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Abstract. OntoUML is an ontologically well-founded conceptual modelling lan-
guage that distinguishes various types of classifiers and relations providing pre-
cise meaning to the modelled entities. While Model-Driven Development is a well-
established approach, OntoUML has been overlooked so far as a conceptual mod-
elling language for the PIM of application data. This paper is an extension of the
paper presented at MDASD 2016, where we outlined the transformation of Rigid
Sortal Types – Kinds and Subkinds. In this paper, we discuss the details of vari-
ous variants of the transformation of these types and the rigid generalization sets.
The result of our effort is a complete method for preserving high-level ontological
constraints during the transformations, specifically special multiplicities and gen-
eralization set meta-properties in a relational database using views, CHECK con-
straints and triggers.
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1. Introduction

Software engineering is a demanding discipline that deals with complex systems [8].
The goal of software engineering is to ensure high-quality software implementation of
these complex systems. To achieve this, various software development approaches have
been developed. One of these approaches is Model-Driven Development (MDD), which
is based on elaborating models and transformations between them [20]. The most usual
part of the MDD approach used in the practice is the process of forward engineering:
transformations of more abstract models (e.g. a PIM (platform independent model)) into
more specific ones (e.g. PSM (platform specific model) or ISM (implementation specific
model)). The most common use-case of such a process is the development of conceptual
data models and their transformation into source codes or database scripts.

To achieve a high-quality software system, high-quality expressive models are nec-
essary to define the requirements for the system [8]. To successfully use them in the
MDD approach, the models should define all requirements and all constraints of the sys-
tem. Moreover, it should hold that more specific models persist the constraints defined
in the more abstract models [10]. OntoUML seems to be a very suitable language for
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modelling platform-independent data models. As it is based on Unified Foundational On-
tology (UFO), it is domain-agnostic and it provides mechanisms to create ontologically
well-founded conceptual models [10].

In this paper, we discuss introduction of OntoUML into MDD, specifically we formu-
late two research questions:

1. Are there benefits of using OntoUML Kinds and Subkinds in PIM?
2. Is it possible to preserve generalization sets constraints of Kinds and Subkinds in a

relational database?

The first research question is motivated by success of OntoUML for making precise
ontological models and thus exploring the possibility of incorporating OntoUML into the
MDD as a primary language for conceptual data modelling. As relational databases are
still the most popular type of data storage1, we focus on modelling OntoUML PIMs and
their transformation into their realization in relational databases. One of the key chal-
lenges in MDD is preserving model constraints during transformations (the second re-
search question).

To elevate the current knowledge of model transformation and database modelling,
the transformation of the OntoUML PIMs is divided into three consecutive steps:

1. transformation of the OntoUML PIM into UML PIM;
2. transformation of the UML PIM into RDB PSM (PSM of relational database);
3. transformation of the RDB PSM into SQL ISM (SQL scripts for database schema

creation) [28].

This paper is part of a series discussing the transformation of various types of univer-
sals used in OntoUML into their correct and complete realization in the RDB ([28], [29],
[30]). In particular, this paper is an extended version of the paper presented at MDASD
2016 [30], where the transformation of Rigid Sortal types – Kinds and Subkinds – was
introduced. In this paper, we elaborate deeply on various possibilities of the realization
during the second and third step of the transformation, focusing on the realization of meta-
properties of the generalization sets. We illustrate the possibilities on the running example
discussed in section 4.

The structure of the paper is as follows: in section 2, the work related to our ap-
proach is discussed; in section 3, the relevant constructs and principles of OntoUML and
UFO for this contribution are introduced; in section 4, the running example used for the
demonstration of our approach is introduced; in section 5, our approach is discussed and
illustrated on the running example; in section 6, discussion to our approach is provided;
finally, in section 7, the conclusion of the paper results is provided.

2. Background

2.1. Previous work

Our approach was introduced in [28], where we presented the idea of the three-step trans-
formation using UML and OCL constraints as the intermediate steps. We also discussed

1 According to ranking published on https://db-engines.com/en/ranking, 7 of 10
most popular database systems are relational.

https://db-engines.com/en/ranking
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the possibility to use the approach discussed in [32] for the realization of the OCL con-
straints derived during the transformation of the OntoUML universal types. In [29], we
presented more details about the transformation of anti-rigid Sortal universal types (Roles
and Phases), discussing the options for the realization of the anti-rigid relations including
special OCL constraints and their realization in the RDB using database views.

Finally, in [30], we discussed in more details the transformation of rigid Sortal uni-
versal types – Kinds and Subkinds, describing the possible realizations, the derived OCL
constraints realizing the meta-properties of the generalization sets in the RDB PSM and
their realization in the RDB using database views, CHECK constraints triggers. This pa-
per is an extended version of the paper [30], discussing details of possible realizations and
their consequences and providing more examples (especially for the triggers missing in
the initial paper).

2.2. Related work

We may distinguish several efforts dealing with the Impedance Mismatch Problem (IMP)
[37] of conceptual models and the relational model. These are:

1. Transformation of traditional Entity-Relationship (ER) models into the relational
model.

2. Using the UML notation to express relational models.
3. Object-relational mapping technologies (ORM).
4. Transformation from (Onto)UML into a relational model: UML PIM into an RDB

PSM

Ad 1 is a long-studied and well-established approach documented e.g. in [27]. We use
these approaches in our work. There are also approaches for transformation of the Ex-
tended ER models (EER), e.g. [5]. However, the traditional approaches neglect checking
certain constraints. As discussed later, when realizing generalization sets and their meta-
properties in RDB, the existence of referencing records in other tables must be checked.
Similar problem is also addressed in [1] as inverse referential integrity constraints (IR-
ICs), where the authors present an approach to the automated implementation of the IRICs
by database triggers in a tool called IIS*Case. This tool was designed to provide a com-
plete support for developing database schemas including the check of the consistency of
constraints embedded into the DB [18] and the integration of subschemas into a relational
DB schema [17]. The transformation of constraints specifically has been elaborated e.g.
in [18] and [23]. Next, Rybola and Richta discuss implementation of special multiplicity
constraints in [32], which we also use in our work.

There are several approaches to ad 2, but we do not refer to them further here, as they
actually do not deal with a conceptual transformation and are mentioned just for the sake
of completeness. Ad 3 are technologies offered by libraries of various object-oriented lan-
guages (such as Java, Smalltalk, Ruby and C#) to overcome the object-relational Impedan-
ce Mismatch Problem (IMP). The library routines perform an automatic run-time trans-
formation between the object model and the relational model. An extensive study of the
current leading ORM solutions is presented by Torres et al. in [37]. Nevertheless, ORM
works at an application level, while our goal is to push richer semantics to the database
level. Also, as noted by Torres et al., ORM provides tools to work with the IMP, but not a
complete methodology to solve them.
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Ad 4 are approaches most similar to our effort. In [16], the authors describe a tool
called Dresden OCL Toolkit [6] which is able to validate a model instance against defined
OCL constraints. The tool can be also used to generate SQL code from the model and
attached OCL constraints, realizing the constraints using database views. We inspired by
this approach in one of our proposed realizations of the generalization set constraints (as
well as other types of constraints not discussed here) derived from the initial OntoUML
PIM. Another related work can be found in [7], where the authors transform OCL con-
straints into stored procedures. However, we prefer using other techniques, as procedures
must be invoked explicitly by the application, while the suggested CHECK constraints and
triggers are executed automatically when performing standard DML operations. Also, we
present the realization specially for Oracle Database 12g, while the authors of [7] dis-
cusses MariaDB, PostgreSQL and SQL server. Another approach to the realization of
UML PIM is discussed e.g. in [22] or [38], where the authors present transformation of a
UML PIM into an Object-Relational database. Also, they do not discuss realization of the
meta-properties of generalization sets nor other types of constraints, which can be derived
from an OntoUML PIM, which is the focus of our research.

As for the transformation of OntoUML specifically, based on the literature review
and personally confirmed by the author of OntoUML Dr. Giancarlo Guizzardi, there is
no published method for transformation into UML apart from our previous work so far.
Instead, there are works dealing with transformation of OntoUML into different languages
such as OWL [39] and Alloy [4].

2.3. UML

As OntoUML is based on UML and UML is used in the intermediate steps of the trans-
formation, certain aspects of the language require to be outlined. UML (Unified Modeling
Language) [25] is a popular modelling language for creating and maintaining variety of
models using diagrams and additional components [34]. In context of the data modelling,
UML Class Diagram is the notation mostly used to define conceptual models of applica-
tion data [2]. Also, to describe the structure of a relational database schema, UML Data
Modelling profile as an extension to the UML Class Diagrams may be used [35].

The main elements of a UML Class Diagram are classes, which serve to classify
various types of objects of the domain and specify the features and behaviour of their
instances. The classes can be related by various types of connectors to define relations
between the classes or their instances. In context of this paper, the generalization/spe-
cialization relation is important. It is used between the classes to inherit features form
a superclass (more abstract concept) to the subclasses (more specific concepts) [25]. As
UML is designed following the object-oriented programming approach, an object can be
an instance of only one class [2], although according to Liskov substitution principle, an
instance of a subclass can be used on any place where instance of its superclass is ex-
pected [19].

The subclasses of the same superclass may form a generalization set to define a par-
tition of subclasses with common meaning [25]. For each generalization set, two meta-
properties should be set to restrict the relation of an instance to the individual subclasses:
isCovering – expressing whether each instance of the superclass must be also an instance
of some subclass in the generalization set – and isDisjoint – expressing whether an object
can be an instance of multiple subclasses in the set at the same time. The default setting of
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these properties differ in the individual versions of UML: UML 2.4.1and older define the
{incomplete, disjoint} as default, while UML 2.5 defines the {incomplete,
overlapping} as default. However, as each object is an instance of exactly one class
in the most current programming languages, the concept of generalization sets can only
be used in conceptual models and it must be transformed before its actual realization.

To define additional constraints in the UML models, Object Constraint Language
(OCL) [24] is used. OCL is a specification language, which is part of the UML stan-
dard. In OCL, it is possible to define various conditions, which must be satisfied by all
instances of contextual classes, and many other types of constraints. In our approach, we
are using OCL to define constraints in the UML PIM and PSM of the relational database.

3. OntoUML

OntoUML is a conceptual modelling language focused on building ontologically well-
founded models. It was formulated in Guizzardi’s PhD Thesis [10] as a light-weight ex-
tension of UML based on UML profiles.

The language is based on Unified Foundational Ontology (UFO) [14], which is based
on the cognitive science and modal logic and related mathematical foundations such as
sets and relations. Thanks to this fact, it provides expressive and precise constructs for
modellers to capture the domain of interest. Unlike other extensions of UML, OntoUML
does not build on the UML’s ontologically vague “class” notion, but builds on the no-
tion of universals and individuals. It uses the basic notation of UML Class Diagram like
classes, associations and generalization/specialization together with stereotypes and meta-
attributes to define the nature of individual elements more specifically. On the other hand,
it omits a set of other problematic concepts (for instance aggregation and composition)
and replaces them with its own ontologically correct concepts.

UFO and OntoUML address many problems in conceptual modelling, such as part-
whole relations [12] or roles and the counting problem [11]. The language has been suc-
cessfully applied in different domains such as interoperability for medical protocols in
electrophysiology [9] and the evaluation of an ITU-T standard for transport networks [3].

However, being domain-agnostic, we believe that it may be suitable even for concep-
tual modelling of application data in the context of MDD. Using OntoUML, we can create
very precise and expressive models of application data. These models can be later trans-
formed into relational database schema containing various domain-specific constraints to
maintain consistency according to the OntoUML model.

3.1. Universals and Individuals

UFO distinguishes two types of things. Universals are general classifiers of various ob-
jects and they are represented as classes in OntoUML (e.g. Person). There are various
types of universals according to their properties and constraints as discussed later. Individ-
uals, on the other hand, are the individual objects instantiating the universals (e.g. Mark,
Dan, Kate) [10].

The fact that an individual is an instance of a universal means that – in the given
context – we perceive the object to be the Universal (e.g. Mark is a Person). Important
feature of UFO is the fact that an individual may instantiate multiple universals at the same
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time but all the universals must have a common ancestor providing the identity principle
(e.g. Mark is a Person and he is a Student as well) [14].

3.2. Identity and Identity Principle

Identity is one of the key features of UFO. Identity is the fact of being what an individual
is, enabling distinction of different individuals. Identity principle, on the other hand, de-
fines the methods to determine, if two apparent instances of the same concept are actually
the very same individual. Various universals define different identity principles and thus
different ways how to distinguish their individuals (e.g. a Person is something else than
a University); different individuals of the same universal have different identities (e.g.
Mark is not Kate even when both are Persons).

Each individual always needs to have a single specific identity, otherwise there is a
clash of identities (e.g. Mark is a Person and therefore it can never be confused with
another concept such as a University). The identity of an individual is determined at
the time the individual comes to existence and it is immutable – it can never be changed
(e.g. Mark will always be Mark and he will always be a Person).

The types of universals that provide the identity principle for their instances are called
Sortal universals (e.g. Person, Student). The types of universals not providing the
identity principle are called Non-Sortal universals [14] or Dispersive universals [13] (e.g.
a Customer may be a Person or a Company). In this paper, we discuss only the
transformations of the Sortal types of universals, as they form the basis of models.

3.3. Rigidity

UFO and OntoUML are built on the notion of worlds coming from Modal Logic – various
configurations of the individuals in various circumstances and contexts of time and space.
Rigidity is, then, the meta-property of universals that defines the fact if the extension of
the universal (i.e. the set of all instances of the universal) is world invariant [15]. UFO
distinguishes rigid (instances of rigid universals are their instances in all worlds), anti-
rigid (each instance of an anti-rigid universal from any world is not its instance in certain
other world(s)) and semi-rigid (some instances of semi-rigid universals are always their
instances, other instances may not be their instances in certain worlds) universals [10].

In this paper, we discuss only on the Rigid Sortal types of universals – Kinds and
Subkinds – and we discuss the details of the transformation of such universals into the
relational databases.

3.4. Generalization and Specialization

In contrast to UML, in UFO and OntoUML, the generalization relation defines the inheri-
tance of the identity principle. According to that, an individual which is an instance of the
subtype is also an instance of the supertype automatically by following the same identity
principle, and thus it also receives the properties defined by the supertype. Additionally,
the relation is rigid in UML – an instance of the subclass can always be used as an in-
stance of the superclass unless it ceases to exist – while in OntoUML, the relation may be
non-rigid: a single individual may be an instance of both the superclass and subclass in
one world and it may be an instance of only the superclass in another world [10].
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Although not very common in UML models, the generalization sets are crucial in
OntoUML models as they define the required identity for various universal types. Unless
altered, {incomplete, non-disjoint} is considered the default value of the meta-properties,
which is in contrast to UML 2.4.1 and earlier.

3.5. Kinds and Subkinds

The backbone of an OntoUML model is created by Kinds. Kind is a Rigid Sortal type of
universals that defines the identity principle for its instances, thus defining the way how
we are able to distinguish individual instances of that universal [14]. In OntoUML, the
Kind universals are depicted as classes with the� Kind� stereotype [15].

Subkind is a Rigid Sortal universal type that does not define its own identity princi-
ple, but it inherits it from its ancestor and provides it to its instances. Therefore, Subkind
universals form generalization sets of other Kind or Subkind universals; they form inher-
itance hierarchies with the root in a Kind universal. In other words, each instance of a
Subkind universal is automatically – through the transitive generalization relation – also
an instance of all the ancestral Kind and Subkind universals, receiving the identity princi-
ple from the root Kind universal. The inheritance may have any combination of values of
the isDisjoint and isCovering meta-properties [14]. In OntoUML, the Kind universals are
depicted as classes with the� Subkind� stereotype [15].

4. Running Example

Our approach to the transformation of Kinds, Subkinds and their generalization sets from
the OntoUML PIM into SQL ISM is illustrated on the running example shown in Figure 1.
The model shows an excerpt of the domain of transportation company. The company
uses various vehicles for transportation of various types of load, ranging from persons to
documents to heavy cargo. Therefore, the main entity of such model is the type Vehicle.
As it is the type defining the identity principle for its instances, it is classified as Kind. For
each vehicle used by the company, its manufacturer, model and plate number is needed,
represented by the respective attributes of the Vehicle type.

Furthermore, the company distinguishes three special types of vehicles – trucks, cars
and motorcycles – for which additional attributes are important. Each of these types of ve-
hicles is represented by its own type in the OntoUML PIM with the appropriate attributes.
As all these types represent the specialization of the general concept of a vehicle, their
are classified as Subkinds forming a generalization set specializing the type Vehicle.
Moreover, as the types of the vehicles are disjoint – clearly, one vehicle cannot be a truck
and a motorcycle at the same time – the generalization set is defined disjoint. On the
other hand, there might be other types of vehicles, for which no special attributes need to
be recorded. Therefore, the generalization set is not defined complete, but rather left
incomplete.

5. Our Approach

Our approach to the transformation of a PIM in OntoUML into its realization in a rela-
tional database consists of three steps which are discussed in the following sections:
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«Kind»
Vehicle

- manufacturer: String
- model: String
- plate number: String

«SubKind»
Truck

- loading capacity: int

«SubKind»
Car

- seats: int

«SubKind»
Motorcycle

- engine capacity: int

{disjoint}

Fig. 1. Example of an OntoUML model with Kinds and Subkinds

1. subsection 5.1 discusses the transformation of an OntoUML PIM into a UML PIM,
2. subsection 5.2 discusses the transformation of the UML PIM into an RDB PSM,
3. subsection 5.3 discusses the transformation of the RDB PSM into an SQL ISM.

As mentioned in the introduction, it should hold that no information should be lost
when transforming from a more abstract model into a more specific one. As OntoUML
applies constraints for meta-properties of generalization sets, these constraints should be
carried over to the other models. However, as generalization sets are not very common in
UML models (although defined by the standard), these constraints are not addressed in the
common transformation approaches. Therefore we focus on correct and complete realiza-
tion of these generalization sets including their meta-properties. Whenever not possible
to express a constraint directly in the diagrams, we use OCL to define such constraint.

Although we may formulate a direct transformation from OntoUML into the relational
database, the transformation via an auxiliary UML model enables to leverage all the avail-
able knowledge (e.g. [27,32] and tools for transformation of a UML PIM into database
models such as Enterprise Architect), while the direct transformation would have to be
built from the scratch. Also, various optimizations and refactoring may be applied when-
ever possible (e.g. when the subclasses hold no attributes and are used only to distinguish
various subtypes of the superclass entity, they can be expressed by values of a single
attribute of the superclass).

To demonstrate our approach, we refer to the technical report [31], where all the OCL
constraints and SQL scripts are defined for the running example discussed in section 4.
We use Oracle Database 12c SQL dialect [26] in all the examples in the SQL ISM.

In the approach presented here, we assume the (most common) situation where all
attributes of the model classes have multiplicities [1..1]. In the discussion in section 6,
we discuss how the situation changes for different multiplicities.

5.1. Transformation of OntoUML PIM into UML PIM

In the first step of the transformation, the OntoUML model is transformed into pure UML
model, transforming the types in the OntoUML PIM into the classes in the UML PIM
while preserving all the semantics defined by the particular universals of the types.
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Vehicle

- manufacturer: String
- model: String
- plate number: String

Motorcycle

- engine capacity: int

Car

- seats: int

Truck

- load capacity: int

{disjoint}

Fig. 2. UML PIM with the transformed Kinds and Subkinds

As various OntoUML universal types define different semantics, they are also trans-
formed in a different manner. However, we discuss only the transformation of Kinds and
Subkinds in this paper.

Kinds and Subkinds. As both Kind and Subkind universals in OntoUML are rigid, their
instances cannot cease to be their instances without ceasing to exists. The same applies
in UML for the classes and their instances. Therefore, the representation of Kinds and
Subkinds in UML may stay the same: each� Kind� and� Subkind� class from
the OntoUML PIM is transformed into a standard UML class in the UML PIM keeping
all its features – attributes and relations.

The resulting transformed UML PIM of the running example is shown in Figure 2.
Each of the� Kind� and� Subkind� classes has been transformed into standard
UML class.

Generalization sets. A Subkind in OntoUML represents a special case of a Kind or other
Subkind, forming a generalization set together with other Subkinds. As both Kinds and
Subkinds are rigid, also the generalization set is rigid: when an object is an instance of the
Subkind, it is also an instance of its rigid ancestor – a Kind or another Subkind – because
of the inherited identity principle and it cannot cease to be the instance of any of them
without loosing its identity.

Thanks to this rigidity, the generalization sets of� Subkind � classes in the On-
toUML PIM can be transformed into standard UML generalization sets in the UML PIM.
Also, the meta-properties isDisjoint and isCovering of the generalization set re-
main the same – the only difference may be the need to show these properties, depending
on the version of UML as discussed in section 2. The example of this transformation can
be seen in Figure 2.

5.2. Transformation of PIM into PSM

The second step is the transformation of the UML PIM into RDB PSM. The UML Data
Model profile – an extension to the UML class diagrams – is used in the examples to de-
fine the structure of the relational database in UML [35]. Additional constraints required
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to preserve the semantics derived during the transformation of the OntoUML model are
defined as OCL invariants, as OCL is part of the UML standard and there are tools sup-
porting the transformation of OCL constraints into database constructs such as Dresden-
OCL [6].

In general, when performing transformation from a UML PIM into a PSM of a rela-
tional database, classes are transformed into database tables, class’s attributes are trans-
formed into table columns and associations are transformed into references restricted by
FOREIGN KEY constraints. Also, PRIMARY KEY constraints are defined for unique
identification of individual records in the tables [32]. Therefore, the transformation of
classes representing various Kind universals is straightforward – the class with its at-
tributes is transformed into a table with its columns.

However, the concept of generalization is not present in relational databases. There-
fore, the generalization sets must be transformed into into tables and references. In gen-
eral, there are three approached commonly used for the realization of the generalization
in relational database [27]:

– by a single table containing columns for all the attributes of the superclass and all the
subclasses;

– by individual tables for each of the subclasses, containing the columns for the at-
tributes of the respective subclass and the superclass;

– by a table for the superclass and individual tables for all the subclasses referencing
the superclass table.

Each of these variants brings certain limitations and consequences. However, in any
case, the generalization set constraints isCovering and isDisjoint defined in the UML
PIM, as well as the multiplicity constraints of the attributes, should be realized as well
to preserve the constraints explicitly defined in the model. However, these properties are
usually not truly realized in the database. Therefore, we focus on the possibilities for
their realization in the RDB PSM to truly preserve the semantics defined in the original
OntoUML PIM.

In the following subsections, the details of each of the possible realizations are dis-
cussed in context of the generalization set constraints and their realization, as well as other
limitations and consequences.

Single Table. In this variant, the superclass and all its subclasses are realized by a single
table, defining the columns for all the attributes of the superclass and all its subclasses.
Instances of the superclass are represented by rows with NULL values in the columns of
the subclasses. Instances of a subclass contain values only in the superclass columns and
the columns of that subclass – the columns of the other subclasses contain NULL values.
Additionally, adding an extra discriminator column to discriminate the subclasses may
be convenient [27]. An example of this realization of the generalization set in the running
example is shown in Figure 3.

In this realization, the mandatory values of the supeclass’s attributes can be easily re-
alized by NOT NULL constraints, as all instances always have values for such mandatory
attributes. However, the mandatory values of the subclasses’s attributes cannot be realized
by such simple constraints, as they are dependent on the actual type of the stored instance.
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VEHICLE

«column»
*PK VEHICLE_ID: NUMBER(8)
* DISCRIMINATOR: VARCHAR2(10)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)

LOAD_CAPACITY: NUMBER(8)
ENGINE_CAPACITY: NUMBER(8)
SEATS: NUMBER(8)

«PK»
+ PK_VEHICLE(VEHICLE_ID)

«unique»
+ UQ_PLATE_NUMBER(PLATE_NUMBER)

Fig. 3. RDB PSM with the generalization set realized by a single table

Instead, these constraints must be defined with the relation to the value in the discrimina-
tor column, which in turn can contain only values representing the appropriate classes of
the original generalization set according to its meta-properties. Therefore, the following
constraints should be realized:

– The discriminator value must match one of the subclasses. In the case of an
incomplete generalization set, also the superclass is allowed. In the case of an
overlapping generalization set, also all the combinations of the subclasses are
allowed.

– All mandatory columns of the subclass(es) identified by the discriminator values must
contain NOT NULL values, while the columns of all the other subclasses must con-
tain NULL values. In the case of identifying the superclass, all columns of all the
subclasses must contain NULL values.

As discussed above, the NOT NULL constraints for the columns representing the at-
tributes of the superclass can be defined directly on the column level, as all instances will
always provide values for these columns. However, the constraints for the columns repre-
senting the attributes of the subclasses follow complex rules, which cannot be defined on
the column level. Instead, they must be defined on the table level by additional constraints.
In our approach, we use OCL invariants to define such constraints in the RDB PSM. An
example of the OCL constraint realizing the {disjoint,incomplete} generaliza-
tion set from the running example realized by a single table is shown in Constraint 1.
Examples of the realization of the other variants of the generalization set meta-properties
can be found in [31].

In case that values of some of the attributes of the superclass or some of the subclasses
should be unique, the realization of such constraint in the RDB PSM is simple. As all
data are stored in the same table, the column representing the particular attribute can be
simply restricted by the UNIQUE constraint, as shown in Figure 3 where the uniqueness
is defined by the UQ PLATE NUMBER constraint.

Individual Tables. In this variant, a table is created for each possible type of instance
from the generalization set. Usually, it means creating a table for each of the subclasses,
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Constraint 1 OCL invariant for the {disjoint,incomplete} generalization set re-
alized by a single table

c o n t e x t v : VEHICLE inv GS Vehic l e Types :
d e f V e h i c l e I n s t a n c e : Boolean =

v . DISCRIMINATOR = ’ V e h i c l e ’ AND v . LOAD CAPACITY = OclVoid
AND v . SEATS = OclVoid AND v . ENGINE CAPACITY = OclVoid

d e f T r u c k I n s t a n c e : Boolean =
v . DISCRIMINATOR = ’ Truck ’ AND v . LOAD CAPACITY <> OclVoid

AND v . SEATS = OclVoid AND v . ENGINE CAPACITY = OclVoid
d e f C a r I n s t a n c e : Boolean =

v . DISCRIMINATOR = ’ V e h i c l e ’ AND v . LOAD CAPACITY = OclVoid
AND v . SEATS <> OclVoid AND v . ENGINE CAPACITY = OclVoid

d e f M o t o r c y c l e I n s t a n c e : Boolean =
v . DISCRIMINATOR = ’ M o t o r c y c l e ’ AND v . LOAD CAPACITY = OclVoid

AND v . SEATS = OclVoid AND v . ENGINE CAPACITY <> OclVoid

V e h i c l e I n s t a n c e OR T r u c k I n s t a n c e OR C a r I n s t a n c e OR M o t o r c y c l e I n s t a n c e

containing columns for the attributes of the superclass and the particular subclass [27].
However, to correctly realize the meta-properties of the generalization set, a table for the
superclass should be also created in the case of an incomplete generalization set and
a table for each of the combinations of the subclasses in the case of an overlapping
generalization set. An example of such realization of the running example is shown in Fig-
ure 4.

With this realization, in each of the tables, the mandatory attributes can be easily re-
alized by NOT NULL constraints defined for all the columns representing the mandatory
attributes of both the superclass and the particular subclass(es), which the table represents,
as only instances of the same combination of classes are stored in a single table, and thus
they always have values for those attributes.

However, on the other hand, it is more complicated to ensure the unique values for at-
tributes of the superclass, when needed. The same also applies for attributes of subclasses
in the case of an overlapping generalization set. It is because the values of such at-
tributes are distributed among multiple tables representing the particular combination of
classes from the generalization set. For instance, in the running example, the values of
the plate number attribute of all vehicles should be unique, regardless of its actual
type. As it is realized by the PLATE NUMBER column in all the tables shown in Figure 4,
it is not possible to simply restrict the columns only by a simple UNIQUE constraint.
Such constraint – named UQ PLATE NUMBER in each of the tables – only ensures the
uniqueness of the values in that particular table. Instead, an additional constraint must
be defined to ensure the uniqueness of the values across all the tables with the following
properties:

– A constraint is generated for each of the tables realizing the generalization set.
– Each constraint checks, that there is no record in all the other tables with the same

value of the unique column as in the constrained table.

As such constraint cannot be defined directly in the table, we use OCL to define them.
An example of such OCL constraint for the table VEHICLE realiting the unique constraint
of the PLATE NUMBER column distributed across the tables shown in Figure 4 is shown
in Constraint 2. The constraints for the other tables can be found in [31].
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MOTORCYCLE

«column»
*PK MOTORCYCLE_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)
* ENGINE_CAPACITY: NUMBER(8)

«PK»
+ PK_MOTORCYCLE(MOTORCYCLE_ID)

«unique»
+ UQ_MOTORCYCLE_PLATE_NUMBER(PLATE_NUMBER)

TRUCK

«column»
*PK TRUCK_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)
* LOAD_CAPACITY: NUMBER(8)

«PK»
+ PK_TRUCK(TRUCK_ID)

«unique»
+ UQ_TRUCK_PLATE_NUMBER(PLATE_NUMBER)

CAR

«column»
*PK CAR_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)
* SEATS: NUMBER(8)

«PK»
+ PK_CAR(CAR_ID)

«unique»
+ UQ_CAR_PLATE_NUMBER(PLATE_NUMBER)

VEHICLE

«column»
*PK VEHICLE_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)

«PK»
+ PK_VEHICLE(VEHICLE_ID)

«unique»
+ UQ_PLATE_NUMBER(PLATE_NUMBER)

Fig. 4. RDB PSM with the generalization set realized by individual tables

Constraint 2 OCL invariants for distributed unique column PLATE NUMBER

c o n t e x t v : VEHICLE inv U Q V e h i c l e P l a t e n u m b e r :
NOT(TRUCK. a l l I n s t a n c e s ()−> e x i s t s ( t | t . PLATE NUMBER = t . PLATE NUMBER ) )

AND
NOT(CAR. a l l I n s t a n c e s ()−> e x i s t s ( c | c . PLATE NUMBER = t . PLATE NUMBER ) )

AND
NOT(MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s (m|m. PLATE NUMBER = t . PLATE NUMBER ) )
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Related Tables. In this variant, all the classes are transformed into their own respective
tables. Each table contains only attributes of the particular class and the PRIMARY KEY.
Additionally, the subclass tables also contain reference to the superclass table restricted
by the FOREIGN KEY constraint. Also, a special discriminator column in the super-
class table to discriminate the actual type of the instance is convenient. The instances of
the classes from the UML PIM are then stored in the appropriate combination of tables.
Moreover, as the references realize generalization, the references are always one-to-one.
Therefore, the reference should be unique and can be combined with the PRIMARY KEY
column [27]. An example of this realization of the generalization set in the running ex-
ample is shown in Figure 5.

VEHICLE

«column»
*PK VEHICLE_ID: NUMBER(8)
* DISCRIMINATOR: VARCHAR2(10)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)

«PK»
+ PK_VEHICLE(VEHICLE_ID)

«unique»
+ UQ_PLATE_NUMBER(PLATE_NUMBER)

TRUCK

«column»
*pfKTRUCK_ID: NUMBER(8)
* LOAD_CAPACITY: NUMBER(8)

«FK»
+ FK_TRUCK_VEHICLE(TRUCK_ID)

«PK»
+ PK_TRUCK(TRUCK_ID)

CAR

«column»
*pfKCAR_ID: NUMBER(8)
* SEATS: NUMBER(8)

«FK»
+ FK_CAR_VEHICLE(CAR_ID)

«PK»
+ PK_CAR(CAR_ID)

MOTORCYCLE

«column»
*pfKMOTORCYCLE_ID: NUMBER(8)
* ENGINE_CAPACITY: NUMBER(8)

«FK»
+ FK_MOTORCYCLE_VEHICLE(MOTORCYCLE_ID)

«PK»
+ PK_MOTORCYCLE(MOTORCYCLE_ID)

0..1

(TRUCK_ID = VEHICLE_ID)

«FK»

1

0..1

(MOTORCYCLE_ID = VEHICLE_ID)

«FK»

1

0..1

(CAR_ID = VEHICLE_ID)

«FK»

1

Fig. 5. RDB PSM with the generalization set realized by related tables

The mandatory attributes of the superclass and the subclasses can be simply realized
by NOT NULL constraints, as each table always contains the same portion of data of in-
stances of the same type. Also, the UNIQUE constraints for the individual attributes of
the superclass and subclasses can be easily realized by UNIQUE constraints, as each at-
tribute is realized only by a single column in a single table – see the UQ PLATE NUMBER
constraint defined in the VEHICLE table.

To correctly realize the meta-properties of the generalization set, the existence of ref-
erencing records in the subclass tables should be checked in context of the value in the
discriminator column of the superclass table, which in turn can contain only values rep-
resenting the appropriate classes or their combination from the original generalization set
according to its meta-properties. Therefore, the following constraints should be realized:

– The discriminator value in the superclass table must match one of the subclasses. In
the case of an incomplete generalization set, also the superclass is allowed. In
the case of an overlapping generalization set, also all the combinations of the
subclasses are allowed.
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Constraint 3 OCL invariant for the {disjoint,incomplete} generalization set re-
alized by related tables

c o n t e x t v : VEHICLE inv GS Vehic l e Types :
d e f V e h i c l e I n s t a n c e : Boolean = v . DISCRIMINATOR = ’ V e h i c l e ’

AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s ( t | t . TRUCK ID = v . VEHICLE ID ) )
AND NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s ( c | c . CAR ID = v . VEHICLE ID ) )
AND NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s (m|m. MOTORCYCLE ID = v . VEHICLE ID ) )

d e f T r u c k I n s t a n c e : Boolean = v . DISCRIMINATOR = ’ Truck ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s ( t | t . TRUCK ID = v . VEHICLE ID )
AND NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s ( c | c . CAR ID = v . VEHICLE ID ) )
AND NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s (m|m. MOTORCYCLE ID = v . VEHICLE ID ) )

d e f C a r I n s t a n c e : Boolean = v . DISCRIMINATOR = ’ Car ’
AND . . .

d e f M o t o r c y c l e I n s t a n c e : Boolean = v . DISCRIMINATOR = ’ M o t o r c y c l e ’
AND . . .

V e h i c l e I n s t a n c e OR T r u c k I n s t a n c e OR C a r I n s t a n c e OR M o t o r c y c l e I n s t a n c e

– For each record in the superclass table, there is a single referencing record in each of
the tables identified by the discriminator value and no referencing record in all the
other tables. In the case of identifying the superclass, there are no referencing records
in all the subclass tables.

As such constraints restrict data in multiple tables, they cannot be defined on the
column level like other database constraints. Instead, a special constraint on the table
level must be defined. We use OCL in our approach. Furthermore, as the references are
based on the value of the discriminator column, covering all its possible values, both
constraints can be realized by a single OCL invariant. An example of such constraint for
the {disjoint,incomplete} generalization set from the running example in Con-
straint 3. Examples of the realization of the other variants of the generalization set meta-
properties can be found in [31].

5.3. Transformation of PSM into ISM

The last step is the transformation of the RDB PSM into SQL ISM. This model con-
sists of database scripts for the creation of the database tables, their constraints and other
constructs.

As we have the PSM of the relational database, the transformation is quite easy. Most
of the current CASE tools such as Enterprise Architect [36] can be used to generate SQL
DDL scripts. These scripts usually include the CREATE statements for the tables, their
columns, NOT NULL constraints and PRIMARY and FOREIGN KEY constraints. How-
ever, the OCL invariants defined for the additional constraints require special transforma-
tion. Only a few tools currently seem to offer transformation of such constraints – e.g.
DresdenOCL [6].

Our approach to the realization of the OCL constraints derived from the OntoUML
universal types is inspired by the approach for special multiplicity constraints discussed
in [32]. Based on that approach, the following constructs may be used to prevent violating
the derived constraints:
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– Database views can be used to query only the valid data meeting the constraints. They
do not slow down the DML operations when inserting, updating or removing data,
however, they do not actually prevent inserting data violating the constraints. It is still
possible to get invalid data into the database and query them using standard SELECT
statements over the original tables. It is necessary to ensure the correct usage of the
views on the application level.

– Updatable database views with CHECK option can be used to query only the valid
data. Moreover, they can be used to manipulate the data by DML operations like
INSERT, UPDATE and DELETE, as well. The CHECK option prevents creating a
record which will not be accessible by the view, however, it does not prevent changing
data in other tables which might violate the constraint. Moreover, the updatable views
are restricted by several constraints for the query expression in their definition, as
discussed in [32].

– CHECK constraints can be used to check the values inserted to various columns of
the table. Any DML operation affecting the value in such a column is then validated
against the CHECK constraint and rolled back, if the constraint is violated. Unfortu-
nately, the common contemporary database engines (e.g. Oracle 11g) do not support
subqueries in the CHECK constraint statements. Therefore, they can be effectively
used to realize constraints restricting data in a single table, but not for the relational
constraints restricting the records in related tables.

– Triggers can be defined to perform complex data validations and manipulations when
various DML operations are executed on a table. Being able to define complex queries
in the trigger body, they are capable to deal with almost every possible constraint and
prevent any operation which would violate them. The constraint checks in the triggers
slow down each constrained DML operation, however as shown in [32], the time in-
crease is typically not substantial. On the other hand, it is possible to entirely prevent
creating invalid data in the database and save a lot of checking implementation on the
application level.

In [32], the research was focused on the realization of special multiplicity constraints.
The same approach, however, may be used also for the realization of the constraints de-
rived from the Rigid Sortal universal types and their generalization sets in OntoUML as
discussed in the following sections. As the generalization set in the running example is
{disjoint,incomplete}, only realization of such OCL constraints shown in sub-
section 5.2 is discussed. However, the other variants would be realized similarly.

Single table. When the generalization set is transformed into a single database table,
a special OCL constraint is defined to ensure the meta-properties of the generalization
set by checking the values in the columns of the particular subclasses according to the
discriminator value. An example of the constraint is shown in Constraint 1.

As the constraint simply restricts values of columns in a single table to be empty or
non-empty, it can be easily realized in the SQL ISM by a database view with a query
selecting only records with NULL and NOT NULL values in the appropriate columns
according to the discriminator value. Such database view can be used to query only valid
records, ignoring all records violating the constraint. Moreover, as the view meets the
condition to be defined as updatable view WITH CHECK OPTION, it can also be used
for the DML operations, preventing creating invalid data in the original table. Still, the
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SQL 1 Updatable database view to query valid data from the combined Vehicle table

CREATE VIEW GS VEHICLE TYPES VIEW AS
SELECT ∗ FROM VEHICLE v WHERE

( v . DISCRIMINATOR = ’ V e h i c l e ’ AND v . LOAD CAPACITY IS NULL
AND v . SEATS IS NULL AND v .CONTENT IS NULL)

OR
( v . DISCRIMINATOR = ’ Truck ’ AND v . LOAD CAPACITY IS NOT NULL

AND v . SEATS IS NULL AND v .CONTENT IS NULL)
OR
( v . DISCRIMINATOR = ’ Car ’ AND v . LOAD CAPACITY IS NULL

AND v . SEATS IS NOT NULL AND v .CONTENT IS NULL)
OR
( v . DISCRIMINATOR = ’ M o t o r c y c l e ’ AND v . LOAD CAPACITY IS NULL

AND v . SEATS IS NULL AND v .CONTENT IS NOT NULL)
WITH CHECK OPTION ;

SQL 2 CHECK constraint for the combined Vehicle table

ALTER TABLE VEHICLE ADD CONSTRAINT GS VEHICLE TYPES CHECK CHECK (
(DISCRIMINATOR = ’ V e h i c l e ’ AND LOAD CAPACITY IS NULL

AND SEATS IS NULL AND CONTENT IS NULL)
OR
(DISCRIMINATOR = ’ Truck ’ AND LOAD CAPACITY IS NOT NULL

AND SEATS IS NULL AND CONTENT IS NULL)
OR
(DISCRIMINATOR = ’ Car ’ AND LOAD CAPACITY IS NULL

AND SEATS IS NOT NULL AND CONTENT IS NULL)
OR
(DISCRIMINATOR = ’ M o t o r c y c l e ’ AND LOAD CAPACITY IS NULL

AND SEATS IS NULL AND CONTENT IS NOT NULL ) ) ;

original table can be directly accessed by the DML and query operations, and therefore
such view cannot guarantee the consistency. An example of such database view for the
running example is shown in SQL 1.

Similarly, the constraint can also be realized by a CHECK constraint, which is checked
after each operation on the table. Thanks to that, it is able to completely ensure the data
consistency according to the constraint. As the constraint condition checks only data of
a single record in a single table, there is no problem with its implementation in the com-
mon relational database engines. An example of such CHECK constraint for the running
example is shown in SQL 2.

Finally, the constraint might also be realized by a trigger. As the constraint only re-
stricts data in a single table, only a single trigger would be needed. This trigger would
be defined to be executed BEFORE INSERT and UPDATE operations, as only these op-
erations can create invalid records. Moreover, as the constraint restricts values of only
isolated records, the trigger can be executed for each row, checking only the affected row
instead of all the data in the table. Such trigger would check the new values of the affected
row in the individual columns and roll back the operation, if the values do not match the
condition of the constraint. However, as the constraint can be realized more conveniently
by the CHECK constraint or a checked updatable database view, using the trigger is not
recommended. Still, an example of such trigger can be found in [31].
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SQL 3 Database views to query valid data from the individual tables

CREATE VIEW UQ VEHICLE PLATE NUMBER VIEW AS
SELECT ∗ FROM VEHICLE v WHERE (

NOT EXISTS (SELECT 1 FROM TRUCK t WHERE t . PLATE NUMBER = v . PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM CAR c WHERE c . PLATE NUMBER = v . PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m WHERE m. PLATE NUMBER = v . PLATE NUMBER)

) WITH CHECK OPTION ;

Individual tables. When the generalization set is transformed using the approach of
individual tables, no special constraint is needed to realize the meta-properties of the gen-
eralization set. However, when a uniqueness of a superclass attribute (or even a subclass
attribute in case of an overlapping generalization set) must be ensured, special dis-
tributed uniqueness OCL constraints such as shown in Constraint 2 must be realized.

Each of such constraints can be transformed into a database view querying records
from the particular table meeting the condition of the OCL constraint – having such value
of the restricted unique column, which does not exist in any of the other tables. This
view can be used to query only valid record, ignoring all records in that particular table
containing a non-unique value. An example of the view realizing the constraint shown
in Constraint 2 is shown in SQL 3. Moreover, as the view meets the conditions for an
updatable view, it is defined with the WITH CHECK OPTION and it can be also used
for the DML operations while preventing violation of the constraint. As similar views are
also defined for the other tables containing the constrained attribute, their combination
can completely prevent creation of invalid data in the tables. Still, the original tables
can be accessed directly, and therefore such views cannot guarantee the entire database
consistency.

Similarly, the constraint could be also realized by CHECK constraints, checking the
value of the affected record does not exist in the other tables. However, such CHECK
constraint would require subqueries for checking the data in the other tables, and although
valid according to the SQL:1999 specification, the contemporary database engines do not
support such CHECK constraints. Therefore, this realization is not possible.

Finally, a trigger can also be used to entirely prevent creating invalid data in the
database. As the constraint restricts using a value already used in another table, only the
INSERT and UPDATE operations executed on each of the tables can create data violating
the constraints. Therefore, a trigger is defined FOR EACH ROW on each of the tables
after INSERT and UPDATE operations, trying to find the new value defined for the con-
strained column in the other tables and rolling back the operation, if a record in the other
tables is found. An example of the trigger for the table VEHICLE in the running example
is shown in SQL 3. The other triggers for the other tables can be found in [31].

Related tables. When the generalization set is transformed using the approach of related
tables, the constraint is defined in context of the superclass table checking the existence
of referencing records in the appropriate subclass tables, such as shown in Constraint 3.
However, the realization of this constraint in the SQL ISM is mutually exclusive with
the FOREIGN KEY constraint – the generalization set constraint requires referencing
records in the subclass tables and the FOREIGN KEY constraint requires existence of the
referenced record, but the records must be inserted one-by-one. Therefore, the FOREIGN
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SQL 4 Triggers for the individual tables

CREATE OR REPLACE TRIGGER UQ VEHICLE PLATE NUMBER TRIGGER
AFTER INSERT OR UPDATE ON VEHICLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER := 0 ;
BEGIN

SELECT count ( 1 ) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM TRUCK t WHERE t . PLATE NUMBER = : new . PLATE NUMBER)
OR EXISTS (SELECT 1 FROM CAR c WHERE c . PLATE NUMBER = : new . PLATE NUMBER)
OR EXISTS (SELECT 1 FROM MOTORCYCLE m WHERE m. PLATE NUMBER = : new . PLATE NUMBER ) ) ;

IF l c o u n t > 0 THEN r a i s e a p p l i c a t i o n e r r o r
(−20101 , ’OCL c o n s t r a i n t U Q V e h i c l e P l a t e n u m b e r v i o l a t e d ! ’ ) ;

END IF ;
END;

SQL 5 Database view to query only valid data from the superclass of the related tables

CREATE OR REPLACE VIEW GS VEHICLE TYPES VIEW AS
SELECT ∗ FROM VEHICLE v WHERE

( v . DISCRIMINATOR = ’ V e h i c l e ’
AND NOT EXISTS (SELECT 1 FROM TRUCK t WHERE t . TRUCK ID = v . VEHICLE ID )
AND NOT EXISTS (SELECT 1 FROM CAR c WHERE c . CAR ID = v . VEHICLE ID )
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m WHERE m. MOTORCYCLE ID = v . VEHICLE ID ) )

OR ( v . DISCRIMINATOR = ’ Truck ’
AND EXISTS (SELECT 1 FROM TRUCK t WHERE t . TRUCK ID = v . VEHICLE ID )
AND NOT EXISTS (SELECT 1 FROM CAR c WHERE c . CAR ID = v . VEHICLE ID )
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m WHERE m. MOTORCYCLE ID = v . VEHICLE ID ) )

OR ( v . DISCRIMINATOR = ’ Car ’ AND . . . )
OR ( v . DISCRIMINATOR = ’ M o t o r c y c l e ’ AND . . . ) )

WITH CHECK OPTION ;

KEY should be defined DEFERRABLE to be checked at the end of the transaction instead
of at the time of each operation [21].

The transformation of the OCL constraint into a database view is simple. The view
queries only data from the table representing the superclass meeting the condition of the
constraint – records which have referencing records in the appropriate subclass tables ac-
cording to the discriminator value. This view can be used to query valid instances of the
superclass (in case of incomplete generalization set) and it is also used in the JOIN
queries to query complete data of valid instances of the individual subclasses (or their
combination in case of overlapping generalization sets). An example of such view
for the running example and the constraint shown in Constraint 3 is shown in SQL 5.
Moreover, as the view meets the criteria for being updatable, it is defined with the WITH
CHECK OPTION clause and can be used for the DML operations instead of the original
superclass table, preventing creation of invalid record by such operations. However, the
constraint can be also violated by DML operations on the subclass tables. Although some
of these operations can be checked by additional updatable views, it is not possible to
prevent all possible violating operations (e.g. inserting a referencing record into inappro-
priate subclass table), and also the original tables can still be accessed directly. Therefore,
the realization by the views cannot guarantee the data consistency entirely.

Similarly, a CHECK constraints could be also defined with the same conditions, au-
tomatically preventing creation of invalid data. However, such CHECK constraints would
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require subqueries to check data in other tables, which, although valid according to the
SQL:1999 specification, is not supported by the contemporary database engines. There-
fore, this realization is not applicable.

The constraint can also be realized by a set of triggers checking the individual DML
operations on the individual table able to cause violation of the constraint. The triggers
verify the appropriate condition and rolls the operation back in the case of violation. In
total, the following triggers are needed for the realization of such OCL constraint:

– INSERT OR UPDATE ON the superclass table: When inserting the data into the
superclass table or updating them, referencing records in the appropriate subclass
tables must exist according to the new discriminator value.

– INSERT ON each subclass table: When inserting a record into a subclass table, it
should reference a non-existent record in the superclass table (thanks to the deferred
FOREIGN KEY constraint, it should be inserted later while checking existence of
appropriate referencing records). Otherwise, it necessarily must be an inappropriate
or duplicate record.

– UPDATE ON each subclass table: When updating the data in a subclass table and
changing its reference value, there must be no record in the superclass table refer-
enced by the old reference value (such record would lose the required referencing
record) nor the new reference value (such record should be inserted later to satisfy
the insertion constraint discussed above).

– DELETE ON each subclass table: When deleting the data from a subclass tables,
the referenced record in the superclass should not exist, otherwise it would lose the
required referencing record.

All of these triggers can be defined BEFORE the particular operations, as it is pos-
sible to detect the constraint violation before really changing the data. Also, defining the
triggers FOR EACH ROW is more efficient, as only the affected row can violate the con-
straint.

As presented above, a lot of triggers must be defined to realize the constraint. Also, the
DML operations are slowed down by their execution as they query data from other tables
for each of the affected rows. However, in contrast to the other realizations, they entirely
prevent violation of the constraint, and thus ensuring the data consistency. An example
of the trigger for the table VEHICLE from the running example is shown in SQL 6. The
other triggers can be found in [31].

6. Discussion

This paper is a part of research on OntoUML-based MDE, however, specifically the topic
of generalization sets is applicable in pure UML, as well, as the UML standard also in-
corporates them.

6.1. Efficiency

As mentioned above, our approach to the realization of the constraints derived from the
meta-properties of rigid generalization sets is based on the approach discussed in [32]. In
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SQL 6 Trigger for the INSERT and UPDATE operation on the superclass of the related
tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES TRIGGER VEHICLE
BEFORE INSERT OR UPDATE ON VEHICLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER( 1 ) ;
BEGIN

SELECT COUNT(∗ ) INTO l c o u n t FROM DUAL WHERE (
( : new . DISCRIMINATOR = ’ V e h i c l e ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t WHERE t . TRUCK ID = : new . VEHICLE ID )
AND NOT EXISTS (SELECT 1 FROM CAR c WHERE c . CAR ID = : new . VEHICLE ID )
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m. MOTORCYCLE ID = : new . VEHICLE ID ) )
OR ( : new . DISCRIMINATOR = ’ Truck ’

AND EXISTS (SELECT 1 FROM TRUCK t WHERE . . . )
AND NOT EXISTS (SELECT 1 FROM CAR c WHERE . . . )
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m WHERE . . . ) )

OR ( : new . DISCRIMINATOR = ’ Car ’ AND . . . )
OR ( : new . DISCRIMINATOR = ’ M o t o r c y c l e ’ AND . . . ) ) ;

IF l c o u n t = 0 THEN r a i s e a p p l i c a t i o n e r r o r
(−20101 , ’OCL c o n s t r a i n t GS Veh ic l e Types v i o l a t e d ! ’ ) ;

END IF ;
END;

the paper, the authors discuss possible ways to realize constraints for special multiplicity
values using database views and triggers. The authors also provide results of experiments,
proving that their realization guarantees database consistency in context of the multiplicity
constraints with just a slight decrease in efficiency.

The OCL constraints derived from the meta-properties of generalization sets in On-
toUML have the same structure – they are based on multiplicities of related records or
their exclusivity. Therefore, also their realization using the views and triggers is very sim-
ilar. Based on this, we can expect the same impact on the efficiency of the DML operations
and queries. However, as our research is not yet fully concluded, experiments are yet to
be done to prove that.

6.2. Transformation of UML PIM into RDB PSM

As discussed in subsection 5.2, generalization sets can be transformed into a single table,
individual tables or related tables. Each of them has advantages and disadvantages.

The single table realization is suitable in situations when we transform subclasses with
few of attributes. Otherwise, the constraints for the mandatory attributes of the subclasses
are getting complicated. Also, this solution is suitable in the case of overlapping
generalization sets, as all the data are stored in a single table, preventing data and structure
duplicities.

In contrast to that, the related tables realization is suitable in situations when the sub-
classes have many attributes, as the realization of their multiplicity constraints is much
easier. On the other hand, it requires joining data from multiple tables to query data
of instances of the subclasses. Moreover, it is more complicated to preserve the meta-
properties of the generalization set, as queries into other tables will be needed in the vali-
dation checks, which increases the execution time of the queries and DML operations.
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We consider the possible realization by the individual tables not suitable generally, as
it leads to structural duplicities and data distribution, which is even more obvious in the
case of overlapping and incomplete generalization sets.

6.3. Transformation of RDB PSM into SQL ISM

As discussed in subsection 5.3, the OCL constraints defined as the result of the transfor-
mation of the UML PIM into the RDB PSM can be realized by database views, CHECK
constraints and triggers.

The database views can be used to query only valid data from the database. The up-
datable database views can be even used to manipulate with the data while checking the
constraints. However, still, it is possible to create invalid data in the database violating the
constraints by using the tables directly. Therefore, the responsibility is transferred to the
application level.

The realization by the CHECK constraints is able to ensure the data consistency
and prevent creating invalid data violating the constraints. However, as current common
database engines do not support subqueries in the CHECK constraint statements, they can
be used only in the case of the generalization sets realized by the single table approach.

The most reliable and universal realization is the realization by the triggers. Using the
triggers, it is possible to completely validate the manipulated data and entirely prevent
creating data violating the constraints. On the other hand, the triggers increase the time
to execute the DML operations. However, as discussed in [32], this time increase is not
substantial, unless manipulating with very large database.

6.4. Attribute Multiplicity

In this paper, we focused on the most common situation of mandatory attributes (attribute
multiplicity [1..1]), as in OntoUML, optional attributes (minimal multiplicity 0) are
considered anti-patterns and they typically signal missing anti-rigid types like Roles or
Phases [33]. Still, our approach is applicable even for the case of optional attributes. Some
of the constraints will even simplify – e.g. the NOT NULL constraints for individual
columns representing the attributes of the subclasses (Constraint 1).

Also, the collection attributes (attributes with the maximal multiplicity *) can be sim-
ply realized by our approach. They just need to be transformed into separate classes and
one-to-many relations, leading to the realization in the form of references and FOREIGN
KEY constraints.

7. Conclusions

In this paper, we introduced our approach to transformation of an OntoUML PIM of
application data into an ISM of a relational database. This transformation is divided into
three consecutive steps: the transformation of the OntoUML PIM into UML PIM, the
transformation of the UML PIM into RDB PSM and the transformation of the RDB PSM
into SQL ISM.

In the transformations, various options are available and additional constraints should
be defined and realized to preserve the semantics defined by the OntoUML universal
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types. In this paper, we discussed the details of the transformation of Rigid Sortal univer-
sal types – Kinds and Subkinds and their generalization sets – discussing various possible
realizations of the constraints derived from the semantics of these OntoUML constructs.
All the variants are described using a running example of a simple OntoUML PIM of
vehicle types.

As for the research questions formulated in section 1:

– Are there benefits of using OntoUML Kinds and Subkinds in PIM? — Yes, when
following the proposed transformation, the resulting RDB is able to ensure the con-
straints, thus enabling better alignment with the problem domain.

– Is it possible to preserve generalization sets constraints of Kinds- and Subkinds in a
relational database? — Yes, our transformation covered them.

OntoUML specifies numerous entity types and relation types. There are relatively a lot
of rules and constraints (compared to e.g. UML) posed on them. As for the future research,
a similar work as presented here should be elaborated for other important OntoUML con-
structs – the Non-sortal universal types – e.g. Category, Mixin, RoleMixin – and relational
constructs – part-whole relations, Relators, etc. As for the continuation of the presented
method, combinations of multiple generalization sets of a single universal with various
combinations of the meta-properties should be investigated. Finally, experiments should
be carried out to study the finer points of individual variants of the constraints realization,
mostly with the respect to quantitative measures concerning time and space efficiency
in various database backends. Last but not least, a (semi)automated tooling needs to be
developed to be able to use the method efficiently in the MDD lifecycle.
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specifications. Computing and Informatics 31(5), 1045–1079 (2012)

24. OMG: Object constraint language (OCL), version 2.4. http://www.omg.org/spec/
OCL/2.4/ (Feb 2014), accessed: 2016-02-23

25. OMG: UML 2.5. http://www.omg.org/spec/UML/2.5/ (Mar 2015), accessed: 2016-
02-08

26. Oracle: Oracle SQL. http://www.oracle.com/technetwork/database/
database-technologies/sql/overview/index.html, accessed: 2017-01-19

27. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd Edition. McGraw-Hill,
Boston, 3rd edition edn. (Aug 2002)

https://link.springer.com/article/10.1007/s10270-017-0597-6
https://link.springer.com/article/10.1007/s10270-017-0597-6
http://link.springer.com/chapter/10.1007/978-3-642-31095-9_21
http://link.springer.com/chapter/10.1007/978-3-642-31095-9_21
http://dx.doi.org/10.1007/978-3-540-25975-6_10
https://journal.ub.tu-berlin.de/eceasst/article/view/108
https://journal.ub.tu-berlin.de/eceasst/article/view/108
http://dx.doi.org/10.1002/spe.v37:15
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/UML/2.5/
http://www.oracle.com/technetwork/database/database-technologies/sql/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/sql/overview/index.html


Transformation of Kinds and Subkinds into RDB 937

28. Rybola, Z., Pergl, R.: Towards OntoUML for Software Engineering: Introduction to the Trans-
formation of OntoUML into Relational Databases. In: Enterprise and Organizational Modeling
and Simulation. LNBIP, Springer, CAiSE 2016, Ljubljana, Slovenia (June 2016), in press.

29. Rybola, Z., Pergl, R.: Towards OntoUML for Software Engineering: Transformation of Anti-
Rigid Sortal Types into Relational Databases. In: Model and Data Engineering. LNCS, vol.
9893, pp. 1–15. Springer, MEDI 2016, Almria, Spain (Sep 2016)

30. Rybola, Z., Pergl, R.: Towards OntoUML for Software Engineering: Transformation of Rigid
Sortal Types into Relational Databases. In: Proceedings of the 2016 Federated Conference on
Computer Science and Information Systems. p. 15811591. No. 8 in ACSIS, Gdansk, Poland
(2016), doi: 10.15439/2016F250

31. Rybola, Z., Pergl, R.: Transformation of Kinds and Subkinds into Relational Databases: A Run-
ning Example. Technical Report TR-FIT-2017, Czech Technical University in Prague (2017)

32. Rybola, Z., Richta, K.: Possible Realizations of Multiplicity Constraints. Computer Science
and Information Systems 10(4), 1621–1646 (Oct 2013), wOS:000327912000006

33. Sales, T.P., Guizzardi, G.: Anti-patterns in Ontology-driven Conceptual Modeling: The Case
of Role Modeling in OntoUML. In: Ontology Engineering with Ontology Design Patterns:
Foundations and Applications. IOS Press (2016)

34. da Silva, A.R.: Model-driven engineering: A survey supported by the unified conceptual model.
Computer Languages, Systems & Structures 43, 139 – 155 (2015)

35. Sparks, G.: Database Modeling in UML, http://www.eetimes.com/document.
asp?doc_id=1255046, accessed: 2016-02-02

36. Sparx Systems: Enterprise architect 13. http://www.sparxsystems.com.au/
products/ea/index.html, accessed: 2017-01-02

37. Torres, A., Galante, R., Pimenta, M.S., Martins, A.J.B.: Twenty years of object-relational map-
ping: A survey on patterns, solutions, and their implications on application design. Information
and Software Technology 82, 1–18 (Feb 2017)

38. Vara, J.M., Vela, B., Bollati, V.A., Marcos, E.: Supporting Model-Driven Development of
Object-Relational Database Schemas: A Case Study. In: Theory and Practice of Model Trans-
formations, vol. 5563, pp. 181–196. Springer Berlin Heidelberg, Berlin, Heidelberg (2009),
dOI: 10.1007/978-3-642-02408-5 13

39. Zamborlini, V., Guizzardi, G.: On the representation of temporally changing information in
OWL. In: Enterprise Distributed Object Computing Conference Workshops (EDOCW), 2010
14th IEEE International. pp. 283–292. IEEE (2010)
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