
Computer Science and Information Systems 17(1):141–160 https://doi.org/10.2298/CSIS181115017M

Correctness of the Chord Protocol

Bojan Marinković1, Zoran Ognjanović1, Paola Glavan2, Anton Kos3, and Anton Umek3

1 Mathematical Institute of the Serbian Academy of Sciences and Arts
Beograd, Serbia

[bojanm,zorano]@mi.sanu.ac.rs
2 Faculty of Mechanical Engineering and Naval Architecture

University of Zagreb, Zagreb, Croatia
pglavan@fsb.hr

3 Faculty of Electrical Engineering
University of Ljubljana, Ljubljana, Slovenia

[anton.kos, anton.umek]@fe.uni-lj.si

Abstract. Internet of Things (IoT) can be seen as a cooperation of various devices
with limited performances that participate in the same system. IoT devices compose
a distributed architecture system. The core of every IoT system is its discovery and
control services. To realize such services, some authors used the developed solu-
tions from the different domains. One such solution is the Chord protocol, one of
the first, the simplest and the most popular distributed protocols. Unfortunately, the
application of the Chord protocol was realized using the correctness of the Chord
protocol for granted, or by the very hard assumptions. In this paper we prove the
correctness of the Chord protocol using the logic of time and knowledge with the
respect to the set of possible executions, called regular runs. We provide the deter-
ministic description of the correctness of the Chord protocol and consider Chord
actions that maintain ring topology while the nodes can freely join or leave.

Keywords: IoT, DHT, Chord, correctness, temporal logic, epistemic logic

1. Introduction

Internet of Things (IoT) paradigm can be defined as: “The pervasive presence around us
of a variety of things or objects which, through unique addressing schemes, are able to
interact with each other and cooperate with their neighbors to reach common goals” [1].

In this framework the smart objects, which are connected by a network structure, are
able to communicate and exchange information and to enable new forms of interaction
among things and people [2]. The core of every IoT system consists of its discovery
and control services. It is common that various homogeneous and heterogeneous devices
participate in the same IoT system. Usually, these devices are highly distributed, therefore
it can be seen as they participate in a distributed Peer-to-Peer (P2P) system.

In a case of homogeneous decentralized distributed P2P system, nodes (peers) run
the same application, and share the same properties in terms of computation and storage
capacities and network connectivity [3]. Without any centralized control processes are
dynamically distributed to nodes that can join or leave the system at any time. Thus, P2P
systems are highly scalable, as they have no inherent bottlenecks. Also, such systems are

142 Bojan Marinković et al.

resilient to failures, attacks, etc., since there is no single node or a group of nodes that
implement a critical functionality, which would render the system unusable, if disrupted.
P2P systems are used for file sharing, redundant storage, and real-time media streaming.

While the underlying network actually connects devices, P2P systems are frequently
implemented in a form of overlay networks, structures which organize system resources
in an independent logical topology [4]. Overlay networks can be realized in the form of
Distributed Hash Tables (DHTs). A DHT provides a lookup service similar to a hash ta-
ble. Pairs of the form 〈key, value〉 are stored in a DHT, while nodes participating in the
network can efficiently retrieve the value associated with a given key. The functionality
of maintaining the mapping from keys to values is implemented by nodes in a distributed
manner and changes in the set of participating nodes cause only minimal amount of dis-
ruption.

The Chord protocol [5,6,7] is one of the first, the simplest and the most popular im-
plementations of DHTs. Nodes in a network executing the Chord protocol are organized
in a ring. Because of the simplicity and popularity of the Chord protocol, it was used
for the realization of the discovery and/or control service of IoT systems described in
[2,8,9,10,11]. Although Chord is one of the simplest protocols, since it is distributed, it is
subject to faults and bugs, so the protocol verification is extremely important.

In this paper we use a temporal epistemic logic to prove the correctness of the Chord
protocol with respect to the Chord actions that maintain ring topology. We consider the
case when the nodes are allowed to leave or join the network with respect to the set of
possible executions, called regular runs. It means that a network executing a regular run
will be always brought from an arbitrary state to a state in which links between nodes
form a ring.

Up to our knowledge there were of only a few papers related to formal verification of
DHTs, and particularly Chord [12,13,14,15,16]. They are considered them in Section 2
and compared with our approach.

The rest of the paper is organized in the following way: in Section 2 we consider
other approaches for proving the correctness of the Chord protocol and clearly present the
contributions of this paper; Section 3 presents a short description of the Chord protocol;
in Section 4 we present a logical framework which is used to prove the correctness of the
maintenance of the ring topology of the Chord protocol with the respect to the regular
runs; the proof is given in Section 5; we conclude with Section 6. In Appendix A we
provide detailed proofs of the main lemmas and theorems from the paper.

2. Related Work and Contributions

2.1. Related Work

The Chord protocol is introduced in [5,6,7]. The detailed examination of the protocol’s
performance and robustness is given under the assumption that nodes and keys are ran-
domly chosen. The provided approach is probabilistic, e.g., statements are of the form
“With high probability, the number of nodes that must be contacted to find a successor in
a N -node network is O(logN)”.

The only deterministic given result is [5,6,7, Theorem IV.3] which partially corre-
sponds to our Lemma 6. Theorem IV.3 proves that inconsistent states produced by exe-
cuting several concurrent joins of the new nodes are transient, i.e., that after the last node

Correctness of the Chord Protocol 143

joins the network will form a cycle. A more general sequences of concurrent joining and
leaving of nodes is presented in [15]. The paper gives a lower bound of the rate at which
nodes need to maintain the system such that it works correctly with high probability. In
this paper we consider the case when the nodes are allowed to leave the network with
respect to the set of possible executions, called regular runs.

While it is hard to directly compare these two approaches (deterministic and proba-
bilistic), they are complementary and may be used together to improve our understanding
of the Chord protocol. One can argue that the probabilistic approach is useful to study
robustness of protocols. On the other hand, it will be also useful to describe sequences
of actions that lead to (un)stable states of Chord networks, in order to be able to analyze
properties of systems incorporating Chord and assuming its correctness, as it is the case
with the discovery and/or control service of an IoT system.

The paper [14] uses the theory of stochastic processes to give estimations of the prob-
ability that a Chord network is in a particular state. The correctness of the Chord’s stabi-
lization algorithm is proved in the framework of π-calculus by showing the equivalence of
the corresponding specification and implementation in [12,13], but assuming that nodes
cannot leave a network. The correctness of the pure join model is also proved using the
Alloy formal language in [16], and some counterexamples to correctness of Chord ring-
maintenance in the general case are presented.

As we mentioned in the Introduction, using DHT/Chord in IoT domain is not a nov-
elty [2,8,9,10,11]. In all papers regular discovery (and/or control) service, to improve
performances, is replaced by DHT protocol. In [8] authors proposed distributed control
plane. They consider the problem how to deliver control messages to the devices that are
in sleeping mode most of the time. The proposed DHT algorithm, to realize the control-
plane, is Chord. The system consists from two type of nodes - peers and clients. Peers
are those nodes which participate in the Chord network, and by the assumption they are
stable. Clients are “normal” nodes that use peers as proxies to connect to the Chord net-
work. Paper [2] introduces scalable, self-configuring and automated service and resource
discovery mechanism based on structured DHT architecture to provide support of more
complex search queries. Article [9] presents the overview and comparison of the discov-
ery service mechanisms in IoT domain, both traditional and distributed approaches. In
[10] authors give the description of a novel discovery service for IoT. In this approach
the information repositories are organized in a DHT network to enable multidimensional
search procedure. Authors of [11] presented discovery service, that improves scalability,
load balance and reliability, for objects carrying RFID tags based on double Chord ring .
In all these articles, the correctness of the Chord protocol was accepted for granted, or
by an assumption of stable DHT network.

In [17] a joint frame for reasoning about knowledge and linear time is presented, and
the proof of weak completeness for a logic which combines expressions about knowledge
with linear time is provided. Related strongly complete logics that concern linear and
branching time are presented in [19,20,21]. We use this framework, as a starting point
for our logic of time and knowledge. We describe the Chord protocol using the formal
language of that temporal epistemic logic and prove properties of the Chord protocol.

2.2. Contributions

The main contributions of this paper are:

144 Bojan Marinković et al.

– a description of the Chord protocol using a temporal epistemic logic;
– a proof of the correctness of the maintenance of the ring topology of the Chord pro-

tocol with the respect to the set of possible executions called regular runs.

This work was motivated by the importance of the discovery and control service of an
IoT system and the obvious fact that errors in concurrent systems are difficult to reproduce
and find merely by program testing. This proof could be, also, the foundation for the
formal proof created using a formal proof assistant (like, Coq or Isabelle/HOL).

3. Chord Protocol

The Chord protocol was introduced in [5,6,7] where its specification in C++-like pseudo-
code was given. Here we provide a short description of the Chord protocol that is needed
to understand the rest of the paper.

Nodes that run the Chord protocol construct a network that is ring-shaped. The main
operations supported by the Chord protocol are:

– adding a node to network,
– removing a node from a network, and
– mapping the given key onto a node using consistent hashing.

The primitive actions on which the procedure of maintaining the ring topology in the
Chord protocol is based are:

– a node starts a network,
– a new node joins a network,
– a node leaves a network,
– a node updates its successor, and
– a periodic check of the predecessor.

The consistent hashing is used because it provides load-balancing, i.e., every node re-
ceives roughly the same number of keys, and when nodes join or leave the network only a
few keys are required to be moved [18]. Since Chord networks are overlay systems, each
node in a network, which consists of N -nodes, needs “routing” information about only
O(logN) other nodes, and resolves all lookups via O(logN) messages to other nodes.

Nodes are assigned random identifiers and objects are stored across these nodes using
consistent hashing. The identifier for a node (a key), hash(node) (hash(key)) is ob-
tained by hashing the node’s IP address, or the value of the key, respectively. The length
of identifiers, e.g., m bits, guarantees that the probability that two objects of the same
type are assigned the same identifiers is negligible. Identifiers are ordered in an identifier
circle modulo 2m (see Figure 1), while all arithmetic is preformed modulo 2m. A key
is assigned to a node if their hash-values are equal. Otherwise, if there is no node such
that hash(node) = hash(key), the key is assigned to the first node in the ring such that
hash(node) > hash(key).

Every node stores its current successor and predecessor nodes in the identifier circle.
To improve performance of the lookup procedure, every node organizes routing informa-
tion in the Finger Table with up to m entries. The ith entry in the table which belongs to
the node n contains the identifier of the first node s such that s = successor(n+ 2i−1),

Correctness of the Chord Protocol 145

where 1 6 i 6 m. In other words, the node s succeeds the node n by at least 2i−1 in the
identifier circle. Figure 1 presents Finger tables of nodes n2, n37, n50 and n56.

A node can be aware of only a few other nodes in the system. For example, node n2
from Figure 1 knows about the existence of only 4 other nodes. Other nodes can have
different node identifiers in almost every entry in its Finger table, like the node n50 from
Figure 1.

Fig. 1. Chord lookup procedure. Node n2 is looking for the node responsible for the key
with the identifier 57.

During the lookup procedure, a node forwards a query to the largest element of the
Finger table smaller than the key used in the query, in respect to the used arithmetic
modulo 2m. In the example illustrated by Figure 1, if n2 is looking for the responsible
node for the key with identifier 57, it will forward this query to node n37, the closest
predeceasing node from its finger table to the identifier 57, the closes node from its finger
table. After that, this query will be forwarded to n56 (again as the closest predeceasing
node from its finger table to the identifier 57), until it finally ends at n60, as the successor
of the node n56. The answer if n60 contains the key and respected value with identifier 57
will be returned to node that started query, in this case n2.

When a node n joins an existing network, certain keys previously assigned to n’s
successor now become assigned to n. When a node n leaves the network regularly, it
notifies its predecessor and successor and reassigns all of its keys to the successor.

The stabilization procedure implemented by Chord runs periodically in the back-
ground at each node and must guarantee that each node’s finger table, predecessor and
successor pointers are up to date.

Figure 2 illustrates the process of stabilization after joining of a new node n5 between
nodes n2 and n7. Figure 2a shows a pair of stable nodes n2 and n7 that are a part of the

146 Bojan Marinković et al.

Chord ring. When a new node n5 joins the system, it sets its successor to n7 as presented
in Figure 2b. Node n7 will then set its predecessor to n5 as seen in Figure 2c, and node
n2 will later set its successor to n5 as shown in Figure 2d. Finally, node n5 will set its
predecessor to n2 as seen in Figure 2e.

(a) (b) (c)

(d) (e)

Fig. 2. Stabilization process during the joining of a new node: (a) a stable pair of nodes
n2 and n7; (b) node n5 joins and sets its successor to n7; (c) node n7 sets its predecessor
to n5; (d) node n2 sets its successor to n5; (e) node n5 sets its predecessor to n2.

Figure 3 illustrates the process of stabilization after leaving of the node n5. Figure 3a
shows two pairs of stable nodes n2 and n5, and n5 and n7 that are a part of the Chord
ring. When the node n5 leaves the system, nodes n2 and n7 point to nothing, as presented
in Figure 3b. Then, node n2 will set its successor to n7 as shown in Figure 3c. Finally,
node n7 will set its predecessor to n2 as seen in Figure 3d.

4. Logic of Time and Knowledge

As we mentioned in the previous Section, a system which runs the Chord protocol is a
dynamic multi-agent system, where every node has it own partial view of the surrounding
environment. To be able to reason about such systems, we need to introduce a frame-
work for formal description of changes of the knowledge of a node during the time, and
which allows nodes to share their knowledge. In this section we present the corresponding
temporal-epistemic logic.

4.1. Syntax

Let N be the set of non-negative integers. We denote Nodes = {n0, . . . nm−1},
where m ∈ N, and then let N1 = Nodes∪{u} be the set of propositional variables. The
elements from the set Nodes will represent nodes of the Chord network, while u is the
special letter used in the situation when some value is undefined.

Correctness of the Chord Protocol 147

(a) (b)

(c) (d)

Fig. 3. Stabilization process after leaving of a Chord ring node: (a) two stable pairs of
nodes n2 and n5, and n5 and n7; (b) node n5 leaves the Chord ring; (c) node n2 sets its
successor to n7; (d) node n7 sets its predecessor to n2;.

The set For of all formulas is the smallest superset of N1 which is closed under the
following formation rules:

– 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {�,≺} and φ, ψ ∈ N1,
– 〈φ, ψ, ϕ〉 7→ φM〈ψ,ϕ〉 where φ, ψ, ϕ ∈ Nodes,
– ψ 7→ ∗ψ where ∗ ∈ {¬,©, , Ki},
– 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {∧, G, H}.

The operators � and ≺ represent the relations successor and predecessor of a node,
respectively. The tip of the “arrow” is pointing to the node with “greater” identifier, with
respect to the ordering determined by the ring shaped Chord network. An abbreviation
ni �2 nk will be used for ni, nk ∈ N iff there is an nj ∈ N such that ni � nj and
nj � nk, and nk ≺2 ni for ni, nk ∈ N iff there is an nj ∈ N such that nk ≺ nj and
nj ≺ ni. Similarly, we can define nj �i nk, as well as nj ≺i nk for nj , nk ∈ N and
0 < i < m. Figure 4 illustrates the relations �, ≺ (Figure 4a) and �i (Figure 4b).

(a). n56 � n60 and n60 ≺ n56 (b). n50 �3 n60

Fig. 4. Examples of �, ≺ and �i

148 Bojan Marinković et al.

The operators ¬ and ∧ are logical negation and conjunction. The operators©, , G
and H are standard temporal operators next, previous, always in the future and always in
the past. The operator Ki represents the knowledge of the node i.

The remaining logical ∨,→,↔, and temporal F (eventually in the future), P (eventu-
ally in the past) connectives, G, H are defined in the usual way:

– φ ∨ ψ =def ¬(¬φ ∧ ¬ψ),
– φ→ ψ =def ¬φ ∨ ψ,
– φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ),
– Fψ =def ¬G¬ψ,
– Pψ =def ¬H¬ψ,
– ©0ψ =def ψ;©n+1ψ =©©n ψ, n > 0,
– 0ψ =def ψ;

n+1ψ = nψ, n > 0.

4.2. Semantics
In this paper we will consider time flow which is isomorphic to the set N. We take into
account both future and past.

We will defined models as Kripke’s structures, where the central notion is that of run.
A run is an ordered list (a sequence) of consecutive states of the system and corresponds
to a possible execution which starts in an initial state.

Definition 1. A modelM is any tuple 〈R, π,A,K〉 such that

– R is the set of runs, where:
• every run r = 〈(xt0, . . . , xtm−1)|t = 0, 1, 2 . . . 〉, is a countably infinite sequence,

where xti ∈ {>,⊥}, and
• a state (or a possible world) of a run r is 〈r, t〉 = (xt0, . . . , x

t
m−1),

– π : R× N×N1 → {>,⊥} is the set of valuations:
• π(r, t, nl) = xtl , associates truth values to propositional letters of the possible

world 〈r, t〉,
– A associates sets of active nodes to possible worlds, and
– K = {Ka : a ∈ A} is the set of transitive and symmetric accessibility relations for

nodes, such that:
• if a 6∈ A(〈r, t〉), then 〈r, t〉Ka〈r′, t′〉 is false for all r′ ∈ R and all t′ ∈ N.

Actually, a state, or a possible world 〈r, t〉, in a run r represents the state of the system in
the corresponding time instant t, and we will alternatively use these notions in the rest of
the paper.

Figure 5 illustrates a Kripke model which contains the runs r1, r2, r3, r4, where r1 is
the sequence of 〈r1, 0〉, 〈r1, 1〉, 〈r1, 2〉, etc. and similarly for other runs. In this model, for
example 〈r2, 1〉K1〈r2, 2〉, etc.

An ni ∈ Nodes is true in the time instant t in the run r (xti = >) if the Chord
network node i is active in the corresponding realization of the network. For ni, nj , nk ∈
Nodes we define the relation M which represents the fact that ni is the member of the
ring interval (nj , nk] as: niM〈nj , nk〉 is true iff

– j = k, or
– j < k and j < i 6 k, or
– k < j and ¬(k < i 6 j).

Note that the relation M is defined for all members of the set Nodes, regardless the fact
if the members are active or not.

Correctness of the Chord Protocol 149

Fig. 5. Kripke model

4.3. Satisfiability relation

A formula is satisfiable if there is a possible world in a model which makes that formula
true.

Definition 2. LetM = 〈R, π,A,K〉 be any model. The satisfiability relation |= (formula
α is satisfied in a time instant t of a run r) is defined recursively as follows:

1. 〈r, t〉 |= n iff π(r, t, n) = true, n ∈ N1

2. 〈r, t〉 |= α ∧ β iff 〈r, t〉 |= α and 〈r, t〉 |= β
3. 〈r, t〉 |= ¬α iff not 〈r, t〉 |= α (〈r, t〉 6|= α)
4. 〈r, t〉 |=©α iff 〈r, t+ 1〉 |= α
5. 〈r, t+ 1〉 |= α iff 〈r, t〉 |= α
6. 〈r, 0〉 |= α
7. 〈r, t〉 |= Gα iff for all i > 0 holds 〈r, t+ i〉 |= α
8. 〈r, t〉 |= Hα iff for all 0 6 i 6 t holds 〈r, t− i〉 |= α
9. 〈r, t〉 |= Kiα iff 〈r′, t′〉 |= α for all 〈r′, t′〉 ∈ Ki(〈r, t〉)

10. 〈r, t〉 |= ni � nj iff
(a) i = j and 〈r, t〉 |= ni ∧ Ki(

∧
nj∈Nodes\{ni} ¬nj)

(b) i < j 6 m and 〈r, t〉 |= ni ∧ nj ∧ Ki(
∧j−1

k=i+1 ¬nk) ∧ Kinj
(c) j < i < m and 〈r, t〉 |= ni ∧ nj ∧ Ki(

∧m
k=i+1 ¬nk) ∧ Ki(

∧j−1
k=1 ¬nk) ∧ Kinj

(d) j < i and i = m and 〈r, t〉 |= ni ∧ nj ∧ Ki(
∧j−1

k=1 ¬nk) ∧ Kinj
11. 〈r, t〉 |= nj ≺ ni iff

(a) i = j, t 6= 0 and 〈r, t〉 |= ni ∧ Ki(
∧

nk∈Nodes\{ni} ¬nk)
(b) i < j 6 m and 〈r, t〉 |= ni ∧ nj ∧ Ki(

∧j−1
k=i+1 ¬nk) ∧ Kinj

(c) j < i < m and 〈r, t〉 |= ni ∧ nj ∧ Ki(
∧m

k=i+1 ¬nk) ∧ Ki(
∧j−1

k=1 ¬nk) ∧ Kinj
(d) j < i and i = m and 〈r, t〉 |= ni ∧ nj ∧ Ki(

∧j−1
k=1 ¬nk) ∧ Kinj

(e) ni = u and 〈r, t〉 |= ¬nj ∨ (nj ∧ ((¬Kk(nk � nj))))

Now, we can explain the intuitive meaning of the operators. For example, the formula
©α is true in a state 〈r, t〉 of a run r iff α is true in the next state 〈r, t + 1〉 of the same
run. Next, Kiα is true in a state 〈r, t〉 iff α is true in all states 〈r′, t′〉 accessible from 〈r, t〉
by the relation Ki(〈r, t〉). On the other hand, the formula ni � nj is true if there is only
one active node in the Chord network (case (a)), or there is not other active nodes between
ni and nj and node ni is aware of activity of nj (cases (b)-(d)). The cases (b)-(d) take in

150 Bojan Marinković et al.

account the ring structure of the Chord network, i.e. [ni, nj] is one ring interval. Similarly
for nj ≺ ni.

By Definition 2 it is trivial to prove that the following lemma holds:

Lemma 1. TP: 〈r, t〉 |= (©α ∧©β)↔©(α ∧ β).

We use this property in the proofs provided in Appendix A.

5. Proof of Correctness

In this Section we analyze correctness of the Chord protocol. More precisely, we prove
that any execution of a regular run maintains the ring topology of the corresponding net-
work. It means that the network will be brought, after a finite number of steps, from a
state in which links between nodes do not form a ring to a stable state. First, we need to
introduce the following definitions:

Definition 3 (Stable pair). The pair of active nodes 〈nk, nl〉 is stable in a time instant t
of a run r (i.e., in the state 〈r, t〉), denoted with nk e nl, iff

〈r, t〉 |= (nl �m1 nk)∧(
m1∧
j=1

Kij (nij � nij+1))∧(nl ≺m1 nk)∧(
m1∧
j=1

Kij+1(nij+1 ≺ nij)),

where nk, nl, nij ∈ A(〈r, t〉) for 1 6 j 6 m1.

Intuitively, a pair 〈nk, nl〉 is stable if:

– the nodes nk and nl are active, and
– every active node nj such that njM〈nk, nl〉 knows its successor and predecessor.

It means that there is no node ni between nk and nl which tries to join or leave the
network in 〈r, t〉.

Definition 4 (Stable network). A Chord network is stable (we denote it with }) at 〈r, t〉
iff nk e nk for all nk ∈ A(〈r, t〉).

Intuitively, the whole network is stable if all successor and predecessor pointers are
sorted.

Definition 5. A node ni is a member of a stable pair 〈nk, nl〉 iff niM〈nk, nl〉 and nk enl.

Definition 6 (Regular runs). A run is regular if in every state of the run a node can leave
the network only if it is a member of a stable pair of nodes.

Definition 6 is essential in producing a deterministic proof of the correctness of the
Chord protocol, since if it is allowed that nodes can leave the network when they are
members of unstable pairs, there are counter examples in which those nodes can be left
isolated or the network can be divided into more then one separate subnetworks, as it is
shown in [16].

We assume the following form of the fairness condition: there is a constant f ∈ N
which denotes a uniform limit from above for duration of all primitive actions of the
Chord protocol (listed in Section 3).

The basic properties of � and ≺ relations can be described with:

Correctness of the Chord Protocol 151

AS1: 〈r, t〉 |= ni � nj →
∧

nk∈N1\{nj} ¬(ni � nk), ni, nj ∈ Nodes

AS2: 〈r, t〉 |= ni ≺ nj →
∧

nk∈N1\{nj} ¬(ni ≺ nk), ni, nj ∈ Nodes

AS3: 〈r, t〉 |= ni ≺ nj →
∧

nk∈N1\{ni} ¬(nk ≺ nj), ni, nj ∈ Nodes

AS4: 〈r, t〉 |= ni ≺ nj → nj � ni, ni, nj ∈ Nodes
AS5: 〈r, t〉 |= ni � nj → Ki(ni � nj), ni, nj ∈ Nodes
AS6: 〈r, t〉 |= ((ni � nj) ∧ nkM〈ni, nj〉 ∧©(¬Kink))→©(ni � nj),
ni, nj , nk ∈ Nodes
AS7: 〈r, t〉 |= ((ni ≺ nj) ∧ nkM〈ni, nj〉 ∧©(¬Kink))→©(ni ≺ nj),
ni, nj , nk ∈ Nodes

[AS1] says that a node can have only one successor. [AS2] says that a node can be
predecessor of only one node. [AS3] says that a node can have only one predecessor.
[AS4] says that if a node is predecessor of some other node, that other node has to be its
successor. [AS5] says that if a node ni has the successor nj , then ni knows that nj is its
successor. [AS6] says that the current successor (nj) of a node (ni) will be successor of the
node in the next time instant (©(ni � nj)), assuming that ni does not know (©(¬Kink)))
that a new node nk which belongs to the ring interval [ni, nj) (i.e., nkM〈ni, nj〉) joins the
network. Similarly, [AS7] says when the current predecessor will be the predecessor in
the next time instant, if there are no new nodes.

The primitive actions of the Chord network can be describe in the following way:

ρS : 〈r, t〉 |= H(
∧

nj∈Nodes ¬nj) ∧ ni ∧ (
∧

nj∈Nodes\{ni} ¬nj) ∧ Ki(ni � ni) ∧
Ki(ni ≺ u) for one ni ∈ Nodes,
ρJ,i: 〈r, t〉 |= (¬ni) ∧ ni ∧

∨f
l=0©lKi(ni � nj) ∧ Ki(ni ≺ u), nj ∈ A(〈r, t〉),

ni ∈ Nodes, i 6= j,
ρL,i: 〈r, t〉 |= (ni ∧nj enk)∧niM〈nj , nk〉∧¬ni, ni ∈ Nodes nk, nj ∈ A(〈r, t〉)
ρS1,i,j : 〈r, t〉 |= (Ki(ni � nj) ∧ Kj(nj ≺ u)) ∨ (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧
niM〈nk, nj〉)→

∨f
l=0©lKj(nj ≺ ni), ni, nk, nj ∈ A(〈r, t〉),

ρS2,i,j : 〈r, t〉 |= Ki(ni � nj)∧ Kj(nj ≺ nk)∧nkM〈ni, nj〉 →
∨f

l=0©lKi(ni � nk),
ni, nk, nj ∈ A(〈r, t〉),
ρS3,i: 〈r, t〉 |= Ki(ni � nj)∧¬nj →

∨f
l=0©lKi(ni � nk)∧

∨
l∈A(〈r,t〉) ¬nlM〈ni, nk〉,

ni, nk ∈ A(〈r, t〉), nj ∈ Nodes

ρS4,i: 〈r, t〉 |= Ki(nj ≺ ni) ∧ ¬nj →
∨f

l=0©lKi(u ≺ ni), ni ∈ A(〈r, t〉),
nj ∈ Nodes

[ρS] describes the start of the new Chord network, i.e., there was no active node in
the past (H(

∧
nj∈Nodes ¬nj)), in the current time instant only ni becomes active (ni ∧

(
∧

nj∈Nodes\{ni} ¬nj)), and ni knows that it is its own successor (Ki(ni � ni)), while its
predecessor is still undefined (Ki(ni ≺ u)). Similarly, for the other formulas: [ρJ,i] rep-
resents the situation when a new node ni joins the existing Chord network, while [ρL,i]
represents the situation when a new node ni leaves the existing Chord network in a regu-
lar run. [ρS1,i,j] - [ρS4,i] characterize stabilization processes (that make predecessor and
successor pointers up to date).

To be able to describe periodicity of the stabilization process, we introduce the fol-
lowing formulas:

ACF1: 〈r, t〉 |= ni ∧ ρS →
∨f

l=0©l
∨m−1

j=0 ρS1,i,j , ni ∈ A(〈r, t〉),

152 Bojan Marinković et al.

ACF2: 〈r, t〉 |= ni ∧ ρS →
∨f

l=0©l
∨m−1

j=0 ρS2,i,j , ni ∈ A(〈r, t〉),
ACF3: 〈r, t〉 |= ni ∧ ρJ,i →

∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ A(〈r, t〉),

ACF4: 〈r, t〉 |= ni ∧ ρJ,i →
∨f

l=0©l
∨m−1

j=0 ρS2,i,j , ni ∈ A(〈r, t〉),
ACF5: 〈r, t〉 |= ni ∧ ρS1,i,k →

∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ A(〈r, t〉),

k ∈ {0,m− 1},
ACF6: 〈r, t〉 |= ni ∧ ρS2,i,k →

∨f
l=0©l

∨m−1
j=0 ρS2,i,j , ni ∈ A(〈r, t〉),

k ∈ {0,m− 1},
ACF7: 〈r, t〉 |= ni ∧ ρS →

∨f
l=0©l

∨m−1
j=0 ρS3,i, ni ∈ A(〈r, t〉),

ACF8: 〈r, t〉 |= ni ∧ ρS →
∨f

l=0©l
∨m−1

j=0 ρS4,i, ni ∈ A(〈r, t〉),
ACF9: 〈r, t〉 |= ni ∧ ρJ,i →

∨f
l=0©l

∨m−1
j=0 ρS3,i, ni ∈ A(〈r, t〉),

ACF10: 〈r, t〉 |= ni ∧ ρJ,i →
∨f

l=0©l
∨m−1

j=0 ρS4,i, ni ∈ A(〈r, t〉),
ACF11: 〈r, t〉 |= ni ∧ ρS3,i →

∨f
l=0©l

∨m−1
j=0 ρS3,i, ni ∈ A(〈r, t〉),

ACF12: 〈r, t〉 |= ni ∧ ρS4,i →
∨f

l=0©l
∨m−1

j=0 ρS4,i, ni ∈ A(〈r, t〉).

The correctness of the Chord protocol can be proved by compounding simpler cases.
The statements 2-6 guarantee that the successor and predecessor pointers for each node
will be eventually sorted after one or more nodes join existing or start a new network.
Theorem 6 expresses the correctness of the model of executions without failures of nodes
and corresponds to Theorem IV.3 from [5]. The statements 7-9 consider possible leaving
of a node. Lemma 10 says that a stable pair of nodes in a Chord network eventually
becomes stable after adding/removing of a node between them with the respect to the
regular runs, while Theorem 4 shows the same, but for a stable network.

Lemma 2. Let a node start a new Chord network. Then, there is a finite period of time
after which the network will be stable, if no other nodes are trying to join in the mean-
while.

Lemma 3. Let a new node join a stable Chord network which consists of only one node.
Then, there is a finite period of time after which the network will be stable again, if no
other nodes are trying to join in the meanwhile.

Proofs of Lemmas 2 and 3 are similar to the proof of Lemma 4 (that can be found in
Appendix A).

Lemma 4. Let a node join a Chord network, between two nodes which constitute a stable
pair, such that the second node is the successor of the first node. Then, there is a finite
period of time after which the starting pair will be stable again, if no other nodes are
trying to join the network between the nodes that constitute the particular stable pair in
the meanwhile.

Lemma 5. Let a node join a Chord network, between two nodes which constitute a stable
pair. Then, there is a finite period of time after which the starting pair will be stable again,
if no other nodes are trying to join in the meanwhile.

Proof. Since one new node is joining the network between a stable pair, we can choose
two nodes which are each others successor and predecessor and the new node is joining
between them, so we can apply Lemma 4.

Correctness of the Chord Protocol 153

Lemma 6. Let a Chord network contain a stable pair. If a sequence of nodes join between
the nodes that constitute this stable pair, then there is a finite period of time after which
the starting pair will be stable again.

Proof. If we assume that all nodes that want to join the network have different successors,
by Lemma 5 the statement holds.

If this is not the case, we can assume that nienk and that the set of nodes nj1 , nj2 , . . .,
such that i 6 . . . 6 j2 6 j1 6 k, are joining this stable pair. Then, we can apply Lemma
5 on the tuples 〈ni, nj1 , nk〉, 〈ni, nj2 , nj1〉, This process will produce the stable pair
ni e nk, again.

Lemma 7. Let a Chord network contain a stable pair and let a node between them leave
the network. Then, there is a finite period of time after which the starting pair will be
stable again, if no other nodes are trying to join in the meanwhile.

Proofs of Lemmas 8 and 9 are similar to the proof of Lemma 7 (that can be found in
Appendix A).

Lemma 8. Let a Chord network contain a stable pair nienk. Let a node which is between
those nodes leave the network followed by several nodes which want to join between
〈ni, nk〉.Then, there is a finite period of time after which 〈ni, nk〉 will be stable again.

Lemma 9. Let a Chord network contain a stable pair. Let a node, which is in between
those nodes, leave the network. Then, there is a finite period of time after which the start-
ing pair will be stable again.

Lemma 10. Let a finite initial segment of a run of a Chord network produce the state
〈r, t〉, and 〈n, n′〉 ∈ A(〈r, t〉) be nodes that do not leave the network. Then, there is a
finite period of time after which 〈n, n′〉 will be stable, i.e., n e n′.

Proof. First note that, if the pair is stable at 〈r, t〉, then the statement trivially holds.
Otherwise, since we consider only regular runs, only joining of the new nodes between
〈n, n′〉 is possible. So, this is similar to Lemma 9.

Theorem 1. Let a finite initial segment of a run produce the state 〈r, t〉 of a Chord net-
work. Then, there is a finite period of time after which the network will be stable again:

〈r, t〉 |= ¬}→ F}

Proof. We assume that at least one node does not leave the network. Note that an unstable
state can be reached under following conditions:

– if a node starts the Chord network, which is considered in Lemma 2,
– if a node joins the Chord network, which is considered in Lemma 3, 4, 5 and 6,
– if a node leaves the Chord network, which is considered in Lemma 7, and
– if some nodes are leaving and some nodes are joining the Chord network, which is

considered in Lemma 8, 9 and 10.

So, as an unstable state can be reached only in some of the cases that are already
considered, this theorem is the corollary of the lemmas 2 – 10.

154 Bojan Marinković et al.

6. Conclusion

Discovery and control services are the core part of every IoT system. To improve the per-
formances of them, we found several examples where the regular approach was replaced
by DHT, i.e. the Chord protocol. All these examples do not consider correctness of the
Chord protocol and take it for granted, or consider it by very strong assumptions. To be
used in a proper manner, it is necessary to describe in a deterministic scenario for all the
situation when the Chord protocol manifest incorrect behavior. For that purpose, we de-
fine the notion of regular runs and prove the correctness of the maintenance of the ring
topology of the Chord protocol with the respect of them, using the framework of time and
knowledge.

One of the possible directions for further work is to apply the similar technique to
describe other DHT protocols and other cloud processes. Another challenge could be to
verify the given proof in one of the formal proof assistants (e.g., Coq, Isabelle/HOL). It
might also produce a certified program implementation from the proof of correctness.

Acknowledgments. The work presented here was supported by Serbian Ministry of Education,
Science and Technology Development (the projects ON174026 and III44006), through Matematički
institut SANU, and Croatian Ministry of Science and Education. This work was supported in part by
the Slovenian Research Agency within the research program Algorithms and Optimization Methods
in Telecommunications.

References

1. L. Atzori, A. Iera, G. Morabito. The Internet of things: A survey. In Computer Networks, 54.15,
2787–2805, 2010.

2. S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, L. Veltri. A Scalable and
Self-Configuring Architecture for Service Discovery in the Internet of Things. In IEEE Internet
of Things Journal, Vol. 1, No. 5, 508–521, 2014.

3. R. Rodrigues, P. Druschel. Peer-to-Peer Systems In Communications of the ACM, Vol. 53 Issue
10, pages 72–82, October 2010.

4. I. Taylor. From P2P to Web Services and Grids. Springer-Verlag, 2005.
5. I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan. Chord: A Scalable Peer-to-Peer

Lookup service for Internet Applications. In ACM SIGCOMM, pages 149–160, 2001.
6. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H. Balakrishnan.

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. MIT Technical re-
port, TR-819, 2001.

7. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In IEEE/ACM Trans-
actions on Networking, vol. 11, no. 1, 17 – 32, 2003.

8. J. J. Bolonio, M. Urueña, G. Camarillo. A Distributed Control Plane for the Internet of Things
Based on a Distributed Hash Table. In Mobile Networks and Management, Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
125, 108–121, 2013.

9. S. Evdokimov, B. Fabian, S. Kunz, N. Schoenemann. Comparison of Discovery Service Ar-
chitectures for the Internet of Things. In IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC), 2010.

10. F. Paganelli, D. Parlanti. A DHT-Based Discovery Service for the Internet of Things. In Journal
of Computer Networks and Communications, doi:10.1155/2012/107041, 2012.

Correctness of the Chord Protocol 155

11. D. Xu, Z. Wu, Z. Wu, Q. Zhang, L. Qin, J. Zhou. Internet of Things: Hotspot-based Discovery
Service Architecture with Security Mechanism. In International Journal of Network Security,
Vol. 17, No. 2, 208–216, 2015.

12. R. Bakhshi, D. Gurov. Verification of Peer-to-peer Algorithms: A Case Study. Technical report,
ICT, 2006.

13. R. Bakhshi, D. Gurov. Verification of Peer-to-peer Algorithms: A Case Study. In Electronic
Notes in Theoretical Computer Science (ENTCS), Volume 181, 35–47, 2007.

14. S. Krishnamurthy, S. El-Ansary, E. Aurell, S. Haridi. A Statistical Theory of Chord Under
Churn. In 4th International Workshop on Peer-To-Peer Systems, pages 93–103, 2005.

15. D. Liben-Nowell, H. Balakrishnan, D. R. Karger. Analysis of the Evolution of Peer-to-Peer
Systems. In Proc. 21st ACM Symp. Principles of Distributed Computing (PODC), pages 233–
242, 2002.

16. P. Zave. Using Lightweight Modeling to Understand Chord. In ACM SIGCOMM Computer
Communication Review, Vol. 42, Issue 2, pages 50–57, April 2012.

17. R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi. Reasoning About Knowledge. The MIT Press,
Cambridge, Massachusetts, 1995.

18. D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, D. Lewin. Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proceedings of STOC’97, pages 654–663, 1997.

19. B. Marinkovic, Z. Ognjanovic, D. Doder, A. Perovic. A Propositional Linear Time logic with
Time Flow Isomorphic to ω2. In Journal of Applied Logic, 12(2), 208 – 229, 2014.

20. Z. Ognjanovic. Discrete Linear-time Probabilistic Logics: Completeness, Decidability and
Complexity. In Journal of Logic Computation, Vol. 16, No. 2, 257–285, 2006.

21. Z. Ognjanovic, D. Doder, Z. Markovic. A Branching Time Logic with Two Types of Probability
Operators. In Fifth International Conference on Scalable Uncertainty Management SUM-
2011, Springer LNCS 6929, 219–232, 2011.

A. Proofs

Recall that f denotes the maximum of durations of all primitive actions of the Chord
protocol.

Lemma 4. Let a node join a Chord network, between two nodes which constitute a stable
pair, such that the second node is the successor of the first node. Then, there is a finite
period of time after which the starting pair will be stable again, if no other nodes are
trying to join the network between the nodes that constitute the particular stable pair in
the meanwhile.

Proof. We will show that 5 rounds of the stabilization process (i.e., 5f steps of an execu-
tion of the Chord protocol) will be enough to guarantee that the considered pair of nodes
becomes stable.

Let us assume that ni, nj ∈ A(〈r, t〉) and ni enj , i.e. (ni � nj)∧ (nj ≺ ni) and that
nk tries to join that stable pair. Let us denote

α = (ni e nj) ∧ ρJ,k
∧
nl∈I

5f∧
t=0

©t¬nl, I = {nl|nlM〈ni, nj〉, nk 6= nl, nj 6= nl}.

The formula α says that the pair 〈ni, nj〉 is stable in the previous time instant
((ni e nj)), nk is joining (ρJ,k) and during the next 5f time instants no other node

156 Bojan Marinković et al.

(©t¬nl) is trying to join the network between the nodes that constitute initial stable pair
(nlM〈ni, nj〉).

By MP we denote the standard inference rule modus ponens:

from α and α→ β conclude β.

We have,

〈r, t〉 |= α (0)
〈r, t〉 |= Ki(ni � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉 ∧ nk (by AS6) (1)
〈r, t〉 |= Ki(ni � nj) (by definition of ∧ and 1) (2a)
〈r, t〉 |= Kj(nj ≺ ni) (by definition of ∧ and 1) (2b)
〈r, t〉 |= nkM〈ni, nj〉 (by definition of ∧ and 1) (2c)
〈r, t〉 |= nk (by definition of ∧ and 1) (2d)
〈r, t〉 |= ρJ,k (by definition of α) (2e)
〈r, t〉 |= nk ∧ ρJ,k (by 2d, 2e) (2f)

〈r, t〉 |= ρJ,k →
f∨

l=0

©lKk(nk � nj) (by definition of ρJ,k) (3)

〈r, t〉 |=
f∨

l=0

©lKk(nk � nj) (by MP, 2e, 3) (4)

〈r, t〉 |=
f∨

l=0

©lKk(nk � nj)→ #
fKk(nk � nj), (by definition of AS6,4) (5)

〈r, t〉 |= #fKk(nk � nj) (by MP, 4, 5) (6)

〈r, t〉 |= nk ∧ ρJ,k →
f∨

l=0

©lρS1,k,j [ACF3] (7)

〈r, t〉 |=
f∨

l=0

©lρS1,k,j (by MP, 2f,7) (8a)

〈r, t〉 |=©fρS1,k,j (by AS6) (8b)

〈r, t〉 |=©f ((Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉)→
f∨

l=0

©lKj(nj ≺ nk))

(by 8b) (9a)

〈r, t〉 |= #f ((Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉))→ #
f (

f∨
l=0

©lKj(nj ≺ nk))

(by AT2, 9a) (9b)

〈r, t〉 |= #fKk(nk � nj) (by AS6, 6) (10a)

〈r, t〉 |= #fKk(nj ≺ ni) (by AS6, 2b) (10b)

〈r, t〉 |= #f (nkM〈ni, nj〉) (by AS6, 2c) (10c)

Correctness of the Chord Protocol 157

〈r, t〉 |= #f (Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉) (by TP, 10a, 10b, 10c) (11)

〈r, t〉 |= #f (

f∨
l=0

©lKj(nj ≺ nk)) (by MP, 9,11) (12)

〈r, t〉 |= #2fKj(nj ≺ nk) (by definition of #, AS6, 12) (13)

〈r, t〉 |=
2f∨
l=f

©l
m−1∨
j=0

ρS2,i,j (by ni ∈ A(〈r, t〉) and ACF2 or ACF4) (14)

〈r, t〉 |=
2f∨
l=f

©lρS2,i,k (by definition of ∨,14) (15a)

〈r, t〉 |=©2fρS2,i,k (by definition AS6,15a) (15b)

〈r, t〉 |= #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉)→
f∨

l=0

©lKi(ni � nk))

(by 15b) (16a)

〈r, t〉 |= #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉))→ #
2f (

f∨
l=0

©lKi(ni � nk))

(by AT2, 16a) (16b)

〈r, t〉 |= #2fKi(ni � nj) (by AS6, 2a) (17a)

〈r, t〉 |= #2fKj(nj ≺ nk) (by AS6, 13) (17b)

〈r, t〉 |= #2f (nkM〈ni, nj〉) (by AS6, 2c) (17c)

〈r, t〉 |= #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉) (by TP, 17a, 17b, 17c) (18)

〈r, t〉 |= #2f (

f∨
l=0

©lKi(ni � nk)) (by MP, 16b,18) (19)

〈r, t〉 |= #3fKi(ni � nk), (by definition of #, AS6,19) (20)

〈r, t〉 |=
4f∨

l=3f

©l
m−1∨
j=0

ρS1,i,j (by ni ∈ A(〈r, t〉) and ACF1 or ACF3) (21)

〈r, t〉 |=
4f∨

l=3f

©lρS1,i,k (by definition of ∨,21) (22a)

〈r, t〉 |=©4fρS1,i,k (by definition AS6, 22a) (22b)

〈r, t〉 |= #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉)→
f∨

l=0

©lKk(nk ≺ ni))

(by 22b) (23a)

〈r, t〉 |= #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉))→ #
4f (

f∨
l=0

©lKk(nk ≺ ni))

(by definition of AT2, 23a) (23b)

158 Bojan Marinković et al.

〈r, t〉 |= #4fKi(ni � nk) (by AS6, 29) (24a)

〈r, t〉 |= #4fKk(nk ≺ u) (by AS6, 2e) (24b)

〈r, t〉 |= #4f (nkM〈ni, nj〉) (by AS6, 2c) (24c)

〈r, t〉 |= #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉) (by TP, 24a, 24b, 24c) (25)

〈r, t〉 |= #4f (

f∨
l=0

©lKk(nk ≺ ni)) (by MP, 23b,25) (26)

〈r, t〉 |= #5fKk(nk ≺ ni) (by definition of #, AS6,26) (27)

〈r, t〉 |= #5fKk(nk � nj) (by AS6, 6) (28)

〈r, t〉 |= #5fKj(nj ≺ nk) (by AS6, 13) (29)

〈r, t〉 |= #5fKi(ni � nk) (by AS6, 20) (30)

〈r, t〉 |= #5fKk(nk ≺ ni) (by AS6, 27) (31)

〈r, t〉 |= #5f (Kk(nk � nj) ∧ Kj(nj ≺ nk) ∧ Ki(ni � nk) ∧ Kk(nk ≺ ni))
(by TP, 28, 29, 30, 31) (32)

〈r, t〉 |= #5f (ni e nj) (by definition of e) (33)

The last formula represents the statement of this Lemma.

Lemma 7. Let a Chord network contain a stable pair and let a node between them leave
the network. Then, there is a finite period of time after which the starting pair will be
stable again, if no other nodes are trying to join in the meanwhile.

Proof. We will show that 2 rounds of the stabilization process (i.e., 2f steps of an execu-
tion of the Chord protocol) will be enough to guarantee that the considered pair of nodes
becomes stable.

Let us assume that ni, nj , nk ∈ A(〈r, t〉) and ni e nk, i.e. (ni � nj) ∧ (nj ≺
ni) ∧ (nj � nk) ∧ (nj ≺ nk) and that nj tries to leave that stable pair. Let us denote

α = (ni e nk) ∧ ρL,j

∧
nl∈I

2f∧
t=0

©t¬nl, I = {nl|nlM〈ni, nj〉, nk 6= nl, nj 6= nl}.

ρL,j : (nj ∧ ni e nk) ∧ njM〈ni, nk〉 ∧ ¬nj
We have,

〈r, t〉 |= α (0)
〈r, t〉 |= Ki(ni � nj) ∧ Kk(nj ≺ nk) ∧ ¬nj (by simplification α) (1)

〈r, t〉 |=
f∨

l=0

©Ki(ni � nk) (by 1, ρS3,i) (2)

〈r, t〉 |=
f∨

l=0

©Kk(u ≺ nk) (by 1, ρS4,k) (3)

〈r, t〉 |=©fKi(ni � nk) (by AS6,2) (4)

Correctness of the Chord Protocol 159

〈r, t〉 |=©fKk(u ≺ nk) (by AS7, 3) (5)

〈r, t〉 |=
f∨

l=0

©fKk(ni ≺ nk) (by MP, 4,5, ρS2,i,k) (6)

〈r, t〉 |=©2fKk(ni ≺ nk) (by AS7, 6) (7)

〈r, t〉 |=©2fKi(ni � nk) (by AS6, 4) (8)

〈r, t〉 |=©2f (Kk(ni ≺ nk) ∧ Ki(ni � nk) (by TP, 7,8) (9)

〈r, t〉 |= #2f (ni e nk) (by definition of e) (10)

The last formula represents the statement of this Lemma.

Bojan Marinković is Research Assistant Professor at Mathematical Institute of the Ser-
bian Academy of Sciences and Arts. He received his PhD student at The Faculty of Techi-
cal Sciences University of Novi Sad, Serbia in 2014. During 2009, he spent three months
as a visiting researcher at INRIA Sophia Antipolis, France. His research interests concern:
distributed systems, applications of mathematical logic in computer science, automated
theorem proving and digitization of cultural and scientific heritage.

Zoran Ognjanović is a research professor at the Mathematical Institute of the Serbian
Academy of Sciences and Arts. He received his PhD degree in mathematical logic from
University of Kragujevac, Serbia, in 1999. He has authored or coauthored over 70 (chap-
ters of) monographs and technical papers in major international journals and conferences.
His research interests concern: applications of mathematical logic in computer science,
artificial intelligence and uncertain reasoning, automated theorem proving, applications
of heuristics to satisfiability problem and digitization of cultural and scientific heritage.
He is a recipient of the Serbian Academy of Sciences and Arts Award in the field of
mathematics and related sciences for 2013 and the annual award of Serbian Ministry of
Science for results in fundamental research in 2004.

Paola Glavan, PhD, is currently research and teaching assistant at the University of Za-
greb, Faculty of Mechanical Engineering and Naval Architecture-FSB. Her main scientific
interests include using logic and logical methods in analyzing distributed processes and
protocols. In particular, she is interested in Abstract State Machines and their application
to semantics of programming languages and distributed protocols and the use of temporal
epistemic logic in describing and verifying distributed protocols.

Anton Kos received his Ph.D. in electrical engineering from University of Ljubljana,
Slovenia, in 2006. He is an assistant professor at the Faculty of Electrical Engineering,
University of Ljubljana. He is a member of the Laboratory of Information Technologies
at the Department of Communication and Information Technologies. His teaching and re-
search work includes communication networks and protocols, quality of service, dataflow
computing and applications, usage of inertial sensors in biofeedback systems and applica-
tions, signal processing, and information systems. He is the (co)author of more than thirty
papers appeared in the international engineering journals and of more than fifty papers
presented at international conferences.

160 Bojan Marinković et al.

Anton Umek received his Ph.D. in electrical engineering from University of Ljubljana,
Slovenia, in 1999. He is currently an assistant professor at the Faculty of Electrical En-
gineering, University of Ljubljana. He is a member of the Laboratory of Information
Technologies at the Department of Communication and Information Technologies. He is
a member of the research program Algorithms and optimization methods in telecommu-
nications that was two years in a row the best research program financed by the Slovenian
research agency. Since last year he is the leader of industrial research and development
projects in designing of sensor based smart sport equipment and sensor based forestry
machinery. His teaching and research work includes signal processing, digital communi-
cation, secure communications , access network technologies and design of sensor sup-
ported sport training systems. He is the (co)author of eight papers appeared in the inter-
national engineering journals and of more than thirty papers presented at international
conferences. Anton Umek is a member of IEEE and between 2015 and 2018 he was the
Slovenian section ComSOC chapter chair.

Received: November 15, 2018; Accepted: August 8, 2019.

	Introduction
	Related Work and Contributions
	Related Work
	Contributions

	Chord Protocol
	Logic of Time and Knowledge
	Syntax
	Semantics
	Satisfiability relation

	Proof of Correctness
	Conclusion
	Proofs

