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Abstract. Software code cache employed to store translated or 
optimized codes, amortizes the overhead of dynamic binary translation 
via reusing of stored-altered copies of original program instructions. 
Though many conventional code cache managements, such as Flush, 
Least-Recently Used (LRU), have been applied on some classic 
dynamic binary translators, actually they are so unsophisticated yet 
unadaptable that it not only brings additional unnecessary overhead, 
but also wastes much cache space, since there exist several noticeable 
features in software code cache, unlike pages in memory. 
Consequently, this paper presents two novel alternative cache 
schemes—SCC (Static Code Cache) and DCC (Dynamic Code Cache) 
based on working set. In these new schemes, we utilize translation rate 
to judge working set. To evaluate these new replacement policies, we 
implement them on dynamic binary translator—CrossBit with several 
commonplace code cache managements. Through the experiment 
results based on benchmark SPECint 2000, we achieve better 
performance improvement and cache space utilization ratio.  

Keywords: Code cache management, Working set, Replacement 
strategy, Code block, Bounded code cache. 

1. Introduction 

Dynamic binary translation system, as a relocation tool for executable code, 
has been applied both in electronic commodity and in research domain for 
decades. The ability to manipulate the instruction stream of an executing 
program enabled by 1 these systems has had numerous implications in 
program performance, security, and portability [1]. In order to relieve the 
system overall overhead, researchers have attempted many algorithms or 
methods, where a significant improvement method| making use of code 
cache [26] is able to upgrade better performance. Indeed, it caches lots of 
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translated or optimized code to be reused for system, yet this amortizes the 
cost of expensive retranslation time over the entire system program 
execution time. Substantively, this process increases the locality of stored 
code and code specialization, so program execution speed can be achieved 
remarkably.  

Software code cache is virtually a segment of sequential memory space to 
store altered copies of original program instructions from low address to high 
address in order, which should have low overhead, good temporal locality, 
and minimal fragmentation. Some commercial virtual machines [14-16] still 
employ unbounded code cache to cache translated basic block or optimized 
code (i.e. superblocks) to extremely relieve extra retranslation overhead 
without any management overhead. In [13], Kim has explained that as the 
size of new huge software released grows, the size of corresponding 
unbounded code cache [9] will grow proportionately or exponentially. That is 
to say, unbounded code cache is out of state. Especially, in embedded 
system, the memory space must be reasonably utilized, rather than be 
wasted. Currently, though many dynamic binary translators, such as Strata 
[2], Walkabout [3], and UQDBT [22], have already employed bounded code 
cache [25], the utilization rate of code cache space is so low that more space 
cannot be fully used. In DBT system, not all of the blocks (the unit of codes 
called in DBT) in code cache are highly in use during a certain period of the 
running time, which means at this period, even if we reduce the code cache's 
size to the size just holding the highly-used codes, it might not influent the 
performance of the application too much. So the key point becomes how to 
decide the size of code cache at a given time. 

Unlike pages in memory, blocks in code cache have unfixed sizes each 
other, and linking between them is also considered, making the prediction 
imprecise. So LRU algorithm, as the conventional replacement policy, causes 
so many fragmentations that more code cache space will be wasted, if it is 
applied on software code cache. Furthermore, the simple code cache 
management, like pure Flush replacement policy, is widely employed in code 
cache, especially leading no fragmentation. Attentively, Flush algorithm only 
clears all blocks when cache is full, without considering the program 
behavior. This causes that extra retranslation overhead would exponentially 
increase, that is, thrashing [5] usually rises, since some frequent-executed 
codes are repeatedly flushed and regenerated in code cache. So when many 
resource-consuming applications are running on the same physical machine, 
to promise high utilization rate of code cache space and system overall 
performance, a novel code cache management is needed. 

Working set gives us another chance. In DBT system, working set means 
the collection of the most recently used blocks of the program in the software 
code cache, which reflects the program behavior as well. In this paper, we 
present a novel code cache management---SCC (Static Code Cache) based 
on working set, which outperforms Flush policy since the new one executes 
alternative policy according to working set. Although some performance 
improvement can be achieved, associated with SCC policy, extra unused 
code cache space is vacant. Especially, in memory constrained embedded 
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devices such as cellular phones, global positioning units and medical 
devices, vacant code cache space must be avoided. So we also propose a 
new dynamic replacement policy---DCC (Dynamic Code Cache) based on 
SCC policy. Indeed, DCC policy mainly inclines to reduce the memory 
requirement, enhance the utilization rate of code cache space with little or no 
performance sacrifice. Our job is to find the working set at different running 
time and accordingly adjust our code cache size to the working set's size 
from time to time. The code cache does have a bound but it doesn't take the 
full size all the time. Instead, it just takes part of it at the beginning and the 
size is dynamically changing, which could grow up to the bounded size at 
most, decided by the working sets at that time. When the transition of 
working set happens or the upper bound of code cache size has been 
reached, the flushing operation is trigged to clear code cache. We believe it 
would not affect the performance too much, as we take the advantage that 
the working sets are closely relative to the behavior of the program. In a 
word, it's a dynamic code cache which would adjust its size to the program 
behavior dynamically, saving part of the memory resource with a little 
sacrifice in performance. In particular, the novel contributions of our work 
are: 

In this paper, a working-set-based replacement policy---SCC is proposed 
firstly. This one in the aspect of performance outperforms Flush policy, due to 
execution flow following program behavior. In addition, self-adjusting 
threshold used to decide working set is analyzed. 

To efficiently utilize code cache space, another novel replacement policy---
DCC based on SCC policy is presented, associated with little performance 
victimization that can be ignored. 

The remainder of this paper is organized as follows. Section 2 reviews the 
related work. Then section 3 describes the features of code cache and 
working set in DBT system. In addition, section 4 introduces SCC policy, the 
method how to judge working set in DBT system, and gives qualitative 
analysis of SCC. In addition, in section 5, we introduce DCC policy with 
several key points. Section 6 shows the experimental results about SCC and 
DCC, and gives the detailed analysis. Finally, we conclude the paper in 
section 7. 

2. Related work 

In this section, we will introduce some conventional dynamic translation or 
optimization systems how to take advantage of code cache, and discuss 
existing cache management utilized in various systems. Then we also simply 
exploit the advantage of our method relative to others. 
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2.1. Traditional code cache management 

In 1996, dynamic binary translator---DAISY [15] developed by IBM, 
dynamically translates from PowerPC binaries to VLIW instruction codes. 
Based on this project, in 2000, BOA framework [16] presented in IBM allows 
PowerPC code to execute on a VLIW/EPIC processor. The Transmeta 
Crusoe processor [14] shipped with Code-Morphing Software (CMS) executes 
binary translation from IA-32 to an underlying proprietary VLIW architecture, 
which is the first commercial processor authentically integrated with binary 
translation technique. However, powerful code cache management policies 
are not definitely characterized in these dynamic binary translators. 

Dynamo [17], as a transparent dynamic optimizer developed from HP Labs 
in 1999, executes on HP-UX OS providing an efficient software-management 
policy for code cache. It caches superblocks in code cache and takes 
advantage of preemptive flush mechanism as code cache policy. Virtually, 
this alternative management is trigged by program phase change detected. A 
follow-up infrastructure is DELI [18], which is a VLIW version of Dynamo 
developed by Hewlett-Packard in conjunction with ST Microelectronic. The 
code cache management employed in DELI is a special-flush cache policy 
controlled by user, that is, a passive flush cache policy. As the successor of 
Dynamo, DynamoRIO [19] is a excellent dynamic optimizer developed by 
Hewlett-Packard and MIT. The attractive feature of it is that it can execute on 
IA-32 architecture not only in Linux but also in Windows. DynamoRIO 
partitions the unified code cache into two independent-distinct code caches 
employed to cache basic code blocks and superblocks respectively, yet the 
superblock cache is a thread-private cache. The cache replacement 
management in DynamoRIO is approximate unavailable, that is, none of 
evictions would happen, due to unbounded code cache used to store all 
translated or optimized codes. Mojo [20] exploited by Microsoft, which is 
targeted Windows NT running on IA-32, is able to execute several large 
desktop applications. It also has two code caches---a thread-private basic 
code cache and a thread-shared trace cache, which is managed in a 
heavyweight manner by suspending all other threads. With regard to code 
cache management, each cache is subdivided into two units. For each unit, it 
would be flushed in special order (i.e. FIFO, LRU) when filled with codes. 
This leads to complicated cache management to ensure synchronism 
between threads due to shared code. In 2004, a novel dynamic binary 
translator---DigtalBridge [21] developed by Institute of Computing 
Technology, Chinese Academy of Science, is able to execute from X86 to 
MIPS infrastructure on Linux OS. Specially, its cache management differs 
from others, that is, several equivalent units (space size) are attained via 
partitioning unified cache. The cache management for DigtalBridge is 
deemed as a combination policy with Flush, FIFO, and LRU. But the situation 
where fragmentation still embarrasses overall performance, needs to be 
concerned as well. 

Strata [2] and Walkabout [3] are research infrastructures for dynamic 
binary translation that are specifically designed to be retargetable. Strata has 
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been retargeted to run on SPARC, MIPS, and IA-32 architectures. 
Walkabout, which was based on UQDBT [22], has been retargeted to execute 
on both SPARC and IA-32 architectures. CrossBit [7], is a resourceable and 
retargetable DBT system with intermediate representation (IR). Until recently, 
it has fully or partially supported guest platforms including SimpleScalar, 
IA32, MIPS, SPARC, and has fully supported the IA32 host platform. Another 
RISC instruction sets platform host is on the plan, for instance, PowerPC and 
SPARC. HDTrans [23] is a simple fast Linux-based binary translator. Its 
simplicity speeds up its cold code translation performance and it shows 
competitive performance among DBT systems that do not optimize hotspots. 
StarDBT [24] is a multi-platform translation system that is capable of 
translating application level binaries on either Windows or Linux OSes. 
However, the code cache management policy in these systems is to flush the 
entire code cache when it becomes full. 

2.2. Our work 

As we know, the traditional replacement strategies, such as FIFO, LRU and 
Flush, have been widely used in operating systems. However, due to the 
unequal size of each block in DBT system, the traditional strategies used in 
code cache might encounter some problems which would not happen in OS, 
such as the fragmentation, and de-linking, etc, especially causing cache 
space waste. As a result, they may not achieve their expected performance 
in DBT. 

In this paper, we define working set as the set of blocks that run recently. 
Finally, according to working set detected, DBT system can automatically 
adjust its code cache space, and this avenue saves more cache space for 
memory-consuming applications. That is to say, it enhances the utilization 
rate of code cache. 

3. Background 

3.1. Features of software code cache 

Compared with physical memory, software code cache has its explicit 
challenges that directly impact overall system, mainly focusing on its cached 
code blocks. 

Unfixed-sized cached codes. The significant feature of software code 
cache that differs from traditional hardware cache is that the size of stored 
codes (i.e. translated basic block or superblock) is not fixed but variable. This 
conduces that when replacement algorithm used in code cache takes place 
(i.e. LRU), fragmentation will appear in code cache. To minimize 
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fragmentation or even avert fragmentation, compression is able to compact 
fragmentation so that extra space is to be reused, but it is too expensive for 
system to implement it during execution. In this process, it is necessary to 
revise all of the branches, for each branch links one code to another 
congener code (In general, codes are classified into two groups| basic block 
and superblock). We can see that fragmentation obtained as a byproduct 
when some replacement algorithm being trigged, drastically affects overall 
performance, so avoiding fragmentation or lowering the amount of 
fragmentation (decreasing compression overhead)must be taken into account 
when selecting powerful replacement algorithm. 

Linking repair. Linking is an optimizing method implemented on all the 
basic blocks through modifying the machine codes after they have been 
executed for once [8]. All the superblocks need to be linked after it created as 
well. The essence of linking for basic block or superblock is that inserting 
jump instruction into the bottom of each code block sacrifices space size to 
exchange less time. Through linking between code blocks, execution from 
one code block to another is performed in succession rather than 
transforming control to system to again determine the next executable code 
block. This leads to a better performance. However, when replacement other 
than flush occurs, eviction of code blocks in code cache will bring dangling 
linking that causes incorrect program execution. Since one code block has 
several incoming and outgoing linking, how to efficiently and reasonably cope 
with these linkings is critical for system performance. To ensure program 
execution correctness, it is easy to evict outgoing linking with code block 
being replaced relative to incoming linking. While conventional methods to 
settle this embarrass situation where incoming linking related to the 
candidate of evicted code block should be disposed immediately, is to build a 
back-pointer table. It stores incoming and outgoing linking information of 
each code block. When replacement policy is trigged, the system will firstly 
lookup this table to acquire the incoming linking of eviction candidate. Then 
these incoming linkings of the candidate code block will be evicted. In fact, 
this process can carry extra run-time overhead due to lookups and occupying 
memory space. 

Retranslation overhead. Code cache miss, as a ubiquitous problem to 
leave a high retranslation overhead, cannot be fully avoided, yet is only 
attempted to minimize occurrence frequency to some extent. The high 
retranslation overhead results from a series of successive program execution 
behaviors. That is to say, this process is that storing context information 
about running program, regeneration of the previously cached code, copying 
it into code cache, updating hash table and linkings, and restoring context 
information about running program and transferring control. We can see that 
this process is so complicated that more run-time overhead will naturally 
appear. 

In conclusion, conventional replacement scheme---LRU cannot be 
adequately applied on the code cache. Though Flush clears all the block 
stored in the code cache to avoid additional repair overhead mentioned 



Code Cache Management based on Working Set in Dynamic Binary Translator 

ComSIS Vol. 8, No. 3, June 2011 659 

above, it doesn't take program behavior into account, leading to more cache 
misses, but with excessive cache space. 

3.2. Working set in DBT system 

In traditional OS, a program's working set W(t, T) is the set of distinct pages 
at time t among the T most recently referenced pages. Intuitively, it is the 
smallest subset of its pages that must reside in main memory in order that 
the program operates at some desired level of efficiency. The working-set 
principle of memory management states that a program may use a processor 
only if its working set is in main memory, and that no working-set page of an 
active program may be considered for removal from main memory [11]. 

In DBT system, this principle is in practice as well. In this paper, we would 
rather define working set as the set of blocks that run recently [10]. Taking 
the loop circles of the program into account, for a certain period of time, we 
may regard the program is running among only several blocks. During this 
period of time, even if we move other blocks not belonging to this set out of 
the code cache, the performance of the program would not drop. Now how to 
determine the working sets correctly has become quite important. 

 

  

Fig. 1. Working sets detected according to translation rate 

From Fig.1, we can easily see that there are 2 working sets during period 
of execution time, achieved by inaccurate skin-deep partitioning method. In a 
word, the execution flow of benchmark shows better temporal and spatial 
locality, and this execution process is also considered as the alternately 
execution of working sets. 

4. Static Code Cache 

In this section, we will introduce the code cache management---SCC (Static 
Code Cache), based on working set, which can achieve better performance 
than traditional replacement policy---Flush, without too much cache space. It 
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promises the overall performance and saves cache space, which is 
adequately adapt to manipulate code cache compared to conventional code 
cache replacement policy. 

4.1. Judging criterion for working set 

The theoretic. In this paper, we use the translation rate to decide the working 
set. Here, we define translation rate---Trate: 

 
Trate=NTranslationBlock  ∕ NExecutionBlock*100% (1) 

 
In formula (1), Trate represents the running program's translation rate. 

NTranslationBlock is deemed as the number of translated blocks stored in code 
cache, and contrarily, NExecutionBlock represents the number of executed blocks. 

An accompanying observation is that an increase in the rate at which 
translations are created---the translation rate---is often a precursor to an 
increase in the proportion of time spent executing within the code cache. It 
then follows that as the proportion of code cache execution time increases, 
the translation decreases. A high translation rate indicates that the translator 
is creating a set of translations that will be executed in the near future.  
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Fig. 2. Working sets detected in MCF 

The set of translations can be termed the upcoming working set of the 
program since it represents the code that will perform the program's work in 
the upcoming phase of execution. A low translation rate indicates that the 
current working set has been captured in the cache and thus execution is 
occurring primarily from the cache. For a program whose behavior is 
characterized by the execution of different portions of code across distinct 
phases, the translation rate follows a regular pattern. The translation rate 
increases when translations for the (upcoming) working set are being 
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constructed, decreases and remains low as the working set executes, 
increases again when the next working set is constructed, and so on. This 
phenomenon is described in Fig.1. 

In Fig.1, the rising side of the leftmost peak shows the translation rate 
increasing as a new working set is built in the cache. The trailing side of that 
peak shows the translation rate decreasing as formation of a working set 
nears completion. The period between the peaks shows a translation rate 
remaining relatively low as most of the execution occurs in the working set 
stored in the cache. The next peak shows that the program is entering a new 
phase of execution: code that has not been stored in the cache is needed for 
execution; another working set is being formed. This principle in general 
purpose program is also work, such as mcf, and this is depicted in Fig.2.  

The value of thresholds. Through the description of the theoretic, we can 
see that the key point for judging working set in DBT system is to find the 
value of the two thresholds: the threshold1 and threshold2 indicated in Fig.1. 
These two values could determine whether we could get the right working set 
or not. It could be easily told that if threshold1 is set too low, the whole 
program might just be only one working set as a whole; if it's set too high, as 
threshold2 must be higher than it, the next working set might never come. 
Threshold2 would accordingly has the same problem. Moreover, the gap 
between the two values is also quite important. We have done some 
experiments to decide the two thresholds' value. We take one benchmark 
from SPECint 2000: MCF, as the test program. Firstly, we record the block ID 
of the first 1750 blocks of MCF. As the program is running, the same block 
would be executed again. That is, in a period of time, the translated code 
blocks stored in code cache can be reused. In Fig.2, many working sets exist, 
which keep to the principle mentioned above, and there are many transition 
points used to judge working set. Through this experiment, we can find 
different working sets easily, but how to divide working set accurately 
according to many transition points is the key problem. So according to the 
transition point of two working sets, we can achieve the accurate thresholds 
through the following experiments in Table 1. 

Table 1. Transition points of working set detected with different thresholds 

Threshold1 Threshold2 Working sets transition number 

20 
20 
30 
30 
40 
40 
50 

25 
30 
35 
40 
45 
50 
55 

2 
2 
1 
0 
0 
0 
0 

50 60 0 

 
Since the two thresholds could be neither too high nor too low, we set the 

range between 0.2-0.6. On the other hand, the gap between the two 
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thresholds should not be too wide, so we take 5%-10% as two choices. The 
results based on formula (1) are shown in Table 1. In a period of time, we 
expect that only one working set can be detected according to Threshold1 
and Threshold2. But if more than one working sets or 0 working set is 
detected, that illuminates that the thresholds are not competent for this 
system. So in this system, we choose 30% and 35% as the two thresholds. 

4.2. Self-adjust thresholds 

However, different programs have different behaviors; a fixed threshold 
could not match all the programs. As a result, we try to make our strategy 
adjustable to the program run on BT system, which processing as follows: 

When we continually flush our code cache 10 times with fully bounded 
size, and meanwhile threshold1 is reached but no working set transition 
detected, we believe our threshold is a little bit too high for this program and 
we minus 2% from both two thresholds. 

When we continually flush our code cache 10 times with fully bounded 
size, meanwhile threshold1 is never reached within these 10 times, we add 
2% to both two thresholds. 

This self-adjust method is so efficient that the thresholds are flexible when 
facing different programs. 

4.3. Static Code Cache 

Compared to Flush policy, SCC replacement policy is based on the transition 
of working set to do flush operation, rather than code cache filling with 
translated blocks. That is to say, Flush is a passive flush algorithm, yet SCC 
is a active flush algorithm. Due to different alternative condition between the 
two strategies, the performance of them is impacted as well. With tradition 
replacement policy---Flush, the code cache may store lots of unexecuted 
code blocks in a long time, and that will bring extra space waste. However, 
the novel policy---SCC can actively flush the unnecessary code blocks 
timely, according to program behavior, so that is advantage for the system to 
save more space. Then we will give the qualitative analysis about 
performance and space in detail. 
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Fig. 3. Difference between Flush Policy and SCC Policy 

Here, we define the size of code cache is Smax. Suppose that one source 
program is executed through 5 working sets: WS1, WS2, WS3, WS4, WS5. 
The size of each working set mentioned above is respectively: S1, S2, S3, S4, 
S5, where Smax > Si (i=1,2,3,4,5). And the same source program is also 
executed with Flush policy. The comparison of them is depicted in Fig.3. If 
Flush replacement policy is selected, when code cache is full of translated 
code blocks, the code cache will be adequately cleared without considering 
program behavior. That leads that more than one working set will be flushed, 
where there exists one working set being constructed. Indeed, some code 
blocks not executed in a period of time, still stored in the code cache, yet 
those blocks occupy so much cache space. If we choose SCC replacement 
policy, the active flush method is applied on code cache, rather than passive 
one. The flush condition is altered to working set transition, and this conforms 
to program behavior, which has been proved in section 4.1. So in Fig.3, extra 
free space (overstriking black beeline showed in Fig.3) can be saved when 
code cache fully flushed. Indeed, the overall space utilization with SCC policy 
is total of working sets' size, that is, ∑Si (i=1,2,3,4,5), and that is further 
smaller than 5 * Smax (When passive Flush policy is employed, all the space 
utilization is 5 * Smax). 

5. Dynamic Code Cache 

Although SCC policy can save extra free space compared to passive Flush 
policy, the space saved cannot reused by other applications. Consequently, 
we propose another novel replacement policy---DCC (Dynamic Code Cache), 
which gives other applications another chance to reasonably utilize extra free 
cache space. In addition, if most of working sets in the executed program are 
too small, this leads that only a few code cache space is utilized. So, to 
efficiently utilize code cache space compared to SCC policy, we set another 
parameter, Spart, code cache initial size in DCC algorithm, corresponding with 
system initial size. 
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5.1. Code cache initial size 

On the one hand, the saved code cache space cannot utilized by other 
applications, associated with SCC replacement policy. On the other, as the 
transition of working set might happen at any time, it is quite a waste if we 
flush the code cache when just a little part of it (i.e. 10%, 20%) has already 
been used to form working set. So we propose another code cache 
parameter--- Spart, which is to take part of the code cache initial size as the 
initial size, and it is a good idea to make it a rule in our strategy. If the Spart-
sized code cache has not been full-filled, we would not do the flush job. It is 
quite obvious that if we check whether to flush the code cache after it's been 
used more than a certain percent, the performance should improve for two 
reasons: the flush time could be reduced compared to SCC replacement 
policy, so the overhead of this part could be avoid; since the code cache 
could contain more than one working sets, the formal ones could be reused 
before they're cleaned, which could save the overhead of translating them 
again. 

The percentage of space size could be neither too small nor too big. That 
is because the extreme situation may lead that frequently adjusting 
thresholds used to judge working set (too small) or more working sets 
simultaneously cached in code cache (too big). Here, we take the middle 
value as the result of this point, which is 50%. 

5.2. Dynamic-size code cache 

When we check whether the transition of working set happens after the Spart-
sized code cache has been fully taken, if so, a flush job should be done; if 
not, what should we do? or adjust our code cache to working set? The answer 
could easily be found as increasing the code cache size since we did not fully 
take the whole size at the beginning, till the transition happens. But how 
much should we add as we'll never know when the transition would happen, 
and the increasing size of code cache Sadd will be discussed in section 6. 

After discussing the points above, our policy becomes more and more 
clear: 

 We initialize our code cache with Spart of the given size in DBT system. 

 As program running on, we keep on recording the translation rate---Trate. If 
it drops below Threshold1, we begin to watch it whether would rise over 
Threshold2, if so, we set the flag of working set transition true. 

 When the initial size is fully taken by blocks, we check the flag in the 
second step, if it is true, we flush code cache, start over again to record 
translation rate and do the second step; if not, we apply Sadd more of the 
code cache size, when it is full, we do this step again, until we reach the 
bound of code cache size. 

 If the bound of the size has been reached, we flush the code cache and 
restart to record translation rate. 
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 During these processes above, if we continually flush our code cache 10 
times with fully bounded size, meanwhile Threshold1 has never been 
reached, or Threshold1 is reached but Threshold2 is never touched, we 
would accordingly drop or rise our two threshold by 2%. 

6. Evaluation and analysis 

To evaluate this novel code cache management in DBT system, we have 
applied it on original DBT system---CrossBit, which is a resourceable and 
retargetable DBT system with IR [7]. That is also a large basic research 
platform, based on the CrossBit, and research works are extended, such as 
multi-core technique, code behavior analysis, mobile computing for Thin-
client in heterogeneous resource, distributed virtual execution strategy, 
defense for anomaly attack, and swam intelligent, etc. In addition, SPECint 
2000 [12] is selected as the test benchmark. And the configure of physical 
machine is that: CPU---Intel Core I5 (2.66GHz * 4), 8GB memory with Linux 
kernel version 2.6.33.4. The size of code cache---Smax is assigned about 32 
KB (Since our code cache management will be extended on embedded 
system in future, the size of code cache assigned is so small). The traditional 
replacement strategies---Flush and LRU are employed to do comparison with 
SCC and DCC. We use the conclusion from section 5.1: using the 50% size 
as the initial one for code cache (Spart is 16 KB). 

First, we do the experiment to test difference between SCC policy and 
Flush policy. In this experiment, the Threshold1 and Threshold2 are 
initialized as 30% and 35%, respectively. In addition, according to different 
programs, the thresholds will be adjusted by themselves. The results about 
their performance are shown in Fig.4. 
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Fig. 4. Relative Runtime of Benchmarks using DCC and Flush (Normalized by Flush 
policy) 

From Fig.4, we can see that the performance with SCC policy significantly 
outperforms that of Flush policy, and the average performance improvement 
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is about 3%. But GZIP and TWOLF benchmarks are the victims. The reason 
why GZIP and TWOLF undergo lower performance is that: since the 
thresholds used to create working set is decided by Trate, the translation rate--
-Trate is also determined by NTranslationBlock and NExecutionBlock according to 
formula (1). To accurately get them, profile instructions should be added into 
each code blocks to record corresponding information. Here, we give the 
execution time of code blocks in Table 2. 

Table 2. Execution time of each benckmark 

Benchmark  Execution time 

MCF 
BZIP2 
GZIP 
GAP 
PARSER 

 53011039 
530628945 
1948235411 
48558303 
238666896 

TWOLF 1131632548 

 
In Table 2, the execution time of GZIP and TWOLF are so many that the 

overhead caused by profile instructions is relatively increased, so the 
performance is lower naturally. In addition, thrashing occurring in code cache, 
brings inaccurate working set, leading lower performance. 

Although the performance improvement is achieved associated with SCC 
policy, the extra free space is still vacant. So, we propose DCC policy for 
other applications to further efficiently utilize saved code cache space. In 
DCC policy, we should define the increasing grain when Spart-sized code 
cache fills with translated blocks, and this point is discussed in section 5.2. 
We run the six benchmarks on CrossBit with two different strategies as we 
increase the cache size by 5% (fine-grain), 10% and 20% (coarse-grain) each 
time and test their performance. Compared with the Flush strategy's running 
time, we get the result in Fig.5. 
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Fig. 5. The running time with different increasing grains (Normalized by Flush policy) 
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Fig. 6. The performance with different replacement policies (Normalized by Flush 
policy) 

In Fig.5, fine-grain increasing (5%) mode is adapt to dynamic binary 
translation system, which is better than other increasing modes. Indeed, the 
remain space of code cache can be reused by other applications. Since fine-
grain increasing mode can save more space for other applications, the 
corresponding performance outperforms that of others as well. Here, we 
select 5% increasing grain as the increasing mode when initial space filling 
with translated blocks.  

Furthermore, we apply several replacement policies on the CrossBit to test 
the system performance, such as Flush, DCC, and DCC- (DCC- is the DCC 
policy without thresholds self-adjusted). 

In Fig. 6, we can see that the original replacement policy (i.e. Flush) 
outperforms the novel one presented by us, especially DCC-. And DCC 
policy outperforms DCC- a little. Indeed, either DCC or DCC- spends time 
dynamically adjusting code cache, but the conventional replacement policy 
only considers space size without any adjustment on code cache. So the 
performance caused by DCC and DCC- is lower than the original one. The 
distinction performance between DCC and DCC- is mainly from the accurate 
thresholds used to decide working set. The more accurate working set is, the 
better performance improvement system can be achieved. In DCC-, 
invariable thresholds will cause inaccurate working set, and the reason is 
analyzed in section 4.2. By the way, the decreasing performance with DCC 
policy is about 2%-5%, compared to Flush policy, since extra code cache 
space occupied by other applications cannot retrieved for code cache timely. 
Though the new replacement policy---DCC causes some performance 
degradation (average of that is about 1.17%), extra code cache space is 
saved that can be used by other applications. In embedded system, 
reasonably utilizing finite memory space (code cache space) will achieve 
another performance improvement or promise adequate function for different 
applications. 
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Fig. 7. The space used by different replacement policies (Normalized by Flush policy) 

Next, we do the experiment to test memory space utilization. When 
system initializing, 32 KB memory space is assigned to code cache. 
Especially, the code cache with Flush replacement policy constantly occupies 
this section of memory, so other applications cannot preempt it. However, the 
novel replacement algorithms---DCC and DCC- don't occupy overall 
assigned memory space all the time. That is to say, the unused memory 
space assigned to code cache can be utilized by other applications, and it 
improves space utilization rate. The results is depicted in Fig.7. 

Fig.7 depicts space utilization rate of each replacement policy. The simple 
replacement policy---Flush only considers that whether the cache space fills 
with translated code blocks, rather than program behavior and space 
utilization rate. About space utilization, the novel policies---DCC- and DCC 
are significantly outperform the original one, since they follow program 
behavior to do replacement (the replacement unit is working set). That is to 
say, extra free code cache space can be reused by other applications. From 
Fig. 7, the space utilization of DCC strategy is better than that of DCC-, since 
self-adjust thresholds impact the final space utilization rate. In DCC-, fixed 
thresholds that used to judge working set is not flexible adequately, so 
flushing operations with fully bounded size is more than that of DCC. 

In conclusion, this new replacement policy can save extra code cache 
space used by other applications with a little performance improvement. As 
well, compared to traditional replacement policy---Flush, the novel one has 
more advantage, such as better performance and saving extra memory 
space. 

7. Conclusion and future work 

Code cache management in dynamic binary translation system is deemed as 
a crucial yet intractable issue. The high cost of preparing translated basic 
blocks and superblocks inserted into a code cache has incurred many 
researchers to slide over this serious issue through implementing either an 
larger code, such as merging several code blocks, or an unsophisticated 
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replacement scheme, such as flush policy. However, the traditional 
replacement policies cannot fully adapt to dynamic binary translation system. 
So in this paper, based on working set, a novel replacement policy---SCC is 
proposed. The performance of it outperforms the original one---Flush, due to 
it considering program behavior, but extra free code cache saved is still 
vacant. Then we present another new replacement policy---DCC, which is not 
in light of program behavior, but also make saved code cache space to be 
reused by other applications. Unfortunately, the system performance with 
DCC policy is decreased. Thus, our future work is to improve its 
performance, and implement our method on other dynamic binary translation 
systems. 
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