
DOI: 10.2298/CSIS110112010P

UML Profile for Specifying User Interfaces of
Business Applications

Branko Perišić, Gordana Milosavljević, Igor Dejanović,
and Branko Milosavljević

University of Novi Sad
Faculty of Technical Sciences

{perisic,grist,igord,mbranko}@uns.ac.rs

Abstract. This paper presents an approach to automatic user interface
code generation that is based on our own HCI standard that defines layout
and behaviour of coarse-grained objects for enterprise business applica-
tions. A domain-specific language (in the form of a UML profile) based on
the concepts introduced by the HCI standard facilitates efficient modeling
and generation of fully-functional UIs. Being a regular UML extension, this
language can be used in any general-purpose UML modelling tool and
can easily be integrated with other UML-based models of the application.

Key words: user interface, code generation, MDA, UML profile

1. Introduction

Various aspects of model-based development of user interfaces (UIs) are the
subject of intensive research efforts. However, the majority of presented so-
lutions is hardly applicable to development of real-world information systems
because too much time and effort is spent on developing and synchronising
different types of user interface models (for example, presentation model, con-
tent model, navigation model, interaction model), the complexity of sharing the
knowledge embedded in different models, the lack of support in development
tools, and the lack of consensus over which types of models best describe UIs
[23].

Most tools for modelling user interfaces use its own set of notations, thus
impeding the integration with other application models [26]. This is especially
the problem in developing business applications that require tight integration of
UI models with models that specify business logic.

In order to overcome the problem of integration and to facilitate the exchange
of information among different tools, UML can be used to model all aspects of
an application, including the user interface [3]. Although very powerful, UML
without extensions is not suitable for modelling UIs [26, 3, 19].

This paper presents a UML extension in the form of a UML profile for specify-
ing UIs of business applications named EUIS (Enterprise User Interface Speci-
fication profile). EUIS is developed in order to enable rapid user interface mod-

B. Perišić et al.

elling at a high level of abstraction. EUIS is based on our own HCI (human-
computer interaction) standard of a business application that defines functional
and presentational features of coarse-grained building blocks thus enabling the
generation of a fully functional UI, without the need for defining a multitude of
models used for developing UIs in the general case.

It is important to note that the UI model is not a model of an application
(from the implementation standpoint); it defines the structure of the applica-
tion using building blocks at a high abstraction level (different types of screen
forms, reports, procedures) and their relationships. Depending on the develop-
ment platform, the intended application architecture, and the implementation
of a code generator, one class from the UI model may be mapped to one or
more classes or modules of an application, or may even be not mapped to the
program code at all but to application repository data instead, if a data-driven
application architecture is used (for example, see [13, 14]).

Generated

PSM

PIM

Application elements
meta-data

Problem domain model

Application repository

User interface model

Middleware

Middleware /
Business logic

model

Database scripts

Database model

User interface

«import»

Fig. 1. Model transformations

The development of a whole business application using the EUIS profile
comprises the following activities (see Figure 1):

– The development of PIM (platform independent model) of a problem domain
by means of class diagrams in a general-purpose UML modelling tool.

– The automatic transformation of a PIM to PSMs (platform-specific model):
database schema model, user interface model, and the middle-tier model
(in the case a three-tier architecture is chosen).

– Automatic generation of artifacts needed for implementation based on PSMs:
database schema creation or alteration scripts, middle-tier implementation
artifacts (such as EJBs), fully functional application UI (depending on the
target architecture of the client application), and atomic “CRUD” transac-
tions implementing creation, retrieval, update, and deletion for every entity
in the persistence layer.

406 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

The rest of the paper is structured as follows. Section 2 describes the basics
of the HCI standard. Section 3 presents the EUIS profile. Section 4 reviews the
related work. The last section concludes the paper.

2. The HCI Standard

Our human-computer interaction (HCI) standard is aimed at defining functional
and visual features of course-grained application components. Its goals include
the following: simplicity of use, quick user training, and the automation of user
interface construction.

The papers [16, 17] define a number of types of screen forms. For this dis-
cussion, the following types are relevant:

– standard data management form,
– standard panel,
– parent-child form, and
– many-to-many form.

Standard form is designed to display data and all available operations so
the user can choose a data item and invoke an operation on it without memoris-
ing commands (the object-action approach [24]). Standard operations common
to all entities are represented by buttons/icons at the top of the form, while spe-
cific operations (if they exist) are represented by links/buttons at the right hand
side. The standard form layout is presented in Figure 2.

Form header

Data display area

Specific operations and next forms

Standard operations toolbar

…

Title

Fig. 2. Standard form layout

Operations common to all entities include search (query by form), display,
addition, update, removal, copying, data navigation and view mode toggle (grid
view or single record view). Specific operations include complex data process-
ing procedures associated with the given entity (transactions), invocation of re-
lated (next) screen forms, and invocation of reports. The standard mandates
that the specific operations always use the currently selected (viewed) record.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 407

B. Perišić et al.

Standard panel has the appearance and the behaviour of the standard form
but, instead being shown in its own window, it is used as an element of a com-
plex form. Standard panels are regularly used for parent-child and many-to-
many forms.

A parent-child form is used for data that have hierarchical structure, where
each element in the hierarchy is modelled as an entity in the persistence layer.
Each element in the hierarchy is represented by a standard panel, where a
panel at the n-th hierarchy level filters its content according to the selected data
item at the level n− 1.

The many-to-many form is used for intensive management of data belong-
ing to entities connected by “many-to-many” relationships, with or without asso-
ciate classes. Its layout is presented in Figure 3. This screen form is used as
follows:

– A number of desired records are selected in the upper panel. These records
are “dragged” to the lower panel by clicking the button with the downwards
arrow. If a record is dragged by mistake, it can be revoked back by clicking
the upwards arrow button.

– The values of non-key attributes of a record selected in the lower panel may
be changed.

Form header

Panel for choosing records

Title

Buttons for specific operations

Downwards arrow and
 upwards arrow buttons

Panel for chosen records

Fig. 3. Many-to-many form layout

Relationships among screen forms are represented by three mechanisms:
zoom, next, and activate. The zoom mechanism represents the invocation of
the form associated with the given entity where the user can choose a data
item and “drag” it (pick its values) to the fields of the previously viewed form.

The next mechanism, invoked from the form associated with the current
entity, displays the form associated with the child entity with its data filtered so
that only connected objects are displayed. The key or a representation of the
parent entity is displayed in the form header, so the user easily recognises the
current context. A next can be invoked by menu items, buttons, or links.

408 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

The activate mechanism enables direct invocation of a form by another
form, without restrictions on the data displayed. The invoked form does not
need to be related to the current one.

3. The EUIS Profile

The EUIS profile extends the following metaclasses from the UML::Kernel pack-
age: Element, Class, Property, Operation, Parameter, Constraint, and Package.
It is complementary to the profile for modelling persistent data that is available
in a majority of modelling tools (see Figure 4). Therefore, EUIS is independent
on modelling tools, persistence layer and the database of choice. Profile that
models persistent data comprises only the stereotypes present in the majority
of modelling tools (possibly under a different name): persistent class, persistent
property, persistent data type, and persistent operations (methods implemented
in the persistence layer) – see Figure 5. When using the EUIS profile, these
stereotypes are replaced with concrete stereotypes of the chosen modelling
tool.

PersistenceProfile

EUISProfile

Kernel

«import»

«import»

Fig. 4. Profile structure

identifier : Boolean [0..1] = false
unique : Boolean [0..1] = false
identity : Boolean [0..1] = false
nullable : Boolean [0..1] = true

«stereotype»

PersistentProperty
«stereotype»

PersistentOperation

length : Integer [0..1]
precision : Integer [0..1]

«stereotype»

PersistentDataType

«stereotype»

PersistentClass

«metaclass»

Class

«metaclass»

DataType

«metaclass»

Property

«metaclass»

Operation

*

persistentDataType 1

Fig. 5. Persistence profile

In order to specify additional information needed for transforming a problem
domain model to a user interface model, another profile is developed (see Fig-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 409

B. Perišić et al.

ure 6) that provides the following: defining a set of one or more properties as a
business key – the BusinessKey stereotype [4], designation of a method as a
complex business procedure – the Transaction stereotype, and the designation
of a method as a report – the Report stereotype.

«stereotype»

BusinessOperation
«stereotype»

BusinessKey

«stereotype»

Transaction

«stereotype»

Report

«metaclass»

Property

«metaclass»

Operation

Fig. 6. Profile used in the problem domain model

Stereotypes and enumerated types of the EUIS profile are organised in the
following categories:

– a visible element: extension of Element metaclass
– visible classes (panels): extensions of Class metaclass
– visible properties: extensions of Property metaclass
– visible methods: extensions of Operation metaclass
– visible parameter: extension of Parameter metaclass
– a group of elements: extension of Property metaclass
– visible association ends: extensions of Property metaclass
– validators: extension of Constraint metaclass
– a business subsystem: extension of Package metaclass

Due to space constraints, the rest of the section presents only the most
important stereotypes and tags. Formal OCL constraints are not presented.

3.1. Visible Elements

Stereotype VisibleElement (see Figure 7) represents a model element that is
mapped to a user interface element in the generated application. Since Element
metaclass is a common superclass of all UML metaclasses, this facilitates the
representation of all model elements with an UI component and a label, where
applicable.

The enumerated type ComponentType defines a set of available UI com-
ponent types. The set of components is designed to be platform-independent.
Mapping these values to particular UI components of the chosen development
platform is performed in the application generator.

410 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

passwordField

selectionList

tabbedPane

radioButton

comboBox
checkBox

menuItem

textArea

textField

column

border

button

image

panel

menu

label

grid

«enumeration»

ComponentType

label : String [0..1]
visible : Boolean [1] = true
component : ComponentType [0..1]

«stereotype»

VisibleElement

«metaclass»

Element

Fig. 7. Visible element

3.2. Visible Classes

Stereotype VisibleClass (see Figure 8) represents a class that is mapped to a
panel (a regular or a tabulated panel) in the application UI. If a panel is associ-
ated to an empty window or a web page, it becomes a screen form that can be
independently activated (opened).

Stereotype VisibleClass is not abstract because of the possibility of mod-
elling specific panels that are not comprised by the HCI standard, but still occur
rarely enough that there is no need to extend the HCI standard with a new
element.

defaultOperationMode : OperationMode [1] = viewMode
defaultViewMode : ViewMode [1] = tableView
confirmDelete : Boolean = true
stayInAddMode : Boolean = true
goToLastAdded : Boolean = true

StdPanelSettings

add : Boolean [1] = true
update : Boolean [1] = true
copy : Boolean [1] = true
delete : Boolean [1] = true
search : Boolean [1] = true
changeMode : Boolean [1] = true
dataNavigation : Boolean [1] = true

StandardOperations

modal : Boolean [1] = true

«stereotype»

VisibleClass

dataFilter : String [0..1]

DataSettingsStandardOperations

searchMode

updateMode
copyMode

viewMode

addMode

«enumeration»

OperationMode

«stereotype»

ParameterPanel

StdPanelSettings

«stereotype»

ContainerPanel

«stereotype»

PersistentClass

«stereotype»

VisibleProperty

inputPanelView
tableView

«enumeration»

ViewMode

«stereotype»

VisibleElement

«stereotype»

StandardPanel

«stereotype»

MainPanel

«stereotype»

ParentChild

«stereotype»

PanelGroup

«stereotype»

ManyToMany

«metaclass»

Class

DataSettings

{incomplete, disjoint}

PanelType

{incomplete, disjoint}

ContainerKind

persistentClass 1

*

sortBy *

Fig. 8. Visible classes

ComSIS Vol. 8, No. 2, Special Issue, May 2011 411

B. Perišić et al.

The inherited tag label is used as a window title or a label that explains the
purpose of the panel if displayed within a complex panel.

Stereotype StandardPanel denotes that the given persistent class is asso-
ciated with a standard panel whose layout and behaviour are defined by the
HCI standard. The standard panel implements three interfaces: StandardOp-
erations – operations defined by the HCI standard: add, update, copy, delete,
search, change mode, navigate data; StdPanelSettings – settings that define
panel’s runtime behaviour; and DataSettings – defines data filtering and sort-
ing.

Stereotype ParameterPanel represents a class that is mapped to a panel
for entering parameters for a visible method (see VisibleOperation stereotype)
that is invoked by a button or a menu item. Since the majority of parameter
panels in an application is created implicitly, as a result of a visible method
and its parameters, classes with this stereotype rarely occur. It can be used
in situations where a user successively invokes a number of methods with the
same set of parameter values.

The ContainerPanel is an abstract stereotype that represents a complex
panel that can contain other panels (simple or complex), as well as a number
of properties and methods. It defines additional attributes, methods, and con-
straints for its descendants (ParentChild, ManyToMany, and PanelGroup). The
layout and behaviour of ParentChild and ManyToMany panels is defined by the
HCI standard, while their relationship to the contained panels is defined by hier-
archical relationships (associations with ends having the Hierarchy stereotype).
For details on associating panels, see section 3.7.

The layout and behaviour of a PanelGroup is not defined by the HCI stan-
dard. It is used for modelling special-purpose complex panels. The class with
a PanelGroup stereotype defines only the contained elements, while their rela-
tionship is implemented in application code.

Classes with the MainPanel stereotype are used for modelling the main form
of a business subsystem (see section 3.9).

3.3. Visible Properties

Stereotype VisibleProperty (see Figure 9) is a property of a “visible” class and
is mapped to a UI component contained in the panel associated to the class. Its
tags provide customisation of appearance and behaviour of the UI component,
or the table column in the case of tabular display of data (label, columnLabel,
dataFormat, disabled), default values in the UI component (default, defaultVal-
ueGetter), and automatic focus traversal (autoGo). Tag default contains an OCL
expression that defines the initial value, while defaultValueGetter contains the
reference to the method used for fetching the default value (in cases when OCL
expression cannot be used). Tag representative indicates that the given prop-
erty can be used to represent the whole class from the users’ point of view (for
example, company name, first name + ” ” + last name).

Aggregated represents an aggregated property, whose value is calculated
using one of the aggregation functions (min, max, sum, avg, count) over the

412 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

columnLabel : String [0..1]
displayFormat : String [0..1]
representative : Boolean [1] = false
autoGo : Boolean [1] = false
disabled : Boolean [1] = false
default : String [0..1]

«stereotype»

VisibleProperty

function : AggregateFunction [1]
selection : String [0..1]

«stereotype»

Aggregated

incrementSpec : String [0..1]

«stereotype»

AutoIncrement

+modal : Boolean [1] = true

«stereotype»

VisibleClass

expression : String [0..1]

«stereotype»

Calculated

«stereotype»

PersistentProperty

«stereotype»

PersistentProperty

count

max
sum
avg

min

«enumeration»

AggregateFunction

«stereotype»

VisibleElement

«stereotype»

AutoDuplicate

«stereotype»

Editable

«stereotype»

Persistent

«stereotype»

ReadOnly
«stereotype»

Lookup

«metaclass»

Operation

«metaclass»

Operation

«metaclass»

Property

«metaclass»

Operation

{incomplete, disjoint}

PropertyType

{incomplete, disjoint}

PersistentType

defaultValueGetter

0..1*

performsCalculation

0..1

performsAggregation

0..1

aggregatingAttribute
1

persistentProperty 1

*

lookupClass 0..1

performsIncrement

0..1

Fig. 9. Visible properties

selected property (aggregatingAttribute). The set of values being aggregated is
specified by an OCL expression (selection) or by a method (performsSelection).

Stereotype Calculated represents a property whose value is calculated ac-
cording to the given formula over the values in objects of this or some other
class. Calculation method can be specified by an OCL expression (expression)
or by a method (performsCalculation).

Abstract stereotype Persistent represents a property that is mapped to a
persistent property in the problem domain model. Its descendants include Ed-
itable (enables editing the value of the persistent property in the UI component)
and ReadOnly (disables editing). Editing values is allowed if the user has ap-
propriate permissions.

Editable has an AutoDuplicate descendant that represents a persistent prop-
erty where the value entered in the UI component is kept as default when enter-
ing a new record. It is usually applied to properties whose values are repeated
across many records, so the user is spared some effort while entering data.

ReadOnly has an AutoIncrement descendant that denotes a persistent prop-
erty whose value is automatically incremented with each new record entered.
Contrary to identity columns or database sequences, this property allows the
counter value to be reset if a condition is met (using an OCL expression in
incrementSpec or a method in performsIncrement).

Stereotype Lookup describes a property whose value is formed from prop-
erty values of referenced objects, directly or indirectly. Direct reference means
that there is an association with the class that provides the data; indirect ref-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 413

B. Perišić et al.

erence means that such class can be reached by traversing a series of asso-
ciations. Properties forming a lookup can be specified as an OCL expression
(expression) or by specifying the class that provides the data. In the latter case,
the representative property of that class is used.

3.4. Visible Parameters

displayFormat : String [0..1]
valueSpecification : String [0..1]
disabled : Boolean [1] = false

«stereotype»

VisibleParameter
«stereotype»

PersistentDataType

«stereotype»

VisibleElement

«metaclass»

Operation

«metaclass»

Parameter

persistentDataType 0..1

valueGetter

0..1

Fig. 10. Visible parameters

Stereotype VisibleParameter (see Figure 10) denotes a parameter of a visi-
ble method (having the VisibleOperation stereotype) that behaves as follows. If
it is an input or an input/output parameter, then

– it enables entering parameter values by means of a UI component con-
tained in the parameter panel associated with a visible method, or

– it defines the way of fetching the parameter values in the case when the
user is not supposed to enter its value (using tag valueSpec contains an
OCL expression that calculates the value, or tag valueGetter that specifies
the method for calculating the value).

If it is an output parameter or a method result, it enables the display of its value
by means of a UI component contained in the parameter panel associated with
a visible method.

3.5. Groups of Elements

Stereotype ElementsGroup (see Figure 11) represents an attribute of a class
with the VisibleClass stereotype used for grouping its elements (properties,
methods, associations), thus forming semantic groups that map to groups of
UI components in a panel associated with the class. Each group can define the
following: an ordered collection of contained elements (tag element), the UI el-
ement orientation in layout (orientation), the location of the group in the panel
(location), and the alignment of elements in the group (alignment).

The inherited tag label represents a label displayed in a UI component asso-
ciated with the group (frame title, panel title, name of the menu item that opens
a submenu).

414 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

orientation : GroupOrientation [1]
location : GroupLocation [0..1]
alignment : GroupAlignment [0..1]

«stereotype»

ElementsGroup

componentPanel

operationPanel

nextSubmenu
mainMenu

header

toolbar

«enumeration»

GroupLocation

ownerOrientation
horizontal
vertical
area

«enumeration»

GroupOrientation

center

justify
right

left

«enumeration»

GroupAlignment
«stereotype»

VisibleElement

«metaclass»

Property

{ordered}

element

1..*

Fig. 11. Groups of elements

3.6. Visible Methods

hasParametersForm : Boolean [1] = true
filteredByKey : Boolean [1] = true

«stereotype»

BusinessOperation

refreshRow : Boolean [0..1] = true
refreshAll : Boolean [0..1] = false
askConfirmation : Boolean [1] = true
confirmationMessage : String [0..1]
showErrors : Boolean [1] = true

«stereotype»

Transaction

logErrors : Boolean [1] = true

«stereotype»

VisibleOperation

reportName : String [1]
dataFilter : String [0..1]
sortBy : String [0..1]

«stereotype»

Report

«stereotype»

PersistentOperation

«stereotype»

VisibleElement

«stereotype»

VisibleClass

«metaclass»

Operation

{incomplete, disjoint}

OperationType

refreshPanel

*

activateForm

0..1

importedOperation

0..1*persistentOperation 0..1

*

Fig. 12. Visible methods

Stereotype VisibleOperation (see Figure 12) denotes the method of a visible
class that has an associated UI component (a button or a menu item) that en-
ables its invocation by the user. If the method has input parameters, they must
have the VisibleParameter stereotype (see section 3.4).

Abstract stereotype BusinessOperation represents a method that is mapped
to an activity in the problem domain. Its descendants are Report and Transac-
tion. Report describes a method that invokes a report created by one of the
reporting tools. Report ’s tags enable specifying the report name, and the filter-
ing and sorting criteria. Transaction represents a complex business transaction

ComSIS Vol. 8, No. 2, Special Issue, May 2011 415

B. Perišić et al.

that is implemented as a stored procedure in the database or a method in a
middle tier. Its tags enable specifying the UI behaviour immediately before and
after its invocation (requesting the confirmation from the user, display refresh
mode, error display mode, etc).

3.7. Visible Association Ends

autoActivate : Boolean [1] = false
displayIdentifier : Boolean [1] = true
displayRepresentative : Boolean [1] = true

«stereotype»

Next

comboZoom : Boolean [1] = false

«stereotype»

Zoom

«stereotype»

VisibleAssociationEnd

PanelAdjustment

StandardOperations

«stereotype»

BussinesOperation

PanelAdjustment

StdPanelSettings «stereotype»

VisibleProperty

«stereotype»

ElementsGroup

«stereotype»

VisibleElement

«stereotype»

StandardPanel

«stereotype»

GroupElement

level : Integer [1]

«stereotype»

Hierarchy

«metaclass»

Property

«metaclass»

Property

DataSettings

«stereotype»

Activate

{incomplete, disjoint}

AssociationEndType

appliedToPanel 0..1

hiddenOperation
*

disabledProperty

*

hiddenGroup *

hiddenProperty

*

viaAssociationEnd
0..1

Fig. 13. Visible association ends

Abstract stereotype VisibleAssociationEnd (see Figure 13) is applied to a
property belonging to a binary association between two visible classes. It de-
fines the relationship between the panel belonging to the class that owns the
property (activation panel) and the panel belonging to the class at the other end
(destination panel). The nature of the relationship is determined by this stereo-
type’s descendants. VisibleAssociationEnd only introduces common properties
and constraints that enable destination panel to adjust its layout and behaviour
to the context it is used in. For this purpose, VisibleAssociationEnd implements
the following interfaces: StandardOperations, DataSettings, StdPanelSettings,
and PanelAdjustment. Tag values specified by PanelAdjustment can be set for
all types of panels (VisibleClass and its descendants), while tag values spec-
ified by StandardOperations, DataSettings, and StdPanelSettings can be ap-
plied to standard panels only (stereotype StandardPanel, see section 3.2).

If tag values are not defined at the association end, values defined at the
standard panel are used. If values of tags add, update, copy, delete, search,
and changeMode are set to false in the standard panel, the value set at the
association end is ignored. This helps adhering to rules that are usually conse-
quences of problem domain constraints independent of the usage context.

416 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

Stereotypes Zoom, Next, and Activation model the corresponding type of
activation as defined by the HCI standard. Stereotype Hierarchy denotes that
the destination panel has the role of an element in the parent-child or many-to-
many panel. Role of the destination panel is set by the value of the level tag.
For many-to-many complex panels, level = 1 is the panel that represents the
header, level = 2 is the panel for choosing data, and level = 3 is the panel
that contains the transferred data (for example, see class PickAuthors in Figure
17). For parent-child complex panels, level = 1 is the standard panel being the
root of the tree, level = 2 is the child panel, level = 3 is the child of the child
panel, and so forth: for n > 2, level = n is a panel that is the child for panel at
level = n− 1 (for example, see class JournalPaperComposite in Figure 17).

Composing parent-child and many-to-many complex panels requires defin-
ing only levels of hierarchy for each contained panel; runtime association of
panels is performed by analysing their associations. If two or more associations
exist between two panels, or there is a recursive association, association end
to be used must be explicitly stated in the viaAssociationEnd tag.

Stereotype GroupElement denotes that the destination panel is an element
of a complex panel, where its role and behaviour are defined in the application
code and/or using values of tags inherited from VisibleAssociationEnd.

3.8. Validator

activation : Activation [1]
onEvent : ValidationEvent [1]
message : String [1]

«stereotype»

Validator

lostFocus
getFocus

execute

destroy

change

create

show
hide

«enumeration»

ValidationEvent
«metaclass»

Operation

«metaclass»

Constraint
before
after

«enumeration»

Activation

performsValidation

0..1

Fig. 14. Validator

Stereotype Validator (see Figure 14) is used to model constraints imposed
by problem domain rules. Constraints are defined either as OCL expressions
(tag specification), or as methods (performsValidation). The activation tag spec-
ifies whether the validation should be performed before or after the occurence
of the selected event (onEvent). Tag message contains a human-readable mes-
sage displayed in the case the constraint is not met.

3.9. Subsystem

Stereotype BusinessSubsystem (see Figure 15) represents an extension of the
Package metaclass used for defining business subsystems. Every business

ComSIS Vol. 8, No. 2, Special Issue, May 2011 417

B. Perišić et al.

«stereotype»

BusinessSubsystem

«stereotype»

VisibleElement

«stereotype»

MainPanel

«metaclass»

Package

subsystemForm

0..11

Fig. 15. Business subsystem

subsystem can have a main form that contains a menu structure for the given
subsystem.

3.10. Example

Figure 16 presents a domain model of a part of a CERIF-compliant research
management system presented in [17]. All classes and attributes in this model
are persistent, but their stereotypes are not displayed for the sake of brevity.

text : String
trans : TranslationType

MultiLangContent

startPage : int
endPage : int
totalPages : int
volume : String
number : String
year : int
uri : String

JournalPaper

birthYear : int
institution : String
title : String
vocation : String
sex : Sex
uri : String

Person

ResearchInterest

firstName : String
lastName : String
otherNames : String

PersonName

PersonKeywords

machineTranslation
humanTranslation
original

«enumeration»

TranslationType

PaperKeywordsPaperAbstractPaperSubtitle

female
male

«enumeration»

Sex

order : int

PaperAuthor

name : String
code : String

Language

PaperNotePaperTitle

-subtitles 0..*

-keywords 0..*

-notes 0..*-titles 1..*

-lang

10..*

-authored

0..*

-author

1

-interests 0..*

-paper 1

-authoredBy

0..*

-otherFormatNames 0..*

-name

1

-keywords 0..*-abstracts 0..*

Fig. 16. A domain model of a part of CERIF-compatible system

The problem domain model in Figure 16 is automatically transformed into
the UI model presented in Figure 17. Persistent classes from the domain model
were mapped to UI classes with StandardPanel stereotype, persistent proper-
ties to UI properties with Editable stereotype, association ends with cardinality
0..* to UI association ends with Next stereotype, and association ends with car-

418 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

dinality 0..1 or 1 to UI association ends with Zoom stereotype. This was an initial
version of the UI model.

The application developer manually changed this version to meet the users’
requirements. The diagram in Figure 17 shows manually added classes Pick-
Authors (a many-to-many form for choosing paper authors) and JournalPaper-
Composite (a parent-child form for managing journal papers) with correspond-
ing associations. Properties with Lookup and ElementsGroup stereotypes in all
classes are also manually added.

«Editable»institution : String
«Editable»birthYear : int
«Editable»title : String
«Editable»vocation : String
«Editable»sex : Sex
«Editable»uri : String
«ElementsGroup»connections

«StandardPanel»

Person

«Lookup»journalTitle : String
«Editable»volume : String
«Editable»number : String
«Editable»year : int
«Lookup»authors : String
«Editable»startPage : int
«Editable»endPage : int
«Editable»totalPages : int
«Editable»uri : String
«ElementsGroup»connections

«StandardPanel»

JournalPaper

«Editable»text : String
«Editable»trans : TranslationType

«StandardPanel»

MultiLangContent

«Editable»firstName : String
«Editable»lastName : String
«Editable»otherNames : String

«StandardPanel»

PersonName order : int
«Lookup»personName : String
«Lookup»paperTitle : String

«StandardPanel»

PaperAuthor

«ElementsGroup»panels

«ParentChild»

JournalPaperComposite

«ElementsGroup»panels

«ManyToMany»

PickAuthors

«Editable»name : String
«Editable»code : String

«StandardPanel»

Language

«StandardPanel»

ResearchInterest

«StandardPanel»

PersonKeywords

machineTranslation
humanTranslation
original

«enumeration»

TranslationType

«StandardPanel»

PaperKeywords

«StandardPanel»

PaperNote

«StandardPanel»

PaperSubtitle

«StandardPanel»

PaperTitle

«StandardPanel»

PaperAbstract

female
male

«enumeration»

Sex

«Hierarchy»

{level = 1 }

1..*titles

«Hierarchy»

{level = 1 }

«Next»

pickAuthors

«Next»

keywords 0..*

«Zoom»

paper 1

authoredBy

0..*

«Zoom»

1

lang

0..*

papers«Zoom»

author

1

«Next»

0..*

«Next»

otherFormatNames0..*

«Hierarchy» {level = 3 }

«Hierarchy»

{level = 2 }

name 1

1

«Hierarchy»

{level = 2 }
«Next»

interests 0..*

«Next»

notes 0..*

«Next»

keywords 0..*

«Next»

subtitles 0..*

«Next»

abstracts 0..*

«Activate»

Fig. 17. A UI model of a part of CERIF-compatible system

An example of a web-based form generated for JournalPaperComposite is
presented in Figure 18.

4. Related Work

In order to compare the EUIS profile with other profiles presented in the litera-
ture, this section reviews recent papers ranging in subject from modelling user
interfaces of business applications to complete methodologies and tools for in-
formation system development, including its presentation aspects. Papers that
deal with developing user interfaces in general are not discussed here.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 419

B. Perišić et al.

Fig. 18. Managing journal papers data

The papers [21, 22], like this paper, propose the use of the problem domain
model as a starting point that is transformed into a model of the user interface.
The approach to modelling of application views based on the available classes
(various complex panels, navigation among them) is also similar. However, [21,
22] introduces more transformation levels in order to achieve portability across
different implementation platforms while not restricting to a particular fixed set
of components (we deal with portability as well, but with a limited set of com-
ponents). Besides, [21, 22] require the development of an information retrieval
model in order to implement fetching of data used in the user interface, while
we opt for implicit mapping of the user interface model to the persistence layer
(the cases where implicit mapping is insufficient are defined by OCL constraints
or an associated method). The authors in [21, 22] only plan the development of
a tool prototype that will provide transformations of models and the application
generation, while their approach is tested by manual application of transforma-
tion rules.

The papers [10, 5] present a way of automatic user interface generation
based on the following: a business logic model (UML activity diagrams) and
a user interface model (UML class diagrams). An activity diagram is supplied
with elements of the UML profile for defining system and user actions with the
specified inputs and outputs, while the class diagram that is produced from the
activity diagram is supplied with elements of the UML profile for user interface
specification (e.g., ContainerElement, GuiElement, ActionElement). The profile
does not support modelling the relationships between forms (navigation is omit-
ted). Furthermore, obtaining classes that provide management of data from the
problem domain model is not specified, although their presence is assumed

420 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

(the dataProvider attribute in the ChoiceElement stereotype, and the method-
URL attribute in the ActionElement stereotype).

In [23], the authors propose the use of patterns for accelerating the user
interface development. Those patterns are at a higher abstraction level and may
be used in task models, presentation models, and component layout models.
This paper also proposes the use of a number of tools that guide the designer
in the choice and the application of patterns during modelling, assist in model
synchronisation, and generate the user interface.

Compared to elements of the standard presented in Section 2, the patterns
used in [23] represent finer-grained application components. The paper [23]
does not specify neither the relationship between the problem domain model
and the user interface model, nor if there is a mapping of the generated user
interface to the data persistence layer (whether the generated user interface is
immediately testable in the real users’ environment).

The paper [27] presents a method for developing web-based information
systems based on problem domain models, applications and navigations that
are directly mapped to existing development frameworks. The mapping is pro-
vided by the UML profile named FrameWeb whose stereotypes correspond with
the categories of the framework used, so that the development team can de-
liver the implementation in a straightforward way (the implementation is manual,
there are no code generators used). The majority of stereotypes in the pre-
sented UML profile are aimed at the development of the problem domain model
and its mapping to the persistence layer, while support for specifying the user
interface is relatively modest (there are only four stereotypes that specify the
type of the web page).

The series of papers [2, 8, 7, 18] presents a methodology for developing
web-based information systems UWE (UML-based Web Engineering) that uses
a UML profile for modelling hypermedia and the ArgoUWE tool that provides
for definition of different application models, their transformation, and semi-
automatic code generation. The UML profile provides for the creation of nav-
igation models, navigation structure models, and presentation models. A navi-
gation model is a class diagram that is extracted as a problem domain model
subgraph and defines which web pages assigned to problem domain model
classes are linked (associations among problem domain model classes are the
link candidates). A navigation structure model is a consequence of the navi-
gation model and defines the nature of links and additional elements needed
to specify navigation (menus, indices, navigational contexts). The presentation
model is a composition diagram that provides for sketching the layout of appli-
cation elements although these sketches are not obligatory – the user interface
layout is finalised during implementation.

The concept of modelling an application in UWE methodology is the closest
to the proposition in this paper – in both cases, the starting point is the problem
domain model expressed as a class diagram that is automatically mapped to
the application model, data model, and other models needed. Thanks to this
approach, there is a direct mapping of application elements to the layer that

ComSIS Vol. 8, No. 2, Special Issue, May 2011 421

B. Perišić et al.

implements business logic, a feature missing in the majority of reviewed solu-
tions. The most notable differences between UWE and EUIS approaches are
the following:

– The UWE methodology and profile are focused solely on developing web-
based systems, while the methods presented here can be applied to both
web and “classical” information systems.

– The UWE method does not rely on an HCI standard (there is only one type
of forms).

– Our approach proposes a single user interface model that defines coarse-
grained application building elements, their structure and layout (using the
ElementsGroup stereotype), and navigation among them. Sketches of forms
need not be made thanks to the mechanism for intelligent component layout
that forms a usable user interface according to rules and groups, and which
can be further adapted during implementation.

Although not based on a UML profile, the concept of specifying GUI forms
and generating the database schema and the functional prototype of the ap-
plication using the IIS*Case tool [20, 11, 6] is similar to the solution presented
here, apart from the order in which artifacts are implemented. Using IIS*Case,
the modelling starts with specifying form types, while database schema and
the prototype application are generated. Here we start with the model of the
problem domain, that is used to generate the user interface model, database
schema model, and the middle-tier model (in the case of three-tier architec-
tures). After manual changes applied to these automatically obtained models,
the application is generated.

Our previously implemented tools for generating UIs of business applica-
tions for various platforms are presented in [12–16, 9]. All tools are based on
the HCI standard presented in Section 2, but the difference is that UI model
was not generated from the domain model, but was kept as metadata in the
application repository. Metadata was further customised by the Form Genera-
tor tool, which utilised this information to generate source code. Metadata in the
application repository, although stored in the database or an XML file and edited
by a special-purpose tool, can be considered to be a DSL (domain specific lan-
guage) for the description of UIs. The UI model enriched with EUIS stereotypes
is based on the same metadata, but this UML-based form is more suitable for
team work of experts from different fields (developers, UI design specialists,
problem domain specialists, users) during application development.

5. Conclusions

Automatic generation of UIs in the general case requires development of a num-
ber of UI models and thus needs much time and effort, often with unsatisfactory
results. Synchronisation and integration among different models, is another big
problem, especially in developing business applications that require tight inte-
gration of UI models with models that specify business logic.

422 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

In order to overcome the problem of integration and to facilitate the exchange
of information among different tools, UML was used to model all aspects of an
application. This paper presented EUIS profile, an UML profile for specifying UIs
of business applications. Being a regular UML extension, this language can be
used in any general-purpose UML modelling tool and can easily be integrated
with other UML-based models of the application.

EUIS profile is based on our HCI standard of a business application that de-
fines functional and presentational features of coarse-grained building blocks.
Relying on this standard has enabled the rapid development of UIs for this par-
ticular type of applications at a high abstraction level, without need to develop
a number of different UI models. Automatic transformation from domain to UI
model additionally speed up this process.

Our previous tools developed to support the presented concepts [12–16, 9]
are used for the implementation of more than 70 projects of business informa-
tion systems by several different development teams. The percentage of the
generated code in the overall code base (database, middle tier, UI) ranged from
81.8% to 98.2%, depending on the type of application.

The code generation tool that relies on the presented EUIS profile is imple-
mented as a MagicDraw plugin. Although this tool is still in development, initial
results show that the percentage of the generated code will increase when all
elements are implemented. The current version does not support parsing OCL
constraints. Since we have already implemented a dynamic general-purpose
parser Arpeggio [1], the support for OCL expressions is soon to be finalised.

Acknowledgments. Research presented in this paper was supported by Ministry of
Science and Technological Development of Republic of Serbia, Grant III-44010, Title:
Intelligent Systems for Software Product Development and Business Support based on
Models.

References

1. Arpeggio Parser, http://code.google.com/p/arpeggio/
2. Baumeister, H., Koch, N., Mandel, L.: Towards a UML Extension for Hypermedia

Design, In: Proceedings of The Unified Modelling Language Conference: Beyond
the Standard (UML 1999), France R. and Rumpe B., Eds, LNCS vol. 1723, pp. 614–
629, Springer Heidelberg (1999)

3. van den Bergh, J., Coninx, K.: Using UML 2.0 and Profiles for Modelling ContextSen-
sitive User Interfaces, In: Model Driven Development of Advanced User Interfaces,
Montego Bay, Jamaica (2005)

4. Dejanović, I., Milosavljević, G., Perišić, B., Tumbas, M.: A Domain-Specific Lan-
guage for Defining Static Structure of Database Applications, Computer Science
and Information Systems 7(3), (2010) (in print)

5. Funk, M., Hoyer, P., Link, S.: Model-driven Instrumentation of Graphical User In-
terfaces, In: Second International Conference on Advances in Computer-Human
Interaction, Cancun, Mexico (2009)

ComSIS Vol. 8, No. 2, Special Issue, May 2011 423

B. Perišić et al.

6. Govedarica, M., Luković, I., Mogin, P.: Generating XML Based Specifications of In-
formation Systems, Computer Science And Information Systems 1(1), pp. 117–140
(2004)

7. Knapp, A., Koch, N., Zhang, G.: Modelling the Structure of Web Applications with
ArgoUWE, LNCS vol. 3140, Springer Heidelberg (2004)

8. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering, In:
Proc. 2nd International Workshop on Web Oriented Software Technology, pp. 105–
119 (2002)

9. Komazec, S., Milosavljević, B., Konjović, Z.: XML Schema-Driven GUI Forms En-
vironment, In: 11th IASTED Intl. Conf. Software Engineering and Applications, pp.
342–348, Cambridge, MA (2007)

10. Link, S., Schuster, T., Hoyer, P., Abeck, S.: Focusing Graphical User Interfaces
in Model-Driven Software Development, In: First International Conference on Ad-
vances in Computer-Human Interaction, Saint Luce, Martinique (2008)

11. Luković, I., Mogin, P., Pavievi, J., Risti, S.: An Approach to Developing Complex
Database Schemas Using Form Types, Software: Practice and Experience 37(15),
pp. 1621-1656 (2007)

12. Milosavljević, B., Vidaković, M., Milosavljević, G.: Automatic Code Generation for
Database-Oriented Web Applications, In: Power, J., Waldron, J. (eds): Recent Ad-
vances in Java Technology: Theory, Application, Implementation. pp. 89–97, Trinity
College Dublin (2003) ISBN 0954414500

13. Milosavljević, B., Vidaković, M., Komazec, S., Milosavljević, G.: User Interface Code
Generation for EJB-Based Data Models Using Intermediate Form Representations,
In: Principles and Practice of Programming in Java, pp. 125–132, Kilkenny, Ireland
(2003)

14. Milosavljević, B., Vidaković, M., Komazec, S., Milosavljević, G.: User Interface Code
Generation for Data-Intensive Applications with EJB-Based Data Models, In: Soft-
ware Engineering Research and Practice (SERP’03), pp. 23–27, Las Vegas, NV
(2003)

15. Milosavljević, G., Perišić, B.: Really Rapid Prototyping of Large-Scale Business In-
formation Systems, In: IEEE Intl. Workshop on Rapid System Prototyping, pp. 100–
106, San Diego, CA (2003)

16. Milosavljević, G., Perišić, B.: A Method and a Tool for Rapid Prototyping of Large-
Scale Business Information Systems, Computer Science And Information Systems
2(1), pp. 57–82 (2004)

17. Milosavljević, G., Ivanović, D., Surla, D., Milosavljević, B.: Automated Construction
of the User Interface for a CERIF-Compliant Research Management System, The
Electronic Library (in print)

18. Moreno, N., Melia, S., Koch, N., Vallecillo, A.: Addresing New Concerns in Model-
Driven Web Engineering Approaches, In: Proc. Web Information Systems Engineer-
ing (WISE), LNCS vol. 5175, pp. 426–442, Springer Heidelberg (2008).

19. Paterno, F.: Towards a UML for Interactive Systems, In: Proc. Engineering for
Human-Computer Interaction, pp. 7–18, Toronto, Canada, (2001)

20. Pavićević, J., Luković, I., Mogin, P., Govedarica, M.: Information System Design And
Prototyping Using Form Types, In: International Conference on Software and Data
Technologies, pp.157–160, Setubal, Portugal (2006)

21. Schattkowsky, T., Lohmann, M.: Towards Employing UML Model Mappings for Plat-
form Independent User Interface Design, In: Model Driven Development of Ad-
vanced User Interfaces, Montego Bay, Jamaica (2005)

424 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

22. Schattkowsky, T., Lohmann, M., UML Model Mappings for Platform Independent
User Interface Design, In: MoDELS 2005 Workshops, LNCS 3844, pp. 201-209,
Springer, Heidelberg (2006)

23. Seffah, A., Gaffar, A.: Model-Based User Interface Engineering with Design Pat-
terns, Journal of Systems and Software 80(8), pp. 1408–1422 (2007)

24. Shneiderman, B.: Designing the User Interface: Strategies for Effective HumanCom-
puter Interaction, Addison-Wesley, Third Edition (1998)

25. da Silva, P.P.: User Interface Declarative Models and Development Environments:
A Survey, In: Proc. Design, Specification and Verification of Interactive Systems,
LNCS vol. 1946, pp. 207–226, Limerick, Ireland (2000)

26. da Silva, P.P., Paton, N.W.: Improving UML Support for User Interface Design: A
Metric Assessment of UMLi, In: Workshop on Bridging the Gaps Between Software
Engineering and Human-Computer Interaction at International Conference on Soft-
ware Engineering (ICSE 03), pp. 76–83, Portland, Oregon, USA (2003)

27. Estêvão Silva Souza, V., Almeida Falbo, R., Guizzardi, G.: A UML Profile for Mod-
elling Framework-based Web Information Systems, In: Workshop on Exploring
Modelling Methods for Systems Analysis and Design (EMMSAD’07), pp. 149–158,
(2007)

Branko Perišić is an associated professor at University of Novi Sad, Faculty
of Technical Sciences. He has received his engineer diploma from University of
Sarajevo, Faculty for electrical engineering, M.Sc. and PhD diplomas from Uni-
versity of Novi Sad, Faculty of Technical Sciences. He is currently a Computer
center manager and head of Software development team at Faculty of Techni-
cal Sciences. As a teaching professor he has developed and teached a variety
of Computer Engineering, Software Engineering and Information System De-
sign courses at different Universities. His major research interests are related
to Model Driven Software Development, Business Information Systems Design,
Software Configuration Management and Secure Software Design.

Gordana Milosavljević is an assistant professor at University of Novi Sad, Fac-
ulty of Technical Sciences. She teaches courses in Business Information Sys-
tems and Model Driven Software Development. Her research interests focus on
software engineering methodologies, rapid development tools and enterprise
information systems design.

Igor Dejanović received his M.Sc. (5 years, former Diploma) degree from the
Faculty of Technical Sciences in Novi Sad. He completed his Mr (2 year) de-
gree at the University of Novi Sad, Faculty of Technical Sciences. Currently,
he works as a teaching assistant at the Faculty of Technical Sciences at the
University of Novi Sad, where he assists in teaching several Computer Sci-
ence and Software Engineering courses. His research interests are related to
Domain-Specific Languages, Model-Driven Engineering and Software Configu-
ration Management.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 425

B. Perišić et al.

Branko Milosavljević is an associate professor at University of Novi Sad, Fac-
ulty of Technical Sciences. He teaches courses in Net-Centric Computing, XML
and Web Services, and Security in E-Business Systems. His research inter-
ests include information retrieval, digital libraries, document management and
information security.

Received: January 12, 2011; Accepted: May 5, 2011.

426 ComSIS Vol. 8, No. 2, Special Issue, May 2011

