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Abstract. One important quantitative property of CPS (Cyber-Physical 
Systems) software is its heap bound for which a precise analysis result 
needs to combine shape analysis and numeric reasoning. In this paper, 
we present a framework for statically finding symbolic heap bounds of 
CPS software. The basic idea is to separate numeric reasoning from 
shape analysis by first constructing an ASTG (Abstract State Transition 
Graph) and then extracting a pure numeric representation which can 
further be analyzed for the heap bounds. A quantitative shape analysis 
method based on symbolic execution is defined in the framework to 
generate the ASTG. The numeric representation is extracted based on 
program slicing technique and inputted into an abstract interpretation 
tool for computing the heap bounds. We take list manipulating 
programs as an example to explain how to instantiate the framework 
for important data structures and to exhibit its practicability. A novel list 
abstraction method is also presented to support the instantiation of the 
framework.  

Keywords: CPS software, heap bounds, quantitative shape analysis, 
symbolic execution, program slicing. 

1. Introduction 

Conformance with quantitative constraints over temporal-spatial resources 
(such as execution time, energy, memory, etc.) is central to the correctness 
of CPS software. Compared with general purpose software, CPS software 
often suffers from very limited memory [1, 6, 8]. One of the most important 
quantitative properties of CPS software should be its heap bounds. 

CPS software often adopts dynamic memory allocation schemes, where a 
program can at any time request the operating system to allocate additional 
memory from heap. The failure of dynamic memory allocation request may 
cause the failure of CPS software or even the whole CPS system. Usually 
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depending on environmental parameters and/or user inputs, symbolic heap 
bounds are extremely important for CPS software which tends to feature a 
tight coupling between physical and software components and runs in open 
environments. Besides, precise symbolic heap bounds could also be very 
useful for inter-procedural static analysis and hardware synthesis [2]. 

There are several obstacles for finding precise heap bounds of CPS 
software written in imperative languages like C. Firstly, loops and recursive 
procedures are what make heap usage exceed its bounds. However, finding 
loop bounds may be difficult even for numeric programs and harder when 
loop bounds depend on the shape of the heap. Secondly, both shape analysis 
and numeric computation are needed for finding heap bounds. However, a 
casual combination of these techniques should involve a large increase in 
complexity, both in terms of the verification problem and the implementation 
[3]. Last but not the least, programmers often adopt shared mutable data 
structures, such as trees and lists, to develop CPS software for the sake of 
effectiveness and convenience. However, none of the available heap bounds 
analysis techniques can handle these shared mutable data structures full 
automatically. 

In this paper, we try to tackle these obstacles and present a novel 
framework for analyzing heap bounds of CPS software. The basic idea is to 
separate numeric reasoning from shape analysis and to make full use of 
existed static analysis techniques and tools for finding precise heap bounds. 
In detailed, the framework will first construct an ASTG via quantitative shape 
analysis based on symbolic execution [4]. The ASTG is employed as an 
intermediate representation during the analysis and the transformation. A 
numeric representation maintaining the heap usage properties of the original 
program is further extracted based on the main idea of program slicing. The 
abstract interpretation tool Interproc [24] is finally used to find the heap 
bounds.  

The framework can be instantiated for various data structures manipulating 
programs. In order to explain how the framework should work, we take list 
manipulating programs as an example. A new list abstraction model which 
maintains both shape and quantitative properties is presented and used 
during instantiating the framework. The new list abstract model stores the 
relationship between variables and list nodes in a singly-linked list implicitly, 
and represents list states in a compact manner. Compared with other 
abstraction models for list, such as shape graph and separation logic, it 
enjoys lower space overhead and higher implementation efficiency.  

This paper has several main technical contributions: 

 We present a new framework for analyzing heap bounds of CPS software. 
It separates numeric reasoning from shape analysis by extracting a 
numeric representation which maintains the heap usage of the original 
program.  

 We further show how the framework could be instantiated for important 
data structures taking list manipulating programs as an example. With 
proper modifications and extensions, the framework should also work for 
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programs containing more complex data structures such as circular lists, 
doubly-linked lists, etc. 

 We present a novel quantitative shape analysis method based on symbolic 
execution. It generates an ASTG (Abstract State Transition Graph) and is 
more precise than classic shape analysis methods.  
The paper is organized as follows. Section 2 presents the related work. 

Section 3 explains our main idea through a simple example. Section 4 
presents the framework for analyzing heap bounds of CPS software. In 
Section 5 we introduce how to instantiate the framework for programs 
manipulating lists. Section 6 presents the experimental results. Section 7 
makes a conclusion. 

2. Related Work 

Quantitative properties of CPS software have gained a lot of attention within 
the past several years, as shown by the recent publications on the subject [7-
10]. But they mainly focus on the WCET problem, while we try to find heap 
bounds of CPS software in this paper.  

Early work for heap bounds analysis and verification [11-13] mostly 
focuses on functional programs where data structures are basically 
immutable and easier to handle. These works often needn’t treat shape or the 
shared mutable data structures.  

For imperative Object Oriented programming languages such as Java, the 
method proposed in [14] relies on a type system and type annotations. It is 
therefore up to the programmer to annotate the sizes of data structures and 
the amount of heap memory required for each method. Hofmann et al. [15] 
also propose a type based heap space analysis for Java style OO programs 
with explicit deallocation. It uses an amortised analysis and calculates heap 
memory usage with an LP-solver based on function inputs during the type 
inference. Albert et al. introduce a Java memory-bounds tool in [16]. It uses a 
heap abstraction and applies heuristics based on arithmetic simplification to 
find a memory bound.  

For assembly-level programs, Chin et al. [25] present a method to find 
memory resource bounds for each method in terms of the symbolic values of 
its parameters. However, the system does not handle shared objects. 

Different from previous work [14-16, 25], we focus on the C language 
which is found in many critical CPS software implementations. Finding heap 
bounds for C programs needs both quantitative shape analysis and numeric 
reasoning. Previous work often omitted shape analysis; while our method 
uses a more precise shape abstraction, which is crucial for dealing with our 
examples.  

He et al. [17] try to reuse a general-purpose verification system Hip/Sleek 
for memory usage verification, where shape, size and alias information can 
be readily obtained from the specifications given in separation logic. They 
can verify quite a number of programs that cannot be handled by previous 
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approaches, such as doubly linked lists, cyclic linked lists and binary trees. 
However, they need to supply memory specifications for the programs 
manually, while our framework could find heap bounds automatically. 

Cook et al. [18] present a constraint-based method to find symbolic bounds 
for C programs combining several known methods and tools. They use the 
shape analysis tool THOR [20] to produce a new program without heap 
operations and use constraint-based techniques to find the heap bounds. 
Magill et al. [19] present a formal system for producing numeric abstractions 
of heap-manipulating programs based on the work of [18, 20, 21]. Our 
quantitative shape analysis procedure is based on symbolic execution 
techniques and that is different from THOR which is based on separation 
logic invariants generation. Another key difference between their method and 
ours should be the abstract model for list. Their work uses separation logic to 
model the abstract list state, while our work adopts the newly presented list 
abstract model. By focusing on specific data structures, our framework is able 
to obtain more precise results than their work while without have to ask the 
user to supply any annotations. Our numeric representation extraction 
algorithm is based on program slicing technique, which makes our result 
numeric CFG be smaller than theirs when applying to heap bounds analysis. 

Shape graph is the most frequently used abstract model in static analysis; 
however, it can’t express quantitative properties of heap. Some researchers 
[14, 17-20] used separation logic to describe the abstract state of list. 
Bouajjani et al. [22] use counter automata to model the abstract state of list. 
Our list abstract model has the equal expression ability with their counter 
automata. But our method enjoys lower space overhead and better 
scalability. Besides, the method in [22] is not implemented automatically; 
while we have implemented a prototype tool based on our list abstract model. 

3. A Motivating Example 

The example in figure 1 is taken from [2] with minor modifications, which may 
denote a frequently used programming pattern in CPS software. The 
procedure reads integers from an input signal i and returns every n inputted 

integers to an output signal o in inverse order. The primitive input() reads 

one integer from i, and the primitive output() writes one integer to o. The 

data structure LIST is used to represent singly-linked lists (with fields data 

and its next element). The bound of heap usage for prio should be 8n 

(assuming that sizeof(LIST) = 8). 

This example is fairly simple but exhibits all the obstacles we want to 
overcome in this paper when finding precise symbolic heap bounds of CPS 
software. Using the method presented in this paper, we are able to find such 
a bound for this example. An intermediate representation including only 
numeric variables will be constructed and analyzed for the heap bounds in 
our framework. An equivalence program of the numeric representation written 
in C is given in figure 2 for understanding convenience. The numeric 
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representation may contain some variables from the original program (such 
as k and n) and some instrumentation variables such as heap_now, heap_peak 
(which track the heap usage) and X, Y (which track the quantitative 

properties of shape, and in this case they represent the length of lists). Now 
analyzing the following numeric program, we could know the biggest value of 
heap_peak is 8n, which is just the heap bound of the original program. 

void prio(int n, in_signal i, out_signal o) { 

LIST *head,*cur; 

1:  while(1){ 

//  Build up an n−sized buffer 

2:    head = (LIST*)malloc(sizeof(LIST)); 

3:    head->data = input(i); 

4:    for(int k = 0;k<n-1;k++){ 

5:      cur = (LIST*)malloc(sizeof(LIST)); 

6:      cur->data = input(i); 

7:      cur->next = head; 

8:      head = cur;} 

//  Send the buffer to the output and deallocate it 

9:  cur = head; 

10: while(cur != NULL) { 

11:    output(o, cur−>data); 

12:    head = cur−>next; 

13:    free(cur); 

14:    cur = head; }}} 

Fig. 1. A motivating example 

4. A Symbolic Heap Bounds Analysis Framework 

In this section, we introduce a new framework for finding symbolic heap 
bounds statically. The framework is presented in figure 3. After getting the 
CFG (Control Flow Graph) of the original program, we go forward with a 
quantitative shape analysis which can generate shape invariants for each 
program point. We do not annotate the abstract states and transitions in the 
original CFG, but construct a new intermediate representation named as 
Abstract State Transition Graph (ASTG, for short). ASTG is a core internal 
representation in our framework which could be used to extract the numeric 
representation. The final numeric representation is actually a CFG which 
maintains the heap usage properties of the original programs and 
manipulates only numeric variables. A numeric reasoning tool such as 
Interproc [24] could be then used to find the heap bounds. We will introduce 
these steps in detail in the following subsections. In this paper, we take list 
manipulating programs as an example for explaining the main idea of the 
framework. When extending to programs manipulating other kinds of data 
structures, firstly, you need to adopt a suitable abstract model for these data 
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structures, and then make some proper modifications when implementing the 
core algorithms.  

 

void prio_numeric(int n, in_signal i, out_signal o) 

1: {int heap_now, heap_peak, k, X, Y;  

2:  heap_now = 0; 

3:  heap_peak = 0; 

4:  while(1){ 

5:    heap_now = heap_now + 8; 

6:    if(heap_now > heap_peak) 

7:      heap_peak = heap_now; 

8:    k = 0; 

9:    X = 1; 

10    while(1){ 

11:     if(k>=n-1) 

12:       break; 

13:     heap_now = heap_now + 8; 

14:     if(heap_now > heap_peak) 

15:       heap_peak = heap_now; 

16:     k = k + 1; 

17:        X = X + 1:} 

18:    Y = X; 

19:    while(1){ 

20:      if(Y==1) 

21:        break; 

22:      heap_now = heap_now – 8; 

23:      Y = Y – 1;} 

24:    heap_now = heap_now – 8; }} 

Fig. 2. The numeric program tracking the heap bounds 

 

Fig. 3. Static analysis framework for symbolic heap bounds 
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4.1. Abstract State Transition Graph 

ASTG plays an important role in our framework, so we first give its definition 
in this subsection.  

Definition 1. An Abstract State Transition Graph (ASTG) is a 5-tuple 

Q,q0,P,,L, where: 

- Q is a finite set of abstract states. Each qQ is a 2-tuple q = sg,pc where 

sg is an abstract shape representation in program point pc.  

- q0Q is the starting state. 

- PQ is the set of exit states. 

- QQ is the set of transitions.  

- L is a labeling function which labels each  with program commands.  
The abstract shape representation must maintain both shape properties 

and quantitative properties of the current shape. Supposing sg can be further 

divided into shape part sgs and quantitative part sgq. Given an abstract shape 

representation sg, we record it with sg = sgssgq. However, it’s obvious that 
these two parts may rely on each other and are not fully independent with 
each other. How to express the abstract shape depends on the concrete 
implementation and the abstract model for shared mutable data structures. 

One key difference between our method and existed methods (such as 

[21]) is that we classified the transitions. The transitions in  could be 

classified into three disjoint subsets. s stands for the kind of transitions 

which are labeled with statements from the original program; c stands for 
the conditional transitions which are labeled with Boolean expressions; and 

l stands for the kind of transitions which enter a loop structure and are 

labeled with a special command MakeShapeSymbolic. Any   could be 
treated as a transfer function which maps a source abstract state to a target 
abstract state.  

The transitions in s are easily understood. Given an input state, it just 
generates one output state according to the semantics of the labeled program 
statements. It’s worth noting that the definition of ASTG doesn’t require the 

statements labeled on s must be assignment statements, as you can see 
soon from the example ASTG in figure 4.  

There are some cases that a statement could generate two output abstract 
states. One case is when the branch condition of a branch statement could 
either be true or false for an input abstract state. The other case is when 
some special assignments might also generate two abstract states, according 
to the operational semantics of the abstract shape model for the underline 
data structures. For these two cases, we must bring in conditional transitions 

which are labeled with transition conditions and add them to c. 
In order to handle loop structures, we bring in a special transition for each 

edge entering a loop structure in the CFG and add them to l. The target 

abstract state of each transition in l is a symbolic representation of the 
source abstract state. We label these transitions with a special command 
named MakeShapeSymbolic. It means that we should construct a new 
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symbolic abstract state. The quantitative part sgq of the abstract shape 
representation should contain only new symbolic variables.  

There are some optimizations or constraints we would like to make for the 
transitions in ASTG in order to reduce the abstract states set Q and to 

simplify the implementation of our framework. As for the transitions in s, if a 
continuous fragment of statements can only generate one output abstract 
state for each inputted abstract state, then they could be merged into a 
compound transition. The compound transition takes the source state of the 
first transition and the target state of the last transition and is labeled with the 
statements from all these transitions sequentially. There are some cases that 
the condition of a branch statement is definitely evaluated to true or to false 
for the input abstract state. We treat these branch statements as normal 
assignment transition in this case and label these branch statements with 

transitions in s. The underline abstract modeling method must assure that 
an assignment statement should never generate more than two abstract 
states for the correctness of our method. Suppose the conditions labeled on 
the two outgoing transitions from one common source abstract states are 

cond_true and cond_false, it must be assured that cond_true = (cond_false) 

and cond_false = (cond_true). As for the transitions in l, the shape parts of 
the source state and the target state must be identical.  

cur=malloc();

cur->data= 

  input(i);

cur->next=head;

head=cur;

k=k+1;

10     X

10    X+1

head=malloc();

head->data=

  input(i);

k=0;

for(;k<n-1;)

MSS

10  X

k<n-1

10      1

Ø(k<n-1)  

11     Y

cur=head;

free(cur);

cur=head;

11     Y

11      X

11     Y-1
01        1

01        1

Y-1==0 Ø(Y-1==0)

11    Y-1

while(cur!=NULL) 

output(o,cur−>data);

head=cur−>next;

10      X

MSS

MSS

MSSMSS

free(cur);

cur=head;

MSS

s

c

l

 

Fig. 4. The ASTG generated for the motivating example 

The generated ASTG for the example by our framework in figure 1 is given 
in figure 4. Here each solid line box stands for an abstract shape sg and its 

position should exhibit the program counter pc. The abstract shape is 
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expressed with our list abstract model which will be explained in the next 
section. You don’t have to doubt why an abstract shape can be expressed 
like that now. The starting state q is slash marked. The program will runs 
forever so there is no exit states. Three kinds of transitions are denoted with 
different arrows as shown in the figure. The dotted line boxes positioned 
aside present what are labeled for each transition. The operation 
MakeShapeSymbolic is represented with MSS for brevity. As you can see, 
the ASTG describes all the abstract states that may occur during the 
execution of the original program. A program point of the original CFG may 
be separated into several abstract states with different abstract shape parts. 
An ASTG could be treated as the result of refining the original CFG based the 
shape analysis result in some ways. 

4.2. Quantitative Shape Analysis 

In this part we introduce how we can construct an ASTG from a CFG based 
on the idea of symbolic execution [4]. The algorithm is presented in figure 5. 
Its main idea is to start symbolic execution from the initial state and record 
the abstract states and the transitions that can arise during symbolic 
execution. Semantics of all the basic shape operations must be defined at 
first in order to implement the algorithm. Before explain how the algorithm 
works, we first define the abstract subsumption relationship between two 
abstract states.  

Definition 2. Given two abstract states s1,s2, supposing s1 = sg1,pc1 and s2 

= sg2,pc2, sg1 = sgs
1sgq

1, sg2 = sgs
2sgq

2. We would call s1 is subsumed by s2 

and record with s1 s2 if and only if pc1 = pc2 sgs
1 = sgs

2 and sgq
2 includes only 

atom symbolic variables. 
The algorithm in figure 5 maintains two sets of abstract states, where NEW 

maintains the abstract states needed to be analyzed and OLD  keeps the 
ones that have been analyzed. The algorithm will start symbolic execution 
from a selected abstract state in NEW and runs along the original CFG. When 

the set NEW is empty we could get the final ASTG. The method of selecting 

the next abstract state to analyze from NEW is not fixed and depends on the 

adopted search strategy. With a selected state from NEW, the algorithm will 
keep executing until it reaches one of the following three special cases: 

- When reaching an exit abstract state, it will select another abstract state 
from NEW, and start a new symbolic execution process. 

- When reaching a statement that may generate two possible abstract 

states, it will first construct a new s  transition and two new c transitions. If 
any branched new abstract state is not subsumed by some abstract state in 
OLD, then a new abstract state has occurred and must be added to NEW. 

- When reaching an edge which enters a loop structure in the CFG, it will 
check whether the state could be subsumed by some abstract state in OLD. If 
not, then a new abstract state has occurred and must be created with 

MakeShapeSymbolic command and added to NEW. Besides, a new l 
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transition and a new s transition may also be constructed accordingly. The 
MakeShapeSymbolic operation means making a shape representation 
become a more general symbolic representation. Its concrete implementation 
depends on the underline abstract model for shared mutable data structures. 

As an example, you can refer to figure 4 which gives an ASTG generated 
by the algorithm for the motivating example in figure 1. 

 

Algorithm 1: QuantitativeShapeAnalysis 

INPUT:     q0        // the initial abstract state 

                 P        // the set of exit abstract states 

                 cfg      // the CFG of the original program 

OUTPUT:   astg = OLD,q0,P, scl,L     
// the ASTG of the original CFG 

begin 

1: OLD = ; NEW = {q}; 

2: while(NEW  ) do 

3:    select and remove s from NEW, add it to OLD; 

4:    start symbolic execution from s until the following cases happen:  

// suppose the temporal abstract state before the interrupt is s’ 
5:         In case of reaching a statement that may generate two different  

abstract states s1, s2: 

6:               if s  s’ then 

7:                    add  s, s’ to s, label it with corresponding statements; 

      8:               add s1 to NEW  if si  OLD. (s1 si); 

9:               add s2 to NEW  if si  OLD. (s2 si); 

10:               add s’,s1,s’,s2 to c, label it with corresponding conditions; 

11:               continue; 
12:         In case of reaching an edge entering a loop structure in the CFG: 

13:               if s  s’ then  

14:                     add  s, s’ to s, label it with corresponding statements; 

15:               if si  OLD. (s’ si) then 

16:                     s’’ = MakeShapeSymbolic(s’); 

17:                     add s’’ to NEW; 

18:                     add s’, s’’  to , label it with MakeShapeSymbolic; 

19:               else    // suppose  si  OLD. s’ si 

20:                     add s’,si to l, label it with MakeShapeSymbolic; 

21:               continue; 

22:          In case of s’  P 

23:               continue; 

24:  od   

end  

Fig. 5. The QuantitativeShapeAnalysis algorithm 
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4.3. Numeric Extraction 

In this subsection, we will first introduce how we can model the heap usage of 
the original program with two numeric variables, and then introduce the main 
steps for extracting a numeric CFG from the ASTG. 
Heap bound is a quantitative property intending to find a peak value for heap 
usage. Here we bring in two instrumentation variables heap_now and 

heap_peak which represent the heap usage at present and the peak heap 
usage until now respectively. There are two cases when we need to modify 
these two variables.  

When programs call library functions such as malloc() to allocate some 

amount of memory from heap, heap_now should be increased by the amount 

of allocated heap memory. Besides, we have to determine whether heap_now 

is greater than heap_peak, and update heap_peak if it was. For each original 
statement ptr=malloc(malloc_size), we should instrument with the 

following statements: 

heap_now = heap_now + malloc_size; 

if(heap_now>heap_peak)  

    heap_peak = heap_now; 

Other library functions such as realloc() and calloc() could also be 

handled in this way with respect to their operation semantics. We will not list 
them in detail. 

When programs call library function free() to give back some amount of 

memory to heap, heap_now should be decreased by the amount of 
deallocated heap memory. Suppose the size of the freed memory 
free_size has been gained by a pre-analysis task, we will instrument 

free(ptr) with the following statements: 

heap_now = heap_now - free_size;  

We can traverse all statements labeled on the transitions of ASTG and 
complete the instrumentation work based on syntax analysis. The biggest 
value of heap_peak should be the heap bounds of the original program. 

However, besides depending on numeric program variables, heap_peak may 
also be controlled by loops and branches which may further depend on the 
shape of the heap, as we can see from the example in figure 1. Existed 
numeric reasoning tools could not be adopted directly. We will try to 
overcome these obstacles by constructing a pure numeric representation of 
the original program. The good news is that ASTG contains plentiful 
information for transforming these syntax structures into corresponding 
numeric versions. 

We can transform these loops depending on the shape of the heap as 
following. Because we have refined the original loop structures in the 
quantitative shape analysis phase, all new loop structures in ASTG enjoy the 
good character that the shape parts of the abstract shape representations in 
the loop entries are identical. So the loop body can only affect the 
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quantitative properties of the abstract states. We try to bring in new 
instrumentation variables to describe the change of the quantitative parts of 

the abstract representations. Each transition in l  is also well designed 
requiring that the shape parts of the source abstract state and the target 
abstract state must be identical. Besides, the quantitative part of the target 

abstract state of a l transition contains only atom symbolic variables. We 
could take these atom symbolic variables as new numeric instrumentation 
variables, and assign the corresponding symbolic expressions from the 

quantitative part of the source abstract state of l to them. These 
assignment statements could then reflect the effect of the loop body for the 
abstract state. 

As for the branches depending on the shape of the heap, we can replace 
the shape related branch conditions with equivalent quantitative properties of 
the shape. It’s fortunately that the generated ASTG has already transformed 
these branch conditions into numeric versions, as you can see in figure 4. We 
will explain how it is possible for us to make the transformation taking lists 
manipulating programs as an example in the next section.  

Now we can extract the statements that affect the value of heap_peak and 
construct the numeric CFG. The extraction algorithm presented in figure 6 is 
based on the program slicing technique [5]. Program slicing can be used to 
extract program statements which are relevant to a particular computation. A 
program slice is an executable program whose behavior must be identical to 
a specific subset of the original program’s behavior. The principle of getting 
this behavior subset is called slicing criterion and can be expressed as the 
value of some sets of variables at some set of statements and/or program 
points.  

The numeric CFG is a heap bounds slice of the instrumented ASTG with 
the initial slicing criterion including all the statements that modify heap_peak. 
The slicing procedure then starts to find and label the statements on all these 
edges that lead the program reaching some slice criterion based on the main 
idea of classic program slicing. After getting the labeled ASTG, we could 
construct the numeric CFG easily. 

 

Algorithm 2: ExtractNumericCFG 

INPUT:     astg     // the intermediate representation       

OUTPUT: cfg     // the final numeric representation tracking the heap bounds 
of  the original program 

begin 

1:  traverse astg and instrument it with heap_now, heap_peak; 

2: traverse astg and label all transitions in l with corresponding 
assignment statements; 

3:  add all the statements that modify heap_peak into slicing criterion; 

4:  slice the ASTG and construct cfg; 

end  

Fig. 6. The ExtractNumericCFG algorithm 
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As an example, the extracted numeric CFG for the motivating example by 
our framework is presented in figure 7. Each box may stand for a 
combination of several basic blocks. We present it like this on purpose to 
reflect the main idea of the ExtractNumericCFG algorithm and for simplicity. 
Suppose the initial value for heap_now and heap_peak are all zero, then we 

could get the heap bounds 8n with the abstract interpretation tool Interproc 
now.  

5. Instantiate the Framework 

In this section, we illustrate how to instantiate the framework for various 
shared mutable data structures. List is one of the most frequently used data 
structures in CPS software. So we will take list as an example and present a 
novel abstract model for lists in the first subsection. In the second subsection 
we will explain some special issues needed to be considered when 
instantiating the framework. 

heap_now+=8;

if(heap_now>heap_peak)

  heap_peak=heap_now;

k=k+1;

X=X+1;

heap_now+=8;

if(heap_now>heap_peak) 

  heap_peak=heap_now;

k=0;

X=1;

heap_now-=8;

Y=Y-1;

Y=Xk<n-1

Y==1

heap_now-=8;

heap_now=0;

heap_peak=0;

 

Fig. 7. The final numeric CFG for the motivating example  

5.1. A New List Abstract Model 

In order to express our basic idea more clearly, we focus on non-circled 
singly-linked lists at first. Although doubly-linked lists and circled lists are 
special, they can all be expressed using this abstract model with simple 
extensions. A singly-linked list node contains one next field pointing to the 
next list node; while all other fields can be treated as data fields. The abstract 
syntax considered in this paper is given in figure 8. Here PVar is a finite set of 
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pointer variables of list type and DVar is a finite set of variables of primitive 
types (for simplicity, we only consider integer variables by now). Allowed 
syntax structures include assignment statements, branch statements, and 
loop statements. We suppose that there is at most one next operator in a list 
operation. All other cases could be transformed by bringing in temp variables. 
One example manipulating lists is presented in figure 1. 

 

Fig. 8. The abstract syntax for operating lists 

Suppose the set of list nodes is N, and the variables in PVar form a special 

subset of list nodes VN. Another special node NULLN is used to denote the 

null node. We define a binary relation E from N-{NULL} to N-V: 

n1,n2N,n1,n2E iff n1 points to list node n2 when n1V and n2 is the next list 

node of n1 otherwise. We record the transitive, irreflexive closure of E with E+, 

and define a binary predicate Reach(n1,n2) such that n1,n2N, Reachn1,n2 

evaluates to true iff n1,n2E+.  
For the time being, we consider programs without recursion or concurrency 

constructs, and therefore all variables could be assumed to be global. We 

arrange all the variables in PVar in order, and for each 0i|V|-1, Vi stands for 

the ith variable. The binary predicate Reach describes the reachability 

property between list nodes in N. If Reach(Vi,n) evaluates to true, then Vi could 

access list node n via a number of next operators and we would say that the 

variable  Vi can reach list node n. For each list node nN-V, its reachability 
property for all the variables could always be expressed with a Boolean 
vector. 

Definition 3. For each list node nN-V-{NULL}, its Variable Reachability 

Vector (VRV for short) n is a |V|-sized Boolean vector n {0,1}|V| where n 

[i]=1 iff Reach(Vi,n) evaluates to true. 
Let’s see an example of VRV. Suppose the example in figure 1 has just 

executed the statement in line 7 during the (n-1)th loop. The current list state 
may be like what is presented in the left part of figure 9. We denote list nodes 
with boxes, while denote those special nodes with boxes with dotted lines. If 
we define V0 = head, V1 = cur, then the VRVs listed on the top of each list node 

could describe their reachability. And as we can see, the list node nn has just 

been created and pointed to by cur, so the VRV for nn should be 01. The VRV 
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for all the other list nodes should be 11 because they can all reached by both 

head and cur. 

cur

head

NULL

01 11 11

nn nn-1 n1

V0V1

0 1
1 1

num
1

n-1
V0 = head;   V1 = cur;

 

Fig. 9. An example for VRV and VRVSC 

Without confusing, we would also say that the variable Vi can reach VRV  

if [i]=1. Given a VRV , we define a set of integers R={i|[i]=1}which 

describes the variables that could reach . For two VRVs 1, 2, if R1R2, 

then we would say 1 can reach 2 and record with 1  2. Besides, for each 

variable Vi, we define a set of VRVs i = {|[i] = 1} which contains all the 

VRVs that the variable Vi can reach. After defining the reachability 

relationships between VRVs, for each variable Vi, we can find the minimal 

element in i and record it with 0 :i  0.i i    . It’s obvious that 0

i  must be 

the right VRV for the list node pointed to by Vi.  

Let’s see the example in figure 9 again, where 0 = {11}, 
0

0  = 11, so we 

can know that the list node pointed to by head has the VRV 11. Similarly, 

because 1 = {01,11}, 
0

1  = 01, we can know that the list node pointed to by 

cur has the VRV 01. 
Given a list state, we can always construct a set of VRVs according to 

Definition 3. The relationship between these VRVs can describe the relative 
position of the corresponding list nodes. We can also get the VRV to which 
each variable points. There may exist any number of nodes with identical 
VRVs. Because we are only interested in the shape of heap and its 
quantitative properties, we can simply count the number of list nodes with 
identical VRV as following.  

Definition 4. VRV Set with Counters (VRVSC for short) is a set of 2-tuples 

VRVSC = {vrv,num}, where vrv is a VRV and num is the number of list nodes 

whose VRV equals to vrv. 
According to the definition, all tuples in a VRVSC should be different in 

their vrvs and the num field for each tuple should always be greater than zero. 
We could always get one and only one VRVSC for each list state after 
defining the sequence of the variables. So VRVSC can be used as an 
abstract list model which maintains both the shape and quantitative 
properties.  

For example, the VRVSC given on the right part of figure 9 could deliver 
the same information as the shape graph given on the left part. We could 
read from the VRVSC representation that there are n-1 node which could be 

accessed by both head and cur via a number of next operators, and there is 
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one list node pointed to by head but not pointed to by cur. Also we can know 

the next node of the node pointed to by cur should be the same node pointed 

to by head. 
The operation of data fields and primitive data types are the same as 

normal, so we only consider the abstract semantics for list operations. For 
simplicity, we use some simple recording symbols. Given a set of integers S 

and a VRVSC tuple vrv,num, we use vrv/S0 to represent the operation of 

replacing all the bits of vrv in S with 0, meanwhile, use vrv/Sj  to represent the 

operation of replacing all the bits of vrv in S with vrv[j]. new(S) means creating 

a new VRV in which all the bits in S are 1 and the other bits are 0. We also 

use p to represent the pth variable when not confusing. 
An assignment statement can be treated as a transfer function for the 

abstract list model. Given a VRVSC vrvsc, the abstract semantics given in 
figure 9 describe how it can be updated according to the semantics of each 

assignment statement. For each assignment statement, a tuple vrv,num 

vrvsc may be changed only when vrvpq (or p if the assignment 

statement doesn’t manipulate q). We will use vrvsc to represent the 

unmodified part of vrvsc in figure 10. 
 

 

 

 

 

 

 

 

Fig. 10. Abstract semantics for list operations 

When executing these list operations according to the abstract semantics, 
three cases in the output VRVSC may occur. 

(1) There exist some tuples whose num fields are zero. The definition of 

VRVSC requires that all num fields must be greater than zero. If this case 

happens, we should delete these tuples from vrvsc. 
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(2) There exist several tuples whose vrv fields are identical. If this case 
happens, we should merge all these tuples into one tuple and take the sum of 
their num fields as the new num field. 

(3) There exist some tuple whose vrv field is an all zero VRV. If the tuple’s 

num field is also zero, then we simply delete the tuple from vrvsc according to 

the first case handling schema. However, if the num field is not zero, then it 
means some list nodes will never be accessed by any variables, so we will 
report a memory leak error. 

We have defined a function Compact(vrvsc) to handle the above cases. The 
function should be called after each list operation by default.   

The abstract semantics for list operations are fairly straight forward, so we 
won’t explain in detail here, and only list them in figure 10. The detailed 
explanations and examples are given in Appendix A. 

5.2. Some Special Issues to Be Considered 

Our framework requires that the abstract model should maintain both shape 
properties and quantitative properties for the shared mutable data structures. 
VRVSC could be used as an abstract model of list meeting the above 
requirements. Next we show some special issues to be considered when 
instantiating the framework.  

(1) Algorithm for checking subsumption 
The quantitative shape analysis algorithm will check the subsumption 

relationship between two abstract states in a high frequency. So the algorithm 
plays an important role for improving the efficiency and extendibility of the 
framework. Based on Definition 2, implementing such an algorithm for the 
abstract list model is fairly easy.   

In this case, a vrvsc plays the role of the abstract shape representation sg, 

the set of VRVs: {vrv|vrv,numvrvsc} plays the role of the shape part sgs, 

and the constraints on the num fields play the role of the quantitative part sgq. 

In order to check whether sgs
1 = sgs

2, we could iterate on the two set of VRVs, 
and check if they are identical. We design one practicable algorithm and 
present it in figure 11. The comparison of two Boolean vectors (checking 
whether vrv1=vrv2) could be implemented in a high efficiency way, so the 
checking subsumption algorithm could run efficiently. 

(2) Implementation of the MakeShapeSymbolic Command 
The MakeShapeSymbolic command constructs a more general symbolic 

representation. Based on the list abstract model, we can bring in a new 
symbolic variable for each num field of all the tuples in the VRVSC in the 

QuantitativeShapeAnalysis algorithm. When handling transitions in l in the 
ExtractNumericCFG algorithm, we could compare two VRVSCs of the source 
and the target abstract states, find two tuples with identical vrv, and assign 

the symbolic expressions kept in the num field of the source state to the 

symbolic variable kept in the num field of the target state. 
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Algorithm 3: CheckingSubsumption 

INPUT: s1, s2     // two abstract states, supposing: 

             s1 = { 1

1vrv , 1

1num ,…, 
1

ivrv ,
1

inum },pc1, 

              s2 = { 1

2vrv , 1

2num ,…, 
2

jvrv ,
2

jnum },pc2 

OUTPUT: yes       // when s1 s2 

                 no        // otherwise 

begin 

1:  return no if pc1  pc2; 

2:  return no if i  j; 

3:  For each 1ki 

4:      subsumed = no; 

5:      For each 1tj 

6:            if 1

kvrv == 2

tvrv   and 
2

tnum  is an atom symbolic variable 

7:                 subsumed = yes; 
8:                 break; 
9:      if(subsumed == no)  

10:          return no;             

11: return yes; 

end  

Fig. 11. Algorithm for checking subsumption 

(3) How to transform the shape dependent conditions to numeric conditions 
In order to facilitate the ExtractNumericCFG algorithm, the abstract list 

model should be able to transform the shape dependent branch conditions 
into numeric versions. We focus on two kinds of branch conditions depending 
on the shape of the heap. They can both be transformed easily as following. 

The first kind of conditions check whether a pointer variable is null. For 

example, p==null means that all the list nodes should not be reached by the 

variable p. Given vrvsc, it equals to vrv,numvrvsc.vrv[p]==0. Considering 

the num fields may contain symbolic variables, we adopt another equal 

expression: vrv,numvrvsc.vrv[p]0  num==0. Another kind of conditions 
check whether two pointer variables point to the same list node. For example, 
p==q means that p and q should always point to the same list node. Following 

the above idea, we can express it with vrv,numvrvsc.vrv[p]vrv[q]  

num==0.  
(4) How could an assignment statement become a branch statement?  
A shape controlled branch may also affect the heap usage, for example we 

may call malloc() or free() in a shape controlled branch statement. 

However, when generating the ASTG, all these shape related branch 
conditions will be evaluated to a fixed value. So we don’t have to handle 
these branches specially. That’s because our framework has transferred the 
uncertainty of shape controlled branches to the uncertainty of some special 
assignment statements as following. 
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As we have pointed out in the previous sections, the Compact() operation 

must check if the num field of a tuple in VRVSC is zero. Because we adapt 
symbolic execution techniques during quantitative shape analysis, the 
underline SMT solver may report an answer unknown when verifying whether 

a symbolic expression equal 0. In this case, the Compact() operation may 
don’t know whether to delete a tuple from the VRVSC. That should generate 
two abstract states and both of them should be treated with conservative 
care. In this case, the assignment statement acts like a branch statement and 

we should construct two transitions of c type to deal with this problem. 
Corresponding conditions with only numeric symbolic expressions are also 
labeled on the transitions. For example, when executing the statement head 

= cur−>next in line 12 of the example presented in figure 1, we must 

check if the symbolic expression Y-1 equals to 0, and the adopted SMT solver 
will answer with unknown, so we add two transitions to the ASTG as shown in 
figure 4. 

6. Experimental Results 

In order to prove the practicability of our framework, we have designed and 
implemented a prototype tool for analyzing symbolic heap bounds of list 
manipulating programs statically. The prototype tool is implemented on top of 
the LLVM framework [27] which offers many useful facilities for the front-end 
analysis and the implementation of the numeric extraction algorithm. We 
adapt the core framework of KLEE [23] to implement the quantitative shape 
analysis procedure. The final numeric representation is inputted into Inerproc 
[24] for computing the biggest value of  heap_peak.  

We have carried our experiments for several small programs. The 
example given in figure1 and copy_and_delete are hand written. 
Hash_New_Table1 and Hash_New_Table2 are two Hash Table construction 
functions taken from the hash.c of heaplayer-0.1-benchmarks [26]. The other 
benchmarks are taken from [28] and can be downloaded from 
http://www.liafa.jussieu.fr/celia/ examples.html. Table 1 shows the statistics 
obtained for each analyzed program. The program size is evaluated in terms 
of number of lines of C code (Column 2). For each program, Column 3 
represents the time for the preparation of CFG with LLVM infrastructure, 
Column 4 represents the time taken by quantitative shape analysis, Column 5 
represents the time taken by numeric representation extraction, and Column 
6 represents the time taken by Interproc to compute the biggest value for 
heap_peak. We also list the symbolic heap bounds reported by our tool and 
the expected results in the last two columns. Our experiments were done 
under Fedora 12 platform on Dual Core 1.8 GHz with 1GB main memory. 
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Table 1. Experimental results 

Programs Size 

(in 

lines) 

Control 

Flow 

Analysis 

(in sec.) 

Quantitative 

Shape 

Analysis 

(in sec.) 

Numeric 

Extraction 

(in sec.) 

Interproc 

(in sec.) 

Report 

Result 

(in Bytes) 

Expected 

Result 

(in Bytes) 

figure 1 20 0.015 0.957 0.585 0.092 8n 8n 

copy_and_ 

delete 

26 0.007 0.736 0.523 0.070 8n 8n 

Hash_New_

Table1 

18 0.009 0.688 0.424 0.290 65545328 65545328 

Hash_New_

Table2 

25 0.011 0.791 0.459 0.397 81931660 81931660 

intlist-lib-add 16 0.009 0.090 0.045 0.009 8 8 

intlist-lib-

add_tail 

30 0.010 0.745 0.583 0.075 8 8 

intlist-lib-init 16 0.009 0.701 0.421 0.289 8len 8len 

intlist-fold-

copyGe5 

37 0.009 0.698 0.601 0.081 8n 8n 

intlist-fold-

splitV 

42 0.012 0.684 0.583 0.087 8n 8n 

intlist-fold2-

concat 

59 0.016 0.959 0.601 0.094 8(n+m) 8(n+m) 

intlist-fold2-

merge 

90 0.019 1.219 0.893 0.138 8(n+m) 8(n+m) 

 
Our tool reports precise heap bounds for all the programs. Although the 

original programs and their ASTGs vary very much, the final numeric CFGs 
are all very simple, so the time for running Interproc is almost the same. 
Another interest thing found during the experiments with Hash_New_Table() 
is that a first slicing before the shape analysis phase may be helpful 
sometimes. As our tool doesn’t handle arrays of pointers now, it can’t analyze  
Hash_New_Table() at first. The reason is that there exists an assignment 
statement for an array of pointers in the example. A first slicing can remove 
these assignment statements because they don’t affect the heap usage. The 
initial experimental results have shown that, the framework presented in the 
paper is practicable and the list abstraction model is effective. 

7. Conclusion and Future Work 

We have presented a framework for statically analyzing symbolic heap 
bounds of CPS software. When input CPS software, the framework will 
generate a numeric representation which tracks the heap usage of the 
original program and can further be inputted into Interproc for the heap 
bounds. We have taken list as an example to explain how the framework 
could be instantiated for shared mutable data structures. We have also 
presented a novel list abstraction method which maintains precise shape 
properties and quantitative properties. We have built a prototype tool which 
could analyze the heap bounds full-automatically. 
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As for the future work, we will first carry experiments with some more 
complex examples and then try to extend the framework for handling other 
critical data structures that may also be frequently used in CPS software such 
as doubly-linked lists, tree, etc. 
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Appendix A. The Abstract Semantics for List Operations 

When explaining the abstract semantics for list operations, we will continue to 
use the recording symbols from section 5.1.  

(1) p = null 

After executing the assignment statement p = null, the variable p points to 

the special node NULL and won’t reach any list nodes, so the pth bit of the vrv 

should be 0. We can modify vrvsc like following: 

 

(2) p = q 

The variables q and p will point to the same list node after the execution, 

so p will reach and only reach the list nodes formerly reached by q. We can 

construct the new abstract state by copying the qth bit of vrv to its pth bit. And 

vrvsc can be modified like the following: 

 

(3) p = qnext  

After the assignment statement p = qnext is executed, the reachability 
properties of the two variables are identical for all the list nodes except the 
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list node that q pointed to formerly. For each tuple vrv,num in vrvsc with 

vrvpq: 

- 1. If vrv  
0

q , then we can replace the pth bit of vrv with its qth bit; 

- 2. Otherwise, the corresponding list nodes could be divided into two 
categories. At first, because p will not reach the list node formerly pointed to 

by q, we can replace the pth bit of 
0

q  with 0 and construct a new tuple with 

num equaling 1 to describe the list node. Secondly, for other list nodes with 

VRV 
0

q , both p and q will reach them after the execution. We can replace 

the pth bit of vrv with its qth bit, making both the pth bit and the qth bit equal 

1. But because we have excluded one list node, so the num part of the tuple 
should be decreased by 1.  

To sum up, when executing p=qnext, we can modify vrvsc as following: 

 

For an example, let’s consider the execution in figure 12. Four variables 
may point to list nodes. The shape graphs are given on the left for convenient 
and the VRVSC are given on the right part. The gray cell in source VRVSC 

represents 
0

q  and which stands for the two list nodes n2,n3. When executing 

the assignment statement p = qnext, the pth bit will be replaced with the qth 

bit for the VRVs 1100,1110,1111 and become 1100,1110,1111 respectively, the 

num corresponding to 
0

q  (1100) will be decreased by 1 and become 1.The 

tuple listed in the last cell stands for the newly constructed tuple by assigning 

the pth bit of 
0

q  with 0 and making the num field equal 1. 

u

q

v
p

NULL

0010

1100 1100 1110 1111

V0 = p;   V1 = q;

V2 = u;   V3 = vn1

n2 n3 n4 n5

u

q

wp

NULL

0010

0100 1100 1110 1111

n1

n2 n3 n4 n5

pquv
0010
1100
1110
1111

num
1
2
1
1

pquv
0010
1100
1110
1111

num
1
1
1
1

0100 1  

Fig.12. An example for executing p = qnext 

(4) pnext = null 
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After the assignment statement pnext = null is executed, for each tuple 

vrv,num in vrvsc with vrvp: 

- 1. If vrv  
0

p , then all the variables which reach 
0

p  formerly will not 

reach vrv now. We can assign all the bits in  with 0.  

- 2. If vrv = 
0

p , then the corresponding list nodes could be divided into two 

categories. The VRV for the list node formerly pointed to by p should not 
change. In order to describe this list node, we can construct a new tuple with 

VRV equaling 
0

p  and num equaling 1. As for other list nodes with VRV 
0

p , 

none variables will not reach them after the execution. We can assign all the 
bits in  with 0. Because we have excluded one list node, the 

corresponding num should be decreased by 1. 

To sum up, we can express the abstract semantics for pnext = null as 
following: 

 

(5) pnext = q 

After executing the assignment statement pnext = q, the reachability 
properties of the two variables are identical for all the list nodes except the 

list node that p pointed to formerly. For each tuple vrv,num in vrvsc with 

vrvpq:  

- 1. If vrvq, then vrv can be reached by the variables which can reach 
0

p   

formerly. We can replace all the bits in  with the qth bit, making these bits 

equal 1; 

- 2. If vrvp-q but vrv
0

p , then vrv will not be reached by the variables 

which formerly reach 
0

p . We can replace all the bits of vrv in  with the qth 

bit, making these bits equal 0; 

- 3. If vrv=
0

p , then the corresponding list nodes could be divided into two 

categories. In order to describe this list node, we can construct a new tuple 

with VRV equaling 
0

p  and num equaling 1. The VRV for the list node 

formerly pointed to by p should not change. As for other list nodes with VRV 

equaling 
0

p , none variables will not reach them after the execution. Because 

we only consider non-circular list now, 0[ ]p q  must equal 0. We can replace 

all the bits in  with the qth bit, making all these bits of vrv equal 0. But 

because we have excluded one list node, the num should be decreased by 1. 

To sum up, we can express the abstract semantics for pnext = q as 
following: 
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For an example, let’s consider the execution of pnext = u in figure 13. The 

black cell in source abstract state represents 
0

p  which stands for the list 

node n3. When executing the assignment statement pnext = u, the bits in 

 ({p,q}in this case) will be replaced with the uth bit for the VRVs 

0010,1100,1110,1111 generating 1110,0000,1110,1111 respectively. The num 

corresponding to 
0

p  (1100) will be decreased by 1 and become 0. The tuple 

listed in the last cell describes the VRV for n3. As we have pointed in section 

5.1, a default called operation Compact() should be called to handle the output 
VRVSC after each assignment statement is executed. For this example, we 

should delete a tuple 0000,0 and join the two tuples with the same VRV 1110 
as you can see in figure 13. 

u

q

wp

NULL

0010

0100 1100 1110 1111

n1

n2 n3 n4 n5

pquv

0010

1100

1110

1111

num

1

1
1

1
0100 1

pquv
1110
0000
1110
1111

num
1

0
1
1

0100 1

u

q

wp

NULL

11100100 1100 1110 1111

n1n2 n3
n4 n5

V0 = p;   V1 = q;

V2 = u;   V3 = v

1100 1

pquv
1110

1111

num
2

1
0100 1
1100 1

Compact

 

Fig.13. An example for executing pnext=u 

(6) p = malloc() 

After executing the assignment statement p = malloc(), the variable p will 
point to a new created list node and won’t reach all the already existed list 
nodes, so the pth bit of all the vrv for all tuples in vrvsc should be 0. In order to 

describe the new created list node, we can create a tuple with only the pth bit 

of its vrv equaling 1 and its num equaling 1.: 

We could express the operational semantics for  p= malloc() as following. 

 

(7) free(p) 

After executing free(p), all the variables which reach 
0

p  formerly will never 

reach the VRVs in p. We could assign 0 to all the bits in  for all the VRVs 
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in p. Because we have deallocated a list node, the num corresponding to 
0

p  

should be decreased by 1. So we can express the abstract semantics as 
following: 
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