
Computer Science and Information Systems 15(1):79–109 https://doi.org/10.2298/CSIS160820038M

Traditionalisation of Agile Processes:

Architectural Aspects

Predrag Matkovic, Mirjana Maric, Pere Tumbas, and Marton Sakal

University of Novi Sad, Faculty of Economics in Subotica

Segedinski put 9-11, 24000, Subotica, Serbia

{predrag.matkovic, mirjana.maric, pere.tumbas, marton.sakal}@ef.uns.ac.rs

Abstract. Mechanisms of agile processes, suited for cost reduction and timely

reaction to dynamic market changes, have also been recognized as useful in the

development of complex software solutions. Recent studies focused on expansion

of agile processes point to a viable possibility for coexistence and integration of

complementary elements of agile and traditional development. Within the scope

of this paper, this phenomenon is referred to as traditionalisation of agile

processes. Software architecture modeling is one of the most sensitive issues

associated with incorporation of elements of traditional development into agile

processes. The goal of this paper was to determine how suitable particular explicit

architectural practices are for incorporation into agile development processes. A

mixed method research was carried out for this purpose. Qualitative component of

the research resulted in identification of explicit architectural practices suitable for

application in agile development processes. Their significances were determined

by means of the quantitative component, realized in the form of an empirical

research. The research confirmed that emergent architecture in agile processes is

not sufficient for the development of complex software solutions, and that agile

processes need to incorporate certain explicit architecture practices. Research

results revealed that the agile community has an affirmative attitude towards the

idea of incorporating explicit architectural practices into agile development

processes, with overall agreement on the significances of particular explicit

architectural practices for the development of architecture of complex software

systems.

Keywords: software process models, agile process, software architecture

modeling, scaling up agile processes.

1. Introduction

Agile and lean practices originate from the post-World War II period, when Japanese

companies, especially Toyota, became dominant over competing companies from other

countries. The reason behind Toyota’s immense success lays behind the application of a

lean method – the Toyota Production System (TPS). TPS is based on a people’s natural

attitude towards work, which manifests itself through their qualities, such as: the need

for creativity, inability to comprehend distant deadlines, adapting to mechanisms of

evaluation of their work, the need for personal contact and communication, the need to

see and present results of their work, and aversion towards outer control [1].

80 Predrag Matkovic et al.

As a form of organized work process, software development did not remain immune

to the phenomena of agility. In a historical perspective, many techniques that have been

used ever since the evolvement of the earliest development processes encompassed

certain agile elements. The end of the past century brought some of the today’s most

frequently used development processes, which are completely based on agile values and

principles. These processes, i.e. their scale-up, aimed at confronting challenges they

face today, represent the topic of the research presented in this paper.

For the purpose of further clarifying the research topic, the terms most frequently

used in this research are defined in the following text. In the scope of this paper, the

term ‘traditional development’ denotes plan-driven development processes, or so-called

heavy weight development processes, whereas the term ‘agile processes’ denotes a

range of agile development processes, such as Scrum and XP, which fully incorporate

the principles and values proclaimed in the 2001 Agile Manifesto.

Even though it has been a decade and a half since the Agile Manifesto was published,

the popularity of agile software development processes has not waned. However, they

are nowadays facing major challenges. Increasingly frequent changes in business

requirements and the growing complexity of circumstances behind these changes are

further complicated by the divergence of physical and logical aspects of business. This

necessitates more responsive adaptation of information systems, which have

consequently become more heterogeneous and decentralized [2]. Complexity of a

system is determined by three main attributes: scale, diversity, and connectivity. ‘Scale’

reflects how many things are there in the system, ‘diversity’ is determined by the variety

of things in the system, while ‘connectivity’ corresponds to how many different

relationships are there between things [3-4].

Kruchten presented a contextual model for software-intensive systems development,

intended for guiding the adoption and adaptation of agile software development

practices. The model proved to be effective in cases when the project context was

substantially distanced from the “agile sweet spot”, i.e., the context from which the

agile development stemmed from, and in which it is most successful [5]. Kruchten

describes the “agile sweet spot” as “collocated team, of less than 15 people, doing

greenfield development for non-safety-critical system, in a rather volatile environment;

the system architecture is defined and stable, and the governance rules straightforward”

[6].

Similar to Kruchten, Ambler defined eight scaling factors, which influence the

complexity of a system and the environment it is developed in [6]:

 Team size – from under 10 developers to hundreds of developers

 Geographical distribution – from co-located to globally distributed

 Compliance – from low risk to critical/audited

 Organization and culture – from open to entrenched

 Organization distribution – from in-house to third party

 Governance – from informal to formal

 Application complexity – from simple, single platform to complex, multi-platform

 Enterprise discipline – from project focus to enterprise focus

As the project domain shifts from the “agile sweet spot”, low ceremonialism and

high iterativity, as the key characteristics of agility, no longer seem to be perceived as

panacea. In addition to that, there is an apparent trend of combining complementary

Traditionalisation of Agile Processes: Architectural Aspects 81

elements (considered conflicting, until recently) of agile and traditional development,

which proved their coexistence and integration possible [7-10]. Having abstracted their

details, Matkovic et al. [7] provided comparison of the Rational Unified Process, XP,

and Scrum development models. After the analysis aimed at finding optimal balance

between iterativity and ceremoniality, the authors proposed a combined model that

would encompass the advantageous, and exclude the obstructive features of RUP, XP

and Scrum.

Architectural considerations are among the most sensitive issues when considering

scaling up agile processes. Agile processes do not offer typical, explicit software

architecture development activities, such as analysis, synthesis and evaluation, since

they are believed to incur additional costs, and not create value for the user [11].

Generally speaking, there are two extreme architectural strategies: Big Design Up Front

(BDUF) and emergent design. Supporters of agile development believe that the concept

of metaphor, together with refactoring techniques, represent adequate substitutes for the

traditional architecture development process. According to them, architecture is

developed gradually with each iteration, as a result of continuous changes to the source

code (emergent architecture) [11-13]. However, not denying that agile processes offer

organizations efficiency, quality and flexibility in change management, several authors

[8, 14-16] consider that explicit architectural practices have an important role in the

development of complex software solutions. According to them, refactoring, as the

architectural practice of agile development processes, can be successful enough only if

the high-level design of software architecture was completed properly. This is the only

way to avoid high amount of refactoring, which would cause an escalation of

development costs in later stages, as well as erosion of the architecture, possibly

jeopardizing the whole project [15, 17].

In this paper, the authors have explored scaling up of agile processes through use of

elements typical of traditional development, referred to as “traditionalisation of agile

processes”.

Starting from the assumption that establishing a balance between agile and traditional

development of software architecture, or more precisely, between explicit architectural

practices and the agility of the development process [18-20] would ultimately facilitate

overcoming the challenges agile processes face in the development of highly complex

systems, this paper investigates the following research questions:

 RQ1. What was concluded in prior studies on the need for integrating explicit

architectural practices into agile development processes?

 RQ2. Which architectural problems appear in the development of complex

information systems using agile development processes?

 RQ3. How significant are particular, explicit architectural practices to agile

development processes and the development of complex IS?

The remaining of this paper is organized as follows. Section 2 describes the research

methodology, both of the theoretical and the empirical component. Section 3 describes

the theoretical background with an overview of results of the previous studies included

in the systematic literature review. Section 4 presents the results of the empirical

research: qualitative, obtained through analysis of semi-structured interviews with

domain experts, and quantitative, obtained by surveys. Section 5 outlines the threats to

82 Predrag Matkovic et al.

validity and directions for further research. Finally, Section 6 contains a discussion on

the research results, along with a comparison with related studies.

2. Research Methodology

The research design was developed by adapting the framework proposed by Hevner,

March, Park, and Ram [21]. The sequence of research activities and the techniques used

are presented in Figure 1. The research problem and the research questions stated in the

first chapter are the results of the “Research subject identification” phase. Activities

“State of the art exploration” and “State of the practice exploration” within the

“Background research” phase provided answers to RQ1 and RQ2, respectively. “State

of the art exploration” was conducted by means of a systematic literature review, in

accordance with the recommendations provided by Kitchenham [22] (more details in

Section 2.1), while guidelines provided by Miles and Huberman [23] served as a basis

for interview coding and thematic analysis within the “State of the practice

exploration”.

RESEARCH SUBJECT

IDENTIFICATION

Identification of the

research problem

Identification of

research questions

RESEARCH EXECUTION

Research instrument

(questionary) development

Research instrument

evaluation

Empirical results -

Architectural practice

Assess

Contribution

State of the

art exploration

State of the practice

exploration

BACKGROUND RESEARCH

Analysis of

literature

Empirical

insight

into practical

problem

Thematic

analysis

Interview

Coding

Systematic

literature

review

Expert

evaluation

Quantitative

data analysis

RQ1

RQ2

RQ3

Refine

Contribution

K
n

o
w

le
d

g
e

 b
a

s
e

E
n

v
ir

o
n

m
e

n
t

Research instrument

(interview) development

Research instrument

evaluation

Assess
Expert

evaluation

Refine

Fig. 1. Research methodology (Source: adapted from [21])

Traditionalisation of Agile Processes: Architectural Aspects 83

The final phase of the research encompassed a set or research activities, grouped

within a logical section titled “Research execution”. Just as the interview used in the

“Background research” phase, the questionnaire developed within the “Research

instrument development” activity was refined with acknowledgement of the feedback

provided by experts who subjected it to content validity analysis in several iterations

(“Research instrument evaluation” activity). Finally, within the activity “Empirical

results - Architectural practice”, qualitative analysis of data gathered through empirical

research resulted in a set of explicit architectural practices, which provided an answer to

RQ3.

2.1. Systematic Literature Review

The systematic literature review was based on the framework developed by Kitchenham

[22]. The framework comprises three phases: planning the review, conducting the

review, and reporting the review. The stages within planning the review are:

identification of the need for a review, and development of a review protocol. Stages

within conducting the review are: identification of research, selection of primary

studies, study quality assessment, data extraction & monitoring, and data synthesis.

‘Reporting the review’ is a single stage phase, and an overview of its output is given in

the Theoretical background section of this paper.

The defined research protocol required a strategy on which the search for primary

research material would be based on. Specifically, the strategy involved:

 Definition of keywords for the search – Agile software architecture, Agile methods

and architecture, Agility and architecture.

 Selection of sources for the search – the Web of Science and SCOPUS bibliographic

databases were chosen as the most prominent sources of scientific and professional

papers.

 Definition of criteria for inclusion/exclusion of research material – research and

professional papers published in reviewed journals and conference/workshop

proceedings between 2000 and 2014 were deemed acceptable, while all papers that

did not associate the term ‘agility’ with agile development processes, papers that

were not based on empirical research or did not have a valid approach/method, as

well as papers based solely on experts’ opinions were excluded from the analysis.

 Evaluation of quality of the research material compliant with the previously defined

criteria for inclusion was carried out in accordance with criteria proposed by Dyba

and Dingsoyr [24], while the extraction and synthesis of key information from the

relevant research material was performed by use of the NVivo software suite, for

easier management of concepts, findings and conclusions contained within the

analyzed papers.

In accordance with the recommendations by B. Kitchenham, the systematic literature

review process started with the initial search for primary research material; Web of

Science and SCOPUS were used to identify papers with relevant associations to the

defined keywords. The result of the preliminary search through Web of Science and

SCOPUS was a set of research and professional papers published in reviewed journals

and conference/workshop proceedings, selected in accordance with the defined

84 Predrag Matkovic et al.

keywords. The identified papers were accessed through the following electronic

services: IEEE Xplore, ACM Digital Library, and ScienceDirect. Springer was, among

others, excluded in this phase, since the papers that met the criteria for inclusion had

already been found in the sources listed in Table 1.

After the preliminary analysis described above, the sources listed in Table 1 were

queried in accordance with the protocol defined for the systematic literature review. An

overview of the total number of hits per each electronic service is given in Table 1. The

research resulted in 34 relevant papers (out of 69 potential ones), 26 of which were the

result of the primary search, while 8 were the result of the secondary search. Secondary

search denotes an analysis of references provided in the primary research material.
With the defined research protocol, the authors narrowed down the focus of the

analysis to academic papers directly related to the research questions. Books were not

included in the systematic literature review; however, several were referenced in other

sections of the paper: Introduction, Related Work and Discussion, as well as in the

Concluding Remarks.

Table 1. Search results per each electronic service

Source

Number of hits

with the defined

keywords

Number of papers

selected for further

analysis

Number of

papers

excluded

IEEE Xplore 701 45 656

ACM Digital Library 237 12 225

ScienceDirect 46 12 34

Total 984 69 915

2.2. Development and Evaluation of Instruments for the Empirical Research

Empirical research included both a qualitative and a quantitative component.

Accordingly, two research instruments were developed: a questionnaire for conducting

the interview and a questionnaire for the realization of the survey.

An initial set of questions for a semi-structured interview with expert practitioners

was defined for the purpose of answering the second research question, through State of

the practice exploration. The semi-structured interview method was selected with the

intent of collecting as much information on the research context and practical problems

as possible. The initial interview questions were generated on the basis of analyzed of

research materials.

The second research instrument–questionnaire for the realization of the survey–was

created with regard to the previously completed systematic literature review and

qualitative analysis of interview data. The questionnaire was developed in an electronic

form, using Google Forms. Chosen expert practitioners were asked to answer a set of

closed questions, given in the form of assessment scales (modeled consistently with the

Likert-type scale) and checklists. Quantitative analysis was carried out on collected data

for the purpose of answering the third research question (Empirical Results–

Architectural practice).

Traditionalisation of Agile Processes: Architectural Aspects 85

Evaluation of research instruments (interview and survey) was carried out by a group

of experts in the area of agile development and software architecture: three expert

practitioners and two researchers with a PhD in this area. Each potential question was

evaluated using a Likert-type scale: 1 - not significant; 2 - somewhat significant; 3 -

significant; 4 - extremely significant.

Following the evaluation, content validity index was calculated for each question, as

well as for the whole interview and the survey, in accordance with the procedure

prescribed by Polit and Beck [25]. The value of the content validity index for the first

version of the interview was 0.76, which indicated that it was necessary for it to be

amended, in agreement with experts’ input. Amendment of the interview involved

elimination of some questions with validity index lower than 0.8, reformulation of

certain questions, merging of particular questions into a single question, etc. The

content validity index for the entire survey was 0.83. The final version of the

questionnaire did not include questions with values of the content validity index lower

than 0.8.

The final version of the interview contained 40 open-ended questions, divided into 5

thematic areas: (1) Data on the respondent and context, (2) Data on development

process models, (3) Data on identified problems and their causes, (4) Data on software

architecture, and (5) Contextual factors. The final version of the questionnaire included

30 closed-ended questions.

2.3. Empirical Research

This section contains descriptions of respondent sampling, means for gathering

empirical data, and methods used in quantitative and qualitative analysis of data.

Selection of Respondents. The nature of the research problem necessitated purposive

selection of sample units (n ≥ 20) to permit the application of both instruments

developed for the empirical research. Purposive sampling was necessary to avoid

including individuals who lack required type and quality of knowledge, skill, expertise,

experience and information from the problem area. The research was conducted in

prominent companies within the IT sector, on a “purposeful”, homogenous sample of 20

Serbian experts. The same panel of respondents was used both for the interview and the

survey. Respondent recruitment was based on a defined list of criteria that the potential

participants were required to meet. The list was created by modifying the general

criteria defined by Skulmoski, Hartman and Krahn [26] and Ziglio [27]:

 Knowledge and practical experience in the development of software architecture and

complex systems using agile processes

 Capacity and willingness to contribute in the research

 Confirmation that they will devote sufficient time and be dedicated to the research

 Good communication skills

 Academic education in information technology

 More than 5 years of professional experience

Additional, bootstrap sampling with 1,000 replications was carried out in the IBM

SPSS Statistics suite, in order to ensure stability of the research results.

86 Predrag Matkovic et al.

Collection and Processing of Empirical Data. Interviews were conducted “face-to-

face” and recorded (with respondents’ consent), as to ensure better accuracy and

completeness of data. Data gathered during interviews was transcribed with a word

processor and subsequently subjected to qualitative analysis in the NVivo software

suite, using the key-word-in-context (KWIC) technique [28] and thematic analysis of

the content [23, 29-31]. The qualitative analysis resulted in the identification of

categories of practical architectural problems, which represent an answer to the second

research question.

As mentioned previously, the survey was carried out electronically, via Google

Forms. The participants received a link to the questinnaire by email, along with the

instructions on how to complete it. Participants were guaranteed anonimity, data

confidentionality, privacy, and fair use. Data acquired via the questionnaire was

imported from Google Sheets into MS Excel, where it was prepared for quantitaive

analysis in the SPSS software suite. Several techniques were used in the quantitative

analysis, namely: descriptive statistics procedures, Efron’s resampling, and Cohen’s

kappa coefficient for assessing respondents’ agreement. Bootsrapping was used in order

to ensure stability of results of the empirical research. To be exact, results from the

empirical sample of 20 experts were more statistically significant to conclusions related

to the overall population due to software bootstap sampling with 1,000 replications. The

qualitative analysis resulted in a set of explicit architectural activities that expert

respondents rated as significant for the development of complex systems and suitable

for incorporation into agile software development processes. This provided the answer

to the third research question.

3. Theoretical Background

Claim made by supporters of agile development that explicit architectural practices are

unnecessary in agile processes is the research subject of the majority of studies included

in the systematic literature review. The literature analyzed suggests that emergent

architecture may be a viable alternative to conventional approaches to software

architecture development, but only in some architectural areas, while being completely

inadequate for others. Friedrichsen [32] states that emergent architecture is a good

practice for detailed design, but that it does not cover a set of important architectural

activities that are supposed to answer whether a solution is doing what it is supposed to

do. These activities involve communication with stakeholders, aimed at gaining insight

into their needs, identifying requirements, and overcoming contradictions and conflicts

between the identified requirements. Elimination of this explicit architectural activity

increases the actual risk of wrong decisions made in the design stage remaining unseen

until it is too late [32].

Findings of the literature overview also suggest that non-functional requirements are

not given enough attention in the design process. This is often justified by the fact that

implementation of non-functional requirements is carried out afterwards, through

changes in the source code during the maintenance, since maintenance lasts longer and

has a larger budget [18]. However, Bellomo, Nord, and Ozkaya [33] believe that in the

case of large-scale and complex systems development, conventional agile process

should be extended as to include the following explicit architectural activities related to

Traditionalisation of Agile Processes: Architectural Aspects 87

non-functional requirements: test driven development with focus on non-functional

requirements, prototyping with focus on non-functional requirements, and technical

debt monitoring with focus on non-functional requirements. Cleland-Huang, Czauderna,

and Mirakhorli [34] introduced the notion of architecturally savvy persona, who is in

charge of identifying and analyzing non-functional requirements. The same authors

intended to enhance the process of discovery, analysis and management of

architecturally significant requirements by introducing the concept of personas from

various domains.

Jeon, Han, Lee, and Lee [35] have proposed the Acrum method, which extends

Scrum with three explicit architectural activities focused on non-functional

requirements: 1) analysis and management of non-functional system requirements

(subsequent to analysis of functional requirements); 2) mapping functional and non-

functional requirements using relation association matrix that represents their

correlation, in order to ensure traceability and completion of both product and sprint

backlog; 3) verification of fulfillment of non-functional requirements after each sprint.

If the verification process shows that a previously identified non-functional requirement

has not been fulfilled, even if all functionalities it is associated with had been

implemented, these functionalities must be revised, or a new strategy for fulfilling the

given non-functional requirement must be formulated.

Brown, Nord, and Ozkaya [36] also highlighted the necessity for explicit

identification of non-functional system requirements, as to support discovery of

dependencies between functional and non-functional requirements and architectural

elements in each iteration. Both functional and non-functional requirements need to be

prioritized, so that a proper schedule may be defined for each release. Faber [37] also

states that it is the architect’s responsibility to deliver non-functional system

requirements as value to users, as well as to implement them in close cooperation with

programmers.

Explicit architectural activity of defining architectural structures is not included in

emergent architecture [32], as is the case with anticipation of future system changes,

which is an activity critical to the decisions on the time of realization of particular

architectural activities, based on cost/benefit analysis [36]. Architectural planning

involves architectural considerations that go beyond a current iteration, aimed at

anticipating future requirements that the architectural solution should support [32, 36,

38].

Planning that is limited to one iteration leads to design degeneration and loss of

flexibility, which may hinder the agility of the whole project [39]. The main reason for

this is that functional requirements cannot be analyzed and developed completely

separately, since they are interdependent [36]. Functional requirements with high

business value to the user, and accordingly, high priority, often depend on requirements

with lower business value that need to be implemented first. In addition to analyzing

interdependencies between functional requirements, it is also necessary to analyze

dependencies between functionalities on one side, and non-functional requirements and

architectural elements of the system on the other. Otherwise, the risk of implemented

design decisions being inadequate increases, which may lead to an increase of technical

debt in the future. Proliferation of technical debt over time causes problems that cannot

be solved only through modifications of the source code, but rather require radical

changes in the architecture [36, 40]. In addition to selection of functionalities that

should be implemented within an iteration, the suggested concept extends release

88 Predrag Matkovic et al.

planning as to include identification of architectural elements that need to be developed

to support functionalities and future changes [33, 41]. Placing all design activities

within the present iteration is an extremely hazardous strategy, especially in software

development projects within large business organizations, characterized by a great

number of different applications (legacy and novel), various technologies and a great

number of teams [38].

Weitzel, Rost, and Scheffe [39] have coined the term "epic architectures" to denote

widening the scope of architectural planning beyond one iteration in Scrum. Epic

architecture is an architecture designed for a coherent group of functional requirements.

The aim of epic architecture is to define common elements. It is developed for around 8

planned sprints. Recognition and implementation of their similarities in the current

sprint reduces the total effort necessary for implementation, while simultaneously

increasing the uniformity of functionalities that need to be implemented in subsequent

sprints. Implementation tasks for a sprint are derived based on defined architectural

requirements, which make up architectural stories.

According to past studies, establishing a balance between extensive architectural

planning and emergent architecture still represents a challenging issue. Analysis of

papers dealing with this issue reveals a common stance that up front design must be

adequate in terms of such balance, which means that the trap of BDUF strategy, typical

for traditional development, must be avoided. The following text contains an overview

of perspectives on this issue, encountered in the analyzed literature.

Friedrichsen [32] points out that an estimate of adequate extent of up front analysis

and design depends on software architects’ experience, skills, knowledge, as well as

effective communication with stakeholders, while Waterman, Noble, and Allan [42]

added two more factors – understanding of the selected architectural solution and use of

a predefined architecture (in terms of existing patterns, architecture recommended by

vendors or tools used to automatize the process). Brown et al. [36] also advocate that

architecture planning must not be too extensive, but rather “sufficient”. They proposed

an approach based on three concepts: dependency analysis, real option analysis, and

technical debt management.

Dependency analysis involves examining and managing dependencies among

functional requirements, dependencies between functional and non-functional

requirements, as well as dependencies between requirements and architectural elements.

The aim of dependency analysis is to facilitate timely development of architectural

elements that can support implementation of necessary functionalities. This requires

architecture planning that extends beyond one iteration, i.e., anticipation and analysis of

future needs. Analysis of both kinds of requirements is represented using a single table.

After that, DSM (Dependency Structure Matrix) analysis is executed to reveal

dependencies between all constituent subsystems that represent certain functionalities

(e.g. exchange of data between sales and purchasing subsystem), followed by DMM

analysis (Domain Mapping Matrices), to determine their dependence on particular

architectural elements (such as user interface components, data access procedures,

security, etc.). The importance of software architecture analysis process in agile

processes was also emphasized by Buchgeher and Weinreich [43], who concluded that

the most effective technique is once again dependency analysis, but on the code level.

The focus of the proposed technique is on detecting static dependencies from the source

code, as to compare implemented architecture with the planned. Identified dependencies

are used as an indicator of relations between these two levels of architecture, which,

Traditionalisation of Agile Processes: Architectural Aspects 89

along with standard agile practices (continuous testing, continuous code analysis,

continuous code integration, continuous refactoring, and pair programming), facilitates

additional continuous quality control.

Once the dependency analysis is finalized, Brown et al. [36] consider optimal choice

of necessary architectural elements to be of key importance to release scalability. For

this purpose, the authors suggested using the real option theory – financial analysis

model used in corporate finance to assess cost-effectiveness of particular business

decisions. Real option analysis can be used effectively in release planning, for allocating

architectural elements to specific releases. Real option analysis and technical debt

management can optimize investment in particular architectural decisions, based on

results of dependency analysis and cost/benefit analysis of the architectural decision in

question. The ultimate decision should also be justified from the point of mitigating risk

associated with future uncertainties. The goal is to reach a suitable and cost-efficient

solution today, without jeopardizing the possibility of developing a more complete

solution tomorrow.

Real option theory is also used by Blair, Watt and Cull [44], but for solving the

problem of finding the right time to make architectural decisions, since they believe that

architectural decisions in agile processes are made either too early or too late. They

proposed a framework that should guide teams in recognizing the most suitable moment

for making particular architectural decisions. The framework involves using a

spreadsheet in which development phases are listed in columns, while architectural

issues constitute rows. The proposed framework is aimed at keeping the front up design

within certain limits, as to avoid the BDUF trap. Ven and Bosch [45] were also

concerned with improving the process of architectural decision-making, starting with

the assumption that architectural decisions in agile projects are made just-in-time by

programmers, while the architect has a consultative role in this process. The authors

presented the 3A framework (agile, architecture, axes) based on three axes that need to

be considered in order to establish a uniform process for architectural decision-making

that would be appropriate for a particular project. The first axis (who) contains roles

with potential responsibilities in the process of architectural decision-making

(development team, application architect, domain architect, enterprise architect,

management). The second axis (how) contains means of documenting architectural

decisions for communication with the stakeholders (direct communication, meeting

notes, ad-hoc documentation – wiki, informal documentation based on templates and

formal documentation based on templates). The third axis (when) contains different

periods from the moment an architectural decision is made to the moment the feedback

on its validity is received (more than 6 months, 1-6 months, less than 1 month).

Kruchten [46] suggested a set of heuristics for solving the problem of balancing

functionality development and software architecture. Implementation of proposed

heuristics requires a workshop with various roles in the project, aimed at examining the

eight suggested dimensions: semantics, scope, lifecycle, roles, documentation, method,

value, and cost. By answering key questions in these areas, participants develop a

common mental model concerning the application of certain architectural practices.

After that, they are able to define the management process, as well as the technical

process, which steers architectural activities within an agile process (so-called “zipper-

model”). Chen and Babar [47] constituted four categories of contextual factors (project,

team, practice and organization) that determine whether efficient architecture can be

developed solely through modifications to the source code. The proposed framework is

90 Predrag Matkovic et al.

complementary to Kruchten’s contextual model developed based on experience. Chen

and Babar [47] extended Kruchten’s model with empirically identified factors, such as

experience and skill.

Hadar and Silberman [48] proposed a C3A model, which interprets the concept of

agile architecture as a synthesis of so-called reference architecture, which illustrates the

vision in technical and functional terms (it is a result of planning), and implementation

architecture, which scopes parts of the reference architecture into a future release

(development of functionality). The method includes a process for evaluating reference

architecture and evolution of implementation architecture, used to analyze the gap

between what was planned and what was accomplished within a release. Key steps of

this method include: listen and observe, watch, reflect, improve, scrutinize, and kick-

start.

Several authors investigated the role of software architects in accomplishing a

balance between up front and emerging architecture in agile development processes.

Faber [37] considers that changing the conventional role of architects is imperative

for balanced investment into functional/non-functional requirements. He underlines that

architects are responsible for overall quality of the system and that their choices of

adequate design decisions affect the balance between implementation of functional and

non-functional system requirements. Architects are supposed to be service providers to

both programmers and clients, having multiple roles in interaction with them. They

should provide value to clients through implementation of non-functional system

requirements, as well as provide continuous support to programmers throughout the

course of implementation.

Hadar and Sherman [49] also stated that is important to include the software architect

into the entire agile development process, while Blair et al. [44] stress the need for the

architect’s close collaboration with the development team, with continuous exchange of

ideas throughout the whole project. Hopkins and Harcombe [50] believe that the

software architect’s role is indispensable in the development and delivery of large,

complex systems, which typically necessitate development and integration of multiple

systems and coordination of hundreds of individuals. According to them, the software

architect is the only person who makes decisions on vital aspects of the system, since

even senior programmers are often unable to do so. The role of a software architect is to

examine the problem being solved from different perspectives at the very beginning of

the project, since each business problem is unique and requires different approaches to

identifying its distinctive aspects. After the conceptual description of the system is

completed by the software architect, the agile team can decide on how to test it (e.g.

dynamic execution, static testing, or simulation). With early instrumentation and

validation of this process, the architect is supposed to turn their vision into a common

one (of the whole project team), and to monitor development, as well as to react in case

of unexpected problems or necessary changes.

Madison [51] believes that software architects should be ones to close the gap

between the agile development process and methods for developing software

architecture. In order to develop agile architecture that balances both the traditional and

the agile approach, software architects must have exceptional understanding of the agile

process, as well as the ability to create a balance between business and architectural

priorities. Madison presented a hybrid model of Scrum, XP, and sequential project

management for developing agile architecture. He advocates use of architectural

functions and skills (communication, non-functional requirements, choice of suitable

Traditionalisation of Agile Processes: Architectural Aspects 91

software and hardware, design patterns) throughout the four stages of the process: up

front planning, storyboarding, sprint, and working software.

Hopkins and Harcombe [50] point out that it is necessary to establish a balance of up

front architectural activities, as to avoid jeopardizing the concept of agility on large-

scale and complex projects. They propose that every project should start with up-front

risk analysis, in order to identify and isolate complex areas, and identification of

software elements, infrastructure, and data architecture. Start of the project implies a

description of the problem on a conceptual level, along with suggestions of solutions to

problems within the given area. Occasionally, the problem/solution is reached through

analysis of existing systems, or by opting for a commercial solution for certain areas. As

early as possible, the architect should also decide on how the riskiest aspects of each

identified problem will be tested, identify architecturally significant requirements and, if

necessary, develop prototypes.

For medium and large development projects, Qureshi [52] suggested modifying and

extending development stages of the XP process: project planning, analysis and risk

management, design and development, and testing. Nord and Tomayko [8] proposed a

hybrid model for large and complex agile projects based on integrating the XP process

with methods for developing software architecture developed by the Software

Engineering Institute of the Carnegie Mellon University (architecture tradeoff analysis

method, quality attribute workshop, attribute-driven design method, cost benefit

analysis method, active reviews for intermediate design). These methods can add value

to agile processes, since they accentuate non-functional requirements and their

significance in the architecture design.

Nowadays, decentralization, heterogeneity and the need for interoperability are

among the most important challenges that business are faced with. Development of such

systems usually involves many team members, while the systems often must be scaled

to highest levels of performance and security. They are often mission-critical, and it is

understood that they must not fail. All this necessitates a strong architectural support to

the system and appropriate documentation. On the other hand, users expect these

software solutions to be adaptable to changes in the business environment, which

requires application of principles of agile development. Boehm, Lane, Koolmanojwong

and Turner [41] identified three factors that need to be observed in establishing balance

between architecture and application of principles of agile development in complex

system development projects: system’s size, criticality, and requirements volatility.

They suggested an approach based on quantitative appraisal of costs and risks (by use of

COCOMO II model and the concept of risk resolution factor (RESL)) of investments

into architecture. Based on research results, the authors suggested a hybrid (agile/plan

driven) process framework for developing such complex systems - incremental

commitment model (ICM). The framework represents a synthesis of concepts from the

existing process models: the concept of early verification and validation from the V-

model, concurrency concepts in the concurrent engineering model, lighter-weight

process concepts from the Lean, and other agile models, risk-driven concepts from the

spiral model, as well as the phases and anchor points from the Rational Unified Process

(RUP).

Nord, Ozkaya, and Sangwan [40] proposed a way for establishing a balance between

up-front and emergent architecture through application of the Lean concept of managing

the value flow throughout the development process. According to the Lean concept, all

the waste from architectural activities can be divided in three closely related categories:

92 Predrag Matkovic et al.

overproduction, delay, and defect. Results of their research [40] have shown that

incremental architecture development causes increases in costs associated with the

aforementioned wastes. The research resulted in guidelines for improving the

development process through more efficient time management and containment of

waste in production (WIP). The authors believe that the strategy of developing the

architecture in many small increments can reduce delay costs associated with the time

required to complete the entire architecture design up front. However, refactoring the

architecture can be much more expensive, since it may necessitate significant changes.

Development in a smaller number of more extensive increments reduces costs

associated with refactoring, but increases delay costs due to a greater amount of

architectural activities. Delay costs arise either from waiting or delaying the

implementation process, while refactoring costs arise from architectural flaws or waste

caused by overproduction. These represent the two extreme strategies for iteration

planning. In order for the development to take the intermediate path in terms of costs,

the authors suggest utilizing the concept of visualizing investments into architecture

within each increment, as to demonstrate the effects of architectural waste (due to

overproduction, delay or defect) on the entire project. For this purpose, they suggest

identifying architecturally significant requirements, as well as acceptance testing, in

order to ensure visibility of architectural tasks in the backlog or the Kanban board.

Utilization of the WIP concept in acceptance testing improves the flow of the

development process, since it enables managing waste associated with over-architecting

[40].

Hinsman, Sangal, and Stafford [53] point out that architecture visibility is crucial for

establishing balance between up front and emerging architecture, especially in case of a

volatile environment. They believe that the traditional code refactoring technique is not

an adequate solution for problems arising from code complexity and side effects caused

by rapid development, adaptation to business changes, and system upgrades. Instead,

they propose a higher-level approach – architecture-based refactoring; a process guided

by an architectural blueprint, which is a result of identified dependencies on a structural

level. Refactoring is prototyped, prior to being applied to the source code. It involves

five steps: define the problem, visualize the current architecture, model the desired

architecture in terms of current elements, consolidate and repackage the code base, and

automate governance of the architecture through continuous integration. Empirical data

suggests that architecture-based analysis can enhance productivity of software

development and reduce costs of system maintenance [53].

Stal [17] suggests that architecture refactoring should be included into agile

development as a compulsory process, since that could enhance early detection and

elimination of inadequate or suboptimal design decisions and ensure a high quality of

architecture. This activity needs to be performed at least once per iteration. He suggests

an approach for systematic execution of architecture refactoring process, which involves

the following key steps: architecture assessment (identification of design problems);

prioritization (determining the sequence for solving architectural issues, based on their

significance); pattern selection (if they exist) for each identified issue, or conventional

redesign; quality assurance, through assessment or testing, to ensure that refactoring

does not cause accidental changes to the semantics. Architectural issues that should be

solved using this process include: unclear roles of entities, complexity of the

architectural solutions, excessive centralization, asymmetric structure or behavior, etc.

If issues remain unresolved in a timely fashion, design erosion will occur and

Traditionalisation of Agile Processes: Architectural Aspects 93

refactoring will no longer be able to provide solutions to remaining architectural issues.

In such case, the remaining solutions for mending the architecture are reengineering or

redevelopment.

Keuler, Wagner, and Winkler [54] suggest ensuring visibility of architectural

structures though application of a framework that links architectural decisions with the

source code. The process begins with the description of the architecture in an XML file

that is subsequently used to generate code that implements the described architecture,

serving as the application’s skeleton. The framework enables multiple teams to work on

the same code with minimal conflicts, as long as dependencies within the source code

are managed effectively. This enables programmers to deal with components–

functionality, while the implemented framework manages components, interfaces, and

their dependencies.

Results of the literature review suggest that a great portion of problems arises from

one additional essential conflict: requirement of minimalism in agile processes and the

need for well-documented architecture in complex systems [49]. Evidences from the

industry reveal that, in most cases, architectural documentation is either excessive, or

completely absent [55]. Inadequate documentation results in evaporation of architectural

information and knowledge [48], poor understanding of the architecture and impaired

communication, which leads to chaos and project failure [56]. Excessive documentation

causes waste, in terms of time and resources, as well as straying from the essence [56].

Faber [37] believes that it is the software architect, with the role of a service provider,

who is responsible for maintaining a central position between inadequate and excessive

documentation of development guidelines. While Fallesi et al. [57] published empirical

findings suggesting that agile programmers find architectural artifacts useful for easing

communication between members of the development team in latter stages of design, as

well as for documenting and assessing the solution, Babar [18] reached empirical

findings that suggest that a modified traditional documenting practice, Software

Architectural Overall Plan (SAOP), is commonly used, but only for a conceptual

description of the architecture, whereas all other design decisions are described in the

wiki.

The literature contains several suggestions on how to overcome the described

problem of documenting. Tyree and Akerman [58] see the solution in documenting of

architectural decisions and their clarifications. Hadar, Sherman, Hadar, and Harrison

[55] suggested a template for documenting software architecture that is in line with the

agile philosophy and Lean documentation. Eloranta and Koskimies [59] suggest

applying the Architecture Knowledge Management (AKM) concept, which they

modified and integrated with the Scrum process. This approach involves development

of an architectural database and application of a decision-based architecture evaluation

method.

Results of the theoretical research suggest that there are quite a number of

architectural issues that various authors are concerned with. An overview of key

categories of architectural issues and authors that investigated them is given in Table 2.

94 Predrag Matkovic et al.

Table 2. Architectural issues identified in the literature (Source: Authors)

Current architectural issue Source

Non-functional requirements [18, 33-37]

Anticipation of future requirements and

envisioning architecture beyond the

current release

[32-33, 36, 38-41]

Balance between up front and emergent

architecture

[8, 32, 36-38, 40-48, 50, 52-53]

Software architect’s role [18, 37, 44, 49-51]

Visibility of architectural tasks [17, 53-54]

Architecture documenting [18, 37, 48-49, 55-59]

4. Results of the Empirical Research

Results of the empirical research are presented as (a) an overview and description of

qualitative results obtained through the analysis of semi-structured interviews with

domain experts, and (b) an overview of results of the quantitative part of the research, as

a set of explicit architectural activities significant to agile development.

4.1. Interview Results

Over 70 topics related to practical architectural issue were identified based on

transcripts of interviews with 20 experts in agile development, coded in NVivo software

suite. Similar topics were combined into concepts, and similar concepts were divided

into 8 categories of practical architectural issues (Table 3). Identified categories of

practical architectural issues indicate the necessity of applying certain explicit

architectural practices in the development of software architecture in agile processes.

The identified categories represent the answer to the second research question.

Table 3. Identified categories of practical architectural issues (Source: Authors)

Category Concept

Functional

requirements

1. Incomplete requirements

2. Volatile requirements

Non-functional

requirements

1. Inadequate consideration and identification of non-functional

 requirements

2. Inadequate monitoring of implementation of non-functional

 requirements

3. Not testing non-functional requirements

4. Neglecting refactoring, which should improve design quality

5. Delayed resolving of issues related to non-functional requirements

6. Technical debt

Traditionalisation of Agile Processes: Architectural Aspects 95

Vision of the

Architecture

1. Lack of strategic architectural planning

2. Overlooking future system requirements

3. Inadequate allocation of time to research and analysis of

 architectural requirements

4. Overlooking certain aspects significant to architecture development

5. Neglecting the choice of an adequate architectural solution for

 prompter implementation of functionality

Technical and

technological

aspects

1. Failure to explore possibilities and limitations of current

 technologies, frameworks, and third-party libraries

2. Unbalanced application of traditional and novel technologies

3. Insufficient familiarity with the technology used

4. Inadequate choice of technology and implementation framework for

 the problem being solved

Business

analysis and

understanding

of the problem

1. Insufficient time for business analysis process

2. Poor understanding of the problem

3. Lack of domain-specific knowledge

Architectural

evaluation

1. Neglecting testing fulfillment of non-functional requirements

2. Infrequent prototyping, which should prevent bad design

3. Informal architecture review process

4. Neglecting metrics and tests

5. Rare use of time-limited proof of concept

Role of the

software

architect

1. Architects’ coordinating role in detailed design

2. Some architectural decisions cause bottlenecks

Team
1. Inexperienced team members

2. Limited supply in the labor market

Architecture

documenting

1. Inadequate management of architectural knowledge

2. Architectural decisions and the reasons behind them mostly remain

 undocumented

Comparison of architectural issues in the existing literature (Table 2), and

architectural issues identified after the analysis of empirical data gathered through

interviews (Table 3) shows many matches. In other words, issues addressed by

researchers correspond to problems identified in the practice. The following text

contains an interpretation of results given in Table 3, with references to respondents’

statements. A code system is used to refer to individual experts (RSP1, RSP2…,

RSP20) instead of personal names, as to ensure anonymity of respondents and their

organizations.

Empirical findings show that requirements represent an important factor when it

comes to a choice of an architectural strategy, since their traits influence strategic

orientation in relation to the two extremes – BDUF and emergent – and therefore

represent a source of numerous architectural issues. Most respondents stated that they

operate in volatile environments, since clients often lack clear vision of what they need,

which is an additional cause for delays in the implementation phase (RSP10). This

implies that requirements that the software architect operates with at the beginning of

the project are incomplete (RSP8). Quality of requirements has a significant impact on

96 Predrag Matkovic et al.

the amount of time the software architect needs to devote to up front architectural

analysis, in order to identify the scope of the main part of the software. Lack of devotion

to identification of architecturally significant requirements causes an increase in total

project costs, as well as its duration (RSP8). Requirement volatility is the second most

frequent problem that agile software architects and agile teams face. It is not rare for

clients to completely change their idea on what they expect from the software solution

during the implementation phase (RSP13). RSP6 believes that the best way to mitigate

this risk is to put more effort into the initial phase of the project, before setting the

architectural solution for the main part of the system. In line with that, agile teams

should identify the set or architecturally significant requirements for the main part of the

system at the beginning of the project, leaving identification of other requirements and

iterative enhancement of the developed architectural skeleton for the implementation

phase (RSP9).

Practitioners also stated identification of non-functional requirements as a

problematic area, due to the fact that stakeholders are mostly unaware of them, and put

too much emphasis on the implementation of functional requirements, at the

requirements. There is no systematic monitoring of implementation of non-functional

requirements, as opposed to functional requirements, which are monitored via the

Backlog and the Product Backlog. Testing of non-functional requirements is also not a

consistent and mandatory practice, as is the case with functional requirements. This is

the reason why timely refactoring, which should improve design quality, is neglected in

practice; instead, the design is “patched up” each the team needs to overcome a burning

issue and enable the implementation of subsequent functional requirements. Such

approach implies delayed resolving of issues related to non-functional requirements and

constant presence of technical debt. The solution suggested for this problem relies on

creating and continuously updating a single prioritized list of functional and non-

functional requirements and displaying all tasks on the Kanban board (RSP20).

The second group of architectural issues is related to the vision of the architecture.

When it comes to the selection of an architectural solution, the most common approach

in the industry is “cognitive exploration” by the architect, as well as brainstorming with

other architects and members of the development team (RSP9). When opting for a

solution, architects mostly rely on their personal experience and knowledge, as well as

expertise of the development team (RSP2, RSP3, RSP4). Due to time constraints, the

selected architectural solution is often not the most suitable one for the problem being

solved. In most cases, the client bears responsibility for the choice of an architectural

solution (RSP3). The practitioners noticed that they need more time for research and

analysis of architectural requirements and confirmation of architectural solutions. In

addition to that, they are aware of the fact that, in their attempts to initiate

implementation as soon as possible, they fail to consider all significant architectural

aspects at the beginning of the project (e.g. deployment), as well as the future system

requirements. This implies a series of consequences and greater costs in latter

development phases. In actual fact, there is no balance between the strategic and

tactical architecture planning, that is why there is a risk of taking wrong turns in the

development. This increases the risk of architectural erosion. In addition to the fact that

changing major architectural decisions in the latter phases of development is costly, the

scenario in which the architecture cannot be mended by refactoring also remains a

possibility.

Traditionalisation of Agile Processes: Architectural Aspects 97

Practical results revealed a category of architectural issues related to technical and

technological aspects of architecture development. RSP15 provided the most vivid

portrayal of these problems, further claiming that architectural decisions need to be

made with regard to where and how the software product will be executed. RSP1 even

stated technological aspects as a key factor in architecture development, and that it is

therefore necessary to devote enough time to explore the possibilities and limitations of

current technologies, frameworks, and third-party libraries at the beginning of the

project. This is important for an adequate choice of technology and implementation

framework, with regard to the problem being solved. RSP2 and RSP5 stated that it is

equally important that team members, especially the software architect, are familiar

with the technology used: latest trends in architectural options, technological

innovations, and third-party components that can be used in the development. In

addition, the respondents stated that there is a trend of using novel technology, without

clear arguments in favor of such choice. Explanations are based solely on the argument

that ‘new’ is better than the old. This way of thinking is wrong, and should be replaced

with balanced application of traditional and novel technologies, with regard to their

advantages in solving the problem.

The respondents recognized insufficient time for business analysis and problem

examination as one of the serious problems, which results in inadequate architecturally

significant requirements. Time spent on analysis is directly proportional to the level of

domain-specific knowledge of the problem that the team members, above all, the

software architect, are dealing with.

Practitioners think that it is critical for the success of a software architecture that the

architect explores the problem from different perspectives at the very beginning of the

project, since every business problem is different, with unique architectural aspects. The

most important thing for solving a business problem is to reach the understanding of the

problem by comprehending how the target organization operates (RSP13), that is, its

business processes, since they represent a basis for identifying architecturally significant

requirements (RSP12). Gaining understanding of business processes relies on an

explicit architectural activity, which involves discussion with key stakeholders in group

meetings or individual interviews. The respondents have pointed out the importance of

software architect’s involvement in the meetings with the product owners, since

otherwise they never obtain all necessary information from the documentation (RSP7).

Although product owners are often (but not necessarily) technical personnel, they do not

have the same level of knowledge and experience as software architects, and therefore

cannot convey 100% of their requirements (RSP16).

Architectural evaluation implies verification of architecture in relation to

architecturally significant requirements. Results suggest that this segment of

architectural issues is mostly based on an ad hoc approach. Besides the standard agile

practices (code review, code integration, regression testing, static and dynamic code

analysis, etc.), the respondents are aware of the significance of several traditional

practices (prototyping, time-limited proof of concept, formal review by experts in

architecture), but they also stated that usually lack time for these techniques and that

they apply them only when it is necessary. Practitioners are also aware of the fact that

metrics and tests are the best means for reviewing architecture, that is, fulfillment of

non-functional requirement (RSP20), and that they aspire to using them. However, they

also stated that they still review architecture ad hoc, without a defined process. Testing

fulfillment of non-functional requirements is most often allocated to the maintenance

98 Predrag Matkovic et al.

phase, as to expedite delivery of value to users through development of functionality, or

because of budget limitations.

The formal software architect role is not standard in agile processes. Agile teams are

cross-functional, and all team members share the responsibility for the architecture.

However, agile teams included in the research usually have a formal software architect

role, performed by a highly experienced programmer (RSP5). As an experienced

programmer, the software architect participates in the development team at the

beginning of the project, as to set up the main part of the software with the programmers

(RSP5). As several authors agree, the role of a software architects in an agile team

should significantly differ from the traditional one, because architects must

continuously be engaged throughout the whole development process. Their role must

involve coordination throughout the whole development of the software solution [44,

49-51]. However, the respondents stated that the architect’s only role is the

coordination of detailed design.

In order to achieve the coordinating role of a software architect throughout the whole

development process, practitioners suggest the strategy aimed at “…raising awareness,

trust, skills and knowledge from the problem domain and technology...” among all team

members. Improvement of team members’ level of technical knowledge can be

achieved most efficiently by including them in discussions on architecture when it is

first developed at the beginning of the project, as well during iteration planning. By

following this approach, teams can avoid architects being the bottleneck, in case a

radical change in design occurs due to an architectural decision. In such way, other team

members who would otherwise lack even the basic architectural knowledge, or a whole

picture of the solution, may help expedite the implementation of the architectural

decision (RSP20). Agile teams are aware that the responsibility for the architecture

should lie on the whole team, not just on the architects. However, such approach

requires skilled individuals, with high level of technical knowledge, which is the main

problem that agile teams face in practice. Rapid development of IT industry in Serbia on

one side, and limited supply in the labor market on the other, lead to the fact that agile

teams consist mostly of inexperienced individuals. Causes of this problem identified in

the research involve the constant inflow of new employees, and the fact that an average

engineer in a team is at the junior level (RSP20).

Documentation is a very important architectural issue. Traditional development

overemphasizes this activity, while agile processes nearly replace it with the idea of

source code as the ultimate documentation, in line with the proclaimed agile value of

“working software over comprehensive documentation” [60]. However, when it comes

to development of complex software solutions, quality source code is not a sufficient

documenting practice; it is important to incorporate some of explicit documenting

practices in moderation. Architectural documentation is mostly written in wikis, and

contains descriptions of architecturally significant functional and non-functional

requirements, as well as the decision on technology stack (RSP4, RSP9, RSP11). It also

includes basic architectural models, hand-drawn in form of flowcharts. Formal models

are rarely used in practice, since they require a lot of time and effort for continuous

revising, which reduces agility. However, the problem is that there is no documentation

for most architectural decisions and reasons behind them. As an outcome of such

absence of strategy for managing architectural knowledge, most of the architectural

knowledge remains “trapped” in individuals’ minds, and is therefore impossible to reuse

it. Agile teams recognize this problem, but still lack a solution for it.

Traditionalisation of Agile Processes: Architectural Aspects 99

4.2. Survey Results

Collected data was subject to quantitative analysis, with the aim to determine

significance of explicit architectural practices to agile development processes.

Quantitative analysis was conducted for each architectural practice (of 31 in total), and

an example of an analysis for a particular agile practice – identification of key system

stakeholders – is given in the following text.

Frequencies of significance scores of the observed architectural practice are

presented in Table 4, both in numbers and percentages. Rows of Table 4 correspond to

variables of the four-item assessment scale from the questionnaire (1 – not significant; 2

– somewhat significant; 3 – significant; 4 – extremely significant).

Table 5 contains upper and lower percentages of assessments, calculated using a 95%

confidence interval, computed through bootstrap resampling with 1000 replications. For

example, the percentage of score 3, calculated with a 95% confidence interval, is

between 40 and 80.

Table 4. Architectural practice: Identification of key system stakeholders (Source: Authors)

 Frequency Percent Valid Percent Cumulative

Percent

Bootstrap for

Percent

Bias Std.

Error

Valid

1.00 2 10.0 10.0 10.0 .0 6.6

2.00 3 15.0 15.0 25.0 .1 8.4

3.00 12 60.0 60.0 85.0 .2 11.1

4.00 3 15.0 15.0 100.0 -.3 7.8

Total 20 100.0 100.0 .0 .0

Table 5. Architectural practice: Identification of key system stakeholders (Source: Authors)

 Bootstrap for Percent

95% Confidence Interval

Lower Upper

Valid

1.00 .0 25.0

2.00 .0 35.0

3.00 40.0 80.0

4.00 .0 30.0

Total 100.0 100.0

Based on results obtained in this fashion, summary tables of dichotomized data were

made for each architectural practice, showing their significance to agile development

processes (Table 6). Significance of explicit architectural practices is measured as the

proportion of respondents that rated them as significant. Value of the indicator is

calculated using Formula (1), which involves adding values of items 3 and 4 from the

Percent column of Table 4, which correspond to “significant” and “extremely

significant” assessments in the questionnaire.

100 Predrag Matkovic et al.

Proportion of respondents who rated a practice as significant =

= (value of Percent [row 3] + value of Percent [row 4]) / 100.
(1)

In the example of the chosen architectural practice (Table 4), the proportion of

respondents that rated the given architectural practice as significant was calculated by

adding percent value of item 3, which was 60%, and percent value of item 4, which was

15%. The total of 75% was subsequently divided by 100 to calculate the proportion of

respondents that rated the given architectural practice as significant.

Table 6 lists all identified architectural practices, ranked by their significance in the

agile development process, according to the respondents. Based on the values of

significance indicators, architectural practices were divided into 3 categories: highly

significant, significant and insignificant explicit architectural practices to agile

development processes. The presented results represent the answer to the third research

question.

Architectural practices with significance indicator values between 0.8 and 1 were

categorized as highly significant practices. Architectural practices with significance

indicator values between 0.7 and 0.8 were categorized as significant, while those with

significance indicator values less than 0.7 were categorized as insignificant.

Table 6. Significance of explicit architectural practices in agile development process, according

to the respondents (Source: Authors)

Architectural practice

Proportion of

respondents who rated

a practice as significant

Forming a suitable team and choosing a software architect

with regard to the problem being solved
Highly significant: 0.95

Understanding of the business problem Highly significant: 0.95

Code review Highly significant: 0.95

Active discussions with stakeholders aimed at analyzing and

understanding the business
Highly significant: 0.9

Identification of architecturally significant requirements Highly significant: 0.9

Risk analysis aimed at identifying and isolating areas of

complexity
Highly significant: 0.9

Examining technology suitable for implementation Highly significant: 0.9

Identification and definition of basic structures (modules)

for the system core, as well as their relations (envision

architecture)

Highly significant: 0.9

Testing system performance and other critical non-functional

requirements
Highly significant: 0.9

Project scoping Highly significant: 0.85

Analysis of dependencies between functional requirements

and architectural elements during release planning
Highly significant: 0.85

Continuous architect’s support throughout all key design issues Highly significant: 0.85

Configuration management Highly significant: 0.85

Traditionalisation of Agile Processes: Architectural Aspects 101

Creation of a common prioritized list of functional and non-

functional requirements
Highly significant: 0.8

Definition of core data architecture Highly significant: 0.8

Examination and development of a deployment model Highly significant: 0.8

Validation of critical architectural requirements through

prototyping
Highly significant: 0.8

Specification of integration tests Highly significant: 0.8

Identification of key system stakeholders Significant: 0.75

Formal architecture review Significant: 0.75

Test case specification Significant: 0.75

Release planning with a strategy focused on investigating

legacy systems, dependencies on other partner/third party

products, and data backward compatibility

Significant: 0.7

Acceptance test specification Significant: 0.7

Development/assessment of QA tests Significant: 0.7

Development of code-writing guidelines and other guidelines

for system design
Insignificant: 0.6

Development of top-level documentation Insignificant: 0.55

Managing dependencies with external systems that the system

interacts with throughout a release
Insignificant: 0.5

Technical debt management, with focus on non-functional

requirements in each iteration
Insignificant: 0.45

Defining detailed design of each module Insignificant: 0.4

Detailed design documentation Insignificant: 0.4

Examining and improving detailed design Insignificant: 0.4

5. Threats to Validity

When it comes to external threats to validity, one would most certainly be that the study

was limited to only one country. This was mitigated by including the respondents

outsourced by companies from various countries, as well as ones employed by global

software development organizations. Another threat is that no similar empirical research

was carried out in Serbia before. This was mitigated by comparing the obtained results

with the results of similar studies from around the world. Existing approaches and

frameworks, such as LeSS [61], SAFe [62], or DAD [10] were not analyzed in this

paper, despite their indubitably noteworthy impact on the agile community. The focus

of this paper was on identifying explicit architectural activities, while future research is

planned to result in a framework for their integration into agile development processes.

Future research will also encompass an analysis of all existing frameworks for scaling

up agile processes, as well as a comparison of these frameworks with the framework to

be developed by the authors.

102 Predrag Matkovic et al.

The authors aimed to contain the internal threats to validity by exercising

methodological strictness, aimed at ensuring reliability and validity of the conclusions.

The fact that panel was composed of respondents with expert knowledge and interest in

the research problem, in line with the recommendations by Goodman [63], contributed

to the validity of the research results, as well as insistence that all reposndents choices

be argumented and detailed. The Content Validity Index technique, computed in

accordance with the procedure prescribed by Polit and Beck [25], was used to ensure

the validity of the research instruments developed for this study.

The reliability was increased by interviewing the respondents separately, which was

aimed at eliminating the effect of group bias and conformity. Greater reliability of

research results was ensured by bootstrapping with 1000 replications.

Criteria proposed by Lincoln and Guba [64] were used to ensure the credibility of

results and conclusions of the qualitative part of the research. The criteria include:

Applicability (Transferability), Consistency (Dependability), Neutrality

(Confirmability), and Credibility.

The following set of techniques was used for answering the questions listed above

[64]:

1. The technique used for ensuring applicability of the findings involved detailed

description of the studied phenomenon, so that an external evaluator would be able

to asses to which extent the conclusions are applicable to different situations, times,

settings, or people. This ensured the basis for external validity of research findings.

2. The technique used for ensuring the consistency of the findings involved external

review by two researchers, both PhDs. The aim was to assess the validity and

whether the findings, their interpretations and conclusions were derived correctly

from the data. This warranted greater accuracy and validity of the research and the

findings.

3. The technique used for ensuring the neutrality of findings involved a detailed

description of all steps of the research process. The descriptions contain all

information on the course of the research (development of research instruments,

field notes, raw data, etc.), as well as all activities that were carried out (qualitative

data analysis, synthesis, identified topics, concepts, categories, etc).

4. The technique used for ensuring the credibility of findings involved setting aside a

portion of empirical data and excluding it from the first iteration of the analysis. The

analysis was initially carried out on remaining data, which produced the preliminary

results. The stored data was subsequently analyzed in order to validate the

conclusions.

6. Related Work and Discussion

Traditional development processes, which once successfully fulfilled business

requirements and needs in the development of complex software solutions, can no

longer adequately respond to new business challenges that modern organizations are

faced with. This is the reason why agile processes are gaining popularity in the

development of complex systems. The greatest challenge in the development of

complex systems using agile processes is to develop strong architecture, while

preserving the agility of the development process. Emergent architecture did not prove

Traditionalisation of Agile Processes: Architectural Aspects 103

to be sufficient for developing strong architecture of complex systems. Hence, agile

processes need to be scaled up by incorporation of significant explicit architectural

practices.

Unlike in traditional development, where architectural activities are concentrated in

the initial phases of the project, in agile processes, architectural issues are addressed

throughout the entire development lifecycle. However, research results show that

surveyed agile practitioners rated explicit architectural practices from the initial phases

of the traditional development (planning and scoping) as the most significant ones.

Even though it opposes the Agile Manifesto, which advocates “responding to change

over following a plan” [60], as well as the XP mantra “YAGNI” (You Ain’t Gonna

Need It) [12], it is clear that traditional architectural practices are often applied in agile

development processes. Efficient management of such software development projects

necessitates a systematic approach to establishing a balance between traditional and

agile architectural strategies. Furthermore, it is evident that agile architects highly value

activities such as testing and code review. Such findings are in line with results that

Hadar and Sherman [49] obtained in their empirical research.

Results also suggest that agile practitioners have a disinclination to documenting and

detailed design, which supports the claim that they are attempting to find an optimal

balance between agile and traditional approaches. As far as detailed design planning is

concerned, agile practitioners do not consider it to be a significant architectural activity,

but view it as a programmers’ responsibility. The respondents do not consider source

code to be the only necessary form of documentation in the complex system

development projects, which is in line with the findings of Coplien and Bjørnvig [65].

Documenting activities are reduced to a minimum, and are mostly carried out by use of

wikis, without some formal template or a structure. Architecturally significant

requirements, decision on the technological stack, and architectural models in the form

of a flowchart are most frequently documented. There is an apparent problem among

practitioners due to the fact that there is no documentation of the reasons and rationale

for the major portion of architectural decisions.

Even though agile processes do not formally recognize the role of a software

architect, research suggests that such role exists in agile teams. However, it differs from

the traditional one. The principal difference lays in software architects’ continuous

engagement throughout the whole development process. The respondents even stated

that software architects often participate in the implementation of the solution, which

points to the fact that agile teams employ a practice close to the organizational pattern

‘Architect also Implement’ [66]. Such findings are consistent with previous experiences,

which emphasize how the classic role of a software architect is changed in agile

processes: Hadar and Sherman [49] highlights that it is necessary to include the

software architect in the whole agile development process, while Blair et al. [44] point

to the need for architect’s close collaboration with the project team and continuous

exchange of ideas throughout the whole project. Furthermore, Hopkins and Harcombe

[50] claim that the software architect’s role is indispensable in the development of

large-scale, complex systems. Faber [37] believes that architects need to be service

providers to both programmers and clients, assuming different roles in interactions with

both groups, while Madison [51] claims that a software architect should bind the agile

process with software architecture development methods. Therefore, they must have a

solid understanding of the agile process, establish a balance between business and

architectural priorities, as to develop an agile architecture and utilize the benefits of both

104 Predrag Matkovic et al.

approaches. It is safe to say that, as the complexity level rises, the agile concept of an

omniscient “super engineer” becomes deficient, while a software architect is invited to

compensate their lack of knowledge.

Research results clearly suggest that agile teams feel the need to scale up agile

processes. This is evidenced by a set of explicit architectural practices typical to

traditional development, rated by experts as highly significant in the agile development

of complex software solutions. Furthermore, it can be concluded that the set of

architectural practices rated as significant and highly significant is aligned with the

practical architectural issues identified and classified in the paper. This substantiates the

claim that agile teams are aware that these issues need to be resolved, which indicates a

change in their attitudes towards this problem. In conclusion to his research, Ambler

[67] stated agile teams’ unawareness of the need for modifying agile development

strategy to suit the complexity of the domain as the reason for scarce application of

agile processes in the development of complex software solutions. He further explained

that techniques and practices of agile processes, proven to be successful in projects from

simple domains, do not guarantee success in the development of complex solutions, but

rather need to be scaled up. Research behind this paper presents the evolution of agile

teams’ attitudes from those recognized in 2009. Results of the research carried on

practitioners suggest that agile teams consider the domain to be an important factor in

defining the architectural strategy. To be precise, the complexity of the domain, as well

as team members’ domain knowledge fall into the factors that determine how many up

front architectural decisions will need to be made on the project, and how much time the

team will need to spend on the architectural analysis of the system. This result is in

accordance with the debate between Coplien and Martin [68].

7. Concluding Remarks

Empirical results of the research show that agile teams are attempting to reach their own

solutions for modifying agile processes. All of the 20 respondents stated that they use a

modified agile development process, with the intent to keep the scope flexible, so that it

can be changed during the development process, should changes prove to be necessary.

The challenge of establishing balance between agile processes and traditional

architectural practices in the development of complex software solutions requires joint

efforts by practitioners and researchers. Although the interest in this topic has grown

over the recent years, it can still be concluded that research papers restated to this topic

based on empirical findings are still scarce.

Agile practitioners have not only recognized the need for incorporating explicit

architectural practices into agile development processes, but also pointed to explicit

architectural practices they consider suitable to be incorporated.

It is evident that agile processes are adopting more and more elements of the

traditional development, hence the term ‘traditionalisation’. The principal values of

agile development established in the Agile Manifesto are still valued as highly as ever.

However, in terms of agile development of complex systems, the traits of traditional

methods, such as structured processes, use of specific tools, documentation, and plan

driven development, are gaining recognition. The results presented in this paper

encourage further efforts on finding the solution for integration of explicit architectural

Traditionalisation of Agile Processes: Architectural Aspects 105

practices in agile development, but making sure that the values that distinguish the agile

processes remain fully preserved.

Directions for future research, aimed at facilitating more extensive application of

agile processes in the development of complex software solutions, are set in accordance

with the conclusions given above. Further actions will be focused on determining the

critical points in agile processes that need to incorporate significant explicit

architectural practices identified in this research. The ultimate goal of future research is

to develop a framework for incorporation of explicit architectural practices into critical

points of the agile process. In this way, agile teams would be offered clear directions on

how to adapt their processes for the development of complex software solutions. Future

research will also involve an analysis of all existing frameworks for scaling up agile

processes (such as SAFe, LeSS, and DAD), and comparison of these frameworks with

the framework to be developed by the authors of this paper.

References

1. Vranić, V.: Promoting Natural Human Attitude Towards Work: Scrum. In Proceedings of IV

naučni skup Mreža. Singidunum University, Valjevo, Serbia, 8–12. (2013)

2. Imache, R., Izza, S., Ahmed-Nacer, M.: An Enterprise Information System Agility

Assessment Model. Computer Science and Information Systems, Vol 9, No. 1, 107–133.

(2012)

3. McDermid, J. A.: Complexity: Concept, Causes and Control. In Proceedings of the Sixth

IEEE International Conference on Engineering of Complex Computer Systems (ICECCS

2000). IEEE Computer Society, Tokyo, Japan, 2–11. (2000)

4. Meadows, D. H.: Thinking in Systems: A Primer White River Junction. Chelsea Green

Publishing, USA (2008)

5. Kruchten, P.: Scaling down projects to meet the Agile sweet spot. (2004). [Online].

https://people.eecs.ku.edu/~saiedian/811/Lectures/Misc/Papers-Agility/large-agile-

projects.pdf (current December 2016)

6. Kruchten, P.: Contextualizing Agile Software Development. Journal of Software Evolution

and Process, Vol 25, No. 4, 351-361. doi:10.1002/smr.572 (2013)

7. Matkovic, P., Tumbas, P., Sakal, M.: The RSX model: traditionalisation of agility. Strategic

Management, Vol 16, No. 2, 74–83. (2011)

8. Nord, R. L., Tomayko, J. E.: Software architecture-centric methods and agile development.

IEEE Software, Vol. 23. doi: 10.1109/MS.2006.54. (2006)

9. Kruchten, P.: Voyage in the agile memeplex. ACM Queue, Vol 5, No. 5, 38–44. (2007)

10. Ambler, S. W., Lines, M.: Disciplined agile delivery (1st ed.). IBM Press, Boston, MA, USA.

(2013)

11. Babar, M. A.: Making Software Architecture and Agile Approaches Work Together. In M. A.

Babar, A. W. Brown, I. Mistrik (Eds.), Agile software architecture (1st ed.). Elsevier,

Waltham, MA, USA, 43–76. (2014)

12. Beck, K.: Extreme Programming Explained: Embrace Change (2nd ed.). Addison-Wesley,

Boston, MA, USA. (2004)

13. Thapparambil, P.: Agile architecture: pattern or oxymoron? Agile Times, Vol 6, No. 1, 43–48.

(2005)

14. Parsons, R.: Architecture and agile methodologies—how to get along. In Working IEEE/IFIP

Conference on Software Architecture. WICSA, Vancouver, Canada. (2008)

106 Predrag Matkovic et al.

15. Ihme, T., Abrahamsson, P.: The use of architectural patterns in the agile software

development on mobile applications. In ICAM 2005 Internetional Conference on Agility. Vol

8, 1–16. (2005)

16. Babar, M. A., Abrahamsson, P.: Architecture-centric methods and agile approaches. In

Proceedings of the 9th international conference on agile processes and eXtreme programming

in software engineering. Limerick, Ireland, 238–243. (2008)

17. Stal, M.: Refactoring Software Architectures. In Agile Software Architecture: Aligning Agile

Processes and Software Architectures. Elsevier, Waltham, MA, USA, 130–152. (2014)

18. Babar, M. A.: An Exploratory Study of Architectural Practices and Challenges in Using Agile

Software Development Approaches. In Software Architecture, 2009 European Conference on

Software Architecture. Joint Working IEEE/IFIP Conference. IEEE, Cambridge, United

Kingdom, 81–90. (2009)

19. Babar, M. A., Ihme, T., Pikkarainen, M.: An Industrial Case of Exploiting Product Line

Architectures in Agile Software Development. In 13th international conference on software

product lines (SPLC) (pp. 171–179). CMU, Pittsburgh, PA, USA (2009)

20. Abrahamsson, P., Babar, M. A., Kruchten, P.: Agility and Architecture: Can They Coexist?

IEEE Software, Vol 27, No. 2, 16–22. (2010)

21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.

MIS Quarterly, Vol 28, No. 1, 75–105. (2004)

22. Kitchenham, B.: Procedures for performing systematic reviews. (2004). [Online]. Available:

http://people.ucalgary.ca/~medlibr/kitchenham_2004.pdf (current August 2015)

23. Miles, M. B., Huberman, A. M.: Qualitative data analysis: An expanded sourcebook (2nd

ed.). Sage. Los Angeles, CA, USA. (1994)

24. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: A systematic

review. Information and Software Technology, Vol. 50, 833-859. doi:

10.1016/j.infsof.2008.01.006. (2008)

25. Polit, D. F., Beck, C. T.: The Content Validity Index: Are You Sure You Know What’s Being

Reported? Critique and Recommendations. Research in Nursing and Health, Vol. 29, No. 5,

489–497. doi: 10.1002/nur.20147. (2006)

26. Skulmoski, G. J., Hartman, F. T., Krahn, J.: The Delphi method for graduate research. Journal

of Information Technology Education, Vol 6, No. 1, 1-21. (2007)

27. Ziglio, E.: The Delphi method and its contribution to decision-making. In E. Adler,M., Ziglio

(Ed.), Gazing Into the Oracle: the Delphi Method and Its Application to Social Policy and

Public Health (1st ed.). Jessica Kingsley Publishers, London, UK, 3–33. (1996)

28. Manning, C. D., Schütze, H.: Foundations of Statistical Natural Language Processing. The

MIT Press, Cambridge, Massachusetts, London, UK. (1999)

29. Taylor-Powell, E., Renner, M.: Analyzing Qualitative Data. (2003). [Online]. Available:

http://learningstore.uwex.edu/assets/pdfs/g3658-12.pdf (current November 2015)

30. Zhang, Y., Wildemuth, B. M.: Qualitative analysis of content. In Applications of Social

Research Methods to Questions in Information and Library Science (1st ed.). Libraries

Unlimited, Westport, CT, USA, 308–319. (2009)

31. Ristić, Ž.: Kvantitativna, kvalitativna i mešovita istraživanja, metodološki aspekti. Univerzitet

u Novom Sadu, Novi Sad, Serbia. (2011)

32. Friedrichsen, U.: Opportunities, Threats, and Limitations of Emergent Architecture. In I.

Babar, M.A., Brown, A. W., Mistrik (Ed.), Agile Software Architecture Aligning Agile

Processes and Software Architectures (1st ed.). Elsevier, Waltham, MA, USA, 335-355.

(2014)

33. Bellomo, S., Nord, R. L., Ozkaya, I.: A Study of Enabling Factors for Rapid Fielding

Combined Practices to Balance Speed and Stability. In 35th International Conference on

Software Engineering (ICSE). IEEE, New York, NY, USA, 982–991. (2013)

34. Cleland-Huang, J., Czauderna, A., Mirakhorli, M.: Driving Architectural Design and

Preservation from a Persona Perspective in Agile Projects. In M. A. Babar, A. W. Brown, I.

Traditionalisation of Agile Processes: Architectural Aspects 107

Mistrik (Eds.), Agile Software Architecture Aligning Agile Processes and Software

Architectures (1st ed.). Elsevier, Waltham, MA, USA, 83-111. (2014)

35. Jeon, S., Han, M., Lee, E., Lee, K.: Quality Attribute Driven Agile Development. In 9th ACIS

International Conference on Software Engineering Research, Management and Applications.

IEEE Computer Society, Baltimore, MD, USA, 203–210. doi: 10.1109/SERA.2011.24.

(2011)

36. Brown, N., Nord, R., Ozkaya, I.: Enabling Agility Through Architecture. CrossTalk, Vol 23,

No. 6, 12–16. (2010). [Online].

Available: http://static1.1.sqspcdn.com/static/f/702523/9627808/1291147379607/201011-0-

Issue.pdf?token=PWhMQ%2FO3zkIAMF4Vzb7VQ8Q%2FeaE%3D (current September

2014)

37. Faber, R.: Architects as Service Providers. IEEE Software, Vol 27, No. 2, 33–40. doi:

10.1109/MS.2010.25. (2010)

38. Isotta-Riches, B., Randell, J.: Architecture as a Key Driver for Agile Success: Experiences At

Aviva UK. In M. A. Babar, A. W. Brown, I. Mistrik (Eds.), Agile Software Architecture:

Aligning Agile Processes and Software Architectures (1st ed.). Elsevier, Waltham, MA, USA,

357–374. (2014)

39. Weitzel, B., Rost, D., Scheffe, M.: Sustaining Agility through Architecture: Experiences from

a Joint Research and Development Laboratory. In 2014 IEEE/IFIP Conference on Software

Architecture (WICSA). IEEE Computer Society, Sydney, Australia, 53-56. doi:

10.1109/WICSA.2014.38. (2014)

40. Nord, R. L., Ozkaya, I., Sangwan, R. S.: Making Architecture Visible to Improve Flow

Management in Lean Software Development. IEEE Software, Vol 29, No. 5, 33–39. doi:

10.1109/MS.2012.109. (2012)

41. Boehm, B., Lane, J., Koolmanojwong, S., Turner, R.: Architected Agile Solutions for

Software- Reliant Systems. In T. Dingsøyr, T. Dybå, N. B. Moe (Eds.), Agile

SoftwareDevelopment: Current Research and Future Directions. Springer, Heidelberg,

Germany, 165–184. doi: 10.1007/978-3-642-12575-1. (2010)

42. Waterman, M., Noble, J., Allan, G.: How much architecture? Reducing the up-front effort. In

AGILE India, 2012. IEEE, Le Meridien, Bengaluru, India, 56–59. doi:

10.1109/AgileIndia.2012.11. (2012)

43. Buchgeher, G., Weinreich, R.: Continuous Software Architecture Analysis. In M. A. Babar,

A. W. Brown, I. Mistrik (Eds.), Agile Software Architecture: Aligning Agile Processes and

Software Architectures (1st ed.). Elsevier, Waltham, MA, USA, 161-188. (2014)

44. Blair, S., Watt, R., Cull, T.: Responsibility-Driven Architecture. IEEE Software, Vol 27, No.

2, 26–32. doi: 10.1109/MS.2010.29. (2010)

45. Ven, J. S. van der, Bosch, J.: Architecture Decisions: Who, How, and When? In M. A. Babar,

A. W. Brown, I. Mistrik (Eds.), Agile Software Architecture. Aligning Agile Processes and

Software Architectures. Elsevier, Waltham, MA, USA, 113-136. (2014)

46. Kruchten, P.: Software architecture and agile software development: a clash of two cultures?

In 2010 ACM/IEEE 32nd International Conference on Software Engineering. IEEE, Cape

Town, South Africa, 497–498. doi: 10.1145/1810295.1810448. (2010)

47. Chen, L., Babar, M. A.: Towards an Evidence-Based Understanding of Emergence of

Architecture Through Continuous Refactoring in Agile Software Development. In Software

Architecture (WICSA), 2014 IEEE/IFIP. IEEE, Sydney, Australia, 195-204. doi:

10.1109/WICSA.2014.45. (2014)

48. Hadar, E., Silberman, G. M.: Agile Architecture Methodology: Long Term Strategy

Interleaved with Short Term Tactics. In OOPSLA Companion ’08: Companion to the 23rd

ACM SIGPLAN conference on Object-oriented programming systems languages and

applications. ACM, New York, NY, USA, 641-651. doi: 10.1145/1449814.1449816. (2008)

49. Hadar, I., Sherman, S.: Agile vs. plan-driven perceptions of software architecture. In

Cooperative and Human Aspects of Software Engineering (CHASE), 2012 5th International

108 Predrag Matkovic et al.

Workshop on. IEEE, Zürich, Switzerland, 50–55. doi: 10.1109/CHASE.2012.6223022.

(2012)

50. Hopkins, R., Harcombe, S.: Agile Architecting: Enabling the Delivery of Complex Agile

Systems Development Projects. In M. A. Babar, A. W. Brown, I. Mistrik (Eds.), Agile

Software Architecture: Aligning Agile Processes and Software Architectures (1st ed.).

Elsevier, Waltham, MA, USA, 291-314. (2014)

51. Madison, J.: Agile Architecture Interactions. IEEE Software, Vol 27, No. 2, 41–48. doi:

10.1109/MS.2010.35. (2010)

52. Qureshi, M. R. J.: Agile software development methodology for medium and large projects.

IET Software, 6(4), 358–363. doi: 10.1049/iet-sen.2011.0110. (2012)

53. Hinsman, C., Sangal, N., Stafford, J.: Achieving Agility through Architecture Visibility. In

QoSA ’09: Proceedings of the 5th International Conference on the Quality of Software

Architectures: Architectures for Adaptive Software Systems. Springer-Verlag, Berlin

Heidelberg, Germany, 116–129. doi: 10.1007/978-3-642-02351-4_8. (2009)

54. Keuler, T., Wagner, S., Winkler, B.: Architecture-aware Programming in Agile

Environments. In 2012 Joint Working Conference on Software Architecture and 6th European

Conference on Software Architecture. IEEE, Helsinki, Finland, 229–233. doi:

10.1109/WICSA-ECSA.212.35. (2012)

55. Hadar, I., Sherman, S., Hadar, E., Harrison, J. J.: Less is more: Architecture documentation

for agile development. In Cooperative and Human Aspects of Software Engineering

(CHASE), 2013 6th International Workshop. IEEE, San Francisco, CA, USA, 121-124. doi:

10.1109/CHASE.2013.6614746. (2013)

56. Pareto, L., Sandberg, A., Eriksson, P., Ehnebom, S.: Prioritizing Architectural Concerns. In

Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on. IEEE,

Boulder, CO, USA, 22-31. doi: 10.1109/WICSA.2011.13. (2011)

57. Falessi, D., Cantone, G., Sarcia’, S. A., Calavaro, G., Subiaco, P., D’Amore, C.: Peaceful

Coexistence: Agile Developer Perspectives on Software Architecture. IEEE Software, Vol 27,

No. 2, 23–25. doi: 10.1109/MS.2010.49. (2010)

58. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE Software,

Vol 22, No. 2, 19-27. doi: 10.1109/MS.2005.27. (2005)

59. Eloranta, V.-P., Koskimies, K.: Aligning Architecture Knowledge Management with Scrum.

In Proceedings of the WICSA/ECSA 2012. ACM, Helsinki, Finland, 112–115. doi:

10.1145/2361999.2362023. (2012)

60. Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,

J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,

Schwaber, K., Sutherland, J., Thomas, J.: The Manifesto for Agile Software Development.

(2001). [Online]. Available: http://agilemanifesto.org/. (current September 2014)

61. LeSS Company B.V.: LeSS Framework. (2014-2017). [Online]. Available:

https://less.works/less/framework/index.html (current July 2017)

62. Scaled Agile, Inc.: Scaled Agile Framework – SAFe for Lean Enterprises. (2010-2017).

[Online]. Available: http://www.scaledagileframework.com/ (current July 2017)

63. Goodman, C. M.: The Delphi technique: a critique. Journal of Advanced Nursing, Vol 12, No.

6, 729–734. (1987).

64. Lincoln, Y. S., Guba, E. G.: Naturalistic Inquiry. Sage Publications, London, UK. (1985)

65. Coplien, J. O., Bjørnvig, G.: Lean Architecture: for Agile Software Development. Wiley,

Chichester, UK. (2010)

66. Frťala, T., Vranić, V.: Animating Organizational Patterns. In 2015 IEEE/ACM 8th

International Workshop on Cooperative and Human Aspects of Software Engineering. IEEE.

USA, 8–14. doi: 10.1109/CHASE.2015.8 (2015)

67. Ambler, S. W.: Agility at Scale Survey Results from the November 2009 DDJ State of the IT

Union Survey. Surveys Exploring The Current State of Information Technology Practices.

(2009). [Online]. Available: http://www.ambysoft.com/surveys/ (current September 2014)

Traditionalisation of Agile Processes: Architectural Aspects 109

68. Marinescu, F.: Coplien and Martin Debate TDD, CDD and Professionalism (2008). [Online].

https://www.infoq.com/interviews/coplien-martin-tdd (current December 2016)

Predrag Matković is an assistant professor at the University of Novi Sad, Faculty of

Economics in Subotica, lecturing in the field of business informatics on undergraduate,

master, and PhD studies. He authored numerous journal and conference papers, and has

been a member of several national and international research project teams. His research

interests include: business process management, agile software development, object-

oriented analysis and design, and integrated ERP, SCM, CRM software solutions.

Mirjana Marić is a teaching assistant at the University of Novi Sad, Faculty of

Economics in Subotica, lecturing in the field of business informatics, with special

research interests in analysis and design of information systems, agile software

development and integrated ERP, SCM, CRM software solutions. She is the author and

co-author of numerous journal and conference papers, and she participated on several

national and international research projects.

Pere Tumbas is full professor at the University of Novi Sad, Faculty of Economics in

Subotica in the field of Business Informatics. He authored and co-authored several

textbooks, handbooks and monographs, as well as over 250 works presented and

published at international and national conferences, symposia and journals in the field

of Business Informatics. During more than 35 years of working at the Faculty, he has

participated in a number of scientific and professional projects and studies. He is an

editor or editorial board member of in several international journals, as well as a

member of several program committees of scientific conferences. His primary areas of

interest are: business analysis, business modeling, business process management,

management information systems, digitalization, and business transformation.

Marton Sakal is an associate professor at the Faculty of Economics Subotica,

University of Novi Sad. He received his PhD in Business Informatics, and currently

teaches courses in programming, enterprise application development, and business

information systems. Professional interests: information system development, user-

centered interface design, end-user development, web 2.0, web programming. Authored

and co-authored about 100 papers, published in journals or presented at national and

international conferences, co-authored a workbook on programming.

Received: August 20, 2016; Accepted: July 20, 2017.

