
Computer Science and Information Systems 13(1):131–149 DOI: 10.2298/CSIS141101042P

Efficient Processing of Continuous Queries Utilizing

F-relationship in Stock Databases

Sanghyun Park
1
, You-min Ha

2
, Chihyun Park

3
 and Sang-Wook Kim

4

1Faculty of Computer Sciences, Yonsei University

sanghyun@cs.yonsei.ac.kr
2Software Center of Samsung Electronics Co., Ltd.

blueisle78@gmail.com
3Korea Institute of Science and Technology Information

chihyun.park@kisti.re.kr
4Faculty of Computer Science and Engineering, Hanyang University

wook@hanyang.ac.kr

Abstract. This paper analyzes the properties of user queries in a system for stock

investment recommendation, and defines the F-relationship, which is a new type

of a relationship between two queries. A query is composed of user defined

conditions for an interesting stock item and is systematically invoked whenever

the price of that stock item is changed. An F-relationship between two queries Q1

and Q2 means that, if the recommendation type of a preceding query Q1 is X,

then its following query Q2 always has X as its recommendation type, where the

recommendation type is one of SELL, HOLD, BUY, and NONE. If there is an F-

relationship between Q1 and Q2, the recommendation type of Q2 is decided

immediately by that of Q1, therefore we can keep Q2 from being actually

processed. To exploit this fact, we suggest two methods in this paper. The former

analyzes all the F-relationships among user queries in the system and represents

them as a graph. The latter searches the graph and decides the order of queries to

be processed, which makes the number of unexecuted queries maximized. With

these methods, a large portion of user queries are not actually processed. As a

result, the performance of processing all the queries is greatly improved. We

examined the superiority of the suggested methods through a variety of

experiments using real-world stock market data. According to the results of our

experiments, the overall time of continuous query processing with our proposed

methods has reduced to less than 10% of that with the traditional method.

Keywords: Stock databases, Continuous query processing, F-relationship

1. Introduction

Time-series data is a list of changing values sampled at fixed time intervals [4], [11],

[14], [15], [18], [22], [23]. It reflects the status changes of objects in nature and

economy as time passes. In many applications, an element value in time-series data is

significantly affected by its preceding values accumulated so far [8]. Thus, by analyzing

past element values in time-series data, we can find the regularities and also form their

model, thereby predicting the values to appear in the near future.

132 Sanghyun Park et al.

Stock price sequences are a typical example of time-series data [1], [5], [7], [9], [20].

Since the goal of stock investors is to earn high return, it would help investors achieve

successful stock investments to recommend proper buying and selling points via analysis

of the stock price sequences [10], [17], [21]. However, it is not easy for investors to

determine appropriate buying and selling points themselves for earning high return in

such environment where stock prices fluctuate significantly everyday [13].

Each stock investor has his/her own conditions for buying or selling stocks. Some

investors want to earn high return in spite of high risk while others do not accept high

risk for high return. To meet requirements of a variety of stock investors, it would be so

useful to develop a system that automatically recommends stock items whose price

changing patterns come to satisfy the conditions required by individual investors.

There have been several attempts to efficiently identify frequent patterns of price

changing from stock data. Traditional pattern matching from a time-series stream dataset

such as stock history is highly time-consuming and is not suitable for recognizing

irregular patterns. To overcome these weak points, [24] proposed an efficient pattern

matching approach. This approach extracts partial time points as features which can help

to determine the similarity of patterns based on the notion of perceptually important

point (PIP). Then, with these reduced features, Spearman‟s rank correlation coefficient

is used to measure the similarity between the input segment and the previously detected

patterns. This approach aims to improve the efficiency of pattern matching itself.

However, this approach is not specifically applicable to real-world stock databases

because it cannot consider several variables including recommendation types required in

stock trading systems. Another study related to our approach focused on detecting

frequent patterns and predicting the trend corresponding to an input pattern in a financial

time-series dataset such as stock history [25]. This study could be applied in

recommending both buying and selling actions. However, this study primarily focused

on improving the accuracy of predictions without building the practical recommendation

systems for investment.

In our previous work [12], we developed a system that recommends investment types

to stock investors by discovering useful rules from past changing patterns of stock prices

in a database. In this system, we defined a new model which could recommend stock

investment types according to the frequent pattern of pricing of a stock item. This allows

investors to impose various conditions on rule bodies flexibly, and also improves the

performance of a rule discovery process by reducing the number of rules to be

discovered. For efficient discovery and matching of rules, we proposed methods for

discovering frequent patterns, constructing a frequent pattern base, and indexing those

patterns. We also suggested a method that efficiently finds the rules matched to a query

from a frequent pattern base, and proposed a method that recommends an investment

type by using the rules.

In a stock investment system, there are a large number of stock investors, who issue

queries on multiple stock items of interest. Prices of stocks are updated very frequently.

Also, in every update period of stock prices, all the user queries should be processed for

computing its recommendation type. This is a kind of continuous query processing in

that processing of a query is performed repeatedly whenever its related data is updated

[6]. Continuous processing of a large number of queries requires a lot of time, therefore,

we need to devise a method that processes all the user queries efficiently.

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 133

In this paper, we discuss efficient processing of a large number of continuous queries

for stock investment recommendation. First, we search for the Follows-relationship (F-

relationship in short), which is a new type of a relationship between two queries, by

analyzing properties of user queries. An F-relationship between two queries Q1 and Q2

under a recommendation type X implies that, if a preceding query Q1 has X as a

recommendation type, then its following query Q2 always has X as its recommendation

type. When there exists an F-relationship between Q1 and Q2, the recommendation type

of Q2 is decided immediately by that of Q1, therefore we can safely keep Q2 from being

processed. For achieving this, we propose a method that finds all the F-relationships

among user queries and represents them as a graph. We also propose a method that

searches the graph and decides the order of queries to be processed, which makes the

number of unexecuted queries as many as possible. With our methods, a large portion of

user queries get free from actual processing. As a result, the performance of processing

all the queries is greatly improved. According to our experimental results, more than

90% of queries are waived from actual processing with our methods.

The organization of the paper is as follows. Section 2 briefly reviews the rule model

proposed in our previous work. Section 3 discusses the performance problems occurring

in our target application environment. Section 4 presents the methods for solving the

problems. Section 5 verifies the effectiveness of our proposed methods via extensive

experiments. Finally, Section 6 summarizes and concludes the paper.

2. Stock Investment Recommendation System

In this section, we explain the rule model and the query model proposed in reference

[12].

2.1. Rule model

In this paper, we use the following form of a rule to express the trend of changing stock

prices. Here, H and B denote a rule head and a rule body, respectively. This rule implies

that B happens after time t since H has occurred.

Next, we discuss (s, c) in the rule. A changing pattern can be formed as a rule head

only when a sufficient number of stock sequences support the pattern. s defined in the

following is called a support, which means how many times the pattern P corresponding

to H appears in past stock sequences [2], [3].

100
match that patterns of that as same islength whosepatterns of soccurrence#

match that patterns of soccurrence#
 =)(

H

H
Hs

 (,)tH B s c

134 Sanghyun Park et al.

Also, for being formed as a rule, a set of sequences that satisfy the above support

should show a similar tendency in the time range of the rule body. c defined below is

called a confidence, which represents how many stock sequences matched to H satisfy

the condition on B together [2].

Our approach discovers those rules whose support and confidence are both larger

than predetermined thresholds during analyzing the past stock sequences. If a recent

changing pattern of an investor's stock item of interest is matched to some H, it

recommends an investment type by referring to its B. Possible investment types to be

recommended are „BUY‟, „SELL‟, „HOLD‟, and „NO RECOMMENDATION‟. They are

decided by conditions for B, which are highly dependent on propensities of investors.

Fig. 1. An example showing the rule model.

Figure 1 shows a simple example of a stock price change. In this stock data, a pattern

in the time interval ⓐ occurs three times. After a time interval ⓑ since then, the price is

shown to increase twice and is shown to decrease once. From this fact, if a pattern in the

time interval ⓐ appears again, the system recommends „BUY‟ as an investment type for

this stock because the price is likely to increase with probability of 0.66. In this

example, we regarded a pattern occurring three times as frequent. However, the system

regards a pattern frequent only when its support is more than a minimum threshold,

thereby considering it to be a rule head [2], [3].

In stock applications, H is an event corresponding to an appearance of a pattern P

within the time range of the rule head as shown in the time interval ⓐ of Figure 1. Also,

B is an event that corresponds to the characteristics of stock prices within the time range

100
match that patterns of soccurrence#

 of conditions esatisfy th and match that patterns of soccurrence#
 =),(

H

BH
BHc

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 135

of the rule body as shown in Figure 1. In Figure 1, for example, B can be represented as

„INCREASE‟.

Like this, stock investors specify their own conditions, which are related to the

investment types for recommendations, on the characteristics of stock prices within the

time range of the rule body. Such conditions are called rule body conditions, which

decide when the characteristics of stock prices are regarded as „INCREASE‟. In the prior

example, investors set the rule body condition as “the average stock price in the time

range of the rule body increases more than 20% in comparison with the last stock price

in the time range of the rule head”. In this case, the changing patterns of stock prices in

Figure 1 are discovered as a meaningful rule. We note that these rule body conditions

vary depending on dispositions of investors.

The value ranges of elements may differ from one stock sequence to another. In

addition, even within a single stock sequence, the element values may fluctuate a lot in

response to economic situations or changes in business revenue. Therefore, it is rarely

possible for a stock sequence with raw element values to contain frequent patterns. To

solve this problem, we take the approach to transform a raw stock sequence into a

sequence of change ratios and then into a symbol sequence. Also, we build an index on

the frequent patterns discovered for efficient processing of continuous queries at every

update period of stock prices.

Before continuous query processing starts, investors define all their conditions for B.

They are stock items of interest, acceptable price changing rates for buying and selling

conditions, and so on. As mentioned earlier, however, these conditions vary according to

investors. For example, an investor wants the system to recommend „BUY‟ when the

average price in the time range of the rule body gets more than 20% high against the last

price in the time range of the rule head. On the other hand, another investor wants the

system to recommend „BUY‟ when the lowest price in the time range of the rule body

gets more than 10% high against the last price in the time range of the rule head.

Moreover, we note that, even for the same investor, such conditions are changeable

according to her/his investing points.

2.2. Query model

A query Q for requiring recommendation types and its result FQ are formally defined as

follows.

Definition 1. Q, query form

A query Q for requiring recommendation types is formulated in the following form.

Each variable has the meaning as below.

• I : the stock item of interest.

• T : the time interval between the end of a rule head and the beginning of a rule

body.

)],,[,,,(= mCBLTIQ

136 Sanghyun Park et al.

• BL : the length of a rule body.

• [α, β]: the range of average increase ratio for retaining the current stock item.

Their actual meanings will be explained in Definition 2.

• mC : the minimum confidence, which is set to more than 0.5. The reason for

this setting will be also explained in Definition 2.

The system executes a query Q whenever the price of a stock item I is changed. If the

pattern obtained so far is matched to some frequent pattern, it recommends an

appropriate investment type by referring to the corresponding rule bodies. This is a kind

of continuous query processing because it processes the same query continuously

according to data updates. The result of each query processing, F(Q) , has the following

value.

Definition 2. F(Q), the result of processing a query Q

For every case that supports the rule head, which is matched to Q, we calculate its

average increase ratio r by comparing the end price of the rule head to the average price

of the rule body. As a result, F(Q) for query Q=(I, T, BL, [α, β], mC), is defined as

follows.

where α and β are the minimum and maximum values for selecting „HOLD‟,

respectively. The recommendation type, X, is determined as follows.

• SELL: If the ratio of cases satisfying (r ≤ α) is larger than mC.

• HOLD: If the ratio of cases satisfying (α ≤ r ≤ β) is larger than mC.

• BUY: If the ratio of cases satisfying (r ≥ β) is larger than mC.

• NONE: Otherwise (All three ratios are less than mC)

As stated in Definition 1, mC is required to set to at least 0.5 in order to avoid more than

one investment type from being recommended. When F(Q) has a value of X, we denote

it as F(Q)=X and read it as “X is recommended as a result of processing query Q.”

The proposed approach enables stock investors to easily adapt the query model to suit

their needs or application environments. Thus, it provides a fundamental framework for

adaptive recommendation systems for stock investment. According to the experimental

results, the system provides more than 70% satisfaction ratio in most cases, and its

response times are much less than a second, which is tolerable even in on-line

environment [12].

3. Motivation

In this section, we characterize our target application environment, and point out the

performance problems occurring in this environment. Then, we present an example that

explains a core idea for solving those problems.

First, as a target data for discovering rule heads, we use real-world stock price data

},,,,{ ,=)(NONEBUYHOLDSELLXXQF

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 137

collected for 20 years. From the data, we store frequent patterns, which are used as rule

heads, in a database, and build an index on these rule heads for efficient query

processing. The price of each stock item is periodically updated in a database. At every

update time, the most recent prices of each stock item are used in a query to inquire

whether they are matched to some frequent patterns. If a matched frequent pattern is

found in the database of rule heads, an appropriate investment type for the stock item is

computed and recommended. The conditions for determining a rule body are different

according to queries. Thus, in order to compute the average increase ratio, we need to

access all the sequences that support the rule head. This causes a large number of

random accesses from disk.

Also, there are a lot of stock investors in our target application environment. Each

investor might have multiple stock items of interest, thereby issuing multiple queries in

the system. All the queries requested by investors are stored and executed in main

memory, and are periodically stored into the disk for the purpose of backup. As a result,

there are a great number of queries to be processed continuously in every update period.

This is a very important issue of continuous query processing dealt with in stream data

management [6], [19].

Let us consider two queries Q1 = („Samsung Electronics‟, 0, 1, [-0.01, 0.01], 0.7) and

Q2 = („Samsung Electronics‟, 0, 1, [-0.02, 0.02], 0.6) where the stock item, the time

interval, and the length of a rule body are identical. If F(Q1) is „HOLD‟, this implies that,

for all the cases matched to a rule head, more than 70% cases have their price increase

rate between -0.01 and 0.01. Because queries Q1 and Q2 have the stock item, the time

interval, and the length of a rule body in common, the rule head and body to be

examined in query processing is also identical in the two queries. So, since it

recommends „HOLD‟ when the ratio of cases whose price increase rate is between -0.01

and 0.01 is more than 70%, we can safely regard that F(Q2) is also „HOLD‟ without

processing Q2.

There are a large number of user queries, each of which should be processed once

within every update period of stock prices. As a clue to this problem situation, we have

to pay attention to the relationship between Q1 and Q2.

4. Query Processing with F-Relationship

This section discusses the F-relationship among queries, and proposes a method that

reduces the number of queries to be actually processed by using the relationship.

4.1. F-relationship

In this section, we define the F-relationship, and suggest some conditions for the F-

relationship held.

Definition 3: F-relationship and a set of F-relationships

Given Q1, Q2, and X, their Follows-relationship(F-relationship in short), R(Q1, Q2, X), is

138 Sanghyun Park et al.

defined as follows.

We read R(Q1, Q2, X) as „Q2 follows Q1 for recommendation type X‟, where Q1 is a

preceding query, and Q2 is its following query. Also, a set of F-relationships related to a

preceding query Q1 and a recommendation type X is denoted as FRS(Q1, X).

If the recommendation type of a preceding query Q1 is X, then the following query Q2

always has X as its recommendation type. If there exists an F-relationship between Q1

and Q2, the recommendation type of Q2 is decided immediately by that of Q1, therefore

we can keep Q2 from being actually processed. We suggest two methods in this paper.

The former analyzes all the F-relationships among user queries and represents them as a

graph. The latter searches the graph and decides the order of queries to be processed,

which makes the number of unprocessed queries maximized. With these methods, most

of user queries are kept from actual processing.

Given a query Q=(I, T, BL, [α, β], mC), the system processes Q and provides a

recommendation type whenever a new price of stock item I arrives. When different users

issue queries on the same stock item I, there could exist a number of F-relationships

among those queries.

Theorem 1: F-relationship, R(Q1, Q2, X)

Two queries having the same stock item I, time interval T, and rule body length BL can

be expressed as follows.

In this case, there can be three possible F-relationships between these two queries.

1. IF (α1 ≤ α2) AND (mC1 ≥ mC2) AND F(Q1)=SELL, THEN F-relationship R(Q1, Q2,

SELL) always holds.

2. IF (α1 ≥ α2) AND (β 1 ≤ β 2) AND (mC1 ≥ mC2) AND F(Q1)=HOLD, THEN F-

relationship R(Q1, Q2, HOLD) always holds.

3. IF (β 1 ≥ β 2) AND (mC1 ≥ mC2) AND F(Q1)=BUY, THEN F-relationship R(Q1, Q2,

BUY) always holds.

Proof: For proving Theorem 1, let us depict [α1, β1] and [α2, β2] of Q1 and Q2. Without

loss of generality, we assume α1 ≤ α2 here.

We calculate the average increase rate by comparing the end price of the rule head to

the average price of the rule body. If it is less than α1, this case supports F(Q1)=SELL. If

.=)(then ,=)(If),,(2121 XQFXQFXQQR

)],,[,,,(= 1111 mCBLTIQ

)],,[,,,(= 2222 mCBLTIQ

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 139

the number of occurrences matched to the rule head is n, the confidence, C1(SELL), for

the number of cases recommending F(Q1)=SELL, r1(SELL), is computed as below.

If C1(SELL) ≥ mC1, then F(Q1)=SELL always holds. For Q1, we assume F(Q1)=SELL.

According to the definition, the number of cases belonging to S1, r1(SELL), is expressed

as follows.

As in the figure above, since S1 ⊆ S2, the number of cases belonging to S2, r2(SELL), is

always larger than or equal to r1(SELL).

Therefore, we obtain the following inequality.

As in the definition C1, since C2(SELL)=r1(SELL)÷n, we obtain the following equation.

Because C2(SELL) ≥ mC2, we easily know that F(Q2)=SELL. As a result, if (α1 ≤ α2)

AND (mC1 ≥ mC2) AND (F(Q1)=SELL), F-relationship R(Q1, Q2, SELL) does always

hold. We can also prove Theorems 1.2 and 1.3 in the similar fashion.

In our system, a large number of queries might have F-relationships with one another.

As stated earlier, the recommendation type of a following query is automatically

determined by that of its preceding query. Therefore, we can safely omit the expensive

processing of those following queries.

4.2. Composition of a query set

F-relationships among queries can be expressed by using directed graphs where vertices

represent queries and directed edges represent F-relationships of a recommendation type.

For example, F-relationship R(Q1, Q2, BUY) is expressed by a directed graph shown in

Figure 2.

When there are n queries, the maximum number of outgoing edges from a given

query is n-1. Therefore, the space complexity for storing the direct edges to express all

the possible F-relationships of n queries is O(n
2
). As a result, the storage cost becomes

high when n is large, and thus needs to be reduced.

nSELLrSELLC)(=)(11

111)(=)(mCnSELLCnSELLr

)()(12 SELLrSELLr

2112)()(mCnmCnSELLrSELLr

2222 =)(=)(mCnmCnnSELLrSELLC

140 Sanghyun Park et al.

Fig. 2. A directed graph for F-relationship R(Q1, Q2, BUY)

Let us consider a direct graph shown in Figure 3(a). This graph expresses three F-

relationships R(Q1, Q2, BUY), R(Q2, Q3, BUY), and R(Q1, Q3, BUY). Since the third F-

relationship (i.e., R(Q1, Q3, BUY)) is derivable from the first two F-relationships, it can

be deleted from the directed graph without any information loss. We call such an F-

relationship derivable F-relationship. The graph obtained after removing all the

derivable F-relationships from the graph in Figure 3(a) is shown in Figure 3(b).

Fig. 3. A direct graph and its concise representation

The set of F-relationships obtained after removing all the derivable F-relationships

from FRS(Q, X), a set of F-relationships having Q as their preceding query and X as

their recommendation type, is formally defined as follows:

Definition 4: Set of core F-relationships, coreFRS(Q, X)

Given a query Q and a recommendation type X, let FQS(Q, X) denote a set of all the

queries Qi(≠Q) which satisfy the F-relationship R(Q, Qi, X) and let nonCoreFQS(Q, X)

denote a set of all the queries Qi (≠Q) which satisfy the F-relationship R(Qr, Qi, BUY)

for some Qr in FQS(Q, X). Then, the set of core F-relationships coreFRS(Q, X) is

defined as

As shown in Figure 3, when there exists an F-relationship R(Q1, Q2, X), the

containment relationship FRS(Q1, X) ⊃ FRS(Q2, X) is always satisfied. As described in

(,)(,) = (,) (, ,)Q nonCoreFQS Q X i
i

coreFRS Q X FRS Q X R Q Q X

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 141

Algorithm 1, the set of core F-relationships coreFRS(Q, X) is easily obtained by using

this property.

Algorithm 1: get_coreFRS(Q, X) for obtaining the set of core F-relationships

coreFRS(Q, X)

Input : Query Q, Recommendation type X

Output : Set of core F-relationships coreFRS(Q, X)

1 coreFRS(Q, X) := FRS(Q, X);

2 foreach Qi ∈ nonCoreFQS(Q, X) do

3 coreFRS(Q, X) := coreFRS(Q, X) - {R(Q, Qi, X)};

4 return coreFRS(Q, X)

If an investor submits a new query Q, we first obtain FRS(Q, X), for each

recommendation type X and then take only coreFRS(Q, X) by using the algorithm

get_coreFRS(Q, X) shown above. Then, for each element R(Q, Qi, X) in coreFRS(Q, X),

we retrieve all the queries Qr satisfying R(Qr, Qi, X) and replace R(Qr, Qi, X) with R(Qr,

Q, X) in the existing set of F-relationships.

Let us consider the time complexity of inserting a new query Q into a system with n

queries. The maximum number of F-relationships R(Q, Qi, X) in coreFRS(Q, X) is n, and

the maximum number of queries Qr satisfying R(Qr, Qi, X) is n-1 when Qr is excluded.

Therefore, the total time can be expressed asymptotically as O(n(n-1)) = O(n
2
).

However, when inserting a new query Q into an existing system, we only consider the

queries whose target stock item, time interval, and length of rule body are same as those

of Q and thus the actual time cost is expected to be not much.

Now, let us consider the space complexity of the data structure for expressing F-

relationships. With the assumption that every query maintains just the set of core F-

relationships, let us examine the maximum number of F-relationships an arbitrary query

Q can have. When F(Q)=SELL, there can be two types of following queries at most; (1)

following queries that have the same mC value but a larger α value, and (2) following

queries that have the same α value but a smaller mC value. When F(Q)=BUY, there can

be also two types of following queries at most. When F(Q)=HOLD, following queries

may have two identical values and one different value among mC, α, and β. That is, the

maximum number of types of following queries is 3. Therefore, the maximum number of

the following queries having Q as their preceding query is 7, and thus the space

complexity at the worst case becomes O(7n) = O(n).

4.3. Determination of a query processing order

Queries can be processed directly or indirectly in our system. When their

recommendation types are determined via actual execution, they are said to be processed

directly. On the contrary, when their recommendation types are obtained from the

recommendation types of their preceding queries through their F-relationships, they are

said to be processed indirectly. Given a set of queries submitted by investors, it is

142 Sanghyun Park et al.

required for performance improvement to determine their execution order that can

minimize the total query processing cost.

If we select a query Q with the largest set of F-relationships FRS(Q, X) and execute it

first, then there can be a large number of queries processed indirectly. However, unless

F(Q) = X, indirect processing is infeasible even though there are lots of queries included

in FRS(Q, X). In addition, the approach to maintain FRS(Q, X) for every pair of a query

Q and a recommendation type X requires high storage cost. Because of these two

reasons, we do not take the approach to process the queries in the order of the size of

their F-relationship sets.

An alternative criterion to the size of F-relationship sets for determining the execution

order of queries is the minimum confidence of queries. When two queries are given, the

parameters to decide whether or not they are in F-relationships are their change ratio of

retention [α, β] and their minimum confidence mC. Among these three parameters, the

minimum confidence is the only one that can determine the order of F-relationships

irrespective of a recommendation type. That is, a query with a higher minimum

confidence can be a preceding query of another query with a lower minimum confidence

regardless of a recommendation type, but the reverse situation is not possible. Therefore,

we can highly expect that the queries with a higher minimum confidence have a larger

set of F-relationships. Based on this reasoning, we decide to execute the queries with a

higher minimum confidence prior to the queries with a lower minimum confidence so as

to increase the chance of indirect query processing via the F-relationship. Algorithm 2

shown below determines the execution order of queries according to their minimum

confidence and then processes them in the execution order.

When a user submits a new query into a set QS of queries whose I, T, and BL values

are identical to those of the new query, the cost to insert the new query to the sorted list

of QS is O(logn); therefore it does not significantly affect the construction cost (i.e.,

O(n
2
)) of a query set mentioned in Section 4.2.

Algorithm 2: selectQuery(QS) for determining the execution order of queries

according to their minimum confidence and then processing them according to their

execution order

Input : set QS of queries with identical I, T, and BL values

Output : none

1 While QS is not empty do

2 Q := query with the highest minimum confidence among the elements of QS;

3 delete Q from QS;

4 if the value of F(Q) is not decided yet then

5 process F(Q) directly;

6 X := F(Q);

7 foreach F-relationship R(Q,Qi,X) in coreFRS(Q, X) do

8 F(Qi) := X;

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 143

5. Performance Evaluation

In this section, we verify the superiority of the proposed approach via experimental

performance evaluation.

5.1. Experimental environment

We evaluated the performance of the proposed approach using real-world stock price

data. To collect actual stock price data, we recorded the prices of 905 KOSPI [16] stock

items every minute for about three months. For each individual stock item, we created a

query set by combining the following parameters.

• α: chosen among -0.003, -0.002, and -0.001

• β: chosen among 0.001, 0.002, and 0.003

• T: fixed at 0

• BL: chosen among 1, 3, and 5

• mC: chosen among 50%, 60%, 70%, and 80%

By combining the above parameters, we created 108(=3ⅹ3ⅹ3ⅹ4) queries for each

stock item and 97,740(=108ⅹ905) queries in total. All experiments were performed on

the PC equipped with Intel Pentium 2.4GHz CPU, 1GB memory, 80GB HDD, and

Window 2003 Server operating system.

To evaluate the hit ratio of the proposed model, we had measured satisfaction ratio

and recommendation ratio with various independent variables in the reference [12]. In

this study, however, we designed and performed experiments to evaluate how much the

query processing performance is improved by the application of F-relationships among

queries. Therefore, we excluded the experiments on the parameters (i.e., T and BL)

which are not related with the query processing performance.

5.2. Experimental result

In this subsection, we present the result of the experiments on how much the overall

performance is improved when we remove unnecessary executions of queries using F-

relationships. The amount of main memory usage increases when we apply F-

relationships among queries. This is because the list of queries sorted by their entire F-

relationships and minimum confidences has to be maintained in main memory. The size

of main memory required for storing all this information of 97,740 queries was about

12MB. With the current specification of computer memory, this amount of main

memory usage is tolerable considering the benefit of performance improvement. When

we did not utilize F-relationships, we measured the time for processing all queries. On

the contrary, when we utilized F-relationships, we measured the times for adding new

queries, determining the processing orders, and actual query processing, and then

summed them up.

144 Sanghyun Park et al.

Performance improvement by utilizing F-relationships. For the two cases of

processing all queries with and without the utilization of F-relationships, Table 1 shows

the time for processing all queries, the number of queries processed directly, and the

number of disk accesses.

Table 1. Time for processing all queries, number of queries processed directly, and number

of disk accesses with or without the utilization of F-relationships

 Total query

processing time

(sec)

Total number of

queries processed

directly

Number of disk

accesses (byte)

Without F-relationships 3,553.01 1,509,300 179,567,058,384

With F-relationships 338.40 288,024 18,457,371,156

Reduction ratio (%) 90.5 81.0 89.7

The time for processing all queries with the application of F-relationships is reduced

to 9.5% of that without the application of F-relationships. This verifies the significant

improvement in query processing performance. Let us now consider the number of

queries processed directly. About 1.22 million queries among about 1.5 million queries

were not processed directly; instead, their recommendation types were determined

indirectly by the application of F-relationships.

However, extra time is required for utilizing F-relationships. Therefore, we may

expect that the reduction ratio of the time for processing all queries is less than 81%,

which is the reduction ratio of queries processed directly to the total queries. However,

in this experiment, we observed that the reduction ratio of the time for processing all

queries is about 90%. We can think of the two reasons for this higher reduction ratio; the

first reason is that the time for processing each individual query may not be identical,

and the second reason is that the time for disk accessing dominates the time for query

processing. In Table 1, we can observe that the reduction ratio of the time for processing

all queries is almost same as the reduction ratio of the size of disk accesses, and this

observation supports our conjecture.

Performance improvement with increasing number of queries. While increasing the

number of queries 2 times, 4 times and 8 times, Figure 4 shows their query processing

time. The predefined queries in Figure 4 are default queries defined in Section 5.1 and

then used in Section 5.2. The random queries in Figure 4 were those created by the

combination of parameter values randomly selected. Compared to the default queries,

the random queries are highly likely to have lower possibility of being in F-relationships

with themselves. We made the number of default queries be equal to that of random

queries.

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 145

Fig. 4. Processing time with increasing number of queries

Figure 4 shows that the time for processing random queries with our approach is

larger than that for processing predefined queries with our approach. This is because

more predefined queries than random queries are processed indirectly in our approach.

However, with our approach, the difference between the time for processing all

predefined queries and the time for processing all random queries is not that large. This

result verifies that the set of predefined queries used throughout the experiments has not

been manipulated to show off the performance improvement of our approach.

Let us examine Figure 4 again. When F-relationships among queries are not applied,

every query must be processed directly, and thus it takes long time to process all the

predefined or random queries. Note that the processing time without the usage of F-

relationships for all predefined queries is not much different from that for all random

queries. This is because the number of predefined queries processed directly is almost

same as that of random queries. On the other hand, it is clearly shown in Figure 4 that

the time for processing queries with the usage of F-relationships is much smaller than

that without the usage of F-relationships, and the difference becomes larger as the

number of queries increases. This experiment revealed that our approach improves the

query processing performance up to 14 times compared to the existing one.

Relationships between the minimum confidence of queries and the size of F-

relationships. In Section 4.3, based on the reasoning that queries with a higher

minimum confidence have a larger set of F-relationships, we proposed a method to

determine the processing order of queries according to their minimum confidences. To

verify our reasoning, we measured the minimum confidence and the size of F-

relationships for all 97,940 random queries and for all recommendation types X ∈

{BUY, HOLD, SELL}. For each minimum confidence value within the range from 0.5 to

1, Figure 5 shows the average number of queries included in F-relationships FRS(Q, X).

146 Sanghyun Park et al.

We observed that the average number of queries in F-relationships FRS(Q, X)

increases linearly in proportion to the minimum confidence of query Q. Actually, the

correlation coefficient of these two variables was 0.99, and thus we found out that the

two variables have extremely positive correlation. Therefore, we can deduce that the

processing order of queries determined by their minimum confidences should be almost

same as that determined by the size of the F-relationship set.

Fig. 5. Average number of queries in F-relationships with the increasing minimum confidence

6. Conclusion

In this paper, we have discussed continuous query processing for stock investment

applications. The approaches proposed in previous studies construct the rules from stock

databases, predict the price change patterns of the stocks in which investors are

interested, and then recommend one of three investment types (i.e., HOLD, BUY, and

SELL) to the investors. For doing these, the previous approaches define new rule models,

and then construct the rules when the trends matched to frequent price change patterns

satisfy the investment conditions of investors. Here, frequent patterns are used as rule

heads and their succeeding price change patterns are used as rule bodies.

In this study, we have proposed an approach for effective query processing in the

environment where a large number of queries submitted by a lot of users are processed

continuously. To attain our goal, our approach analyzes the properties of queries in

order to extract F-relationships by which recommendation types can be determined

automatically. Then, it retrieves the queries included in F-relationships and determines

their processing order so as to minimize the number of queries to be processed actually.

As a result, we were able to improve query processing performance significantly. To

perform these tasks effectively, we have proposed two algorithms, one for finding the

queries included in F-relationships and constructing a minimal set of F-relationships,

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 147

and the other for determining the query processing order by which the F-relationships

constructed in the previous step can be applied effectively.

To demonstrate the superiority of our approaches, we compared the approach with

and without the usage of F-relationships by extensive experiments using real-world stock

data. The result revealed that the time for processing all queries with the usage of F-

relationships was just 10% of that without the usage of F-relationships.

As a further study, we are planning to extend our approach to the environment where

a stock database is updated dynamically [21] and its frequent pattern base should be

updated accordingly.

Acknowledgement. This work was supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIP) (NRF-2014R1A2A1A10054151) and the

Ministry of Science, ICT and Future Planning (MSIP), Korea, under the Information Technology

Research Center (ITRC) support program (IITP-2015-H8501-15-1013) supervised by the Institute

for Information & communication Technology Promotion (IITP).

References

1. Agrawal, R., Lin, K.-I., Sawhney, H. S., Shim, K.: Fast Similarity Search in the Presence of

Noise, Scaling, and Translation in Time-Series Databases. In proceedings of the 20th

International Conference on Very Large Databases. Zurich, Switzerland, 490-501. (1995)

2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In proceedings of the 11th

International Conference on Data Engineering, Taipei, Taiwan, 3-14. (1995)

3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In proceedings of

the 20th International Conference on Very Large Databases. Morgan Kaufmann, Santiago,

Chile, 487-499. (1994)

4. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence Databases. In

proceedings of the 4th International Conference on Foundations of Data Organization and

Algorithms. Chicago, Illinois, USA, 69-84. (1993)

5. Anderson, T. : The Statistical Analysis of Time Series. Wiley (1971)

6. Babu, S., Widom, J.: Continuous Queries over Data Streams. ACM SIGMOD Record, Vol.

30, No. 3, 109-120. (2001)

7. Baheti, A., Toshniwal, D.: Trend Analysis of Time Series Data Using Data Mining

Techniques, In proceedings of the 3rd International Congress on Big Data. Anchorage,

Alaska, USA, 430-437, (2014)

8. Bloomfield, P.: Fourier Analysis of Time Series. Wiley (2000)

9. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching in Time-

Series Databases. In proceedings of the 21th ACM International Conference on Management

of Data. Minneapolis, Minnesota, USA, 419-429, (1994)

10. Fu, T., Cheung, T., Chung, F., Ng, C.: An Innovative Use of Historical Data for Neural

Network Based Stock Prediction. In proceedings of the 6th International Conference on

Information Sciences. Reading, UK, (2006)

11. Garg, B., Beg, M. M. S., Ansari, A. Q.: Fuzzy Time Series Model to Forecast Rice

Production. In the proceedings of the 22th International Conference on Fuzzy Systems.

Hyderabad, India, 1-8. (2013)

12. Ha, Y. M., Kim, S. W., Park, S.: Rule Discovery and Matching in Stock Databases.

Information and Software Technology, Vol. 51, Issue 7, 1140-1149. (2009).

13. Hellstrom. T., Holmstrom, K.: Predicting the Stock Market. Opuscula ISRN HEV-BIB-OP-

26-SE. (1998)

148 Sanghyun Park et al.

14. Kim, S. W., Park, S., Chu, W. W.: An Index-Based Approach for Similarity Search

Supporting Time Warping in Large Sequence Databases. In the proceedings of the 17th

International Conference on Data Engineering . Heidelberg, Germany, 607-614. (2001)

15. Kim, S. W., Shin, M.: Subsequence Matching Under Time Warping in Time-Series

Databases: Observation, Optimization, and Performance Results. International Journal of

Computer Systems Science & Engineering, Vol. 23, No. 1. (2008)

16. Koscom Data Mall, http://datamall.koscom.co.kr (2005)

17. Kwon, Y., Choi, S., Moon, B.: Stock Prediction Based on Financial Correlation. In

proceedings of the 7th annual conference on Genetic and Evolutionary Computation.

Washington, DC, USA, 2061-2066. (2005)

18. Loh, W. K., Kim, S. W., Whang, K. Y.: A Subsequence Matching Algorithm that Supports

Normalization Transform in Time-Series Databases. Data Mining and Knowledge Discovery

Journal, Vol. 9, No. 1, 5-28. (2004)

19. Manku, G., Motwani, R.: Approximate Frequency Counts over Data Streams. In proceedings

of the 28th International Conference on Very Large Data Bases. Hong Kong, China, 346-

357. (2002)

20. Moon, Y. S., Loh, W. K.: Efficient Stream Subsequence Matching Algorithms for Handheld

Devices on Streaming Time-Series Data. International Journal of Computer Systems Science

& Engineering, Vol. 24, No. 4. (2009)

21. Sehgal, V., Song, C.: SOPS: Stock Prediction Using Web Sentiment. In proceedings of the

International Conference on Data Mining Workshop, Omaha, Nebraska, USA, 21-26. (2007)

22. Suematsu, N., Hayashi, A.: Time Series Alignment with Gaussian Processes. In proceedings

of the 21th International Conference on Pattern Recognition, Tsukuba, Japan, 2355-2358.

(2012)

23. Park, S., Chu, W. W., Yoon, J., Hsu, C.: Efficient Searches for Similar Subsequences of

Difference Lengths in Sequence Databases. In proceedings of the 16th IEEE International

Conference on Data Engineering, San Diego, California, USA, 23-32. (2000)

24. Xie, Y., Wulamu, A., He, Q., Liu, X.: Time Series Prediction Method Based on Pat-tern

Matching. Journal of Computational Information Systems, Vol.10, No.13, 5773-5784.

(2014)

25. Wu, K.P., Wu, Y.P., Lee, H.M.: Stock Trend Prediction by Using K-Means and AprioriAll

Algorithm for Sequential Chart Pattern Mining. Journal of Information Science and

Engineering, Vol.30, 653-667. (2014)

Sanghyun Park is now a Professor in Department of Computer Science, Yonsei

University, Seoul, Korea. He received the BS and MS degrees in computer engineering

from Seoul National University in 1989 and 1991, respectively. He received PhD degree

in the Department of Computer Science from University of California at Los Angeles

(UCLA) in 2001. His current research interests include database, data mining,

bioinformatics, and flash memory.

You-min Ha is now a Senior Software Engineer in Software Center of Samsung

Electronics Co., Ltd., Korea. He received the BS and MS degrees in computer science

from Yonsei University, Seoul, Korea in 2004 and 2007 respectively. His interest

includes data mining, database system and human-behavior pattern recognition.

Chihyun Park is now a Senior Researcher in Korean Institute of Science and

Technology Information. He received the BS degree in 2007 from Hongik University

and received MS degree in 2009, PhD degree in the Department of Computer Science

Efficient Processing of Continuous Queries Utilizing F-relationship in Stock Databases 149

from Yonsei University, Seoul, Korea in 2013. His current research interests include

bioinformatics, data mining, and database system.

Sang-Wook Kim (corresponding author) received the B.S. degree in Computer

Engineering from Seoul National University at 1989, and earned the M.S. and Ph.D.

degrees in Computer Science from KAIST at 1991 and 1994, respectively. From 1995

to 2003, he served as an Associate Professor at Kangwon National University. In 2003,

he joined Hanyang University, Seoul, Korea, where he currently is a Professor in

Department of Computer Science and Engineering and the director of the Brain-Korea-

21-Plus research program. His research interests include databases, data mining,

multimedia information retrieval, social network analysis, recommendation, and web

data analysis.

Received: November 1, 2014; Accepted: September 10, 2015.

