
Computer Science and Information Systems 00(0):0000–0000 https://doi.org/10.2298/CSIS123456789X

Energy-efficiency of software and hardware algorithms*1

* ⋆
2

Maja H. Kirkeby, Thomas Krabben, Mathias Larsen,3

Maria B. Mikkelsen, Mads Rosendahl, Martin Sundman4

Department of People and Technology5

Roskilde University6

Roskilde, Denmark7

majaht@ruc.dk, krabben@ruc.dk, mamaar@ruc.dk,8

mariabm@ruc.dk, madsr@ruc.dk, sundman@ruc.dk9

and10

Tjark Petersen, Martin Schoeberl11

DTU Compute12

Technical University of Denmark13

Lyngby, Denmark14

s186083@student.dtu.dk, masca@dtu.dk15

16

17

Abstract. In this article, we compare the energy efficiency of hardware and soft-18

ware implementations of Heapsort and Dijkstra’s algorithm for route finding. The19

software implementations are written in C for Raspberry Pi, and the hardware im-20

plementations are crafted in Chisel for an FPGA. Our objective is to examine how21

we can fairly compare energy efficiency between hardware and software. This study22

seeks to identify circumstances where time and energy efficiency diverge, provid-23

ing preliminary insights that inform hardware selection. Our findings serve as a24

step towards understanding the complex trade-offs in algorithm performance across25

different computational platforms.26

Keywords: energy efficiency, performance, FPGA, CPU, algorithms27

1. Introduction28

Improving software’s time and energy efficiency is essential [1, 5]. Implementing the29

algorithms in Field-Programmable Gate Arrays (FPGAs) demonstrates substantial per-30

formance gains in highly parallelizable tasks, e.g., [16, 26]. However, only a few have31

considered the energy efficiency of hardware implementations [12, 15]. Previous stud-32

ies on improving algorithms using FPGAs have employed FPGAs in different ways.33

One approach requiring highly specialized knowledge is implementing the algorithm in34

hardware-specifying languages such as Verilog or VHDL [24,26]. Alternative approaches,35

⋆ This work is supported by the Innovation Fund Denmark for the project DIREC (9142-00001B), by CERCI-
RAS Cost Action CA19135, and by the Independent Research Fund Denmark Project no. 2102-00281B.

2 Authors Suppressed Due to Excessive Length

oriented toward software developers, use FPGAs as accelerators for, e.g., C/C++ pro-1

grams [12] or, as in this study, where use the high-level programming language Chisel [2,2

23]. This research extends the initial studies published at the 2022 Workshop on Resource3

Awareness of Systems and Society [16]. The initial study indicated an exciting upper4

bound for performance improvement when comparing a highly parallelizable program,5

Conway’s Game of Life [3], to software implementations. While the upper bound is in-6

teresting, it does not provide any insights into the gain from converting ordinary software7

implementations into hardware implementations for ordinary programs. In this study, we8

will focus on this gap.9

How do time and energy consumption compare for hardware and software im-10

plementations of ordinary software algorithms?11

In our choice of algorithms, it is our aim that it should not provide any particular12

advantage for either hardware or software versions. It is possible to find highly paralleliz-13

able algorithms where the hardware implementation will have an obvious advantage. In14

our experiments, we use Heapsort and Dijkstra’s algorithm to find the shortest path in15

a graph. Both are widely used and have well-known and studied implementations. Both16

algorithms are not easy to parallelize [11] [8] but can still contain a fair amount of paral-17

lelism at the local level.18

19

The main contributions of this article are:20

1. Comparative Analysis: The paper compares the energy efficiency between software21

and hardware implementations of two well-known algorithms: Heapsort and Dijk-22

stra’s algorithm. This comparison is new in that it focuses on both energy consump-23

tion and performance across software and hardware implementations and, thus, pro-24

vides the first insights into the energy and performance trade-offs25

2. Methodological Innovation: It introduces a methodological framework that ensures26

fair comparisons between software and hardware implementations. This includes a27

thorough discussion on the choice of measurement techniques.28

29

In the following, we provide the basis for a fair comparison (Section 2) and, in Sec-30

tion 3, we introduce the specifications and implementations of the algorithms. Section 431

describes our experimental setup and Section 5 describes our results. Afterwards, we dis-32

cuss the closest related literature (Section 6), and contextualize our results. Section 933

concludes the paper and provides a summary of future work.34

2. A Fair Comparison35

In this section, we discuss a methodological framework to ensure that comparisons be-36

tween software and hardware implementations are both fair and insightful. By explaining37

the choice of hardware and measurement protocols, this section highlights the practical38

aspects of the comparison and lays the foundation before we dive into the detailed de-39

scriptions of specific implementations40

Energy-efficiency of software and hardware algorithms* * 3

2.1. Choice of Measurement1

Previous work on energy consumption of software implementations has employed en-2

ergy estimations using Intel’s Running Average Power Limit (RAPL) [9], as it has been3

reported as having negligible overhead and providing precise results [7, 21]. e.g., [20].4

However, while RAPL is precise and highly correlated (a value of 0.99) [14]) with the5

actual power dissipation, it does not provide accurate results, i.e., the RAPL measure-6

ments are not close to the true energy consumption. Thus, instead, we employ external7

measurements that provide each device’s ground truth energy consumption. This choice8

also has drawbacks. For instance, it introduces more noise since it measures the energy9

consumption of the entire device compared to only the CPU. It also introduces an impre-10

cision in the synchronization between the time in the measuring unit obtaining the energy11

consumption and the time in the measured device that executes the algorithm. While both12

examples introduce more noise in the measurements, this methodology will support a fair13

comparison across platforms.14

2.2. Choice of Hardware15

One factor that influences the energy consumption of both hardware and software im-16

plementations is the choice of hardware. Since the hardware is very different in the two17

cases, we will use the same requirement for choosing the hardware, namely, to use cheap18

and available hardware.19

There are many cheap and available computers for software implementations, e.g.,20

Orange Pi, Asus Tinker, Nvidia Jetson Nano, or Raspberry Pi. However, in this study, we21

have chosen a standard Raspberry Pi 4 computer Model B with 4GB RAM and a 1.5 GHz22

64-bit quad-core ARM Cortex-A72 processor running the standard Raspberry Pi OS, a23

Linux version.24

There are two types of FPGA units: pure FPGA boards and system-on-chip FPGA25

boards. Choosing the pure FPGA board will allow us to measure the exact energy con-26

sumption of the FPGA unit alone without interference from other processors, which27

would be the case with System on Chip FPGA boards.28

For the hardware implementations, we have chosen a Digilent FPGA board Cmod29

A7 (version Cmod A7-35T) with an XC7A35T-1CPG236C FPGA unit, an MSPS On-30

chip ADC, 20800 Look-up Tables (LUTs), 41600 Flip-Flops, 225 KB Block RAM and 531

Clock Management Tiles.32

2.3. Choice of Implementations33

In addition, previous studies, e.g., [5, 6, 20] highlight that whole-systems energy con-34

sumption provides insights into the varying energy consumption across different imple-35

mentations, illustrating how choices in software development impact overall energy use.36

Thus, for instance the choice of programming language [20], implementation style [6],37

and compiler flags [22] influence the energy consumption and execution time of the pro-38

grams. For the hardware implementation, energy factors typically include the number of39

logic elements and routing resources, see, e.g., [25].40

We aim to compare the typical behavior of the implemented algorithm on the given41

form of hardware. For the software solutions, we base it on standard C-implementations,42

4 Authors Suppressed Due to Excessive Length

e.g., following the descriptions in [4], using standard settings of optimizations in the GNU1

CC compiler.2

The Hardware solutions are hand-written versions in Chisel with common approaches3

to optimize the design for improved performance. How we have realized the algorithms4

in hardware is discussed in the next section5

While the structures of the implementations will differ, we will align their work so6

that they follow the same requirements. The implementations will:7

1. carry out Dijkstra’s algorithm and Heapsort, respectively.8

2. avoids external communication by including the algorithm inputs in the implementa-9

tion instead of reading the input from external files.10

3. the program will return the smallest subset of the result to ensure computation of the11

results while reducing the read/write accesses.12

3. Algorithms13

This section provides detailed descriptions of Heapsort and Dijkstra’s implementations.14

With a focus on implementation specifics, the next Section 4 allows us to finalize the15

experimental design before providing the results in Section 5.16

3.1. Heapsort: Software17

The implementation of Heapsort uses a standard implementation from the Rosetta18

repository1, see Figure 1 (page 5). It uses a max-heap data structure, storing values in a19

balanced tree where a node is bigger than its children. The tree is represented as an array.20

In a binary tree, the children at array index i can be found at array index i ∗ 2 + 1 and21

i ∗ 2 + 2. The implementation uses a k-heap with slightly better complexity measures22

since the tree will have a smaller depth for the same number of store values.23

The k-heap structure is initially established by moving values down the tree structure24

if they are smaller than their children. In the second phase, the biggest value is repeatedly25

moved to the back of the array, and the heap structure is reestablished.26

3.2. Heapsort: Hardware27

The hardware solution of Heapsort uses higher order k-max-heaps to increase parallelism.28

In the k-heap, k + 1 elements must be compared in each step while re-establishing the29

heap order. In hardware, this comparison can be done in parallel, thus theoretically allow-30

ing for the heap order to be established in logk(n) clock cycles. Practically, fetching all31

required values from memory, finding the largest of them, and swapping the parent and32

the largest child if the heap order is violated has to be spread over multiple clock cycles to33

allow the circuit to be operated at high clock frequencies. An architectural diagram of the34

heap module is shown in Figure 2 (page 6). The circuit can not easily be pipelined since35

deciding which child should be the next parent while traversing the heap downwards is36

always delayed, resulting in a pipelined implementation having to stall most of the time.37

1 http://www.rosettacode.org/

Energy-efficiency of software and hardware algorithms* * 5

// heapsort start
int max (int *a, int n, int parent) {
int largest = parent;
for(int child = (K*parent)+1; child < (K*parent)+K+1; child++)
if(child < n && a[child] > a[largest])
largest = child;

return largest;
}
void downheap (int *a, int n, int i) {
while (1) {
int j = max(a, n, i);
if (j == i) break;
int t = a[i];
a[i] = a[j];
a[j] = t;
i = j;

}
}
void heapsort (int *a, int n) {
int i;
for (i = (n - 2) / K; i >= 0; i--)

downheap(a, n, i);
for (i = 0; i < n; i++) {

int t = a[n - i - 1];
a[n - i - 1] = a[0];
a[0] = t;
downheap(a, n - i - 1, 0);

}
}
// heapsort end

Fig. 1. The software implementation of Heapsort in C, where a is the input array to be sorted and n
is its size.

6 Authors Suppressed Due to Excessive Length

Weight
Memory

HeapControl

Fetcher
Weight
MemoryWeight

MemoryWeight
Memory

MaxFinder Heapifier Swapper

IO

Fig. 2. The architecture of the hardware implementation for Heapsort.

Nonetheless, parallelism can be exploited in multiple instances, giving the hardware1

implementation an edge over a software implementation in clock cycles per iteration. All2

k children of a given node can be fetched simultaneously using wide memories, which3

store k concatenated values per address. Thus, only two load operations are needed per4

iteration. The maximum between the parent and all k children nodes can be found using5

a tree of blocks, where the maximum of two values is selected. The total delay of this6

circuit is log2(k) times the delay of a single block. For larger values of k, the tree has7

to be divided into multiple levels separated by registers to allow for operation at high8

clock frequencies. The write operations to the memory associated with a swap can be9

overlapped with fetching the next parent or children, depending on the direction of the10

traversal.11

The described heap module for sorting is paired with a small circuit that inserts values12

from memory into the heap and then extracts the ordered sequence from the heap by13

continuously removing the root until the heap is empty.14

3.3. Dijkstra: Software15

The implementation of Dijkstra’s algorithm represents the graph as an adjacency list,16

where all edges from a vertex are grouped together. The algorithm computes the shortest17

route from a given vertex (here, the vertex at index 0) to all other vertices. For each18

vertex, it will find the previous vertex in the shortest route from the start to that vertex and19

the weight of that route. The actual route can be found by following the previous vertex20

indices through the graph until the start vertex is reached. The implementation can be seen21

in Figure 3.22

3.4. Dijkstra: Hardware23

A priority queue-based system allows for an easy determination of the next node to visit.24

Using the hardware heap of the heap sort experiment, a hardware priority queue could25

be constructed that accepts a new value worst case every logk(n) clock cycles, where n26

is the number of nodes in the graph and k is the degree of parallelism in the heap. This27

results in n(n − 1)d logk(n) clock cycles to execute Dijkstra’s algorithm, where d is the28

density of the graph with d = 1 representing a fully connected graph. This solution is not29

easily parallelizable since it would require a priority queue that can insert multiple values30

simultaneously.31

Energy-efficiency of software and hardware algorithms* * 7

#include <stdio.h>
// the graph is stored as an adjacency list
// where edges are grouped by start vertex
// input to Dijkstra's algorithm
int n;
#define n 6 // m: number of vertices
#define m 9 // m: number of edges
// start vertex of edge, grouped by vertex
int node1[]={ 0, 0, 0, 1, 1, 2, 2, 3, 4};
// end vertex of edge
int node2[]={1, 2, 5, 2, 3, 3, 5, 4, 5};
// weight of edge
int dist[]={7, 9, 14, 10, 15, 11, 2, 6, 9};
// vertex to edge index link
int edge[]={0, 3, 5, 7, 8, 0};
// Data structures for the algorithm
int done[n], prev[n], wght[n];
const int MAX=1000000;
void main(){
int start = 0;
// dijkstra start
for(int i=0;i<n;i++){

done[i]=0; prev[i]=-1; wght[i]=MAX;}
wght[start]=0;
int cur=-1, w = 0;
for(int k=0;k<n;k++) {
cur = -1; w = MAX;
for (int i = 0; i < n; i++) {
if (done[i]==0 && wght[i] < w) {

cur = i;
w = wght[i];}

}
if(cur<0)break;
int j = edge[cur];
while (j < m) {
int n1 = node1[j];
int n2 = node2[j];
int d = dist[j];
if (n1 != cur) break;
int d2 = wght[n2], d3 = w + d;
if (d2 > d3) {
prev[n2] = cur;
wght[n2] = d3;}

j++;
}
done[cur] = 1;

}
cur = n-1;

} // dijkstra end

Fig. 3. Dijkstra’s shortest path algorithm; it finds the path from vertex 0.

8 Authors Suppressed Due to Excessive Length

Route
UpdaterRoute

UpdaterRoute
Updater

Current
Node

Node
Group

ID

Route
Memory

Weight
Memory

Route
Updater

Clostest
Node

Fig. 4. The architecture of the hardware implementation of Dijkstra’s algorithm.

An alternative implementation uses a linear search through all nodes to determine the1

next node to visit. This proves to be an advantage since the route updates and search for2

the next node to visit can be conducted in parallel in hardware. The length of an alterna-3

tive path through the currently visited node is calculated for each node. If the alternative4

path is shorter, it is written to the route table instead of the previously known distance5

from the start. At the same time, a state element holding the closest unvisited node yet6

to be encountered is updated if this node is closer to the start. After all nodes have been7

visited, the state element holds the next node to visit. This results in n(n − 1) clock cy-8

cles to execute Dijkstra’s algorithm. This solution can easily be parallelized by working9

on multiple path updates simultaneously. This requires multiple read ports on the weight10

memory and multiple read and write ports to the route table. Furthermore, not only one11

route has to be compared to the closest unvisited not yet to be encountered but multiple at12

the same time.13

The second solution is chosen over the first since it is easily parallelizable while re-14

quiring significantly fewer hardware resources. This translates into lower power dissipa-15

tion and only worse performance on graphs of density below 1/logk(n). Considering the16

total energy of the execution of Dijkstra’s algorithm, the density at which both solutions17

perform equally well is offset even more in favor of the second solution since its lower18

power consumption compensates for the longer run time.19

An architectural diagram of the hardware implementation of Dijkstra’s algorithm is20

shown in Fig. 4. A group of k nodes reads their preliminary shortest path, their visited21

status from the route memory, and their weight to the currently visited node from the22

weight memory. For each node in the group, the distance of a new route through the23

currently visited node is calculated and compared to the old shortest path. The shorter of24

the two routes is selected and written to the route memory. Furthermore, the state element25

holding the closest unvisited node to the start is updated if the distances sent to the route26

memory are shorter. In the hardware implementation, the design is pipelined with the two27

memory modules separating the circuit into two stages.28

Energy-efficiency of software and hardware algorithms* * 9

To support single-cycle access to the weights without using O(n2) memory, a buffer-1

ing solution that exploits the known direction of traversal of the weights is employed.2

This solution stores weights as packed, unaligned adjacency lists, thus only requiring3

O(e) memory, where e is the number of directed edges in the graph.4

4. Experimental Setup5

The hardware implementations were executed on a Digilent FPGA board Cmod A7 (ver-6

sion Cmod A7-35T), and the software implementations were compiled with gcc (Rasp-7

bian 8.3.0-6+rpi1) 8.3.0 with flag -O2 and executed on a Raspberry Pi 4 computer Model8

B 4GB RAM. There is one program per input array, i.e., one file per software and hard-9

ware implementation and input array.10

4.1. Input spaces11

In Heapsort, the runtime and, therefore, perhaps also the energy consumption depend on12

the number of input elements and their order. A previous study [15] showed that while13

the order matters for runtime, the comparability arises from using the same order in all14

experiments. In this study, we (1) always use the same order, namely ordered input, which15

causes the highest number of comparisons, and (2) vary the number of elements: 4096,16

6144, 8192, 10240, 12288, 14336, and 16384.17

For Dijkstra’s shortest path algorithm, the execution time depends on the type of18

graph, i.e., sparse or dense and directed or undirected, and the start node for which the19

path is calculated. In the sorting algorithm, the focus was on growth, and for the shortest20

path algorithm, we varied only the form and the starting node. The implementation will21

calculate routes switching between all the possible start vertices.22

4.2. Pre-study: Configuration of Heapsort23

An exploratory study [15] found that the optimal degree of parallelism in hardware pro-24

grams differs when considering energy and time. The kind of parallelism in hardware25

algorithms and software algorithms differs, as described in Section 3, and, thus, the opti-26

mal degree of parallelism differs for software and hardware implementations and differs27

for each algorithm. A fair comparison allows the optimal degree of parallelism, and there-28

fore, we have run a pre-study to find the optimal degree of parallelism. For both hardware29

and software implementations, we have optimized for energy. Both Dijkstra and Heapsort30

can have different degrees of parallelism in the hardware implementation, while for the31

software implementation, this is only true for Heapsort.32

Hardware The test-run graph obtained directly from the Siglent can be seen in Figure 52.33

It shows the current over time (in minutes) for Heapsort using different k-values, i.e.,34

k ∈ {2, 4, 8, 16, 32, 64} on FPGA inputs of size 4096. The k values are not tested in35

order and are annotated above the associated execution. In the graph, we also see error-36

prone executions without annotations. The k = 16 provides the energy-optimal execution37

since it has the least area under the curve, i.e., the shortest execution time and the lowest38

current (the voltage is fixed).39

2 The original experimental measure data was lost, and we cannot provide precise energy consumption.

10 Authors Suppressed Due to Excessive Length

Fig. 5. The current over time for Heapsort using different k ∈ {2, 4, 8, 16, 32, 64} on FPGA inputs
of size 4096. The k-values are not tested in order; the k-values are annotated above the associated
execution. In the graph, we also see error-prone executions without annotations. The k = 16 pro-
vides the energy optimal execution.

Fig. 6. The average execution time in seconds for Heapsort using a k-heap on Raspberry Pi over
inputs from 4096 to 16384. The k = 4 provides the fastest executions.

Energy-efficiency of software and hardware algorithms* * 11

Software The growth rate is almost linear, as expected from an algorithm that runs at1

n logk n. Interestingly, the constant factor does matter since the fastest time is with k = 4.2

For bigger k, finding the subtree with the biggest root note becomes the main bottleneck3

in the execution.4

4.3. Measuring and Adjustment of Repetitions5

Description of what we have included in our measurements which hardware and software6

are we using.

...
const int MAX=1000000;

#define mx 500000

int main(){
int mx1=mx/n;
int lng=0;
for(int n1=0;n1<n;n1++){

for(int k1=0;k1<mx1;k1++){

int start=n1;
// dijkstra start
...
// dijkstra end
while(cur!=start){
lng+=wght[cur];
cur = prev[cur];

}
}

}
printf("done %d\n",lng);
return 0;

}

Fig. 7. This Dijkstra’s shortest path algorithm will calculate 500.000 routes switching between the
n possible start vertices.

7

We measure the energy consumption for the entire Raspberry Pi using a programmable8

power supply Siglent SPD3303X-E Linear DC 3CH in connection with a Siglent SDM3045X9

Digital Multimeter is a 4 1/2 digit (66,000 count) multimeter. This setup allows for the re-10

quired high-precision readings of the current. The equipment spans the current of both the11

FPGA and the Raspberry Pi and allows us to measure the power dissipation each 100ms.12

To ensure a large enough sample size of the current, we adjust the total execution time to13

be at least 3 seconds. The adjustments occur within both the software and hardware im-14

plementation. For the adjustments within the software implementations, see Figure 8 for15

the setup used in Heapsort and Figure 7 for the setup in Dijkstra. See Table 1 for a precise16

12 Authors Suppressed Due to Excessive Length

#define REPETITIONS = 3000
// heapsort start
...
// heapsort end
int main () {
for (int i = 0; i < REPETITIONS; i++) {

for (int j = 0; j < N; j++) a[j] = j;
heapsort(a, N);

}
return 0;

}

Fig. 8. Adjustment of repetitions in the Heapsort software application.

number of iterations used in the hardware and software implementations. In addition, this1

adjustment will reduce the synchronization imprecision between the equipment and the2

hardware.

Mode Algorithm input size/type Repetitions

Software Heapsort all 3000
Hardware Heapsort 4096 1550
Hardware Heapsort 6144 1033
Hardware Heapsort 8192 775
Hardware Heapsort 10240 620
Hardware Heapsort 12288 516
Hardware Heapsort 14336 442
Hardware Heapsort 16384 387

Software Dijkstra all 500000
Hardware Dijkstra all 9000

Table 1. Overview of the number of in-algorithm repetitions that ensure a least execution time of 3
seconds.

3

5. Results4

Our results demonstrate significant and contrasting differences in energy efficiency and5

performance between Heapsort and Dijkstra’s software and hardware implementations.6

These findings may necessitate more nuanced insights into the optimal hardware selection7

based on the algorithmic demands.8

5.1. Heapsort9

Comparative data on Heapsort’s time and energy consumption in an FPGA and the Rasp-10

berry Pi is shown in Figure 9 and Table 2, with a focus on the energy efficiency achieved11

Energy-efficiency of software and hardware algorithms* * 13

Raspberry Pi FPGA
Input size time pr. ite. power Ener. pr. ite. time pr. ite power Ener. pr. ite.

(ms) (W) (mJ) (ms) (W) (mJ)

4096 1.541 3.043 4.689 2.102 0.431 0.906
6144 2.383 3.050 7.269 3.614 0.571 2.062
8192 3.296 3.050 10.055 4.959 0.572 2.837

10240 4.259 3.032 12.913 6.513 0.573 3.731
12288 5.166 3.047 15.741 7.922 0.572 4.533
14336 6.150 3.064 18.847 9.944 0.569 5.656
16384 7.066 3.080 21.764 11.213 0.378 4.241

Table 2. Heapsort’s energy consumption within FPGA (k=16) and Raspberry Pi (k=4)

through hardware implementation. These results demonstrate energy savings and time1

costs when employing FPGAs over traditional CPUs. It is worth noticing that while the2

power dissipation by software and hardware implementations are different, they seem3

constant for the individual implementation.4

The energy consumption of the Heapsort implementation on the Raspberry Pi is highly5

correlated to the execution time. The time consumption follows the expected n(log n)6

time complexity, and there is no significant increase in energy consumption when larger7

parts of memory are used during execution.8

The total execution times are greater than 3 seconds, see Table 3; the total executions9

times are not directly comparable because the number of repetitions differ. This figure also10

shows a 2-second difference between the Siglent and the Raspberry time measurements.11

This is because we have chosen to count an experiment as when the Raspberry current in-12

creases beyond a certain threshold; in this case, when the current reaches 0.55A and more.13

This methodology cuts the execution time short on both ends. The energy consumption14

is calculated based on the logged times from the Raspberry Pi and the average power15

dissipation. While the execution time becomes correct, this method increases the average16

power dissipation slightly, and thus, we report a slightly larger energy consumption for17

the Raspberry Pi.18

Fig. 9. Heapsort’s time and energy consumption within FPGA (k=16) and Raspberry Pi (k=4).

14 Authors Suppressed Due to Excessive Length

Experiment Raspberry Pi FPGA
(Sig.) (Raspb.)

4096 2.536 4.623 3.258
6144 5.017 7.15 3.733
8192 7.712 9.888 3.843

10240 11.388 12.777 4.038
12288 13.672 15.499 4.088
14336 16.495 18.450 4.395
16384 19.095 21.198 4.34

Table 3. Heapsort’s total execution time per input. They are not directly comparable because the
number of repetitions differ.

Fig. 10. Dijkstra: Avg. Time and Energy consumption within FPGA and Raspberry Pi.

5.2. Dijkstra1

The results show that Dijkstra’s shortest path algorithm does not necessarily benefit from2

hardware implementations when considering performance or energy, see Figure 10. The3

FPGA platform demonstrates higher average times and energy consumption per iteration4

than the Raspberry Pi across various graph configurations. For example, in scenarios like5

dense directed graphs, it consumed 0.232 mJ per iteration compared to 0.064 mJ by the6

Raspberry Pi, demonstrating a significantly higher energy usage, see Table 4.7

These results suggest that while FPGAs are typically considered for their potential to8

enhance performance through parallelism, their energy efficiency for Dijkstra’s algorithm9

is less effective than traditional processing on a Raspberry Pi. This revelation is particu-10

larly crucial for applications where energy consumption is as critical as processing speed,11

such as in portable or embedded devices where power conservation is essential.12

6. Related Work13

There are many studies on hardware implementations of algorithms, e.g., [10, 12, 13, 16–14

19, 24, 26], however, only a few focuses or touches upon energy consumption of imple-15

mentations [13, 18] or compare across platforms [12, 16].16

The first study by Jmaa et al. [12] focused on the acceleration of various sorting algo-17

rithms using FPGAs through high-level synthesis, comparing FPGA performance to other18

Energy-efficiency of software and hardware algorithms* * 15

Raspberry Pi FPGA
Experiment time pr. ite. Power Energy pr. ite. time pr. it. (Power Energy pr. ite.

(ms) (W) (mJ) (ms) (W) (mJ)

Dense Directed 0.019 3.32 0.064 0.477 0.488 0.232
Dense Undirected 0.021 3.377 0.072 0.488 0.505 0.246
Sparse Directed 0.015 3.242 0.049 0.483 0.448 0.216
Sparce Undirected 0.015 3.260 0.049 0.49 0.446 0.218
Table 4. Dijkstra’s average energy consumption within FPGA and Raspberry Pi.

platforms like CPUs. Their objective is to demonstrate the benefits of FPGA acceleration1

in terms of execution time and standard deviation of execution times. While the purpose2

is different, our studies overlap in the focus on sorting algorithms but differ in the usage3

of FPGA, evaluation metrics, and devices.4

The exploratory study by Kirkeby and Schoeberl [16] compares the performance of5

hardware and software implementations and indicates possible energy consumption. The6

study is limited in that it focuses on performance, but it aligns well with our study in that7

it compares hardware and software implementations.8

The studies by Jmaa et al. [13] evaluate sorting algorithms implemented into FP-9

GAs. It compares various sorting algorithms, including InsertionSort, QuickSort, Heap-10

Sort, ShellSort, MergeSort, and TimSort solely on a software platform (ARM Cortex A911

processor part of the Zynq Zedboard). The study primarily measures computational time,12

energy consumption, and stability to find the most efficient algorithm for embedded sys-13

tems applications. This study is close in content to our study, but they do not compare the14

hardware implementations with other implementations. Instead, they compare the time15

and energy usage of their FPGA implementations. Equivalent to our observation, they16

found that the FPGA’s power dissipation is approximately constant when evaluating their17

hardware implementations, and thus, we confirm their high correlation between energy18

and time.19

7. Discussion of Results20

Our results reveal new trade-off considerations between algorithm efficiency and perfor-21

mance. This discussion contextualizes our findings, leading directly to Section 9 where22

we summarize the key insights and summarize avenues for further research.23

7.1. Algorithm Characteristics and Hardware Suitability24

Heapsort and Dijkstra’s algorithms have different levels of inherent parallelism and com-25

plexity. Heapsort may benefit more from native parallelization in hardware due to its26

ability to efficiently parallelize the comparison and swapping elements, especially when27

sorting larger datasets. In contrast, our implementation of Dijkstra’s algorithm may not28

fully leverage FPGA capabilities due to its sequential dependencies, leading to less im-29

pressive gains or even inefficiencies on FPGAs.30

While our results are less promising for Dijkstra, previous studies show that FPGA31

implementations of Dijkstra can provide considerable performance optimization com-32

pared to software due to their different growth rates: “The average execution time of33

16 Authors Suppressed Due to Excessive Length

the FPGA-based version grew only linearly, whereas the average execution time of the1

microprocessor-based version displayed quadratic growth [24], see Table 5. Thus, it may2

be that increasing the graph size can improve the results, but perhaps our result is a conse-3

quence of our implementation. Future work would include reimplementations and energy4

evaluations of previously successful hardware implementations.5

Vertices Logic Memory Execution Execution Average
Elements bits time(FPGA- time speedup

based) (µP-based) factor

8 834 632 10.6µs 250µs 23.58
16 1536 2116 13.4µs 434µs 32.39
32 2744 8287 17.2µs 802µs 46.63
64 5100 32894 21.6µs 1456µs 67.41

Table 5. Dijkstra performance improvements by Tommiska et al. [24].

7.2. Energy Efficiency versus Performance6

Both algorithms highlight the trade-offs between performance gains and energy efficiency.7

In both algorithms, the FPGAs increased execution time. Energy and time are highly8

correlated. However, comparing the execution time across software and hardware does9

not necessarily indicate a similar pattern for their energy consumption.10

The benefit of the FPGA is that the power dissipation is 5 to 8 times lower than the11

Raspberry Pi’s power dissipation. Therefore, a good rule of thumb would be that FPGA12

is a good choice when the execution time of the FPGA is 5 to 8 times faster than the13

Raspberry Pi. In our study, this is the case for Heapsort but not for Dijkstra. In addition,14

this factor may change with a different choice of hardware. Future work would include15

evaluating the energy and time trade-off factors for various FPGAs and computers.16

7.3. System Architecture Design17

Insights from both algorithms can guide system architects in designing more efficient sys-18

tems by choosing the right combination of hardware and software based on the specific19

algorithms they expect to run most frequently. There is no clear case for always em-20

ploying FPGAs to provide energy reductions equivalently to performance. However, in21

some cases, the developer may be able to exploit native parallelism and ensure that hard-22

ware implementation has a slower execution time growth rate for increasing input sizes.23

It would be beneficial to evaluate the energy consumption of high-performing hardware24

implementations and to identify trade-off trends on the architectural design level.25

7.4. Hypotheses on Algorithmic Performance26

Our results demonstrate that Heapsort, with its potential for parallel processing, capital-27

ized on the FPGA’s architecture to yield significant energy savings. One hypothesis for28

Energy-efficiency of software and hardware algorithms* * 17

this outcome is that the FPGA’s ability to conduct multiple comparisons in parallel, par-1

ticularly through the efficient use of LUTs and parallel memory access, minimizes both2

time and energy when compared to the CPU’s more serial processing. For instance, as3

the input size increased, the FPGA continued to scale effectively, likely due to its archi-4

tectural suitability for handling concurrent operations. This suggests that algorithms with5

similar local parallelism would exhibit comparable performance benefits.6

In contrast, Dijkstra’s algorithm, with its inherent sequential dependencies, struggled7

to take advantage of FPGA’s strengths. We hypothesize that this inefficiency stems from8

the algorithm’s need to update path lengths iteratively, which bottlenecks performance and9

limits potential energy gains. Future research could investigate whether alternate graph10

traversal algorithms with fewer sequential dependencies, or different graph configurations11

(such as sparse versus dense graphs), might better exploit hardware acceleration. Addi-12

tionally, hardware design optimizations targeting these sequential steps could mitigate13

some of these limitations.14

8. The Limits of Speedup15

Building on the hypothesis that algorithms with local parallelism would exhibit similar16

performance benefits, we explored the upper bounds of FPGA speedup using the highly17

parallelizable Conway’s Game of Life [3]. This experiment serves to demonstrate how18

extreme parallelism can push the limits of performance and energy efficiency on FPGA,19

further supporting the idea that parallel algorithms are well-suited for hardware acceler-20

ation. Conway’s Game of Life is a zero-player game defined on cellular automata. The21

cellular automata are 2D grids called worlds, where each grid cell has eight neighbors,22

and each cell can have one of two states: dead or alive. For each step, the cell states are23

updated according to their state and the states of their neighboring cells in the previous24

step.25

1. Any live cell with two or three live neighbors survives.26

2. Any dead cell with three live neighbors becomes a live cell.27

3. All other live cells die in the next generation. Similarly, all other dead cells stay dead.28

The initial state is given as input to the program. Because each cell depends only on29

nearby cells, Game of Life is highly parallelizable.30

Table 6 shows the average execution time for a single time step and the speedup31

provided by the FPGA implementation compared to the Java software implementation32

executed on a MacBook Pro and the Raspberry Pi. These results show that the gain in33

performance increases with the measured world sizes.34

Speedup factors range from 25 for a 10x10 world to 1500 for a 100x100 world. The35

speedup scales linearly with the problem size. While the Game of Life is an artificial36

workload, its parallelizable nature made it an ideal candidate for indicating an upper37

bound for speedups when moving algorithms from software into an FPGA.38

8.1. Resource Utilization39

We have implemented the Game of Life of different sizes in a Cyclon IV FPGA found40

on the DE2-115 evaluation board. We report the design size in logic elements (LEs) and41

18 Authors Suppressed Due to Excessive Length

Table 6. The execution time in us and speed-up of FPGA over software executions.

Execution time per step (us) FPGA Speedup
World Cells Mac Rasperry FPGA Mac Rasperry

10x10 100 0.10 1.783 0.0040 25 445
20x20 400 0.33 5.137 0.0040 82 1284
30x30 900 0.70 9.965 0.0041 170 2430
40x40 1600 1.21 17.212 0.0040 302 4302
50x50 2500 1.81 25.204 0.0044 411 5728
60x60 3600 2.76 37.822 0.0045 613 8404
70x70 4900 3.54 57.665 0.0040 884 14416
80x80 6400 4.81 64.396 0.0047 1023 13701
90x90 8100 6.50 81.309 0.0045 1444 18068

100x100 10000 7.51 109.964 0.0048 1564 22909

registers. An LE represents one 4-bit lookup table. For synthesis, we used the Quartus1

19.1.0 Lite Edition.2

Table 7 shows the FPGA implementation’s resource consumption for different world3

sizes. We can see that the size grows linear. The maximum frequency of the circuit is4

reported between 209 MHz and 250 MHz. Therefore, when we assume running it at5

200 MHz we can compute one iteration in 5 ns.6

Table 7. The resource utilization and minimum iteration time of different sized Game of Life worlds
in an FPGA.

Size LEs Registers min. Clock Period

10 x 10 804 104 4.0 ns
20 x 20 3539 404 4.0 ns
30 x 30 7995 904 4.1 ns
40 x 40 14463 1604 4.0 ns
50 x 50 23439 2504 4.4 ns
60 x 60 34414 3604 4.5 ns
70 x 70 45119 4904 4.0 ns
80 x 80 59136 6404 4.7 ns
90 x 90 75102 8104 4.5 ns

100 x 100 97871 10004 4.8 ns

As expected, we use one register per cell. However, the number of LEs per cell is7

surprisingly high, an average of around 9 LEs per cell. We assume that the Chisel Pop-8

Count method has some room for improvement. However, as we aim for a technique that9

enables software developers to describe their algorithms in hardware, we are avoiding10

optimization tricks.11

Energy-efficiency of software and hardware algorithms* * 19

8.2. Estimated Energy Consumption1

We did not measure power or energy consumption of the FPGA implementation. How-2

ever, the DE2-115 FPGA board comes with a power supply of 24 W. Therefore, this is3

the upper bound of power consumption of the whole FPGA board, including peripheral4

devices and external memories.5

If we assume 24 W as an upper bound on the power consumption and an operating6

frequency of 200MHz, then one iteration of a 100 x 100 Game of Life world consumes7

96nJ. In comparison, the Raspberry Pi has been reported to consume an average of 6.4 W8

when all four cores are busy3 and one iteration of a 100x100 world takes 0.109964 ms.9

Thus, a conservative energy consumption estimate for one iteration of a 100x100 world10

is 0.703769 mJ. From these conservative estimates, the hardware implementation can11

significantly improve energy consumption compared to the Raspberry Pi 4.12

9. Conclusion13

This study compared the energy efficiency and performance of software and hardware im-14

plementations of Heapsort and Dijkstra’s algorithms. Our findings reveal both the advan-15

tages and limitations of using FPGAs compared to traditional software implementations16

on a Raspberry Pi.17

For Heapsort, the hardware implementation on an FPGA demonstrated a clear advan-18

tage in terms of energy efficiency, confirming the potential of FPGAs for algorithms where19

some operations can be done in parallel, The results showed that the energy consumption20

for Heapsort on FPGA was consistently lower than on the Raspberry Pi, particularly as in-21

put sizes increased. This suggests that FPGAs can effectively reduce energy consumption22

for tasks where some parallel processing can be exploited.23

In contrast, Dijkstra’s algorithm did not exhibit the same level of energy efficiency24

on FPGA. Despite FPGAs’ inherent capabilities for handling parallel tasks, the complex25

dependencies and sequential nature of Dijkstra’s algorithm limited the expected gains.26

The study highlighted that traditional CPU implementations might still hold an advantage27

in terms of both performance and energy consumption for algorithms with significant28

sequential operations.29

The comparison also underscored the importance of choosing hardware or software30

solutions based on the specific requirements and characteristics of the algorithm. While31

FPGAs offer considerable reductions in power dissipation, they are not universally supe-32

rior for all computational tasks. Our findings suggest that the decision to use FPGA over33

CPU should be guided by a more detailed knowledge of the algorithm’s structure and the34

potential for parallelism.35

Additionally, this study contributes to the ongoing discussion about the trade-offs be-36

tween computational speed and energy efficiency. It provides a first step towards a nu-37

anced perspective that can aid system architects and developers in making informed de-38

cisions about the hardware-software configurations that best meet their performance and39

efficiency goals.40

While this study focuses on Heapsort and Dijkstra’s algorithm, both of which of-41

fer limited parallelism, future work will explore more parallelizable algorithms, such as42

3 https://www.pidramble.com/wiki/benchmarks/power-consumption

20 Authors Suppressed Due to Excessive Length

quicksort or matrix operations, to better demonstrate FPGA’s energy and performance1

potential. Our preliminary results with Conway’s Game of Life (Section 8) show that2

substantial speedups can be achieved through parallel computation, and similar gains are3

expected from a wider range of algorithms. This suggests that algorithms with similar4

characteristics can significantly reduce energy consumption by distributing computational5

tasks evenly across FPGA’s processing elements. We hypothesize that applying this ap-6

proach to a wider range of highly parallelizable algorithms will result in similar improve-7

ments in both energy efficiency and performance, as distributing tasks across FPGA’s8

processing elements can significantly reduce energy consumption. These extensions will9

provide further insights into how parallelism can be optimized to enhance both computa-10

tional speed and energy savings across a variety of workloads.11

Future work will focus on optimizing hardware implementations and expanding the12

range of algorithms tested to further explore their energy and performance potential. Addi-13

tionally, we plan to evaluate the scalability and applicability of our findings across a wider14

variety of hardware platforms, including more powerful multicore processors, GPUs, and15

different FPGA models and configurations. This broader assessment will help establish16

more generalized guidelines for selecting between software and hardware implementa-17

tions, particularly in terms of energy efficiency and performance metrics.18

References19

1. Anders S G Andrae. New perspectives on internet electricity use in 2030. Engineering and20

Applied Science Letter, 3:19–31, 2020.21

2. Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Waterman, Rimas Avizie-22

nis, John Wawrzynek, and Krste Asanovic. Chisel: constructing hardware in a scala embedded23

language. In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th An-24

nual Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012,25

pages 1216–1225. ACM, 2012.26

3. Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathe-27

matical plays. Vol. 2. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London,28

1982. Games in particular.29

4. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to30

algorithms. third. New York, 2:187–195, 2009.31

5. Kerstin Eder, John P. Gallagher, Pedro López-Garcı́a, Henk Muller, Zorana Banković, Kyri-32

akos Georgiou, Rémy Haemmerlé, Manuel V. Hermenegildo, Bishoksan Kafle, Steve Kerrison,33

Maja Kirkeby, Maximiliano Klemen, Xueliang Li, Umer Liqat, Jeremy Morse, Morten Rhiger,34

and Mads Rosendahl. Entra: Whole-systems energy transparency. Microprocessors and Mi-35

crosystems, 47:278–286, 2016.36

6. Hayden Field, Glen Anderson, and Kerstin Eder. Eacof: A framework for providing energy37

transparency to enable energy-aware software development. Proceedings of the 29th Annual38

ACM Symposium on Applied Computing - SAC ’14, pages 1194–1199, 2014.39

7. Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Measuring energy consump-40

tion for short code paths using rapl. SIGMETRICS Perform. Eval. Rev., 40(3):13–17, Jan 2012.41

8. Hiroaki Hirata and Atsushi Nunome. A modified parallel heapsort algorithm. International42

Journal of Software Innovation, 8(3):1–18, 2020.43

9. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, 2023. Ac-44

cessed: 2024-01-29.45

10. G. R. Jagadeesh, T. Srikanthan, and C. M. Lim. Field programmable gate array-based acceler-46

ation of shortest-path computation. IET computers & digital techniques, 5(4):231–237, 2011.47

Energy-efficiency of software and hardware algorithms* * 21

11. Nadira Jasika, Naida Alispahic, Arslanagic Elma, Kurtovic Ilvana, Lagumdzija Elma, and1

Novica Nosovic. Dijkstra’s shortest path algorithm serial and parallel execution performance2

analysis. In 2012 Proceedings of the 35th International Convention MIPRO, pages 1811–1815,3

2012.4

12. Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, and Maher Ben Jemaa. A comparative5

study of sorting algorithms with fpga acceleration by high level synthesis. Computacion y6

Sistemas, 23:213–230, 2019. Comparison: FPGA vs. CPU, very clear!¡br/¿Are they doing the7

same thing in 2021 paper?8

13. Yomna Ben Jmaa, David Duvivier, and Mohamed Abid. Sorting algorithms on arm cortex a99

processor. In Leonard Barolli, Isaac Woungang, and Tomoya Enokido, editors, International10

Conference on Advanced Information Networking and Applications, volume 227, pages 355–11

366. Springer International Publishing, 2021.12

14. Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and Zhonghong Ou.13

RAPL in Action. ACM Transactions on Modeling and Performance Evaluation of Computing14

Systems, 3(2):1–26, jun 2018.15

15. Maja H. Kirkeby, Thomas Krabben, Mathias Larsen, Maria B. Mikkelsen, Tjark Petersen, Mads16

Rosendahl, Martin Schoeberl, and Martin Sundman. Energy consumption and performance of17

heapsort in hardware and software, 2022.18

16. Maja H. Kirkeby and Martin Schoeberl. Towards comparing performance of algorithms in19

hardware and software, 2022.20

17. Dirk Koch and Jim Torresen. Fpgasort: a high performance sorting architecture exploiting21

run-time reconfiguration on fpgas for large problem sorting. In Proceedings of the 19th22

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’11, page23

45–54, New York, NY, USA, 2011. Association for Computing Machinery.24

18. Guoqing Lei, Yong Dou, Rongchun Li, and Fei Xia. An fpga implementation for solving25

the large single-source-shortest-path problem. IEEE Transactions on Circuits and Systems II:26

Express Briefs, 63(5):473–477, 2016.27

19. Rene Mueller, Jens Teubner, and Gustavo Alonso. Data processing on fpgas. Proc. VLDB28

Endow., 2(1):910–921, aug 2009.29

20. Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernan-30

des, and João Saraiva. Ranking programming languages by energy efficiency. Sci. Comput.31

Program., 205:102609, 2021.32

21. Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron Ra-33

jwan. Power-management architecture of the intel microarchitecture code-named sandy bridge.34

IEEE Micro, 32(2):20–27, 2012.35

22. Bernardo Santos, João Paulo Fernandes, Maja H. Kirkeby, and Alberto Pardo. Compiling36

haskell for energy efficiency: Empirical analysis of individual transformations. In The 39th37

ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.38

Association for Computing MachineryNew YorkNYUnited States, 2023.39

23. Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing, 2019. available at40

https://github.com/schoeberl/chisel-book.41

24. Matti Tommiska and Jorma Skyttä. Dijkstra’s shortest path routing algorithm in reconfigurable42

hardware. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial43

Intelligence and Lecture Notes in Bioinformatics), 2147:653–657, 2001.44

25. Xilinx. Vivado design suite user. guide power analysis and optimization, October 2021. UG90745

(v2021.2).46

26. Yuzhi Zhou, Xi Jin, and Tianqi Wang. FPGA implementation of a∗ algorithm for real-time47

path planning. Int. J. Reconfigurable Comput., 2020:8896386:1–8896386:11, 2020.48

