
Computer Science and Information Systems 13(2):427–452 DOI: 10.2298/CSIS150701010H

Development of Middleware Architecture to Realize

Context-Aware Service in Smart Home Environment

Hyun-Wook Kim
1
, M. Robiul Hoque

1
, Hyungyu Seo

1
, and Sung-Hyun Yang

1

1Department of Electronic Engineering,

Kwangwoon University

Seoul, 139-701, Republic of Korea

E-mail: {khw, robiul, tjgusrb92, shyang}@kw.ac.kr

Abstract. A smart home provides automated services based on the context of the

home environment and user activity. Context acquiring, processing, reasoning,

and disseminating to the services are complex tasks for a context-aware system.

An appropriate middleware architecture could handle such complexity. In this

paper, we proposed a middleware architecture for a context-aware system in smart

home environment. Here, the context is modeled based on ontology using Web

Ontology Language (OWL). In addition, a profile applied improved rule-based

reasoning algorithm is integrated into this middleware to infer high-level contexts

from available low-level contexts. Experimental result shows that the middleware

provides more accurate and faster reasoning outcome compare with the traditional

rule-based reasoning method. Moreover, context-aware service is also selected

using the rule-based algorithm, where the service can be extended easily by

adding new service rules in the service rule base.

Keywords: context-aware, middleware, ontology, profile, reasoning, service,

smart home.

1. Introduction

A smart home incorporates technology capable of sensing the home environment and

provides appropriate services to users based on the context of the home environment and

the users’ activities and preferences. Therefore, the main aim of establishing a smart

home is to provide the proper services to the right user, at the right time, in the right

place, and on the right device based on the available contexts. The term ‘context’ refers

to any information about the situation of an entity, where an entity is a person, place or

object [1]. The services in a smart home should be aware of the contexts and

automatically adapt according to the changing contexts; this is known as context-

awareness. Therefore, context-awareness is one of the most important characteristics of

a smart home.

Although many researchers have presented context-aware systems for different

domains, the development of context-aware services in the home environment is still a

complex and time-consuming task due to the lack of appropriate middleware

architecture support. Appropriate middleware architecture for the smart home should

provide support for most of the tasks involved in dealing with contexts such as acquiring

428 Hyun-Wook Kim et al.

context from various sources, performing context reasoning, and carrying out

dissemination of the context to the service composer.

In this paper, we proposed a three-layered context-aware middleware architecture.

The goals of this architecture are as follows:– 1) to support sensor abstraction that

means hiding sensing details, 2) to support context information processing, and

reasoning, and 3) to facilitate easy development of a context-aware service. The sensing

and managing layer provides sensor abstraction, which facilitates sensing. Therefore, the

services do not need to manage the low-level sensing details. The processing layer

provides the facilities to generate the context from the sensed data, to infer a high-level

context from the available low-level contexts, and to represent the context in a formal

way. For inferring, the reasoning engine uses the profile applied improved rule-based

reasoning algorithm. By adding new service rules to the service rule base, the service

can easily be extended. The service composition layer composes the several services

based on the context by using service rules. A set of services is developed to prove the

effectiveness of this middleware architecture. For this middleware architecture, the

context is modeled based on ontology, using Web Ontology Language (OWL) [2].

Moreover, fuzzy functions are used to ensure a more precise context.

The remainder of this paper is organized as follows. Section 2 provides a discussion

on related works. In section 3, middleware architecture is presented in detail, and in

section 4, the ontology-based context modeling is discussed. In section 5, the

implementation of the proposed middleware architecture with experimental results is

presented, and in section 6, we conclude this paper and indicate the scope of further

research.

2. Related Works

Context-aware systems have attracted much attention from researchers in recent years.

Several context-aware systems have been developed to demonstrate the usefulness of

this technology. The ContextToolkit [3] provides a framework and a number of reusable

components by using an object-oriented approach. While it supports the rapid

prototyping of sensor based context-aware applications, it does not provide a common

context model for context knowledge sharing and reasoning. In the CoBrA [4] project,

the authors proposed an agent-oriented infrastructure for context representation, sharing

knowledge and the user’s privacy control. GAIA [5] is a distributed middleware for

context awareness and semantic interoperability, in which context ontology is

represented and is written in DAMLC OIL. CORTEX [6] is a context-aware middleware

for pervasive and ad-hoc mobile environments based on concepts for autonomous

sentient objects and component frameworks. CARISMA [7] uses the reflection

paradigm to enhance the development of adaptive and context-aware mobile

applications. MiddleWhere [8] is a distributed middleware architecture for location

awareness. This platform allows the addition of different types of sensing technologies

and determines the location information quality. SOCAM [9] is an ontology based,

service oriented context-aware middleware architecture for developing context-aware

services. This platform supports semantic representation, context reasoning, and

context-knowledge sharing. EXEHDAUC [10] is another context-aware system, but it

Development of Middleware Architecture to Realize Context-Aware Service 429

tends to approach the concept of context from data rather than by defining and modeling

context independently.

In a context-aware system, reasoning is primarily used to deduce new knowledge

from available facts, which is another major challenge in the context-aware system.

Rule-based reasoning is a popular reasoning method used to build a context-aware

system. In [11], the authors use First-Order Logic (FOL) rules to reason about context

for building context-aware mobile services. In the semantic space architecture, two

modules are used for retrieving and deriving new information from the OWL

Knowledge Base (KB) [12]. The context reasoner enables the users to deduce higher

level knowledge, based on the context data of the KB, using FOL rules. The same

approach is also taken in the prototype context-aware implementation described in [13].

In each of these research works, rule-based reasoning has been combined with ontology.

However, insufficient personalized context is a common issue for most rule-based

context-aware systems because it requires a lot of personalized rules to apply the user’s

preferences. In other word, a separate rule is necessary to consider each preference for

reasoning, which increases number of rules. To address this problem, profile can be a

good alternative source of user preferences to infer personalized context. The profile

represents the user preferences for context and service in a formal way. By using user

profile, the system can become aware of the user choices in particular context, and

computes more accurate high-level context. As a result, high quality context-aware

services are also provided by the system. As the user preferences are provided by the

profile, the system can infer all possible high-level contexts using only basic rules which

are applicable for all users in a domain.

In contrast, AmbieSense [14] uses Case Based Reasoning (CBR) to derive the current

situation from available sensed data. When new information becomes available, the

CBR agent attempts to retrieve a known context or case, and classifies the current

situation based on the retrieved case. A similar approach is also implemented in [15] and

[16]. The Chaining CBR (CCBR) approach [17] has also been presented to solve the

imprecision of the traditional CBR. The CCBR considers that similar problems have

similar solutions, and that solutions for similar prior problems are a useful starting point

for new problem-solving. However, these methods still comprise the challenges of the

representation of cases, management of cases in a context-aware system, case matching

algorithm for finding similar cases, and dealing with personalized contexts.

In other research, attempts were made to adopt a user profile more specifically to

assist users to shop for various items [18]. However, the purpose of this is to calibrate

the quality of a service rather than to recognize the user context more precisely.

Nevertheless, we proposed a middleware architecture that integrates, firstly, the

functionalities of sensor abstraction to hide the low-level sensing details, and secondly,

the functionalities of context processing with the help of ontology-based context

modeling, fuzzy function, and a profile applied improved rule-based reasoning

algorithm, and finally, the functionalities of the service selection and the composition

technique to provide services for the smart home. Profile-applied improved rule-based

reasoning uses the profiles while providing reasoning for the contexts, and provides a

better outcome with which to infer the personalized context over traditional rule-based

reasoning.

430 Hyun-Wook Kim et al.

3. Middleware Architecture

Our proposed middleware architecture consists of several functional components, which

are the software modules as shown in Fig. 1. The modules are related to each other and

organized in a layered fashion. Moreover, within a module, several sub-modules work

together to deliver the overall functionality of this architecture. This middleware

architecture consists of three layers: the sensing and managing layer, the processing

layer, and the service composition layer. In the following subsection, each part of this

middleware architecture is briefly described.

Fig. 1. Proposed middleware architecture

3.1. Sensing and Managing Layer

The sensing and managing layer controls and maintains all devices related to the smart

home. Several devices such as sensors, home appliances, and smart phones are

connected with the residential gateway via a heterogeneous home network. The device

manager, in this layer, is a collection of several sub-modules that perform mainly the

sensing and managing tasks.

Development of Middleware Architecture to Realize Context-Aware Service 431

Sensor Manager A sensor device detects various types of inputs (light, heat, motion,

pressure etc) from the physical environment and transmits electronically over a network

for further processing. In our smart home, we use wireless sensors which are connected

to a sink node using Zigbee protocol, whereas the residential gateway communicates to

the sink node using TCP/IP protocol. TCP/IP communication protocol allows

connecting large number of devices which are not limited with distance. Therefore,

using TCP/IP communication protocol, it is possible to connect a large number of

sensors and appliances in smart home as well as other domain. RFID tag is used to

identify a user’s location in home. The sensor manager checks the sensor status (e.g.

sensor normal, sensor failure, power failure, and poor communication) and reads data

from the sensor based on an event such as when a user enters a new location in the

home; otherwise, the sensor manager reads the sensor data repetitively according to a

predefined time interval. It then passes on these data to interested components through

EventBus1 with a predefined format as shown in Table 1. Since the home environment

parameters change slowly, to prevent similar data processing repetitively, the Euclidean

distance based similarity checking method is used to discard similar data.

Home Appliance Manager. This module mainly controls the statuses of home

appliances by setting up its control parameters according to the home appliance

command for a particular service. In this case, the controller of the home appliances is

communicated to the residential gateway using TCP/IP protocol, and the home

appliances are wirelessly connected to the controller using IR/RF.

Context Client Manager. The context client manager plays a similar role as that of the

sensor manager but receives data from the embedded sensors of the context client (e.g.

smart phone) and sends them to the next layer for further processing. It also executes the

service command to provide a service. Here, the context clients and the residential

gateway communicate with each other wirelessly (e.g. WiFi) using TCP/IP protocol.

1 EventBus is selected from the Google Guava library, which allows publish-subscribe style

communication between software modules without requiring the modules to explicitly register

with each other. It’s like broadcasting; more than one module can receive simultaneously.

Moreover, it makes the code much more clear and modularize.

432 Hyun-Wook Kim et al.

Emergency Control. Emergency control is a special module that provides an

emergency service. We developed this module as a special case to respond quickly in

emergency situations. An emergency situation might be a fire (smoke sensor value is

true), a house breaking (a true value of magnetic sensor indicates intrusion), and high

CO2 level (greater than the threshold). When the emergency control detects an

emergency situation based on the sensing data, it provides an emergency message to the

appropriate user or agency.

3.2. Processing Layer

The processing layer has three major parts: context processor, command processor, and

knowledge base. The context processor is responsible for the acquisition of sensed data

and provides context by processing those data. On the other hand, the command

processor provides an interface between the sensing and managing layer, and the service

composition layer. The knowledge base stores the necessary information that is required

for the middleware architecture.

The context processor has two main sub-modules: context acquisition and context

provider. Moreover, each sub-module has several further sub-modules, each of which is

briefly described below.

Context Acquisition. The context acquisition module receives the sensed data from the

device manager and makes low-level contexts using the ontology. Fig. 2 shows a

detailed diagram of the context acquisition module. Several functions of this module are

described in the following subsections.

Fig. 2. Context Acquisition module in detail

Interface to Device Manager. This module provides protocol to receive data from the

sensing and managing layer. First, this module receives data with a predefined format,

then decomposes these data and sends them to the next module for further processing.

Development of Middleware Architecture to Realize Context-Aware Service 433

The data format consists of a flag, a tracker ID or location node ID, and a data value, as

shown in Table 1.

Table 1. Sample data according to the data format

Data Format Description

{“L”,“3”,“1”} Flag “L” indicates user location, “3” is

tracker id indicates who the user is, and “1”

is location node id of bedroom1. That

means, some user with tracker id 3, is

located in bedroom1.

{“E”,“1”,“25.6”,“22”,“12”,“440”} Here “E” indicates environmental

information and “1” in second position is

location node id of bedroom1. From 3rd

position, environmental information are

placed such as temperature, humidity,

illuminance, and CO2 respectively of this

space.

{“P”,“1”,“1”} Bed Pressure in bedroom1 is ON.

Fuzzyfier/Mapping. The mapping module provides mapping between the sensed data

and the instance of context entities which is needed in the subsequent steps of the

middleware, such as mapping of the location node ID to the location name. On other

hand, fuzzy functions are invoked to make more precise linguistic context information

from the data of the residential group (temperature, humidity, CO2, and illuminance)

sensor, and time. The main reason for using fuzzy functions is to convert the sensed

numeric data to linguistic expression, because most of the time people use the linguistic

expression rather than numbers when they feel concerned about the external

environment. For example, to express their understanding of temperature, people use

phrases such as cool, hot, and so on, instead of referring to the temperature in
0
C.

However, the range of external environmental information varies from person to person.

Therefore, it is wise to use fuzzy sets to generate more realistic linguistic expressions

from vague ranges. To fuzzify the sensing data, we defined fuzzy sets and membership

functions as shown in Fig. 3.

Low-level Context Composer. The low-level context composer generates both existential

and relational low-level contexts and represents them in a formal way as described in

subsection 4.1. This module receives context instances from the fuzzyfier and/or the

mapping module, and finds concepts of these instances from the ontology. The

existential context is composed using the instance and its concept, for example,

bedroom(bedroom1). To make the relational context, the low-level context composer

uses the ontology provider to retrieve the relation between the concepts of the related

instances from the ontology. In ontology, the relation between concepts is predefined.

Then, this module makes the relational context with these context instances and their

relationship. For example, locatedin(Mr.Hong,bedroom1), where locatedin is a relation

between a person and the bedroom concepts, and Mr.Hong and bedroom1 are the

434 Hyun-Wook Kim et al.

instances of these concepts, respectively. The pseudo code of this process is depicted in

algorithm 1.

Fig. 3. Fuzzy sets and membership functions for (a) Temperature, (b) Humidity, (c) Illuminance,

(d) CO2, and (e) Time.

Ontology Provider. The ontology provider provides an interface to access and maintain

the smart home ontology. Some functionalities of this module are open and save the

ontology, remove and insert individuals, and search and retrieve the relations among

concepts etc. To develop an ontology provider, the OWL API and Pellet [19] reasoner

are used. A smart home ontology will be described briefly in section 4.

Development of Middleware Architecture to Realize Context-Aware Service 435

Algorithm 1. Low-level relational context composition
(Let a and b be the instances of two concepts; a and b are generated through the fuzzyfier/mapping

module; r is the relation between the concepts of a and b.)

Context low-level-context-composer (string a, string

b){

 Retrieve concept of the individual a from ontology;

 Retrieve concept of the individual b from ontology;

 Retrieve relation, r between the concepts of

individual a and b;

 Make low-level context with the format, r(a,b);

 Return low-level context;

}

Context Provider. The context provider consists of several sub-modules, as shown in

Fig. 4, which are responsible for producing high-level contexts using the reasoning

engine and maintaining context consistency. An example of a high-level context is

hasstatus(Mr.Hong,sleeping) or hasstatus(Mr.Hong,watchingtv). Finally, all available

contexts are conveyed to the service composition layer to create the services.

Fig. 4. Internal structure of context provider

Context Verification. This module checks whether or not a new context is available in

the current context list. If it is available, the module simply discards this context;

otherwise, it adds it to the current context list. If a new context is an updated version of a

previous context, then it only modifies this context to change it to a new context. As a

whole, the functions of this module are very important to prevent context duplication

and maintain context consistency.

436 Hyun-Wook Kim et al.

Current Context. Current context is the list of available contexts stored in the working

memory. If any change is detected in the current context list, the context reasoning

engine is invoked to compute high-level context from the available contexts. The

context list is then sent to the service composition layer where the service is provided

based on these contexts.

Reasoning Engine. The reasoning engine is a specially designed module which is used

to infer new high-level context from the available current contexts. To develop this

module, a user defined rule-based inferring technique is used. We integrated the user

profile in the reasoning algorithm to infer a more accurate personalized context. The

user profile provides the user’s preferences and the rule is temporarily modified

according to the profile to infer a personalized high-level context. This technique

increases the context reasoning accuracy as well as decrease runtime.

The reasoning engine runs every time when a new context is added to the current

context list or a context in the current context list is updated follow the sensed data. The

reasoning engine also runs again if a new context is generated as a result of the

reasoning, because it changes current context list. Theoretically, this process is intended

to be repeated, therefore, it requires chaining algorithms such as the forward and

backward chaining algorithms for its operation. As soon as a change is found in the

current context list, the reasoning engine loads the list of rules from the rule base, and

then starts to find matches from the current context list. Every rule contains variables,

and each variable will be replaced by instances of some concepts. Context

representation and its terminologies are described in section 4.1 in detail. We describe

this reasoning process considering an example as follows.

In the rule for sleeping state, let person(?p)^bedroom(?br)^ locatedin(?p,?br)

^hasilluminance(br,dark) be defined as part of the rule. Here, the variable ‘?p’ is

mapped to the person and the variable ‘?br’ is mapped to the bedroom. Therefore, in the

case of Mr.Hong with his location in bedroom1, the rule is modified temporarily to

person(Mr.Hong) ^bedroom(bedroom1) ^locatedin(Mr.Hong,bedroom1)

^hasilluminance(bedroom1,dark) by substituting variables with corresponding instances.

Once the substitution is completed but the rule is not satisfied with current context

list, the reasoning engine finds the user who is related to the modified rule. Then the user

profile of the corresponding user is loaded and the instances or values of the contexts are

replaced according to the user’s preference. A form of the further modified rule, in this

case, is person(Mr.Hong)^ bedroom(bedroom1) ^locatedin(Mr.Hong,bedroom1)

^hasilluminance(bedroom1,dim). Because, for the user Mr.Hong, Fig. 5 shows that one

of the choice on illuminance is dim. After the modification has been completed, the

reasoning engine again start to find the exact contexts that are the same as each modified

condition in the rule and available in the current context list. That means, it finds

whether the further modified rule is satisfied or not with current context list. Whenever

the rule is satisfied, a high-level context is created and sent to the context verification.

The context verification then adds it to the current context list after checking context

consistency. The pseudo code of the main part of the reasoning algorithm is depicted in

Algorithm 2. If a match is not found, the reasoning engine checks whether or not the

high-level context is still valid. The user status is changed to none, when the condition

for the high-level context is failed. More detailed description of the reasoning engine

with preliminary testing results can be found in [20].

Development of Middleware Architecture to Realize Context-Aware Service 437

Algorithm 2. Profile applied improved rule-based reasoning
 (This is a simplified pseudo code of the algorithm in which-

 An instance is an individual of the concept in the domain. For example, Mr. Hong is an instance of a

concept person.

 A variable represents any instance of a concept. For example, person(?p), here ?p is a variable which can

be mapped to any person in the domain, i.e. Mr. Hong, Mr. Kim, etc.

 The profile defines the user’s preference for each context. For example, Fig. 5 shows that Mr. Hong’s

preferences for illuminance are dark, gloomy, and dim.

 A rule is a production rule similar in First-Order Prediction Calculus (FOPC). Several contexts with

variables are combined by ˄ to form a rule.

 ruleVariable is a list of all types of variables in a rule.

 currentVariable is the current processing variable of the ruleVariable, pointed by keyIndex.)

int keyIndex=0;

Boolean findMatch(int keyIndex){

 matched:=false;

 currentVariable:=ruleVariable[keyIndex];

 if(currentVariable is the last variable of

 ruleVariable){

 if(currentVariable has no instances)

 return false;

 else{

 while(currentVariable has instances){

 Substitute rule’s currentVariables with the

 instance;

 if(!matches(rule with current context)){

 Retrieve preference on that instance from

 profile;

 Modify the rule according to preference;

 }

 if(matches(rule with current context)){

 Add if part of the rule to matched rule list;

 Add the then part to current context list

 through context verification;

 matched:=true;

 }

 }

 }

 }

 else{

 if(currentVariable has no instances)

 return false;

 else{

 while(currentVariable has instances){

 Substitute rule’s currentVariables with the

 instance;

 keyIndex++;

 if(findMatch(keyIndex)){

 matched:=true;

 keyIndex--;

 }

438 Hyun-Wook Kim et al.

 else

 keyIndex--;

 }

 }

 }

 return matched;

 }

Profile Manager. This module retrieves and applies profiles in the reasoning process.

The profile defines the user’s preference for each context. Using the profile in

reasoning, the resulting context as well as the ordinary services can be affected;

however, in previous researches, the profile was only utilized for supporting

personalized services [18], [21], [22]. When applying the profile, a number of rules can

be reduced to compute the personalized user context. In this research, the profile is

written using Extensible Markup Language (XML), an example of which is shown in

Fig. 5.

Fig. 5. XML definition of a user profile

Interface to Service. The interface to service module continuously checks the current

context list, if any change is detected then conveys all contexts to the service

composition layer using EventBus.

Development of Middleware Architecture to Realize Context-Aware Service 439

Command Processor. The command processor provides an interface between the

service composition layer and the sensing and managing layer. This module receives a

service command from the context-aware service composer and sets command

parameters for the device manager according to the service command. Finally, the

device manager generates a data packet based on command parameters to execute this

service. Hence, the service command is a set of information needed to provide a

particular service, such as device ID, device serial number, device status, functioning

level, and location.

Knowledge Base. The knowledge base stores the domain ontology, rule base, and

profile base in separate files. In addition, the home structure information, user

information, and sensing data are stored in a database. Here, the resource repository is

the main database, responsible for storing different types of information which are

related to the smart home. It maintains several tables to store information about user,

user’s location, sensors, smart phones, and home appliances. The database is

implemented using MySql with JDBC connector. Rule files are stored as .txt file,

whereas profiles are stored as .xml and ontology files are stored as .owl.

3.3. Service Composition Layer

In the service composition layer, the context-aware service composer allows various

services based on available contexts which are received from the context provider and

service rules from the service rule base.

Season-based Library Service. The season-based library service module is designed to

provide a number of season-based special services. Currently, two services are provided

by this module: temperature control and humidity control. When the temperature and

humidity values are changed to very high or very low in a particular season, the sensor

manager module directly invokes this module to generate environment control services.

These services are important to maintain the home environment at a satisfactory level of

comfort to live, even though the user is outside or the status is none. This module makes

a decision based on sensing data. For example, if the room temperature is greater than

30
0
C in the summer season, it generates a service command to regulate the air-

conditioner automatically. As these are the default services, we develop this module

separately to provide these services without undergoing the complex context processing

steps.

440 Hyun-Wook Kim et al.

Service Provider. The service provider module is responsible for providing services by

following available contexts. It receives contexts from the context provider and selects

the desired service using the service selection engine and service rule base. These

services include sleeping, morning call, washing, watching TV, and so on. After

selecting the appropriate service, this module composes the appropriate service

command to achieve that service.

Service Selection Engine. The service selection engine is a rule-based inference engine.

The role of this module is to infer the desired service by using the user define rules from

the service rule base. The service selection engine uses a forward chain algorithm for

rule-based inferring.

4. Context Modeling Using Ontology

In this model, context is defined as a collection of information that can represent the

situation of any entity including the entity itself, its attributes, and its relation with other

entities in the same domain from a specific perspective.

4.1. Context Representation

The context model affects the architecture of the system and its reasoning mechanism. If

the context model is formal and structured, then the reasoning engine must provide

formal context as the result of reasoning with formal contexts [23]. In this research, the

context model is designed using Description Logic (DL). DL is a well-known

knowledge representation language, which originated from First-Order Predicate

Calculus (FOPC).

To present the context, this model uses terms such as concept, instance, relation,

value, and object which are similar to the terms used in both DL and FOPC. The terms

also use meanings closer to those in the Web Ontology Language (OWL). In OWL, the

concept is a collection of the same types of instances, also called class. Instance, similar

to the individual in DL, is an instantiated unique entity obtained by the concept in the

domain. A relation is a link between two entities or between an entity and the attribute

that defines the relationship which represents how one instance interacts with another.

Moreover, value is literally a numeric or string representation of a subject’s state.

Context is classified in this model as i) Existential Context (EC) and ii) Relational

Context (RC). The EC is used to describe the existence of an entity in a specific domain,

and its format is shown below.

Concept(Instance name)

As soon as the EC is created, it is stored in the current context list and will never be

changed during runtime except time context. For example, person(Mr.Hong). On the

other hand, the RC literally demonstrates a connection between two entities. The RC is

displayed as shown below.

Relation(Subject, Object or Value)

Development of Middleware Architecture to Realize Context-Aware Service 441

Each RC should contain one relation, one subject, and either one object or value. For

example, locatedin(Mr.Hong,bedroom1), or hasstatus(Mr.Hong,Sleeping).

Previously, well known classifications of context were low-level context and high-

level context. The low-level context is directly detected from the sensed data. On the

other hand, high-level context is derived from low-level contexts by the reasoning

process. In this model, the relational context can be either a low-level or high-level

context, but an existential context is always a low-level context.

4.2. Smart Home Ontology

Context modeling is the specification of all entities and the relations between these

entities, which are needed to describe the context as a whole. Several methods are

available for context modeling: key-value models, mark-up scheme models, graphical

models, object oriented models, logic based models, and ontology based models [24].

Key-value models use simple key-value pairs to define the list of attributes and their

values describing the context information. Markup modeling is a hierarchical data

structure consisting of markup tags with attributes and content. The main drawbacks of

these approaches concern their limited capabilities in capturing a variety of context

types; capturing relationships, dependencies, and quality of context information;

allowing consistency checking; and supporting reasoning on context [25]. Graphical

models have a strong graphical presentation and they are used in particular limited

applications such as a relational database in an information system. Object oriented

models encapsulate context processing at an object level and hence are hidden to other

components; on the other hand, all logic based models are maintained at a high degree

of formality. Therefore, these models have less expressiveness and interoperability. In

the Ref [24], the authors conclude that ontology is a promising instrument for modeling

contexts among other models. Ontology is a formal explicit definition of a shared

conceptualization and it has many benefits; for example, a common ontology enables

knowledge sharing, ontologies with well defined declarative semantics provide logic

inference about contextual information, and explicitly represented ontologies allow

knowledge reuse [4],[26]. Many ontology languages are available, such as RDF(S), OIL,

DAML+OIL, and OWL for publishing and sharing ontologies. Moreover, several user-

friendly graphical tools are available (e.g. Protégé) that make the design of ontology

based context models also viable to developers who are not particularly familiar with

description logics. These advantages have made ontology based system the main trend

of context-aware systems among non-probabilistic approaches [27], [28]. Thus,

ontology is a good candidate to express context and domain knowledge.

In this model, home entities are mainly categorized into person, device, space,

environment, furniture, and time classes. Each class can be divided into several

subclasses. For example, space emphasizes the spatial aspects of a smart home domain.

Space has two subclasses: inner space and outside. Again, the inner spaces of the home

domain are divided into room, kitchen, and entry. Furthermore, the room is divided into

bedroom, living room, bathroom, and storage room. Fig. 6 shows a partial view of class

hierarchy, object properties, data type properties, and the constraints that are defined in

this model using Protégé editor.

442 Hyun-Wook Kim et al.

Fig. 6. Class hierarchy, properties, and constraints of the model

5. Implementation of Middleware Architecture

The test-bed smart home, for this research, consists of the two bedrooms, a living room,

a bathroom, and a kitchen. The smart home is fitted with a number of sensors grouped

into residential, security, and human sensors. Residential group sensors are the

temperature, humidity, CO2, and illuminance sensors. Intrusion (door open) and fire

(smoke) detection sensors are grouped within the security sensor group. User

identification (RFID Tag), user movement detection (PIR sensor), and user’s presence

on the bed or chair (pressure sensor) detection sensors are organized in the human

sensor group. Home appliances (e.g. air conditioner, DVD, TV, refrigerator, curtain,

water heater, etc) are placed in different positions in the home. Sensors, home

Development of Middleware Architecture to Realize Context-Aware Service 443

appliances, home server, and smart phones are connected to the residential gateway

using both wired and wireless networks.

This middleware architecture has been implemented using the Java programming

language. The resource repository is stored in the home server in which we need to

register i) all family members’ information including name, contact number, birthday,

and age, ii) home structures information which includes bedrooms, living room, kitchen,

windows, doors, and other home spaces information, and iii) a list of home appliances,

which includes information about appliance type, serial number (representing different

devices of the same type), and location of these devices. The components of the

middleware architecture are installed on the residential gateway which processes all

types of domain context information and controls the behavior of the home devices.

To observe the performances of this architecture, we consider a selective scenario

based on the normal daily life in the test-bed smart home. In this scenario, initially, the

user wakes up at the morning according to the alarm setting. Then he goes to the

bathroom for taking shower. After finishing the shower and dressing up, he moves to

kitchen for meal and then leaves for school. After school, he returns home and enters

bedroom2 to prepare his homework. He then enters the living room and watches TV

sitting on the sofa. Finally, at night, he enters bedroom1, turns off the light, and lies on

the bed to sleep. Although the light is off, the room is not completely dark because some

streetlights are located close to the windows. However, he sleeps and the activities are

repeated in the scenario for every day.

5.1. Context Reasoning Result

The context reasoning results from the traditional rule-based method and from the

profile-applied improved rule-based method are compared. We choose the sleeping state

to bring out user’s preference for context. To compare the performances of the two

reasoning methods, consider the user, Mr. Hong, prefers the illuminance of dark,

gloomy, and dim for sleeping, that means he can sleep in the dark as well as lighter

environment. The sensing data and its transformation for the considering sleeping state

is given in Table 2. Data is converted to the context by the low-level context composer

and added to the current context list.

Table 2. Sensed data and corresponding low-level contexts

Scenario Sensed data packet Added low-level context in current context list

Sleeping

E 1 25.2 50.1 15 200

hastemperature(bedroom1,warm),

hashumidity(bedroom1,moderate),

hasilluminance(bedroom1,dim),

hasco2(bedroom1,verylow)

L 3 1 locatedin(Mr.Hong,bedroom1)

P 1 1 hasbedpressure(bedroom1,on)

444 Hyun-Wook Kim et al.

A set of user defined rules is provided before booting up the system. A number of

existential contexts are also added in the current context list as soon as the system has

been booted up. Some of these rules are listed in Table 3. The partial current context list

for a particular time is presented in Table 4 with the reasoning result. In rule number 1

of Table 3, the value of illuminance is set as dark for sleeping, but Table 4 shows the

illuminance value in bedroom1 as being dim. Using the profile-applied reasoning

method, the inferred fact is hasstatus(Mr.Hong,sleeping) because the user profile states

that one of Mr. Hong’s preferences is dim for illuminance. On the other hand, the

traditional method failed to catch the user preference, so it infers

hasstatus(Mr.Hong,none). In this way, applying a profile to the different context shows

a significant promising reasoning result superior to the traditional method.

Table 3. Partial list of user defined rules

Rules for inferring new facts

1. if person(?p)^bedroom(?br)^locatedin(?p,?br)^hasilluminance(?br,dark)

^hasbedpressure(?br,on)^ hasstatus(?p,none)

then hasstatus(?p,sleeping)

2. if person(?p)^bedroom(?br)^hasbedpressure(?br,on)^cellphone(?c)^has(?p,?c)^

hascommand(?c, morningcall)^locatedin (?p,?br)^hasstatus(?p,sleeping)

then hasstatus(?p,wakeup)

3. if person(?p)^livingroom(?lr)^locatedin(?p,?lr)^ tv(?t)^haspower(?t,on)

^haschairpressure(?lr,on)^hasstatus(?p,none)

then hastatus(?p,watchingtv)

4. if person(?p)^bathroom(?bt)^locatedin(?p,?bt)^hasstatus(?p,none)

then hasstatus(?p,washing)

5. if person(?p)^kitchen(?k)^locatedin(?p,?k)^haschairpressure(?k,on)^

time(breakfast)^hasstatus(?p,none)

then hasstatus(?p, eating)

5.2. Service Providing Result

In this system, we implemented a rule-based service selection engine to deduce the

desired service using a forward chain algorithm. The service rules are presented in a

similar way to the reasoning rules. Table 5 shows a partial list of service rules. We

developed several context-aware services in a smart home domain. The environment

control service controls the temperature and humidity in the smart home. The guarding

service ensures security, while the comfort service controls the heating, cooling,

humidity, and ventilation in the smart home. To facilitate personal daily life activities,

morning call, washing, studying, watching TV, sleeping, and dining services are

developed. Some of these services are illustrated in Table 6. These services also ensure

efficient use of resources in the smart home. Services based on the above mentioned

scenario are demonstrated several times and the middleware architecture shows an

acceptable performance on average.

Development of Middleware Architecture to Realize Context-Aware Service 445

Table 4. Comparison of inferring results

 Profile applied rule-based

reasoning

Traditional rule-based reasoning

Current

context

list

person(Mr.Kim)

cellphone(01049387435)

person(Mr.Hong)

cellphone(01027423445)

has(Mr.Kim,01049387435)

has(Mr.Hong,01027423445)

hasstatus(Mr.Kim,none)

hasstatus(Mr.Hong,sleeping)

livingroom(livingroom)

entry(entry)

bathroom(bathroom)

kitchen(kitchen)

bedroom(bedroom1)

bedroom(bedroom2)

outside(outside)

desk(desk1)

chair(sofa1)

placedin(desk1,bedroom2)

placedin(sofa1,livingroom)

hastemperature(bedroom1,warm)

hashumidity(bedroom1,moderate)

hasilluminance(bedroom1,dim)

hasco2(bedroom1,verylow)

locatedin(Mr.Hong,bedroom1)

hasbedpressure(bedroom1,on)

person(Mr.Kim)

cellphone(01049387435)

person(Mr.Hong)

cellphone(01027423445)

has(Mr.Kim,01049387435)

has(Mr.Hong,01027423445)

hasstatus(Mr.Kim,none)

hasstatus(Mr.Hong,none)

livingroom(livingroom)

entry(entry)

bathroom(bathroom)

kitchen(kitchen)

bedroom(bedroom1)

bedroom(bedroom2)

outside(outside)

desk(desk1)

chair(sofa1)

placedin(desk1,bedroom2)

placedin(sofa1,livingroom)

hastemperature(bedroom1,warm)

hashumidity(bedroom1,moderate)

hasilluminance(bedroom1,dim)

hasco2(bedroom1,verylow)

locatedin(Mr.Hong,bedroom1)

hasbedpressure(bedroom1,on)

User

 status

Mr. Hong: sleeping Mr. Hong: none

Table 5. Partial list of service selection rules

Service Rules

Morning Call

Service
if person(?x)  bedroom(?y)  locatedin(?x,?y) 

hasstatus(?x, sleeping)  cellphone(?z)  has(?x ?z) 

alarmcall(?z)

then morningCallService(?x,?y)

Washing Service if person(?p)^locatedin(?p,?bt)^ hasstatus(?p,washing)

then washingService(?p,?bt)

Watching TV

Service

if person(?p)^locatedin(?p,?lr)^hasstatus(?p, watchingtv)

then watchingTVService(?p,?lr)

446 Hyun-Wook Kim et al.

5.3. Performances Analysis

Our middleware architecture receives sensed data, generates context, infers high-level

context and provides proper services to user. We evaluated proposed middleware

architecture in terms of context reasoning outcome, service providing outcome and

runtime of context reasoning. Experiment results presented in section 5.1 show that the

proposed profile applied reasoning algorithm has better outcomes for inferring

personalized context than the traditional algorithm. With the better inferring outcome,

our middleware provides different services accurately to the user, which is also

described in section 5.2. The function proposed in Algorithm 2 stretches the depth

recursively when considering different variables and backs off when the modified rule is

false. This characteristic limits the depth of this function, which is proportional to the

number of variables, thus restricting the required size of memory. Therefore, it uses a

limited memory space that is more valuable to make embedded system in the small

domain like smart home.

Table 6. Illustration of some services with corresponding important functions

Service Description of functionalities

Morning Call Service Open window’s curtain, play music on DVD player

Washing Service Turn on bathroom light and regulate water temperature

based on user preference.

Watching TV Service Adjust living room light, temperature, and suggest TV

channel according to the user’s choice.

Applying the profile, a number of rules can be reduced to catch the user’s preferences

in context because the system needs only basic rules that are applicable for all users.

This means that only a single rule is required to infer a single status for all users,

although they have different preferences in different contexts. On the other hand, for the

same outcome, the traditional algorithm needs as many as rules, equal to the different

preferences in the different contexts of the basic rule for different users, which increases

its runtime. Therefore, it is obvious that the proposed algorithm needs fewer rules as

well as less runtime, as shown in Table 7.

Table 7. Comparison of time complexity between proposed and traditional algorithm

Description Specification

Proposed algorithm Traditional algorithm

Number of possible

outcomes of a rule 



m

i
ixP

1

)(



m

i
ixP

1

)(

Worst time for inference  mn  dmn 

Best time for inference  m  dm

Where,

-n is the number of contexts in current context list

-m is the number of variables in a rule

-x is the number of instances for each variable

-d is the total number of different preferences of different users for variables m

Development of Middleware Architecture to Realize Context-Aware Service 447

Sensor nodes of our smart home are connected to a sink node wirelessly using Zigbee

protocol, whereas the residential gateway communicates to the sink node using TCP/IP

protocol. The sensor manager reads data from the sensors when an event occurs, such as,

when a user enters in a new location in the home; otherwise, the sensor manager reads

the sensor data repetitively according to a predefined time interval, if there is a

significant change in the sensing data. For testing the performance of these algorithms, a

volunteer user acted twelve different activities in the test-bed smart home and taken the

record of his activities manually. During the user’s activity period, the middleware

collects sensing data and stores in the database automatically. Sensed data is collected

for a period of four weeks. The total number of data packets per day depends on number

of event occurs, repetitive sensing time interval, and change in sensing data. A major

time, user stays outside for works in day and sleeps in night. So, user movement in home

is limited. Moreover, as environmental parameters in home change slowly, a number of

similar sensed data will be discarded. However, the number of data packets stored in the

database daily is around 250 to 300 with normal user movement and 10 minutes time

interval.

We run both proposed and traditional reasoning algorithm using stored data packets

for inferring high-level context. The runtime for each algorithm is measured in several

times. The average runtime for both algorithms with respect to the number of data

packets of a day are plotted in Fig. 7. This figure shows that the runtime of both

algorithms are proportionally increased to the number of data packets. In case of the

traditional algorithm, the runtime is increased more rapidly than the proposed algorithm.

These reveal that our algorithm performs better than the traditional algorithm when

number of data packets is increased. Experiment result shows the proposed algorithm

takes at average 38% less runtime than the traditional algorithm.

Fig. 7. Comparison of runtime between proposed and traditional reasoning algorithm

We also measure context reasoning runtime based on the number of user preferences

in contexts. The Fig. 8 shows that the runtime of the proposed algorithm is almost same

with respect to increasing number of preferences. But the runtime of traditional rule-

based algorithm is increased by a faster rate.

448 Hyun-Wook Kim et al.

Fig. 8. Comparison of runtime with respect to the number of preferences in contexts

By applying user profile, the proposed algorithm provides same outcome using less

number of rules compared with traditional algorithm. In both algorithms, the

corresponding rule set is repetitively reevaluated for inferring high-level context

whenever a new context is generated either from new data packet or by reasoning. The

number of evaluated rules for both algorithms with respect to number of activities is

depicted in Fig. 9. The figure shows that the proposed algorithm evaluates fewer rules

than the traditional algorithm with fixed number of data packets.

Fig. 9. Comparison of evaluated rules with respect to the number of activities

Therefore, the proposed algorithm always provides better result in case of accuracy

and runtime using less number of rules; as a result, the proposed middleware can

provide service more accurately and instantly.

Development of Middleware Architecture to Realize Context-Aware Service 449

6. Conclusions

In this research, we presented a comprehensive middleware architecture design and its

implementation issues. To facilitate middleware functionalities, we explained formal

context modeling using OWL for the smart home domain. The middleware utilizes the

smart home ontology to obtain semantic information such as the relation and concept of

existing instances in the domain. Moreover, we introduced a new profile applied

reasoning algorithm which uses profiles while inferring high-level context. It shows

better performance over traditional algorithm to reason personalized context. The

proposed method is validated by comparing its reasoning outcome with manually

collected user states. This shows reliable reasoning accuracy in smart home domain

based on normal daily life activities. The inferring algorithm is developed using the

forward chaining method which tests all possible outcomes recursively, and the depth of

this algorithm is restricted by the number of variables. Therefore, this algorithm

occupies less memory. In addition, as the user profile provides user preferences in

contexts, the proposed algorithm needs reduced set of rules and consequently the

runtime is also reduced significantly. On the other hand, with the improved reasoning

accuracy, this middleware always recommends the suitable service for the user.

We faced several challenges during the implementation and testing of the proposed

middleware architecture. Sometimes, the users perform more than one activity at a time,

or they perform cooperative or shared activities. It is challenging to recognize these

types of complex states. At present, we consider only a single state at a time. To

recognize multistate for a single user or multi users at a time in same place, specialized

sensor networks with wearable sensors, image sensors, etc. are needed. In addition,

user’s preferences may change over time. Therefore, to provide a more reliable context

as well as service, the profiles need to be maintained and kept up to date. A machine

learning technique can be applied to update profile from history data. Besides that,

erroneous sensing data can lead the wrong context reasoning as well as wrong service

selection. Erroneous sensing data can be occurred due to the malfunction of sensor

network. A preprocessing method need to apply on sensing data to avoid this type of

error. Moreover, we consider limited number of contexts and implement our present

test-bed smart home with selected number of simple daily life activities. We have to

consider more contexts and complex activities to develop real smart home.

In the future, we will upgrade the proposed middleware architecture by inserting

different context reasoning techniques and incorporating a machine learning algorithm

for inferring ambiguous contexts to support those challenges. For a machine learning

algorithm, we will consider reinforcement learning because it is able to enhance the

function by accepting feedback.

Acknowledgement. This work was supported by the Industrial Strategic Technology

Development Program (10041788, Development of Smart Home Service based on Advanced

Context-Awareness) funded by the Ministry of Trade, Industry & Energy (MI, Korea). The

present research has been conducted by the Research Grant of Kwangwoon University in 2016.

450 Hyun-Wook Kim et al.

References

1. Dey, A. K. and Abowd, G. D.: Towards a Better Understanding of Context and Context-

Awareness. In Proceedings of the 1st International Symposium on Hand-held and Ubiquitous

Computing, 304-307. (1999)

2. Smith, M., Welty, C. and McGuinness, D.: Web Ontology Language (OWL) Guide.

www.w3.org/TR/owl-guide/. (2004)

3. Dey, A. K., Salber, D. and Abowd, G. D.: A Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer

Interaction (HCI) Journal, Vol. 16(2), 97-166. (2001)

4. Chen, H., Finin, T. and Joshi, A.: An Ontology for Context Aware Pervasive Computing

Environments. The Knowledge Engineering Review, Vol. 18(3), 197-207. (2003)

5. Ranganathan, A. and Campbell, R. H. : A Middleware for Context-Aware Agents in

Ubiquitous Computing Environments. In Proceedings of ACM/IFIP/USENIX International

Middleware Conference, Rio de Janeiro, Brazil, 143-161, (2003)

6. Blair, G. S., Coulson, G. and Grace, P.: Research Directions in Reflective Middleware: the

Lancaster Experience. Proceedings of the 3rd workshop on Adaptive and reflective

middleware, 262–267, (2004)

7. Capra, L., Emmerich, W. and Mascolo, C.: Carisma: Context-Aware Reflective Middleware

System for Mobile Applications. IEEE Transactions on Software Engineering, Vol. 29, 929-

945, (2003)

8. Ranganathan, A., Al-Muhtadi, J., Chetan, S., Campbell, R. and Mickunas, M. D.: Mid-

dlewhere: a Middleware for Location Awareness in Ubiquitous Computing Applications. In

Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware, 397–

416. (2004)

9. Gu, T., Pung H. K. and Zhang, D. Q.: A Service-Oriented Middleware for Building Context-

Aware Services. Journal of Network and Computer Applications, Vol. 28(1), 1-18. (2005)

10. Lopes, J., Gusmao, M., Souza, R., Davet, P., Souza, A., Costa, C., Barbosa, J., Pernas, A.,

Yamin, A. and Geyer, C.:Toward a distributed architecture for context-aware mobile

applications in UbiComp. In Proceedings of the 19th Brazilian symposium on Multimedia

and the web, WebMedia, 43-50. (2013)

11. Gu, T., Pung, H.K., and Zhang, D.Q.: A Middleware for Building Context-Aware Mobile

Services. In Proceedings of the IEEE Vehicular Technology Conference (VTC 2004), Milan,

Italy, (2004)

12. Wang, X.H., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R., and Zhang, D.: Semantic Space: an

infrastructure for smart spaces. IEEE Pervasive Computing, Vol. 3(3), 32–39, (2004)

13. Ranganathan, A., and Campbell, R.H.: An infrastructure for context-awareness based on first

order logic. Personal and Ubiquitous Computing, Vol. 7(6), 353–364, (2003)

14. Mikalsen, and M.Kofod-Petersen, A.: Representing and Reasoning about Context in a

Mobile Environment. Revue d’Intelligence Artificielle, Vol. 19(3), 479-498, (2005)

15. Wiratunga, N., Craw, S., Taylor, B., and Davis, G.: Case-based reasoning for matching

SMARTHOUSE technology to people’s needs. Knowledge-based Systems, Vol. 17, 139-

146, (2004)

16. Ma, T., Kim, Y.-D., Ma, Q., Tang, M., and Zhou, W.: Context-Aware Implementation based

on CBR for Smart Home. IEEE International Conference on Wireless and Mobile

Computing, Networking and Communications, Vol. 4, 112-115, (2005)

17. Nguyen, T. V., Woo, Y. C., and Choi, D.: CCBR: Chaining Case Based Reasoning in

Context-Aware Smart Home. First Asian conference on intelligent information and database

systems, 453-458. (2009)

18. Morikawa, D., Honjo, M., Yamaguchi, A. and Ohashi, M.: A proposal of user Profile

Management Framework for context-aware service. In Proceedings of the Symposium on

Applications and the Internet Workshops, 184-187. (2005)

Development of Middleware Architecture to Realize Context-Aware Service 451

19. Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. and Katz, Y.: Pellet: A practical OWL-DL

Reasoner. Journal of Web semantics: Science, Services and Agents on the World Wide Web,

Vol. 5, 51-53. (2007)

20. Hoque, M. R., Kabir, M. H., Seo, H. and Yang, S.-H.: PARE: Profile-Applied Reasoning

Engine for Context-Aware System. International Journal of Distributed Sensor Networks,

Hindawi Publishing Corporation, Vol. 2016, 1-11. (2016)

21. Groppe, J. and Mueller, W.: Profile Management Technology for Smart Customizations in

Private Home Applications. Iin Proceedings of the 16th International Workshop on Database

and Expert Systems Application, 226-230. (2005)

22. Thomsen, J., Vanrompay, Y. and Berbers, Y.: Evolution of context-aware user profiles. In

Proceedings of the International Conference on Ultra Modern Telecommunications and

Workshops, 1-6. (2009)

23. Cho, E.-S., Yoon, T.-S., Choi, J.-H., Paik, J.-Y. and Helal, S.: An Integrated Formal Model

for Context-Aware Systems. In Proceedings of the IEEE 37th Annual Computer Software

and Applications Conference Workshops, 163-168. (2013)

24. Strang, T. and Linnhoff-Popien, C.: A context modeling survey. In Proceedings of the

International Workshop on Advanced Modeling Reasoning and Management UbiComp.

(2004)

25. Bettini, C., Brdiczka, O., Henricksen, k., Indulska, J., Nicklas, D., Ranganathan, A., and

Riboni, D.: A survey of context modeling and reasoning techniques. Pervasive and Modeling

Computing, Vol. 6(1), 161-180. (2010)

26. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer. (2003)

27. Bulling, A. and Zander, T.O.: Cognition-Aware Computing. Pervasive Computing, IEEE,

Vol. 13(3), 80-83. (2014)

28. Kim, J. Y. and Lee, G. M.: Context awareness for smart ubiquitous networks. In Proceedings

of the International Conference on electronics, Information and Communications, 15-18.

(2014)

Hyun-Wook Kim has received his Bachelor of Engineering degree in Computer

Engineering from Kwangwoon University, Seoul, Republic of Korea in 2009. Now he is

pursuing his unified course of the master’s and the doctor’s at same University. His main

research interests are Embedded System, FPGA, Home Network and Sensor Network.

M. Robiul Hoque has received B.Sc (Hon’s) and M.Sc. degree in Computer Science

and Engineering from Islamic University, Kushtia, Bangladesh, in 2003 and 2004

respectively. He is an Assistant Professor at same University. Now, he is pursuing his

Doctoral degree at Kwangwoon University, Republic of Korea. His main research

interests include Context-Aware System, Ubiquitous Computing, Smart Home, and

Sensor Networks.

Hyungyu Seo has received his Bachelor of Engineering degree in Computer

Engineering from Kwangwoon University, Seoul, Republic of Korea in 2014. Now he is

pursuing his master’s degree at same University. His main research interests are

Context-Aware System, Sensor Network and Embedded System.

452 Hyun-Wook Kim et al.

Sung-Hyun Yang has completed his Ph.D. from Kwangwoon University, Seoul,

Republic of Korea in 1993. He is a Professor in Electronic Engineering at same

University. He is a Director of the Ubiquitous Home Network Center, Kwangwoon

University. He was a Research Scientist at Boston University from 1996 to 1998. He

was Chairman of the Home Network Market Activation Section, Korean Association for

Smart Home from 2007 to 2008. His main research interests are Digital Logic,

Embedded Systems, M2M, Next Generation Ubiquitous Home Networks, and Context-

Aware System.

Received: July 01, 2015; Accepted: May 22, 2016

