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Abstract. In machine learning, the growing complexity of the available data poses
an increased challenge for its analysis. The rising complexity is both in terms of the
data becoming more high-dimensional as well as the data having a more intricate
structure. This emphasizes the need for developing machine learning algorithms
that are able to tackle both the high-dimensionality and the complex structure of the
data. Our work in this paper focuses on the development and analysis of the HMC-
ReliefF algorithm, which is a feature relevance (ranking) algorithm for the task of
Hierarchical Multi-label Classification (HMC). The basis of the algorithm is the
RReliefF algorithm for regression that is adapted for hierarchical multi-label target
variables. We perform an extensive experimental investigation of the HMC-ReliefF
algorithm on several datasets from the domains of image annotation and functional
genomics. We analyse the algorithm’s performance in terms of accuracy in a filter-
like setting and also in terms of ranking stability for various parameter values. The
results show that the HMC-ReliefF can successfully detect relevant features from
the data that can be further used for constructing accurate predictive models. Addi-
tionally, the stability analysis helps to determine the preferred parameter values for
obtaining not just accurate, but also a stable algorithm output.

Keywords: feature selection, feature ranking, structured data, hierarchical multi-
label classification, ReliefF.

1. Introduction

The current trend in machine learning is that the data available for analysis is becom-
ing increasingly more complex. The complexity arises both from the data being high-
dimensional and from the data being more structured. On one hand, high-dimensional
data presents specific challenges for many machine learning algorithms, especially with
the stability of the produced results [13]. On the other hand, mining complex data and
extracting knowledge from it has been identified as one of the most challenging problems
in machine learning [6, 21].

Various feature selection methods exist for dealing with the high-dimensionality of
the data. They usually precede the induction of predictive models and can be classified
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as filter, wrapper and embedded methods [12]. Filter methods [3] are the simplest ones
and they usually involve a feature ranking algorithm that produces a list of relevant fea-
tures. Wrapper methods [19] rely on classification algorithms to perform feature selection
and are computationally expensive. Embedded methods [12] are basically classification
algorithms that have the feature selection embedded in the model induction phase.

Learning in a supervised context, where the target is structured, has also attracted
much attention. Several algorithms that were previously employed only for classification
or regression purposes, have been extended to also work with structured targets. These
include decision trees for hierarchical targets [40], support vector machines for multi-
label and hierarchical multi-label problems [11], as well as tree ensembles that can be
additionally employed for vectors of multiple targets [18].

Our work in this paper focuses on tackling the feature selection problem in the con-
text of structured targets. We consider this a relevant problem in machine learning that
relates to both of the previously discussed trends. So far, structured prediction has not
been extensively researched in the context of feature ranking methods and we consider
this a novel and interesting line of research to pursue.

More specifically, we focus on the ReliefF [28] algorithm for feature ranking. This
algorithm is an intuitive, instance based algorithm and its theoretical properties have been
extensively explored [28]. We extend ReliefF for a specific type of structured prediction
problems, namely those from the Hierarchical Multi-label Classification (HMC) task [30].
The target that is predicted for these problems is defined with a hierarchy of classes and
each instance in the dataset can be labelled with more than one class at a time. By defi-
nition, when an instance is labelled with one class it is also labelled with all of its parent
classes according to the given hierarchy.

In practice, these types of problems appear in different domains, for example in bi-
ology for the task of gene function prediction or in image retrieval for the task of image
annotation. For the task of gene function prediction, each gene can be annotated by mul-
tiple functions and the functions are organised into a tree-shaped hierarchy or a directed
acyclic graph such as the Gene Ontology [2]. Thus, predicting the function of a gene from
certain gene properties would have to take into account the multi-label annotation of each
gene and also the hierarchical connections of these labels.

The work presented in this paper is based on an initial investigation in [32] and [33],
which is extended along several dimensions. First, we compare the performance of the
HMC-ReliefF method with a feature ranking method based on binary relevance [34] —
typically considered as a baseline for comparison of feature ranking for (hierarchical)
multi-label classification. Next, we perform stability analysis of the rankings produced
with the proposed method, which allows us to gain insight both into the properties of the
algorithm, as well as in the nature of the datasets under investigation. Finally, we provide
an analysis of the computational complexity of the algorithm. Overall, this amounts to an
extensive empirical analysis of the proposed HMC-ReliefF method.

In the remainder of this paper, we present the details of our work organised as follows.
In Section 3, we define more formally the HMC setting and present the distance measures
appropriate for this setting. Next, in Section 4, we discuss in depth the original RReliefF
algorithm for regression and explain our HMC-ReliefF extension of the algorithm. We
present our experimental design for evaluating the proposed HMC-ReliefF algorithm in
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Section 5. We then discuss the obtained results in Section 6. Finally, in Section 7, we
present our conclusions and discuss directions of possible further work.

2. Related Work

The task of hierarchical multi-label classification (HMC) has received wide attention from
the research community [30]. Several methods for solving the task of HMC have been pro-
posed and applied to real-life problems. However, the task of feature selection or feature
ranking has not received much attention mainly due to the complexity of the task. Most of
the related work comes from two other machine learning tasks: multi-label classification
and hierarchical text categorization.

The few available methods for feature ranking for multi-label classification are mainly
based on the problem transformation paradigm [34] thus they do not fully exploit the
possible label dependencies. These methods are based on the binary relevance or label
powerset approaches to multi-label classification. In the binary relevance methodology,
a separate dataset is created for each label and then a simple feature ranking algorithm
is executed for each label separately. The feature rankings are then aggregated, typically
using averaging, into a single feature ranking.

The basis of the label powerset methods is to combine entire label sets into atomic
(single) labels to form a single-label problem (i.e., single-class classification problem)
[37,9]. For the single-label problem, the set of possible single labels represents all dis-
tinct label subsets from the original multi-label representation. In this way, label powerset
based methods directly take into account the label correlations. However, the space of
possible label subsets can be very large. To resolve this issue, Read [26] has developed
a pruned problem transformation method, that selects only the transformed labels that
occur more than a predefined number of times. Tsoumakas et al. [37] use the label pow-
erset transformed dataset to calculate simple 2 statistic thus producing a ranking of the
features. Doquire and Verleysen [9] use the pruned, problem transformed dataset to calcu-
late mutual information for performing feature selection and they show that this method
outperforms the y2-based feature ranking.

Notwithstanding, Spoladr et al. in [35] and [36] have proposed extensions of ReliefF
towards the task of MLC by redefining the distance function. More precisely, they propose
to use normalized Hamming loss or Jaccard dissimilarity as distance functions between
two examples. The results from the evaluated on synthetic datasets show that the proposed
method yields competitive results with other problem transformation methods (such as
the one discussed above). The main differences between their approach and the approach
proposed here are the tasks being addressed: (1) we address the task of HMC, while they
address the task of MLC and (2) we consider the task of feature ranking, while they
address the task of feature selection.

In the task of hierarchical text categorization, the existing methods generally use a
binary relevance approach to the task of feature ranking for HMC. Moreover, in hierar-
chical text categorization, the task of feature selection (i.e., dimensionality reduction) has
received most of the attention, while the task of feature ranking in this context has not
been treated thus far. The majority of the methods performs binary relevance feature se-
lection and then utilize the hierarchy to propagate the ‘good’ features from the bottom
labels to the root label [24]. Here, we briefly list several such methods.
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Wibowo and Williams [42] perform feature selection at each node of the hierarchy and
then construct an architecture of complex classifiers, i.e., construct a complex classifier
for each hierarchy node (label). Second, Wang et al. [41] define term-label contribution
criterion and then for each term (i.e., feature) aggregate its value over all labels. Next,
Jia et al. [15] construct separate feature space for each group of siblings in the classifi-
cation hierarchy using feature selection with category analysis [41]. This improves the
performance compared to a single feature space. Furthermore, Vateekul [39] constructs a
decision tree for each label separately and then used the features that were used by the
trees are selected as the most important. Finally, Esuli et al. [10] proposed a boosting-like
method that uses feature selection at each hierarchy node and then employs Ada boost on
the selected features.

The existing related approaches to feature ranking for HMC with problem transforma-
tion has two major drawbacks. First, the label dependencies and interconnections are not
fully exploited. Second, while the feature subset sizes for the local classifiers are relatively
small, the overall number of features remains quite large. Consequently, these methods are
not scalable to domains with a large number of labels. To address these issues, we propose
an algorithm adaptation method that is based on RReliefF. The proposed method is able
to exploit the (hierarchical) dependencies between the labels and is scalable to domains
with large number of labels.

3. Hierarchical Multi-label Classification

In our work we extend the ReliefF algorithm for the task of hierarchical multi-label clas-
sification (HMC). Hierarchical classification is a specific type of a classification task in
which the classes are organised in a hierarchy. An example that belongs to a given class
automatically belongs to all its super-classes (this is known as the hierarchy constraint).
Furthermore, if an example can belong simultaneously to multiple classes that can follow
multiple paths from the root class, then the task is called HMC [40, 30].

We formally define the hierarchical multi-label classification setting as follows:

— A description space X that consists of tuples of values of primitive data types (dis-
crete or continuous), i.e., VX; € X, X, = (x;,, ziy, ..., xif), where f is the size of
the tuple (or number of descriptive variables/features),

— a target space S, defined with a class hierarchy (C, <j), where C is a set of classes
and <y, is a partial order (e.g., structured as a rooted tree) representing the superclass
relationship (V ¢1,c2 € C : ¢1 <j, o if and only if ¢y is a superclass of ¢2),

— aset of examples F, where each example is a pair of a tuple and a set, from the de-
scriptive and target space respectively, and each set satisfies the hierarchy constraint,
ie, B ={(X;,9)|X; € X,5, CC,ceS;=Vd <pc:c€85;,1<i<N}and
N is the number of examples in £ (N = |E|).

Two toy examples of classes organised in hierarchies can be seen in Figure 1. The
first hierarchy in Figure 1(a) consists of five classes {c1, ca, ¢3, 2.1, C2.2}, organised in a
tree-like structure. The other hierarchy in Figure 1(c), contains six classes (¢; — cg) and
they are organised in a directed acyclic graph (DAG), where each class can have multiple
parents.
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Calculating the distance between two different instances of the target space .Sy and Sa,
can be done in different ways. The different distances include: weighted Euclidean dis-
tance for HMC [40], Jaccard distance (also known as Union-intersection distance/score)
[14], simGIC (Similarity for Graph Information Content) [25] and ImageCLEF (evalu-
ation score of the ImageCLEF image annotation task) [5]. An experimental evaluation
comparing these distances in the context of HMC [1] has shown that learning predictive
models that use the different distances, does not produce statistically significant differ-
ences in predictive performance.

(b)

(a)
. c g Cl(l C3 (5) c

C1 ) C3
C2.1 C2.2

C21 (3) C2.2(4)

(1)(2)(3)(4
Li=[1, 1,0, 1 0

Fig. 1. Toy examples of hierarchies structured as a tree and a DAG.(a) Class label names contain
information about the position in the hierarchy, e.g., c2.1 is a subclass of cz2. (b) The set of classes
S1 = {c1,c¢2,c2.2}, shown in bold in the hierarchy, represented as a vector (Lg). (c) A class
hierarchy structured as a DAG. The class c¢ has two parents: ¢ and c4.

In our work, we chose to extend the RReliefF algorithm (the ReliefF algortihm for re-
gression [28]) by using a weighted Euclidean distance for HMC [40]. With this weighted
Euclidean distance, the hierarchical aspect is incorporated by relating the class weight
with the depth of the class within the hierarchy. Extending RReliefF with this distance
is the most straightforward choice, considering that the original algorithm uses the Eu-
clidean distance for calculating the distance for the target variable.

Before calculating the distance between two instances of the hierarchy, they are first
represented as a vector of binary values [40]. The vector is created by traversing the tree
or DAG that is representing the hierarchy in pre-order and assigning a 1 or O sequentially
in the vector for a present or absent label respectively. For example, consider an instance
of the toy class hierarchy S, given in boldface in Figure 1(b). This particular instance
consists of three classes, namely {c1, c2, ¢o.2} and its corresponding vector representation
would be L; =[1,1,0,1,0].

If we additionally consider another instance Ss, labelled just with class {co}, with a
vector representation Lo = [0,1,0,0, 0], then the distance between S; and S2 would be
obtained by simply comparing the two binary vectors. In our HMC-ReliefF algorithm we
use a weighted Euclidean distance measure given with the following equation:
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d(L1, L2) = \/Z w(ci)(L,i — La;)?, )]

The weighting function w(c) allows for the hierarchical structure of the classes to be
taken into account by making the value dependent on the depth of the hierarchy:

w(e) = wp™™?,0 <wp < 1. @

This scheme ensures that the differences higher in the hierarchy have larger influence on
the total distance.
For the specific case of comparing S; and S, the distance is calculated as follows:

(S, 92) = d([1,1,0,1,0],[0,1,0,0,0]) = \/wp + w2.

where w(c1) = wg and w(cs) = wi.

If the hierarchy is represented with a DAG, this scheme needs to be modified. In this
case, more than one path from the root to a given class may exist and thus a node can have
different depths. This problem is solved with the following recursive equation:

w(c) = wo - avg(w(parent;(c))). 3)

By using this weighting function, the weight of the different possible parents is averaged.
This is recommended as a good way to take into account multiple inheritance which
occurs in DAGs [40].

4. HMC-ReliefF Algorithm

Algorithms from the Relief family are instance-based methods for estimating feature rel-
evance. The original Relief algorithm is formulated for binary classification problems
[17]. The algorithm was extended to deal with multi-class problems and the extension
was named ReliefF [20]. Later, it was also adapted for regression problems and named
RReliefF [27].

In general, the feature relevance value assigned by the Relief algorithm to a feature F'
is an approximation of the following difference of probabilities [20]:

W[F] = P(diff. value of F'|nearest inst. from diff. class)—

P(diff. value of F'|nearest inst. from same class)

“

In the case of classification, the basic intuition behind the ReliefF algorithm is to
estimate the relevance of a feature according to how well it distinguishes between neigh-
bouring instances. If the feature has different values for neighbouring instances that are
of different class (nearest miss), then it is awarded a higher relevance values. However, if
the values of the class for the neighbouring instances are the same (nearest hit), then the
relevance value is decreased.

Although the hierarchical multi-label setting is a classification one, extending the Re-
liefF algorithm is not a good idea. Namely, if we simply treat two instances annotated by
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different parts of the hierarchy in a simple hit/miss scenario, we would simply translate
the HMC problem to a multi-class one, therefore ignoring both the hierarchical and the
multi-label aspect. Having in mind that the definition of the HMC distance in Section 3
is actually weighted Euclidean distance, it is more suited to be included in the RReliefF
algorithm, originally designed for regression.

In a regression setting, the target space is continuous and the concept of nearest
hit/miss does not apply. Therefore, the feature relevance W[F] is reformulated as the
difference between the following probabilities:

W [F] = P(diff. value of F'|nearest inst. with diff. prediction)—

P(diff. value of F'|nearest inst. with same prediction) ©)
Additionally, if we introduce the following probabilities:
Pyigr (diff. value of F'|nearest instance)
and
Pygc (diff. prediction|nearest instance),
as well as the conditional probability:
Pyigc)aigr (diff. prediction|diff. value of ' and nearest instances).
Finally, by using the Bayes rule, we obtain:
WF) = Paigc|aigr Paigr (1 = Paigc|aigr ) Paigr ©

Paigc 1 — Puygc

The details of the RReliefF algorithm are given in pseudo-code form in Algorithm 1.
The algorithm begins by selecting a random instance (R;) and finding the & nearest in-
stances I; to it. From these instances, it then approximates the relevance W [F] from
Equation 6 of each feature by calculating Ngc, Ngr[F] and Nycgqr[F], described in
lines 6,8 and 9 of Algorithm 1. The estimations of these values is based on the distance
calculation in the feature space, diff (F, R;, I;), (lines 8 and 9) and in the target space,
diff (7(-), Ri, I;), (lines 6 and 9).

Our original purpose is to extend the RReliefF algorithm for hierarchical multi-label
classification problems. Considering that the HMC refers to the target space, we extend
the RReliefF algorithm by changing the way that diff (7(-), R;, I;), from lines 6 and 9, is
calculated. From Section 3 and Equation 1 we obtain:

diff (7(-), Ri, I;) = diff (Si, S5) = \/Z w(cr)(Lik — Ljx)? ©)
k

where S; and S; are the target descriptions of R; and I; correspondingly, while L; ; and
L, are their binary representations. In this way, by changing the way the distance is
calculated, the original RReliefF algorithm is extended to work for HMC problems and
we name this extension HMC-ReliefF.
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Algorithm 1 Pseudocode for the RReliefF algorithm, taken from [28].

Input: for each training instance a vector of feature values x and predicted value 7(x)
Output: the vector W of estimations of the relevance of features

1: setall NdC,NdF[FLNdC&:dF [F],W[F] to0

2: fori = 1tomdo

3: randomly select an instance R;

4 select k instances I; nearest to R;

5 for j = 1tomdo

6: Nic = Ngc + diff (7(+), Ri, I;) - d(4,7)

7

8

for F =1to f do

: Nar[F] = Nap[F] + diff (F, Ri, I;) - d(i, j)
9: Nacgar[F] = Nacgar[F| + diff (7(-), Ri, I;) - diff (F, Ri, I;) - d(3, j)
10: end for
11: end for
12: end for

13: for F =1to f do
14: WIF) = Nacgdr[F]/Nic — (Nar[F] — Nacear[F])/(m — Nac)
15: end for

S. Experiments

In our experimental work, we investigate the HMC-ReliefF algorithm from two aspects:
the algorithm’s ability to find relevant features and the stability of the feature rankings
it outputs. For both aspects, we employ a stepwise filter-like procedure [31], with which
we examine various top-k subsets of the feature rankings allowing for a gradual analy-
sis of the HMC-ReliefF properties. We examine the algorithm’s ability to correctly place
relevant feature on top of the ranking by iteratively constructing predictive models for
various top-k ranked features, described in Section 5.1. For estimating the stability, we
use the Canberra distance between the top-k ranked features produced for different al-
gorithm parameters, described in Section 5.2. We give the specific details of the whole
experimental work in Section 5.3.

5.1. Forward Feature Addition

Our experimental evaluation of the HMC-ReliefF is based on the intuition of what is the
expected output of a good feature ranking algorithm. Namely, a “good” feature ranking
algorithm would output the relevant features on top of the ranked list of features. A “bad”
ranking algorithm would not necessarily be the one that gives an inverse ranking accord-
ing to relevance, but the one that outputs a random ranking. In a random ranking, the
expected distribution of relevant features should be uniform throughout the list.

Having this in mind, we employ a stepwise filter-like procedure [31] to evaluate our
HMC-ReliefF algorithm. The idea is that starting from the ranked list of features, we
construct classifiers for different numbers of top-k ranked features. If there are relevant
features on top of the feature ranking, then we can construct a classifier that has a good
predictive performance. If the ranking is random then the number of relevant features in
the top-k ranked features is expected to be smaller.
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Formally, if we have a feature ranking algorithm r that we use on a dataset D, then
the output would be a feature ranking R, namely:

r(D) — R.

The feature ranking R is defined as an ordered list of features ' (|F'| = f), more specifi-
cally:
R=(Fn,....Fj,...,Fryf)
where:
rank(Fp) < --- <rank(F,;) <--- <rank(F,y)

If we assume that we can induce and evaluate a predictive model M (R;, F}), where R; C
R and F; is a target feature, then our whole evaluation procedure can be described as in
Algorithm 2.

0.8
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Fig. 2. FFA curves comparison example

For each step k of the filtering, i.e., for each subset of top-k ranked feature subsets,
we induce a classification model and evaluate its performance. This process of generating
feature sets from the feature ranking is performed in a forward manner, by adding more
and more of the top ranked features, which we name forward feature addition (FFA). At

Algorithm 2 Stepwise evaluation of the top-k ranked features

Input: Feature Ranking, R = {F’1,..., F,y}; Target Feature, F}
Output: FFA Curve, FFA, where |FFA| = f
Rs< 0
for k =1to f do
Rs < Rs U feature(R, 1)
FFA[i] = eval(M(Rs, F}))
end for
return F'FA




196 Ivica Slavkov et al.

the end, we obtain a vector of model quality estimates that we can plot as a curve, thus
obtaining a FFA curve that we use to estimate the performance of the feature ranking
algorithm.

In order to say that the FFA curve of a certain feature ranking algorithm 7, is better
than that of another ranking algorithm r;, the model quality estimates of the ranking r,
must be larger than those of the models from the ranking r;. Visually, this would mean
that the FFA curve of the algorithm would be above the FFA curve of the random ranking,
illustrated in Figure 2.

5.2. Stability of Feature Rankings

An important aspect of feature ranking algorithms is their stability or, more specifically,
the stability of the ranked feature lists that they produce. The estimation of the stability of
a feature ranking algorithm is intuitively similar to the analysis of stability of classification
algorithms [38]. It is based on first inducing feature rankings, with the same algorithm,
from different training instances and then comparing of these produced ranked lists.

In our experimental work, we use the Canberra distance as discussed by [16]. The
Canberra distance [22, 23] is a weighted distance metric that puts bigger emphasis on the
stability of the top ranked features. If we have two ranked lists R4 and Rp, where R(7)
gives the rank of feature F;, then the Canberra distance can be calculated as:

f . .
Calia,R) = Y- P2 ®)

where f is the number of features.
In order for the distance to be applicable to partial rankings with & < f, the following
adaptation is proposed:

f
Ca** D (R4, Rp) = Z
i=1

|min{Ra (i), k + 1} — min{Rg(i), k + 1}|
min{R4 (i), k + 1} + min{Rp(i), k + 1}

(C))

where Ca*+! = Ca.

Additionally, Jurman et al. [16] provide an analytical approximation of the expected
Canberra distance between completely random rankings. The approximation is dependent
only on the total number of features f and the size of the top-k subset that is considered.
It is given by:

(k+1)(2f — k) 2kf+3f —k—k?

E{Ca*+D)} = log(4) (10)
f f
For complete lists, the approximation becomes:
E{Ca* TV} = (log(4) — 1) f + log(4) — 2 (11)

Finally, if the Canberra distance for partial rankings is normalized with the expected
Canberra distance for each value of k, a normalized stability indicator is obtained, calcu-
lated as:
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) (k1)
i= k,w 1<k<f (12)
E{Cak+D)}

With this adaptation, the stability indicator becomes independent of particular values for k
and f, as it represents the relative change of distance between top-k lists w.r.t. the expected
top-k distance. Therefore, the values of the stability index are directly comparable for
datasets with different number of features f and between different top-£ feature sets.

5.3. [Experimental Setup

Here, we give a brief description of the datasets used in our experiments as well as the
specific details used in our experimental setup. The general idea is to compare the feature
rankings produced by the HMC-ReliefF algorithm with other baseline feature rankings,
those produced by aggregated binary relevance and multiple random rankings. Also, we
perform a stability analysis of the feature rankings output by the HMC-ReliefF algorithm.

Datasets Description We use datasets from two domains which have classes organised
in a hierarchy. We use 5 datasets from 2 domains, more specifically: biology (SCOP-GO
[4] and SCOP-FUN [4]) and image annotation/classification (Diatoms [8], InCLEF07A
[7] and ImCLEFQ7D [7]). The relevant properties that characterize each dataset are given
in Table 1.

Table 1. Properties of the datasets with hierarchical targets; N is the number of instances in
the training dataset, D/C' is the number of descriptive attributes (discrete/continuous), || is the
number of classes in the hierarchy, H is the maximal depth of the classes in the hierarchy, L is the
average number of labels per example, and L7, is the average number of leaf labels per example.
Note that the values for H4 are not always a natural number because the hierarchy has a form of a
DAG and the maximal depth of a node is calculated as the average of the depths of its parents.

Domain Ny |DI/IC| | H| Ha £ Li
Diatoms 1098 0/200 107 2.0 1.98 0.98
ImCLEFO7D 10006 0/80 46 3.0 3.0 1.0
ImCLEF07A 10006 0/80 96 3.0 3.0 1.0
SCOP-GO 9843 0/2003 572 5.5 6.26 0.95
SCOP-FUN 3097 0/2003 250 4.0 3.41 0.95

Both biological datasets concern the task of gene function prediction for Arabidopsis
Thaliana by using Structural Classification of Proteins (SCOP) superfamily class predic-
tions made by the Superfamily server [29]. The difference is in the type of the hierarchy
of the gene functions: SCOP-GO has a hierarchy organised as a DAG (it uses Gene On-
tology for the functional annotations), while SCOP-FUN has a tree-shaped hierarchy (it
uses the FunCAT catalogue of gene functions).

Diatoms, InCLEFO7A and ImCLEFO7D datasets concern the task of image anno-
tation. For the Diatoms dataset the task is to correctly annotate microscopic images of
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diatom organisms, while in the INCLEF07A and ImCLEF07D datasets the task is to cor-
rectly annotate medical X-Ray images. In the three datasets, the images are described by
extracting numeric features with state-of-the-art image descriptors, such as scale-invariant
feature transform descriptors, local binary patterns, Fourier coefficients etc. For more de-
tails on all of the datasets, we refer the reader to the referenced literature.

HMC-ReliefF rankings In the HMC-ReliefF algorithm (Algorithm 1) and in Relief al-
gorithms in general there are two basic parameters that influence the feature relevance
estimation. These are the number of random instances m that are chosen and the number
of nearest neighbours k& that are used to calculate the feature relevance values. We explore
a reasonable set of these parameter values for which we produce feature rankings for the
datasets described in Section 5.3.

More specifically, we consider the following sets of parameters:

— m = {10,50, 100, 250, 500}
— k = {10, 25,50, 100}

Additionally, from the perspective of algorithm implementation, there is one param-
eter related to the number of random instances m. Namely, this is the seed s used for
initializing the random generator that decides exactly which m data instances get se-
lected. In order to provide a relevance estimate that is more statistically independent from
the selected m random instances, we run the algorithm 10 times for each of the m and &
values. Specifically, we use values of s ranging from 1 to 10.

In summary, for our experiments we produce feature rankings for each combina-
tion of values of m, k& and s that we denote with R’T’n””;fS However, based on the sta-
bility results analysis from Section 6, for the further experimental work and compar-
isons, we use averaged rankings from the different values of the seed s, namely: R"¢ =

m,k
averages (RhmC ) .

m,k,s

Baseline Rankings The first baseline for comparison of the HMC-ReliefF rankings are
the aggregated binary relevance rankings. In order to obtain these, we first split the orig-
inal HMC datasets described in Section 5.3, into separate datasets containing a single
binary class. Each binary class c¢; is one of the classes from the original target hierarchy.
Next, for each of the newly produced binary datasets, we run the original ReliefF
algorithm for binary classification and we produce binary relevance (BR) rankings. The
BR rankings are produced for the same values of m and k as the HMC-ReliefF rankings,
thus obtaining ng’ k.c; rankings. For each dataset, these binary relevance rankings are
then aggregated by averaging the feature rankings for all of the classes, namely: R%’ B =

averagee, (R%'ﬁfci)

As an additional baseline for our comparisons, we also use a set of 50 random rank-
ings for each different dataset, R;’“”d. For each of these random rankings, we construct
an FFA curve as described in Section 5.1 and generate a separate FFA curve. For the ran-
dom rankings, we average the results of the 50 individual FFA curves, thus generating an
expected FFA curve for a given dataset.
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Stability and FFA curves We perform a stability analysis of the feature rankings pro-
duced by the HMC-ReliefF algorithm, just with respect to a single parameter, namely the
variable random seed s. Computationally, it is expensive to estimate the feature relevance
by setting the value of m equal to the number of instances in a dataset /N and usually
m << N.However, depending on the dataset in question the value of m should be set so
that the relevance estimates are least variable w.r.t. to the seed s, i.e. the specific random
m instances that are used.

For the stability analysis we use the Canberra distance described in Section 5.2. We
calculate the stability of the rankings by measuring the rank distances between the rank-
ings produced for fixed values of m and k (given previously) but a variable s. Namely, we
calculate the stability indicator for each m and & as follows:

R Ca(k+1)(Rhmkc )
T 13)
e E{Cak+D}

wherei ={1...f}ands = {1...10}.

For constructing the FFA curves, as a predictive model that we induce and evaluate, we
use random forests of predictive clustering trees for hierarchical multi-label classification
(PCT-HMCs)[40, 18]. The specific parameters that we used for the random forests of
PCTs were 100 trees and a variable feature subset size of depending on the size of the
considered top-k feature subsets. For estimating the PCT-HMCs performance, we split
the datasets on train and test data.

In the HMC context, there are various error measures that can be considered. We
use the area of a variant of a precision-recall curve, namely the Pooled Area Under the
Precision-Recall Curve (AU (PRC)). For this measure, the precision (Prec) and recall
(Rec) are micro averaged for all classes from the hierarchy as follows:

> Th
> TP+, FP

Prec = (14)

and

2., Th

Ri =
“T S TP+, FN,

15)

where i ranges over all classes. In this context, Prec corresponds to the proportion of
predicted labels that are correct, while Rec corresponds to the proportion of labels in the
data that are correctly predicted. By varying the threshold, we then obtain an average PR
curve. The area under this curve is then the Pooled Area Under the Precision-Recall Curve
(AU (PRC)). More details about the evaluation measures can be found in [40].

6. Results and Discussion

In this section, we present and discuss the results from the experimental evaluation of the
proposed methods. We first give the results on the stability of the obtained rankings. We
then compare our method with the random ranking and the baseline.
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6.1. Stability

The stability of the HMC-ReliefF algorithm was calculated by using different random
seeds for sampling the instances. In other words, we investigated the sensitivity of the
algorithm of the choice of instances. We obtained two groups of results. The first group
of results contains graphs for different feature rankings obtained with different sizes of
the neighbourhood (k), while the second contains graphs for different number of sampled
instances (m). The total number of graphs per dataset is 9 (4 for the different values of &
and 5 for the different values of m).

In Figures 3 and 4, we illustrate the stability of the rankings produced with HMC-
ReliefF on the Diatoms and SCOP-GO, respectively. We discuss these four graphs in
more detail. First, we focus on the stability of the rankings with different values for m
with the value of k set to 100. For the Diatoms dataset these stability curves are given
in Figure 3(a). By increasing the value of m, i.e., by increasing the number of sampled
instances, the stability of the rankings clearly improves. This finding is also valid for the
other values of k. Moreover, similar graphs are obtained for the ImageCLEFO7A and
ImageCLEF07D datasets. For the SCOP-GO dataset the stability curves for fixed m are
given in Figure 4(a). Here, the stability of the ranking improves with the increase of the
number of sampled instances mainly at the top of the ranking. Note that this is acceptable
behaviour since we are more interested to get stable and relevant features on the top of
the ranking. Similar graphs are obtained for the other values of k and for the SCOP-FUN
dataset.

We next discuss the stability curves of the rankings with different neighbourhood
sizes (i.e., varying k) and the number of sampled instances (m) set to 500. First, for the
Diatoms dataset, the stability curves are given in Figure 3(b), while for the SCOP-GO
dataset in Figure 4(b). For the curves in the both graphs, we can note that by increasing &
the stability improves. The improvement is more noticeable for the Diatoms dataset than
for the Scop_ara_GO dataset. Although, the rankings are not that much sensitive to the

e—e m=10 e k=10
e—e m =50 oo k=25
ogl|®® m=100 0gl|®® k=50
e—e m =250 “||e—e k=100
e— m =500
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Fig. 3. The stability of the HMC-ReliefF algorithm for the Diatoms dataset. (a) stability of the
ranking for a neighbourhood of 100 instances (X = 100) and a variable number of sampled instances
(m) and (b) stability of the ranking for a 500 sampled instances (m = 500) and a variable size of
the neighbourhood (k)
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Fig. 4. The stability of the HMC-ReliefF algorithm for the SCOP-GO dataset. (a) stability of the
ranking for a neighbourhood of 100 instances (X = 100) and a variable number of sampled instances
(m) and (b) stability of the ranking for a 500 sampled instances (m = 500) and a variable size of
the neighbourhood (k)

change of k, for the values of k larger than 10 (i.e., with £ > 25, the rankings have similar
stability curves). Similar conclusions are valid for the other values of m and for the other
datasets.

Overall, the calculated stability curves show that the HMC-ReliefF algorithm pro-
duces feature rankings with good stability. To begin with, the stability improves with the
increase of the number of sampled instances. Moreover, by sampling 500 instances, the
obtained rankings are quite stable. In other words, the algorithm is not much sensitive on
the random sampling of instances, as long as we sample large enough number of them.
Next, the algorithm is not much sensitive on the size of the neighbourhood: Already with
25 neighbours the obtained rankings are stable.

6.2. FFA curves

In this section, we compare the performance of HMC-ReliefF first with random rankings
and then with the baseline feature ranking algorithm - binary relevance of ReliefF rank-
ings. The FFA curves for selected values of the number of sampled instances m and the
neighbourhood size k are given in Figures 5, 6, 7 and 8. The graphs on the left-hand side
in the Figures (sub-figures (a)) represent the FFA curves for a fixed value of m, while the
value of k is varied. Correspondingly, the graphs on the right-hand side (sub-figures (b))
contain FFA curves for a fixed value of k, while the value of m is varied.

Overall, it can be observed that all of the FFA curves of the HMC-ReliefF algorithm
are most of the time above the FFA curves of the random rankings. This means that at the
top of the rankings produced by HMC-ReliefF, for different settings of m and k, relevant
features can be found. It also means that this is not by chance, as the AU(PRC) of the
produced models is larger than the expected value of a random ranking. However, there
are differences in the obtained curves for the different datasets, which we will discuss in
detail.
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Fig. 5. Comparison of FFA curves obtained from the HMC-ReliefF algorithm, random ranking and
the BR ranking for the Diatoms dataset. (a) FFA curve for a ranking using a neighbourhood of
100 instances (k = 100) and a variable number of sampled instances (m) and (b) FFA curve for a
ranking using 500 sampled instances (' = 500) and a variable size of the neighbourhood (k)

We first consider the FFA curves for the Diatoms dataset, given in Figure 5. It can be
noticed that all of the FFA curves produced by HMC-ReliefF, are only slightly higher, i.e.,
are only slightly better, than the expected FFA curves of the random rankings. Also, there
is no great variability of the FFA curves with respect to the different number of m and
k. This is expected if we take into account this specific domain and the way the features
are produced. Namely, most of the features are image descriptors, which are informative
about the image and most of them are relevant. This can also be concluded if we observe
just the expected FFA curve of the random rankings. Furthermore, the rankings obtained
with HMC-ReliefF are better than the ones obtained with BR. The FFA curves for the
BR rankings are even below the FFA curve for the random curves. This leads us to be-
lieve that the BR method produces an inverse ranking in this specific case, i.e., puts the
more relevant features at the end of the ranking. Similarly as for the HMC-ReliefF, the
FFA curves for the BR rankings showed no great variability with respect to the different
number of m and k.

Second, we discuss the FFA curves for the ImageCLEFO7A and ImageCLEF07D
datasets, given in Figure 6. In this case, all of the FFA curves for the HMC-ReliefF, BR
and the random ranking are very much close to each other. The FFA curves for the both
methods show no variability with respect to the values of m and k. Similarly as for the
Diatoms dataset, this behaviour is somewhat expected because the features here are image
descriptors and are informative about the image.

Next, we consider the FFA curves for the SCOP-FUN dataset, given in Figure 7. For
this dataset, we show only the FFA curves with varying k and fixed m, because they offer
the most insightful information about the performance of the methods on this dataset.
These curves require a more complex interpretation. First, the FFA curves of the HMC-
ReliefF are above the FFA curves of the random ranking at the beginning of the ranking.
After adding 10% of the features, the FFA curves of HMC-ReliefF goes below the FFA
curve of the random ranking, i.e., seemingly irrelevant or redundant features are added.
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Fig. 6. Comparison of FFA curves obtained from the HMC-ReliefF algorithm, random ranking and
the BR ranking for the ImageCLEF datasets. (a) FFA curve for a ranking on ImageCLEF07D using
a neighbourhood of 100 instances (k = 100) and a variable number of sampled instances (1)
and (b) FFA curve for a ranking on ImageCLEF07A using 10 sampled instances (m = 10) and a
variable size of the neighbourhood (k)
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Fig.7. Comparison of FFA curves obtained from the HMC-ReliefF algorithm, random ranking and
the BR ranking for the SCOP-FUN dataset. (a) FFA curve for a ranking using 10 sampled instances
(m = 10) and a variable size of the neighbourhood (k) and (a) FFA curve for a ranking using 500
sampled instances (1 = 500) and a variable size of the neighbourhood (k)
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This is until 75% of the features are added. After this point there is a jump in the number
of relevant features that are added, as the AU (P RC') values become larger. Upon a closer
inspection of the dataset, we notice that all of the attributes are declared with type numeric,
while their values are set either to 10 (for the majority of the instances) or to a small
value (typically smaller than 1 - 10~°). This effect coupled together with the sparsity of
the annotation hierarchy (tree-shaped hierarchy of gene functions - FunCAT catalogue
of gene functions) probably contributed to such a disturbance in the relevance estimates.
Moreover, the ReliefF family of algorithms suffers from an underestimation of numeric
attributes [28]. To alleviate this issue, the use of a ramp function was proposed when
calculating the distance between the numerical attributes. In our implementation, a ramp
function was also used, however different threshold parameters of this function were not
explored. Robnik-Sikonja and Kononenko [28] noted that for different domains, different
thresholds might be appropriate. Note that both HMC-ReliefF and BR ranking exhibit
similar behaviour on this dataset.

Let us now focus on the FFA curves of the methods. First, the FFA curves of HMC-
ReliefF are not sensitive to changes of m and k. On the other hand, the FFA curves for the
BR ranking are sensitive to the changes of m and k: Best performance of BR ranking is
obtained with a large number of sampled instances (a large m) and by considering small
neighbourhoods (a small k). This is consistent with the analysis of ReliefF in [28] where it
is stated that the values of m and k are often problem dependent and often smaller values
might be better in order to preserve “locality” of the relevance estimations. BR ranking
is able to profit on the small neighbourhood information and obtain good feature ranking.
BR ranking yields better FFA curves than the HMC-ReliefF for a large value of m and
small value of &k (Figure 7(b)), while for a small value of m, HMC-ReliefF is better than
BR ranking at the top of the ranking (Figure 7(a)).

Finally, the best results were obtained for the SCOP-GO dataset, which we present
in Figure 8. Both for a fixed m and k, the values of the FFA curves produced by HMC-
ReliefF are much higher than those of the random rankings. Moreover, the FFA curves
show that the ranking produced with HMC-ReliefF is better than the ranking produced
with BR ranking: the FFA curves of the HMC-ReliefF are above the FFA curves of the
BR ranking. Next, the FFA curves for the HMC-ReliefF rankings are not sensitive to the
changes of m and k, while the FFA curves for the BR ranking seem to prefer a larger
value of m.

7. Conclusions and Further Work

In this paper, we presented the HMC-ReliefF algorithm, which is an extension of the RRe-
liefF algorithm for the task of Hierarchical Multi-label Classification. We believe that this
is both an interesting and novel line of work, in the context of feature ranking algorithms.
To the best of our knowledge, there has not been any work for feature ranking within
the context of structured data. We specifically focused on the ReliefF algorithm, due to
its success in both classification and regression settings. The specific type of structured
problems that we considered (HMC), was motivated by the fact that this kind of data can
be found in various domains including biology and image annotation.

We evaluated the HMC-ReliefF algorithm on datasets from two domains and with
different properties of the hierarchies. We first evaluated the stability of the rankings pro-
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Fig. 8. Comparison of FFA curves obtained from the HMC-ReliefF algorithm, random ranking and
the BR ranking for the SCOP-GO dataset. (a) FFA curve for a ranking using 10 sampled instances
(m = 10) and a variable size of the neighbourhood (k) and (a) FFA curve for a ranking using 500
sampled instances (m = 500) and a variable size of the neighbourhood (k)

duced by the HMC-ReliefF algorithm. We then investigated if our algorithm is able to
detect relevant features in a dataset and put them on top of the ranking. We consider this
to be a minimum requirement of any feature ranking algorithm. Additionally, we also ex-
plored a reasonable set of parameter settings of HMC-ReliefF, which have influence on
the feature relevance estimations. Finally, we compared the performance of HMC-ReliefF
with a feature ranking algorithm based on binary relevance — a method typically used for
solving the task of feature ranking for (hierarchical) multi-label classification.

The analysis of the stability of the produced rankings showed that the HMC-ReliefF
algorithm produces feature rankings with good stability. The stability of the produced
rankings improves with the increase of the number of sampled instances (the m parameter
of the HMC-ReliefF algorithm). Conversely, the stability of the produced rankings is not
much sensitive on the size of the neighbourhood (the k parameter of the algorithm).

Next, the results of our experiments showed that, for various datasets, the HMC-
ReliefF algorithm performed well, as evaluated by a stepwise filter like approach of con-
structing FFA curves. This performance was compared to an expected FFA curve, ob-
tained from a set of random rankings, and to the FFA curves of the baseline BR method.

The exploration of the various parameters of HMC-ReliefF showed the following. On
one hand, the FFA curves for the HMC-ReliefF are not much sensitive to changes of the
number of sampled instances and the neighbourhood size. On the other hand, the FFA
curves for the BR method are sensitive on the parameter values and these values vary
for different datasets. Next, on the majority of the datasets, the HMC-ReliefF rankings
produced better FFA curves than the competing BR method. For some specific settings
for m and k, the BR method was able to produce better FFA curves (thus better ranking)
than HMC-ReliefF method.

For the image annotation datasets (Diatoms, ImageCLEFO7A and ImageCLEF07D),
the FFA curves of the HMC-ReliefF were just slightly above the FFA of the random
rankings. This was due to the nature of the domain and due to the fact that most of the
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features in the image annotation datasets were relevant. The FFA curve of the BR method
for the Diatoms dataset was bellow the FFA curve of the random ranking. This leads us
to believe that the BR method puts the more relevant features at the end of the ranking.

For the functional genomics datasets (SCOP-FUN and SCOP-GO), the results were
more complex. First, the FFA curves of the HMC-ReliefF are above the FFA curves of
the random ranking at the beginning of the ranking, while as features are being added the
FFA curve drops bellow the random curve. This effect is due to some specific properties
of the attributes, sparsity of the target hierarchy and the underestimation of the numeric
attributes. Next, the BR method requires a larger value for m. For the SCOP-FUN dat-
set, the HMC-ReliefF is worse than the BR only for large values of m and small values
of k, while for the SCOP-GO dataset HMC-ReliefF is better across the whole range of
parameter values.

The directions for further work regarding our HMC-ReliefF algorithm are numer-
ous. One major direction would be to define an artificial, controlled setting for investi-
gating HMC problems in the context of feature ranking. Different types of hierarchies
should be considered, which are also differently structured (balanced vs. unbalanced,
different width, different depth), or differently populated by instances (sparse vs. non-
sparse). Within this setting, the effects of the various parameters of HMC-ReliefF can be
investigated and the advantages and limitations of the algorithm can be further explored.
Another major direction is to consider different types of structured outputs, such as multi-
label classification, multi-target classification and multi-target regression.
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