
DOI: 10.2298/CSIS111215015P

A Scale for Crawler Effectiveness on the
Client-Side Hidden Web

Vı́ctor M. Prieto1, Manuel Álvarez1, Rafael López-Garcı́a1, and Fidel Cacheda1

Comunication and Information Technologies Department - University of A Coruña
Campus de Elviña s/n - 15071 (A Coruña - Spain)

{victor.prieto, manuel.alvarez, rafael.lopez, fidel.cacheda}@udc.es

Abstract. The main goal of this study is to present a scale that classifies
crawling systems according to their effectiveness in traversing the “client-
side” Hidden Web.
First, we perform a thorough analysis of the different client-side technolo-
gies and the main features of the web pages in order to determine the
basic steps of the aforementioned scale. Then, we define the scale by
grouping basic scenarios in terms of several common features, and we
propose some methods to evaluate the effectiveness of the crawlers ac-
cording to the levels of the scale. Finally, we present a testing web site
and we show the results of applying the aforementioned methods to the
results obtained by some open-source and commercial crawlers that tried
to traverse the pages.
Only a few crawlers achieve good results in treating client-side technolo-
gies. Regarding standalone crawlers, we highlight the open-source crawlers
Heritrix and Nutch and the commercial crawler WebCopierPro, which is
able to process very complex scenarios. With regard to the crawlers of
the main search engines, only Google processes most of the scenarios
we have proposed, while Yahoo! and Bing just deal with the basic ones.
There are not many studies that assess the capacity of the crawlers to
deal with client-side technologies. Also, these studies consider fewer tech-
nologies, fewer crawlers and fewer combinations. Furthermore, to the best
of our knowledge, our article provides the first scale for classifying crawlers
from the point of view of the most important client-side technologies.

Keywords: Web Search, Crawlers, Hidden Web, Web Spam, JavaScript

1. Introduction

The World Wide Web (WWW) is the biggest information repository ever built.
There are huge quantities of information that are publicly accessible, but as
important as the information itself is being able to find, retrieve and gather the
most relevant data according to users’ needs at any given time.

Crawling systems are the programs that traverse the Web, following URLs to
obtain the documents to be indexed by web search engines. From their origins,
these systems have had to face a lot of difficulties when accessing human-
oriented Web sites because some technologies are very hard to analyse: web

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

forms, pop-up menus, redirection techniques, mechanisms for maintaining user
sessions, different layers which are shown or hidden depending on users’ ac-
tions, etc. The pages that can only be accessed through these technologies
constitute what we call Hidden Web [2] and, particularly, the set of pages that
are “hidden” behind client-side technologies are called the “client-side Hidden
Web”. They represent a big challenge for programmers, since it is not easy to
implement techniques that deal with them in a fully automatic way.

The objective of this paper is to present a scale for classifying crawlers ac-
cording to their treatment of the client-side Hidden Web. This crawling scale will
allows us a) to determine the capacities of each crawler dealing with client-side
web technologies b) to know the percentage of the Web which has not been
covered by crawlers and c) to know whether it is necessary to improve current
crawling systems in order to deal with client-side web technologies in a better
way.

The paper is organized as follows. In section 2 we analyse the related works.
Section 3 shows the most important client-side technologies. In section 4 we
list the difficulties that crawlers can find during their traversal and we classify
them to create a scale. Section 5 shows this scale, which takes into account
the level of use of each technology on the Web, the computational difficulty of
each scenario and whether the crawlers have dealt with them. We also discuss
some methods to assess the effectiveness of the crawlers at processing the
aforementioned difficulties. In section 6 we show the website we have created
to evaluate the crawlers and the results that each of them has obtained when
traversing its pages. Finally, in sections 7 and 8 we explain the conclusions of
the study and possible future works respectively.

2. Related works

There are many studies on the size of the Web and the characterisation of its
content. However, there are not so many studies on classifying Web pages ac-
cording to the difficulty for crawlers to process them. Weideman and Schwenke
[20] published a study analysing the importance of JavaScript in the visibility of
a Web site, concluding that most of the crawlers do not deal with it appropri-
ately. However, according to the data submitted in [19] [4], currently the 90% of
the Web pages use JavaScript.

From the point of view of crawling systems, there are many works aimed
at creating programs that are capable of traversing the Hidden Web. There are
some researches that tackle the challenges established by the server-side Hid-
den Web, by searching, modelling and querying web forms. We highlight HiWE
[18] because it is one of the pioneer systems. Google [14] has also provided the
techniques that it has used to access information through forms. Nevertheless,
there are fewer studies about the client-side Hidden Web and they basically
follow these approaches: they either access the content and links by means of
interpreters that can execute scripts [16] [9], or they use mini-browsers such as
the system proposed by Alvarez et al. [1].

562 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

There are also studies about the client-side technologies from the point of
view of Web Spam. Their objective is to analyse the use of technologies in order
to detect Web Spam techniques [10] such as Cloacking [21] [23], Redirection
Spam [6] or Link Farm Spam [22].

Nevertheless, we do not know any scales that allow researchers to classify
the effectiveness of the crawling systems according to their level of treatment of
client-side Hidden Web technologies.

3. Client-side Web technologies

In order to define the scale, the first step is to understand the impact of the dif-
ferent client-side technologies on the Web (“Web Coverage”). For this purpose,
we have used “The Stanford WebBase Project”1 dataset, which is part of the
“Stanford Digital Libraries Project”2.

This dataset contains different kinds of sources and topics and more than
260 TB of data. For this analysis, we have created a 120 million page subset
from the latest 2011 global datasets. In this dataset we have analysed technolo-
gies typically used to improve the user experience, such as:

– JavaScript [8], dialect of the ECMAScript standard, is an imperative and
object-oriented language. It allows programmers to generate the interface
dynamically.

– Applet, Java component of an application that is executed in a Web client.
– AJAX [11], technology that uses JavaScript for sending and receiving asyn-

chronous requests and responses.
– VBScript [13], interpreted language created by Microsoft as a variant of

Visual Basic.
– Flash [3], application that allows programmers to create vectorial interfaces.

Table 1 shows the results obtained by each technology (row) per month (col-
umn). According to these results, 60.30% of the documents contain JavaScript
while only 2.58% contain ActionScript (Flash). The degree of occurrence of
technologies like VBScript, Python and Tcl, is merely symbolic.

In short, these results confirm our assumption about the importance of
knowing whether the crawlers treat the client-side technologies, since the use
of JavaScript is generalized.

4. Occurrence of the main technologies

To define the basic levels of the scale we have identified the most commonly
used mechanisms for generating links. To do this, we have relied on the tech-
nology analysis done in the “Client-side Web technologies” section and on a

1 http://dbpubs.stanford.edu:8091/ testbed/doc2/WebBase/
2 http://diglib.stanford.edu:8091/

ComSIS Vol. 9, No. 2, June 2012 563

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

Table 1. Analysis about Web technologies.

TECHNOLOGY MONTH TOTAL

January ’11 Febrary ’11 March ’11 April ’11 May ’11 June ’11 July ’11

Pages 8519300 20057638 18700000 1230000 12677481 24505000 33453991 119143410

JavaScript 5791148 10436415 12672553 902780 6960075 16959179 18013475 71735625

67.98% 52.03% 67.77% 73.40% 54.90% 69.21% 53.85% 60.30%

VBScript 7871 38243 19361 213 6253 20700 32529 125170

0.09% 0.19% 0.10% 0.02% 0.05% 0.08% 0.10% 0.11%

Flash 257134 430772 584661 29376 273882 829380 669211 3074416

3.02% 2.15% 3.13% 2.39% 2.16% 3.38% 2.00% 2.58%

Python 9 27 31 0 15 33 44 159

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Tcl 228 42 228 3 26 1821 5083 7219

0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% 0.01%

Applets 139 2832 1049 5 2142 1176 2671 10014

0.00% 0.01% 0.01% 0.00% 0.02% 0.00% 0.01% 0.01%

manual analysis of a subset of 1000 pages selected randomly from the dataset
discussed above. We have also considered the Web design common practices
[7] [12].

The following features have been identified:

– Text links, which constitute the lowest level of the scale.
Luis

Ramirez Lucena

– Simple navigations, generated with JavaScript, VBScript or ActionScript.
This feature includes links that are generated by means of “document.write()”
or similar functions in other languages, which allow designers to add new
links to the HTML code dynamically.
Paolo Boi

– Navigations generated by means of an Applet.
– Navigations generated by means of Flash.
– In the case of Applets and Flash, we divide links into two types: those which

are passed as an argument to the application and those whose URL is
created as a string inside the code.

– Navigations generated by means of AJAX.
– Pop-up menus, generated by a script that is associated to any event.
– Links that are defined as strings in .java, .class files or any other kinds of

text and binary files.
– Navigations generated in script functions. They can be written in any script-

ing language and the script can be either embedded inside the HTML or
located inside an external file.

– Navigations generated by means of several kinds of redirections:

564 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

• Redirections specified in the <meta> tag.
• Redirections generated by the “onLoad” event of the <body> tag.
• Redirections generated by a script when an event in another page is

fired (e.g.: the “onClick” event).
• Other redirections in script blocks, which are executed the moment the

page is loaded.
• Redirections executed in an applet when the page is loaded.
• Flash redirections, executed when the page and its corresponding Flash

file are processed.

In addition, the navigations that are generated with any of the methods we
identified can create absolute or relative URL addresses. For the addresses that
are generated by means of any scripting language, it is possible to recognize
the following construction methods:

– A static string inside the Script.

menu static embedded relative(){
document.location="a 10010101100000000...html";

}

– A string concatenation.

function menu concatenated embedded relative(){
var out="";

out="a 10010010100000000000 test menu" +

" concatenated embedded relative.html";

document.location=out;

}

– Execution of a function that builds the URL in several steps.
function menu special function embedded relative(){
var a1="win",a2="dow",

a3=".location.",="replace",a5;

a5="(’a 1001000110000000000 test menu special function";

var a6=" embedded relative.html’)"; var i,url="";

for(i=1;i<=6;i++){
url+=eval("a"+i);

}
eval(url);

}

Furthermore, the distinct methods we have listed above can be combined.
For example, some Web sites build pop-up menus dynamically, by means of
“document.write()” functions. The number of possible combinations would be
too high. Hence, this study only takes into account a reduced but significant
subset, which is shown in Table 2.

ComSIS Vol. 9, No. 2, June 2012 565

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

The 70 scenarios we have proposed are combinations of the types of URLs,
technologies, locations and methods of construction of URLs we identified, all
of them shown in the columns of Table 2. At the bottom of the table we show
the different types of redirections. The number of scenarios could be higher, but
it would not provide more information about the use of client-side technologies
on the Web or about the methods that crawlers use to discover links. For ex-
ample, it is not necessary to take into account the combination of menus and
“document.write()” because we can deduce the capacity of the crawler from the
two base cases that have been included separately.

Table 2. Combination of the types of links.

Url Type Technology Location String type Test
Text Embedded Static 1 - 2
JavaScript Embedded / Static / Concatenated / 3 - 38

External Special Function
Document.write() Embedded / Static / Concatenated / 3 - 38

External Special Function
Menu JavaScript Embedded / Static / Concatenated / 3 - 38

External Special Function
Link in .java External Static 39 - 40

Relative / Link in .class External Static 41 - 42
Absolute Applet-Link HTML Embedded Static 43 - 44

Applet-Link Class External Static 45 - 46
Flash-Link HTML Embedded Static 47 - 48
Flash-Link SWF External Static 49 - 50
AJAX Embedded Static 61 - 62
JavaScript with # Embedded Static / Special Function 63 - 66
VBScript Embedded Static / Special Function 67 - 70

Tag Meta 51 - 52
Tag body 53 - 54

Relative / Redirect External Static JavaScript 55 - 56
Absolute Applet 57 - 58

Flash 59 - 60

5. The scale for web crawlers

To create the scale from the 70 scenarios we have proposed, we have imple-
mented a grouping process based on their difficulty:

– Theoretical difficulty of processing each scenario.
– Practical difficulty (for existing crawling systems) to treat each scenario.

566 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

Regarding the first issue, we have performed a theoretical and an empirical
analysis of the scenarios in order to determine the necessary modules for a
crawler to process them. The theoretical analysis consists in calculating the
processing modules that a crawling system would need to process each kind
of difficulty (“Extraction Process” column in Table 3). For example, to treat the
plain text scenario (level 1), we only need the crawler and a basic URL extractor.
However, to extract URLs embedded in JavaScript code (level 2), we would also
need a JavaScript interpreter, thus increasing the complexity.

After this, we have assessed our analysis by empirically processing the sce-
narios by means of well-known existing tools (JavaScript interpreters, Flash
decompilers, and so on). Depending on the number and complexity of the mod-
ules that are needed to process a scenario, we have assigned a discrete score
to it, which is shown in “Complexity” column of Table 3. The values are based
on the difficulty of developing such modules and the computational expenses
of their execution. Our grouping is based on the assumption that the scenarios
which require a bigger number of modules are more difficult to treat.

To learn how crawling systems process the different scenarios, we have
implemented a web site (see section 6.1) that contains all the scenarios shown
in Table 2. Table 6 and Table 7 (see section 6) show the results obtained by the
different crawlers that traversed the example website, grouped by technology
and link building method. In this case, we have grouped the scenarios that have
been processed by the same number of “crawling systems”, because they are
considered to have the same complexity.

Based on these analyses, we have clustered the pre-defined scenarios to
form the 8 levels of the scale we propose, which is shown in Table 3. For each
level there is a brief description, the scenarios that are part of it and their com-
plexity. Table 3 also shows the frequency of appearance on the Web of each
web technology that has been used in each scenario (column “F”). This fre-
quency has been obtained from the results of the Web analysis we show in
section 3 (Table 1). For example, the percentage of use of JavaScript is 60.30%,
so, normalising to 1, the scenarios based on JavaScript will have a frequency
of 0.6. In the case of text links, we have assumed that all the web pages have
at least a text link, therefore we will use a frequency of 1. This information com-
plements our scale and allows determining more accurately what portion of the
Web is treated by each crawling system, as well as the maximum complexity
level reached.

In the next section, we propose various evaluation methods for measuring
the effectiveness of a crawler according to the scale.

5.1. Scale evaluation method

In order to evaluate a group of crawlers, one must set them up and run them
on the testing site, creating a table similar to Table 6 to compare the results.
Then we propose a list of evaluation methods in order to classify the crawlers
according to the level of complexity of the “links” they have processed. As a

ComSIS Vol. 9, No. 2, June 2012 567

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

Table 3. Scale & Link classification by difficulty.
Le

ve
l

D
es

cr
ip

tio
n

S
ce

na
rio

s
F

C
om

pl
ex

ity
E

xt
ra

ct
io

n
P

ro
ce

ss

1
Te

xt
lin

k
1,

2
1

Ve
ry

Lo
w

M
od

ul
e

of
C

ra
w

lin
g

-E
xt

ra
ct

or
of

U
R

Ls

2
Ja

va
S

cr
ip

t/D
oc

um
en

t.W
rit

e/
M

en
u

-S
ta

tic
S

tr
in

g
-E

m
be

dd
ed

3,
4,

15
,1

6,
27

,2
8

0.
6

Lo
w

M
od

ul
e

of
C

ra
w

lin
g

-J
S

In
te

rp
re

te
r

Ja
va

S
cr

ip
t-

C
on

ca
te

na
te

d
S

tr
in

g
-E

m
be

dd
ed

6
0.

6
A

na
ly

se
ro

fR
ed

ire
ct

s
-E

xt
ra

ct
or

of
U

R
Ls

3
H

TM
L/

on
B

od
y/

Ja
va

S
cr

ip
tR

ed
ire

ct
51

,5
2,

53
,5

4,
55

,5
6

1
Lo

w
M

od
ul

e
of

C
ra

w
lin

g
-J

S
In

te
rp

re
te

r

Ja
va

S
cr

ip
t#

-S
ta

tic
S

tr
in

g
-E

m
be

dd
ed

63
,6

4
0.

6
E

xt
ra

ct
or

of
U

R
Ls

4
V

B
S

cr
ip

t-
S

ta
tic

S
tr

in
g

-E
m

be
dd

ed
67

,6
8

0.
01

M
ed

iu
m

M
od

ul
e

of
C

ra
w

lin
g

-I
nt

er
pr

et
er

V
B

S

V
B

S
cr

ip
t-

S
pe

ci
al

Fu
nc

tio
n

-E
m

be
dd

ed
70

0.
01

E
xt

ra
ct

or
of

U
R

Ls

5
Ja

va
S

cr
ip

t/D
oc

um
en

t.W
rit

e
-S

ta
tic

S
tr

in
g

-E
xt

er
na

l/E
m

be
dd

ed
9,

10
,1

8
0.

6
M

ed
iu

m
/

M
od

ul
e

of
C

ra
w

lin
g

-I
nt

er
pr

et
er

V
B

S

D
oc

um
en

t.W
rit

e/
M

en
u

-S
ta

tic
S

tr
in

g
-E

xt
er

na
l

21
,2

2,
33

,3
4

0.
6

H
ig

h
E

xt
ra

ct
or

of
U

R
Ls

M
en

u
-C

on
ca

te
na

te
d

S
tr

in
g

-E
m

be
dd

ed
30

0.
6

6
Ja

va
S

cr
ip

t/D
oc

um
en

t.W
rit

e/
M

en
u-

C
on

ca
te

na
te

d
S

tr
in

g-
E

xt
er

na
l

12
,2

4,
36

0.
6

M
ed

iu
m

/
M

od
ul

e
of

C
ra

w
lin

g
-J

S
In

te
rp

re
te

r

A
pp

le
t-

S
ta

tic
S

tr
in

g
in

H
TM

L
43

,4
4

0.
03

H
ig

h
A

dv
an

ce
d

ex
tra

ct
or

of
U

R
Ls

7
Ja

va
S

cr
ip

t-
C

on
ca

te
na

te
d

S
tr

in
g

-E
xt

er
na

l/E
m

be
dd

ed
-R

el
at

iv
e

5,
11

0.
6

H
ig

h
M

od
ul

e
of

C
ra

w
lin

g

Ja
va

S
cr

ip
t-

S
pe

ci
al

Fu
nc

tio
n

-E
xt

er
na

l/E
m

be
dd

ed
-R

el
at

iv
e

7,
8,

13
,1

4
0.

6
A

dv
an

ce
d

JS
In

te
rp

re
te

r

D
oc

um
en

t.W
rit

e
-C

on
ca

te
na

te
d

S
tr

in
g

-E
xt

er
na

l/E
m

be
dd

ed
17

,2
3

0.
6

Ja
va

de
co

m
pi

le
r

D
oc

um
en

t.W
rit

e
-S

pe
ci

al
Fu

nc
tio

n
-E

xt
er

na
l/E

m
be

dd
ed

19
,2

0,
25

,2
6

0.
6

A
na

ly
se

ro
fe

xt
er

na
lfi

le
s

M
en

u
-C

on
ca

te
na

te
d

S
tr

in
g

-E
xt

er
na

l/E
m

be
dd

ed
-R

el
at

iv
e

29
,3

5
0.

6
A

dv
an

ce
d

ex
tra

ct
or

of
U

R
Ls

M
en

u
-S

pe
ci

al
Fu

nc
tio

n
-E

xt
er

na
l/E

m
be

dd
ed

31
,3

2,
37

,3
8

0.
6

Li
nk

in
.ja

va
39

,4
0

0.
03

A
JA

X
Li

nk
-A

bs
ol

ut
e

62
0.

6

8
Li

nk
in

.c
la

ss
41

,4
2

0.
03

Ve
ry

H
ig

h
M

od
ul

e
of

C
ra

w
lin

g

A
pp

le
t-

S
ta

tic
S

tr
in

g
in

.c
la

ss
45

,4
6

0.
03

A
dv

an
ce

d
JS

In
te

rp
re

te
r

Fl
as

h
-S

ta
tic

S
tr

in
g

in
H

TM
L/

S
W

F
47

,4
8,

49
,5

0
0.

3
Ja

va
de

co
m

pi
le

r-
Fl

as
h

de
co

m
pi

le
r

A
pp

le
t/F

la
sh

R
ed

ire
ct

57
,5

8,
59

,6
0

1
A

dv
an

ce
d

V
B

S
In

te
rp

re
te

r

A
JA

X
Li

nk
-R

el
at

iv
e

61
0.

6
A

na
ly

se
ro

fe
xt

er
na

lfi
le

s

Ja
va

S
cr

ip
tw

ith
#

-S
pe

ci
al

Fu
nc

tio
n

-E
m

be
dd

ed
65

,6
6

0.
6

A
na

ly
se

ro
fr

efi
re

ct
s

V
B

S
cr

ip
t-

S
pe

ci
al

Fu
nc

tio
n

-E
m

be
dd

ed
69

0.
01

A
dv

an
ce

d
ex

tra
ct

or
of

U
R

Ls

568 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

preliminary step, we specify the following concepts to help us formally define
each method:

– Let be S = {Full set of scenarios}, being |S| the total number of scenarios
and Si a binary value which establishes “1” if the crawler achieved the i− th
scenario of S or “0” in another case.

– Let be N = {Full set of levels that the crawler processes successfully}
being |N | the total number of levels and |Ni| each element of N .

– Let be C = {Full set of crawlers}, being |C| the total number of crawlers,
Ci = {Set of crawlers that achieved the scenario i} . The values of Ci are
shown in Table 4. The set of 70 scenarios are shown in a matrix where the
scenario ids are built taking the value of the upper row as the units, and the
value of the left column as the tens.

Table 4. Values of Ci.

Scenarios Units
0 1 2 3 4 5 6 7 8 9

0 7 7 6 6 1 6 1 1 3 3
T 1 1 2 1 1 6 6 1 3 1 1
e 2 3 3 1 2 1 1 6 6 1 3
n 3 1 1 3 3 1 2 1 1 0 0
s 4 1 1 2 2 0 0 0 0 0 0

5 5 5 5 5 5 5 0 0 0 0
6 0 1 5 5 0 0 5 5 0 4

– Let be fi the frequency (see Table 3) of occurrence of i.

We now describe each of the methods we propose:

– Simple Average: it treats the scenarios defined for each level in the same
way, without taking into account their difficulty. It highlights the crawlers
which treat the highest number of scenarios, and consequently pay more
attention to the Hidden Web in general.

SA =

(
1

|S|

) |S|∑
i=1

Si

– Maximum Level: this model sorts crawlers according to the highest level of
difficulty they can process. A crawler obtains a score i if it has the capacity of
processing the scenarios of that level and the levels below. Some crawlers
process a certain level, but they cannot obtain pages from scenarios of a
lower level. This could be due to some problems, like the low PageRank of
a Web page and others. However, this evaluation method assumes that, if

ComSIS Vol. 9, No. 2, June 2012 569

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

a crawler is capable of dealing with a level i, it should be able to deal with
lower ones.

ML = i | ∀ i, j ∈ 1 . . . |N |Ni, Nj = 1Λ i ≥ j

– Weighted Average: this measure depends on the number of crawlers that
have previously been able to process each scenario (Ci) and whether the
new crawler has been able to process it (the binary value we have called
Si). Assuming that all crawlers can deal with most of the easiest scenarios,
this method gives importance to the crawlers that can obtain the highest
number of difficult resources in the client-side Hidden Web, since they are
the only ones with can get points in the difficult scenarios.

WA =

(
1

|C|+ 1

)
∗

|S|∑
i=1

((Ci + Si) ∗ Si)

– Eight Levels: in this model each level has a value of one point. If a crawler
processes all the scenarios of one level it obtains that point. For every sce-
nario that the crawler processes successfully, it gets 1/n points, where n is
the total number of scenarios that have been defined for that level.
Let L = {L1 . . . L8} be the sets of scenarios which represent the 8 levels
previously defined. Then Lij is the j−th scenario of i−th level. The number
of elements of each set can be different from the others.

L11 . . . L1p → L1

...
...

...
...

...
L81 . . . L8w → L8

EL =

8∑
i=1

|Li|∑
j=1

Lij

|Li|

These models allow researchers to measure crawling systems capacity of
obtaining links with a certain difficulty. However, in order to get a more con-
clusive opinion about which crawler processes the client-side Hidden Web the
best, it is important to contextualise the technologies and their degree of occur-
rence in the Web. A crawler is not better than another if it processes a higher
level in the scale when that level has few Web resources.

To solve this problem, we have defined the “Crawling Web Coverage” metric
as the number of scenarios that a crawler solves, weighing up the technolo-
gies involved according to their frequency on the Web. We have also extended
Weighted Average and Eight Levels, creating two new methods, called “Ranked
Weighted Average” and “Ranked Eight Levels”, which work like the basic meth-
ods but consider the degree of occurrence of each scenario on the Web.

To do this, we compare the results we have obtained in our study of Web
technologies (section 3) and those obtained in the W3techs [19] and builtwith
[4] web sites. The results are similar except for the frequent use of JavaScript.

570 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

According to their data 90% of the web pages use it, but in our study this number
has decreased to 60%. We have chosen our result because their data are based
on an analysis of pages included in the top 1 million or top 10,000 visits. We do
not consider that those pages represent the reality of the Web, since they have
high traffic and use innovative technologies to offer a better user experience.

The F (Frecuency) column of Table 3 shows the occurrence frequency of the
base technology of each level. In this way, a crawler that processes a level with
frequency 1 will be more valuable than one that processes a level with a lower
frequency, since the probability of finding a link of the first type on the Web is
much higher. On the other hand, a crawler that obtains links with a value of 0.01
will not get a high result, since this kind of links are scarce on the Web.

– Ranked Weighted Average

RWA =

(
1

|C|+ 1

)
∗

|S|∑
i=1

((Ci + Si) ∗ Si ∗ fi)

– Ranked Eight Levels

REL =

8∑
i=1

|Li|∑
j=1

fi,j ∗
Li,j

|Li|

The Simple Average and Weighted Average methods and their ranked coun-
terparts should be normalized in order to obtain values between 0 and 8, which
make the methods easier to use and to compare.

As we can see, each method provides a different point of view on the capa-
bilities of a crawler. Therefore, it is precisely this set of all methods that gives
us a global vision of the processing capacity of the client-side technologies and
the percentage of the web that is being treated.

6. Experimental results

In this section we describe the results of the experiments for the creation of the
scale and its application in the classification of open-source and commercial
crawlers. As a preliminary step, we describe the website we have designed to
perform the tests.

6.1. Testing web site

In order to check how crawling systems deal with the different scenarios, we
have created a Web site3 for performing experiments. This Web site contains
70 links representing the 70 scenarios shown in Table 2. Those links use and
combine the different technologies explained previously. With the purpose of

3 http://www.tic.udc.es/∼mad/resources/projects/jstestingsite/

ComSIS Vol. 9, No. 2, June 2012 571

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

stimulating the indexing of the Web site, we have linked it from the main Web
page of our institution Web site, we have written its content in English and we
have added the biography of a famous chess player to each scenario. The latter
measure was taken in order to avoid confusion with Web Spam sites.

Fig. 1. Main page of the prototype.

Fig. 1 shows the main page of the prototype. It contains the following parts:

– At the top, from left to right, there are links in a JavaScript menu, links
generated in an Applet and links in Flash.

– In the middle of the page, there is a table with four columns containing the
test number, its type and the relative and absolute links respectively.

– At the bottom, below the table, it is the content.

Apart from that, we have created a page for the result of each test, so if a
crawler can access certain contents, it will mean that it has been able to process
the corresponding links. Fig. 2 shows a result page, consisting of the following
elements:

– At the top-centre, it shows the test number and name.
– At the top-left it shows the reference code of the test, a binary mask that

represents the features of the test.
– On the left side, it shows a table that enumerates the features of the test.
– The centre includes the biography of a chess grandmaster.

572 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

Fig. 2. Target Web page associated to the link of one scenario.

6.2. Experimental setup

For both the realization of the scale and the classification of crawling systems
according to the evaluation methods, we have obtained two types of results.

The first one is based on the fact that a crawling system indexes the re-
sources it obtains, and puts the data in a certain repository. Hence, we can
extract information by querying this repository. On the other hand, we can ex-
tract access information from the log files of the Web server that maintains the
testing Web site, in order to identify the crawlers that were accessing any page
of that server. With this study we want to get further detail on how crawlers try to
process each level. We have used the User-Agent and IP pairs published in the
official robots page 4 to identify and remove non-independent crawlers, that is
to say, those which depend on the crawler of a third party. In order to accelerate
the process of visiting and indexing the site, we have registered the site in these
crawlers: GoogleBot5, Bing6, Yahoo!7, PicSearch8 and Gigablast9.

For both the data in the logs and those obtained in the repositories, we have
analysed the results of the crawlers of the major search engines as well as the

4 http://www.robotstxt.org/
5 http://www.google.es/addurl/
6 http://www.bing.com/webmaster/SubmitSitePage.aspx
7 http://siteexplorer.search.yahoo.com/submit
8 http://www.picsearch.com/menu.cgi?item=FAQ
9 http://www.gigablast.com/addurl

ComSIS Vol. 9, No. 2, June 2012 573

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

results of open-source and commercial ones. We have compared the global
results in terms of the type of link and in terms of the method of construction of
the URL string. First, we have studied each type of crawler independently, and
then, comparing the results of both types.

These results have been used to evaluate each crawling system by means
of the proposed methods and to obtain a final classification of each one in the
scale we have proposed.

6.3. Open-source and commercial crawlers

We have analysed 23 open-source and commercial crawlers. Table 5 shows
their most important characteristics from the point of view of the client-side tech-
nologies, along with the treatment of forms.

Among the features that they share, but we have not shown, we highlight:
options about the use of a proxy, limitations in the number of documents, dif-
ferent protocols, inclusion/exclusion of file extensions, cookies, User-Agent, op-
tions about domains/directories, logging and some more.

Table 5. Open-source and Commercial Crawlers.

Crawler Licence JavaScript Flash Forms Authentication Thread

Advanced Site Crawler Free Yes No No Yes Yes
Essential Scanner Free No No No Yes No
Gsite Crawler Free No No No No Yes
Heritrix Free Yes No No Yes Yes
Htdig Free No No No Yes No
ItSucks Free No No No Yes Yes
Jcrawler Free No No No No No
Jspider Free No No No Yes Yes
Larbin Free No No No Yes Yes
MnogoSearch Free No No No Yes No
Nutch Free No Yes No No Yes
Open Web Spider Free No No No No Yes
Oss Free No No No No Yes
Pavuk Free Yes No Yes Yes Yes
Php Crawler Free No No No No No
WebHTTrack Free Yes Yes No Yes Yes
JOC Web Spider Shareware No No No Yes Yes
MnogoSearch Shareware No No No Yes Yes
Teleport Pro Shareware Yes No Yes Yes Yes
Visual Web Spider Shareware No No No Yes Yes
Web Data Extractor Shareware No No No Yes Yes
Web2Disk Shareware Yes No Yes Yes Yes
Web Copier Pro Shareware Yes Yes Yes Yes Yes

574 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

After examining these and other features, and taking into account the eval-
uation of their results in the treatment of client side technologies, we have se-
lected the seven best crawlers among those shown in Table 5.

Among the open-source crawlers, we have chosen Nutch10 [5], Heritrix11

[15], Pavuk12 and WebHTTrack13, and among the commercial crawlers we have
chosen Teleport14, Web2disk15 and WebCopierPro16.

6.4. Results for open-source and commercial crawlers

First, we have studied the results according to the content of the Web site that
has been indexed by the different open-source and commercial crawlers. To
that end, we have analysed the repositories that the crawler generated during
its execution. The crawler that achieves the best results is WebCopierPro (left
side in Table 6), which processed 57.14% of the levels, followed by Heritrix with
47.14% and Web2Disk with 34.29%. Only a few of them get values beyond 25%
in most types of links, and even those are unable to get links in many cases.

It is also important to notice the poor results that they have obtained for
redirections, especially in the case of WebCopierPro, which has not been able
to deal with any of them, although it has got results of 100% in harder levels.
None of the crawlers has reached the 100% in redirections, because they have
not been able to process pages with redirections embedded in Applets or Flash.
Although they have downloaded the pages, they have not executed the Flash
or the Applet that generates the redirection.

If we analyse the results by type of link, which are shown in the left columns
of Fig. 3 (section 6), we will obtain a vision about which types of links are pro-
cessed by a bigger number of crawlers. Apart from the 100% obtained for text
links, we can verify that they can complete 35% to 40% of the scenarios of
href=“javascript...”; “document.write()”; menu links; links with “#” and VBScript.

They only achieve 7% of the links in .class or .java files and those which
have been generated with AJAX. None of them has got links from Flash, but
this can be due to the scarce attention that crawlers pay to these kinds of links.

The last rows of Table 6 classify the links by their construction method and
show how many of them have been processed by each crawler. If we calcu-
late the mean of the percentages, we have 42.52% for static links, 27.38% for
links generated by string concatenation and 15.18% for links that generated by
means of functions. This indicates that most of the crawlers search URLs by
means of regular expressions.

10 http://nutch.apache.org/
11 http://www.archive.org
12 http://www.pavuk.org
13 http://www.httrack.com
14 http://www.tenmax.com/teleport/pro/home.htm
15 http://www.inspyder.com/ products/Web2Disk/Default.aspx
16 http://www. maximumsoft.com/products/wc pro/overview.html

ComSIS Vol. 9, No. 2, June 2012 575

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

Table 6. Summary of results for open-source and Commercial crawlers. On the left side
in the repositories and on the right side in the logs.

R
E

P
O

S
IT

O
R

IE
S

(P
as

se
d

—
%

)
LO

G
S

(P
as

se
d

—
%

)

H
er

itr
ix

N
ut

ch
P

av
uk

Te
le

po
rt

W
eb

2D
is

k
W

eb
C

op
ie

rP
ro

W
eb

H
TT

ra
ck

Te
le

po
rt

W
eb

H
TT

ra
ck

Te
xt

lin
k

2
10

0.
00

%
2

10
0.

00
%

2
10

0.
00

%
2

10
0.

00
%

2
10

0.
00

%
2

10
0.

00
%

2
10

0.
00

%
2

10
0.

00
%

2
10

0.
00

%

H
re

f=
”J

av
aS

cr
ip

tl
in

k
6

50
.0

0%
3

25
.0

0%
0

0.
00

%
3

25
.0

0%
5

41
.6

7%
12

10
0.

00
%

3
25

.0
0%

4
33

.3
3%

3
25

.0
0%

D
oc

um
en

t.w
rit

e
lin

k
6

50
.0

0%
3

25
.0

0%
0

0.
00

%
2

16
.6

7%
4

33
.3

3%
12

10
0.

00
%

2
16

.6
7%

3
25

.0
0%

2
16

.6
7%

M
en

u
lin

k
6

50
.0

0%
3

25
.0

0%
0

0.
00

%
2

16
.6

7%
4

33
.3

3%
12

10
0.

00
%

2
16

.6
7%

3
25

.0
0%

2
16

.6
7%

Fl
as

h
lin

k
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
2

50
.0

0%

A
pp

le
tl

in
k

2
50

.0
0%

0
0.

00
%

0
0.

00
%

0
0.

00
%

0
0.

00
%

0
0.

00
%

2
50

.0
0%

0
0.

00
%

2
50

.0
0%

R
ed

ire
ct

s
6

60
.0

0%
6

60
.0

0%
2

20
.0

0%
6

60
.0

0%
4

33
.3

3%
0

0.
00

%
6

60
.0

0%
6

60
.0

0%
6

60
.0

0%

C
la

ss
or

Ja
va

lin
k

0
0.

00
%

0
0.

00
%

0
0.

00
%

0
0.

00
%

0
0.

00
%

2
50

.0
0%

0
0.

00
%

0
0.

00
%

0
0.

00
%

A
JA

X
lin

k
0

0.
00

%
1

50
.0

0%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%

Li
nk

s
w

ith
#

2
50

.0
0%

2
50

.0
0%

0
0.

00
%

2
50

.0
0%

2
50

.0
0%

0
0.

00
%

2
50

.0
0%

3
75

.0
0%

2
50

.0
0%

V
B

S
cr

ip
tl

in
k

3
75

.0
0%

3
75

.0
0%

0
0.

00
%

3
75

.0
0%

3
75

.0
0%

0
0.

00
%

2
50

.0
0%

3
75

.0
0%

2
50

.0
0%

S
ta

tic
st

rin
g

lin
k

26
61

.9
0%

19
45

.2
4%

4
9.

52
%

18
42

.8
6%

22
52

.3
8%

16
38

.1
0%

20
47

.6
2%

18
42

.8
6%

22
52

.3
8%

C
on

ca
te

na
te

d
st

rin
g

lin
k

6
50

.0
0%

2
16

.6
7%

0
0.

00
%

1
8.

33
%

1
8.

33
%

12
10

0.
00

%
1

8.
33

%
1

8.
33

%
1

8.
33

%

S
pe

ci
al

fu
nc

tio
n

st
rin

g
lin

k
1

6.
25

%
2

12
.5

0%
0

0.
00

%
1

6.
25

%
1

6.
25

%
12

75
.0

0%
0

0.
00

%
5

31
.2

4%
0

0.
00

%

Te
st

s
pa

ss
ed

33
47

.1
4%

23
32

.8
6%

4
5.

71
%

20
28

.5
7%

40
57

.1
4%

40
57

.1
4%

21
30

.0
0%

24
34

.2
9%

23
32

.8
6%

576 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

From these results, we conclude that the probability of finding links by means
of regular expressions or treatment of text is inversely proportional to the diffi-
culty of generation of the link.

Summarizing the data of Table 6, we conclude that only one third of the links
that are generated with client-side technologies are treated by open-source or
commercial crawlers.

As a complement to these results, we have analysed the entries that each
crawler has generated in the logs of our Web server. The right side of Table 6
shows the results of the crawlers in the logs for the cases where these are dif-
ferent from the results of analysing the repository (left side). Those differences
are due to:

– WebHTTrack has tried to access Flash scenarios, but it has not taken into
account that the structure to pass parameters to Flash is “parameter1=data1&
parameter2=data2&...” so it considers the whole string as an URL although
it is not.
"GET mad/resources/projects/jstestingsite/1 test/

link relative=a 10000100100001000000000000

test flash link html relative.html&link absolute=

http://www.tic.udc.es/∼mad/resources/projects/
jstestingsite/1 test/a 10000100100001000000000001

test flash link html absolute.html"

– Teleport has tried to access absolute URLs that have been generated by
a function. It detected “http...” patterns and searched the corresponding
“.html” patterns that indicate the end of the address. Nevertheless, it has
not detected that some variables have been defined in the middle, so the
URL it has generated is incorrect.
"GET /∼mad/resources/projects/jstestingsite/1 test/";

var%20a6="a 10001001100000000000000001

test document write function special embedded absolute.html"

6.5. Results for crawlers of the main web search engines

In order to perform the analysis of the crawlers that the main Web search en-
gines use, we registered the Web site on the 23rd of May of 2011 in the different
search engines. Once it was available, we waited for 70 more days. Then, we
checked the logs of the Web site in order to know which crawlers had accessed
at least the main page of the Web site. Table 7 contains the results we obtained.
It does not show the results for Alexa, Ask, Bing, Gigablast and PicSearch, since
they have not indexed the testing Web site. Only Google and Yahoo! indexed it.
Among the factors that could induce some of the crawlers to skip the Web site,
we could remark the following:

– Low PageRank [17].

ComSIS Vol. 9, No. 2, June 2012 577

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

Table 7. Summary of the results for crawlers of the main Web search engines.

Google (Passed — %) Yahoo! (Passed — %)
Text link 2 10000% 1 50.00%
Href=”javaScript link 6 50.00% 0 0.00%
Document.write link 6 50.00% 0 0.00%
Menu link 6 50.00% 0 0.00%
Flash link 0 0.00% 0 0.00%
Applet link 0 0.00% 0 0.00%
Redirects 6 50.00% 2 20.00%
Class or java link 0 0.00% 0 0.00%
AJAX link 0 0.00% 0 0.00%
Links with # 4 100.00% 0 0.00%
VBScript link 1 25.00% 0 0.00%

Static string link 17 40.48% 3 7.14%
Concatenated string link 6 50.00% 0 0.00%
Special function string link 8 50.00% 0 0.00%

Total passed 31 44.29% 3 4.29

– It is stored in a deep level inside the Web site of the department.
– High content of code. This can make crawlers’ heuristics decide that the

Web site might contain Malware or links too difficult to analyse.

Google processed 44.29% of the links. This implies that neither the design
nor the content nor the other variables inhibited crawlers to try to traverse the
Web site. Yahoo! also processed some links, but only the easiest ones.

GoogleBot processed 50% of many of the levels we proposed. The other
half was not processed because the code was stored in an external file that the
crawler did not analyse. If these files were analysed, we suspect that GoogleBot
would achieve much better results. The links that GoogleBot did not process
included technologies like Flash, Applets and AJAX or file types like .class and
.java. These crawlers have shown the same results in the indices (querying their
search engine) and in the logs of our Web server. Hence, we do not show the
results separately.

6.6. Result comparison

Looking at the overall results (last row) of Tables 6 and Table 7, we see that
generally, open-source and commercial crawlers achieve better results. Only
Google, getting processed 34 of the 70 scenarios, has similar performance.

This can be due to the fact that an open-source or a commercial crawler
can be configured by the user, who establishes what kind of links should be
followed without taking into account the performance or the security. These fea-
tures cannot be ignored by the crawlers of the main Web search engines.

578 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

Te
xt

 L
in

k

Hre
f=

”j
av

aS
cr

ip
t
Li
nk

Doc
um

en
t.
w
rit

e
Li
nk

M
en

u
Li
nk

Fl
as

h
Li
nk

App
le

t
Li
nk

Re
di

re
ct

s

Cla
ss

 o
r
Ja

va
 L

in
ks

AJ
AX

Li
nk

Li
nk

s
w
ith

 #

Vb
Sc

rip
t
Li
nk

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Open-source and commercial
crawlers

Search Engine crawlers

H
IT

S
 (

%
)

Fig. 3. Comparison among crawlers by link type.

Fig. 3 compares the results by technology used in the links. Once again,
open-source crawlers have been more effective. One thing we would like to
highlight is that the curve that every group of crawlers draw is similar. Hence, we
can conclude that despite achieving a lower number of links in each technology,
crawlers show the same interest in processing the same kind of technologies.

6.7. Classification of the crawlers according to the scale

After obtaining the results of each crawler in the website, we evaluate the crawl-
ing systems in the scale, using the evaluation methods we have proposed. Fig.
4 shows these results.

– For Simple Average, WebCopier gets the best results, followed by Heritrix
and Google.

– For Maximum Level, Google places first since it processes level 8 links. It is
followed by WebCopier, which obtains 7 points, and Heritrix, which obtains
6 points. As Google achieves the maximum level in this model but not in
others, we can conclude that it has the capacity to deal with every scenario,
but it does not try some of them because of internal policies.

– For the Weighted Average measure, WebCopier is followed by Google, Her-
itrix and Nutch.

– For Eight Levels, top places are for Heritrix, Web2Disk and WebCopier.
GoogleBot places fourth. This means that the three top crawlers have dealt
with a big quantity of levels in each group or they have gone through links
that were part of a group with few links, which makes each link more valu-
able.

ComSIS Vol. 9, No. 2, June 2012 579

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

Heritrix Nutch Pavuk Teleport Web2Disk WebCopier WebHTTRack Google Yahoo

Simple Average

Maximum Level

Weighted Average

Eight levels

Crawling Web Coverage

Weighted Average 2

Eight levels 2

Fig. 4. Results according to the proposed scales.

However, the frequency of the technologies in the Web should be taken into
account too. That is why we also show the Crawling Web Coverage metric and
the results of the Ranked Weighted Average and Ranked Eight Levels methods,
which are based on such metric. WebCopier, Google and Heritrix get the best
results, so they are the ones that deal with the biggest portion of the Web.

– For Ranked Weighted Average, crawlers obtain lower results, but quite sim-
ilar to the previous ones. Once again, WebCopier and Google are at the top
at a certain distance from the rest.

– For Ranked Eight Levels, almost all crawlers decrease their performance
between 1 and 2 points.

When a crawler gets a high score in the previous assessments and a low
one in these, it means that it has been able to traverse difficult links, but that
the technologies these links are made of do not have a significant number of
occurrences on the Web.

Weighted results evaluate if a crawler can analyse client-side technologies
on Web sites, but they also analyse if those capabilities are appropriate for
treating the current state of the Web. We conclude that the best crawlers in both
quantity and quality are Google and WebCopier, followed by Heritrix, Nutch and
Web2Disk. It is important to highlight the results of GoogleBot. It takes into
account a wide range of technologies although it is oriented to traverse the
entire Web and it makes a lot of performance and security considerations.

580 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

7. Conclusions

This article proposes a scale that allows us to classify crawling systems ac-
cording to their effectiveness when they access the client-side Hidden Web. It
takes into account a global study on 120 million pages to determine the most
commonly used client-side technologies and another one to explain the specific
methods to generate links. It also includes the crawlers of the main search en-
gines, as well as several open-source and commercial ones. Hence, we believe
it is more exhaustive than the work by M. Weideman and F. Schwenke [20].

In order to classify the distinct crawling systems, we have created a Web
site implementing all the difficulties that we had included in the scale.

The results we have obtained show that, for both the levels that the crawlers
have tried and the levels they have achieved, most of the times they try to dis-
cover new URLs processing the code as text and using regular expressions. It
is true that this allows them to discover a big amount of scenarios and that the
computational expenses are not high, but we conclude that most of the URLs
which are located inside client-side technologies are not discovered. The only
crawlers that achieve good results at processing the client-side Hidden Web
are WebCopier and GoogleBot. They surely are using an interpreter that allows
them to execute code.

8. Future works

One of the future works is the design, implementation and testing of an algo-
rithm that is capable of dealing with all the levels proposed in the scale. The
algorithm should be composed of different modules for each level, starting with
an analysis based on text and regular expressions, and finishing with the use
of interpreters and mini-browsers. As a consquence, each module would have
more computational cost, but they should be executed only if there are evi-
dences pointing to the possible finding of new URLs in web pages that are not
Web Spam. The tests should measure both the efficacy and the efficiency of
the algorithm, since it would be designed to be included in a global crawling
system.

A long term work would be modelling and implementing a high-performance
crawler that includes the aforementioned algorithm and the Web Spam detec-
tion module. With both features we would have a high-performing safe crawler
which would grant access to the hidden web content that, as we proved in this
article, is not completely processed by crawlers.

References

1. Álvarez, M., Pan, A., Raposo, J., Hidalgo, J.: Crawling Web Pages with Support for
Client-Side Dynamism. In: Yu, J., Kitsuregawa, M., Leong, H. (eds.) Advances in
Web-Age Information Management, Lecture Notes in Computer Science, vol. 4016,
chap. 22, pp. 252–262. Springer Berlin / Heidelberg, Berlin, Heidelberg (2006)

ComSIS Vol. 9, No. 2, June 2012 581

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a, and Fidel Cacheda

2. Bergman, M.K.: The Deep Web: Surfacing Hidden Value. Journal of Electronic Pub-
lishing 7(1) (Aug 2001)

3. Braunstein, R., Wright, M.H., Noble, J.J.: ActionScript 3.0 Bible. Wiley (Oct 2007)
4. BuiltWith: Web Technology Usage Statistics. http://trends.builtwith.com/ (2011)
5. Cafarella, M., Cutting, D.: Building Nutch: Open Source Search: A case study in

writing an open source search engine. ACM Queue 2(2) (2004)
6. Chellapilla, K., Maykov, A.: A taxonomy of javascript redirection spam. In: Proceed-

ings of the 3rd international workshop on Adversarial information retrieval on the
web. pp. 81–88. AIRWeb ’07, ACM, New York, NY, USA (2007)

7. Danielson, D.R.: Web navigation and the behavioral effects of constantly visible site
maps. Interacting with Computers 14(5), 601–618 (2002)

8. Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 3rd edn. (1998)

9. Google: V8 JavaScript Engine. http://code.google.com/p/v8/ (2011)
10. Gyongyi, Z., Molina, H.G.: Web Spam Taxonomy. In: First International Workshop

on Adversarial Information Retrieval on the Web (AIRWeb 2005) (2005)
11. Holdener, III, A.T.: Ajax: the definitive guide. O’Reilly, first edn. (2008)
12. Kalbach, J., Bosenick, T.: Web page layout: A comparison between left- and right-

justified site navigation menus. J. Digit. Inf. 4(1) (2003)
13. Kingsley-Hughes, A., Kingsley-Hughes, K., Read, D.: VBScript Programmer’s Ref-

erence. Wrox Press Ltd., Birmingham, UK, UK, 3rd edn. (2007)
14. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s

deep web crawl. Proc. VLDB Endow. 1, 1241–1252 (August 2008)
15. Mohr, G., Kimpton, M., Stack, M., Ranitovic, I.: Introduction to heritrix, an archival

quality web crawler. In: 4th International Web Archiving Workshop (IWAW04) (2004)
16. Mozilla: Mozilla rhino javascript engine (2011), http://www.mozilla.org/rhino/
17. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing

order to the web. Tech. rep., Stanford Digital Library Technologies Project (1998)
18. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: Proceedings of the

27th International Conference on Very Large Data Bases. pp. 129–138. VLDB ’01,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

19. W3Techs: World Wide Web Technology Surveys. http://w3techs.com/ (2011)
20. Weideman, M., Schwenke, F.: The influence that JavaScript has on the visibility of a

Website to search engines. Information Research 11(4) (Jul 2006)
21. Wu, B., Davison, B.D.: Cloaking and redirection: A preliminary study. In: AIRWeb

’05: Proceedings of the First International Workshop on Adversarial Information Re-
trieval on the Web (May 2005)

22. Wu, B., Davison, B.D.: Identifying link farm spam pages. In: Special interest tracks
and posters of the 14th international conference on World Wide Web. pp. 820–829.
WWW ’05, ACM, New York, NY, USA (2005)

23. Wu, B., Davison, B.D.: Detecting semantic cloaking on the web. In: Proceedings
of the 15th International World Wide Web Conference. pp. 819–828. ACM Press
(2006)

Vı́ctor M. Prieto graduated in Computing Science at the University of A Coruña
in September of 2007 and he is a Ph.D. candidate in Computer Science at the
same university. At this moment, he is part of the Telematics Group of the De-
partment of Information and Comunications Technologies at the same univer-
sity. His main research fields are web crawling, hidden web and web spam.

582 ComSIS Vol. 9, No. 2, June 2012

A Scale for Crawler Effectiveness on the Client-Side Hidden Web

Manuel Álvarez is an Associate Professor in the Department of Information
and Communication Technologies, at the University of A Coruña (Spain). He
received his Bachelor’s Degree in Computer Engineering from the University
of A Coruña in 1999 and a Ph.D. Degree in Computer Science from the same
University in 2007. His research interests are related to data extraction and in-
tegration, semantic and Hidden Web. Manuel has managed several projects at
national and regional level in the field of data integration and Hidden Web ac-
cessing. He has also published several papers in international journals and has
participated in multiple international conferences. He also teaches a Master’s
degree at the University of A Coruña and is consultant for Denodo Technologies
(a telematic engineering company).

Rafael López-Garcı́a got his Degree in Computing Science at the University
of A Coruña in September of 2006. In the years that followed, he has focused
on teaching and research, studying the postdegree at the same university. His
primordial fields of interest in Computing Science are web technologies and
distributed systems in Information Retrieval (IR), field in which he wants to write
his Ph.D. Thesis.

Fidel Cacheda is an Associate Professor in the Department of Information and
Communications Technologies at the University of A Coruña (Spain). He re-
ceived his Ph.D. and B.S. degrees in Computer Science from the University of
A Coruña, in 2002 and 1996, respectively. He has been part of the Department
of Information and Communication Technologies, the University of A Coruña,
Spain, since 1998. From 1997 to 1998, he was an assistant in the Department
of Computer Science of Alfonso X El Sabio University, Madrid, Spain. He has
been involved in several research projects related to Web information retrieval
and multimedia real time systems. His research interests include Web informa-
tion retrieval and distributed architectures in information retrieval. He has pub-
lished several papers in international journals and has participated in multiple
international conferences.

Received: December 15, 2011; Accepted: April 9, 2012.

ComSIS Vol. 9, No. 2, June 2012 583

