoT level. 845

This choice stems from the formidable constraints encountered in this stratum, 846

encompassing software resources, network bandwidth, and energy consumption 847

limitations. Additionally, deploying IoT systems in critical and hazardous environments 848

underscores the need to minimize direct human intervention and avoid installing 849

supplementary infrastructural components, such as power or network cables. 850

Complicating matters further, physical access to IoT nodes remains a challenging 851

endeavor. This challenge arises not solely from technological considerations but also 852

from mechanical and security protocols. Removing various mechanical elements in 853

certain instances becomes necessary to reach IoT devices physically. Moreover, these 854

devices often operate in environments hazardous to human safety, necessitating stringent 855

procedures for device access. 856

Previously, a conventional update approach, or recreate deployment, was employed, 857

wherein the software component was replaced either entirely or partially (via a stop-copy-858

start process). However, this standard update method posed several issues, which can be 859

briefly summarized as follows: 860

- The downtime was always present. If the software component is in the updating 861

process, the software device cannot be used. 862

- In case of an erroneous update, software should be restored to its previous 863

version, which would lead to further downtime. 864

- The restore process sometimes drains the battery, requiring the personnel member 865

to go to the hazardous area. 866

- Connected layers could not continue to work generally since they were flooded 867

with alarm signals. 868

 869
Table 3 The effects of the proposed deployment strategy on the IoT level containing 100 IoT nodes 870
connected to a single Edge node (TD – time to shut down the software in the node, TU – time to 871
start the software in the node, TS – time switch between the versions, IS – software instance size 872
per node, NN – number of nodes). Combined from [9] and [10] 873

Measurement With recreate deployment With hybrid strategy

Number of software uploads to IoT level

– successful deployment

NN 1 (only to the leading node)

Number of internal uploads – successful

deployment

0 NN

Number of software uploads -

unsuccessful deployment

Average 8% of NN 1 to the backup node

Security check on upload NN 1 (only to backup node)

Number of internal software uploads –

unsuccessful deployment

0 1

Rollbacks with unsuccessful deployments 8% of NN 1 + 1

Downtime per node TD + TU (in seconds) TS (in milliseconds)

Used space for software per node (with

blue-green approach)

1 x IS 2 x IS

Used space for software with buffer node NN x IS NN x IS + IS

Update distribution Manual or with a task scheduler Optimized by backup node or pushed

from the cloud

Downtime when connected layer update If the update is running Until the buffer has data

 874

Applying a hybrid Deployment Strategy 27

7.2. Achieved Results 875

Our results with the proposed combined deployment approach proved our 876

expectations and varied between different software layers and scenarios. Applying the 877

proposed strategy reduced the overall downtime and number of unnecessary rollbacks. 878

This was achieved by the cost of implementing the backup node, the implementation of 879

the buffer level, and a slight increase in data traffic. Table 3 shows the behavior of the 880

network of 100 IoT nodes analyzed in a test environment. 881

Having the configuration with one leading node, the total number of updates coming 882

from the update node or the cloud to the IoT network will be reduced from the total 883

number of nodes (NN in further text) to one. The updated version will come from the 884

outside system to update the node, which will guide the update for the rest of the IoT 885

nodes. In this way, the bottleneck in communication between the IoT level and the rest of 886

the system will be reduced or eventually avoided. This way, the number of security checks 887

will be reduced to only one. In a scenario where every node gets an update outside the 888

network, a security check will be performed every time due to standard security policies. 889

The proposed hybrid approach will require more space. If the clients can support 890

blue/green deployment, they will need twice as much space as in the case of recreate 891

deployment. One additional slot for the distributed version should be added to the space 892

required. The sentinel client will use the distribution/sentinel/backup node to download 893

the updated version and then forward the update. 894

 895
Table 4 The estimated effects of the proposed deployment strategy in MES and ERP level (TD – 896
time to shut down the software in the node, TU – time to start the software in the node, TS – time 897
switch between the versions, TF – time needed to activate feature flags and A/B features, IS – 898
software instance size per node, BS – buffer size, NN – total number of nodes, N1 – number of 899
level 1 nodes (sentinel/backup nodes), G – number of level 2 groups, AG – average number of level 900
2 nodes per group AG = (NN – N1)/G) 901

Measurement Recreate deployment Hybrid deployment

ERP level

Hybrid deployment

MES level

Number of software uploads to

level 1 nodes – successful

deployment

NN N1 1 + (N1 – 1)

Number of software up-loads to

level 2 nodes (average per

group, successful deployments)

0 AG AG

Number of software uploads to

level 1 (rollback needed)

NN Up to N1 1

Number of software uploads to

level 2 (rollback needed)

0 0 AG

Security check on upload NN N1 1

Only in the update node

Downtime per node TD + TU TS TS + TF

Total space used NN x IS NN x (2 x IS + BS) + IS NN x (2 x IS + BS)

Update distribution Manual or with a task

scheduler

Optimized by backup

node

Over the air

Downtime when connected

layer update

If the update is running Until the buffer has data 0 – ERP

Until the buffer has data –

Edge / IoT

28 Petar Rajković et al.

The concept proposed for IoT nodes in [10], further evolved and applied to the ERP 902

nodes [10]. With further customization, it is successfully applied to the MES level. The 903

expected effect is presented in Table 4. Both ERP and MES clients share similarities in 904

size and software architecture. Both have more extensive software instances than those in 905

the IoT and Edge levels. Due to the software's mentioned size, update distribution could 906

cause problems comparable to those from the IoT level, primarily if the update is run 907

from the same node where the server is running. In that case, the single node should run 908

NN uploads, which could take significant network resources. 909

 910
Figure 15 Differences in deployment approach for ERP (left, as presented in [10]) and MES 911

clients (right) 912
 913

To address this challenge, a strategic division of client nodes into N1 groups by AG 914

clients is proposed (Figure 15). This approach draws inspiration from the canary 915

deployment methodology, wherein a dedicated group of clients serves as the initial testing 916

cohort. During the first iteration, updates are dispatched to sentinel nodes, responsible for 917

essential testing. Subsequently, these sentinel nodes propagate the verified updates to the 918

nodes within their respective groups. In the event of an error detected at the sentinel level, 919

a rollback ensues, ensuring that most clients remain shielded from erroneous software 920

versions. 921

This approach undergoes slight adaptation when applied to the MES layer. The 922

rationale behind this modification lies in the inherent diversity of MES clients. Unlike 923

ERP clients, which typically exhibit uniform features, MES clients cater to distinct 924

operational stations, each potentially possessing a significantly separate set of 925

functionalities. In the MES environment, an initial client group is selected for 926

deployment. The updated version is relayed to its sentinel node, where thorough 927

verification occurs. Upon successful verification, the updated version cascades to the 928

Applying a hybrid Deployment Strategy 29

remaining group members. Subsequently, the verified functionality extends to other 929

sentinel nodes. 930

While this approach does not directly reduce total network traffic, it effectively 931

distributes the load across update and sentinel nodes, mitigating network traffic hotspots. 932

Anticipated downtime per node may be slightly higher for MES clients due to the 933

activation of feature flags and A/B functionalities. Additionally, depending on 934

configuration, MES clients may require time to establish connections with signal sources 935

from distinct levels. Notably, integrating the update mechanism with the Cloud level and 936

the digital twin introduces the prospect of fully controllable over-the-air deployment, 937

potentially paving the way for a transition to software-as-a-service for specific system 938

elements. 939

 940
Table 5 Effects of different client deployment approach to MES and ERP level – 3 groups of 10 941
clients (STD – standard approach, WoD – Wave of Distribution) 942

Measurement Recreate

deployment ERP

Hybrid deployment

ERP level (canary

with sentinel)

Recreate deployment

MES

Hybrid deployment

MES level (groups with

sentinel)

Number of update

packages sent from the

server to clients (1st

WoD)

30 3 30 1 + 2

Amount of data sent from

the server to clients (in

GB, 1st WoD)

1.35 0.14 0.75 0.03 + 0.07

Network traffic peak (in

%, server outbound, 1st

WoD)

100 18.65 78.40 5.67

Distribution group size

(2nd WoD)

- 10 - 10

Distribution time per

group of clients (In

seconds, 1st WoD)

64.28 7.55 41.19 2.77 + 6.01

Distribution time per

group of clients (In

seconds, 2nd WoD)

- 17.08 12.55

Single client

switchover/update time

(In seconds)

32.28 4.58 25.19 (only MES

functionality)

31.22 (full

connectivity)

2.41 (only MES

functionality)

8.67 (full connectivity)

Single client

switchover/restart time

when rollback is needed

(seconds)

34.10 6.78 26.49 (only MES

functionality)

33.53 (full

connectivity)

4.33 (only MES

functionality)

9.02 (full connectivity)

 943

We compared the update behavior for the array of 30 ERP and 30 MES clients running 944

in the test environment to evaluate predicted values. They have been split into three 945

groups of ten clients for the simulation. The findings, presented in Table 5, align with the 946

estimation from Table 4. Due to their smaller size, MES clients create less network traffic 947

30 Petar Rajković et al.

than ERP clients. The amount of required space and network peaks are lower for the MES 948

network. 949

7.3. Advantages and Drawbacks 950

 951

The advantage of the approach shown in this work is that if it is applied to MES nodes, 952

it results in faster recovery if the deployment error is noticed, compared to the one 953

presented in [9] and [10]. Usually, it is enough to do the rollback only in one sentinel 954

node. The next advantage is the possibility of running multiple versions of some 955

functionality and quickly switching them on or off. Ultimately, integrating with cloud 956

services and establishing a complete digital twin helps detect errors and change. The 957

environment we used for the test is a demo digital twin for beta testing. 958

It is essential to note that two separate times must be measured when the MES client 959

is started or when the switchover is handled. The most critical moment is when the client 960

is in running mode and connects to the MES service, allowing it to perform standard MES 961

functionality – operation execution, labor logging, etc. Next is the moment when the 962

client is connected to other data sources. In our example, clients are connected to an OPC 963

(object for process control) server that acts as a system that collects measurements from 964

the sensors. Generally, these data sources could be different depending on the area of the 965

industrial facility where the client is running. 966

The software update challenges discussed in this study constitute only a portion of the 967

broader complexity. For over fifteen years, we have continuously relied on systems 968

developed by our research group, honed through rigorous coordination, and field-tested 969

in partner industrial facilities. The software update process encompasses several critical 970

dimensions, including compatibility concerns, system stability, data migration intricacies, 971

and the imperative of user adoption. Addressing compatibility issues necessitates 972

comprehensive testing across diverse system configurations before deployment. 973

To this end, we advocate for establishing a dedicated test environment within our 974

domain or creating a digital twin in the cloud. For instance, transitioning to a different 975

platform version for Windows application development may introduce incompatibilities 976

with OPC servers. Similarly, upgrading the database server to a newer version could 977

disrupt continuous connectivity between MES or ERP systems until the connection driver 978

is updated. Altering the data structure of messages stored in message queues poses the 979

risk of data loss for existing records, rendering them unreadable by the current system. 980

User adoption hinges on effective communication and targeted training to elucidate 981

the benefits of updates and familiarize users with new features. Soliciting feedback from 982

users both before and following updates facilitates the identification and resolution of any 983

emerging issues. The strategic inclusion of A/B deployment techniques further enhances 984

this process. 985

The typical application of the proposed software update mechanisms is limited to 986

some point. This means that the suggested set of updates could not be directly used for 987

software not developed in the line of the examined software development and deployment 988

approaches. For example, if the software has no properly exposed extension and 989

configuration classes, there will not be the possibility to use feature flags or A/B 990

approaches. On the other hand, blue/green and canary deployments could be implemented 991

through a committed team supported with the necessary hardware and acquiring specific 992

Applying a hybrid Deployment Strategy 31

deployment routines. A deeper implementation of the proposed deployment solution 993

would require additional pieces of software and/or additional adaptation in the target 994

software. 995

During the development process, not all pieces of software were designed suitably 996

and flexibly for such update mechanisms. Initially, the MES software was developed with 997

fixed configuration files in which content was loaded on system startup, and the update 998

was not possible while the software was running. This was primarily related to the server 999

side. Any configuration change used to lead to service restart, which eventually results in 1000

execution disruption. For this reason, the blue/green deployment was the first that was 1001

included in the setup. It guaranteed reduced downtime and faster system operational 1002

availability. On the other hand, the software adaptation for MES clients came a bit later 1003

since it only needed to restart local clients in the operator’s place, which had a limited 1004

impact. The next set of updates was the approach that could trigger configuration refresh 1005

through a database or file reload. With this approach, feature flags and later approaches 1006

became fully supported, and the software was ready to become a part of the complex 1007

deployment system, significantly reducing downtime when redeployed. 1008

Mitigating system disruptions involves judiciously scheduling updates during off-1009

peak hours and transparently communicating potential downtime to users. Meanwhile, 1010

prudent planning and rigorous testing of data migration procedures minimize 1011

complications arising from data transfer. 1012

In summary, a carefully orchestrated update process, underpinned by thoroughly 1013

vetted software versions and executed at the opportune moment, constitutes the linchpin 1014

of a successful upgrade. 1015

8. Conclusion 1016

Having more than a decade and a half of experience with industrial systems, our 1017

research team went through different projects involving software development at all 1018

ISA95 levels. The challenges in development vary across the levels due to user 1019

requirements, technical complexity, and performance expectations. All these software 1020

instances must work in accordance and be a reliable element of the industrial facility. The 1021

common challenge for all the pieces of software is the system update. Usually, the system 1022

on one level consists of the server and several dozen or hundreds of clients. When it comes 1023

to the update, it should be done as fast as possible and with lower resource consumption 1024

without creating bottlenecks in the facility. 1025

The research findings significantly advance the formulation of deployment strategies 1026

for intricate, layered industrial software systems. When deploying software updates, 1027

several common challenges arise, including downtime, increased network traffic, and 1028

storage space utilization. At lower levels, energy consumption during the deployment 1029

process also warrants consideration. 1030

We introduce additional backup nodes into the system to address the limited storage 1031

space issue. Although these backup nodes exhibit a slightly larger volume than regular 1032

IoT nodes, this tradeoff is deemed acceptable given the achieved outcomes. Notably, total 1033

downtime has been dramatically reduced—from seconds to milliseconds—representing 1034

a reduction of less than one percent of the initial duration. 1035

32 Petar Rajković et al.

The approach used in IoT nodes [9], was successfully applied to ERP [10] and MES 1036

levels by improving the defined hybrid deployment mode. The findings align with those 1037

observed for IoT nodes, emphasizing the potential incorporation of novel features and 1038

deployment strategies. This adaptability makes the deployment process for ERP and MES 1039

clients more user-friendly, fostering higher user acceptance rates. 1040

We devised a hybrid strategy that amalgamates blue-green, canary, and dark mode 1041

elements with feature flags, A/B testing, and enhanced standard deployments. This 1042

strategy is bolstered by an inter-layer buffer and the inclusion of specific nodes—the 1043

update node on the server side and backup and sentinel nodes on the client side. By 1044

implementing this approach, we effectively curtailed overall downtime, reducing the 1045

duration required for system restart to a period proximate to the switchover. Remarkably, 1046

this reduction translates to less than 10% of the time typically consumed by classic 1047

deployment methods. The most noticeable improvement is in the case of erroneous 1048

deployment when the error could be tracked down and stopped in the first sentinel node. 1049

With the backup/sentinel node active, we reduced the number of software uploads in 1050

case of an erroneous update to the time needed for two switchovers of the single node. If 1051

chosen correctly, the initial sentinel node will provide an adequate test environment for 1052

error detection. Unlike the ERP clients, where the approach was to release the update to 1053

all sentinel nodes, with MES clients, the strategy was to send the update to a single 1054

sentinel, and then it would take care of its group. In the worst case, the targeted group 1055

needs to be reverted, but this will be done inside the group without the need for interaction 1056

with the server or the update node. 1057

The changes in the deployment process applied to MES nodes are driven mainly by 1058

the Industry 4.0 paradigm and the requirements that came with it. MES and Industry 4.0 1059

are transforming manufacturing practices by digitizing and making processes intelligent, 1060

enabling organizations to cater to individual customer requirements and achieve 1061

operational excellence. In short, MES and Industry 4.0 are revolutionizing manufacturing 1062

by integrating advanced technologies and data-driven systems to create a more 1063

interconnected and efficient production environment. 1064

Enhancing the efficiency of the software update process stands as a pivotal element 1065

within an optimized production environment. The overarching objective is facilitating 1066

software updates beyond scheduled maintenance windows. Leveraging the proposed 1067

hybrid deployment method, seamless layer-wide updates become feasible, particularly 1068

when interactions with other levels remain unchanged. Notably, this approach 1069

significantly truncates downtime—from hours and minutes to mere seconds and 1070

milliseconds. Furthermore, our future trajectory involves extending our efforts to the 1071

Edge level. This strategic expansion aims to devise solutions that mitigate the impact of 1072

buffering and inter-level communication system modifications more effectively. 1073

9. Acknowledgement 1074

This work was supported by CERCIRAS – COST Action CA19135, funded by COST. 1075

The Ministry of Science, Technological Development, and Innovation of the Republic 1076

of Serbia supported this work [grant number 451-03-65/2024-03/200102]. 1077

 1078

Applying a hybrid Deployment Strategy 33

10. References 1079

[1] ISA95, Enterprise-Control System integration- ISA (no date) isa.org. Available at: 1080

https://www.isa.org/standards-and-publications/isa-standards/isa-standards-1081

committees/isa95 (Accessed: 28 April 2024). 1082

[2] Shu, Zhaogang, et al. "Cloud-integrated cyber-physical systems for complex 1083

industrial applications." Mobile Networks and Applications 21.5 (2016): 865-878. 1084

[3] Kondratenko, Yuriy, et al. "Complex industrial systems automation based on the 1085

Internet of Things implementation." International Conference on Information and 1086

Communication Technologies in Education, Research, and Industrial Applications. 1087

Springer, Cham, 2017. 1088

[4] Sha, Kewei, et al. "Edgesec: Design of an edge layer security service to enhance IoT 1089

security." 2017 IEEE 1st International Conference on Fog and Edge Computing 1090

(ICFEC). IEEE, 2017. 1091

[5] Li, He, Kaoru Ota, and Mianxiong Dong. "Learning IoT in edge: Deep learning for 1092

the Internet of Things with edge computing." IEEE network 32.1 (2018): 96-101. 1093

[6] Sajid, Anam, Haider Abbas, and Kashif Saleem. "Cloud-assisted IoT-based SCADA 1094

systems security: A review of the state of the art and future challenges." IEEE 1095

Access 4 (2016): 1375-1384. 1096

[7] Coronado, Pedro Daniel Urbina, et al. "Part data integration in the Shop Floor 1097

Digital Twin: Mobile and cloud technologies to enable a manufacturing execution 1098

system." Journal of manufacturing systems 48 (2018): 25-33. 1099

[8] Chofreh, Abdoulmohammad Gholamzadeh, et al. "Development of guidelines for 1100

the implementation of sustainable enterprise resource planning systems." Journal of 1101

Cleaner Production 244 (2020): 118655. 1102

[9] Rajković, Petar, Dejan Aleksić, Dragan Janković, Aleksandar Milenković, and 1103

Anđelija Đorđević. n.d. “Resource Awareness in Complex Industrial Systems -A 1104

Strategy for Software Updates.” Accessed April 8, 2024. https://ceur-ws.org/Vol-1105

3145/paper10.pdf. 1106

[10] Rajković, Petar, Dejan Aleksić, Andjelija Djordjević, and Dragan Janković. 2022. 1107

"Hybrid Software Deployment Strategy for Complex Industrial Systems" 1108

Electronics 11, no. 14: 2186. https://doi.org/10.3390/electronics11142186 1109

[11] Cozzani, Valerio, et al. "Quantitative assessment of domino and NaTech scenarios 1110

in complex industrial areas." Journal of Loss Prevention in the Process 1111

Industries 28 (2014): 10-22. 1112

[12] Chen, Yusong, et al. "Research on software failure analysis and quality management 1113

model." 2018 IEEE International Conference on Software Quality, Reliability and 1114

Security Companion (QRS-C). IEEE, 2018. 1115

[13] Usman, Muhammad, et al. "Compliance requirements in large-scale software 1116

development: An industrial case study." International Conference on Product-1117

Focused Software Process Improvement. Springer, Cham, 2020. 1118

[14] Kalunga, Joseph, Simon Tembo, and Jackson Phiri. "Industrial Internet of Things 1119

Common Concepts, Prospects and Software Requirements." vol 9 (2020): 1-11. 1120

[15] Chen, Chao, Genserik Reniers, and Nima Khakzad. "A thorough classification and 1121

discussion of approaches for modeling and managing domino effects in the process 1122

industries." Safety science 125 (2020): 104618. 1123

https://ceur-ws.org/Vol-3145/paper10.pdf
https://ceur-ws.org/Vol-3145/paper10.pdf
https://doi.org/10.3390/electronics11142186

34 Petar Rajković et al.

[16] Ren, Zihui, Cheng Chen, and Lijun Zhang. "Security protection under the 1124

environment of WiFi." 2017 International Conference Advanced Engineering and 1125

Technology Research (AETR 2017). Atlantis Press, 2018. 1126

[17] Kim, Dae-Young, Seokhoon Kim, and Jong Hyuk Park. "Remote software update 1127

in trusted connection of long-range IoT networking integrated with mobile edge 1128

cloud." IEEE Access 6 (2017): 66831-66840. 1129

[18] Asokan, N., et al. "ASSURED: Architecture for secure software update of realistic 1130

embedded devices." IEEE Transactions on Computer-Aided Design of Integrated 1131

Circuits and Systems 37.11 (2018): 2290-2300. 1132

[19] Mugarza, Imanol, Jorge Parra, and Eduardo Jacob. "Cetratus: A framework for zero 1133

downtime secure software updates in safety‐critical systems." Software: Practice 1134

and Experience 50.8 (2020): 1399-1424. 1135

[20] Stević, Stevan, et al. "IoT-based software update proposal for next generation 1136

automotive middleware stacks." 2018 IEEE 8th International Conference on 1137

Consumer Electronics-Berlin (ICCE-Berlin). IEEE, 2018. 1138

[21] Mirhosseini, Samim, and Chris Parnin. "Can automated pull requests encourage 1139

software developers to upgrade out-of-date dependencies?." 2017 32nd IEEE/ACM 1140

International Conference on Automated Software Engineering (ASE). IEEE, 2017. 1141

[22] Fowler, M. "Blue-green deployment, March 2010." (2016). 1142

[23] Tarvo, Alexander, et al. "CanaryAdvisor: a statistical-based tool for canary 1143

testing." Proceedings of the 2015 International Symposium on Software Testing and 1144

Analysis. 2015. 1145

[24] Killi, Bala Prakasa Rao, and Seela Veerabhadreswara Rao. "Towards improving 1146

resilience of controller placement with minimum backup capacity in software 1147

defined networks." Computer Networks 149 (2019): 102-114. 1148

[25] Vincent, L. (2016), "Marketing Strategies for Commercialization of New 1149

Technologies ☆ ", Technological Innovation: Generating Economic Results 1150

(Advances in the Study of Entrepreneurship, Innovation and Economic Growth, 1151

Vol. 26), Emerald Group Publishing Limited, Leeds, pp. 257-287. 1152

https://doi.org/10.1108/S1048-473620160000026009 1153

[26] Pleshko, L., Heiens, R. The contemporary product-market strategy grid and the link 1154

to market orientation and profitability. J Target Meas Anal Mark 16, 108–114 1155

(2008). https://doi.org/10.1057/jt.2008.2 1156

[27] Buzachis, A., Galletta, A., Celesti, A., Carnevale, L., & Villari, M. (2019, June). 1157

Towards osmotic computing: a blue-green strategy for the fast re-deployment of 1158

microservices. In 2019 IEEE Symposium on Computers and Communications 1159

(ISCC) (pp. 1-6). IEEE. 1160

[28] Mampage, A., Karunasekera, S., & Buyya, R. (2022). A holistic view on resource 1161

management in serverless computing environments: Taxonomy and future 1162

directions. ACM Computing Surveys (CSUR), 54(11s), 1-36. 1163

[29] Chien, C. (2020) What is rapid application development (RAD)?, Codebots. 1164

Available at: https://codebots.com/app-development/what-is-rapid-application-1165

development-rad (Accessed: 28 April 2024). 1166

[30] Munikanth (2023) Kubernetes Deployment Strategies, Medium. Available at: 1167

https://medium.com/@munikanthtech/kubernetes-deployment-strategies-1168

fc1557d21e8f (Accessed: 28 April 2024). 1169

https://doi.org/10.1108/S1048-473620160000026009
https://doi.org/10.1057/jt.2008.2

Applying a hybrid Deployment Strategy 35

[31] Aleksić DS, Janković DS (2009) The use of scripts in a CAD/CAM database. The 1170

X International Conference on Information, Communication and Energy Systems 1171

and Technologies (ICEST 2009), June 25–27, Veliko Tarnovo, Bulgaria 1172

[32] Aleksic, Dejan S., Dragan S. Jankovic, and Petar Rajkovic. "Product configurators 1173

in SME one-of-a-kind production with the dominant variation of the topology in a 1174

hybrid manufacturing cloud." The International Journal of Advanced Manufacturing 1175

Technology 92 (2017): 2145-2167. 1176

[33] Aleksić, D.S., Janković, D.S. & Stoimenov, L.V. A case study on the object-oriented 1177

framework for modeling product families with the dominant topology variation in 1178

the one-of-a-kind production. Int J Adv Manuf Technol 59, 397–412 (2012). 1179

https://doi.org/10.1007/s00170-011-3466-4 1180

[34] Rajković, P., Aleksić, D., Janković, D. (2024). The Implementation of Battery 1181

Charging Strategy for IoT Nodes. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel 1182

Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 1183

14352. Springer, Cham. https://doi.org/10.1007/978-3-031-48803-0_4 1184

https://doi.org/10.1007/s00170-011-3466-4

