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Abstract. Data reduction is a common pre-processing step for k-nearest neighbor
classification (kNN). The existing prototype selection methods implement differ-
ent criteria for selecting relevant points to use in classification, which constitutes a
selection bias. This study examines the nature of the instance selection bias in intrin-
sically high-dimensional data. In high-dimensional feature spaces, hubs are known
to emerge as centers of influence in kNN classification. These points dominate most
kNN sets and are often detrimental to classification performance. Our experiments
reveal that different instance selection strategies bias the predictions of the behavior
of hub-points in high-dimensional data in different ways. We propose to introduce
an intermediate un-biasing step when training the neighbor occurrence models and
we demonstrate promising improvements in various hubness-aware classification
methods, on a wide selection of high-dimensional synthetic and real-world datasets.
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1. Introduction

The k-nearest neighbor (kNN) classification method [11] is a widely used nonparamet-
ric data mining technique. The label in the point of interest is determined by a majority
vote of its nearest neighbors. This deceivingly simple procedure exhibits some beneficial
asymptotic properties. As the sample size approaches infinity, the nearest neighbor clas-
sifier (k=1) error rate is guaranteed to be no worse than twice the Bayes error rate, which
is the optimal error rate for a given distribution [8].

Various classifiers have been developed over the years, yet kNN is still very frequently
used in many practical applications. It is considered the state-of-the-art in time series clas-
sification, especially when paired with the dynamic time warping distance [46]. It is also
a good basis for developing methods for learning under class imbalance, due to its high
specificity and low generalization bias [3]. Some modifications of the basic approach
have been proposed for object recognition [2], medical image segmentation [45], tag rec-
ommendation [16] and document classification. Results of kNN classification are easily
interpretable, which is relevant for many types of expert systems.

Despite its popularity, kNN suffers from some serious drawbacks. Most importantly,
there are issues with scalability, due to its high storage requirements and relatively slow
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classification response. Its high specificity bias, which is useful in imbalanced data clas-
sification, also makes it more prone to noise and erroneous/mislabeled data.

One of the most promising research directions in addressing these issues is data reduc-
tion. Reducing the size of the training set speeds up subsequent classification and reduces
storage requirements, while possibly eliminating outliers and noisy examples. There are
two types of data reduction algorithms, one where the prototypes are generated through
some internal models and the other where they are selected from among the existing data
points. In this paper, we will focus on the latter. We will discuss several different ap-
proaches to instance selection in Section 2.2.

High-dimensional data pose additional challenges for k-nearest neighbor methods.
Concentration of distances [13] affects kNN classification in severely negative ways, as it
becomes more difficult to distinguish between relevant and irrelevant points. As distances
converge, everything starts to looks the same. The notion of nearest neighbors becomes far
less meaningful [10], though it is usually still possible to differentiate between different
categories.

Hubness is another consequence of high intrinsic data dimensionality that affects kNN
methods [32]. The distribution of influence in k-nearest neighbor classification becomes
highly asymmetric and skewed to the right. A small number of hubs emerges and domi-
nates most k-nearest neighbor sets. Consequently, most remaining points occur rarely or
never as neighbors. Hubs tend to link and co-occur in frequent neighbor pairs [39]. The
presence of hubs is usually detrimental to classification, especially in presence of class
imbalance [41]. Detrimental hub points are referred to as bad hubs.

Hubness has first been reported in music retrieval and recommendation systems [1],
where it is still an important issue [12][15]. Other data domains where hubness was de-
scribed include textual data, images [37] and time series [33]. Hubness is discussed in
more detail in Section 2.1.

A detailed study of the influence of hubness on instance selection for kNN classifica-
tion is currently lacking. Most recent instance selection surveys have failed to take data di-
mensionality into account and did not consider the implications of hub selections [27][14].
There has been some recent progress in terms of designing instance selection methods that
take data hubness into account [4][9]. These hubness-based instance selection methods are
included in our analysis.

1.1. Contributions

The main contribution of this paper is a new way of combining instance selection with k-
NN classification. The proposed approach takes prototype hubness into account, estimated
in an unbiased way on the training data. This information is then passed on to hubness-
aware kNN classifiers.

As hubs are the centers of influence in intrinsically high-dimensional data and greatly
determine the outcome of the k-nearest neighbor classification process, we have examined
how different instance selection methods handle hub-points and how they affect the over-
all hubness in the data space. Multiple comparisons were performed on several different
kNN-based data reduction techniques.

The main hypothesis that is examined in this paper is that the instance selection bias
induces a bias in the hubness estimates derived from the selected data and that this has a
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detrimental effect on kNN classification. Our experimental results on data from different
domains support this hypothesis.

Furthermore, we suggest that it might be possible to overcome this issue by using the
recently proposed hubness-aware k-occurrence models [38][40][42]. We have shown that
this coupling of instance selection with classification requires the selection methods to
output the unbiased prototype hubness estimates recalculated on the training data after
the initial instance selection phase, alongside with the selected subset. As many existing
instance selection methods already calculate kNN graphs on the training data prior to
selection, we argue that such recalculations can be done very efficiently in practice.

2. Related work

2.1. Hub points and their influence on classification

Let D = (x1, y1), (x2, y2) . . . (xN , yN ) be a set of labeled data points drawn i.i.d. from a
joint distribution p(x, y) = p(x) · p(y|x) over X × Y , where X is the feature space and
Y the finite label space, |Y | = C.

Denote by Dk(xi) = {(xi1, yi1), (xi2, yi2) . . . (xik, yik)} the k-neighborhood of xi.
We will say that any x ∈ Dk(xi) is a neighbor of xi and xi is a reverse neighbor of
any x ∈ Dk(xi). An occurrence of an element in some Dk(xi) will be referred to as k-
occurrence. The number of k-occurrences of a point x will be denoted by Nk(x). We will
sometimes refer to Nk(x) as the hubness of x.3 We will say that a k-occurrence is good
if the neighbor label matches the label in the point of interest, i.e. xij ∈ Dk(xi) is a good
occurrence of xij if yij = yi. Similarly, label mismatches define the bad occurrences of a
neighbor point. The total occurrence count can thus be decomposed into the good an bad
occurrence sums as Nk(xi) = GNk(xi)+BNk(xi), where GNk and BNk represent the
good and bad hubness, respectively.

The bad occurrences cause misclassification in kNN methods, therefore a high bad
hubness rate is usually a good indicator of the complexity of the classification task. In non-
binary classification problems, it is sometimes useful not only to consider bad hubness as
a single quantity, but rather to analyze all the class-specific occurrences separately. We
will denote by Nk,c(xi) the number of k-occurrences of xi in neighborhoods of examples
that belong to class c.

In high dimensional data, the distribution of Nk(x) becomes highly asymmetric, in
a sense that it is skewed to the right. Skewness4 of the k-occurrence distribution is de-
fined as g1(Nk(x)) =

m3(Nk(x))

m
3/2
2 (Nk(x))

=
1/n

∑N
i=1(Nk(xi)−k)3

(1/n
∑N

i=1(Nk(xi)−k)2)3/2
. High positive skewness

which is encountered in intrinsically high-dimensional data indicates that the distribu-
tion tail is longer on the right distribution side. This is illustrated in Figure 1. In very
high-dimensional data, the occurrence distribution actually approaches the power law.

3 The word hubness is otherwise used to denote the neighbor occurrence distribution skewness
when used in front of a data set or subset. When used in front of a single point x, it denotes the
degree to which that point is a hub, which is measured by the point occurrence count, Nk(x).

4 Skewness of a probability distribution is its 3rd standardized moment and is frequently used in
statistical analysis. The 4th moment is kurtosis, which quantifies the steepness of a distribution,
and we will not consider it here.
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The example in Figure 1 shows the skewness in Gaussian data, but the phenomenon holds
in general and is present in many real-world data sets.

Fig. 1. The change in the distribution shape of 10-occurrences (N10) in i.i.d. Gaussian data with
increasing dimensionality when using the Euclidean distance. The graph was obtained by averaging
over 50 randomly generated data sets. Hub-points exist also with N10 > 60, so the graph displays
only a restriction of the actual data occurrence distribution.

Formally, we will say that hubs are points xh ∈ D such that Nk(xh) > k+2 ·σNk(x).
In other words, their occurrence frequency exceeds the mean (k) by more than twice the
standard deviation. We will denote the set of all hubs in D by HD

k .
Even though the idea of simply removing bad hubs from the data might seem appeal-

ing, the problem is not so simple. The removal of hubs creates empty positions in the
neighbor lists of their reverse nearest neighbors and these positions are then subsequently
filled by other points when the kNN sets are re-calculated. This usually spawns more hubs
and in turn, bad hubs as well.

Hubness-aware classification Several hubness-aware k-nearest neighbor methods for
high-dimensional data classification have recently been proposed [42][40][38]. They are
based on learning k-neighbor occurrence models on the training data, by calculating
Nk,c(xi) for all x ∈ D. The idea is that previous occurrences of a neighbor point carry po-
tentially useful information and that this information can be more valuable for predicting
the label in the point of interest than the label of the neighbor point itself.

As a trivial example, consider a hub point xM that belongs to class c1. Furthermore,
assume xM is mislabeled, so that yM = c2 and that xM belongs to a class interior of
c1. Most likely, there will be a label mismatch in all of xM -s k-occurrences. Some of
those mismatches might even induce misclassification. However, if previous occurrences
of that point were known, it is possible to consider an occurrence of xM as partial evidence
towards having label y = c1 in the query point, instead of y = c2. Since hubs occur very
frequently and most neighbor occurrences in high-dimensional data are hub occurrences,
there are often plenty of past occurrences to learn from.

Instance selection can may cause detrimental hub points to emerge. Hubness-aware
classification should therefore be considered for usage in conjunction with instance selec-
tion, instead of traditional k-nearest neighbor approaches. This idea is discussed in more
detail in Section 3 and an experimental evaluation is presented in Section 5.
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Several hubness-aware k-nearest neighbor classification approaches based on learn-
ing from neighbor occurrence models on the training data have recently been proposed.
It is possible to incorporate hubness-based weights during voting, as in hw-kNN [34].
Class-conditional neighbor occurrences can be used to derive fuzzy votes for the fuzzy k-
nearest neighbor voting framework, as proposed in h-FNN [42]. This has been extended
to include neighbor occurrence self-information in vote weighting in HIKNN [38]. Al-
ternatively, the Naive Hubness-Bayesian k-nearest neighbor (NHBNN) [40] presents a
Bayesian re-interpretation of the k-nearest neighbor rule where neighbor occurrences are
treated as random events. Class affiliation probabilities in NHBNN are determined as per
Equation 1, where N is the data size, nc = |{xi : yi = c}| is the size of class c and λ is a
smoothing parameter.

p(yi = c|Dk(xi)) ∝ p(yi = c)
k∏

t=1

p(xit ∈ Dk(x)|y = c) =
nc

N

k∏
t=1

Nk,c(xit) + 1 + λ

nc · (k + 1) + λN

(1)
An evaluation of the feasibility of using these hubness-aware classification approaches

in conjunction with instance selection is discussed in Section 5.3.

2.2. Data Reduction

Prototype selection for k-nearest neighbor classification is a frequently used data pre-
processing technique and many methods have been proposed over the years [14][23].
Edition methods try to eliminate noisy instances and wrapper methods try to preserve
classifier accuracy by removing superfluous examples. Many methods are hybrid, as they
try to achieve both goals, to a degree. This division reflects some fundamental differences
in prototype selection strategies, as the edition methods seek to remove the border points,
while the wrappers usually perform condensation by keeping precisely such points which
are close to decision boundaries [14]. According to what is reported in the literature,
good results can be obtained either by keeping or rejecting the border points and either by
keeping or rejecting the central points. There is no unified approach and it is clear that the
best strategy is data-dependant.

Regardless of the border point selection/rejection strategies, the methods which seek
to safely reduce the data size often in fact aim at maximizing the coverage of points by
their selected k-nearest prototypes [4]. Set coverage is an NP-complete problem. The
prototype selection problem was shown to be equivalent to the set coverage problem,
suggesting that one should apply approximate and heuristic methods.

We have considered several well known selection strategies, as well as a few very
recent ones. Random sampling will be used as a baseline. Any complex, time-consuming
method ought to perform at least as well as random sampling if it were to justify its use.
Additionally, random sampling is unbiased, which fits the purpose of our comparisons
quite well.

The other approaches we considered in this study are ENN [43], CNN [30],
GCNN [7], RT3 [44], AL1 [9] and INSIGHT [4].

ENN: One of the first proposed approaches was the edited nearest neighbor (ENN) [43].
It keeps the examples which are correctly classified by the kNN rule on the training
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data, k usually being set to 3 or 5. In high-dimensional data, there is no guarantee
that bad hubs will be misclassified on the training data. Therefore, ENN might select
points that would cause severe misclassification.

CNN: The condensed nearest neighbor (CNN) [30] method is an incremental procedure
which retains at each step an instance if it is misclassified by the current prototype
set. As outliers are often misclassified, this procedure retains most of the noise in the
data and its reduction rate is not very high.

GCNN: A generalized CNN approach applies a strong absorption rule [7]. GCNN retains
more examples than CNN, usually leading to a better accuracy. As with both ENN
and CNN, there is no guarantee that the selected points would exhibit good hubness.

RT3: Another classic instance pruning technique is the RT3 rule presented in [44]. In
the first pass, noisy instances are removed by a rule similar to ENN. The remaining
points are sorted by the distance to their nearest enemy and then iteratively removed
if their removal does not increase misclassification in the set of their reverse nearest
neighbors. RT3 achieves very good data reduction. However, as it uses ENN-like
noise filtering approach, it can lead to suboptimal selection sets, as some good hubs
might be filtered out in the first pass.

AL1: Unlike the above outlined methods, AL1 [9] is a selection rule based on reverse-
neighbor sets. A point xi is retained if it is a reverse neighbor to at least one other
point, assuming that xi had not previously been covered by an already selected point.

INSIGHT: A hubness-aware selection strategy for time series classification was recently
proposed [4]. INSIGHT takes into account the good and bad k-occurrences of each
instance, and then chooses a previously specified number of instances as prototypes.

There are many other approaches as well, that are beyond the scope of the study that
is presented in this paper. Genetic algorithms are a common approach [20]. Influence of
prototype selection on future query quality has been examined in [48]. Special selection
techniques have been applied to learning under class imbalance [31]. Hybrid selection
methods have also been considered [5].

The instance selection methods evaluated in this paper all base their selection crite-
ria on information obtained by analyzing k-neighbor sets. This allows us to implement
our proposed approach (Section 3) with minimal / negligible overhead in terms of time-
complexity. This is not an unreasonable assumption in practice, as many instance selection
methods are tailored precisely for kNN classification.

3. The proposed approach

3.1. General outline

During instance selection, the original training set D is decomposed into two disjoint
subsets, the set of selected and rejected examples, S and R respectively. We will use α

to denote the selection rate α = |S|
|D| . Traditionally, only S is used in the subsequent

classifier training, while R is disregarded completely. What we essentially propose is to
use D = S ∪R for prototype occurrence modeling, i.e. hubness-aware classifier training,
while only considering the prototypes x ∈ S as potential neighbors. There is a way to do
this with minimal overhead, in those selection methods which rely on k-nearest neighbor
sets.
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The reason for this lies not only in the fact that D = S ∪ R is a larger set and hence
might lead to better estimates for classifier models, but rather that instance selection meth-
ods induce a bias when constructing S and data distribution there differs from the original
data distribution. Therefore, calculating a kNN graph on S only would not be guaranteed
to lead to a good neighbor occurrence model, as it would not necessarily be able to pre-
dict how prototype points x ∈ S would occur on the test data, due to a difference in data
distributions.

The proposed selection process is outlined in Figure 2, where the instance selection
phase is extended by including the unbiased prototype hubness estimation, followed by
hubness-aware k-nearest neighbor classification.

Fig. 2. The modified instance selection pipeline. An unbiased prototype occurrence profile estimator
is included between the instance selector and a hubness-aware classifier. It ought to provide more
reliable hubness estimates to the hubness-aware occurrence models. In the example we see that
point A is a neighbor to three other points (X ,Y ,Z), but only one of them gets selected. Hence,
some occurrence information is irretrievably lost.

Let the unbiased prototype hubness training estimate for a given selected set S be
the relative neighbor occurrence frequency of x ∈ S when only x ∈ S are considered as
potential neighbors to points in x ∈ S ∪R. For each instance x ∈ S ∪R, we calculate its
nearest neighbors from S. Note that these prototype occurrence frequencies might differ
significantly from their frequencies prior to instance selection. The rejected points xi ∈ R
are put in a tabu-list and are not considered as potential neighbors.

Let xi ∈ S be a prototype point. Denote by NP
k (xi), NP

k,c(xi), GNP
k (xi) and BNP

k (xi)
the unbiased hubness quantities: prototype occurrence frequency, prototype class hubness,
prototype good hubness and prototype bad hubness, respectively.

Since all x ∈ D are required for the unbiased prototype hubness training estimate,
hubness-aware classifiers would not be able to perform these calculations internally if
only S is provided to them after instance selection. This is why the proposed framework
includes an intermediate step where the selection methods output the calculated unbiased
prototype occurrence frequencies in a separate object.

In order to measure the extent of the selection bias, it is necessary to compare the
unbiased prototype hubness training estimate to its biased counterpart. Let the proto-
type pseudo-hubness be the biased estimate inferred only from S. We will use NS

k (xi),
NS

k,c(xi), GNS
k (xi) and BNS

k (xi) to denote the pseudo-hubness, class-specific pseudo-
hubness, pseudo-good hubness and pseudo-bad hubness of xi ∈ S, respectively.

The only case in which the pseudo-hubness quantities are themselves unbiased is
when the instance selection is entirely random. However, even though random sampling
is unbiased, there remains an issue of reliability of the restricted prototype estimates,
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as they are inferred from a smaller sub-sample. The standard error of a probability es-

timate p is
√

p(1−p)
n , where n is the number of observations it is derived from. When

estimating the class-specific neighbor occurrence profiles, p(y = c|xi ∈ Dk(x)) is re-
quired, and there the number of observations is actually n = Nk(xi). Therefore, the
expected error is proportional to the reciprocal of the square root of point hubness. How-
ever,

∑
xi∈S NS

k (xi) = k|S| and
∑

xi∈S NP
k (xi) = k|D|. Therefore, E(NS

k (xi)) = k,

while E(NP
k (xi)) = k |D|

|S| . Even in random sampling, NP
k (xi) prototype hubness scores

would be able to deliver better estimates by a factor of
√

|D|
|S| .

3.2. Scalability

Many kNN instance selection methods build an entire kNN graph on the training data
during the instance selection phase. In order to calculate all the NP

k (xi) and NP
k,c(xi),

these neighbor lists need to be modified so that they only contain members of S, the se-
lected prototypes. This is easily achieved. First, all x ∈ R are removed from the neighbor
sets, which are then shifted to the left. The remaining positions in each Dk(x) are then
filled by considering all {x : x ∈ S \Dk(x)}. This is illustrated in Figure 3.

As instance selection methods try to select relevant points, we would expect many of
the occurrences in the original kNN graph to originate from the selected prototypes. In the
worst case, calculating the entire prototype-restricted kNN graph is still |D|

|S| times faster
than calculating the training kNN graph, which doesn’t increase the overall complexity.

Fig. 3. The existing k-nearest neighbor lists on the training set D = S
∪

R are easily modified
to obtain the unbiased prototype hubness estimates. The rejected examples are removed from the
neighbor sets and the remaining neighbors are shifted to the left. It is possible to use different
neighborhood sizes for instance selection and classification, which would significantly reduce the
number of remaining calculations. In some cases, partial nearest neighbor queries might be needed
to fill in the last few remaining positions.
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Most existing hubness-aware classifiers [40][38][42] do not require additional training
once provided with all the NP

k,c(xi) values, or perform additional calculations that are
linear in data size. This means that replacing basic kNN with its hubness-aware extensions
does not increase the time complexity of the classification pipeline.

Instead of calculating a complete kNN graph exactly, which is not feasible for big data
where there are millions of examples, it is possible to rely on fast approximate methods
that produce fairly accurate approximations in reasonable time [6][29].

4. Data

We have compared the selected instance pruning methods and evaluated our proposed
approach on several data domains. The benchmark contains quantized image representa-
tions, time series and class imbalanced high-dimensional Gaussian mixtures. An overview
of important hubness-related properties of the data is given in Table 1. Manhattan distance
was used for image representations, Euclidean on the Gaussian mixtures and dynamic
time warping (DTW) on time series. Image and Gaussian data exhibits substantial hub-
ness. The analyzed time series are of low-to-medium hubness.

Table 1. Overview of the datasets. Each dataset is described by its size, dimensionality, the number
of categories, skewness of the Nk distribution (SNk ), proportion of bad k-occurrences BNk, the
number of hubs (|HD

k |), as well as the degree of the major hub. The neighborhood size of k = 10
was used in all experiments.

Data set size d C SN10 BN10 |HD
10| maxN10

iNet3 2731 416 3 4.61 26.1% 76 750
iNet4 6054 416 4 10.77 48.1% 137 906
iNet5 6555 416 5 7.42 50.3% 170 1635
iNet6 6010 416 6 4.32 56.9% 245 1834
iNet7 10544 416 7 5.56 55.0% 343 1638

GM1 10785 100 20 4.40 41.4% 439 272
GM2 8849 100 20 5.12 45.6% 319 274
GM3 8102 100 20 5.35 40.0% 315 323
GM4 11189 100 20 5.97 45.0% 509 338
GM5 9859 100 20 5.32 49.2% 361 306
GM6 10276 100 20 9.19 42.9% 291 500
GM7 12572 100 20 6.80 45.3% 434 420
GM8 8636 100 20 8.33 48.5% 256 517
GM9 9989 100 20 5.26 53.0% 375 289
GM10 9330 100 20 6.12 45.4% 320 357

50words 905 270 50 0.66 36.2% 38 33
Adiac 781 176 37 0.36 51.8% 20 28
Cricket X 780 300 12 0.38 33.1% 22 28
Cricket Y 780 300 12 0.46 34.9% 28 30
Cricket Z 780 300 12 0.37 33.2% 27 27
ECGFiveDays 884 136 2 0.00 3.6% 18 25
Haptics 463 1092 5 0.85 60.9% 20 35
InlineSkate 650 1882 7 0.42 52.3% 24 28
ItalyPowerDemand 1096 24 2 0.83 5.1% 46 46
MedicalImages 1141 99 10 0.35 31.6% 33 26
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4.1. High hubness test data

The analyzed image datasets were taken as subsets of the ImageNet online repository5,
processed as quantized and normalized SIFT feature representations [37][24], enriched
by color histogram information [47]. They exhibit high overall hubness, as well as high
bad hubness.

The Gaussian mixture data was generated with a specific intent to pose great diffi-
culties for k-nearest neighbor methods. Let µc and σc be the d-dimensional mean and
standard deviation vectors of a hyper-spherical Gaussian class c ∈ 1..C on a synthetic
Gaussian mixture data set. The covariance matrices of the generated classes were diag-
onal for simplicity, i.e. the attributes were independent and the i-th entry in σc signifies
the independent dispersion of that synthetic feature. For the first class, the mean vector
was set to zeroes and the standard deviation vector was generated randomly. Each subse-
quent class c was randomly paired with one prior Gaussian class, which we will denote
by c̄, so that some overlap between the two was assured. For each dimension i ∈ 1..d
independently, µc was set to µc ≈ µc̄ ± β · σc̄ with equal probability, where β = 0.75.
Additionally, dispersion was updated by the following rule: σc = γ ·σc̄+(γ−β) ·Z ·σc̄,
where γ = 1.5 and Z is a uniform random variable defined on [0, 1]. Each class was set to
be either a minority class or a majority class and the class sizes ranged from 20 to 1000,
each being randomly determined either in the upper [700, 1000] or the lower [20, 170]
interval of the range. All 10 compared synthetic datasets were set to be 100-dimensional
and to contain 20 different classes.

Most datasets in Table 1 are quite challenging for kNN classification even prior to
instance selection, especially image and Gaussian data that have about 50% of label mis-
matches in k-neighbor sets.

The degree of the major hub shows us how some individual points permeate surpris-
ingly many k-neighbor sets. For example, in iNet6, the major hub appears in 30.5% of all
query results. It often induces label mismatches and misclassification.

4.2. Low hubness test data

Instance selection methods are potentially quite useful for time series classification, due
to a high time complexity of calculating all dynamic time warping (DTW) distances be-
tween pairs of time series. Performing instance selection reduces the number of distance
calculations in future queries, which leads to a significant speed-up and improves overall
scalability. DTW can be interpreted as an edit distance [22] and DTW calculation process
can be viewed as a process of transforming one time series into another via cost-sensitive
elongations and replacements. DTW calculates the transformation with minimal cost and
the cost represents the distance between the time series. DTW can be calculated via dy-
namic programming [35]. It is possible to speed up the calculations by restricting possible
index differences between compared time series subsequences to a fixed ’warping win-
dow’ [18]. Recent research suggests that setting the warping window width to a relatively
small value such as 5% of the time series length, does not negatively affect the classi-
fication accuracy and might even lead to some improvements [35]. We have used this
approach in our experiments.

5 http://www.image-net.org/
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In order to evaluate our approach on time-series data, we used publicly available real-
world datasets from the UCR repository6. Here we report the results on 10 representa-
tive datasets, namely: 50words [36], Adiac [17], Cricket X [21], Cricket Y, Cricket Z,
ECGFiveDays, Haptics [25] InlineSkate [26], ItalyPowerDemand [19], MedicalImages.
Similar trends exist in other cases as well.

The examined time series datasets do not exhibit substantial hubness and there are no
major hubs in the data. This is a consequence of the fact that the intrinsic dimensionality
of time series data is usually much lower than its embedding dimensionality due to corre-
lations between subsequent measurements and signals. Therefore, negative aspects of the
dimensionality curse are not as pronounced.

5. Experiments

The evaluation of classification under instance selection was performed as 10-times 10-
fold cross validation. Statistical significance was tested using the corrected re-sampled
t-test to compensate for dependencies between the runs. A standard neighborhood size of
k = 10 was used in all experiments.

The selection rate for INSIGHT and baseline random sub-sampling was set to α =
0.1. We are interested mainly in instance selection methods that can significantly reduce
the data size. The GCNN rule requires a strong absorption parameter. The default value
that was proposed in the original paper did not perform well in the high-dimensional
case, as it was selecting almost the entire datasets. A value of 0.1 was used instead, after
performing a series of initial trials, resulting in a more reasonable reduction rate.

Section 5.1 presents the evaluation of the influence of instance selection on data hub-
ness, as well as an examination of hub selection bias of different selection strategies. The
difference between biased and unbiased prototype hubness training estimates is shown in
Section 5.2 and the benefits of the proposed hubness-aware instance selection framework
are confirmed by an experimental evaluation of kNN classification performance under
instance selection in Section 5.3.

5.1. Hubs and Instance Selection

In intrinsically high-dimensional data, hubs arise as most influential points in k-nearest
neighbor classification. In case they are selected as prototypes, the selection will tend
to preserve the original distribution of influence. Failing to select major data hubs can
potentially induce substantial changes in kNN structure with unpredictable consequences
that might be beneficial or detrimental.

The overall selection rate for the examined methods on high-hubness data is shown in
Figure 4. Random sub-sampling and INSIGHT have been pre-set to fixed selection rates
of α = 0.1. RT3 selects very small prototype subsets. On the other hand, GCNN displays
a low reduction rate and retains most points. ENN and CNN achieve selection rates of
about 50% on this data.

While some hubs are retained by the examined selection strategies, many hubs also get
rejected in the process, as shown in Figure 5. The highest proportion of hubs get selected

6 http://www.cs.ucr.edu/˜eamonn/time series data/
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(a) iNet (b) Gaussian Mixtures

Fig. 4. Average selection rate α of the examined instance selection methods.

in INSIGHT and GCNN, while Random and RT3 select the fewest among the original
hubs.

(a) iNet (b) Gaussian Mixtures

Fig. 5. Average hub selection rate α(H) of different instance selection methods. A higher rate im-
plies a preservation of the distribution of influence.

Figure 6 shows the hub selection rates normalized by the overall selection rates. Val-
ues greater than 1 indicate a positive preference for selecting hub points. INSIGHT and
AL1 select a very high proportion of hub points, as they are based on analyzing reverse
neighbor sets. ENN is the only remaining method which achieves a hub selection rate sig-
nificantly higher than random, on Gaussian mixtures, about 1.4. On the examined Gaus-
sian data, the hub selection rate of CNN is even significantly lower than random.

The fact that many of the original hubs are frequently not being selected by the exam-
ined strategies suggests that applying such instance selection prior to kNN classification
is expected to have a significant impact on classification performance, either by increasing
or decreasing the original classification accuracy.

Dependency on Neighborhood Size Selecting the optimal neighborhood size in k-
nearest neighbor methods is a complex issue. It is important to consider neighborhoods
that are large enough to compensate for noise but also small enough not to breach the lo-
cality assumption across the data space. It is possible to use cross-validation [28] or other
techniques to determine good candidate k-values on training data. As an in-depth anal-
ysis of the neighborhood size selection problem is beyond the scope of this study, most
experiments in Section 5.2 and Section 5.3 were performed for a fixed, pre-determined
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(a) iNet (b) Gaussian Mixtures

Fig. 6. Averaged normalized hub selection rate α(H) of different instance selection methods. A
number close to 1 implies that the hub selection rate does not differ from that of random sub-
sampling.

neighborhood size. Here we will briefly examine the consequences of varying neighbor-
hood sizes.

As Figure 7 shows, the examined instance selection methods do not appear to be very
sensitive to the choice of k, in terms of hub selection rates which remain stable in the
tested intervals. The fluctuations in ENN most probably stem from tie resolution in kNN
classification and the tie resolution strategy. As for AL1, its hub selection rate decreases
monotonously with k, as more and more hubs get covered by other hubs and are therefore
rejected by the algorithm. Overall, similar k values tend to produce similar results and the
relative ordering of the methods with respect to hub selection remains invariant.

Fig. 7. The stability of hub selection rates of different instance selection methods under changing
neighborhood sizes, calculated on the iNet6 dataset.

Prototype occurrence skewness The skewness of the prototype k-occurrence distribu-
tion can differ substantially from the hubness of the data prior to instance selection. As
Figure 8 shows, different selection methods induce different degrees of prototype hub-
ness. CNN and GCNN induce the highest prototype set hubness among the compared
approaches across different data domains. Only among time series data does random sub-
sampling induce a higher skewness of the prototype k-occurrence distribution. INSIGHT
achieves the lowest prototype occurrence skewness, as it rejects anti-hubs and orphans,
which reduces the hubness of the data.
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Fig. 8. Average unbiased skewness in the prototype occurrence distributions, SNP
k , given for dif-

ferent instance selection methods.

Some approaches are inconsistent in the way in which they change data hubness, like
ENN and RT3. On certain datasets they increase it while on others they decrease the
overall data hubness.

5.2. Biased and Unbiased Hubness Estimates

As instance selection methods incorporate a selection bias, calculating the hubness of the
selected prototypes within the selected subset alone (NS

k (xi), NS
k,c(xi), GNS

k (xi),BNS
k (xi))

yields biased pseudo-hubness estimates. This fact was not given much thought prior to
hubness-aware kNN methods, as other kNN classifiers do not use these quantities explic-
itly in classification. Here we examine the consequences of using the biased estimates
calculated only on the prototype set S.

Figure 9 shows high regularity in estimating label mismatch percentages on image
data. In ENN, RT3 and INSIGHT there is a consistent underestimation of the actual bad
influence of the selected prototypes. In CNN and GCNN there seems to be a consistent
overestimation of bad hubness. Underestimating bad hubness might be potentially much
more dangerous than overestimating it, as it might cause the models to favor certain hub
points that might actually turn out to be bad hubs. This might increase the misclassifica-
tion rate.

Fig. 9. The difference between the pseudo-bad hubness estimated on the set of selected instances S
and the actual prototype bad hubness estimated on the entire training set.
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Figure 10 gives a more detailed insight into the consequences of the selection bias,
as it shows the average point-wise error in estimating future bad occurrence probabilities.
The lowest average bad hubness estimation error is achieved by CNN and GCNN. RT3
displays a very high bad hubness estimation error rate and even INSIGHT and ENN ex-
hibit non-negligible estimation error rates on several datasets. These occurrence estimates
were calculated for k = 10. In subsequent classification, these errors accumulate when
individual votes are factored in the final decision.

Fig. 10. The average absolute difference in estimating the bad 10-occurrence prob-

abilities of individual prototype points on ImageNet data, where Err
p(BNS

10)

AV G =

E{x:NS
10(x)>0∨NP

10(x)>0}(|
BNS

10(x)

NS
10(x)

− BNP
10(x)

NP
10(x)

|).

Even though the absolute and relative BNS
k (x) differ notably from BNP

k (x), proto-
type neighbor points mostly retain their general class hubness tendencies. There is a high
average correlation between NS

k,c(x) and NP
k,c(x) for c ∈ C, as can be seen in Figure 11.

The correlation is only low in case of RT3.

Fig. 11. Average Pearson correlation between class hubness tendencies of prototype neighbor points
for the compared selection methods on ImageNet data.

Unlike bad hubness, no regularity can be seen in underestimating or overestimating
the skewness of the prototype occurrence distribution itself, as shown in Figure 12. There-
fore, SNS

k is not a viable substitute for SNP
k .
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Fig. 12. The difference between the pseudo-hubness estimated on S and the prototype occurrence
skewness estimated on the entire training set. There is no apparent regularity, which means that
very little can be discerned from observing pseudo-hubness of prototypes on a single dataset, as
one can not even know with certainty whether the estimate exceeds the actual data hubness or
underestimates it instead.

5.3. Classification Experiments

We have tested the biased and unbiased hubness estimates within several different hubness-
aware classifiers and occurrence models: hw-kNN [34], h-FNN [42], NHBNN [40] and
HIKNN [38]. The relative classifier ranks based on the achieved accuracy with no instance
selection are shown in Figure 13 and a comparison of classifier ranks in case of biased and
unbiased neighbor occurrence estimates for various instance selection methods is given
in Figure 14. Improvements can be seen in the overall average accuracy as well.

Fig. 13. Average relative classifier ranks of kNN, hw-kNN, HIKNN, h-FNN and NHBNN with no
instance selection on the tested datasets. Lower ranks correspond to better performance.

Using the proposed unbiased hubness estimation framework significantly improves
the performance of all examined hubness-aware classification methods. Most improve-
ments are present for selection strategies with a lower selection rate. This is natural, since
a smaller sample allows for a higher bias in learning neighbor occurrence models and also
provides less data to estimate the class-conditional neighbor occurrence frequencies from.
These results confirm our initial hypothesis, that the instance selection bias reflects nega-
tively on neighbor occurrence models in hubness-aware k-nearest neighbor classifiers and
that using an unbiased estimate leads to better results.

Correcting the instance selection bias in neighbor occurrence estimation yields small-
est improvements in case of hw-kNN, as it does not differentiate class-conditional neigh-
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(a) NHBNN

(b) h-FNN

(c) hw-kNN

(d) HIKNN

Fig. 14. Average relative classifier ranks over all tested datasets for all tested instance selection
methods and classification algorithms, in case of biased and unbiased neighbor occurrence estima-
tion.

bor occurrence frequencies, rather relying on aggregate concepts of good and bad hub-
ness.

The two instance selection strategies that favor hubs, AL1 and INSIGHT, perform
approximately as well as random sub-sampling under the investigated selection rates. This
suggests that they might not be selecting the most appropriate hub-points. AL1 simply
tries to select a very small number of points that maximize coverage, so it is possible that
many of the selected hub-points are in fact bad hubs and are causing misclassification.

6. Conclusions and Future Work

This paper examines the role of hubs in instance selection for kNN classification and
proposes a new framework for coupling instance selection with hubness-aware k-nearest
neighbor classification for classifying intrinsically high-dimensional data.
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Several standard kNN-based selection strategies have been examined: random sub-
sampling, ENN, RT3, CNN, GCNN, AL1 and INSIGHT. The initial analysis has shown
that different selection strategies exhibit different hub selection rates and preferences.
GCNN and INSIGHT select most hubs on average. ENN, AL1 and INSIGHT exhibit
a general preference for selecting hubs as prototypes. Consequently, different instance
selection methods affect the selected prototype hubness in different ways.

Each selection strategy embodies a certain bias regarding the points it retains as pro-
totypes. This can lead to underestimation or overestimation of the potential future bad
influence of some selected hub points and reduce the subsequent classification perfor-
mance. We have proposed to use an unbiased hubness estimate in conjunction with the
hubness-aware classification models as a way to overcome this deficiency.

We have examined the classification accuracy and rank of HIKNN, NHBNN, hw-
kNN, h-FNN and the baseline kNN under biased and unbiased hubness estimates for all
7 compared instance selection methods, on 25 real-world and synthetic datasets. An ex-
tensive experimental evaluation has shown promising improvements when the unbiased
hubness estimate is used. This confirms our initial hypothesis, that the instance selec-
tion bias reflects negatively on classifiers that build neighbor occurrence models from the
selected prototype set.

In future work, we intend to use these initial discoveries in order to design new and
better instance selection methods for intrinsically high-dimensional data.
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Research Scholarship of the Hungarian Academy of Sciences.
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5. Caises, Y., González, A., Leyva, E., Pérez, R.: Combining instance selection methods based
on data characterization: An approach to increase their effectiveness. Inf. Sciences 181(20),
4780–4798 (Oct 2011)

6. Chen, J., ren Fang, H., Saad, Y.: Fast approximate kNN graph construction for high dimensional
data via recursive Lanczos bisection. Journal of Machine Learning Research 10, 1989–2012
(2009)

7. Chou, C.H., Kuo, B.H., Chang, F.: The generalized condensed nearest neighbor rule as a data
reduction method. In: Proceedings of ICPR. pp. 556–559. IEEE Computer Society, Washing-
ton, USA (2006)

8. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Informa-
tion Theory IT-13(1), 21–27 (1967)



Correcting the Hub Occurrence Prediction Bias in Many Dimensions 19

9. Dai, B.R., Hsu, S.M.: An instance selection algorithm based on reverse nearest neighbor. In:
Proceedings of the 15th Pacific-Asia conference on Advances in knowledge discovery and data
mining - Volume Part I. pp. 1–12. PAKDD’11, Springer-Verlag, Berlin, Heidelberg (2011)

10. Durrant, R.J., Kabán, A.: When is ‘nearest neighbour’ meaningful: A converse theorem and
implications. Journal of Complexity 25(4), 385–397 (2009)

11. Fix, E., Hodges, J.: Discriminatory analysis, nonparametric discrimination: consistency prop-
erties. Tech. rep., USAF School of Aviation Medicine, Randolph Field (1951)

12. Flexer, A., Gasser, M., Schnitzer, D.: Limitations of interactive music recommendation based
on audio content. In: Proceedings of the 5th Audio Mostly Conference: A Conference on Inter-
action with Sound. pp. 13:1–13:7. AM ’10, ACM, New York, NY, USA (2010)

13. François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE Trans-
actions on Knowledge and Data Engineering 19(7), 873–886 (2007)

14. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classifica-
tion: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435
(Mar 2012)

15. Gasser M., Flexer A., S.D.: Hubs and orphans - an explorative approach. In: Proceedings of the
7th Sound and Music Computing Conference. SMC’10 (2010)

16. Gemmell, J., Schimoler, T., Ramezani, M., Mobasher, B.: Adapting K-Nearest Neighbor for
Tag Recommendation in Folksonomies. In: Anand, S.S., Mobasher, B., Kobsa, A., Jannach, D.,
Anand, S.S., Mobasher, B., Kobsa, A., Jannach, D. (eds.) ITWP. CEUR Workshop Proceedings,
vol. 528. CEUR-WS.org (2009)

17. Jalba, A., Wilkinson, M., Roerdink, J., Bayer, M., Juggins, S.: Automatic diatom identification
using contour analysis by morphological curvature scale spaces. Machine Vision and Applica-
tions 16, 217–228 (2005)

18. Keogh, E., Ratanamahatana, C.: Exact Indexing of Dynamic Time Warping. Knowledge and
Information Systems 7(3), 358–386 (2005)

19. Keogh, E., Wei, L., Xi, X., Lonardi, S., Shieh, J., Sirowy, S.: Intelligent icons: Integrating lite-
weight data mining and visualization into gui operating systems. In: Data Mining, 2006. ICDM
’06. Sixth International Conference on. pp. 912 –916 (dec 2006)

20. Kim, K.j.: Artificial neural networks with evolutionary instance selection for financial forecast-
ing. Expert Syst. Appl. 30(3), 519–526 (Apr 2006)

21. Ko, M.H., West, G., Venkatesh, S., Kumar, M.: Using dynamic time warping for online tempo-
ral fusion in multisensor systems. Information Fusion 9(3), 370 – 388 (2008), special Issue on
Distributed Sensor Networks

22. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. In:
Soviet Physics Doklady. vol. 10, pp. 707–710 (1966)

23. Liu, H.: Instance Selection and Construction for Data Mining. Springer-Verlag, Berlin, Heidel-
berg (2010)

24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision 60(2), 91 (Nov 2004)

25. Malek, B., Orozco, M., Saddik, A.E.: Novel shoulder-surfing resistant haptic-based graphical
password. In: Proceedings of EuroHaptics06 (2006)
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