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Abstract. Hyperspectral remote image sensing is a rapidly developing integrated 

technology used widely in numerous areas. The rich spectral information from 

hyperspectral images aids in recognition and classification of many types of 

objects, but the high dimensionality of these images leads to information 

redundancy. In this paper, we used sensitivity analysis for dimension reduction. 

However, another challenge is that hyperspectral images identify objects as either 

a "different body with the same spectrum" or "same body with a different 

spectrum." Therefore, it is difficult to maintain the correct correspondence 

between ground objects and samples, which hinders classification of the images. 

This issue can be addressed using multi-instance learning for classification. In our 

proposed method, we combined neural network sensitivity analysis with a multi-

instance learning algorithm based on a support vector machine to achieve 

dimension reduction and accurate classification for hyperspectral images. 

Experimental results demonstrated that our method provided strong overall 

classification effectiveness when compared with prior methods. 
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1. Introduction 

Hyperspectral remote sensing technology is a rapidly developing field used in numerous 

areas of specialty, ranging from astronomy and geology to medicine and aerial 

surveillance, among others. Hyperspectral images provide rich spectral information that 

can aid in the recognition and classification of ground objects. However, the high 

dimensionality of these images leads to costly information redundancy, so the 

dimensions must be reduced. Sensitivity analysis using neural networks can be used for 

dimension reduction. However, another challenge remains. Hyperspectral images 

identify objects as either a "different body with the same spectrum" or "same body with 

a different spectrum." Therefore, it is difficult to maintain the correct correspondence 
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between ground objects and samples, which makes classification of the images difficult 

and computationally costly. This issue can be addressed using multi-instance learning 

for classification. In this research, we combine neural network sensitivity analysis with a 

multi-instance learning algorithm based on a support vector machine (SVM) to achieve 

dimension reduction for hyperspectral remote sensing images. 

Hyperspectral imaging differs from general multispectral imaging insofar as 

hyperspectral imaging can display two-dimensional spatial information for a region of 

interest (e.g., the earth's surface), and it can add a dimension of spectral information. 

Multispectral images include only a few spectral bands, whereas hyperspectral images 

include hundreds of bands that are much narrower. Therefore, hyperspectral images can 

form an "image cube" [1]. In addition to multiple bands, hyperspectral images have 

distinct characteristics such as large amounts of data and high information redundancy 

that present difficulties for storing, transmitting, and processing the images. As a result, 

a band selection operation must be performed to reduce some of the unnecessary bands 

before processing hyperspectral images [2]. This operation helps to decrease the 

calculation requirements for hyperspectral image classification, and effectively avoids 

the Hughes phenomenon [3]. 

Hyperspectral image band selection can be considered an NP-hard combinatorial 

optimization problem [4]. Typically, search algorithms are used to search a band subset, 

allowing the evaluation standard to achieve its optimal value across all of the bands of 

the hyperspectral image. This queried band subset can then be treated as the optimal 

band combination. The common method of band selection and dimension reduction [5] 

for hyperspectral remote sensing images is to select several bands from the whole band 

to represent the whole band space. This approach requires that the band combination 

selected be able to provide effective improvement for classification accuracy in the 

subsequent classification. For this research, we select the band according to the band’s 

contribution to classification. Bands that help to improve classification accuracy are 

selected first. 

For classification of hyperspectral remote sensing images, neural network classifiers 

are commonly used because they work well for classifying images with high 

dimensionality and nonlinear structures. To provide a quantitative evaluation of the 

effects of one band on classification accuracy, a neural network sensitivity analysis can 

be employed that is based on a neural network classifier. Sensitivity analysis by a neural 

network [6] can provide a quantitative description of the influence of the input variables 

of a model on the output variables. The sensitivity coefficient of the model properties is 

sorted. Properties with larger sensitivity coefficients are chosen, and those with smaller 

ones are no longer included. In this way, the model is simplified, and the complexity of 

model processing is reduced. In this paper, we apply neural network sensitivity analysis 

to the band selection for hyperspectral remote sensing images, combined with a 

frequently used BP neural network classifier. 

In addition to dimension reduction, the issue remains that hyperspectral images 

identify objects as either a "different body with the same spectrum" or "same body with 

different spectrum," which means they are unable to maintain the correct 

correspondence between target objects and samples. This challenge can be addressed 

using multi-instance learning for classification of hyperspectral images. In the mid- and 

late 1990s, T. G. Dietterich et al. proposed the concept of multi-instance learning in the 

study of drug activity prediction [7]. In this kind of learning, the training set consists of 



Dimension Reduction and Classification of Hyperspectral Images based on Neural Network Sensitivity 

Analysis and Multi-instance Learning            445 

several “bags” labeled with concept tags. Each bag contains several instances without 

concept notations. A bag is labeled positive if it contains at least one instance that is 

positive, and a bag is labeled negative if all of the instances in it are negative. By 

learning from the training bags, the learning system can predict the concept tag of a bag 

that is outside the training set as correctly as possible. Following on the work of T. G. 

Dietterich et al., many researchers began to devise practical multi-instance learning 

algorithms. Multi-instance learning stirred great interest in the machine learning field 

because it was a promising new learning framework in an area of machine learning 

previously unexplored. Multi-instance learning has unique properties and continues to 

offer good prospects for wide application. 

A pixel-level classifier can help to divide the remotely sensed hyperspectral imagery, 

but if spectral background noise and clutter noise are present, classification accuracy 

will be decreased because of omissions or faults. Recently, some researchers proposed 

to adopt classification based on pattern spot images to solve the omissions or faults 

brought by spectrum changes. A pattern spot image refers to the single zone whose 

shape shares the same features with a spectrum. CHEN Jie et al. [8] put forward the 

rough set theory-based object-oriented classification of high resolution remotely sensed 

imagery. First, they abstracted the pattern spot image by means of watershed 

segmentation. Next, they analyzed the texture features of the abstracted images using 

Gabor wavelets, and divided the texture classification rules for abstracted images based 

on rough set theory. ZHANG Chuan et al. put forward object-oriented classification of 

high resolution remotely sensed imagery [9]. YANG Chang-bao et al. explored the 

object-oriented classification of remotely sensed imagery, and they determined the 

classification by segmenting the orthorectification SPOT image based on a distributed 

domain solver [10]. TAN Yu-min et al. put forward an object-oriented remote sensing 

image segmentation approach based on edge detection. [11]. Pattern spot image 

classification differs greatly from pixel-based classification because the former includes 

various regional texture space information, while the latter has only spectral features. 

Pixel-based classification considers only the features of a single pixel. Classification 

based on pattern spot images is less likely to be disturbed by spectral background noise 

and is more likely to retain regional integrity since it is abstracted by the regional spectra 

and space characteristics. 

However, pattern spot image classification still has weaknesses in terms of its anti-

noise properties that result in low classification accuracy with accompanying omissions 

or faults. Since the anti-noise property fails to provide the needed filtering, the 

classification will be less likely to be disturbed by noise with simulti-instance learningar 

spectra and space characteristics classified in the same zone, which is bigger than the 

object by making use of the regional relevance and object-oriented basis. DU Pei-jun et 

al. proposed that the cases in which different objects may have the same spectra 

characteristics or the same object may have different spectra characteristics, together 

with the noise in training instances, can be regarded as particular representatives of 

“ambiguity” in the training bag multi-instance learning. Therefore, when objects from 

the image segmentation are regarded as an instance in multi-instance learning, the object 

set of clutter is regarded as the bag, and multi-instance learning can be used in remote 

sensing classification [12]. 

The phenomena by which the same objects may have different spectra and different 

objects may have the same spectrum are the main source of land surface complexity for 
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remote sensing images. The complexity of land surface composition and the difficulty in 

selecting training samples cause the classification process to be highly dependent on 

human experience and prior knowledge. When using sensitivity analysis provided by an 

artificial neural network to realize dimension reduction for hyperspectral images, all of 

the bands are divided into several groups, as long as a lower correlation exists between 

adjacent bands. In addition, a differential evolution (DE) algorithm is used for 

optimizing the neural network structure. The bands that make only small contributions 

are given up based on the Ruck sensitivity analysis method.  

Given the special advantages of multi-instance learning for solving ambiguous 

problems, and the advantages of neural network sensitivity analysis for dimension 

reduction, we suggest that integrating both multi-instance learning and sensitivity 

analysis for hyperspectral image classification can reduce the uncertainty of 

classification results. In view of this background and the benefits of applying new 

machine learning methods to remote sensing image classification, in this paper, we 

combine multiple-instance learning and an ensemble artificial neural network with 

embedded sensitivity analysis to improve the accuracy of hyperspectral image 

classification. 

2. Related Work 

2.1. Neural Network Sensitivity Analysis  

Sensitivity analysis is an important research focus in the field of neural networks. In 

some practical applications, the availability of a huge amount of data can cause the 

trained neural network to become increasingly complex. The main task of sensitivity 

analysis is to determine how to analyze the parameters of the neural network effectively 

and simplify the scale of the network. Toward this end, we use the following procedure 

in this research.  

Assume that the model is 
( )1 2, ,..., ny f x x x=

, where ix
 is the kth property value of the 

model. It is necessary to ensure that any changes of each property are within the possible 

value range. The next step is to study and predict the influence of the change(s) of these 

properties on the output value of the model [13]. The degree of influence is called the 

sensitivity coefficient of property ix
 on output value

y
: the higher the sensitivity 

coefficient, the greater the influence of the property on the output value. Thus, the 

sensitivity analysis can provide a quantitative description of the influence of the input 

variables on the output variable of a model. Furthermore, we can sort the sensitivity 

coefficients of the model’s properties. We can choose the properties with larger 

sensitivities and give up the smaller ones according to the practical considerations of the 

problems. In this way, the model can be simplified and the computational complexity of 

processing the model reduced, which means dimension reduction is achieved. 

Sensitivity analysis works based on the specific model. In most cases, however, when 

people face vast amounts of information, they are not clear about how the internal 
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mechanisms of the data work. In such cases, they cannot build the model expression 

( )y f x=
 directly, and therefore cannot conduct a sensitivity analysis either. However, 

researchers have shown that while a neural network does not need to model the physical 

concept of the research question, the neural network can provide more effective 

solutions for problems involving uncertainty or nonlinearity. The network provides a 

black box analysis model, and outputs reasonable results through the training and 

learning of input samples [14]. If the input data and output data are known, the neural 

network will use many simple neurons to simulate the non-linear relationships between 

the data. Neural network sensitivity analysis also uses the connection weights and the 

threshold between neurons to assess the influence of the input data on the output data 

[15]. 

Neural network sensitivity analysis can be divided into local sensitivity analysis and 

global sensitivity analysis. Some scholars have focused mainly on the study of local 

sensitivity analysis. There are four types of classical neural network sensitivity analysis. 

The first type is the sensitivity analysis method based on the connection weight, such as 

the Garson algorithm put forward in the early 1990s by Garson [16] and the Tchaban 

algorithm proposed by Tchaban [17]. The second type is sensitivity analysis based on 

the influence of the partial derivatives of output variables on input variables, such as 

Dimoponlos sensitivity analysis [18] and Ruck sensitivity analysis [19]. The third type is 

sensitivity analysis combined with statistics, such as methods based on random testing 

by Olden et al.[20]. The forth type is sensitivity analysis based on input variable 

disturbance, such as the method of adding white noise to the input data of a network and 

calculating the resulting change of output variables, an example of which was put 

forward by Scardi [21] 

2.2. SVM Classification Methods and Multi-instance Learning 

Training data are required to train the SVM model. However, these data cannot be 

separated without errors. The data points that are closest to the hyperplane are used to 

measure the margin, while the SVM attempts to identify the hyperplane that maximizes 

the margin and minimizes a quantitative proportion to the number of misclassification 

errors [22]. The SVM derives the optimal hyperplane as the solution of the following 

convex quadratic programming problem [23]: 

 
( )

, , 1

1
    . .  1 ,  0, 1,2, ,

2
min

n
T T

i i i i i
w b i

w w C s t y w x b i n


  
=

+ +  −  =
,   (1) 

where 1 1{( , ), ,( , )}i ix y x y
 are the labeled training datasets with 

d

ix R
 and 

 1,1iy  −
; 

*w  and 
*b  define a linear classifier in the feature space; C is the 

regularization parameter defined by the user; and i  is a positive slack variable that 

handles permitted errors. 

The optimization problem can be reformulated through a Lagrange function, where 

Lagrange multipliers can be found via dual optimization to generate a convex quadratic 

programming solution as follows [24] [25]: 
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where 1 2[ , , , ]n   =
 is the vector of the Lagrange multipliers, while 

( , )K
 is a 

kernel function. For a linearly non-separable case, a kernel function is introduced that 

satisfies the condition stated by Mercer’s theorem and that corresponds to some types of 

inner product in the transformed (higher) dimensional feature space, as shown: 

( , ) ( ) ( )i j i jK x x x x = 
.       (3)          

The final result is a discrimination function 
( )F x

 conveniently expressed as a 

function of the data in the original (lower) dimensional feature space: 

* * * *

1

( ) sgn[( ) ( ) ] sgn( ( , ) )
n

T

i i i

i

F x w x b y K x x b 
=

= + = +
.   (4) 

Some popular kernel functions include the following: 

a) Linear kernel 

( , ) ( )i iK x x x x= 
,        (5) 

Polynomial kernel 

( , ) [( ) 1]T q

i iK x x x x= +
,       (6) 

           

where 
q

 is a constant. 

 

b) Gaussian Radial Basis Function kernel 
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2

2
( , ) exp , 0i

i

x x
K x x 



 − 
= −  

   ,     (7) 

Sigmoid kernel 

( , ) tanh[ ( ) ],   0, 0T

i ik x x v x x c v c= +  
.   (8) 

Multi-instance learning was proposed as a new machine learning method to solve 

problems with relationships such as “1∶N∶1” using “object∶description∶label.” In multi-

instance learning, labeled bags composed of several unlabeled instances are treated as 

training samples, and the goal of learning is to predict the labels of unknown new bags. 

In contrast to traditional supervised learning, the bag strategy employed by multi-

instance learning offers special advantages in dealing with ambiguous problems. Multi-

instance learning is viewed as the fourth machine learning framework, in parallel with 

reinforcement learning, supervised learning, and unsupervised learning (Bolton & 

Gader, 2011; Lozano-Perez, 1998; Bolton, et al., 2011; Zhang, et al., 2004; Zhou, et al., 

2002; Andrews, et al., 2002; Zhang, et al., 2010). At the moment research on multi-

instance learning has focused mainly on creating new multi-instance learning algorithms 

and on designing applications of multi-instance learning for various fields (Zhang, et al., 

2004; Zhou, et al., 2002; Li, et al., 2004). In the image processing field, multi-instance 

learning has been used for image retrieval and scene classification, with good results 

obtained in some existing experiments (Li, et al., 2007; Li, et al., 2010; Wang, et al., 

2010; Li, et al., 2008) [26]. 
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Traditional supervised learning can be treated as a special case of multi-instance 

learning. The transformation of traditional supervised learning algorithms to make them 

capable of dealing with multiple instance problems is an important branch in multi-

instance learning algorithm research. Considering the bag concept, multi-instance 

learning can be viewed as a generalization of traditional supervised learning. Combining 

multiple learners for the purpose of enhancing the performance of the base learner is an 

effective method in traditional supervised learning frameworks. According to the 

supervised nature and classification function of multi-instance learning, multiple 

instance ensemble learning is also a feasible approach, and some researchers have 

shown that performance is increased by using an ensemble. Research into the integration 

of ensemble learning and multi-instance learning is an active branch of machine 

learning, so advances have been seen in remote sensing image classification (Qi, et al., 

2011; Zhou, et al., 2003; Auer & Ortner, 2004; Kittler, et al., 1998). 

Multi-instance learning algorithms based on an SVM can be divided into two 

categories: multi-instance learning based on samples (mi-SVM), and multi-instance 

learning based on bags (MI-SVM) [27–28]. mi-SVM tries to identify a maximal margin 

hyperplane for the instances, subject to the constraint that at least one instance of each 

positive bag is located in the positive half-space while all instances of negative bags are 

in the negative half-space. MI-SVM tries to identify a maximal margin hyperplane for 

the bags by regarding the margin of the “most positive instance” in a bag as the margin 

of that bag. 
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where w and b are two parameters; i is a positive slack variable; ix
is the input value; 

 1,1iy  −
is the output value; and C is the regularization parameter defined by the user. 

3. Application of Neural Network Sensitivity Analysis and Multi-

instance Learning to Band Selection 

The back propagation (BP) neural network classifier is a common tool for the 

classification of hyperspectral remote sensing images. Combined with the neural 

network sensitivity analysis method introduced above, the band selection for BP can be 

carried out in the whole band space. The band combination that provides a large 

contribution to the classification is selected (as explained in Section 3.1 below), thereby 

realizing the purpose of dimension reduction. To get better analysis results, before 

conducting a sensitivity analysis the hyperspectral remote sensing image data should be 

pretreated. Some band combinations with weak correlation are preselected by subspace-

partition. To avoid blindness in the selection of the initial weights and threshold of BP 

neural network [29], a differential evolution algorithm is used to optimize the BP neural 
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network. Last, the optimized BP neural network is used to conduct the sensitivity 

analysis. The sensitivity analysis results for all of the test samples are combined by using 

the comprehensive evaluation function, and finally the band with the biggest influence 

on classification results is selected. The specific process is explained in the following 

subsections of this paper. 

3.1. Data Preprocessing and Band Selection 

For the proposed method, data processing takes place using the following steps. Before 

employing the neural network sensitivity analysis, the original hyperspectral remote 

sensing image needs to be preprocessed to eliminate the bands that have interference 

from noise, water vapor, or other serious pollution. Select the object that has the largest 

number of samples as the pre-selected object that is good for classification. Typically, 

the original hyperspectral remote sensing image has a large number of bands, but there 

is a high correlation and high redundancy between bands. Therefore, to attain a good 

result from the sensitivity analysis, it is very important to choose as the input the band 

that also has a weak correlation. 

To solve the above problem, the approach is to divide the whole band into several 

subspaces, and then select the band. The adaptive subspace decomposition (ASD) [30] 

method based on correlation filtering is used to divide the band set of the hyperspectral 

remote sensing image. First, we calculate the correlation coefficient denoted as ijR
 

between the two bands. Let iu
 and ju

 denote the number of i and j bands, respectively. 

As the value of the correlation coefficient grows larger, the correlation between bands 

becomes stronger, and as the correlation comes closer to 0, the correlation becomes 

weaker. ijR
 is defined as: 

( )( ) 

( )  ( ) 
,

22

i i i i

i j

i i j j

E x x
R

E x E x

 

 

− −
=

− −

.     (11) 

The value ijR
 of the matrix R  ranges between 0 and 1. As Rij comes closer to 1, the 

correlation between the two bands becomes stronger. i  and j  are the mean values of 

ix
 and jx

, respectively. They denote the gray mean values of the two bands. [ ]E •  is the 

mathematical value expected. When all ijR
 values are identified, then the proper 

threshold bT
 is set. The continuous bands of 

| |ij bR T
 form a new subspace. We can 

control the number of subspaces and the number of bands in each subspace dynamically 

by changing the threshold bT
. Furthermore, Rs denotes the ratio of the number of bands 

in a subspace to the total number of bands in all subspaces. We select the bands in each 

subspace to create band combinations according to the ratio Rs. Then we reduce the 

correlation of the bands as much as possible. Combining the bands with the pre-object 

types and the object information of the original remote sensing image, we can determine 

the training sample P for input, expected value T for output, test sample P_Test for 
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input, and expected value T_Test for output, all of which are required for the training of 

a BP neural network. These steps make it convenient to determine the topological 

structure of the neural network. 

3.2. Dimension Reduction and Classification based on Sensitivity Analysis and 

Multi-instance Learning 

3.2.1 Ruck sensitivity analysis 

Ruck sensitivity analysis (1990) is based on the partial derivatives of output variables 

for input variables. This method is designed for feedback neural networks, such as BP 

neural networks and RBF neural networks. This approach, which is simple and fast, 

evaluates the partial derivatives with the activation function of the neural network, and 

calculates the influence of the input data on the output data. Therefore, Ruck sensitivity 

analysis is used to study band selection for a hyperspectral remote sensing image based 

on a BP neural network classifier. 

The value ijR
 of the matrix R  ranges between 0 and 1. As Rij comes closer to 1, the 

correlation between the two bands becomes stronger. i  and j  are the mean values of 

ix
 and jx

, respectively. They denote the gray mean values of the two bands. [ ]E •  is the 

mathematical value expected. When all ijR
 values are identified, then the proper 

threshold bT
 is set. The continuous bands of 

| |ij bR T
 form a new subspace. We can 

control the number of subspaces and the number of bands in each subspace dynamically 

by changing the threshold bT
. Furthermore, Rs denotes the ratio of the number of bands 

in a subspace to the total number of bands in all subspaces. We select the bands in each 

subspace to create band combinations according to the ratio Rs. Then we reduce the 

correlation of the bands as much as possible. Combining the bands with the pre-object 

types and the object information of the original remote sensing image, we can determine 

the training sample P for input, expected value T for output, test sample P_Test for 

input, and expected value T_Test for output, all of which are required for the training of 

a BP neural network. These steps make it convenient to determine the topological 

structure of the neural network. 

The above Ruck sensitivity analysis is used only for the sensitivity analysis of the 

input value to the output value of a single sample test point. A comprehensive evaluation 

function is needed to synthesize the sensitivity analysis results of each single sample 

point. Here, we apply the MSA metrics proposed by Jacek. M [25] is chosen as the 

synthetic evaluation function. Assume ikS
 denotes the sensitivity coefficient of the input 

variable i of all the samples to the output variable 
( )1kY k =

, and 
t

iks
 denotes the 

sensitivity coefficient of input variable i to the output variable 
( )1kY k =

 in the number t 

sample. The synthetic evaluation function can be expressed as (15): 



452           Hui Liu et al. 
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2

1

n
t

ik

t
ik

s

S
n

==


 ,     (15) 

where n denotes the total number of samples, and ikS
 is nonnegative. ikS

 can be used 

to sort the sensitivity of the input bands, and then the influence of the input variable to 

the output results can be measured. 

3.2.2 Band Classification Using Neural Network Sensitivity 

First, according to the proportion Rs in each subspace, several bands are selected to 

form a band combination. Combined with the pre-selected object type, the training 

sample P and the test sample P_Test are generated, which then serve as the input 

variables of the BP neural network. The number of band combinations is equal to the 

number of the neurons at the input end.  Furthermore, the label value of the ground 

object type is used as the output of the BP neural network. Then, the training samples 

(with results T) and test samples (with results T_Test) are generated. In addition, the 

weight and threshold of the BP neural network are optimized by a DE algorithm. All of 

the samples are classified by the optimized BP neural network, and the results of the 

sensitivity analysis are calculated. In addition, bands are sorted according to their 

sensitivity coefficients. Bands with smaller sensitivity coefficients will be given up, and 

bands with important effects on classification results will be identified. Last, the 

screened band combinations are classified using the neural network classifier to verify 

the effect of dimension reduction. The flow of the procedure is shown in Figure 1. 

Fig. 1. The realization flow for band selection by sensitivity 
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3.2.3 Classification of Hyperspectral Remote Sensing Image based on Multi-

instance Learning 

As described above, in multi-instance learning [31–32], the training set is composed of 

labeled bags, and the bags are made up of non-labeled samples. The goal of multi-

instance learning is to predict the label of previously unseen bags by learning the 

training set. Classification by bags as a unit includes many more features than 

classification by pixels or by the object as a unit, and both the anti-noise capability of 

the region and the accuracy of classification are improved. Each feature of the 

segmented object is taken as an instance; the object set generated by the clustering is 

taken as the packet. Using the packets, multi-instance learning based on an SVM is used 

for classification. In this paper, first, based on the dimension reduction of the band, the 

watershed transform algorithm is utilized to decompose the image into several objects 

that are used as instances for multi-instance learning. Then, the training samples are 

constructed with instances selected by artificial selection, and the unknown bags are 

obtained by the clustering algorithm. The new bag is marked with the nearest sample 

category that has maximum diversity. In other words, the number of generated bags is 

completely determined by the clustering algorithm. The steps of the algorithm are as 

follows. 

 

Fig. 2. The realization flow of classification of hyperspectral remote sensing images based on 

multi-instance learningž 
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(1) Reduce the dimension of the hyperspectral band by using neural network 

sensitivity analysis. 

(2) Obtain the object by applying the common watershed algorithm. 

(3) For each band that is selected by the band selection method, calculate the 

property of the object, and construct the property space. 

(4) Multi-instance bags are generated by the fuzzy C-means clustering 

(5) Select samples for each kind of object to form a training sample bag, and use an 

SVM for classification. 

(6) Get the classification results. 

The flow of the classification process is shown Figure 2. 

4. Experiments and Results 

4.1. Design of the Experiment 

We designed some simulation experiments to demonstrate empirically the effectiveness 

of our proposed method for dimension reduction of hyperspectral remote sensing images 

using neural network sensitivity analysis and multi-instance learning. The experimental 

program was developed using MATLAB R2009b. The SVM classifier utilized the 

LIBSVM toolkit (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) and adopted a radial basis 

function (RBF) to perform the experiments. The penalty factor of the SVM was 16. The 

BP neural network was realized by the built-in neural network toolbox of MATLAB. 

We designed the experiment using a standard hyperspectral image. The dataset was 

revised in MAT format, which can be obtained from the website 

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scens. 

The image was part of a hyperspectral image from a mixed agroforestry experimental 

zone in northwestern Indiana (USA). It was acquired by the AVIRIS sensors in June 

1992. In this image, the range of wavelengths was 0.4~2.5 um, the size of image was 

145*145 pixels, and the spatial resolution of the image was 25m. In the pretreatment of 

the original image [24] (including image denoising and image deblurring), the bands that 

were heavily polluted by water vapor and noise (such as bands 1~4, 78, 80~86, 

103~110, 149~165, and 217~224) were removed from the original bands. The 

remaining 179 bands were kept for experimental purposes. Figure 3 is an RGB false 

color image composite of the selected bands: 50, 27, and 17. Figure 4 is the real 

distribution image of the 7 objects chosen for the experiments. 

There were 16 classes of ground objects in the image. Seven of these classes had 

larger sample sizes and were chosen for the classification experiments. The ratio 

between training samples and testing samples was selected evenly as 1:1. Table 1 

displays the number of ground objects, as well as the names, and quantities of training 

and testing samples. 
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Fig. 3. The AVIRIS false color image 

 

Fig. 4. The real distribution image 

Table1. Training samples and test samples 

Class 
number 

Training samples Training bags 

Class 1 717 15 
Class 2 417 9 

Class 3 374 8 
Class 4 484 10 

Class 5 1234 25 
Class 6 307 6 

Class 7 647 13 
Total 4180 86 
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4.2. Results and Analysis 

A DE algorithm was used to optimize the BP neural network to get better results from 

the sensitivity analysis, which meant the band combination could improve the accuracy 

of classification effectively after the band with the smallest sensitivity coefficient was 

eliminated. Furthermore, to some extent, the multi-instance learning method based on 

the SVM could improve classification accuracy. We designed six experiments to 

demonstrate the superiority of the multi-instance learning method based on an SVM and 

optimizing the BP neural network with the DE algorithm. The band combinations used 

in the experiments were the same ones selected under the same subspace division. The 

detailed content of the experiments is shown in Table 2. 

Table 2. Comparison experiments 

Gro
up 

Content of Experiments 

A BP neural network classification (BP) 

B Sensitivity analysis and BP neural network classification (SA-BP) 

C 
Sensitivity analysis and Genetic algorithm optimizing BP neural network 

classification (SA-GABP) 

D 
Sensitivity analysis and Differential Evolution optimizing BP neural 

network classification (SA-DEBP) 

E Sensitivity analysis and MI-SVM (SA-MI-SVM) 

F Sensitivity analysis and mi-SVM (SA-mi-SVM) 

 

In each experiment, six types of bands with different numbers were compared, and the values of 

Rs were selected relatively as 1/9, 1/6, 2/9, which meant selecting the band whose number was 

about 20, 30, or 40 from the divided subspace in accordance with the proportion of Rs. The 

topology structure of the BP neural network was set as the N number of neurons of the input layer 

equal to the number of bands in each group. The number of the types of primary features was 7, 

which was also the total number of the classification. The number of the neurons of output layer 

M was set as 7. The hidden layer was set to be single, and the number of its neurons L was set 

according to the expression L N M a= + + . In this expression, a is the adjustment constant 

between 1 and 10. L changed with the training sample set, and ultimately it was determined that 

the error of the network was minimal when a = 5. The related parameters of the BP neural 

network training and DE algorithm were set as shown in Table 3 and Table 4. 

Table 3. The setting of the parameters of BP 

BP Parameters Parameters setting 

Frequency of training 1000 

Minimum mean square error 0.01 

Learning rate 0.1 

Hidden layer activation 
function 

Hyperbolic tangent function tansig 
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Output layer activation 
function 

Linear function purelin 

Training function 
Levenberg-Marquadt Back propagation 

algorithm 

Table 4. The setting of the parameters of DE 

Parameters Parameter values 

Individual dimension D D = N*L+L+L*M+M 

Population size Nd Nd = 20 

Population size MAXGEN MAXGEN = 50 

Hybridization parameters CR CR = 0.9 

Differential evolution model DE/best/1/bin 

 

Except for group A, the other five groups of experiments needed to calculate the 

sensitivity coefficient. Considering the large number of sensitivity coefficients, Tables 

5–7 show only the sensitivity coefficients of three kinds of bands. In the experiments 

with group D, these bands were analyzed using the Ruck method. In the table, the 

sensitivity coefficients are arranged in order from largest to smallest. 

Table 5. Sensitivity coefficient of 20 Bands 

No

. 

Band 

No. 

Sensitivity 

coefficient 

N

o. 

Band 

No. 

1  117 1.0674 11 185 0.5610 

2  43 0.9070 12 199 0.5477 

3  140 0.8505 13 173 0.5102 

4  57 0.7437 14 93 0.5099 

5  5 0.7364 15 72 0.4385 

6  102 0.6796 16 134 0.4076 

7  68 0.6647 17 24 0.3984 

8  212 0.6485 18 87 0.3313 

9  37 0.6098 19 126 0.2332 

10  15 0.5881 20 204 0.1486 

Table 6. Sensitivity coefficient of 30 Bands 

No

. 

 Band 

 No. 

Sensitivity 

coefficient 

N

o. 

Band  
No. 

Sensitivity 

coefficient 

1  16 1.2224 16 141 0.3852 

2  114 0.8933 17 73 0.3778 

3  178 0.8743 18 37 0.3076 

4  34 0.8259 19 87 0.3013 

5  53 0.7306 20 117 0.2566 
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6  133 0.7176 21 148 0.2474 

7  97 0.7028 22 191 0.1856 

8  100 0.6639 23 200 0.1725 

9  89 0.6369 24 170 0.1615 

10  211 0.6300 25 8 0.1520 

11  39 0.6259 26 42 0.1117 

12 

13 

14 

15 

 125 

 27 

 196 

 184 

0.5951 

0.5242 

0.4252 

0.3990 

27 

28 

29 

30 

11 

57 

68 

166 

0.0909 

0.0867 

0.0814 

0.0596 

Table 7. Sensitivity coefficient of 40 Bands 

No

. 

Band 

No. 

Sensitivity 

coefficient 

N

o. 

Band 

No. 

Sensitivity 

coefficient 

1 16 1.3678 21 114 0.4461 

2 68 1.1337 22 141 0.4298 

3 23 1.1020 23 170 0.3795 

4 120 0.9650 24 125 0.3689 

5 196 0.9390 25 39 0.3623 

6 133 0.8981 26 180 0.3424 

7 27 0.8731 27 49 0.3112 

8 89 0.8263 28 73 0.3083 

9 166 0.8159 29 211 0.2794 

10 11 0.7527 30 8 0.2504 

11 117 0.7440 31 87 0.2373 

12 138 0.7327 32 191 0.2334 

13 214 0.6805 33 200 0.2145 

14 37 0.6289 34 42 0.1798 

15 148 0.6065 35 178 0.1409 

16 34 0.5631 36 57 0.1275 

17 102 0.5511 37 184 0.1172 

18 100 0.5422 38 78 0.0988 

19 147 0.5087 39 97 0.0827 

20 53 0.4860 40 14 0.0408 

 

From Tables 5–7, we can see that the sensitivity coefficient of the final band was 

small enough, about the 1/20 of the first one. For several experiments regarding 

classification, first each band whose sensitivity coefficient was less than 0.3 was 

excluded. Then, combined with multi-instance learning, the band combinations after 

dimension reduction were classified again by the BP neural network, checking whether 

the dimension reduction with sensitivity analysis was effective in improving the 

accuracy of classification. Table 8 shows the classification accuracy of band 

combinations after dimension reduction in the experiments of groups A, B, C, D, E, F. 
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Table 8. Classification accuracy 

Number of 

Bands 
A B C D E F 

20 
82.7

5% 
83.68% 

83.7

5% 

84.13

% 

92.4

3% 

93.0

9% 

30 
83.7

5% 
84.02% 

84.7

3% 

85.14

% 

92.7

8% 

93.3

2% 

40 
84.9

0% 
85.24% 

85.5

2% 

85.83

% 

93.1

8% 

93.9

6% 

 

 

Fig. 5. Classification accuracy curves 

From Table 8 and Figure 5, we note that with the same number of bands, the BP 

neural networks optimized with a genetic algorithm (GA) and DE algorithm in the 

experiments with groups C and D achieved better classification accuracy than groups A 

and B. This finding means that the sensitivity coefficients attained in the experiments 

with groups C and D provided more accurate reflection of the effects of each band on 

the classification results. Moreover, the BP neural network optimization with the DE 

algorithm in group D was better than for the GA algorithm adopted in group C. In the 

experiments with group B, the BP neural network was analyzed with the Ruck method 

after the division of the subspace without optimization, so the classification accuracy 

was lower than for groups C and D regardless of the number of bands. The BP neural 

network in experiments with group A was used in classification without dimension 

reduction, so its classification accuracy was the lowest. These results show that 

dimension reduction with sensitivity analysis was effective. 
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For classification, groups E and F used sensitivity analysis combined with multi-

instance learning based on samples (mi-SVM) and multi-instance learning based on bags 

(MI-SVM), respectively. With the same number of bands, the classification accuracy of 

groups E and F was significantly higher than for groups B, C, and D, at more than 90%. 

These results demonstrate that in terms of classification, multi-instance learning 

performed better than the BP neural network. In addition, using multi-instance learning 

not only improved the classification accuracy, but also achieved an ideal classification 

effect. The classification accuracy using 30 bands was higher than when using 20 bands, 

and the classification accuracy using 40 bands was higher than when using 30 bands. 

This result indicates that with an increase in the number of bands, the classification 

accuracy of the same group improved. With the increased number of bands, the 

classification accuracy of groups E and F was more than 90%, which means that 

sensitivity analysis and multi-instance learning are very suitable for the classification of 

hyperspectral image. Figures 6–8 show the results of six groups of experiments using 20, 

30, and 40 bands. It can be seen directly from these figures that groups A and B had the 

fewest incorrect classifications and higher classification accuracy regardless of the 

number of bands. 

Finally, we compared the classification performance of the proposed method with 

some other  hyperspectral image classification methods, as shown in Table 9. In this 

table, the accuracies outside the brackets were taken from corresponding references 

directly, and those accuracies in the brackets were obtained by our proposed method. All 

of the methods were tested under the same conditions with 7 classes and 5% trainings 

samples. Table 9 demonstrates that the classification performance of the proposed 

method outperformed all of the compared methods. 

 

  
                                   A                                                                B      
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                             C                                                                   D 

  

                             E                                                                      F 

Fig. 6. Classification results of 20 bands 



462           Hui Liu et al. 

  
                              A                                                                     B 

  
                               C                                                                  D 

  
                                E                                                                     F 

Fig. 7. Classification results of 30 bands 



Dimension Reduction and Classification of Hyperspectral Images based on Neural Network Sensitivity 

Analysis and Multi-instance Learning            463 

  

                            A                                                                    B 

  

                            C                                                                    D 

  

                            E                                                                    F 

Fig. 8. Classification results of 40 bands 
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Table 9. Comparison with other methods 

References Baseline Feature 
Overall 

Accuracy 

Sun et al. [33] RWASL Spectral 94.15% 

Guo et al. [34] FSAF Spectral 84.36% 

Li et al. [35] KELM Spectral 84.53% 

Hu et al. [36] RBF-SVM Spectral 90.74% 

Proposed 

method 

SA-MI-

SVM 
Spectral 94.21% 

Proposed 

method 
SA-mi-SVM Spectral 94.28% 

5. Conclusions 

Hyperspectral images take objects as the basic classification unit in a manner similar to 

the examples and packages used in multi-instance learning. Therefore, multi-instance 

learning can be used for the classification of remote sensing images. In this research, we 

combined neural network sensitivity analysis with a multi-instance learning algorithm 

based on an SVM to achieve dimension reduction and classification of hyperspectral 

remote sensing images. First, to reduce the correlation among the input properties, we 

used adaptive subspace division to select band combinations. In addition, a DE 

algorithm was adopted to optimize the BP neural network. To provide stable network 

connection weights and thresholds for sensitivity analysis by the neural network, we 

employed a sensitivity analysis method based on a partial derivative to calculate the 

sensitivity coefficient and remove bands that had very small coefficients. In this way, we 

achieved dimension reduction. To decrease the impact of the "different body with same 

spectrum" or "same body with different spectrum" phenomena on classification of 

hyperspectral images, a watershed transform algorithm was employed to decompose the 

image into several objects that were used as instances of multi-instance learning. The 

object set generated by clustering formed a bag, and the SVM was used for 

classification. 

Our experimental results demonstrated that our method provided strong overall 

classification effectiveness when compared to prior methods. Based this study, we can 

draw the following conclusions. 

1. Classification accuracy can be improved by means of the proposed neural network 

sensitivity analysis method because the contributions of bands for subsequent 

classification are sorted, and the bands with the largest contributions are selected 

contributions are selected. 

2. A multi-instance learning method can learn robustly from highly noised training 

samples, but the bag label prediction rule for multi-instance learning also brings 

uncertainty to the classification results. The uncertainty problem can be controlled 

through the introduction of neural network sensitivity analysis. 
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3. The multi-instance learning algorithm based on an SVM can obtain higher 

classification accuracy under strong noise training conditions as long as the positive 

examples in the samples are selected properly. 

4. For small sample training, the classification accuracy is higher based on the SVM 

and multi-instance learning algorithm. 

Multi-instance learning has special advantages for resolving ambiguous problems 

compared with traditional supervised learning methods. Integrating multi-instance 

learning with neural network sensitivity analysis proved to have useful effects for 

controlling uncertainty. However, as the experiments showed, ensemble multi-instance 

learning needs a reasonable feature embedding scale factor. The main focus of future 

work should be on methods for implementing dynamically or self-adaptively chosen 

optimal scale factors. 
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