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Abstract. The paper presents innovative parser construction method 
and parser generator prototype which generates a computer language 
parser directly from a set of annotated classes in contrast to standard 
parser generators which specify concrete syntax of a computer language 
using BNF notation. A language with textual concrete syntax is defined 
upon the abstract syntax definition extended with annotations in the 
presented approach. Annotations define instances of concrete syntax 
patterns in a language. Abstract syntax of a language is inevitable input 
of the parser generator as well as language’s concrete syntax pattern 
definitions. The process of parser implementation is presented on the 
concrete computer language – the Simple Arithmetic Language. The 
paper summarizes results of the studies of implemented parser 
generator and describes its role in the university courses. 

Keywords: parser generator; annotated model; abstract syntax; model 
to grammar transformation. 

1. Introduction 

Computer languages are crucial tools in the development of software 
systems. By using computer languages we define the structure of a system 
and its behavior. Today's common industry practice is to create a software 
system as a composition of software artifacts written in more than one 
computer language. Developers use different languages and paradigms 
throughout the development of a software system according to a nature of 
concrete subproblem and their preferences. Besides the general-purpose 
programming languages (e. g. Java, C#) the domain-specific languages 
(DSL) [1][2] have become popular in the last decade. Nowadays, DSLs have 
their stable position in the development of software systems in many different 
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forms. Concerning abstraction level, it is possible to program closer to a 
domain. Furthermore DSLs enables explicit separation of knowledge in the 
system in natural structured form of domain. The growth of their popularity is 
probably connected with the growth of XML technology and using of 
standardized industry XML document parsers as a preferable option to the 
construction of language specific processors. A developer with minimal 
knowledge about language parsing is able to create a DSL with XML 
compliant concrete syntax using tools like JAXB [3].  

Computer languages come in many flavors – as well known GPLs, DSLs, 
but also as APIs, ontologies [4], and even others. The one of the today’s 
hottest research topics in the field of computer language development is the 
tooling support. In the paper we concentrate on the parser generators for 
DSLs. Even though the research in the field of computer languages has the 
long history and parser generators for a textual language processing like 
YACC [5], Bison [6], JavaCC [7] and ANTLR [8] have their stable position in 
the computer language development the task of developing a computer 
language is still an expert task. Cook et al. [9] conclude that implementing a 
textual DSL by implementing its grammar can be a difficult and error-prone 
task, requiring significant expertise in language design and the use of a 
parser generator. Similarly, Mernik et al. [1] argue that DSL development is 
hard, requiring both domain knowledge and language development expertise. 
We present the novel method of a computer language design and 
implementation in the paper – abstract syntax driven parser generation.  

The rest of the paper has the following structure: In the section 2 we 
present main ideas behind our approach to a computer language 
development. The section 3 explains the method on example of simple but 
extensible arithmetic language. Section 4 describes the parser generator 
prototype –YAJCo. Section 5 summarizes the results of our experiments with 
YAJCo parser generator. Section 6 compares our work with the state of the 
art in the field of parser generators. The last section 7 concludes the paper 
and outlines the possibilities for further research in the field of parser 
generators and computer language development in general. 

2. Abstract Syntax Directed Language Definition 

This section sketches the main ideas behind the innovative approach to the 
definition of a concrete syntax for a computer language with textual notation. 
Contrary to traditional methods of parser generation (e. g. YACC, JavaCC), 
we focus on the definition of abstract syntax rather than giving an excessive 
concentration on concrete syntax (see Fig. 1). In our approach the abstract 
syntax of a language is formally defined using standard classes well known 
from object-oriented programming and metamodels. Kleppe argues for 
concentrating on abstract syntax and metamodels when we define a 
computer language in [10]. 
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Fig. 1. Comparing traditional and presented approaches to a computer language 
parser generation 
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Fig. 2. Generating Language Parser using YAJCo’s parser generation approach 

In our approach the language implementation begins with the concept 
formalization in the form of abstract syntax. Language concepts are defined 
as classes and relationships between them. Upon such defined abstract 
syntax a developer defines both the concrete syntax through a set of source 
code annotations and the language semantics through the object methods. 
Annotations (called also attributes [11) are structured way of additional 
knowledge incorporated directly into the source code. During the phase of 
concrete syntax definition the parser generator assists a developer with 
suggestions and hints for making the concrete syntax unambiguous. Fig. 2 
shows the whole process of parser implementation using the described 
approach. If the concrete syntax is unambiguously defined then parser 
generator automatically generates the parser from annotated classes. 

It is quite common to have multiple notations for one language. RELAX NG 
[12] is an example of such a language with two different notations – XML 
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concrete syntax and compact concrete syntax. By using our approach 
different notations of the same language can share both abstract syntax and 
semantics. In some cases the evolution of concrete syntax does not require 
the modification of abstract syntax and semantics at all. This means that other 
notations of the same language are not affected by this type of language 
evolution. For instance, Fig. 3 presents the language with four different 
notations sharing the same abstract syntax and semantics. These notations 
(concrete syntaxes) are textual notation, XML notation, in-memory object 
notation and graphical notation. Concrete notations are interchangeable and 
developer selects among them according to his preferences.  
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Fig. 3. Computer language with multiple notations and shared abstract syntax and 
semantics 

3. SAL Example 

This section presents our approach to a computer language definition using 
annotated classes on the example of Simple Arithmetic Language (SAL). This 
language expresses the arithmetic expressions with basic arithmetic binary 
operations of addition and multiplication, and unary operation of arithmetic 
negation. The expressions also contain integer numbers. The abstract syntax 
of SAL can be formally defined using BNF as follows. 

 
e, e1, e2 ∈Expression, n ∈  Number  
e ::= Number n | UnaryMinus e | Add e1 e2 | Mul e1 e2  
 
Variables e, e1, e2 are metavariables from the Expression syntactical 

domain and n is the metavariable from the Number syntactical domain. The 
infix form of arithmetic operation is intentionally omitted to avoid the confusion 
with concrete syntax. Prefix names in productions (e. g. UnaryMinus, Mul) are 
used just to uniquely name the productions for semantic equations. 

The semantics of SAL is formally defined using Eval function which maps a 
value from syntactic domain Expression to a value from semantic domain Z 
(integers) and Value function which maps a value from syntactic domain 
Number to a value from semantic domain Z. 
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Eval : Expression → Z 
Value : Number → Z 
The semantic function Eval is defined by the following equations. 
Eval [|  Number n |]   = Value [|  n |] 
Eval [|  UnaryMinus e |]   = – Eval [|  e |] 
Eval [|  Add e1 e2 |]    = Eval [|  e1 |]  + Eval [|  e2 |] 
Eval [|  Mul e1 e2 |]    = Eval [|  e1 |]  * Eval [|  e2 |] 
Certainly we can find many different notations for SAL. For example, we 

can write down a sentence from SAL in the following notation using standard 
symbols and the operator infix form.  

1 + 2 * 7 
In the Fig. 4, abstract syntax tree of the sentence above is depicted.  
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Fig. 4. The abstract syntax tree of the expression 1 + 2 * 7 

From the Fig. 4 it is apparent that depicted abstract syntax tree contains 
typed nodes corresponding to language concepts. The node types are Add, 
Mul and Number. Add node represents the binary operation of addition. It 
always has two child nodes respecting the nature of the binary operation of 
addition. The Mul node represents multiplicative operation and the leaf node 
Number represents an integer number. The Number node is attributed with 
the notation of a number. 

Unlike traditional approach, language definition will not start with the 
definition of SAL’s concrete syntax written in BNF. According to our approach, 
the object classes representing syntactic domains (language concept) are 
created at first. These classes define the abstract syntax of the language and 
also the semantics of the language as stated in the previous formal definition 
of the SAL. The concrete syntax will be specified later using source code 
annotations, expressing the concrete syntax patterns and their 
correspondence to the abstract syntax concepts. 

The main concept of the SAL is the Expression. It is pretty 
straightforward because SAL is the language of expressions. On the other 
side it is an abstract concept and it does not have concrete representation. 
From the semantic point of view every expression can be evaluated to a 
single integer value. This fact is denoted by semantic function eval of 
Expression class. 
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abstract class Expression { 
  //Semantic function – OOP method 
  abstract int eval(); 
} 
The Expression class is declared to be abstract because it only defines 

the abstract concept of an expression from SAL and does not represent any 
abstract syntax graph node. Next, the different types of expressions can be 
incorporated into the SAL. The simplest form of an expression is a number 
expression. Number has its notation and the value. Firstly we will focus is on 
its value. The notation will be defined later during the definition of the concrete 
syntax. It needs to be expressed that number is a simple expression as well. 
This is done using “is-a” relationship, denoted with extends keyword in Java. 
Corresponding semantic equations are denoted in the comments above the 
methods. The code snippet below shows the class Number for integer 
numbers. 
class Number extends Expression { 
  int value;  
 
  //Eval [| Number n |] = Value [| n |] 
  int eval() { 
    return value;  
  } 
} 

The unary operation of negation is defined in the following snippet of the 
UnaryMinus class. 
class UnaryMinus extends Expression { 
  Expression expression;  
 
  //Eval [| UnaryMinus e |] = – Eval [| e |] 
  int eval() { 
    return -expression.eval(); 
  } 
} 

Since the addition is a kind of arithmetic expression in SAL, the binary 
operation of addition is defined in the class Add. Relationship “is-a” is 
therefore used again. 
class Add extends Expression { 
  Expression expression1;  
  Expression expression2;  
 
  //Eval [| Add e1 e2 |] = Eval [| e1 |] + Eval [| e2 |] 
  int eval() { 
    return expression1.eval() + expression2.eval(); 
  } 
} 

Operation of multiplication is defined in the same style as binary operation 
Add. 



Annotation Based Parser Generator 

ComSIS Vol. 7, No. 2, Special Issue, April 2010 297 

The class diagram in the Fig. 5 shows the hierarchy of SAL classes. The 
abstract syntax of arithmetic expression language has already been defined 
as well as the semantic function Eval using the classic OOP notation. The 
next step in the development of SAL is to define the concrete syntax for the 
language. Concrete syntax will be used when expression (sentence) will be 
stored in the textual form. 
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Fig. 5. Classes and their hierarchy in the simple arithmetic language (SAL) 

The specification of concrete syntax requires some additional information 
about textual representation of the language concepts. In SAL it is: 

• a number representation (notation), 
• notation for operations, 

• symbols for the operations of addition, multiplication and negation, 
• the form of the notation, the priority and associativity of all operations.  

The operations will be expressed in infix form using standard symbols + 
and *. Unary operation of negation will be in the prefix form denoted with the 
symbol -. The priority, associativity and symbols for the operations are listed 
in Table 1. The integer numbers are written using standard decimal notation 
with digits 0, 1, …, 9. 

Table 1. Priority and associativity of SAL operators 

Operator Priority Associativity 
+ 1 

(lowest) 
left 

* 2 left 
- 3 

(highest) 
right 

 
The class for integer numbers is augmented with concrete syntax source 

annotations in the following code snippet.  
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class Number extends Expression { 
  int value;  
 
  Number(@Token("VALUE") long value) { 
    this.value = value;  
  } 
 
  int eval() { 
    return value;  
  } 
} 
The @Token annotation with VALUE attribute defines the name of a regular 

expression for the number notation. As seen on the snippet the class 
constructor is augmented with the concrete syntax pattern. The regular 
expression can be defined as follows.  
@TokenDef(name = "VALUE", regexp = "[0-9]+") 
The format of a regular expression depends on the syntax for definition of 

regular expressions. The annotation @Token("VALUE") can even be 
omitted because the name of token can be derived directly from the name of 
the parameter (value in this case). The domain class for binary operation of 
addition augmented with concrete syntax annotations is shown below. 
class Add extends Expression { 
  Expression expression1;  
  Expression expression2;  
 
  @Operator( 
    associativity = Associativity.LEFT,  
    priority = 1 
  )  
  Add(Expression expression1,  
      @Before("+")  
      Expression expression2) { 
    this.expression1 = expression1;  
    this.expression2 = expression2;  
  } 
 
  int eval() { 
    return expression1.eval() + expression2.eval(); 
  } 
} 
Concrete syntax for the operation of addition is defined in the class 

constructor. Parameters of constructor define the rule of composition of the 
operation. In the constructor body it can be observed that addition is 
composed of two expressions in textual form. It is important to notice that 
after the first expression (and before the second expression at the same time) 
token + will follow.  

Binary operation of multiplication is defined accordingly to the definition of 
addition. The domain class for unary operation of arithmetic negation is 
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augmented with concrete syntax annotations as shown in the code snippet 
below. 
class UnaryMinus extends Expression { 
  Expression expression;  
 
  @Operator(priority = 3)  
  UnaryMinus( 
      @Before("-") 
      Expression expression) { 
    this.expression = expression;  
  } 
 
  int eval() { 
    return -expression.eval(); 
  } 
} 
 
As seen in the constructor the operation is defined as unary prefix 

operation. 
The last step in definition of the SAL’s concrete syntax is the definition for 

parentheses. This can be achieved simply by using the annotation on abstract 
class for expressions as shown below. 
@Parentheses(left = "(", right = ")") 
  abstract class Expression { 
    //... 
} 
Finally the concrete syntax for the language has been defined. The 

implemented YAJCo parser generator generates the language parser from 
annotated classes. The concrete syntax of SAL is automatically derived from 
these classes, their relationships and concrete syntax annotations. In the 
current implementation of the YAJCo it is the following LL(1) context-free 
grammar. 
Expr1 ::= Expr2 {"+" Expr2} 
Expr2 ::= Expr3 {"*" Expr3} 
Expr3 ::= "-" Expr3 | Expr 
Expr ::= Number | "(" Expr1 ")" 
Number ::= [0-9]+ 

4. YAJCo Parser Generator  

The main goal of the approach is not to create a new parsing technology 
based on context-free grammars theory. The main idea is to integrate existing 
technologies into the higher level abstraction in which the language developer 
does not have to concentrate on concrete parsing technology but on the 
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language itself describing the concepts and relationships between them with 
abstract syntax in mind. The main characteristics of the approach are: 

• Orientation on abstract syntax and semantics of the language. 
• Definition of the concrete syntax independent from a parsing technology. 
• Automatic construction of abstract syntax tree from an input sentence. 
• Automatic construction of references between concept instances. 
• Error reporting in terms of language domain concepts. 
• Separation of language concepts on implementation level (concept 

types). 
• Tool support for language evolution (concept refactoring). 
As a proof of concept the parser generator YAJCo (Yet Another Java 

Compiler cOmpiler) has been implemented. YAJCo generates language 
parser from annotated classes. It is implemented as a standard Java 
annotation processor which traverses through the source code of classes 
looking for cocnrete syntax pattern annotations. YAJCo discovers relations 
between classes. Two main relationships between classes used in the 
definition of an abstract syntax are: 

• “is-a” relationship, 
• “has-a” relationship. 
Together with corresponding BNF productions they are depicted in the Fig. 
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Fig. 6. Abstract syntax relationships:  A) “is-a” relationship, B) “has-a” relationship 

The “is-a” relationship is used also in the definition of concrete syntax, but 
the “has-a” relationship has following drawbacks when defining the concrete 
syntax: 

• Multiple notations for a single concept. 
• Lack of natural ordering for member variables defined in a class (except 

the order in a source code). 
• Data type conversion between concrete and abstract syntax (e. g. 

dropping the quotes from the string literal). 
All these drawbacks can be eliminated by using class constructor notation 

(or factory methods notation) for the definition of concrete syntax. This is the 
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main reason why we annotate constructors and their parameters instead of 
object fields as shown in the following example. 
While( 
  @Before({"while", "("}) 
  @After(")") 
  Expression expr,  
  Statement stmt) {…} 

The previous example corresponds to the following BNF production of a 
concrete syntax. 
While ::= 'while' '('Expression ')' Statement 

To define a transformation from abstract to concrete syntax a set of 
concrete syntax annotation types has been created: 

• Structural annotations – mark the concept as optional or set the 
minimum and maximum number of occurrences - @Optional, @Range 

• Token annotations – specify binding of lexical units to abstract syntax 
concepts - @Before, @After, @Token, @Separator 

• Language pattern annotations – identify common computer language 
patterns 
• Operators: @Operator, @Parentheses 
• Identifiers and references: @Identifier, @References 

• Parser configuration annotations - @Parser, @TokenDef, @Skip 
Following print statement example presents the usage of some of the 

annotations mentioned above. 
class Print extends Statement { 
  @Before("print") 
  @After(";") 
  Print( 
    @Separator(",") 
    @Range(minOccurs = 1)  
    Expression[] expressions) { ... } 
...  
} 

The corresponding print language concept has the following notation. 
print expr1, ... , exprn; 

The next example presents annotated C language if statement. 
class If extends Statement { 
  If( 
    @Before({"if", "("})  
    @After(")") 
    Expression expression,  
    Statement trueStatement,  
    @Optional  
    @Before("else")  
    Statement falseStatement) {...} 
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...  
} 

Currently the JavaCC parser generator is used as the underlying parsing 
technology. As an output YAJCo generates JavaCC grammar file augmented 
with actions for constructing abstract syntax tree. Since the annotations are 
independent of concrete parsing technology the output can also be generated 
for other top-down or bottom-up parser generators (e. g. ANTLR [8]).  

Finally the parser for SAL with tokens and blank characters is defined using 
@Parser annotation as shown in the code snippet. 

@Parser( 
  className = "parser.expr.ExpressionParser", 
  rootNode = "Expression", 
  tokens = { 
    @TokenDef(name = "VALUE", regexp = "[0-9]+")  
  }, 
  skips = { 
    @Skip(" "),  
    @Skip("\t"),  
    @Skip("\n") 
  } 
) 
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Fig. 7. Generating parser using YAJCo parser generator – YAJCo architecture 
overview 

Processing of annotated classes with developed parser generator YAJCo 
is depicted in the Fig 7. After the generation of parser is complete it can be 
simply embedded in any existing Java application. The following code snippet 
is an example of embedding generated source code parser for SAL. 
String expr = "1 + 2 * 7"; 
Expression expression = new   
 ExpressionParser().parse(expr); 
long result = expression.eval(); 
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5. Experiments 

To explore the full potential of the implemented approach and YAJCo parser 
generator we have implemented seven computer languages, each of them 
having a different character: 

• SAL – Simple Arithmetic Language, 
• AL – Arithmetic Language, 
• SIL – Structured Imperative Language, 
• PIL – Procedural Imperative Language, 
• GUIIL – Graphical User Interface Interaction Language, 
• SML – State Machine Language, 
• LAD – Language of Annotation Designator. 
SAL [17] and AL languages are simple computer languages for expressing 

the arithmetic expressions. AL has been created incrementally from the SAL 
in a few evolutionary steps. In every step some new constructs have been 
incorporated into the language. SIL and PIL languages are the 
representatives of general-purpose programming languages. PIL is 
procedural Pascal-like language. These languages are greatly inspired by 
traditional university compiler course languages. On the other hand the last 
three languages GUIIL, SML and LAD are DSL languages oriented to 
concrete domains. GUIIL is the language which describes the recipes for 
graphical user interface task automation. SML is classic DSL for state 
machines description [9]. LAD is DSL language for expressing the annotation 
constraints. All mentioned languages were successfully implemented using 
YAJCo parser generator. During the implementation of these computer 
languages we have also defined some metrics to measure the following 
implementation characteristics: 

• number of language concepts (defined by types - classes, interfaces, 
enumerations), 

• number of annotations in the implementation of language concepts 
categorized by annotation types, 

• comparison of annotated and unannotated language concepts, 
• characteristics of generated source code (number of source lines of 

code, number of characters). 
The results of experiments are summarized in Table 2 According to our 

measurements the most complex language is PIL. This language contains the 
largest number of language concepts. From the point of view of the number of 
language concepts the simplest languages are SML and GUIIL. According to 
the results the most common language concept representation is a concrete 
class. Interfaces and abstract classes are interchangeable by the choice of 
language developer. The most common concrete syntax annotation used in 
experimental languages is @Before. This is a reasonable outcome since the 
annotation specifies the lexical symbol preceding a concept. It is natural to 
specify the concept with leading keyword (e.g. if, while, procedure). The 
interesting fact is that approximately 25% of language concept types contain 
no annotation. It is the fulfillment of the one of our aims - to minimize the 
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number of used annotations. The results also show that the SML language is 
considerably verbose. The average number of concrete syntax annotations 
per concept type in SML is 2.5. The following part from the SML sentence 
presents the level of verbosity of the SML language. 

Table 2. Results from the implementation of experimental languages using YAJCo 
parser generator 

Types SAL AL SIL PIL GUIIL SML LAD 
Concrete class 6 11 30 42 4 6 26 

Abstract class 1 3 2 3 1  7 

Interface    2    

Enumeration   1    1 

Total 7 14 33 47 5 6 34 

 
Annotation SAL AL SIL PIL GUIIL SML LAD 

After  1 9 13 1 1 13 

Before 5 10 28 37 2 8 23 

Operator 5 10 17 27   8 

Optional   1 1 1 1 3 

Parentheses 1 1 1 1   2 

Range   3   2 2 

Separator   3 2 1  5 

Token   2   3 2 

Total 11 22 64 81 5 15 58 

 
Category SAL AL SIL PIL GUIIL SML LAD 

Number of annotated 
types 6 11 25 39 2 4 23 

Number of types without 
annotation 1 3 8 8 3 2 10 

Average number of 
annotations per type 1.57 1.57 1.94 1.72 1.00 2.50 1.71 

Ratio of unannotated 
types to all types 0.14 0.21 0.24 0.17 0.60 0.33 0.29 

 
Characteristics SAL AL SIL PIL GUIIL SML LAD 

Number of lexical units 8 16 37 40 7 11 37 

Number of BNF rules 5 7 24 27 5 6 29 

Number of source lines of 
code generated by YAJCo 128 187 570 655 124 168 693 

Number of characters 
generated by YAJCo 2458 3775 15912 17554 2854 4245 19559 

Number of source lines of 
code generated by 

1487 1603 2567 2580 1516 1843 3849 



Annotation Based Parser Generator 

ComSIS Vol. 7, No. 2, Special Issue, April 2010 305 

JavaCC 

Number of characters 
generated by JavaCC 42103 45370 78450 78687 43869 52950 114002 

transition from Ready to Running when water_high 

The average usage of concrete syntax annotation per one concept type in 
all languages is less than 2. The main goal of the metrics definition was the 
measurement of a language complexity based on abstract syntax since 
abstract syntax directly defines concepts from a domain. 

The successful implementation of experimental languages proves the 
viability of YAJCo parser generator. That was the main reason why we 
decided to incorporate the tool in the university master course concerning 
DSL implementation and model driven software development. More than 30 
students have successfully used the YAJCo parser generator as a part of 
their projects. 

6. Related Works 

Currently there are a lot of parser generators for various programming 
languages [5][6]. Classic parser generators like JavaCC [7] generate the 
parser as a single huge class ignoring the concept of composition of language 
concepts and concentrating on the concrete syntax of a language. These 
tools are still greatly inspired by procedural nature of YACC-like tools. The 
concrete syntax is specified in DSL of parser generator. It is usually a 
language for writing the context free grammar enriched with constructs for 
language semantics definition. During language development the developer is 
often dealing with the type of parsing algorithm which is supported by 
selected parser generator (e. g. LL, LR, LALR) and his decisions are forced 
by the type of grammar supported by the tool. Even JJTree, a tool provided by 
JavaCC for generating the abstract syntax tree from the textual 
representation, is still driven by the point of view of concrete syntax grammar 
rather than abstract syntax language concept. Consequently, changes made 
to grammar must be also reflected in the representation of abstract syntax 
nodes in programming languages. The semi-automatic refactoring of 
generator’s DSL is still missing. 

On the other side, there is a notable growth in the field of language 
workbenches [13] on the market. MDSD [14] tools like Microsoft Visual Studio 
DSL Tools (software factories representative [15]) are being incorporated into 
the programming IDEs. The primary orientation of these tools is graphical 
notation of computer languages. However, the special support for textual 
language notation is not provided.  

Authors in [16] propose another approach to mapping from abstract syntax 
to concrete and back. Their solution is based on complex language rather 
than concrete syntax patterns. 
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7. Conclusion 

In the paper we have presented solution for generating parsers for textual 
languages. The language itself is specified by a set of annotated classes. 
Annotations extend the classes with additional information required for 
specification of concrete syntax, for example keywords and operator 
notations. The developer can start with the definition of abstract syntax and 
continue with creation of language in incremental way using the standard 
refactoring tools. In proposed solution there is only one form of definition of 
abstract syntax graph nodes – by the classes. The grammar is derived 
directly from the source code of annotated domain classes. Even the 
examples are written in object-oriented programming language Java our 
solution is not strictly connected to Java language and can be easily ported to 
any other object-oriented language supporting the attribute-oriented 
programming. We believe that our solution can simplify the development of 
textual software languages. 
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