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Abstract. Content Delivery Networks (CDNs) are increasingly deployed for their 

efficient content delivery and are often integrated with Software Defined 

Networks (SDNs) to achieve centrality and programmability of the network. 

However, these networks are also an attractive target for network attackers whose 

main goal is to exhaust network resources. One attack approach is to over-flood 

the OpenFlow switch tables containing routing information. Due to the increasing 

number of different flooding attacks such as DDoS, it becomes difficult to 

distinguish these attacks from normal traffic when evaluated with traditional 

attack detection methods. This paper proposes an architectural method that 

classifies and defends all possible forms of DDoS attack and legitimate Flash 

Crowd traffic using a segregated dimension functioning cognitive process based 

in a controller module. Our results illustrate that the proposed model yields 

significantly enhanced performance with minimal false positives and false 

negatives when classified with optimal Support Vector Machine and Logistic 

Regression algorithms. The traffic classifications initiate deployment of security 

rules to the OpenFlow switches, preventing new forms of flooding attacks. To the 

best of our knowledge, this is the first work conducted on SDN-driven CDNi used 

to detect and defend against all possible DDoS attacks through traffic segregated 

dimension functioning coupled with cognitive classification. 

Keywords: SDN, CDN, CDNi, DDoS, Flash Crowd, Machine Learning, Support 

Vector Machine, Logistic Regression. 

1. Introduction 

Content Delivery Networks (CDN) were originally proposed for content providers to 

meet clients' performance requirements by decreasing web latency during content 

delivery by distributing content via proximity or edge servers spanning the internet. 

There are many kinds of Content Delivery Networks, which can be generally classified 

as either industrial or academic. Popular among industrial CDNs are Akamai, Limelight, 

and EdgeStream, while CoDeen, Coral, and Globule, are popular academic CDNs. 

Though all CDNs differ in the way they serve content, they all have an origin server that 

eventually communicates with some other edge servers. However, the customers of one 

CDN could not access service from another CDN, which gave rise to various scalability 

issues [1]. To solve this issue, the interconnection of the CDNs was proposed and 

referred to as the Internetworking of CDNs, or CDNi [2].  
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Soon after CDNs became popular, the concept of Software Defined Network (SDN) 

came into practice, as it promised a better monitoring and controlling scenario for the 

entire network and could be programmed from a single point controller. Per the Open 

Network Foundation (ONF), the key to an SDN lies in the physical separation of the 

control plane from the data plane, while the control plane controls several data plane 

components. An application plane is also housed on top of the control plane, where the 

network programming applications are stored as modules. The data plane mainly 

consists of OpenFlow-enabled switches, which save rules in a flow table by taking 

instructions from the central controller in the control plane. These planes are connected 

to the Operations System Support (OSS), which constantly extracts basic management 

information for the SDN to run [3]. Figure 1 shows an example of an interconnected 

Content Delivery Network, or CDNi, consisting of two Content Delivery Networks 

(CDN1 and CDN2) communicating with each other to provide contents to a user. 

 

 

Fig. 1. Interconnect Content Delivery Network (CDNi) 

Figure 2 shows the Open Networking Foundation-defined SDN architectural planes 

and their basic contents. The figure shows the three main planes (Application, Control, 

and Data plane) which interoperate over northbound and southbound API to manage 

packet request received at the Data plane switches. 

Recently, the combination of SDNs and CDN has received enormous attention due to 

improved and synchronous CDN request routing by utilizing the centralization and 

programmability of SDN [4] [5]. However, as these networks become increasingly 

centralized, they are also becoming potential targets for attacks where a single point of 

failure can cause damage to multiple components in the centralized network [6]. One of 

the most widely discussed attacks for these networks is a Distributed Denial of Service 

(DDoS) attack, which makes the system effectively unavailable [7] [8].  
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Fig. 2. Software Defined Network (SDN) 

Distributed Denial of Service attacks typically occur when a large number of internet 

packets from compromised hosts (zombies) flood the bandwidth or resources of a single 

target (victim). The flood of incoming messages to the victim essentially forces it to 

respond so slowly as to be rendered effectively unavailable and even to shut down, 

thereby causing denial of service for legitimate users of the targeted system [9]. The 

number of different types of DDoS attacks is increasing daily, ranging from TCP 

flooding, UDP flooding, ICMP flooding, SYN flooding, and other source-based and 

destination-based bandwidth and scanning attacks [10]. Along with the evolution of new 

next-generation networks, new next-generation attacks are also evolving. These attacks 

are often hybrid in nature and difficult to identify when we try to match them against 

previously established signature profiles. In the case of SDN-driven CDNi, the 

centralized architecture becomes a bottleneck and therefore can be exploited by the 

attackers who aim to bring down the backbone network. There are three challenges 

faced by this network: 1) detecting close, 2) detecting soon, and 3) differentiating an 

attack from a Flash Crowd. Detecting close is critical since attacks can be highly 

distributed and attack traffic from each source can be made smaller as camouflage. On 

the other hand, detecting soon is also crucial because alarms need to be activated sooner, 

especially in big networks, such as SDN/CDNi, on which many devices depend. The last 

and the most important issue is to be able to identify the attack traffic correctly without 

false alarms and distinguish it from legitimate Flash Crowds. In this research work, we 

mainly focus on this last challenge.  

By definition, Flash Crowds are large surges of legitimate traffic directed toward 

some specific sites on the internet over a relatively short period, which can cause a 

website or target system to slow its service for users or even temporarily close due to the 

significantly increased traffic. Flash Crowds are quite similar to DDoS attacks in terms 

of traffic volume [11]. Motivated by these findings, our attack study approach aims to 

approach attacks differently from the conventional ways of categorizing attack types. 

Our mechanism considers the occurrence of all possible DDoS attacks and compares 

them with real network traffic samples. For example, a modern attacker can use tricks to 
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mimic a Flash Crowd so that its traffic looks legitimate. Therefore, the goal of this paper 

is to introduce a unique architectural technique to distinguish all possible DDoS traffic 

from Flash Crowd/Normal traffic in an SDN-driven CDNi using the extraction of 

OpenFlow switch traffic features, supported by a segregated dimension functioning 

cognitive approach. For doing so, we propose a stretch model to provide insight into real 

DDoS and Flash Crowd traffic by utilizing the dimensionalities of traffic features 

verified against machine learning classification techniques. In essence, the main 

contributions of this paper are as follows: 

• We propose a cognitive detection and defense mechanism to distinguish all possible 

DDoS attacks and Flash Crowd traffic apart in an SDN based CDNi architecture. 

Therefore, we provide a robust framework to distribute the complex detection and 

defense problem into various parts of the SDN based CDNi architecture to detect 

and defend DDoS attacks more accurately in the presence of legitimate Flash 

Crowd traffic.  

• We formulate a dimension segregation and functioning approach to simplify the 

processing computation of robust machine learning algorithms further. A systematic 

stretch model implements the approach to attain higher accuracy rate. Furthermore, 

the segregation and functioning based stretch model contributes to significantly 

enhance the evaluation time besides increasing the accuracy of the mechanism. 

• We also implement a security module in the SDN Floodlight controller to insert 

security rules based on the intelligent decision made by segregated dimension 

functioned Support Vector Machine, and Logistic Regression. We simulate a DDoS 

attack in an emulated SDN based CDNi architecture and defend the attack traffic by 

utilizing our security module. In addition, we also evaluate the processing delay 

caused by our security module and show that the overall effect is minimal for a set 

of standard values of bandwidth provided to the network. 

• We perform extensive experimental analysis to evaluate the performance of the 

proposed approach. The results show that the dimension segregation and 

functioning approach achieves higher accuracy for all the four-evaluated state-of-

the-art machine learning algorithm. In addition, the accuracy of the two state-of-the-

art machine learning algorithms, Support Vector Machine and Logistic Regression 

outperforms the other state-of-the-art machine learning algorithm for the given 

scenario.  

This paper is, thus, organized as follows. Section II presents some related works in 

DDoS detection and discrimination from Flash Crowd and classification techniques. 

Section III introduces our proposed model and architectural mechanism followed by the 

defense algorithm. The implementation and performance analysis are presented in 

Section IV. Section V concludes our paper, summarizing the contributions and 

outcomes. 

2. Related Works 

There has already been significant research on the detection of DDoS attacks [12]. In 

[9], DDoS attacks in MANET was considered and proposed a defense using protection 

nodes forming a tree topology, where the low-level nodes inform the high-level nodes 
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about a possible attack. However, the paper mainly focuses on attack defense, rather 

than on establishing a concrete way of detecting an attack and differentiating it from 

non-attack traffic. In [13], the concept of separating the identifier and locator to detect a 

DDoS attack was proposed, which distributes the work of detection over the network. 

The conventional way of detecting attacks has been to create profiles of different attacks 

and then match them to the sample of concern. However, along with the evolution of 

new next-generation networks, the number, and type of attack are also evolving daily as 

attackers tweak their attack patterns in order to bypass these simple network intrusion 

detection systems.  

In [14], the NOX controller was used with OpenFlow for flow analysis using Self-

Organizing Maps (SOM) to detect DDoS attacks. The paper focuses on proposing a 

lightweight mechanism for DDoS detection using the platform provided by NOX. In 

[15] a clustered neural network was proposed and in [16] a random neural network was 

proposed for enhancing the separating boundaries of normal and attack. However, 

neural network techniques can also sometimes classify Flash Crowds as DDoS traffic 

and vice versa, particularly if the attacker tweaks the traffic features to mimic a Flash 

Crowd. Besides, in [17] the combination of Bayesian networks and Regression Trees 

was proposed for optimized feature deduction. In [18], combining classification trees for 

increasing accuracy in intrusion detection was proposed. A flow-based detection 

mechanism was proposed in [19], where they tried to differentiate normal traffic with 

false alarms and DDoS attack traffic using functions for each attack type. Their 

mechanism consisted of creating a chart of characteristics of the different flooding 

attacks and matching the sample functions to the flooding attack characteristics. 

However, the parameters that they used as the standard to calculate the functions could 

also lead to false alarms in the case of a Flash Crowd.  

In [20], [21], [22], and [23] the use of machine learning classifiers was considered to 

distinguish DDoS from normal traffic, and their experimental results suggest that SVM 

can be useful for such classifications, detecting fewer false positives and leading to 

higher accuracy. However, with pure SVM-based classification, an attacker tweaking 

traffic features can still be successfully misclassified as a Flash Crowd. In, [24] the 

difference of using machine learning in network intrusion detection was discussed and in 

other domains and they pointed out the need of illuminating the problem space and 

binding careful decisions with the problem. In [6] and [25], some of the attack defense 

capabilities of SDN architecture were discussed as a futuristic next-generation network. 

However, while they talked about the many security solutions that SDN architecture 

offers, they did not focus on specifically what sort of attacks the SDN architecture itself 

can face and therefore the sort of detection measures required for those attacks.  

In, [26], [10], [27], and [11] specific discriminating techniques were proposed to 

differentiate attack traffic from Flash Crowds. Most of these techniques rely on creating 

packet arrival patterns or measuring the flow distances (based on flow distance 

calculation methods such as Sibson’s distance) to distinguish attack traffic. As discussed 

earlier, Flash Crowds can also lead to traffic flows with similar distances, and attackers 

can tweak attack profile information to bypass intrusion detection. In [11], the idea of a 

correlation coefficient between flows was proposed. This technique considers all packets 

incoming to a certain destination as one flow, and while it differentiates traffic quite 

well, it does not help to categorize traffic based on the incoming traffic’s unique header 

combination. Because our approach uses OpenFlow-enabled traffic extraction, we can 
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uniquely identify and categorize the packets with the same 5-tuple headers as one flow 

and thus can better categorize flows for our attack analysis.  

As can be seen, some of the detection mechanisms do not consider the similarities of 

a DDoS attack and a Flash Crowd, while some do not realize a universally suitable 

method to detect them. Although machine learning techniques are known to effectively 

classify with very low false positive rates, most of the proposed mechanisms that feed 

the traffic into the classifier directly and test the performance of different machine 

learning classifiers can still lead to false alarms when we feed in traffic that mimics 

Flash Crowd traffic. To the best of our knowledge, the art of feeding more useful input 

in order to output more efficient classification has not yet been considered. The goal of 

this paper is to address these aspects while proposing a unique approach for DDoS 

discrimination from normal or Flash Crowd traffic for next-generation networks. 

3. Proposed Detection and Defense Mechanism 

Our proposed detection and defense mechanism has two parts. The first part includes the 

proposed architecture in which the mechanism will be implemented, and the second part 

elaborates on the detection mechanism itself. 

3.1. Proposed Architecture 

Our proposed SDN-based CDNi architecture consists of interconnected Content 

Delivery Network servers connected to OpenFlow-enabled switches, which are in turn 

connected to a central controller for SDN services. In this paper, we are considering the 

DDoS attack aimed at the OpenFlow switch of the SDN which is also responsible for 

implementing the defense mechanism to protect the rest of the network comprising of 

CDNs. Therefore, if the OpenFlow switch is protected and defending the DDoS attack 

properly, the CDN servers and the rest of the network will also eventually be protected. 

Hence, due to the limitation of our emulator and to the fact that, for our paper, we are 

considering the DDoS attack aimed at the OpenFlow switch, of the SDN and not at the 

CDNs which will eventually be protected by the OpenFlow switch, we do not define the 

type of CDN. Instead, we simply consider the CDN until the origin servers. The 

application modules, housed on top of the SDN controller, feed rules into the 

OpenFlow-enabled switches using the southbound OpenFlow API. When a client makes 

a request, it is forwarded to the best-suited CDN/CDNi by the OpenFlow switch in the 

SDN network, where a suitable edge server provides services to the requesting client. 

Figure 3 shows our proposed architecture with its three main sectors. 
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Fig. 3. Proposed SDN-driven CDNi Architecture for DDoS sensing and mitigation  

Typically, in a Software Defined Network, all requests should pass through an 

OpenFlow switch, which determines its route based on the rules saved in the switch’s 

table. Thus, the switch plays an important role and is therefore quite vulnerable to 

certain attack types. In our proposed scenario, when a customer wants to access services 

from a CDN server, its request is forwarded first to the SDN controller by a proactive 

OpenFlow switch. The controller then analyzes the request, before being forwarded by 

the OpenFlow Switches in the data plane. The size of the switch table is thus controlled 

by a proactive OpenFlow switch which inserts a rule only after being approved by the 

SDN controller and not instantly inserting a rule as it happens in a reactive OpenFlow 

switch scenario. In the process, the requests remain in a default queue of the SDN 

architecture and, therefore, does not immediately overflood the OpenFlow switch until 

the controller confirms a rule to be inserted for a certain set of flows. Besides, any 

incoming traffic is dropped based on the type of flow and not the type of packets which 

allows to categorizing and concise the incoming traffic further. Here, a flow is 
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considered to be any traffic with the same five tuples consisting of source IP, destination 

IP, source port, destination port and protocol. The detection and defense mechanism 

consist of three sectors as also shown in Figure 3: the detection sector, the analysis 

sector, and the defense sector. 

Detection Sector. The detection sector in our proposed mechanism is in the OpenFlow 

Switches, where approaching traffic is identified and extracted using curl query API for 

the OpenFlow Switches. Through curl queries, we can extract specific feature 

information about the ingress flows and packets entering the OpenFlow Switch. The 

detection sector thus provides the raw data for analysis from which the proposed 

detection technique can operate. 

Analysis Sector. The analysis sector is the controller, where a security module converts 

the analyzed decisions into security rules to defend against the attack and protect the 

attacked switch. The proposed mechanism leverages machine learning classification 

techniques for analysis to find traces of an attack in the ingress flow information 

extracted at the detection sector. 

Defense Sector. In the defense sector, the results from the detection mechanism in the 

controller side are leveraged to enact security rules in the OpenFlow Switch via the 

southbound API. The classification from the machine learning technique of the analysis 

sector is used to set rules of the following form: 

 

Rule R: If xi ϵ Cj 

then action = drop with IP==attackFlowIP 

 

where R is the rule for the i-th n-dimensional pattern vector, xi = (xi1, xi2…, xin) which 

belongs to j-th class, Cj. The ‘then’ part defines the action that causes the OpenFlow 

switch to drop the flow with the IP address of xi. This security rule is translated into the 

SDN OpenFlow rule format and applied to the OpenFlow switch, which then uses this 

rule to drop malicious flows and thus act as the defense sector.  

 

However, it is important to note that Flash Crowds can also cause flooding of flows like 

attack traffic, and attackers may try to mimic Flash Crowds. However, since Flash 

Crowds are legitimate packets, they require normal service. This necessitates an 

effective analysis mechanism to distinguish Flash Crowd traffic from DDoS traffic. In 

the next section, we propose a model based on a dimension segregation and functioning 

technique that aims to efficiently differentiate Flash Crowd traffic from DDoS traffic to 

aid in machine learning classification. Here we discuss a comparison of our proposed 

detection and defense mechanism with other previously proposed approaches as shown 

in Table 1. 
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Table 1. Comparison Chart 

 Previous Approaches Proposed Approach 

Proposal Typical detection and defense 

techniques [9,12,18] 

Proposed an intelligent 

SDN controller module 

Architecture Traditional architectures [9,12] SDN based CDNi 

Feature 

deduction 

Direct feature use, feature selection 

[19,20,21,22,23] 

Feature segregation, feature 

functioning 

Technique and 

goal 

Correlation coefficient [10, 11], 

Sibson’s distance [27], 

Bhattacharyya coefficient [26], 

Machine learning [20,21,22.23] 

etc. to detect DDoS attacks in 

general 

Machine learning with 

segregated feature 

functioning to detect all 

possible forms of DDoS 

attacks including those 

trying to mimic Flash 

Crowd 

Hardware 

requirement 

Sometimes extra hardware 

required [9, 10,11, 13,26,27] 

No extra hardware required  

 

Tool used 

 

For machine learning, commonly, 

Python (Scikit) requiring python 

environment and needs to check 

dependency  

Matlab considered to be heavy 

weight [28] 

 

Weka tool is easy to 

implement with a better 

interface and can easily be 

compiled into native code 

with cross-platform tool 

[29]   

 

3.2. Dimension Segregation and Functioning Model 

Network traffic information can be represented as flows and packets or can be divided 

into more dimensions as meaningful information is derived when we segregate basic 

features. Flows can be represented in two dimensions by flow count and flow size, and 

packets can be represented in two dimensions by packet count and packet rate. The raw 

data can be used directly or can be represented with functions that extract more 

characteristics from them. Different kinds of flooding attacks give rise to different kinds 

of peaks. For example, a TCP SYN flood will have a large flow count, whereas a ping of 

death attack might have a smaller flow count but larger flow size. However, these 

properties can also be tweaked by an attacker to change the expected profile for a certain 

attack. What remains true is that, when the attacker has an immense volume of attack 

traffic to manage, the attacker is not able to assign unique sets of properties to each 

traffic instance, creating patterns in traffic properties. We can visualize these patterns 

when we segregate traffic into useful dimensions. In this model, we segregate based on 

four features: packet count, flow size, packet rate, and flow count. The patterns of these 

features are most prominent when we look at their standard deviation function. This is 

because, it is not easy for the attacker to create high deviations for each packet while 

generating a huge number of attack packets; therefore, standard deviations of DDoS 

traffic features are smaller than those of Flash Crowd traffic [5]. Classification based on 
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this dimension segregation and functioning approach can then be verified against 

optimized machine learning classification techniques to visualize improvements. Figure 

4 shows our dimension segregation and functioning for traffic instance vectors in a four-

dimensional space. 
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Fig. 4. Proposed Segregation and Functioning Process. A vector v represents a traffic instance 

comprised of four traffic features or dimensions represented as a function of themselves 

It should be noted that our classification is based on flows. Therefore, if the packet 

flow is continuous and simultaneous, we can separate them as flows. This also allows to 

categorize and manage the traffic better. Thus, our mechanism can distinguish if the 

incoming flows from one switch are a mix of DDoS and Flash Crowd traffic. When we 

consider a Flash Crowd flow, the individual standard deviation of all four features, 

packet count (pc), packet rate (pr), flow size (fs), and flow count (fc), of that specific 

flow during times t1 to t2 and t2 to t3 will tend to be high. On the other hand, if we 

consider a DDoS flow, the individual standard deviations should be low for the same 

time frames. A challenge could be created by DDoS attacks that try to vary the values of 

the features and try to make them random. However, when there is a huge volume of 

traffic to manage and send, it is difficult for an attacker to assign individualistic values 

to all instances of each flow the attacker sends. Therefore, when we evaluate the 

standard deviations of the features in the classification test, the division between the 

Flash Crowd and DDoS flows will become more distinct and easily separable. The easy 

separability of this technique can also support in reducing the processing time of the 

machine learning algorithms as less computation will be required to form the separating 

margin 

 

3.2.1 Stretch Model 

We propose a stretch model based on dimension segregation and functioning as 

described above. In the stretch model, the provided data is divided into vector 
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dimensions, analyzed, and then divided further until an optimal point is reached. We test 

our stretch model using two machine learning techniques, the Support Vector Machine, 

and Logistic Regression, which are each highly optimized for a two-class problem. Each 

time the number of dimensions increase, we test the performance of our data input 

against these two machine learning classification techniques. At a suitable model 

dimension, we apply a function of the standard deviation and apply the Machine 

Learning Algorithms, as described in the next subsection. Figure 5 shows the workflow 

of our stretch model. 

 

 

Fig. 5. The Stretch model created by using dimension segregation and functioning subjected to 

machine learning classification  

 

Fig. 6. Proposed DDoS Flooding Attack Detection and Defense Algorithm 
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Figure 6 shows our detection and defense algorithm inspired by the above 

mechanism. If the instance is found to be DDoS class, then the security rules are 

implemented. If the instance is not a DDoS class, then a further classification is run on 

the Flash Crowd class, since Flash Crowd traffic is more prone to false alarms due to its 

randomness. This also allows us to double-check the traffic that we tentatively accept as 

normal. The complexity of the algorithm itself is linear assuming 1 unit of time cost and 

a single processor of the SDN controller conducting sequential execution over a single 

loop. Further evaluation of the delay caused by our algorithm will be discussed in 

section IV. In the next section, we discuss our mathematical model that is used to 

validify our segregated dimension functioning approach. 

3.2.2 Mathematical Model 

Dimension segregation is used to increase dimensions and to test the vector’s standard 

deviation function of feature i, fi, against machine learning classification techniques. For 

this, we use two optimal classification techniques, namely the SVM and Logistic 

Regression. Machine learning classification techniques are optimal for discrimination 

processes in almost all domains. One of the most efficient machine learning technique is 

the Support Vector Machine (SVM). Support Vector Machines work by creating a 

classification plane in order to separate vectors from two classes onto either side of this 

classification plane. If it is a two-dimensional space, the separating plane is called a 

linear classification line. However, if it is in three dimensions, the separating plane is 

simply called a plane. Apart from that, there are multiple dimensions, the separating 

plane is called a hyperplane [30]. Besides Support Vector Machine, Logistic Regression 

is also quite optimal with the two-class problem in a multi-dimensional environment. In 

Logistic Regression, when there is a two-class problem, the probability of a vector 

belonging to a certain class can be quite useful and more important than the value of the 

class itself. Therefore, Logistic Regression aims to find the probabilities of vectors 

belonging to a certain class [31]. Due to these unique features of Support Vector 

Machine and Logistic Regression, we use these two algorithms as our baseline 

algorithm, where we apply a proposed feature dimension functioning.  

In segregation model, we consider every instance vector, x, described by particular 

dimensions. Instead of using the raw dimensional value, we calculate the standard 

deviation value for the dimensions at specific intervals, denoted as a function of the 

feature i defined as  

fi = σ of feature i. (1) 

 

where feature i can be one of our selected features: packet count, packet rate, flow size, 

or flow count. Accordingly, in terms of the SVM, we can consider x= fi in the function 

G(x) as  

G(fi)= ω
T
 fi +b =0. (2) 

 

where ω
T
 is the orientation of the separating hyperplane, and b is the position. The 

values of ω
T
 and b come out of the training and optimization process, which maximizes 
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the separation of the support vectors from the classifying hyperplane, G(fi). The default 

optimization mechanism for SVM is used to extract the optimal values for w and b for 

the hyperplane, G(fi), where we then input the vectors in the form of our vector function 

fi to produce the optimal classification. 

In the case of a dichotomous output, which in our case is a DDoS or a Flash Crowd, it is 

also useful to classify based on the probability of a sample belonging to either of these 

two classes. Here we used Logistic Regression to calculate the probability p by equating 

our function-based features in the probability equation, denoted as 

 

p = e
b
0

+b
1

f
1
+b

2
f
2

…b
n

f
n / (1+e

b
0
+b

1
f
1
+b

2
f
2

…b
n
f
n). (3) 

 

where bi is the associated coefficient for feature i, denoted as a feature function fi. Using 

this probability, we derive the Logistic Regression equation as  

 

Logit(p)= b0+b1f1+b2f2…bnfn  (4) 

 

which presents the probability of a vector belonging to a particular class. In the next 

section, we discuss the performance analysis of our mechanism based on the above 

described methodologies. 

4. Experimental Result and Performance Analysis 

4.1. DDoS Detection Mechanisms 

For implementing our proposed mechanism, we verified our model with real datasets, 

namely the World Cup 98 dataset [32] that caused one of the biggest Flash Crowd 

events in history, and the CAIDA DDoS 2007 dataset [33] for real DDoS attack traffic. 

Both the datasets are standardized and publicly available State-of-the-art datasets. 

Besides, the World Cup 98 dataset for Flash Crowd is one of the few comprehensive 

datasets available for Flash Crowd evaluation. Like other networks, the SDN based 

CDNi is also used as a basic network which can be prone to DDoS attacks in a similar 

manner. Therefore, we believe the two selected datasets to be well suited for this 

network evaluation. We also used attack tools to generate DDoS attack traffic in the 

Mininet emulator, which was later defended by the security rules inserted into the 

OpenFlow Switch. 

We used two main tools for our experimentation. The Mininet 2.2.0 emulator [34] 

was used to build the architecture of the SDN-driven CDNi, where security rules were 

also implemented. Weka 3.8 was used to analyze the performance of our proposed 

classification techniques against machine learning algorithms. Results of the 

performance analysis were then plotted for graph generation. 
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4.2. System Architecture 

The proposed architecture, comprised of the three sectors of detection, analysis, and 

defense, was implemented via the SDN-driven CDNi architecture emulated in Mininet. 

Ten hosts were connected to the OpenFlow Switches, which were in turn connected to 

four CDN origin servers. A Floodlight controller was implemented on a remote server 

machine, which was connected to the OpenFlow switches. When a request approaches 

the OpenFlow Switch to access a CDN server, the rules saved in the OpenFlow switch 

are used to decide whether to redirect the request to the CDN server or to drop it. The 

rules come from the controller, which is responsible for delivering security rules to the 

OpenFlow switch via a security module housed in the application plane of the controller. 

Figure 7 shows the simulated architecture in Mininet. 

 

Fig. 7. Mininet Simulation Environment 

Our proposed mechanism requires monitoring the traffic in terms of packet count, 

packet rate, flow size, and flow count, each extracted through curl queries used for the 

classification test. The classification test in Weka was performed using the World Cup 

98 Flash Crowd and CAIDA DDoS datasets. The datasets are used to validate our 

proposed mechanism via experimentation, following which traffic collected from the 

OpenFlow Switch can be similarly treated to defend flooding attacks.  

The simulation has two major parts. The first part includes conducting the 

classification tests while managing dimensions and applying the proposed function. The 

second part includes emulating an attack environment in Mininet and implementing 

security rules to defend against the malicious flows.   
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Our experimental setup contains a lab environment where we set up a controller in 

one Linux machine (Ubuntu 14.04, 2.94 GHz, and 4 GB RAM). We set up the emulated 

SDN-based CDN servers in another Linux machine also running Ubuntu 14.04 in 

Virtual Box with hosts operating with the controller over the Mininet 2.2.0 emulator. 

The joining point is the OpenFlow Switch, which collects information about the flows, 

which are then segregated into useful dimensions by converting them to their standard 

deviation functions. These vectors are then fed into the Weka tool as ARFF (Attribute-

Relation File Format) files, where classification tests are run using the machine learning 

techniques. The results of the classification test are discussed in the next section. 

4.3. Implementation and Performance Evaluation 

 

Machine Learning Classification Performance. We used a total of 38,484,863 Flash 

Crowd flows and 22,569,183 DDoS flows for the classification test. Due to the dataset 

format and processing limitations, we rearranged the data into 14 different sets. To 

verify our results, we tested the results using cross-validation in 10-fold, the full training 

set as well as percentage split tests of 50:50, 60:40, 70:30, 80:20, and 90:10 training/test 

datasets, for both the SVM and Logistic Regression classifiers. The traffic data was first 

divided into two dimensions, flows and packets. The two dimensions’ classification was 

then tested against SVM and Logistic Regression classifiers. In the next experiment, we 

increased the number of dimensions to four where we used the four dimensions of 

packet count, packet rate, flow size, and flow count. The same seven tests in both SVM 

and Logistic Regression were repeated for the 4-dimension case. Next, we processed our 

dimensions with the standard deviation functions and re-ran the classification tests. 

Figure 8 shows the classification performance for the three experiments. 

With four dimensions, more packets were correctly identified than the two-

dimensional case, and almost all tests in both SVM and Logistic Regression resulted in 

higher values. Logistic Regression achieved 100% correct classification in the training 

set test and 90% in the percentage split test. The performance in all experiments 

improved when we applied the proposed function, with nearly every test resulting in 

100% correct classification. Logistic Regression achieved 100% correct classification in 

six tests and over 90% correct classification in the seventh test performed. SVM 

achieved 100% correct classification in five tests and over 90% in the remaining two 

tests, still much higher compared to the results for the four-dimensional case. To verify 

the performance further, we ran the classification test for two other state-of-the-art 

classifiers in a four-dimensional case and a functioned four-dimensional case. Figure 9 

shows the average classification performance of all four classification techniques with 

the proposed function. As can be seen, all the four classifiers’ performance is higher 

with functioned four-dimensional case than that in four-dimensional case. This is 

because the functioning of the features allows making the features of DDoS and Flash 

Crowd more differentiable. The functioning is based on standard deviation value which 

will eventually be low for DDoS when we combine all the DDoS data features while it 

will be sparser for Flash Crowd. The functioned four-dimensional case is further 

elaborated for all the classifiers through the same seven tests as shown in Figure 10. 
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Fig. 8. Classification performance with dimensional segregation and dimensional segregated 

functioning  

 

 

Fig. 9. Average performance of four classification technique with and without dimension 

functioning 
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Fig. 10. Classification performance of four classification techniques with proposed function  

 

Though the average performance is higher with the functioned four-dimensional case 

for all classifiers, Logistic Regression and SVM significantly benefit from the 

functioning in all seven tests. This is because both SVM and Logistic Regression are 

robust in detecting noisy and sparse data that is introduced here by the Flash Crowd data 

instances. SVM and Logistic Regression perform comparably in practice. However, the 

performance of SVM was little lower than Logistic Regression in the pure training set 

test. This phenomenon is expected, as SVM is trying to simplify a problem that is 

already simplified by the feature functioning process while Logistic Regression utilized 

the feature functioning and solves it better with a more probabilistic approach. The 

performance of our proposed segregation function for SVM is further discussed with 

precision and recall in the next subsection. 

Precision and Recall. In practice, there is always a possibility of false positive or false 

negative results. In our set of tests, the possibility of false positive is more likely for a 

Flash Crowd, as it can accept any randomness that is introduced. However, our 

mechanism should be able to correctly classify all DDoS traffic, as the standard 

deviation will have a similarity that is difficult for attackers to avoid. The difficulty lies 

in giving unique features to each instance of thousands and thousands of requests. The 

above-discussed scenario is also illustrated through our TPR, FPR precision and recall 

tests subjected to SVM shown in Table 2 and 3. 

Table 2. True Positive Rate and False Positive Rate 

 DDoS Flash Crowd 

True Positive Rate 0.929 1 

False Positive Rate 0 0.071 
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Table 3. Precision and Recall 

 DDoS Flash Crowd 

Precision 1 0.933 

Recall 0.929 1 

 

As per the precision and recall tests, all Flash Crowd traffic is predicted correctly, 

which also results in a True Positive Rate (TPR) of 1; however, some DDoS is identified 

as a Flash Crowd, which results in a False Positive Rate (FPR) of 0.071. However, no 

Flash Crowd traffic is identified as DDoS, for which the False Positive Rate (FPR) is 0, 

but not all DDoS is predicted correctly, resulting in a True Positive Rate (TPR) of 

0.929. This means that, in cases of DDoS, there were some False Negatives, causing the 

False Negative Rate (FNR) for it to be 1-TPR = 0.071. In this regard, our approach 

improves the State-of-the-art architectures in a significant way as shown by the above 

results. Also, we consider the issue of detecting all Flash Crowd correctly could be dealt 

with further learning by a second level of security. Hence, we consider this issue as a 

future work of our mechanism.  

In terms of nodal delay, which is a summation of transmission delay, propagation 

delay, processing delay and queuing delay, our architecture is subject to queuing delay 

and processing delay [35]. This is because the transmission delay is dependent on the 

channel capacity while the propagation delay depends on the environment. Therefore, 

considering the above discussed two delays remain the standard values, we evaluate the 

processing delay and queuing delay of our proposed algorithm. Figure 11 shows the 

average processing delay for the machine learning algorithm with and without dimension 

functioning.  

 

Fig. 11. Average processing delay with and without proposed dimension functioning  

 

Our segregation and dimension functioning method significantly reduces the 

processing delay of the machine learning algorithm since the segregated dimension 

functioning causes easy separability of the two classes. The delay with no dimension 

functioning, however, remains very high as it takes a lot of computation for the machine 

learning algorithm to create a separating plane for raw DDoS and Flash Crowd 

instances. In case of the machine learning algorithm with dimension functioning, the 

functioned features easily separate for DDoS and Flash Crowd with lower values for 



Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi           181 

 

DDoS and higher values for Flash Crowd. This aids in a quicker generation of a 

separation plane for the machine learning algorithm resulting in much lower processing 

delay. 

Security Rule Implementation. Once the decision-making process is complete, the 

next step is to feed the decision from the controller application plane security module 

into the defense sector, which is in the OpenFlow switch. To do so, we write our own 

API in the application plane module that can be used to insert security rules based on 

our command into the OFSwitch and drop malicious flows. For our security rule 

insertion, we manipulated a Floodlight built-in module that helps to drop packets. Here, 

we wrote our own API to drop flows in order to proactively control the OpenFlow 

Switches from being overflooded with rules. 

For experimentation, we generated an ICMP flood-based DDoS attack in a Mininet 

emulator against the OpenFlow Switch associated with the controller. We tested our 

experiment over 10 hosts, where 6 hosts were creating a DDoS attack on the OpenFlow 

Switch. We monitored the other 4 hosts and their service as the OpenFlow Switch 

experienced a DDoS attack.  

DDoS traffic was generated from an IP of 10.0.0.2 toward another IP of 10.0.0.5 (one 

of our CDN origin servers), causing an ICMP flood and was viewed from OpenFlow 

switch S1. Another 5 hosts were also used to make the flooding attack stronger. The 

simulated DDoS attack caused a 16% packet loss from one of the legitimate hosts. 

Similar packet losses were observed in another 4 hosts. After the flooding attack, we 

implemented a curl POST to insert the rule with the following commands: 

curl -X POST -d {switched: 00:00:00:00:00:00:00:01} 

http://localhost:8080/wm/firewall/rules/json 

curl -X POST -d {{“src-ip”: <attack host ip>, “flood”: 

“takeaction”} 

http://localhost:8080/wm/firewall/rules/json  

in which the first command selects the switch facing the attack, and the second 

command causes the flows of the host creating the flooding attack to be dropped. 

After we installed the security rules with our API definition, we ensured that the 

incoming flooding flows were dropped by our security rule while ongoing flooding 

flows were down-linked. After restoring the table utilization of the OpenFlow switches, 

we found that the 4 hosts in the network experienced 100% packet reception, and normal 

communication was restored. Figure 12 illustrates the cumulative distribution of the 

average queuing delay caused by our security rule implementation. 

From Figure 12, we observe that the average queuing delay increases slightly more in 

the proposed security rule based architecture than the architecture without any security 

rule. The reason behind this slight increase in queuing delay is due to the added 

overhead caused by the security rule implementation. However, the average delay 

distribution with security rule module running and not running concentrates between 0.4 

to 0.8 ms. Since the processing delay, on the other side, is significantly reduced by our 

proposed approach, the slightly increased amount of queuing delay does not 

significantly affect the overall tolerable delay. Additionally, the proposed security rule 
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based system enhances the security of the architecture for increased performance gain at 

the cost of a minor increase in queuing delay. 

 

Fig. 12. Average queuing delay comparison between delay with security rule and without security 

rule  

5. Conclusion 

In this paper, we presented a detection and defense architecture of an SDN-based CDNi 

network environment where we utilized network traffic features to detect attack traffic, 

such as DDoS, and efficiently differentiated it from other high-volume normal network 

traffic, such as a Flash Crowd. For doing so, we proposed a theoretically, 

mathematically, and experimentally-supported cognitive classification mechanism based 

on the concept of dimensional segregation and functioning. The proposed classification 

mechanism can efficiently insert rules in the SDN OpenFlow-enabled switches to 

prevent the OpenFlow switch from being over-flooded. We also introduced a deep-

inspection mechanism for DDoS detection in a SDN-driven CDNi network environment 

along with a stretch model to enhance performance. Furthermore, Flash Crowd traffic 

was used as the normal class instances to rigorously validate the DDoS classification. 

The experimental results showed the high-performance gain of our proposed mechanism 

with two optimized machine learning classification techniques, SVM and Logistic 

Regression. We also contrasted the results with two other state-of-the-art classifiers, 

Decision Tree, and Naïve Bayes. Our results suggest that other traditional classifiers can 

also benefit from segregated dimensional functioning. However, SVM and Logistic 

Regression significantly enhance the overall classification compared to other classifiers 

and benefit the most from our proposed model. We believe that our mechanism can be a 

useful technique for malicious traffic detection and defense for next-generation networks 
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such as SDN-based CDNi, which also tend to experience normal Flash Crowd traffic. To 

the best of our knowledge, this is the first work using SDN-driven CDNi to sense and 

mitigate DDoS attacks by leveraging the concepts of segregated dimension functioning 

to achieve high classification performance. 

Our mechanism, however, still does not take the decisions from the machine learning 

techniques and dynamically insert security rules, which we consider being a possible 

future work. In the future, we will also consider other dimensional utilization processes 

that can be effectively used to increase the detection of next-generation attacks and flash 

crowds. 
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