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Abstract. We introduce two new algorithms for creating an exponentially biased
sample over a possibly infinite data stream. Such an algorithm exists in the literature
and uses O(logn) random bits per stream element, where n is the number of ele-
ments in the sample. In this paper we present algorithms that use O(1) random bits
per stream element. In essence, what we achieve is to be able to choose an element
at random, out of n elements, by sparing O(1) random bits. Although in general this
is not possible, the exact problem we are studying makes it possible. The needed
randomness for this task is provided through a random walk. To prove the correct-
ness of our algorithms we use a model also introduced in this paper, the limited
randomness model. It is based on the fact that survival probabilities are assigned to
the stream elements before they start to arrive.
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1. Introduction

Let us assume that we want to create a fixed size subset of a data stream of unknown,
possibly infinite length. We call this subset a sample and let n be the given size of the
sample, dictated by the available for this purpose memory. Creating such a sample falls
into the general category of synopsis maintenance ([3], [6], [7], [10], [12], [14], [16],
[17]). The problem of synopsis maintenance has been studied extensively for estimating
queries ([4], [7], [17]) in data streams. A survey of stream synopsis construction algo-
rithms can be found in [2].

In this paper we are going to focus on reservoir sampling [16], which is an important
class of stream synopsis construction methods. Assuming that the length of the stream is
known (let N be this length), we can easily create an algorithm to ensure that each stream
element has n/N probability of being in the sample when the stream ends. However, the
sample of a stream may need to be used before the stream ends, and it is even possible
that the stream is endless. When the sample is unbiased and the length of the stream
is unknown, the probability for each stream element to enter the sample reduces as the
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stream progresses (see [16]). This means that as the stream progresses, fewer and fewer
elements in the sample belong to the recent history of the stream. Such a sample may be
proved useless for answering queries concerning the recent past. To address this problem
one needs to create a biased sample. Such a sample is created in [1].

In [1], a bias function f(r, t) is associated with the r − th stream element at the time
of arrival of the t − th stream element (r ≤ t). This function is associated with the
probability p(r, t) of the r − th element belonging to the sample at the time of the t− th
element. In particular, the function f(r, t) is monotonically decreasing with t (for fixed r)
and monotonically increasing with r (for fixed t). For the specific function e−λ(t−r), an
efficient algorithm is introduced in [1] for creating a sample consistent with that function.
The parameter λ defines the bias rate and typically lies in the range [0, 1]. In general,
λ is chosen in an application–specific way and it is the inverse of the number of stream
elements after which the relative probability of inclusion in the sample reduces by a factor
of 1/e. Throughout this paper, we name this algorithm Algorithm A. Also, we assume that
f(r, t) is identical to p(r, t).

The introduction of bias results in some upper bounds on the maximum necessary
sample size, also called maximum reservoir requirement. It is proved in [1] that for the
exponential bias function, the maximum reservoir requirement is bounded above by 1/λ,
assuming that λ is much smaller than 1, which happens to be the most interesting case.
According to Algorithm A, each new stream element takes the place of another element
of the sample which is chosen uniformly at random. Given that the size of the sample is
n, Algorithm A needs O(log n) random bits per stream element, in order to choose an
element of the sample at random.

In this paper we are going to present algorithms for creating a biased reservoir sample
(over a very long, possibly infinite stream of data) consistent with the exponential bias
function. The algorithms are based on the unit-cost RAM model, and use O(1) random
bits per stream element in the worst-case. Thus, our algorithms outperform Algorithm A
in terms of randomness complexity.

The issue of reducing the randomness complexity of algorithms is not only of theo-
retical interest, but of practical as well. The analysis of randomized algorithms is always
based on some assumptions concerning the theoretical machine-model used. The most
frequently used machine-model is the unit-cost RAM. An interesting assumption con-
cerning the unit-cost RAM, is that it needs O(1) time to uniformly choose an element at
random over n elements. This is because O(log n) random bits are needed for this task
and the unit-cost RAM accesses these bits in O(1) time (we assume that w, the word size,
is bigger than log n). However this is not realistic, because the actual cost of generating
these bits is swept under the carpet, through its assignment to some subroutine that has
no cost at all. All the unit-cost RAM needs to do, is to spend O(1) time in order to access
O(w) random bits, provided (free of charge) by this subroutine. The issue of the real cost
of random bits is addressed in [8]. It is stated there that each random bit can be assumed
to cost a constant amount of time “at best”. This means that the time complexity of a
randomized algorithm is at least equal to the number of random bits it uses. Minimiz-
ing the number of random bits is thus a straightforward direction for improving the time
complexity of randomized algorithms, in cases where the randomness complexity of the
algorithm dominates its overall time complexity. Algorithm A falls into this category as
its time complexity isO(1) in the worst-case in a unit-cost RAM, whereas its randomness
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complexity is O(log n) (all the time complexities are “per stream element”). Assuming
that each random bit costs O(1) time (following the logic of [8]), the random bits in Al-
gorithm A introduce a multiplicative factor of O(log n) per stream element in the time
complexity. Our algorithms avoid this multiplicative factor and the intuition behind this
result is given in the following paragraphs.

Let us assume that we have a coin, claimed to be fair. Intuitively, this means that if
we toss the coin M times, “heads” or “tails” is supposed to occur at a fraction of M
that approaches 1/2, as M approaches infinity. However, to evaluate the coin (i.e. to
decide whether the coin is fair or not) we do not need to toss the coin M times, for a
big enough M . It suffices to inspect its shape (assume that we have special equipment
for this). Clearly, the time of such an inspection is irrelevant (assuming that the shape
of the coin remains unchanged over time). Let us now follow the same logic, replacing
the coin by an algorithm that creates a sample over a data stream. The coin produces
“heads” or “tails”, whereas the algorithm produces samples. By setting the sample to be
consistent with a bias function p(r, t), we mean that if we execute the algorithm M times
on a stream S, the r − th stream element (i.e., S(r)) will survive in the sample at time t
(t > r) at a fraction of the M produced samples that approaches p(r, t) as M approaches
infinity. In order to evaluate such an algorithm (i.e. to decide whether or not the algorithm
creates a sample consistent with p(r, t)), we need to check its instructions and using these
instructions to calculate survival probabilities for the sample elements. If these survival
probabilities are consistent with the given bias function, we conclude that the algorithm
works as claimed. As with the coin, the time of the evaluation is irrelevant (clearly, the
algorithm remains unchanged over time). Although the evaluation can be performed any
time, the evaluation at time t = 0 (i.e. before the stream elements start to arrive) has a
clear advantage, to be explained in the following paragraphs. Evaluating the algorithm
at time t = 0, means that we have no sample to inspect but we do not actually need an
existing sample. It is the “shape of the coin” that matters.

In order to successfully evaluate our algorithms, we must conclude that each time a
new stream element arrives, each sample element is equally likely to be deleted from the
sample (this is the basic property of the sampling algorithm in [1]). This means that each
time a new stream element arrives, we need to perform uniform sampling. For this pur-
pose, our algorithms use a Markov chain whose stationary distribution happens to be the
uniform distribution. The random walk corresponding to this Markov chain is composed
of steps. Each time, one of the elements of the sample is the position of the walk. Each
step results in a new position of the walk and needs O(1) random bits in the worst-case.
Each accessed random bit is used for executing a step of the walk and we choose to delete
the element of the sample implied by the position of the walk.

Using a Markov chain for performing uniform sampling is not new. Typically, one
needs a Markov chain having the uniform distribution as its stationary distribution. In
order to extract a random position, the Markov chain must be allowed to “run” for as
many steps as necessary in order to reach its stationary distribution. However, when the
random position is extracted, the position of the walk is not random any more and in
order to retrieve one more random position, one has to let the Markov chain “run” again
for as many steps as necessary in order to reach its stationary distribution. In this paper,
we simply cancel this fact and instead we extract one random position per step.
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The above claim may sound strange. In particular, one may argue that when an element
is chosen by our algorithm at any time t 6= 0, the position of the walk is deterministically
decided. Knowing the position of the walk at time t, how is it possible to choose the next
element uniformly at random, by accessing only O(1) random bits? The answer is the
following: Accessing the sample at time t 6= 0 and calculating survival probabilities for
the sample elements, we simply calculate conditional probabilities in regard to time t = 0,
i.e. probabilities under the condition that the exact accessed sample of time t will occur.
In this sense, calculating survival probabilities at any time t 6= 0, may be misleading.

To achieve uniform sampling while calculating survival probabilities at time t = 0, it
suffices to make sure that by the time the stream elements start to arrive, the Markov chain
will have reached its stationary distribution (i.e., the uniform distribution). As a result, it
will remain in this distribution, which means that in regard to time t = 0, all future
elements are equally likely to be chosen by our algorithm. More insight on this claim
will be given in Section 3, where a more detailed intuitive example is given. We will also
use the example of Section 3 for intuitively introducing a new model for evaluating our
algorithms, which we call limited randomness model.

The structure of the paper is the following: In Section 2, we briefly present Algorithm
A. In Section 3 we present the intuition behind the definitions that we present in Section
4. In Section 5, we present the random walk. This way we use this random walk as a
black box in Section 6, where we present our new algorithms. We believe that this “black
box” usage of the random walk simplifies the description of the algorithms, and helps the
reader focus on the rest of the ideas that make our algorithms work.

2. Algorithm A: The exponential bias function

In this section, we will briefly present Algorithm A (i.e., algorithm 2.1 of [1]).
Algorithm A is based on the idea that each new stream element is deterministically

inserted into the sample, and replaces one of the old elements of the sample. The old ele-
ment to be replaced is chosen uniformly at random. Therefore, assuming that the reservoir
contains n elements, each element “survives” in the sample with probability (1 − 1/n)
every time a new stream element arrives. Then, the element that arrives at time r will exist
in the sample at time t with probability (1 − 1/n)t−r = ((1 − 1/n)n)(t−r)/n. For large
values of n (and it is reasonable to assume that n is large), the inner (1 − 1/n)n term is
approximately equal to 1/e, and from substitution, the exponential bias function follows.

It must be noted that Algorithm A is slightly more complicated, because the reservoir
is filled gradually, to ensure that the sample is consistent with the exponential bias function
from the beginning. We have skipped this part, firstly in order to keep things simple, and
secondly because we are going to use the exact methodology, to achieve the same thing.

3. Intuition on the term “limited randomness ”

We can use a roulette as an intuitive example. Let us assume that we have a roulette with
n numbers (where each number is associated with a different slot), such that in the long
run, each number is equally likely to host the ball. However, our roulette has a problem.
Assuming that the ball is hosted in a given slot, the nearby slots are more likely than
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distant ones, to host the ball after the next “throw”. This weakness of our roulette comes
from the fact that the ball is moved by means of a random walk algorithm (it is an e-
roulette). The random walk uses less randomness than what is actually needed in order
to guarantee that each time, the ball ends up in a slot that can be assumed to be fully
random (it is therefore a limited randomness roulette). Although in the long run, one will
observe that each number is equally likely to occur, the casino owners have a problem.
If the players know the algorithm under which the roulette operates, they will bet their
money on slots nearby the most recent winning slot. Even if the players do not know the
algorithm under which the roulette operates, they can observe and notice that each time,
the ball tends to end-up in a slot that is nearby the previous one. If the casino owners use
this roulette in the “traditional” way, their casino is doomed.

To address the issue, the casino owners apply a curtain above the roulette, so that the
players cannot see where the ball is before the throw. If the casino owners manage to
hide all the information concerning the current position of the ball, so that the players
conclude that below the curtain, the ball is equally likely to be in any slot, the problem is
solved. This curtain is the basic notion of our mechanism and it will be modeled in the
next section. The players now have limited access on what is going on.

One might wonder how is it possible to use this roulette instead of the traditional one.
In particular, it is clear after a throw, the winning number must be revealed to the players
and then the players will bet their money on nearby slots. Even if they cannot see the slots
(i.e. they do not know which number corresponds to each slot), they will write down the
winning numbers. Each time a winning number x appears, they will check their notes and
see what is the most frequent winning number next of x. Then, they will bet their money
on this number. It seems that the notion of the curtain did not make this roulette usable
after all. Clearly, assuming that the players have no memory of the past, the problem is
solved. But is such an assumption reasonable? For casino players, it certainly isn’t.

However keep in mind that the central idea behind the algorithms presented in this
paper, is that all evaluations (i.e., all probability calculations) are performed at time t = 0
(according to the intuition given in Section 1). Assuming that the players have no memory
of the past, we simply incorporate into our model the fact that at time t = 0, when the
evaluation occurs, there is nothing to remember. Thus, our limited randomness roulette
can in fact be used, but not with a curtain (the curtain only exists in our evaluation model).
The exact use is presented in the next paragraph.

The casino announces that the players are allowed to bet before the game starts, and
the game involves N throws. No betting is allowed during the game. Each bet contains an
amount of money, a slot where the money is put and the number of throw on which the bet
is active. Therefore, each player is allowed to bet on any one of the N throws, before the
first throw starts. After all the bets are placed, the roulette is initialized in such a way that
the ball is placed in slot chosen uniformly at random among the n slots. Then the throws
start. At any time t 6= 0, each player may find himself/herself to have an advantage or a
disadvantage, based on the position of the ball (i.e. depending on how far from the slot
he/she placed a bet, the slot that hosts the ball lies). However, this temporal feeling of
stealing the casino, or being stolen by it, is just an illusion (and gambling involves quite
a few illusions). The truth is that when the bets are placed, i.e. at time t = 0, (it can be
derived that) each bet has 1/n probability to win and as a result, the game is fair.
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4. Definitions

In general, we distinguish in this paper two approaches for a biased reservoir sampling
algorithm: According to the strict approach, the reservoir is filled gradually and even
when it is not full, the sample is consistent with the bias function. According to the greedy
approach the reservoir is first filled and then the algorithm starts. Therefore it follows that
initially, our sample does not comply with the bias function. But as time passes, fewer
and fewer of the initial elements continue to exist in the sample, thus the fraction of the
sample that was not built according to our function, continuously decreases. By the above
definition, Algorithm A is strict.

We distinguish the memory positions used by an algorithm that creates a biased sam-
ple, into two parts. The sample-space, contains all the memory positions where the el-
ements of the sample are stored. The surrounding-space contains all the memory posi-
tions used by the algorithm in order to obtain the sample, except the sample-space. The
sample-space and the surrounding-space together, correspond to the entire used-space of
the algorithm. Let us now introduce the concept of the sample-user, which informally, is
a person able to calculate probabilities and comes in two flavors.

Definition 1. The sample-user of full access is an evaluator able to access at any time t
i) the entire used-space, ii) the algorithm that created the sample and iii) the bias function
associated with the algorithm. Based on what he/she can access at time t, the sample-
user of full access is able to calculate for each existing or future sample-element x, the
probability of x being in the sample for all future (in regard to x) time-points.

Definition 2. The sample-user of limited access is an evaluator able to access at any
time t i) the sample-space, ii) the algorithm that created the sample and iii) the bias func-
tion associated with the algorithm. Based on what he/she can access at time t, the sample-
user of limited access is able to calculate for each existing or future sample-element x,
the probability of x being in the sample for all future (in regard to x) time-points.

It must be noted that in both definitions, we consider the sample-user to be memory-
less, in the following sense: At any given time t, the sample-user of full (limited) access
is able to calculate probabilities based on what he/she is able to access at time t only.
In other words, the sample-user can not keep track of the changes that have occurred to
the sample, in order to use the information provided by these changes when calculating
probabilities.

The notion of the sample-users is introduced in order to capture the intuition described
in the previous section. The different flavors of a sample-user are needed to capture the
presence or absence of a curtain that covers all memory positions except the sample-space.
According to the above two definitions, the only time-point where a sample-user of full
access and a sample-user of limited access have the same “power” is the time before the
stream elements start to arrive (i.e., when t = 0). This is because at time t = 0, the entire
used space is empty. We have set the sample-users to be memoryless in order to reflect
to the sample-users the fact that all calculations are done at time t = 0 because there is
nothing to remember at time t = 0.

Definition 3. A biased sample of full randomness consistent with a function f is a
sample where at any time t, a sample-user of full access is not able to find an existing or
future element x in the sample, for which at least one time-point decreases the probability
of x being in the sample in a way different than the one dictated by f .
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Definition 4. A biased sample of limited randomness consistent with a function f
is a sample where at any time t, a sample-user of limited access is not able to find an
existing or future element x in the sample, for which at least one time-point decreases the
probability of x being in the sample in a way different than the one dictated by f .

Definition 3 applies to the biased sample created in [1]. In particular, at any time t,
the sample-user of full access will conclude by accessing Algorithm A, that each of the n
elements in the sample has 1/n probability of being deleted from the sample at the next
time-point, i.e. each element has (1 − 1/n) probability to survive the next insertion, and
this is consistent with the exponential bias function (allowing the substitutions explained
in Section 2). Said otherwise, Algorithm A convinces a sample-user of full access.

In this paper we present algorithms for creating a biased sample of limited random-
ness, i.e. algorithms that convince a sample-user of limited access. According to the intu-
ition given so far, convincing a sample-user of limited access suffices for proving that our
algorithms produce samples consistent with a given bias function. This is because time
t = 0 is as good as any for evaluating our algorithms and it turns out that at time t = 0,
a sample user of limited access and a sample user of full access are identical (they both
access the same thing, i.e. the instructions of the algorithm). We believe that this limited
access model can be used in order to reduce the randomness complexity of algorithms, in
cases where the randomness complexity dominates the overall time complexity.

5. The random walk

5.1. Description of the random walk

In this subsection we present an algorithm for performing a random walk on a list. The
list is traversed in left-to-right order, with the leftmost node being the head of the list.
Thus, the next node of a node u is the node on the right of u, and we set the next node
of the rightmost node of the list to be the head of the list (i.e., we actually have a circle).
Similarly, the previous node of u is the node on the left side of u, and the previous node
of the head of the list is the rightmost node of the list. We also maintain a pointer called
cursor, that points to a node of the list which we call position of the walk. The walk
consists of steps, with each step having an initial, and a final node. The initial node is the
position of the walk before the step starts, and the final node is the position of the walk
after the step ends. The previous of the final node is called hit-node, and thus each step
“produces” a hit-node. Initially, before the first step, the position of the walk is the head
of the list. A step is briefly described by algorithm Step that follows.

Algorithm Step. We toss a fair coin on the position of the walk. If “tails” occur, the next
node of the list becomes the position of the walk, and we repeat the same (i.e. we toss
a fair coin again). Otherwise, the position of the walk becomes the hit-node of Step(),
we set the cursor to point to the next node (which now becomes the position of the
walk) and Step() ends. The maximum number of coins we are allowed to toss, is K.
If we toss K coins and no “heads” occur, then we declare the node pointed by the cur-
sor as hit-node, we set the cursor to point to the next node of the list and Step() ends.

A reader unfamiliar to Markov chains should hopefully find Appendix A (where the
intuition behind Algorithm Step is given) helpful. An issue that must be discussed is the
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value of K, the maximum number of coin-tosses we are allowed to have in each step.
Obviously, the worst-case time complexity of Step is equal to K. However, as long as
K ≥ 2, observe that since the coin is fair, 2 coin tosses are performed on the average
in each step, because this is the average number of tosses until “heads” occur. Thus, the
expected number of random bits per step is 2 and Step costs O(1) expected time. By
allowing c coin tosses at most, where c is a constant greater than one, we achieve constant
worst-case time per step. By allowing only one coin toss, no randomness is inserted into
the scheme, and the position of the cursor becomes deterministic for all the future time
points.

5.2. Analysis of the random walk

Let n be the length of the list. We will analyze the walk for K such that 2 ≤ K ≤ n. Let
mi = 1/2i and

pi =


mi, if i < K

mi−1, if i = K

0, if i > K

We can easily see that the walk can be described by a Markov chain with the following
n ∗ n transition matrix.

P =


pn p1 p2 p3 . . . pn−1

pn−1 pn p1 p2 . . . pn−2

...
...

... . . .
...

p1 p2 p3 p4 . . . pn


For example, by setting K = n the matrix becomes:

P =


1/2n−1 1/2 1/4 1/8 . . . 1/2n−1

1/2n−1 1/2n−1 1/2 1/4 . . . 1/2n−2

...
... . . .

...
1/2 1/4 1/8 1/16 . . . 1/2n−1


For more details and an extended example see Appendix A. The key observations are that
the factors are the same for each row and their sum is equal to 1. The position probability
vector at time j is:

Posj =
[
P1,jP2,j . . . Pn,j

]
and can be derived by the initial probability vector at time 0, θ =

[
P1,0P2,0 . . . Pn,0

]
as

follows: Posj = θ ∗ P (j−1).

Theorem 1 The random walk described in this subsection simulates a uniform sampling
process as time approaches infinity.

Proof. It is easy to conclude that the Markov chain is irreducible and aperiodic. The
states are irreducible because there is a path from any state to all the others. The states
are aperiodic because they form one connected component in the graph and anytime the
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probability of returning to a state is greater than 0, since we can reach any state from any
other state with probability greater than 0. The above statements hold for any K. Thus the
Markov chain has one limiting distribution π such that π ∗ P = π and

∑n
i=1 πi = 1,

where πi > 0. It is straightforward to see that π = [1/n, 1/n, · · · , 1/n]. �

5.3. Mixing time of the random walk

Theorem 1 establishes the fact that after “a while”, the probability distribution of the
Markov chain becomes very close to the uniform distribution. An important issue is how
long it is going to take, i.e. what is the mixing time of the chain, defined as follows:
Let V be the state space of our Markov chain. Let us assume that the chain will ulti-
mately converge to the stationary distribution π which means that for every i, j ∈ V ,
limt→∞(P t)ij = πj . The L2 mixing time r(ε) = maxx∈V min{t : ||kxt − 1||2,π ≤ ε}
is the worst-case time for standard deviation of the density kxt (y) =

(P t)xy

πy
to drop to ε

[15]. For reasons of completeness we have calculated this mixing time in Appendix B and
it is O(n2 · log n) where n is the number of list-nodes.

The mixing time is independent of K. Thus, by increasing K, one expects that the
chain will reach the stationary distribution faster, but not asymptotically faster. While
asymptotically there is no gain in setting K to be high, there is a gain in setting K to be
a constant: The number of random bits per stream element becomes constant in the worst
case. This is why in the following of the paper, we set K = 2.

6. New algorithms

Let S(r) be the r-th stream element. Each arriving stream element defines the current
time, i.e. the r-th stream element arrives at time-point r. Recall that in [1], it is proved
that the reservoir size is bounded above by 1/λ. As a result, initially, we have a list of 1/λ
nodes, which we call sample-list. The sample-list is traversed in left-to-right order. The
leftmost node is node 1, and the numbers of the nodes increment as we walk rightwards,
however the numbers are only implied by the relative order of the nodes in the list and
they are not stored in the nodes. The sample-list is the sample-space defined in Section 4.

We are going to present two new algorithms for creating a sample consistent with
the exponential bias function. More specifically, we are going to show that according to
both algorithms, the probability of S(r) being in the sample at time t (for any t ≥ r)
is e−λ(t−r). In order to better state the problem we need to solve, we are going to first
introduce a simple but problematic algorithm which we call Algorithm 0. In order to
make things even simpler, let us assume that each sample element (stored in a node of
the sample-list) is accompanied by its arrival time. That is, by accessing a node of the
sample-list, we access an element of the sample, and the arrival time of this element.

Algorithm 0. When a new stream element arrives (after the reservoir is filled), we
execute algorithm Step(), and replace the element stored in the hit-node by the new stream
element.

The problem with Algorithm 0 is that it introduces a (disturbing) certainty for a
sample-user of limited access. Let us assume that the user accesses the sample at time t.
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Knowing the instructions of our algorithm and accessing the sample-list, the user is able
to deterministically decide on the position of the walk: In particular, the cursor points to
the next node of the node that contains the most recent element of the sample. This knowl-
edge allows the user to determine for all the elements in the sample, a survival probability
for the next time-point different than the one dictated by the exponential bias function. For
example, the user will conclude that the element pointed by the cursor has 1/2 probability
of being the next to be deleted. If the user starts calculating future probabilities, he/she
will conclude that for any time-point more distant into the future than r(ε) time-points,
each element can be assumed to be chosen uniformly at random and this is consistent with
the given bias function. But for any future time-point between t and t+ r(ε), the user will
conclude that the instructions of the algorithm do not comply with the given bias function.

An issue that must be discussed, is whether Algorithm 0 manages to convince a
sample-user of limited access, if we do not accompany each sample element by its ar-
rival time. Then, the user cannot find the most recent element, therefore cannot decide
on the position on the walk. However, this holds only for the elements that already exist
in the sample, because the sample-user can obviously connect the future positions of the
walk with the positions of the future elements. In particular, after the insertion of S(t) for
a future time-point t, the cursor will point to the node next to the one that contains S(t).
Therefore, assuming K = 2, the probability that S(t) will be deleted at time t + 1 is 0
(we assume that the sample-list contains more than two nodes). This probability is not
consistent with the exponential bias function, and thus a sample user of limited access is
not convinced.

Since our goal is to convince a sample-user of limited access, Algorithm 0 does not
solve the problem. In the following section, we are going to present two algorithms that
convince a sample-user of limited access. Algorithm 1 is a mixing time dependent algo-
rithm meaning that its space-complexity is proportional to the mixing time of the Markov
chain. Algorithm 2 is a mixing time independent algorithm meaning that the mixing time
of the Markov chain does not appear in the space-complexity. In both algorithms we do
not accompany each sample element by its arrival time, as this is not mentioned in [1].
By adding the arrival times, Algorithm 2 is not affected whereas Algorithm 1 needs some
more technical details which we omit for now.

6.1. Algorithm 1: A mixing time dependent solution

Algorithm 1 is based on the walk of Section 5, defined on the sample-list. It follows the
greedy approach, i.e. initially we fill up all the nodes of the sample-list with the first
(1/λ) elements of the stream. We introduce a new list called cursor-past of length r(ε)
(i.e. the length is equal to the mixing time of the Markov chain, defined in Subsection
5.3). A simple way to perceive the cursor-past list, is the following: A person watches a
live program using streaming. There is a time-gap between what is really happening live,
and what this person sees. As a result, he/she can only guess what is happening at present
time, based on what he/she sees and knowing that what he/she sees happening now has
actually happened in the past. In our algorithm, the cursor-past list will create such a time-
delay effect on the position of the cursor, revealing to the sample-user the position of the
cursor r(ε) time units ago. Based on this position, the user must decide on the current
position of the cursor.
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Before the stream elements start to arrive, we have the preprocessing phase, which
includes two tasks. First, we need to set the cursor of the walk to point to one of the nodes
of the sample-list, chosen uniformly at random. For this we useO(log (1/λ)) random bits
and then we need to access the corresponding (by the random bits) node of the sample-
list in order to update the cursor, which means that we need to traverse the sample-list.
Second, we have to traverse the cursor-past list from left to right. For each node u of the
cursor-past list, we execute one step of the walk on the sample-list and store in u a pointer
towards the hit-node of the step (keep in mind that the hit-node belongs to the sample-list).

The entire preprocessing phase needs O(log (1/λ) + r(ε)) random bits. Assuming
that each random bit costs O(1) time, the preprocessing phase needs O(1/λ+ r(ε)) time
in the worst-case. One may assume that before the stream elements start to arrive, we have
plenty of time to prepare our structures, i.e. the preprocessing time is not a problem.

After the preprocessing phase we have the fill-up phase, during which the sample-list
is filled with the first 1/λ elements of the stream. When the sample-list becomes full,
Algorithm 1 starts.

Algorithm 1. Let t be the current time and S(t) the newly arrived stream element. We
execute Step() and let y be the hit-node. We insert a new rightmost node into the cursor-
past list, and store the address of y into this node. Let z be the sample-list node pointed
by the leftmost node of the cursor-past list. We exchange the elements between nodes z
and y. Then, we store S(t) into z. We delete the leftmost node of the cursor-past list.

Algorithm 1 is graphically depicted in Figure 1 where the sample-list consists of 6
nodes. At time t, S(t) is 60. According to Algorithm 1 we insert the red (rightmost) node
in the cursor-past list. The two highlighted nodes of the sample-list will take place in the
swap operation. The lower part of the figure visualizes our structures ready for the next
insertion, at time t+ 1. Keep in mind that all the sample-user of limited access is allowed
to “see”, is the sample-list. Therefore, no node of the sample-list appears highlighted to
the sample-user of limited access.

Theorem 2 Associating Algorithm 1 with the exponential bias function, Algorithm 1 con-
vinces a sample-user of limited access.

Proof. Let us assume that the user accesses the sample just after S(t) has arrived and
let n be the size of the sample-list. In order to calculate the survival probabilities for the
elements of the sample-list, the sample-user must decide on the position of the walk. Since
the Markov chain has reached its stationary distribution from the preprocessing phase
(remember that we have set the cursor to point to each element with equal probability), it
remains in the stationary distribution from that point and on, thus the user concludes that
any of the nodes of the sample-list can be the position of the walk with equal probability.
This means that each element of the sample has 1/n probability to be the next we delete,
therefore each sample-element will survive the next insertion with probability 1 − 1/n
and this is consistent with the exponential bias function (see Section 2). In addition, the
user cannot decide on the position of the walk for all the future time-points. For example,
let t1 be a future time-point. Let uj be the node of the sample-list where S(t1) is going
to be placed. In order to calculate the survival probabilities for all the future (in regard
to t1) time-points, the user must decide on the node pointed by the rightmost node of the
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Fig. 1. Graphical representation of Algorithm 1.

cursor-past list. Being certain on the position of the walk implied by the leftmost node of
the cursor-past list (it is the node next of uj) does not help the sample-user. The length of
the cursor-past list ensures that given a node pointed by the leftmost node of the cursor-
past list, the node pointed by the rightmost node of the cursor-past list is fully random,
i.e. the rightmost node may point to each node of the sample-list with probability 1/n.
Therefore each sample-element has 1/n probability not to survive at t1 + 1, i.e. each
element will survive the next insertion with probability 1− 1/n. �

Algorithm 1 uses O(1) random bits per stream element in the worst-case (remember
that we have set K = 2 in Step). The rest of the actions need O(1) time in the worst-case.
The space-complexity is O(r(ε) + 1/λ), dominated by the size of the two lists (sample-
list and cursor-past list). The space-complexity is critical. As long as it is dominated by
the sample-list, Algorithm 1 is space-efficient. Although in our case this is not true, we
believe that Algorithm 1 is interesting from a theoretical point of view, and as a “tool” that
can be used elsewhere. To get rid of the mixing time in the space-complexity, we need to
find another way (i.e. other than the cursor-past list) for disconnecting the position of the
cursor from the most recent element of the sample. Such an algorithm is presented in the
next subsection.

6.2. Algorithm 2: A mixing time independent solution

Algorithm 2 is presented in both the strict and the greedy approach and let us start from
the strict one. We name left(i), the part of the sample-list from node 1 to node i. It follows
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that left(1/λ) is the entire sample-list. For each i (1 ≤ i ≤ 1/λ), we associate a random
walk on left(i) (we call it i-walk) based on algorithm Step. Thus we have 1/λ walks. We
allocate another list of 1/λ memory positions called cursor-list. As with the sample-list,
a number (between 1 and 1/λ) is implied for each node of the cursor-list, according to the
order (from left to right) of the nodes in the list. ∀ i (1 ≤ i ≤ 1/λ), the i-th node of the
cursor-list is going to host the cursor of the i-walk.

If i elements of the stream have been inserted into the sample-list, they occupy left(i)
and the i-walk is the active-walk. Initially, since no stream element exists in the sample,
all walks are inactive and clearly, if the i-walk is active, then all the j-walks (1 ≤ j < i)
have been active in the past. When the i-walk becomes inactive, the (i + 1)-walk will
become active. Keep in mind that although we have defined 1/λ walks, we need to keep
track of only two walks: the active-walk and the (1/λ)-walk.

When a walk becomes inactive, we free the node of the cursor-list corresponding to
the cursor of this walk. As a result, the nodes of the cursor-list are set free in left to right
order and at all times, the leftmost node of the cursor-list contains the cursor of the active
walk (we call this pointer active-cursor). This means that we are able to access the active-
cursor in constant time. It is also clear that the rightmost node of the cursor-list contains
the cursor of the (1/λ)-walk (we call this cursor final-cursor). Thus, by maintaining a
pointer towards this node, we are able to access the final-cursor in constant time. Finally,
we maintain a pointer called active-limit, towards the rightmost node of the active walk
(i.e. if the i-walk is the active walk, we maintain a pointer towards the i-th node of the
sample-list).

Before the elements of the stream start to arrive we have the preprocessing phase
where we traverse the cursor-list from left to right and store in the i-th node, a pointer to
a position of the sample-list, chosen uniformly at random among all sample-list positions
between 1 and i. After this task is completed, ∀ i (1 ≤ i ≤ 1/λ), the i-th node of the
cursor-list contains the cursor of the i-walk. For the preprocessing phase we use O(1/λ ·
log (1/λ)) random bits. Assuming that each random bit costs O(1) time, the worst-case
time complexity for the preprocessing phase is O((1/λ)2 · log (1/λ)) because for each
i we need to traverse the sample-list from node 1 to node i in order to access the node
chosen uniformly at random among all the nodes from node 1 to node i.

The above description is depicted graphically in Figure 2. According to the figure,
the active walk is the 5-walk, the filled nodes of the sample-list are represented through
rectangles and the empty ones through circles. Above the sample-list, we illustrate the
cursor-list. The shaded nodes on the left part of the cursor-list have been deleted in the
past, and the leftmost (black) node contains the cursor of the active-walk. The highlighted
node of the sample-list is pointed by the active-limit pointer. The sample-user of limited
access can only see the sample-list and since the active-limit pointer is “out of sight”, no
node of the sample-list appears highlighted to the sample-user of limited access.

Assume that at the time of (just after) the arrival of S(t), the fraction of the reservoir
filled is F (t) = i · λ, which means that i elements have been inserted into the reservoir
and they occupy left(i). It follows that the i-walk is the active-walk. Let w be the node
pointed by the active-limit pointer, and z be the node next to w. We are now ready to
proceed to the description of Algorithm 2.
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Fig. 2. The background for introducing Algorithm 2.

Algorithm 2. When S(t + 1) arrives, we deterministically add it to the sample. If the
final-cursor points to a non-empty position of the sample-list, the new stream element
is going to replace an existing element of the sample i.e. the number of elements in the
sample will remain the same. We execute a step for the i-walk and appropriately update
the active-cursor. Let g be the node pointed by the active-cursor. The previous node of g
is the hit-node of the step, and let x be that node. We delete x from the sample-list by
connecting the previous node of x to g. Then, we insert x between w and z. We store
S(t + 1) in x. We set the active-limit pointer to point to x. Else the number of elements
in the sample will increment and the (i+ 1)-walk will become the active-walk. We insert
S(t+1) in z. We delete and free the leftmost node of the cursor-list, making the (i+1)-th
walk to be the active walk. We update the active-limit pointer to point to z. End-If. We
execute a step for the (1/λ)-walk.

A first observation is that the elements are stored in increasing arrival order, from
left to right. Clearly, the space-complexity is O(1/λ) dominated by the length of the two
lists. In practical terms, the entire used-space is initially twice the space of the sample-
list. However, each time the number of elements inside the sample increases, we free
the leftmost node of the cursor-list and as a result, the entire used-space decreases over
time. When the entire sample-list is filled with elements, only one node from the cursor-
list remains. It is the node that contains the cursor of the (1/λ)-walk. This means that
in regard to Algorithm A, the only memory overhead that remains is the one due to the
pointers that support the sample-list. Concerning the time complexity, Algorithm 2 clearly
usesO(1) random bits per stream element and beyond that, all the other actions costO(1)
time. Assuming that each random bit costs O(1) time, our algorithm needs constant time
per stream element in the worst-case.

Theorem 3 Associating Algorithm 2 with the exponential bias function, Algorithm 2 con-
vinces a sample-user of limited access.

Proof. Let us assume that the active-walk is the i-walk. The user concludes that the i-walk
is the active-walk because the sample has i elements. To calculate future probabilities,
the user must decide on the position of the active-walk. When the i-walk became the
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active-walk, the active-cursor was set to point to a node of the i-walk chosen uniformly at
random. Not being able to access the active-cursor, the user concludes that it may point
to any node of the i-walk with probability 1/i, because the Markov chain associated with
this walk has reached its stationary distribution and obviously, each step from that point
and on cannot change the distribution. Let us now assume that the current time is t, the
length of the sample-list is n and the fraction of the sample-list occupied by elements is
F (t) (note that at this point, the proof of Theorem 2.2. in [1] starts). Then, according to
the algorithm, when S(t+ 1) arrives, an element of the sample is going to be deleted with
probability F (t) and if such a deletion is decided, each of the n · F (t) elements of the
sample have equal probability 1/(n ·F (t)) of being deleted (because, as stated above, the
cursor may point to each position with equal chances). As a result, the probability of an
element being deleted is F (t)(1/(n · F (t))) = 1/n. It follows that the probability of a
stream element to survive at t+ 1 is 1− 1/n. Thus, the element that arrives at time r will
survive in the sample at time t with probability (1 − 1/n)t−r = ((1 − 1/n)n)(t−r)/n.
For large values of n, the inner (1− 1/n)n term is approximately equal to 1/e, and from
substitution, the exponential bias function follows (note that at this point, the proof of
Theorem 2.2. in [1] ends). In advance, the user cannot decide on the position of the walk
for any future time-point and as a result, whatever holds for the existing sample-elements
also holds for the future sample-elements. �

One issue of interest to be discussed is the following: The walk of Section 5 is defined
on a static list. According to Algorithm 2, we are able to delete an internal node of the list
and re-insert it as the new rightmost node of the active walk. This results in the position
of the active-walk moving one node to the left. The same holds for the position of the
(1/λ)-walk. This is not the walk we presented in Section 4. In particular it now follows
that in each step the probability of doing nothing i.e. going one position forward and then
one position backwards (thus ending up at the starting point) is 1/2, the probability to
move one node to the right is 1/4 and so on. This is a lazy version of our walk and it is
trivial to see that in this lazy version the stationary distribution remains the same. Thus,
Algorithm 2 is not affected.

Going to the greedy approach is trivial. It turns out that we do not need the cursor-list,
but instead only the cursor for the (1/λ)-walk. Therefore, the space remains the same and
equal to the final space consumed by the strict approach. The time complexity remains
identical to that of the strict approach.

7. Discussion

Let us now summarize the main issue introduced in this paper, which is derived by the
comparison between the algorithm (and methodology) in [1] and the algorithms (and
methodology) we present in this paper. In both cases, a bias function f(r, t) is associated
with the r− th stream element at the time of arrival of the t− th stream element (r ≤ t).
This function is associated with the probability p(r, t) of the r− th element belonging to
the reservoir at the time of the t − th element. However, the issue here is the time of the
association. In [1], the association can be done at any time t. In our paper, the function is
associated at time t = 0, for all the future elements of the sample. This is a logical choice
since the probability is implied by the algorithm, in the sense that we have manufactured
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our algorithms to create samples consistent with the exponential bias function. In other
words, survival probabilities are decided when the algorithm is created. It then follows that
the randomness used in [1] is more than the randomness we really need in order to obtain
a biased sample. It is a sample-user of limited access that we actually have to convince,
and not a sample-user of full access. This observation has led to optimal randomness
complexity for the problem we are studying and we believe that the technique we use for
introducing randomness to our algorithms (i.e. the notion of limited access) may be useful
in other problems.

References

1. Aggarwal C. C.: On biased reservoir sampling in the presence of stream evolution. In proceed-
ings of the 32nd international conference on Very large data bases , pp. 607–618. Seoul, Korea
(2006).

2. Aggarwal C. C. and Yu P. S.: A Survey of Synopsis Construction in Data Streams. Data Streams
- Models and Algorithms, pp. 169–207 (2007)

3. Babcock B., Datar M. and Motwani R.: Sampling from a Moving Window over Streaming
Data. In proceedings of ACM-SIAM Symposium of Discrete Algorithms, pp. 633–634, San
Francisco, USA (2002).

4. Babu S. and Widom J.: Continuous queries over data streams. ACM SIGMOD Record
Archives, Volume 30, Issue 3, pp 109–120 (2001).

5. Chung F. R. K. , Graham R. L. and Yau S.-T.: On Sampling with Markov Chains. In proceed-
ings of the seventh international conference on Random structures and algorithms, pp. 55–77,
Atlanta, USA (1996).

6. Gibbons P. and Mattias Y.: New Sampling-Based Summary Statistics for Improving Approxi-
mate Query Answers. In proceedings of ACM SIGMOD, pp. 331–342, Seattle, USA (1998).

7. Gibbons P.: Distinct sampling for highly accurate answers to distinct value queries and event
reports. In Proceedings of 27th International Conference on Very Large Data Bases, pp. 541–
550, Rome, Italy (2001).

8. Goldreich O.: Another Motivation for Reducing the Randomness Complexity of Algorithms.
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pp. 555–560, (2011).

9. Jerrum M. and Sinclair A.: Conductance and the rapid mixing property for Markov chains: the
approximation of permanent resolved. In proceedings of the twentieth annual ACM Sympo-
sium on Theory of Computing, pp. 235–244. Chicago, USA (1988).

10. Hellerstein J., Haas P. and Wang H.: Online Aggregation. In proceedings of ACM SIGMOD,
pp. 171–182, Tucson, USA (1997).

11. Lawler G. F. and Sokal A. D.: Bounds on the L2 Spectrum for Markov Chains and Markov Pro-
cesses: A Generalization of Cheeger’s Inequality. Transactions of the American Mathematical
Society Vol. 309, No. 2, pp. 557–580 (1988).

12. Manku G. and Motwani R.: Approximate Frequency Counts over Data Streams. In proceedings
of the 28th International Conference on Very Large Data Bases, pp. 346–357, Hong Kong,
China (2002).

13. Manku G., Rajagopalan S. and Lindsay B.: Random Sampling for Space Efficient Computation
of order statistics in large datasets. In proceedings of ACM SIGMOD, pp. 251–262, Philadel-
phia, USA (1999).

14. Matias Y., Vitter J. S. and Wang M.: Wavelet-Based Histograms for Selectivity Estimation. In
proceedings of ACM SIGMOD, pp. 448–459, Seattle, USA (1998).



The limited randomness approach 221

15. Montenegro R.: Intersection Conductance and Canonical Alternating Paths: Methods for Gen-
eral Finite Markov Chains. Combinatorics, Probability and Computing, Volume 23, Issue 4,
pp. 585–606 (2014).

16. Vitter J. S.: Random sampling with a Reservoir. ACM Transactions on Mathematical Software,
Volume 11 Issue 1, pp. 37–57 (1985).

17. Wu Y., Agrawal D. and Abbadi A.: Applying the Golden Rule of Sampling for Query Estima-
tion. In proceedings of ACM SIGMOD, pp. 449–460, Santa Barbara, USA (2001).

A. The intuition on Algorithm Step

In order to give the intuition behind this algorithm, let us name the list L. Let us set
length(L) = 5 and K = length(L) i.e., the maximum number of coin-tosses per step
is 5. We assume that time increments (starting from 0) with each step, and suppose that
someone is trying to guess the node pointed by the cursor, without accessing the cursor.
At time 0, the node pointed by the cursor can be deterministically determined because the
cursor points to the head of the list. Now, let us “travel” into the future and make our first
stop at time-point 1. The probabilities for the cursor to point to each node at time 1 are
shown in the following table (where “T” stands for “tails” and “H” stands for “heads”)
and let us be a bit more detailed on how these probabilities are derived: Let us focus on the
probability that the cursor points to Node 1 at time-point 1. It follows that the execution
of Step() that moved the cursor (starting from Node 1) back to Node 1 contains as many
coin-tosses as necessary for the cursor to complete the circle. This means that the first
coin-toss cannot cannot result to “heads” because then, the cursor will stop at Node 2
(keep in mind that a step ends when the coin-toss results to “heads” or when 5 coin-tosses
have occurred). Given that the first coin-toss results to “tails” the second coin-toss cannot
result to “heads” because then the cursor will stop at Node 3 (therefore the event “TH”
leads to Node 3). Following this logic we conclude that in order for the cursor to complete
a full circle, either the event “TTTTT” or the event “TTTTH” must occur during the first
execution of Step(). The probability of each of these two events to occur is 1/32. We
conclude that the probability for the cursor to return to Node 1 at time-point 1 is 1/16.

Node 1 Node 2 Node 3 Node 4 Node 5
P1,1 = 1/16
(event TTTTT
OR TTTTH)

P2,1 = 1/2
(event H)

P3,1 = 1/4
(event TH)

P4,1 = 1/8
(event TTH)

P5,1 = 1/16
(event
TTTH)

As time passes i.e. as more steps are performed, coin tosses gradually insert random-
ness into the scheme, introducing an increasing uncertainty on the position of the cursor.
The probabilities at time-point 2 are shown below.

P1,2 = P1,1 ∗ 1/16 + P2,1 ∗ 1/16 + P3,1 ∗ 1/8 + P4,1 ∗ 1/4 + P5,1 ∗ 1/2
P2,2 = P2,1 ∗ 1/16 + P3,1 ∗ 1/16 + P4,1 ∗ 1/8 + P5,1 ∗ 1/4 + P1,1 ∗ 1/2
P3,2 = P3,1 ∗ 1/16 + P4,1 ∗ 1/16 + P5,1 ∗ 1/8 + P1,1 ∗ 1/4 + P2,1 ∗ 1/2
P4,2 = P4,1 ∗ 1/16 + P5,1 ∗ 1/16 + P1,1 ∗ 1/8 + P2,1 ∗ 1/4 + P3,1 ∗ 1/2
P5,2 = P5,1 ∗ 1/16 + P1,1 ∗ 1/16 + P2,1 ∗ 1/8 + P3,1 ∗ 1/4 + P4,1 ∗ 1/2
In general, for time-point i, we have:
P1,i = P1,i−1 ∗ 1/16 + P2,i−1 ∗ 1/16 + P3,i−1 ∗ 1/8 + P4,i−1 ∗ 1/4 + P5,i−1 ∗ 1/2
P2,i = P2,i−1 ∗ 1/16 + P3,i−1 ∗ 1/16 + P4,i−1 ∗ 1/8 + P5,i−1 ∗ 1/4 + P1,i−1 ∗ 1/2



222 George Lagogiannis et al.

P3,i = P3,i−1 ∗ 1/16 + P4,i−1 ∗ 1/16 + P5,i−1 ∗ 1/8 + P1,i−1 ∗ 1/4 + P2,i−1 ∗ 1/2
P4,i = P4,i−1 ∗ 1/16 + P5,i−1 ∗ 1/16 + P1,i−1 ∗ 1/8 + P2,i−1 ∗ 1/4 + P3,i−1 ∗ 1/2
P5,i = P5,i−1 ∗ 1/16 + P1,i−1 ∗ 1/16 + P2,i−1 ∗ 1/8 + P3,i−1 ∗ 1/4 + P4,i−1 ∗ 1/2
It is not difficult to write a simple program and see that these probabilities converge to

1/5, as time progresses. Thus, after “a while”, enough randomness has been inserted, for
the cursor to be in each position with equal chances.

B. Bounding the mixing time

Bounding the mixing time of a Markov chain can be difficult. Here, we will use the con-
ductance method ([9], [11]), according to which the ergodic flow between two subsets
S, T ⊂ V is defined to be

Q(S, T ) =
∑

i∈S,j∈T
πiPij

The method could bound the mixing time for lazy reversible Markov chains, but it
was extended in [15] in order to apply to general finite ergodic Markov chains. According
to [15], the intersection conductance Φ̂(A) of A ⊂ V (and Ā, the complement of A) is
given by

Φ̂(A) = Φ̂(A, Ā) =
∑

u∈V min{Q(A,u),Q(Ā,u})
2π(A)π(Ā)

Then, the intersection conductance is Φ̂ = min
∅(A(V

Φ̂(A). In [15] it is proved that the

mixing time of a finite ergodic Markov chain is

r(ε) ≤ 12
Φ̂2
log 1

ε
√
π0

where π0 = minu∈V πu.
We are first going to bound the mixing time for K = 2, i.e. if at most 2 coin tosses
are allowed in algorithm Step. For every i, j ∈ V , if pij = 1/2, we say that state j
is the next of i. The left part of Figure B.1 visualizes the walk on 7 nodes. The black
arrows correspond to probabilities of 1/2 and the red ones to probabilities of 1/4. The
“contribution” of a node u in the numerator of Φ̂(A), depends on the status of the three
“preceding” nodes (according to the order defined by the black arrows). We distinguish
8 cases, depending on whether each of the 3 nodes belongs to A, or to Ā. We name each
case through the corresponding 3-bit number (each node corresponds to a 1, if it belongs
to A, or to a 0, otherwise).

Let us introduce the following terminology: Set A outperforms set B, if Φ̂(A) ≤
Φ̂(B). Let A ⊂ V . Then, if all the states of A are connected through probabilities of 1/2,
we call the set, tight. We are now ready to bound the mixing time of the Markov chain
assuming that K = 2.

Theorem B 1 Setting K = 2, r(ε) = O(n2 log n), where n is the number of states and
n ≥ 8.
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Fig. B.1. The random walk for 2 coin tosses. On the right, we show all the possible addi-
tives in the nominator of Φ̂(A), because of node u.

Proof. We need to find the setA that outperforms all other sets. Let us first consider all the
sets that contain d states, for a given d such that 1 < d ≤ n/2 (by allowing A to contain
more nodes, Ā contains less than n/2 nodes and by renaming A to Ā and Ā to A, we fall
into the same case). Thus, let A be such a set of cardinality d. Then, the denominator in
Φ̂(A) is 2· dn ·

n−d
n . Since all the sets of cardinality d produce the same denominator, the one

that results to the smallest numerator outperforms all the others. Observe, that in Figure
B.1, the contribution of a node to the numerator of Φ̂(A) is 0 if the three preceding states
either all belong to A, or all belong to Ā. As a result, among all the sets of cardinality d,
the ones that outperform all the others are the tight ones. This is because in this case, the
number of states for which the three preceding states either belong toA or not, maximizes
and thus the numerator is minimized. For example, in Figure B.2 the states represented by
squares belong to A, and the states represented by circles belong to Ā. It follows that only
u2, u3, w2 and w3 will contribute to the numerator. In particular, for u2 we have the case
001 (see Figure B.1), for u3 we have the case 011, for w2 we have case 110 and for w3

we have case 100. Observe that if A,B are tight sets (of states) of the same cardinality,
then Φ̂(A) = Φ̂(B).

We have now concluded that among all the sets of states having the same cardinality,
anyone that is tight outperforms all the others. As a result, instead of trying to find the set
A that minimizes Φ̂(A) among all possible sets, we need to examine only the tight ones.
Observe now that all the tight sets of more than two states produce the same numerator.
As a result, among all the tight sets with more than two states, we must find the ones that
result to the maximum denominator in order to minimize the fraction. The denominator
is maximized for any set having n/2 states. We have now concluded that if A is tight and
contains n/2 states and B is any other set of states that contains more than two states,
Φ̂(A) ≤ Φ̂(B). For any tight set A of n/2 states we have the following:
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Fig. B.2. The rectangles correspond to the states of A. The arrows corresponding to prob-
abilities with value less than 1/2 are omitted.

Φ̂(A) =
1
4n + 1

2n + 1
2n + 1

4n

2 1
2

1
2

= 3
n .

It remains to see if there is a tight set of cardinality 1 or 2 that outperforms the tight
sets of cardinality n/2. For any tight setB of cardinality 2, only four nodes will contribute
to the numerator of Φ̂(B). In particular, the second (according to the order of the black
arrows) node of B will fall into case 001, and the next three nodes (that belong to B̄)
will fall into cases 011, 110 and 100, respectively. It follows that for any tight set B of
cardinality 2:

Φ̂(B) = 3n
8(n−2) .

Similarly, for any single state set C, only the three states after the one that belongs to
C are going to contribute to the numerator and they are going to fall into cases 001, 010
and 100 (according to the order defined by the black arrows). Thus, for any single state
set C we have:

Φ̂(C) =
1
2n + 1

4n + 1
4n

2 1
n

n−1
n

= n
2(n−1) .

It follows that any tight set A of cardinality n/2 outperforms all tight sets of cardinal-
ity 1 and 2 for all n ≥ 8, and as a result, it outperforms any other set of states. We have
now concluded that by allowing at most two coin tosses, Φ̂ = 3

n . This means that setting
ε = 1/nc for some constant c, we get r(ε) ∈ O(n2 log n). �

It remains to find the mixing time for K > 2. Clearly, by increasing K we increase
the area that each step can cover, and thus it is a fact that the mixing time is going to
improve. However, asymptotically things remain the same, as the next theorem states.

Theorem B 2 Setting K = n, r(ε) ∈ O(n2 log n), where n is the number of states and
n ≥ 8.

Proof. Since we know that the chain with K > 2 reaches the stationary distribution
faster than the one with K = 2, it suffices to find a set A such that Φ̂(A) is small enough
to imply O(n2 log n) mixing time. Then, even if there exists another set B that outper-
forms A, it follows Φ̂(B) can only imply O(n2 log n) mixing time. We choose A to be
a tight set of n/2 states, and we will prove that by setting ε = 1/nc for some constant
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c, 12
(Φ̂(A))2

log 1
ε
√
π0

= O(n2 log n). For the description we are going to use Figure B.2,

where the states of A appear as rectangles, and the states of Ā appear as circles. Keep in
mind that the arrows corresponding to probabilities with value less than 1/2 are omitted,
however since K = n, each state is actually connected to all the other states. For states
from w2 until u1 (following the arrows of probability 1/2), it is the set A that contributes
to the numerator of Φ̂(A). For states from u2 until w1 it is the set Ā that contributes to the
numerator of Φ̂(A). In particular:

Node w2 contributes 1
n ( 1

4 + 1
8 + · · ·+ 1

2
n
2

+1 ) < 1
2n

Node w3 contributes 1
n ( 1

8 + 1
16 + · · ·+ 1

2
n
2

+2 ) < 1
4n

· · · · · · · · ·
Node u1 contributes 1

n ( 1
n
2 +1 + 1

n
2 +1 + · · ·+ 1

2n ) < 1

n2
n
2

It follows that the total contribution of all the states from w2 to u1 is smaller than 1
n .

Examining the remaining states (i.e. from u2 to w1), the results are identical. It follows
that when set A is a tight set of n/2 edges we have the following:

Φ̂(A) <
2
n

2 1
2

1
2

= 4
n . Observe that the following also holds: Φ̂(A) = O( 4

n )

As a result, by setting ε = 1/nc for some constant c, we get 12
(Φ̂(A))2

log 1
ε
√
π0

=

O(n2 log n). �
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