
Computer Science and Information Systems 16(2):381–407 https://doi.org/10.2298/CSIS180205001L

Goal-oriented Dependency Analysis for Service
Identification ?

Jiawei Li1, Wenge Rong2, Chuantao Yin1, and Zhang Xiong2

1 Sino-French Engineer School, Beihang University, Beijing 100191, China
{jiaweili, chuantao.yin}@buaa.edu.cn

2 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
{w.rong, xiongz}@buaa.edu.cn

Abstract. Highly mature service-oriented architecture systems have great flexibil-
ity and reusability, and can align business processes and information technologies
with high quality. Service identification plays a key role in this respect. Further, of
the different methods employed, the most popular and preferred is process-oriented
service identification. However, the absence of dependency analysis in the business
process management domain remains a challenge for the quality of future systems.
In this paper, we propose a goal-oriented dependency analysis for service identifica-
tion via business process modeling. In our analysis solution, we apply a dependency
tree featuring the relationships among requirements. The dependency relations are
analyzed to create business processes via scenarios comprising requirements and
process fragments.

Keywords: Service Oriented Computing, Service Identification, Business Process,
Dependency

1. Introduction

Aligning business processes and information technology (IT) is an important strategy
during a company’s development. The results are irreplaceable in the resultant informa-
tion system architecture [2]. To manage this alignment with different IT implementations,
several solutions have been proposed. Service-oriented architectures (SOA) increase ver-
satility and flexibility within a company [54,11,41]. To benefit from SOA, it is essential
to define its governance [25]. This becomes a benchmark for justifying whether a given
SOA system has achieved its goal. It is nearly impossible to build a perfect SOA system
on the first attempt. Therefore, the maturity level and the current state of the system must
be analyzed. To this end, several methods have been proposed in the literature. For ex-
ample, the Combined SOA Maturity Model provides a 7-level maturity process for SOA
systems [45]. Similarly, the Independent SOA Maturity Model offers a 5-level process
that provides a pathway for SOA systems to become more flexible and mature [42].

A fundamental requirement for SOA governance when pursuing business–IT align-
ment is fulfilling the need for reusable services in the system [2]. Achieving the proper
granularity of a specific service has a significant effect on the reusability of the whole
system [17]. As a first and fundamental phase of the management of the SOA’s life-cycle,

? Corresponding author: Wenge Rong



382 Jiawei Li et al.

service identification helps guarantee the business–IT strategy alignment by communicat-
ing business-related issues from an IT perspective [6]. The outcome of this phase influ-
ences not only the alignment between strategies [44], but also the development of future
systems [35].

Currently there are three main strategies used to identify services within SOA: bottom-
up, meet-in-the-middle, and top-down [5]. The top-down strategy is the most popular and
most widely used [19]. Of the different kinds of top-down methods, process-driven ser-
vice identification addresses alignment [16]. Process-oriented solutions for service identi-
fication capture functional business requirements. However, non-functional requirements
(NFR) are important in business-process modeling, because it provides associated restric-
tions and constraints [1]. Maintaining the awareness of such dependencies is a challenge,
and is helpful for detecting possible conflicts during the early stages [40]. It is difficult
to develop a good SOA for complex systems when the complex relations between ser-
vices are not fully considered [33]. In these studies, it was argued that, when extracting
services from business processes, non-functional dependencies should also be assigned
importance levels to increase the dependability of identified services.

The degree of dependency between requirements has been proven to have a signifi-
cant impact on future defects [51]. Moreover, when complexity increases, the number of
system errors increases significantly. If we underestimate the importance of dependency,
it may result in different bottlenecks and blockages in workflows [47]. Moreover, the idea
of services with high adaptability to business changes focuses on managing the depen-
dent relations between business requirements and IT realization [46]. Consequently, it is
important to precisely catalogue the dependency-analysis methods.

To solve the dependency-detection problem, many methods have been proposed. User
requirement notation (URN) was proposed to provide a more powerful process-modeling
language that focuses on dependencies by including goal-dependency management [40].
The authors argued that three perspectives should be guaranteed to achieve this goal:
process modeling, goal dependency management, and goal/process traceability. It is thus
essential to develop goal-dependency management and goal/process traceability. Whereas
URN is powerful with respect to dependencies, it is difficult to implement because of the
lack of a suitable design pattern. In the literature, business process management nota-
tion (BPMN) is a more user-friendly and popular tool, owing to its graphic presentation
[55,43].

Other solutions have been employed to solve this problem by focusing on requirement
dependencies [51]. One dependency-detection solution is goal-oriented requirement engi-
neering, which usually applies a model-oriented thinking process [37]. Another approach
is i*, which is a pure dependency analysis language proposed for all kinds of possible
dependencies [55,15]. In the latest i* model, iStar 2.0, [12], the language was standard-
ized. As a model language, iStar 2.0 proposed relation types without quantitative values
to evaluation relations.

Several other model-oriented requirements-engineering methods have been proposed.
NFRs are typically more representative of user behavior [36]. However, the logical re-
lationship to business goals is not included. Therefore, Knowledge Acquisition in Auto-
mated Specification of Software Systems (KAOS) was proposed to solve this problem
[26]. Both NFR [36] and KAOS [27] tended to increase the quantification and traceability
of the requirements domain during engineering. Alternatively, GoalBPM was an informal



Goal-oriented Dependency Analysis for Service Identification ?? 383

framework for goal/process traceability [24]. Unfortunately, this solution was dependent
on an ambiguous definition of effects.

Cooperating with a model-oriented requirement traceability, Cooperative Require-
ments Engineering with Scenarios (CREWS) can easily obtain scenarios pertaining to re-
quirements [48]. During the development phase of services, business goals and objectives
become performance indicators [39]. Scenarios can be used to trace service performances
and goal/process traceability.

Dependency analysis has been successful in requirements management, business pro-
cess management, and service identification [28]. In this study, we integrate dependency
with service identification. First, we model the requirements in the form of scenarios in the
requirement-acquisition phase, because the business process is another representation of
requirements [7]. Then, the scenario is translated into process fragments [13], which be-
come part of the business process. Each fragment represents a candidate service. Finally,
services are grouped per the dependency analysis results. By analyzing the dependency
among process fragments, this method identifies services with respect to the successful
traceability of business goals, and it processes the dependency relation obtained from the
requirement analysis.

Extant dependency analysis methods focus on the graphical representation of depen-
dencies between requirements. One example of dependency analysis is the use of key per-
formance indicators to trace requirements [52]. Another example is iStar 2.0 [12], which
uses a dependency net for organized dependency. iStar 2.0 proposes different types of de-
pendencies without quantitative evaluation to identify services. To produce a measurable
definition of dependency, we propose a goal-oriented dependency analysis for services
identification.

The rest of the paper is organized as follows. In Section 2, we introduce the back-
ground to service identification and related methods from a process-oriented perspective.
In Section 3, we present details of the proposed method. In Section 4, we evaluate and
discuss our method using a case study. Finally, in Section 5, we conclude the paper and
present possible future work.

2. Related Work

The alignment of a business–IT strategy is important to an organization’s success, con-
sidering the fierce market competition and different solutions presented in the literature
[18]. As an early attempt to use enterprise architecture, ATIS [3] leveraged the Zach-
mann framework to measure technology alignment [10]. Recently, with the development
of SOA, it was lauded as a feasible method of improving IT governance in the business
domain [9].

To implement efficient SOA-based applications, one preliminary task is to obtain
proper services [4]. A straightforward idea is to use business entities for service iden-
tification by analyzing the relationships among entities [35]. Every element of a business
is considered a business entity, and those with strong relations are grouped as services.
An example of a business entity is the business process, widely adopted in service identi-
fication as a top-down oriented solution, owing to the similarity between business and IT
processes [5,19].



384 Jiawei Li et al.

Generally, a top-down strategy can have two types of inputs: use cases and business
processes [20,22]. Compared to business processes, use cases do not consider tasks that
have the same function as units [5]. Alternatively, business process-oriented service iden-
tification should design proper metrics for coupling and cohesion [49]. This constitutes
the bases for different approaches.

One example of a business process-oriented top-down method was proposed by Kim
et al., who created services by analyzing and grouping different business processes or
workflows with minimum communication between them [21]. The underlying argument
was that a service should represent a group of tasks. Thus, there should be less communi-
cation to the outside and more centralization. Similarly, Ma et al. classified business pro-
cesses by weighting different SOA characteristics, such that customers obtained a group
of services with balanced characteristics, according to their needs [31]. Because SOA en-
hances the flexibility and reusability of services per its design principal [23], to balance
the contradictory characteristics, the authors proposed matrix achieved the requirements
of an information system.

Another process-driven method, P2S, analyzes the data being sent between tasks [4].
This is suitable for solving complex processes, where interoperation is realized by group-
ing collaborative tasks. By applying a new definition of business value to determine ser-
vice definitions, P2S provides a solution to combine data analysis and design metrics. By
this definition, business value is a product that is created or treated in one department of
an organization and then transferred to another. At this step, P2S obtains several candidate
services. Then, it uses pre-defined design metrics to group services together. P2S inno-
vatively combines business values and design metrics to calculate services and improve
effectiveness. Moreover, this method has proven to be efficient in decreasing errors.

However, most process-driven methods focus on decomposing business processes.
A lack of analysis of their dependencies and goals leaves us to face another challenge
with respect to quality analysis [52]. In fact, the reliability of SOA systems depends on
the existence of a secure architecture for relation management [14]. However, such an
information management system would be difficult to analyze [29]. Thus, it is important
to consider the dependency between business processes during service identification.

Identifying dependencies in business processes is recognized as a fundamental chal-
lenge in the literature. One possible solution is to use URN [40]. Compared to other
popular methods in Table 1, URN has high quality in terms of managing dependencies,
including business-process modeling in the goal-management domain. However, its de-
sign pattern is incomplete for complex situations. To make it suitable for applications.
Three essential parts are necessary [40]. It needs a graphical business-processing model-
ing language; it needs a goal-oriented method for managing requirements; and it needs a
method to relate requirement engineering results to business processes.

Several methods are employed to manage goal-oriented requirements [50], their trace-
ability, and their dependencies. Koliadis et al. proposed the GoalBPM framework [24],
which linked BPMN with KAOS [26]. This framework controls goal satisfaction during
business-process development. Another goal-oriented requirement traceability method is
NFR [36], which goes further in terms of analyzing non-functional requirements and their
relations. By classifying goals at different layers, NFR built a goal-oriented system sim-
ilar to the KAOS model. Instead of focusing on the logical hierarchy among goals, NFR
includes non-functional requirements as soft goals in the dependency tree. Instead of us-



Goal-oriented Dependency Analysis for Service Identification ?? 385

Table 1. Different modeling languages for dependency management.

BPMN UML iStar 2.0 NFR URN
Sequenceflow

√ √
+/- +/-

√

Roles
√ √ √

×
√

Activities
√ √

× ×
√

Events
√ √

× ×
√

Process Hierarchies
√ √

× ×
√

Goal Modeling × ×
√ √ √

Goal Model Evaluation × × ×
√ √

Goal/Process Traceability × × × ×
√

ing logic relations, as in KAOS, to analyze dependency relations, the NFR dependency
tree focuses on the relationship between soft and functional goals. Another efficient goal-
oriented method is iStar 2.0 [55,12]. Based on the analysis of the dependency relations
among actors, iStar 2.0 forms self-explained modeling languages for tasks in business pro-
cesses, which include not only the dependency among goals but also dependencies among
actors or tasks. At the goal level, iStar 2.0 proposes refinement relationships for goals. See
Table 2. For refinement links, iStar 2.0 defines AND-refinement and OR-refinement re-
lationships. However, it does not propose an evaluation method to measure the degree of
dependency.

���

������	

�����
����

������	



������
��

������
��



������
��

���������

�
������


��������

�
������


�������

�
������

�	�������

������

������

�������

������	������

�������

������	�����

 ��������

���������!

"
�#����������!

��
�����������!

$�
���!

���������!

%����

�������������

&�����
�

�������

�������

������	�����

Fig. 1. iStar 2.0 modeling language example

From the literature, business processes have had a close relationship with requirement
engineering [7]. Thus, a business process is simply another representation of related and



386 Jiawei Li et al.

Table 2. Links between elements in iStar 2.0 model

Goal Quality Task Resource
Goal Refinement Contribution Refinement NA

Quality Qualification Contribution Qualification Qualification
Task Refinement Contribution Refinement NA

Resource NA Contribution NeededBy NA

elicited requirements. To model and verify a business process, we must find a suitable
requirement engineering method [49,53]. Process fragments [13] are designed to specify
an action that is needed to compare business processes with itself in order to manage
the overall process. Matching a scenario of requirements to a process fragment helps us
understand the logic inside a business process.

3. Dependency-Aware Service Identification

From the above discussion, business process-oriented service identification is promising
for SOA-based business–IT alignment, and dependencies among processes should be em-
phasized simultaneously. There are many dependency detection and analysis tools in the
literature, and the methods used to employ their ideas for service identification vary. In
this research, we propose a dependency-aware process analysis framework, where we
first employ BPMN to model business processes, because BPMN is a powerful extended
markup language-oriented machine-friendly language. It enables more choices for gate-
ways and special cases and graphical representations of business processes for ease of
understanding [8].

Specifically, we adopted a 3-stage service-identification mechanism for this research.
In the requirement-acquisition phase, we recognize requirements as scenarios using the
popular CREWS–Scenarios for Acquiring and Validating Requirements [48]. After de-
veloping a library of requirements, we develop a KAOS goal-oriented model [26], as a
goal-dependency study [32]. We match scenarios using process fragments and. We group
service candidates according to the dependency tree, where requirements with dependent
relations located in the same root goal have high affinity.

3.1. Requirement Acquisition

The first task for service identification is to define the dependency between different busi-
ness processes. To analyze the dependency, it is necessary to understand the requirements,
because dependencies give rise to conflicts between requirements. To this end, we define
requirements as follows:

R = {Id,D, S, Sc}. (1)

In this dependency-analysis method, a requirement, R, is defined by a unique identi-
fier, Id, which serves to guide the relation between requirements and goals when the
requirement description changes. For ease of understanding, the description information,
D, stored in a unique requirement, should be of a semantic form. It is also possible to
trace back to the source of a requirement. The source, S, helps the requirement engineer



Goal-oriented Dependency Analysis for Service Identification ?? 387

review the need for the requirement. The set of scenarios, Sc, included in the definition
of a requirement is a representation of traceability management and dependency analy-
sis. CREWS [48] is a model-oriented method employed for scenario construction. In this
definition, a unique requirement can have more than one scenario.

After requirements are defined, the next challenge is representing the dependency
among requirements. In this research, we employ the dependency tree per the goal-oriented
requirement engineering principal by combining the logic relation defined in KAOS [26]
and the goal’s level distributions of NFR [36]. A branch in the requirement dependency
tree is defined as follows:

K = {R,Go, T t, Sr}. (2)

From the definition of a branch, this equation contains information about the requirements
parent and child goals. A branch always points from the leaves to the root. There are two
kinds of branches: “AND” branches and “OR” branches. Both branches signify the logical
relation between sub-goals and goals. The logical relationship between goals helps iden-
tify dependencies between sub goals. The rules are defined in the dependency analysis
section. The satisfaction coefficient of a dependency branch is given by the dependency
relation between the goal and its sub-goal. To obtain the satisfaction level of a goal, we
work from the bottom of the dependency tree. The satisfaction level is classified as “sat-
isfied,” “weak,” or “unsatisfied.” A requirement with all of its scenarios satisfied by the
business process will have the state, “satisfied.” If only some scenarios are satisfied, the
relation is “weak.” Otherwise, the requirement is “unsatisfied.” This satisfaction relation
occurs between the parent goal and a sub-goal, and it can be translated as another form of
dependency for the destination goal.

According to the definition of “scenario” in [48], we define a scenario as a sequence
of events having one possible pathway through a use case containing some actions.

Scej = {ev0, ..., evp}, (3)

where two types of scenarios are further defined. The execution scenario is designed for
execution. This kind of scenario has a positive effect on the parent goal. A forbidden
scenario is a constraint that should not be executed. Forbidden scenarios have negative
effects on the parent goal. When we wish to control for the greatest satisfaction of one
goal, it is necessary to combine both positive and negative influences of the sub-goals.

In this research, a scenario is formed by events. In [48], an event could specify the
system status before or after an actions resulting in a change. To simplify the comparison
between scenarios and business processes, we use only the information of the changing
state (i.e., event) but not the details of the action needed in the requirements. Therefore,
one event can be defined as a set of data with its new state and the information of the
changing source. Each dataset has a data object, a state of data, and a changing source.

ev = {Dt1, ..., Dtq} (4)

Dtl = {Do, st, sc} (5)

Another kind of event is the condition for execution. This event only exists for a con-
dition flux or a condition gateway. A condition event contains one condition description
line and a chosen condition. With the chosen condition, we can orient the condition with a



388 Jiawei Li et al.

certain condition flux. This kind of event helps us discover complex structures of process
fragments.

ev = {Cd1, ..., Cdq} (6)

The last kind of event is of temporal significance: state of system. If we need to locate
a scenario involving the specific state of a system, it can be found in an event. The state
of a system is defined as the need of a company. This kind of event can help to not
only define the significant time points for the system, but also the waiting-time for the
system. The BPMN modeling business process has several special time events requiring
time significance (e.g., interrupted events). Interrupted events make the system wait for a
period before executing the predefined action.

ev = {St1, ..., Stq} (7)

In the analysis of the similarity between scenarios and business processes, process
fragments are a part of business processes and can be located as follows.

PF = {Id, T,E, F,A,G,L,∆}. (8)

A process fragment is connected to a unique requirement. Therefore, it contains the
requirement identification. Inside a process fragment, information exists to rebuild a busi-
ness process section , including the set of tasks, the set of different kinds of associa-
tions, the set of gateways, the set of lanes, and the set of data. Depending on the type of
BPMN element, each has its own definition, and they differ according to their identifi-
cation. Therefore, we follow the identification of each element. There are two types of
connecting elements: flow and association.

A sequence flow is the basic connecting element in the BPMN language, and it con-
tains information about the source and the target references. A message flow is a special
flow that includes additional information about a message sent in the same direction as
the flow itself. As with the definition of the flow, it uses data association. The difference
between a basic flow and a simple association is whether or not the two connected ele-
ments belong to the same participant. If an association is simple, it connects an internal
task with one outside the current participant. To trace the data information of a task, we
collect information about the data association. A data association has two additional im-
portant variables compared to a basic association: ioSpecification andDataSet. If data
association is linked to the input data, the ioSpecification is “input,” and the DataSet
is an inputSet. If the data association is linked to the output data, the ioSpecification is
“output,” and the DataSet is an outputSet.

For ease of management in data information, the process fragment uses ∆ as a set of
data. Input Data is a data object linked to a data association with ioSpecification=“input.”
Output Data is a data object linked to a data association with ioSpecification=“output.”
An event shows changes in the state of data or information before and after a task. We can
now compare the difference to understand a business fragment. The matching process is
described in the next section.



Goal-oriented Dependency Analysis for Service Identification ?? 389

3.2. Scenario Matching

The objective of this step is to locate a process fragment linking the scenario of a business
process requirement. A business process, BP, has a similar definition as process fragment,
pf:

BP = {T,E, F,A,G,L,∆}. (9)

A business process should have at least one start event and one end event. Normally,
a business process belongs to a process fragment. However, a process fragment is not al-
ways a business process. To manage the dependency of each business process, we define
a relation-matching matrix, which maps the business process to the satisfied process frag-
ment in a requirement. The satisfaction process-fragment management matrix linked to
the giving business process saves information pertaining to connected requirements. This
matrix is defined as:

Mi := [Id, pf1, ..., pfm]. (10)

This matrix is a 1 × (m + 1) matrix and belongs to a specific business process, where
the result corresponds to the scenarios of one requirement. If the business process satis-
fies the scenario of this requirement, the corresponding pfj equals 1. Otherwise, it is 0.
The size of this matrix depends on the number of scenarios processed by the correspond-
ing requirement. The entire management matrix forms the set, M [n]. After searching
for the corresponding requirements and scenario sets for each Mi, we have a set of re-
quirements linked to the business process, R[n]. For each chosen Ri, we have a set of
process fragments, PFi[m], linked to them. For each Ri, we check each scenario, Scej .
If the sequence of the process is found to match the sequence of events in the scenario,
pfij+1 ∈Mi is set to 1. Otherwise, it is set to 0.

Comparing a scenario and business process begins with the first event in Scej . Ac-
cording to the definition of PF , we can define a τ{F,A,L,∆}. The elements belonging
to F are sequence flows, condition flows, or default flows. Condition flows and default
flows are considered special events. For these, we recognize the condition as informa-
tion inside the data. In other words, when we meet a conditioned gateway, we should
match the condition with the existing data content in an event. Otherwise, a task can only
have one in and one out. Thus, neither the flow pointing to the task nor the flow leaving
the task influences the comparison of scenarios and business processes. If a scenario has
found a matching sequence of tasks, the flows in the business process will be succeeded
by the process fragment. From the definitions of the relation between output data and a
task and its input, we know that all data are linked to a certain task via data association
or another association. Consequently, most comparisons consider the difference between
associations and lanes.

Events normally occur either before or after a task. In this research, we assume that
our process fragment involves a task before an event. However, tasks after the last event
are not considered. First, we determine whether the belonging lane of a task is the same
as the changing source of the event. A task’s belonging lane should be the same as the
changing source of the data post event. When an event has more than one changing source,
this is possible only when the event occurs after a gateway. When an event has only one
changing source for all data, a task can have only one input and one output. Data actions



390 Jiawei Li et al.

generally have four states: create, read, update, and delete [4]. We group all actions (e.g.,
rewrite, fill up, send, and copy) in the update state, which represents operations performed
on the data. Therefore, given a task, τ , and several flows, F , associations, A, swim lanes
or collapsed pools, L, and some portions of data, D, linked to the tasks, we can determine
the matching method for a satisfied scenario, as shown below.

To match an event with on in a business process, if a start event has a message mission,
the same message should have at least data ∈ ev and data.state =′ R′, with the message
being a part of the data. If an end event has a message mission, the same message should
have at least data data ∈ ev and data.state =′ U ′, with the message being a part of the
data.

It is more difficult to match an event with a task than to match an event with another
event in a business process. The matching rules are proposed depending on the state of
the data. For a data event, if the data state is “C,” (i.e., data is created during this task), we
have

datal.dataObject ∈ τ.output. (11)

When this piece of data is a message connected to a message association, then this mes-
sage association is directed outwards. Most importantly, an object that is created during a
task should not be found at any time before this task. For a data event with a data state,
“U,”

datal.dataObject ∈ τ.input & datal.dataObject ∈ τ.output. (12)

When this piece of input data is a message connected to a message association, then this
message association is directed inwards. When this piece of output data is a message
connected to a message association, then this message association is directed outwards.
Because updating is a complex operation on a piece of data, the detailed definition of the
same update action should be defined by the company itself. For a data event with a data
state given as “R,” we get

datal.dataObject ∈ τ.input. (13)

For a data event with a data state given as “D,” the data situation should be given as an
“R” state. However, in this case, we should be sure that this object will no longer be used.

When an event is found to match the data states of two tasks, the task in front of the
testing event will be examined if it is in the assumed lane. If so, the task will be a part
of the process fragment. Because we consider the business process for a scenario, we
will have the result of satisfaction. For a scenario where we find a process fragment that
fulfills all scenario events, this scenario is satisfied. Otherwise, it is unsatisfied. To build
a process fragment, we ignore the tasks or gateways between two matched tasks and use
a simple flow for connection. If the matched tasks have a parallel, inclusive, or exclusive
relation between them, the gateway relation should be inherited by the process fragment.
After building the matching-process fragment, we obtain several matching matrices for
the relation between the business process and requirements.

3.3. Service Grouping

In this phase, we already have a business process linked to requirements with a matching
matrix. Because we used the scenario comparison, the location of the requirement should



Goal-oriented Dependency Analysis for Service Identification ?? 391

group several tasks together, or they may be located inside one task. A matching scenario
forms a candidate service. For candidate services that satisfy the same requirement, we
propose that they be grouped together. If a task is identified as being used by several
requirements, we recommend grouping services per the minimum connection rule with
respect to how loosely coupled they are.

If two process fragments are situated next to one another, we should go through the
requirement dependency-relation tree to minimize the dependent relation between two
services. The dependent requirement will only be analyzed for one generation, which in-
dicates the leaf generation for the requirement. The resulting service dependency relation
is defined as follows:

Rs = {M0, ...,Mx}. (14)

This is a set of matching matrices for requirements with a satisfaction level of at least
“weak”. The dependency relation is traced back to the dependency tree by the matching
matrix. On each occasion, when a service changes, we trace back to the related require-
ments for verification, and, according to the goal-oriented model, we obtain a list of pos-
sibly impacted services. In the case where there are changes to a specific requirement,
services linked to the requirement can be modified rapidly.

To analyze the dependency, we need a goal-dependency coefficient that has a direct
relation with the dependency tree. Apart from the branch that points to a goal null, each
branch of the dependency tree has a coefficient for the identification of the contribution
of a sub-goal, and each coefficient should be between 0 and 1.

(a) Or relation (b) And relation

Fig. 2. Goal relation.

For a goal-dependency relation type, “OR,” as shown in Fig. 2(a), we define the coef-
ficient of the dependency as a measurable degree to enable us to understand how well the
goal can be satisfied by satisfying the sub-goal. This kind of dependency between parent
goal and sub-goal is the level of satisfaction that is contributed by the child goal to the
satisfaction of the parent goal. The satisfaction dependency is created by the use of the
model for requirement management.

κ1, κ2 ∈ [0, 1] and κ1 + κ2 ≤ 1. (15)



392 Jiawei Li et al.

The dependency relation between the two sub-goals, GD(Go1, Go2) = 0. Because we
ignore the other types of dependency, two different sub-goals with the “OR” relation will
not influence one another. Then, the dependency relation between Go and Go1 or Go2
should be the same value as the coefficient of dependency:

GD(Go0, Go1) = κ1, GD(Go0, Go2) = κ2. (16)

For a goal-dependency relation type, “AND,” as shown in Fig. 2(b), the coefficient of
dependency should be as follows:

κ ∈ [0, 1] and κ1 × κ2 = κ. (17)

In the “AND” relation, two sub-goals have a higher dependency on each another than with
the “OR” relation. When we analyze their relations, it is easy to tell if one goal of this type
of relation causes a conflict with the parent goal. Their combined effect should also be
negative to the parent goal. Therefore, for an “AND” relation, two sub-goals should be at
least weakly satisfied for a satisfied goal,Go. Moreover, the dependency relation between
the two sub-goals, GD(Go1, Go2) = 1, meaning the two sub-goals are not independent
of each other and that they should cooperate for the parent goal.

To calculate the goal-dependency relation of a given goal, Gox, with another goal,
Goy , when we already have a known GD(A,B), we have:

GD(Gox, Goy) = GD(Gox, A)×GD(A,B)×GD(B,Goy). (18)

Given the definition of the dependency equation between goals, we should find the co-
parent for these two goals in the lowest position to obtain their dependency coefficient.
Using the special coefficient calculation equation, we predefine if GD(Go,Go) = 1. In
other words, one requirement dependent entirely depends on itself, because it shares the
same resources with itself.

Using requirement-dependency equations, we can thus conclude a dependency calcu-
lation equation, as follows, for two identified services:

Y =

∑0≤j≤v
0≤i≤u GD(Goi, Goj)

u× v
. (19)

In this equation, the dependency between services is calculated by the sum of each of
their requirements. u and v represent the number of requirements belonging to the two
services that are compared.

4. Case Study

To evaluate the service identification method, we performed a case study of the booking
process to validate its capability. The booking process contains a basic hotel booking and
an entertainment service that is an alternative for customers. Each reservation should be
paid for a confirmation of booking. The reservation process is shown in Fig. 3.

To deal with the reservation requirement, the employee of the sales department will
show the customer a detailed table of prices. If the customer is not satisfied with the prices
and decides against reserving a room or a ticket, the process will end. If they continue to



Goal-oriented Dependency Analysis for Service Identification ?? 393

C
o
m
p
a
n
y

End Event 2

E
n
t
 
1

5 Search for
the

ticket need

Client

bank

Basic info

Tickets and price

Need

Demand amount
Need

Price Table

Basic info Booking
Confirmat
-ion

Fig. 3. Booking Process.

the next step, the customer can select from booking only for rooms, only for tickets, or for
both. After the booking process, the customer will be either satisfied or unsatisfied with
the search result. If they need to look up an alternative, it will be easy to restart from the
beginning. When the booking process is completed, the customers are required to pay a
reservation fare. Afterwards, a booking confirmation will be sent to the customers.

To calculate the dependency between requirements so that we can reuse the results
for obtaining services, we developed a Java-based tool. The first tab of the application is
designed for the information of the business process shown in Fig.4.

4.1. Requirement Acquisition

This booking process is linked to several requirements. We have a list of main require-
ments. The goal-oriented model is built upon the KAOS model proposed in [26]. This
goal-oriented model is built on a tree model with a goal-level definition from an NFR
requirement management tree and a logic relation definition from a KAOS dependency
tree. First, the requirements for this booking process can be derived as follows:

1) R1: Customers want to book hotels or entertainment tickets. 2) R2: Customers want
to view the price table. 3) R3: Customers want to receive booking confirmation feedback
at the end of the booking. 4) R4: The marketing department wants to promote a different
package of tickets to customers. 5) R5: The hotel wants to avoid over-booking. 6) R6: The
financial department wants to collect a reservation fee before the booking process ends. 7)
R7: Customers want to return to review the price table if not satisfied. 8) R8: The financial
department wants to charge booking fee to confirm the booking.

In the tool developed for dependency calculation, we can use requirement manage-
ment windows to insert a new requirement into the tool, as shown in Fig. 5. In this win-



394 Jiawei Li et al.

Projects with at

least one business

process

Business process information

Graphic representation of the business process

Fig. 4. Dependency Aware Requirement Analysis Tool.

dow, if we create a requirement without pointing it to a parent goal that is not null, we
create the goal in terms of strategy levels. If there are choices with respect to the parent
goal, a new goal can be chosen from among them. When a goal is connected to its parent
goal with a logic AND, it can choose from a list of possible sub-goals of this parent goal
with logic AND. Because all sub-goals with logic AND are not connected directly to their
parent goal, these choices will influence the dependency analysis process.

Fig. 5. Requirement-management window used to develop new requirements.

After creating requirements, the dependency tree is automatically built. The depen-
dency in this study is equally distributed. In other words, we consider that all requirements



Goal-oriented Dependency Analysis for Service Identification ?? 395

can fully satisfy their parent goals if satisfied. Then, each sub-goal is equally important
according to its logic relation. We can therefore obtain a requirement table using all the
information inside, as shown in Fig. 6. In the case of modifying the information of one
requirement, we can simply select a row of this table and change the information in the
form below it. The dependency tree of this case study is shown in Fig. 7.

Fig. 6. Requirement-management window for information and editing information.

Fig. 7. Goal-oriented model.



396 Jiawei Li et al.

Taking requirement R1 as an example, we can derive a requirement and scenarios
by using the method proposed in [48], as shown in Fig. 8. We first study requirement
R1 and obtain a use case with two possible actions taken by clients. Before these two
actions, we can create a “need document. After reading the needs of clients and choosing
rooms or tickets for the client, the price shows up, and the process produces a “booking
confirmation document.

Fig. 8. Scenarios and use case for requirement R1.

Scenario Events
Scenario 1 Need(C) - Need(R) & RoomChosen(C) - RoomChosen(R) & Confirmation(C)
Scenario 2 Need(C) - Need(R) & Ent1Chosen(C) - Ent1Chosen(R) & Confirmation(C)
Scenario 3 Need(C) - Need(R) & RoomChosen(C) - Need(R) & Ent1Chosen(C) - Room-

Chosen(R) & Ent1Chosen(R) & Confirmation(C)
Table 3. Scenarios of requirement R1.

According to Table 3, we can use the tab scenario to model the scenario of require-
ment R1 and the other requirements using data events. Otherwise, we can have the list
of other requirements modeled using scenarios shown in Table 4. When we apply all the
information related to the scenarios, we obtained in the tool the table shown in Fig. 9

4.2. Scenario Matching

After obtaining scenarios, we can match the process fragment. In the tab, “process frag-
ment, if we apply the “refresh button, we can obtain a simplified version of the pro-
cess fragment according to certain scenarios. With the help of automatic calculation,
we can remodel each process fragment. To continue the analysis, the detailed results
of process fragments are shown in Fig. 1 to 8 in the process fragments section in the
appendix. Therefore, we can have a group of tasks as a candidate service {τ2, τ4, τ5,
τ6 } for requirement R1. Similarly, we have {StartEvent, τ1, EndEvent1} for re-
quirement R2, {EndEvent6} for requirement R3, {τ2, τ3,τ6} for requirement R4, {τ4,
EndEvent2} for requirement R5, {τ7, τ8, τ9, τ10, EndEvent4} for requirement R6,



Goal-oriented Dependency Analysis for Service Identification ?? 397

Requirements Events
R2 BasicInfo(R) - BasicInfo(R) & PriceTable(U)
R3 Confirmation(U)
R4 Need(R) - BasicInfo(R) & Need(R) & SetChosen(C) - SetChosen(R) & Confirmation(C)
R5 Need(R) & RoomChosen(C) - ”Room: No?”
R6 Confirmation(R) - AcountInfo(R) - AccountInfo(U) - Confirmation(U)
R7 ”Exist alternative: No? Yes”
R8 Confirmation(C)

Table 4. Scenarios of requirements R2 to R8.

Fig. 9. Information about all scenarios.



398 Jiawei Li et al.

{StartEvent, EndEvent3} for requirement R7, and {τ10, EndEvent4} for require-
ment R8.

In order to analyze the relation between two services, we calculated the dependency
relation between them using the modeling tool shown in Fig. 10. The result is calculated
automatically per the definition of dependency. According to the dependency tree, we can
classify three main services: {StartEvent, τ1}, {τ2, EndEvent1, τ3, EndEvent2, τ4, τ5,
EndEvent3, τ6}, and {τ7, τ8, τ9, τ10, EndEvent4}. With this proposition of candidate
services, we can calculate the dependency between any two, and the results are shown in
Table 5. According to the table, three services are relatively independent of each other.

Fig. 10. Dependency relation for services.

Candidate services Requirements C1 C2 C3
C1 R1, R4, R5 - 0 0.17
C2 R2, R7 0 - 0
C3 R3, R6, R8 0.17 0 -

Table 5. Dependency between candidate services.



Goal-oriented Dependency Analysis for Service Identification ?? 399

4.3. Discussion

To evaluate the proposed method, we compared it to other popular methods, as shown in
Table 6. The [35] method was used in an attempt to cluster business entities, but the def-
inition of business entities can change from person to person. Once the business process
changes, the standard of business entities will need to be redefined. The [31] method was
applied to a workflow. The result can change according to the weight matrix. However,
we should not amend the weight matrix. This matrix will be used for different business
needs and an amendment will cause a big impact. [21] provided another process-driven
method that works by analyzing the Petri net. However, it depends on a rule respecting a
minimum communication between services. When a new communication is established, it
may influence the belonging location of a task. The structure of services may also change.
[4] is the only method that can be tested for our case study. The result shows that R6 is
separated. We determined that the reason was the absence of a connection between tasks
7 and 8 and tasks 9 and 10. Therefore, the business process should have enough details to
enable the calculation.

The goal-oriented dependency analysis in the service-identification method has not
only an advantage in the service-identification phase, but also with respect to the continu-
ity of the life cycle of services. If the business process changes for a short period, all the
other methods must redo the calculation. Because the services identified from our method
are related to specific requirements, it is not expected that there would a significant change
to the structure of services. However, the other method does not guarantee this.

Table 6. Comparison between service-identification methods.

Method Inputs Method Evaluation Apply to this
case?

For future governance in
SOA?

Goal-
Oriented
dependency
analysis

Business
process in
BPMN

top-down case study
and evalua-
tions

Yes 3 services Yes. No need to redo
the calculation. Services
are traceable linking to
requirements and they
change only when re-
quirements change.

[4] Business
process in
BPMN

top-down case study
and evalua-
tions

Yes 5 services No. Should redo the cal-
culation if business pro-
cess changes.

[21] Petri Net top-down case study
and evalua-
tion

No No. Should redo the
calculation if Petri net
changes.

[31] Workflow top-down case study No No. Should redo the cal-
culation.

[35] Business
Entities

top-down case study
and evalua-
tion

No No. Should redo the cal-
culation.

From the dependency relation table shown in Fig. 10, we can also get dependency
calculation results for any two requirements. Depending on the number of requirements



400 Jiawei Li et al.

accumulated in the first step, we will obtain a table of a different size. In this table, we
can also verify the time required to obtain the matching process fragment. We then obtain
the result shown in Table 7. The times taken to obtain all data events are nearly equal,
and the number of events is not expected to change while obtaining results. The searching
method used in this tool causes the only dependency of time based on the size of the
business process.

Table 7. Testing the matching efficiency.

Requirement/Scenario First data event Last data event Entire scenario Average
R1sce1 0.023131306 s 0.035481503 s 0.022244722 s 0.020 s
R1sce2 0.038197306 s 0.02403289 s 0.020332213 s 0.022 s
R1sce3 0.020299843 s 0.02483421 s 0.024278812 s 0.022 s

R2 0.020369713 s 0.026578955 s 0.023192885 s 0.025 s
R3 0.020369713 s 0.023752625 s 0.027197117 s 0.022 s
R4 0.020315238 s 0.021352217 s 0.024698419 s 0.021 s
R5 0.020663793 s 0.021249191 s 0.020074053 s 0.021 s
R6 0.020581293 s 0.024200654 s 0.020899847 s 0.021 s
R8 0.020717083 s 0.020313659 s 0.024139469 s 0.020 s

5. Conclusion and Future Work

We proposed a goal-oriented dependency-analysis method for service-identification by
finding the business requirements in a business process, realizing the dependency relation
of requirements for business processes and services in SOA, and proposing a definition
of dependency among services. As shown in the case study, this method can provide an-
other proposed standard for classifying tasks to services before applying design metrics to
identify services. We considered the definition of cohesion; the loosely coupling of SOA
is closely linked to the requirement. A service that integrates fewer numbers of possible
requirements is more specific. A service will be more independent if it is not required
cooperate with another service serving the same requirement. Therefore, in this study,
we developed a tool to manage requirements and calculate the process fragments. More-
over, with the predefinition of dependency equations, we can easily obtain the dependency
among services.

Because there are still a variety of gateways and events in business processes, process
fragments face more complex business processes with which they should be matched.
Additionally, we plan to study the case where a business process does not fully satisfy
a requirement. For example, if the requirement is difficult to fulfill because of limited
capability, the important part of the scenario will be satisfied and the rest will be ignored.
In this case, it should still be possible to recognize the requirement in a business process.

For future work, service identification will be extended to services with web service
definition language so that the identified services can be discovered. Then, by pairing
business process with IT processes [20], it will possible to develop a service-identification
phase that is more traceable both from requirements and technical perspectives. Further-
more, when applying SOA to the design of Web services, the low frequency with which



Goal-oriented Dependency Analysis for Service Identification ?? 401

services are reused is a challenging task [54]. To decrease the difficulty of finding services,
several solutions have been proposed, for which a complete knowledge warehouse appears
to be a promising solution [38]. However, it difficult to relocate a particular service from
a large service center [30]. Thus, it would be a large amount of management work for
the service center. In this paper, we proposed to organize different services based on the
requirements management method, because it helps improve the efficiency of managed
changes [34]. Therefore, there is a need for further research to develop linkages between
requirements and the knowledge-based services center.

Acknowledgments. This work was partially supported by the National Natural Science Foundation
of China (No. 61472021).

References

1. Aburub, F., Odeh, M., Beeson, I.: Modelling non-functional requirements of business pro-
cesses. Information & Software Technology 49(11-12), 1162–1171 (2007)

2. Aversano, L., Grasso, C., Tortorella, M.: A literature review of business/it alignment strategies.
In: Proceedings of 14th International Conference on Enterprise Information Systems. pp. 471–
488 (2012)

3. Avila, O., Goepp, V., Kiefer, F.: ATIS: A method for the complete alignment of technical infor-
mation systems. International Journal of Computer Integrated Manufacturing 24(11), 993–1009
(2011)

4. Bianchini, D., Cappiello, C., Antonellis, V.D., Pernici, B.: Service identification in interorgani-
zational process design. IEEE Transactions on Services Computing 7(2), 265–278 (2014)

5. Bianchini, D., Pagliarecci, F., Spalazzi, L.: From service identification to service selection: An
interleaved perspective. In: Proceedings of Formal Modeling: Actors, Open Systems, Biologi-
cal Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday. pp.
223–240 (2011)

6. Börner, R., Goeken, M.: Identification of business services literature review and lessons
learned. In: Proceedings of 15th Americas Conference on Information Systems (2009)

7. Castano, S., Antonellis, V.D., Melchiori, M.: A methodology and tool environment for process
analysis and reengineering. Data & Knowledge Engineering 31(3), 253–278 (1999)

8. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Computer Standards &
Interfaces 34(1), 124–134 (2012)

9. Choi, J., Nazareth, D.L., Jain, H.K.: The impact of SOA implementation on it-business align-
ment: A system dynamics approach. ACM Transactions on Management Information Systems
4(1), 3 (2013)

10. Dahman, K., Charoy, F., Godart, C.: Alignment and change propagation between business pro-
cesses and service-oriented architectures. In: Proceedings of 2013 IEEE International Confer-
ence on Services Computing. pp. 168–175 (2013)

11. Dai, W.W., Vyatkin, V., Christensen, J.H., Dubinin, V.N.: Bridging service-oriented architec-
ture and IEC 61499 for flexibility and interoperability. IEEE Transactions on Industrial Infor-
matics 11(3), 771–781 (2015)

12. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language guide. CoRR abs/1605.07767 (2016)
13. Daniel, F., Casati, F., D’Andrea, V., Mulo, E., Zdun, U., Dustdar, S., Strauch, S., Schumm, D.,

Leymann, F., Sebahi, S., Marchi, F.D., Hacid, M.: Business compliance governance in service-
oriented architectures. In: Proceedings of 23rd IEEE International Conference on Advanced
Information Networking and Applications. pp. 113–120 (2009)

14. Delac, G., Silic, M., Srbljic, S.: A reliability improvement method for soa-based applications.
IEEE Transactions on Dependable and Secure Computing 12(2), 136–149 (2015)



402 Jiawei Li et al.

15. Gonçalves, E., Castro, J., Araújo, J., Heineck, T.: A systematic literature review of istar exten-
sions. Journal of Systems and Software 137, 1–33 (2018)

16. Gu, Q., Lago, P.: Service identification methods: A systematic literature review. In: Proceedings
of 3rd European Conference on ServiceWave. pp. 37–50 (2010)

17. Haesen, R., Snoeck, M., Lemahieu, W., Poelmans, S.: On the definition of service granularity
and its architectural impact. In: Proceedings of 2008 Advanced Information Systems Engineer-
ing, 20th International Conference. pp. 375–389 (2008)

18. Henderson, J.C., Venkatraman, N.: Strategic alignment: Leveraging information technology for
transforming organizations. IBM Systems Journal 32(1), 4–16 (1993)

19. Huergo, R.S., Pires, P.F., Delicato, F.C., Costa, B., Cavalcante, E., Batista, T.: A systematic
survey of service identification methods. Service Oriented Computing and Applications 8(3),
199–219 (2014)

20. Inaganti, S., Gopala, Behara, K.: Service identification: BPM and SOA handshake. BPTrends
(2007)

21. Kim, Y., Doh, K.: Formal identification of right-grained services for service-oriented modeling.
In: Proceedings of 10th International Conference on Web Information Systems Engineering.
pp. 261–273 (2009)

22. Kim, Y., Doh, K.: Use-case driven service modelling with xml-based tailoring for SOA. Inter-
national Journal of Web and Grid Services 9(1), 35–53 (2013)

23. Kohlborn, T., Korthaus, A., Chan, T., Rosemann, M.: Identification and analysis of business
and software services - A consolidated approach. IEEE Transactions on Services Computing
2(1), 50–64 (2009)

24. Koliadis, G., Ghose, A.: Relating business process models to goal-oriented requirements mod-
els in KAOS. In: Proceedings of 2006 Pacific Rim Knowledge Acquisition Workshop on Ad-
vances in Knowledge Acquisition and Management. pp. 25–39 (2006)

25. Koumaditis, K., Themistocleous, M.: A detailed framework for SOA governance. International
Journal of Systems and Service-Oriented Engineering 5(3), 52–74 (2015)

26. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proceedings
of 5th IEEE International Symposium on Requirements Engineering. pp. 249–262 (2001)

27. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements and
design engineering. In: Proceedings of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 53–62 (2004)

28. Li, J., Rong, W., Yin, C., Xiong, Z.: Dependency aware business process analysis for service
identification. In: Proceedings of 9th Asia-Pacific Services Computing Conference. pp. 137–
152 (2015)

29. Li, Q., Wang, Z., Cao, Z., Du, R., Luo, H.: Process and data fragmentation-oriented enterprise
network integration with collaboration modelling and collaboration agents. Enterprise Infor-
mation Systems 9(5-6), 468–498 (2015)

30. Llinas, G.A.G., Nagi, R.: Network and qos-based selection of complementary services. IEEE
Transactions on Services Computing 8(1), 79–91 (2015)

31. Ma, Q., Zhou, N., Zhu, Y., Wang, H.: Evaluating service identification with design metrics on
business process decomposition. In: Proceedings of 2009 IEEE International Conference on
Services Computing. pp. 160–167 (2009)

32. Maiden, N.A.M., Lockerbie, J., Randall, D., Jones, S., Bush, D.: Using satisfaction arguments
to enhance i* modelling of an air traffic management system. In: Proceedings of 15th IEEE
International Requirements Engineering Conference. pp. 49–52 (2007)

33. Mayer, S., Wilde, E., Michahelles, F.: A connective fabric for bridging internet of things silos.
In: Proceedings of 5th International Conference on the Internet of Things. pp. 148–154 (2015)

34. Mellegård, N., Staron, M.: Improving efficiency of change impact assessment using graphical
requirement specifications: An experiment. In: Proceedings of 11th International Conference
on Product-Focused Software Process Improvement. pp. 336–350 (2010)



Goal-oriented Dependency Analysis for Service Identification ?? 403

35. Merabet, M., Benslimane, S.M.: A multi-objective hybrid particle swarm optimization-based
service identification. In: Proceedings of 1st International Conference on Advanced Aspects of
Software Engineering. pp. 52–62 (2014)

36. Mylopoulos, J., Chung, L., Nixon, B.A.: Representing and using nonfunctional requirements: A
process-oriented approach. IEEE Transactions on Software Engineering 18(6), 483–497 (1992)

37. Nuseibeh, B., Easterbrook, S.M.: Requirements engineering: a roadmap. In: Proceedings of
22nd International Conference on on Software Engineering. pp. 35–46 (2000)

38. Papazoglou, M.P., van den Heuvel, W., Mascolo, J.E.: A reference architecture and knowledge-
based structures for smart manufacturing networks. IEEE Software 32(3), 61–69 (2015)

39. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State of
the art and research challenges. IEEE Computer 40(11), 38–45 (2007)

40. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster, A.J.: Busi-
ness process management with the user requirements notation. Electronic Commerce Research
9(4), 269–316 (2009)

41. Raman, A., Bharadwaj, S.S., Mukherjee, J.: Developing soa-enabled service agility capabili-
ties: case studies in services industry. International Journal of Business Information Systems
27(1), 21–44 (2018)

42. Rathfelder, C., Groenda, H.: isoamm: An independent SOA maturity model. In: Proceedings
of 8th International Conference Distributed Applications and Interoperable Systems. pp. 1–15
(2008)

43. Salles, G.M.B., Fantinato, M., Barros, V.A., de Albuquerque, J.P.: Evaluation of the strali-bpm
approach: strategic alignment with BPM using agreements in different levels. International
Journal of Business Information Systems 27(4), 433–465 (2018)

44. Schelp, J., Aier, S.: SOA and EA - sustainable contributions for increasing corporate agility. In:
Proceedings of 42nd Hawaii International International Conference on Systems Science. pp.
1–8 (2009)

45. Söderström, E., Meier, F.: Combined SOA maturity model (CSOAMM): towards a guide for
SOA adoption. In: Proceedings of the 3th International Conference on Interoperability for En-
terprise Software and Applications. pp. 389–400 (2007)

46. Stephan, B., Bauer, T., Reichert, M.: Bridging the gap between business process models and
service composition specifications. In: Service Life Cycle Tools and Technologies: Methods,
Trends and Advances, pp. 124–153 (2011)

47. Strode, D.E.: A dependency taxonomy for agile software development projects. Information
Systems Frontiers 18(1), 23–46 (2016)

48. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting scenario-based require-
ments engineering. IEEE Transactions on Software Engineering 24(12), 1072–1088 (1998)

49. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Evaluating workflow process de-
signs using cohesion and coupling metrics. Computers in Industry 59(5), 420–437 (2008)

50. Vilela, J., Castro, J., Martins, L.E.G., Gorschek, T., Silva, C.T.L.L.: Specifying safety require-
ments with GORE languages. In: Proceedings of the 31st Brazilian Symposium on Software
Engineering. pp. 154–163 (2017)

51. Wang, J., Wang, Q.: Analyzing and predicting software integration bugs using network analysis
on requirements dependency network. Requirements Engineering 21(2), 161–184 (2016)

52. Wetzstein, B., Leitner, P., Rosenberg, F., Dustdar, S., Leymann, F.: Identifying influential fac-
tors of business process performance using dependency analysis. Enterprise Information Sys-
tems 5(1), 79–98 (2011)

53. Xu, L.D., Viriyasitavat, W., Ruchikachorn, P., Martin, A.: Using propositional logic for re-
quirements verification of service workflow. IEEE Transactions on Industrial Informatics 8(3),
639–646 (2012)

54. Yao, J., Tan, W., Nepal, S., Chen, S., Zhang, J., Roure, D.D., Goble, C.A.: Reputationnet:
Reputation-based service recommendation for e-science. IEEE Transactions on Services Com-
puting 8(3), 439–452 (2015)



404 Jiawei Li et al.

55. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineering.
In: Proceedings of 3rd IEEE International Symposium on Requirements Engineering. pp. 226–
235 (1997)

Appendix A. Process fragment

The result of process fragments are shown below from Fig. 1 to 8.



Goal-oriented Dependency Analysis for Service Identification ?? 405

Requirement 1 Scenario 1

Requirement 1 Scenario 2

Requirement 1 Scenario 3

Client

C
o
m
p
a
n
y

Client

C
o
m
p
a
n
y

p

Need

Client

C
om

pa
ny

Search for
the ticket need

Fig. 1. Requirement R1.



406 Jiawei Li et al.

Client

C
o
m
p
a
n
y

Fig. 2. Requirement R2.

Client

C
o
m
p
a
n
y

Fig. 3. Requirement R3.

Client

C
o
m
p
a
n
y

N d

Fig. 4. Requirement R4.

C
o
m
p
a
n
y

Search for the
room need

End Event

enough room? No

Room need Rooms and price

Fig. 5. Requirement R5.

C
o
m
p
a
n
y

Client

Bank

Fig. 6. Requirement R6.



Goal-oriented Dependency Analysis for Service Identification ?? 407

C
o
m
p
a
n
y

Fig. 7. Requirement R7.
C
o
m
p
a
n
y

Fig. 8. Requirement R8.

Jiawei Li received her MSc degree from Sino-French Engineering School at Beihang
Universit in 2016. Her research interest covers service oriented computing, software en-
gineering and information systems.

Wenge Rong received the B.Sc. degree from the Nanjing University of Science and Tech-
nology, China, in 1996, the M.Sc. degree from Queen Mary College, U.K., in 2003, and
the Ph.D. degree from the University of Reading, U.K., in 2010. He is currently an Asso-
ciate Professor with Beihang University, China. He has many years of working experience
as a Senior Software Engineer in numerous research projects and commercial software
products. His current research interests include machine learning, natural language pro-
cessing, and information management.

Chuantao Yin received his PhD degree on computer science in 2010 from Ecole Centrale
de Lyon. He works as associate professor in Sino-French Engineering School at Beihang
University in China. His research activities are focused on human learning, smart learning,
smart city, etc.

Zhang Xiong is currently a Professor with the School of Computer Science of Engi-
neering, Beihang University, and the Director of the Advanced Computer Application
Research Engineering Center, National Educational Ministry of China. He has published
over 200 referred papers in international journals and conference proceedings. His re-
search interests and publications span from smart cities, knowledge management, and
information systems. He received the National Science and Technology Progress Award.

Received: February 5, 2018; Accepted: January 15, 2019.




	Introduction
	Related Work
	Dependency-Aware Service Identification
	Requirement Acquisition
	Scenario Matching
	Service Grouping

	Case Study
	Requirement Acquisition
	Scenario Matching
	Discussion

	Conclusion and Future Work

