
DOI: 10.2298/CSIS100327022M

Code Cache Management Based on Working Set

in Dynamic Binary Translator

Ruhui Ma, Haibing Guan*, Erzhou Zhu, Yongqiang Gao, and Alei Liang

Shanghai key laboratory of scalable computing and systems,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240,China,
{ruhuima, hbguan, ezzhu, yongqianggao, liangalei}@sjtu.edu.cn

Abstract. Software code cache employed to store translated or
optimized codes, amortizes the overhead of dynamic binary translation
via reusing of stored-altered copies of original program instructions.
Though many conventional code cache managements, such as Flush,
Least-Recently Used (LRU), have been applied on some classic
dynamic binary translators, actually they are so unsophisticated yet
unadaptable that it not only brings additional unnecessary overhead,
but also wastes much cache space, since there exist several noticeable
features in software code cache, unlike pages in memory.
Consequently, this paper presents two novel alternative cache
schemes—SCC (Static Code Cache) and DCC (Dynamic Code Cache)
based on working set. In these new schemes, we utilize translation rate
to judge working set. To evaluate these new replacement policies, we
implement them on dynamic binary translator—CrossBit with several
commonplace code cache managements. Through the experiment
results based on benchmark SPECint 2000, we achieve better
performance improvement and cache space utilization ratio.

Keywords: Code cache management, Working set, Replacement
strategy, Code block, Bounded code cache.

1. Introduction

Dynamic binary translation system, as a relocation tool for executable code,
has been applied both in electronic commodity and in research domain for
decades. The ability to manipulate the instruction stream of an executing
program enabled by 1 these systems has had numerous implications in
program performance, security, and portability [1]. In order to relieve the
system overall overhead, researchers have attempted many algorithms or
methods, where a significant improvement method| making use of code
cache [26] is able to upgrade better performance. Indeed, it caches lots of

*Corresponding Author

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 654

translated or optimized code to be reused for system, yet this amortizes the
cost of expensive retranslation time over the entire system program
execution time. Substantively, this process increases the locality of stored
code and code specialization, so program execution speed can be achieved
remarkably.

Software code cache is virtually a segment of sequential memory space to
store altered copies of original program instructions from low address to high
address in order, which should have low overhead, good temporal locality,
and minimal fragmentation. Some commercial virtual machines [14-16] still
employ unbounded code cache to cache translated basic block or optimized
code (i.e. superblocks) to extremely relieve extra retranslation overhead
without any management overhead. In [13], Kim has explained that as the
size of new huge software released grows, the size of corresponding
unbounded code cache [9] will grow proportionately or exponentially. That is
to say, unbounded code cache is out of state. Especially, in embedded
system, the memory space must be reasonably utilized, rather than be
wasted. Currently, though many dynamic binary translators, such as Strata
[2], Walkabout [3], and UQDBT [22], have already employed bounded code
cache [25], the utilization rate of code cache space is so low that more space
cannot be fully used. In DBT system, not all of the blocks (the unit of codes
called in DBT) in code cache are highly in use during a certain period of the
running time, which means at this period, even if we reduce the code cache's
size to the size just holding the highly-used codes, it might not influent the
performance of the application too much. So the key point becomes how to
decide the size of code cache at a given time.

Unlike pages in memory, blocks in code cache have unfixed sizes each
other, and linking between them is also considered, making the prediction
imprecise. So LRU algorithm, as the conventional replacement policy, causes
so many fragmentations that more code cache space will be wasted, if it is
applied on software code cache. Furthermore, the simple code cache
management, like pure Flush replacement policy, is widely employed in code
cache, especially leading no fragmentation. Attentively, Flush algorithm only
clears all blocks when cache is full, without considering the program
behavior. This causes that extra retranslation overhead would exponentially
increase, that is, thrashing [5] usually rises, since some frequent-executed
codes are repeatedly flushed and regenerated in code cache. So when many
resource-consuming applications are running on the same physical machine,
to promise high utilization rate of code cache space and system overall
performance, a novel code cache management is needed.

Working set gives us another chance. In DBT system, working set means
the collection of the most recently used blocks of the program in the software
code cache, which reflects the program behavior as well. In this paper, we
present a novel code cache management---SCC (Static Code Cache) based
on working set, which outperforms Flush policy since the new one executes
alternative policy according to working set. Although some performance
improvement can be achieved, associated with SCC policy, extra unused
code cache space is vacant. Especially, in memory constrained embedded

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 655

devices such as cellular phones, global positioning units and medical
devices, vacant code cache space must be avoided. So we also propose a
new dynamic replacement policy---DCC (Dynamic Code Cache) based on
SCC policy. Indeed, DCC policy mainly inclines to reduce the memory
requirement, enhance the utilization rate of code cache space with little or no
performance sacrifice. Our job is to find the working set at different running
time and accordingly adjust our code cache size to the working set's size
from time to time. The code cache does have a bound but it doesn't take the
full size all the time. Instead, it just takes part of it at the beginning and the
size is dynamically changing, which could grow up to the bounded size at
most, decided by the working sets at that time. When the transition of
working set happens or the upper bound of code cache size has been
reached, the flushing operation is trigged to clear code cache. We believe it
would not affect the performance too much, as we take the advantage that
the working sets are closely relative to the behavior of the program. In a
word, it's a dynamic code cache which would adjust its size to the program
behavior dynamically, saving part of the memory resource with a little
sacrifice in performance. In particular, the novel contributions of our work
are:

In this paper, a working-set-based replacement policy---SCC is proposed
firstly. This one in the aspect of performance outperforms Flush policy, due to
execution flow following program behavior. In addition, self-adjusting
threshold used to decide working set is analyzed.

To efficiently utilize code cache space, another novel replacement policy---
DCC based on SCC policy is presented, associated with little performance
victimization that can be ignored.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. Then section 3 describes the features of code cache and
working set in DBT system. In addition, section 4 introduces SCC policy, the
method how to judge working set in DBT system, and gives qualitative
analysis of SCC. In addition, in section 5, we introduce DCC policy with
several key points. Section 6 shows the experimental results about SCC and
DCC, and gives the detailed analysis. Finally, we conclude the paper in
section 7.

2. Related work

In this section, we will introduce some conventional dynamic translation or
optimization systems how to take advantage of code cache, and discuss
existing cache management utilized in various systems. Then we also simply
exploit the advantage of our method relative to others.

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 656

2.1. Traditional code cache management

In 1996, dynamic binary translator---DAISY [15] developed by IBM,
dynamically translates from PowerPC binaries to VLIW instruction codes.
Based on this project, in 2000, BOA framework [16] presented in IBM allows
PowerPC code to execute on a VLIW/EPIC processor. The Transmeta
Crusoe processor [14] shipped with Code-Morphing Software (CMS) executes
binary translation from IA-32 to an underlying proprietary VLIW architecture,
which is the first commercial processor authentically integrated with binary
translation technique. However, powerful code cache management policies
are not definitely characterized in these dynamic binary translators.

Dynamo [17], as a transparent dynamic optimizer developed from HP Labs
in 1999, executes on HP-UX OS providing an efficient software-management
policy for code cache. It caches superblocks in code cache and takes
advantage of preemptive flush mechanism as code cache policy. Virtually,
this alternative management is trigged by program phase change detected. A
follow-up infrastructure is DELI [18], which is a VLIW version of Dynamo
developed by Hewlett-Packard in conjunction with ST Microelectronic. The
code cache management employed in DELI is a special-flush cache policy
controlled by user, that is, a passive flush cache policy. As the successor of
Dynamo, DynamoRIO [19] is a excellent dynamic optimizer developed by
Hewlett-Packard and MIT. The attractive feature of it is that it can execute on
IA-32 architecture not only in Linux but also in Windows. DynamoRIO
partitions the unified code cache into two independent-distinct code caches
employed to cache basic code blocks and superblocks respectively, yet the
superblock cache is a thread-private cache. The cache replacement
management in DynamoRIO is approximate unavailable, that is, none of
evictions would happen, due to unbounded code cache used to store all
translated or optimized codes. Mojo [20] exploited by Microsoft, which is
targeted Windows NT running on IA-32, is able to execute several large
desktop applications. It also has two code caches---a thread-private basic
code cache and a thread-shared trace cache, which is managed in a
heavyweight manner by suspending all other threads. With regard to code
cache management, each cache is subdivided into two units. For each unit, it
would be flushed in special order (i.e. FIFO, LRU) when filled with codes.
This leads to complicated cache management to ensure synchronism
between threads due to shared code. In 2004, a novel dynamic binary
translator---DigtalBridge [21] developed by Institute of Computing
Technology, Chinese Academy of Science, is able to execute from X86 to
MIPS infrastructure on Linux OS. Specially, its cache management differs
from others, that is, several equivalent units (space size) are attained via
partitioning unified cache. The cache management for DigtalBridge is
deemed as a combination policy with Flush, FIFO, and LRU. But the situation
where fragmentation still embarrasses overall performance, needs to be
concerned as well.

Strata [2] and Walkabout [3] are research infrastructures for dynamic
binary translation that are specifically designed to be retargetable. Strata has

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 657

been retargeted to run on SPARC, MIPS, and IA-32 architectures.
Walkabout, which was based on UQDBT [22], has been retargeted to execute
on both SPARC and IA-32 architectures. CrossBit [7], is a resourceable and
retargetable DBT system with intermediate representation (IR). Until recently,
it has fully or partially supported guest platforms including SimpleScalar,
IA32, MIPS, SPARC, and has fully supported the IA32 host platform. Another
RISC instruction sets platform host is on the plan, for instance, PowerPC and
SPARC. HDTrans [23] is a simple fast Linux-based binary translator. Its
simplicity speeds up its cold code translation performance and it shows
competitive performance among DBT systems that do not optimize hotspots.
StarDBT [24] is a multi-platform translation system that is capable of
translating application level binaries on either Windows or Linux OSes.
However, the code cache management policy in these systems is to flush the
entire code cache when it becomes full.

2.2. Our work

As we know, the traditional replacement strategies, such as FIFO, LRU and
Flush, have been widely used in operating systems. However, due to the
unequal size of each block in DBT system, the traditional strategies used in
code cache might encounter some problems which would not happen in OS,
such as the fragmentation, and de-linking, etc, especially causing cache
space waste. As a result, they may not achieve their expected performance
in DBT.

In this paper, we define working set as the set of blocks that run recently.
Finally, according to working set detected, DBT system can automatically
adjust its code cache space, and this avenue saves more cache space for
memory-consuming applications. That is to say, it enhances the utilization
rate of code cache.

3. Background

3.1. Features of software code cache

Compared with physical memory, software code cache has its explicit
challenges that directly impact overall system, mainly focusing on its cached
code blocks.

Unfixed-sized cached codes. The significant feature of software code
cache that differs from traditional hardware cache is that the size of stored
codes (i.e. translated basic block or superblock) is not fixed but variable. This
conduces that when replacement algorithm used in code cache takes place
(i.e. LRU), fragmentation will appear in code cache. To minimize

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 658

fragmentation or even avert fragmentation, compression is able to compact
fragmentation so that extra space is to be reused, but it is too expensive for
system to implement it during execution. In this process, it is necessary to
revise all of the branches, for each branch links one code to another
congener code (In general, codes are classified into two groups| basic block
and superblock). We can see that fragmentation obtained as a byproduct
when some replacement algorithm being trigged, drastically affects overall
performance, so avoiding fragmentation or lowering the amount of
fragmentation (decreasing compression overhead)must be taken into account
when selecting powerful replacement algorithm.

Linking repair. Linking is an optimizing method implemented on all the
basic blocks through modifying the machine codes after they have been
executed for once [8]. All the superblocks need to be linked after it created as
well. The essence of linking for basic block or superblock is that inserting
jump instruction into the bottom of each code block sacrifices space size to
exchange less time. Through linking between code blocks, execution from
one code block to another is performed in succession rather than
transforming control to system to again determine the next executable code
block. This leads to a better performance. However, when replacement other
than flush occurs, eviction of code blocks in code cache will bring dangling
linking that causes incorrect program execution. Since one code block has
several incoming and outgoing linking, how to efficiently and reasonably cope
with these linkings is critical for system performance. To ensure program
execution correctness, it is easy to evict outgoing linking with code block
being replaced relative to incoming linking. While conventional methods to
settle this embarrass situation where incoming linking related to the
candidate of evicted code block should be disposed immediately, is to build a
back-pointer table. It stores incoming and outgoing linking information of
each code block. When replacement policy is trigged, the system will firstly
lookup this table to acquire the incoming linking of eviction candidate. Then
these incoming linkings of the candidate code block will be evicted. In fact,
this process can carry extra run-time overhead due to lookups and occupying
memory space.

Retranslation overhead. Code cache miss, as a ubiquitous problem to
leave a high retranslation overhead, cannot be fully avoided, yet is only
attempted to minimize occurrence frequency to some extent. The high
retranslation overhead results from a series of successive program execution
behaviors. That is to say, this process is that storing context information
about running program, regeneration of the previously cached code, copying
it into code cache, updating hash table and linkings, and restoring context
information about running program and transferring control. We can see that
this process is so complicated that more run-time overhead will naturally
appear.

In conclusion, conventional replacement scheme---LRU cannot be
adequately applied on the code cache. Though Flush clears all the block
stored in the code cache to avoid additional repair overhead mentioned

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 659

above, it doesn't take program behavior into account, leading to more cache
misses, but with excessive cache space.

3.2. Working set in DBT system

In traditional OS, a program's working set W(t, T) is the set of distinct pages
at time t among the T most recently referenced pages. Intuitively, it is the
smallest subset of its pages that must reside in main memory in order that
the program operates at some desired level of efficiency. The working-set
principle of memory management states that a program may use a processor
only if its working set is in main memory, and that no working-set page of an
active program may be considered for removal from main memory [11].

In DBT system, this principle is in practice as well. In this paper, we would
rather define working set as the set of blocks that run recently [10]. Taking
the loop circles of the program into account, for a certain period of time, we
may regard the program is running among only several blocks. During this
period of time, even if we move other blocks not belonging to this set out of
the code cache, the performance of the program would not drop. Now how to
determine the working sets correctly has become quite important.

Fig. 1. Working sets detected according to translation rate

From Fig.1, we can easily see that there are 2 working sets during period
of execution time, achieved by inaccurate skin-deep partitioning method. In a
word, the execution flow of benchmark shows better temporal and spatial
locality, and this execution process is also considered as the alternately
execution of working sets.

4. Static Code Cache

In this section, we will introduce the code cache management---SCC (Static
Code Cache), based on working set, which can achieve better performance
than traditional replacement policy---Flush, without too much cache space. It

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 660

promises the overall performance and saves cache space, which is
adequately adapt to manipulate code cache compared to conventional code
cache replacement policy.

4.1. Judging criterion for working set

The theoretic. In this paper, we use the translation rate to decide the working
set. Here, we define translation rate---Trate:

Trate=NTranslationBlock ∕ NExecutionBlock*100% (1)

In formula (1), Trate represents the running program's translation rate.

NTranslationBlock is deemed as the number of translated blocks stored in code
cache, and contrarily, NExecutionBlock represents the number of executed blocks.

An accompanying observation is that an increase in the rate at which
translations are created---the translation rate---is often a precursor to an
increase in the proportion of time spent executing within the code cache. It
then follows that as the proportion of code cache execution time increases,
the translation decreases. A high translation rate indicates that the translator
is creating a set of translations that will be executed in the near future.

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

T
ranslation rate

Time Node

Fig. 2. Working sets detected in MCF

The set of translations can be termed the upcoming working set of the
program since it represents the code that will perform the program's work in
the upcoming phase of execution. A low translation rate indicates that the
current working set has been captured in the cache and thus execution is
occurring primarily from the cache. For a program whose behavior is
characterized by the execution of different portions of code across distinct
phases, the translation rate follows a regular pattern. The translation rate
increases when translations for the (upcoming) working set are being

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 661

constructed, decreases and remains low as the working set executes,
increases again when the next working set is constructed, and so on. This
phenomenon is described in Fig.1.

In Fig.1, the rising side of the leftmost peak shows the translation rate
increasing as a new working set is built in the cache. The trailing side of that
peak shows the translation rate decreasing as formation of a working set
nears completion. The period between the peaks shows a translation rate
remaining relatively low as most of the execution occurs in the working set
stored in the cache. The next peak shows that the program is entering a new
phase of execution: code that has not been stored in the cache is needed for
execution; another working set is being formed. This principle in general
purpose program is also work, such as mcf, and this is depicted in Fig.2.

The value of thresholds. Through the description of the theoretic, we can
see that the key point for judging working set in DBT system is to find the
value of the two thresholds: the threshold1 and threshold2 indicated in Fig.1.
These two values could determine whether we could get the right working set
or not. It could be easily told that if threshold1 is set too low, the whole
program might just be only one working set as a whole; if it's set too high, as
threshold2 must be higher than it, the next working set might never come.
Threshold2 would accordingly has the same problem. Moreover, the gap
between the two values is also quite important. We have done some
experiments to decide the two thresholds' value. We take one benchmark
from SPECint 2000: MCF, as the test program. Firstly, we record the block ID
of the first 1750 blocks of MCF. As the program is running, the same block
would be executed again. That is, in a period of time, the translated code
blocks stored in code cache can be reused. In Fig.2, many working sets exist,
which keep to the principle mentioned above, and there are many transition
points used to judge working set. Through this experiment, we can find
different working sets easily, but how to divide working set accurately
according to many transition points is the key problem. So according to the
transition point of two working sets, we can achieve the accurate thresholds
through the following experiments in Table 1.

Table 1. Transition points of working set detected with different thresholds

Threshold1 Threshold2 Working sets transition number

20
20
30
30
40
40
50

25
30
35
40
45
50
55

2
2
1
0
0
0
0

50 60 0

Since the two thresholds could be neither too high nor too low, we set the

range between 0.2-0.6. On the other hand, the gap between the two

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 662

thresholds should not be too wide, so we take 5%-10% as two choices. The
results based on formula (1) are shown in Table 1. In a period of time, we
expect that only one working set can be detected according to Threshold1
and Threshold2. But if more than one working sets or 0 working set is
detected, that illuminates that the thresholds are not competent for this
system. So in this system, we choose 30% and 35% as the two thresholds.

4.2. Self-adjust thresholds

However, different programs have different behaviors; a fixed threshold
could not match all the programs. As a result, we try to make our strategy
adjustable to the program run on BT system, which processing as follows:

When we continually flush our code cache 10 times with fully bounded
size, and meanwhile threshold1 is reached but no working set transition
detected, we believe our threshold is a little bit too high for this program and
we minus 2% from both two thresholds.

When we continually flush our code cache 10 times with fully bounded
size, meanwhile threshold1 is never reached within these 10 times, we add
2% to both two thresholds.

This self-adjust method is so efficient that the thresholds are flexible when
facing different programs.

4.3. Static Code Cache

Compared to Flush policy, SCC replacement policy is based on the transition
of working set to do flush operation, rather than code cache filling with
translated blocks. That is to say, Flush is a passive flush algorithm, yet SCC
is a active flush algorithm. Due to different alternative condition between the
two strategies, the performance of them is impacted as well. With tradition
replacement policy---Flush, the code cache may store lots of unexecuted
code blocks in a long time, and that will bring extra space waste. However,
the novel policy---SCC can actively flush the unnecessary code blocks
timely, according to program behavior, so that is advantage for the system to
save more space. Then we will give the qualitative analysis about
performance and space in detail.

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 663

S1

S2

S3

S4

S5

FRS

Smax

FRS=Free Space Size

Execution Flow

Fig. 3. Difference between Flush Policy and SCC Policy

Here, we define the size of code cache is Smax. Suppose that one source
program is executed through 5 working sets: WS1, WS2, WS3, WS4, WS5.
The size of each working set mentioned above is respectively: S1, S2, S3, S4,
S5, where Smax > Si (i=1,2,3,4,5). And the same source program is also
executed with Flush policy. The comparison of them is depicted in Fig.3. If
Flush replacement policy is selected, when code cache is full of translated
code blocks, the code cache will be adequately cleared without considering
program behavior. That leads that more than one working set will be flushed,
where there exists one working set being constructed. Indeed, some code
blocks not executed in a period of time, still stored in the code cache, yet
those blocks occupy so much cache space. If we choose SCC replacement
policy, the active flush method is applied on code cache, rather than passive
one. The flush condition is altered to working set transition, and this conforms
to program behavior, which has been proved in section 4.1. So in Fig.3, extra
free space (overstriking black beeline showed in Fig.3) can be saved when
code cache fully flushed. Indeed, the overall space utilization with SCC policy
is total of working sets' size, that is, ∑Si (i=1,2,3,4,5), and that is further
smaller than 5 * Smax (When passive Flush policy is employed, all the space
utilization is 5 * Smax).

5. Dynamic Code Cache

Although SCC policy can save extra free space compared to passive Flush
policy, the space saved cannot reused by other applications. Consequently,
we propose another novel replacement policy---DCC (Dynamic Code Cache),
which gives other applications another chance to reasonably utilize extra free
cache space. In addition, if most of working sets in the executed program are
too small, this leads that only a few code cache space is utilized. So, to
efficiently utilize code cache space compared to SCC policy, we set another
parameter, Spart, code cache initial size in DCC algorithm, corresponding with
system initial size.

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 664

5.1. Code cache initial size

On the one hand, the saved code cache space cannot utilized by other
applications, associated with SCC replacement policy. On the other, as the
transition of working set might happen at any time, it is quite a waste if we
flush the code cache when just a little part of it (i.e. 10%, 20%) has already
been used to form working set. So we propose another code cache
parameter--- Spart, which is to take part of the code cache initial size as the
initial size, and it is a good idea to make it a rule in our strategy. If the Spart-
sized code cache has not been full-filled, we would not do the flush job. It is
quite obvious that if we check whether to flush the code cache after it's been
used more than a certain percent, the performance should improve for two
reasons: the flush time could be reduced compared to SCC replacement
policy, so the overhead of this part could be avoid; since the code cache
could contain more than one working sets, the formal ones could be reused
before they're cleaned, which could save the overhead of translating them
again.

The percentage of space size could be neither too small nor too big. That
is because the extreme situation may lead that frequently adjusting
thresholds used to judge working set (too small) or more working sets
simultaneously cached in code cache (too big). Here, we take the middle
value as the result of this point, which is 50%.

5.2. Dynamic-size code cache

When we check whether the transition of working set happens after the Spart-
sized code cache has been fully taken, if so, a flush job should be done; if
not, what should we do? or adjust our code cache to working set? The answer
could easily be found as increasing the code cache size since we did not fully
take the whole size at the beginning, till the transition happens. But how
much should we add as we'll never know when the transition would happen,
and the increasing size of code cache Sadd will be discussed in section 6.

After discussing the points above, our policy becomes more and more
clear:

 We initialize our code cache with Spart of the given size in DBT system.

 As program running on, we keep on recording the translation rate---Trate. If
it drops below Threshold1, we begin to watch it whether would rise over
Threshold2, if so, we set the flag of working set transition true.

 When the initial size is fully taken by blocks, we check the flag in the
second step, if it is true, we flush code cache, start over again to record
translation rate and do the second step; if not, we apply Sadd more of the
code cache size, when it is full, we do this step again, until we reach the
bound of code cache size.

 If the bound of the size has been reached, we flush the code cache and
restart to record translation rate.

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 665

 During these processes above, if we continually flush our code cache 10
times with fully bounded size, meanwhile Threshold1 has never been
reached, or Threshold1 is reached but Threshold2 is never touched, we
would accordingly drop or rise our two threshold by 2%.

6. Evaluation and analysis

To evaluate this novel code cache management in DBT system, we have
applied it on original DBT system---CrossBit, which is a resourceable and
retargetable DBT system with IR [7]. That is also a large basic research
platform, based on the CrossBit, and research works are extended, such as
multi-core technique, code behavior analysis, mobile computing for Thin-
client in heterogeneous resource, distributed virtual execution strategy,
defense for anomaly attack, and swam intelligent, etc. In addition, SPECint
2000 [12] is selected as the test benchmark. And the configure of physical
machine is that: CPU---Intel Core I5 (2.66GHz * 4), 8GB memory with Linux
kernel version 2.6.33.4. The size of code cache---Smax is assigned about 32
KB (Since our code cache management will be extended on embedded
system in future, the size of code cache assigned is so small). The traditional
replacement strategies---Flush and LRU are employed to do comparison with
SCC and DCC. We use the conclusion from section 5.1: using the 50% size
as the initial one for code cache (Spart is 16 KB).

First, we do the experiment to test difference between SCC policy and
Flush policy. In this experiment, the Threshold1 and Threshold2 are
initialized as 30% and 35%, respectively. In addition, according to different
programs, the thresholds will be adjusted by themselves. The results about
their performance are shown in Fig.4.

80%

85%

90%

95%

100%

105%

MCF BZIP2 GZIP GAP PARSER TWOLF

Benchmark

P
er

fo
rm

an
ce

 r
at

io

DCC Flush

Fig. 4. Relative Runtime of Benchmarks using DCC and Flush (Normalized by Flush
policy)

From Fig.4, we can see that the performance with SCC policy significantly
outperforms that of Flush policy, and the average performance improvement

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 666

is about 3%. But GZIP and TWOLF benchmarks are the victims. The reason
why GZIP and TWOLF undergo lower performance is that: since the
thresholds used to create working set is decided by Trate, the translation rate--
-Trate is also determined by NTranslationBlock and NExecutionBlock according to
formula (1). To accurately get them, profile instructions should be added into
each code blocks to record corresponding information. Here, we give the
execution time of code blocks in Table 2.

Table 2. Execution time of each benckmark

Benchmark Execution time

MCF
BZIP2
GZIP
GAP
PARSER

 53011039
530628945
1948235411
48558303
238666896

TWOLF 1131632548

In Table 2, the execution time of GZIP and TWOLF are so many that the

overhead caused by profile instructions is relatively increased, so the
performance is lower naturally. In addition, thrashing occurring in code cache,
brings inaccurate working set, leading lower performance.

Although the performance improvement is achieved associated with SCC
policy, the extra free space is still vacant. So, we propose DCC policy for
other applications to further efficiently utilize saved code cache space. In
DCC policy, we should define the increasing grain when Spart-sized code
cache fills with translated blocks, and this point is discussed in section 5.2.
We run the six benchmarks on CrossBit with two different strategies as we
increase the cache size by 5% (fine-grain), 10% and 20% (coarse-grain) each
time and test their performance. Compared with the Flush strategy's running
time, we get the result in Fig.5.

0%

20%

40%

60%

80%

100%

120%

140%

MCF BZIP2 GZIP GAP PARSER TWOLF

Benchmark

P
er

fo
rm

an
ce

 r
at

io

5% 10% 20% Flush

Fig. 5. The running time with different increasing grains (Normalized by Flush policy)

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 667

40%

50%

60%

70%

80%

90%

100%

110%

MCF BZIP2 GZIP GAP PARSER TWOLF

Benchmark

P
er

fo
rm

an
ce

 r
at

io

Flush DCC- DCC

Fig. 6. The performance with different replacement policies (Normalized by Flush
policy)

In Fig.5, fine-grain increasing (5%) mode is adapt to dynamic binary
translation system, which is better than other increasing modes. Indeed, the
remain space of code cache can be reused by other applications. Since fine-
grain increasing mode can save more space for other applications, the
corresponding performance outperforms that of others as well. Here, we
select 5% increasing grain as the increasing mode when initial space filling
with translated blocks.

Furthermore, we apply several replacement policies on the CrossBit to test
the system performance, such as Flush, DCC, and DCC- (DCC- is the DCC
policy without thresholds self-adjusted).

In Fig. 6, we can see that the original replacement policy (i.e. Flush)
outperforms the novel one presented by us, especially DCC-. And DCC
policy outperforms DCC- a little. Indeed, either DCC or DCC- spends time
dynamically adjusting code cache, but the conventional replacement policy
only considers space size without any adjustment on code cache. So the
performance caused by DCC and DCC- is lower than the original one. The
distinction performance between DCC and DCC- is mainly from the accurate
thresholds used to decide working set. The more accurate working set is, the
better performance improvement system can be achieved. In DCC-,
invariable thresholds will cause inaccurate working set, and the reason is
analyzed in section 4.2. By the way, the decreasing performance with DCC
policy is about 2%-5%, compared to Flush policy, since extra code cache
space occupied by other applications cannot retrieved for code cache timely.
Though the new replacement policy---DCC causes some performance
degradation (average of that is about 1.17%), extra code cache space is
saved that can be used by other applications. In embedded system,
reasonably utilizing finite memory space (code cache space) will achieve
another performance improvement or promise adequate function for different
applications.

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 668

40%

50%

60%

70%

80%

90%

100%

MCF BZIP2 GZIP GAP PARSER TWOLF

Benchmark

S
p

ac
e

ra
ti

o

Flush DCC- DCC

Fig. 7. The space used by different replacement policies (Normalized by Flush policy)

Next, we do the experiment to test memory space utilization. When
system initializing, 32 KB memory space is assigned to code cache.
Especially, the code cache with Flush replacement policy constantly occupies
this section of memory, so other applications cannot preempt it. However, the
novel replacement algorithms---DCC and DCC- don't occupy overall
assigned memory space all the time. That is to say, the unused memory
space assigned to code cache can be utilized by other applications, and it
improves space utilization rate. The results is depicted in Fig.7.

Fig.7 depicts space utilization rate of each replacement policy. The simple
replacement policy---Flush only considers that whether the cache space fills
with translated code blocks, rather than program behavior and space
utilization rate. About space utilization, the novel policies---DCC- and DCC
are significantly outperform the original one, since they follow program
behavior to do replacement (the replacement unit is working set). That is to
say, extra free code cache space can be reused by other applications. From
Fig. 7, the space utilization of DCC strategy is better than that of DCC-, since
self-adjust thresholds impact the final space utilization rate. In DCC-, fixed
thresholds that used to judge working set is not flexible adequately, so
flushing operations with fully bounded size is more than that of DCC.

In conclusion, this new replacement policy can save extra code cache
space used by other applications with a little performance improvement. As
well, compared to traditional replacement policy---Flush, the novel one has
more advantage, such as better performance and saving extra memory
space.

7. Conclusion and future work

Code cache management in dynamic binary translation system is deemed as
a crucial yet intractable issue. The high cost of preparing translated basic
blocks and superblocks inserted into a code cache has incurred many
researchers to slide over this serious issue through implementing either an
larger code, such as merging several code blocks, or an unsophisticated

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 669

replacement scheme, such as flush policy. However, the traditional
replacement policies cannot fully adapt to dynamic binary translation system.
So in this paper, based on working set, a novel replacement policy---SCC is
proposed. The performance of it outperforms the original one---Flush, due to
it considering program behavior, but extra free code cache saved is still
vacant. Then we present another new replacement policy---DCC, which is not
in light of program behavior, but also make saved code cache space to be
reused by other applications. Unfortunately, the system performance with
DCC policy is decreased. Thus, our future work is to improve its
performance, and implement our method on other dynamic binary translation
systems.

Acknowledgment. This work was supported by the National Natural Science
Foundation of China (Grant No. 60970108, 60970107), the Science and Technology
Commission of Shanghai Municipality (Grant No. 09510701600, 10DZ1500200,
10511500102), IBM SUR Funding and IBM Research-China JP Funding. The authors
also gratefully acknowledge the helpful comments and suggestions of the reviewers,
which have improved the presentation.

References

1. Hazelwood, K., Cohn, R.: A Cross-Architectural Interface for Code Cache
Manipulation. In Proceedings of the 4th International Symposium on Code
Generation and Optimization. Manhattan, New York, USA, 17-27. (2006)

2. Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J. W., Soffa M. L.:
Retargetable and reconfigurable software dynamic translation. In Proceedings of
the 1st International Symposium on Code Generation and Optimization, San
Francisco, California, 36-47. (2003)

3. Cifuentes, C., Lewis, B., Ung, D.: Walkabout-A retargetable dynamic binary
translation framework. In Proceedings of the 4th Workshop on Binary
Translation, Charlottesville, Virginia, 22-25. (2002)

4. Ung, D., Cifuentes, C.: Machine-adaptable dynamic binary translation. In
Proceedings of ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization, Boston, Massachusetts, 41-51. (2000)

5. Tannenbaum, A.: Modern Operating Systems, Second Edition. Prentice Hall,
New Jersey. (2001)

6. Source codes and Introduction of CrossBit (2005). [online]. Available:
http://sourceforge.net/projects/CrossBit/

7. Shi, H. H., Wang, Y., Guan, H. B., Liang, A. L.: An intermediate language level
optimization framework for dynamic binary translation. ACM SIG/PLAN Notice.
Vol. 42, No. 5, 3-9. (2007)

8. Hiser, J. D., Williams, D., Hu, W., Davidson, J. W., Mars, J., Childers, B. R.:
Evaluating indirect branch handling mechanisms in software dynamic
translation systems. In Proceedings of the 5th International Symposium on
Code Generation and Optimization, San Jose, CA, USA, 61-73. (2007)

9. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In Proceedings of the 1st Annual International

Ruhui Ma, Haibing Guan, Erzhou Zhu, Yongqiang Gao, and Alei Liang

ComSIS Vol. 8, No. 3, June 2011 670

Symposium on Code Generation and Optimization, San Francisco, California,
265-275. (2003)

10. Banerjia, S., Bala, V., Duesterwald, E.: Preemptive replacement strategy for a
cacheing dynamic traslator. USA Patent, No.US6,237,065 B1. (2001)

11. Denning, P., Schwartz, S. C.: Properties of the working-set model.
Communications of the ACM. Vol. 15, 191-198. (1972)

12. SPEC CPU2000 Documentation (2010). [online]. Available:
http://www.spec.org/osg/cpu2000/docs/

13. Hazelwood, K., Smith M. D.: Code Cache Management Schemes for Dynamic
Optimizers. In Proceedings of the 6th Annual Workshop on Interaction between
Compilers and Computer Architectures. Cambridge, MA, 102-110. (2002)

14. James, C. D., Brian, K. G., John, P. B., Richard, J., Thomas, K., Alexander, K.,
Jim M.: The transmeta code morphing

TM
 software: Using speculation, recovery,

and adaptive retranslation to address real-life challenges. In Proceedings of the
1st International Symposium on Code Generation and Optimization. San
Francisco, California, USA, 15-24. (2003)

15. Ebcioglu, K., Altman, E. R.: DAISY: Dynamic complication for 100%
architectural compatibility. In Proceedings of the 24th International Symposium
on Computer Architecture. Denver, Colorado, 26-37. (1997)

16. Altman, E. R., Gschwind, M., Sathaye, S., Kosonocky, S., Bright, A., Fritts, J.,
Ledak, P., Appenzeller, D., Agricola, C., Filan, Z.: BOA: The architecture of a
binary translation processor. IBM Research Report RC 21665. (1999)

17. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: A Transparent Runtime
Optimization System.In Proceedings of the 4th International conference on
Programming language design and implementation. Vancouver, British
Columbia, Canada, 1-12. (2000)

18. Desoli, G., Mateev, N, Duesterwald, E., Faraboschi, P., Fisher, J. A.: Deli: A
new runtime control point. In Proceedings of the 35th International Symposium
on Microarchitecture. Istanbul, Turkey, 257-268. (2002)

19. Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and implementation of
a dynamic optimization framework for Windows. In Proceedings of the 4th ACM
Workshop on Feedback-Directed and Dynamic Optimization, Austin, Texas.
(2001)

20. Chen, W. K., Lerner, S., Chaiken, R., Gilles D. M.: Mojo: a dynamic optimization
system. In Proceedings of the 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization. Monterey, CA, 81-90. (2000)

21. Bai, T. X., Feng, X. B., Wu, C. G., Zhang, Z. Q.: Optimizing Dynamic Binary
Translator in DigitalBridge. Journal of Computer Engineering, Vol.31, No.10,
103-105. (2005)

22. Ung, D., Cifuentes, C.: Machine-adaptable dynamic binary translation. In
Proceedings of ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization. Boston, MA, 30-40. (2000)

23. Swaroop, S., Jonathan S. S., Prashanth P. B.: HDTrans: An Open Source, Low-
Level Dynamic Instrumentation System. In Proceedings of the 2th ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments,
Ottawa, Ontario, Canada, 175-185. (2006)

24. Wang, C., Hu, S., Kim, H., Nair, R. S., Breternitz, M., Ying, Z. W., Wu, Y. F.:
StarDBT: An Efficient Multi-platform Dynamic Binary Translation System. In
Proceedings of the 12th Asia-Pacific Computer Systems Architecture
Conference. Korea, 4-15. (2007)

Code Cache Management based on Working Set in Dynamic Binary Translator

ComSIS Vol. 8, No. 3, June 2011 671

25. Baiocchi, J. A., Childers, B. R., Davidson, J. W., Hiser, J. D.: Reducing pressure
in bounded DBT code caches. In Proceedings of International conference on
Compilers, architectures and synthesis for embedded systems. Atlanta, GA,
USA, 109-118. (2008)

26. Bruening, D., Kiriansky, V.: Process-shared and persistent code caches. In
Proceedings of the 4th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments. Seattle, WA, 61-70. (2008)

Ruhui Ma is currently a Ph.D. candidate at Shanghai Jiao Tong University,
China. He received the B.S. and M.S. degrees at School of Information and
Engineering from Jiangnan University in 2006 and 2008, China, respectively.
His main research interests are in virtual machines, computer architecture
and compiling.

Haibing Guan received his Ph.D. degree in computer science from the
Tongji University (China), in 1999. He is currently a professor with the Faculty
of Computer Science, Shanghai Jiao Tong University, Shanghai, China. He is
a member of CCF. His current research interests include, but are not limited
to, computer architecture, compiling, virtualization and hardware/software co-
design.

ErZhou Zhu is currently a Ph.D. candidate at Shanghai Jiao Tong University,
China. He received the M.S. and B.S. degrees in computer science and
technology in Anhui University, China, in 2004 and 2008 respectively. His
research interests include virtual machine, binary translation and computer
architecture.

Yongqiang Gao is currently a Ph.D. student of at the Shanghai Jiao Tong
University (SJTU), China. He received his M.Sc. in Computer Applied
Technology in 2009 from Northeastern University, China. His main research
interests are computer architecture, virtualization and green computing

Alei Liang received his Ph.D. degree in computer science from Shanghai
Jiao Tong University, China, in 2002. He is currently an assistant professor
with the Faculty of Computer Science, Shanghai Jiao Tong University,
Shanghai, China. His current research interests include, but are not limited
to, parallel computing via swarm intelligence and virtualization computing
with dynamic binary translation.

Received: March 27, 2010; Accepted: January 14, 2011.

