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Abstract. The collective spatial keyword query is a hot research topic in the database
community in recent years, which considers both the positional relevance to the
query location and textual relevance to the query keywords. However, in real life,
the temporal information of object is not always valid. Based on this, we define a
new query, namely time-aware collective spatial keyword query (TCoSKQ), which
considers the positional relevance, textual relevance, and temporal relevance be-
tween objects and query at the same time. Two evaluation functions are defined to
meet different needs of users, for each of which we propose an algorithm. Effec-
tive pruning strategies are proposed to improve query efficiency based on the two
algorithms. Finally, the experimental results show that the proposed algorithms are
efficient and scalable.
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1. Introduction

As textual information on location-based geographic information has been paid more and
more attention, spatial keyword query technology is proposed [8]. With the continuous
development of spatial keyword query, in some practical applications, people begin to pay
attention to the valid time of geo-spatial objects. For example, visitors want to plan a trip
based on the opening time of geo-spatial objects, which is the time-aware spatial keyword
query [5]. However, [5] only considers the case that a single object contains all the query
keywords. As far as we know, there is no work to consider the valid time of objects based
on the collective spatial keyword query. The collective spatial keyword query refers to
finding a group of objects that together contain all of the query keywords and are near to
the query location. Therefore, this paper proposes a new query, i.e., time-aware collective
spatial keyword query (TCoSKQ). An example is illustrated in Fig. 1, where a user (at the
location of q) plans to visit a “gym” from 7:00 to 8:30, and a “restaurant” from 9:00 to
10:00. Collective spatial keyword query may return {o1, o2}, while TCoSKQ may return
{o3, o2}. The reason of the difference is that TCoSKQ considers the valid time of the
objects. Although [6] is closely related to ours, they do not consider the case that there
exists a query point. [21] considers the valid time of the objects too, but it aims to find a
set of k objects ranked the highest according to a ranking function.
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TCoSKQ considers the positional relevance, textual relevance and temporal relevance
between the objects and the query at the same time. In order to solve the TCoSKQ prob-
lem, we define two evaluation functions to meet different needs of users, i.e., score1 and
score2, which are suitable for the cases that the object containing the query keyword is
close to and far from the query position, respectively. Then, TCoA1 algorithm and TCoA2
algorithm are designed for the two evaluation functions, respectively. Both algorithms use
multiple Time-aware R-tree (TR-tree) [6] to index the valid time information and the spa-
tial information of objects, that is, objects containing the same keyword are on the same
TR-tree. TCoA1 algorithm finds feasible solutions by the distance dominators, which are
searched from near to far, starting from the query location. Finally, the feasible solution
with the largest score1 is the final result. In order to improve the efficiency of the query,
we propose effective pruning strategies for pruning the distance dominators that are un-
likely to appear in the final result. TCoA2 algorithm searches for the center object from
near to far from the query location, in which TCoA1* algorithm is called to find the fea-
sible solution. TCoA1* algorithm is got by modifying TCoA1 algorithm. The feasible
solution with the largest score2 is the optimal solution, and effective pruning strategies
are proposed to improve the query efficiency.
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Fig. 1. Example of a TCoSKQ

To summarize, the main contributions of this paper are:

(1) We propose a new query, i.e., time-aware collective spatial keyword query (TCoSKQ).

(2) We propose two evaluation functions (i.e., score1 and score2), and propose effec-
tive pruning strategies and algorithms (i.e., TCoA1 and TCoA2) for these two functions
to solve TCoSKQ.

(3) We conduct extensive experiments using the data sets to demonstrate the efficiency
and scalability of our algorithms.

This paper introduces related work in Section 2. Section 3 gives problem definition.
Section 4 gives the TR-tree indexing structure. Section 5 and 6 elaborates TCoA1 and
TCoA2 algorithm, respectively. Section 7 gives the experimental results and analysis.
Section 8 concludes the paper.
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2. Related Work

In recent years, spatial keyword query has attracted much attention from spatial database
community. Scholars have proposed effective techniques to deal with spatial keyword
query. The early spatial keyword query is mainly for the case of retrieving a single object
containing all query keywords and close to the query position. It is roughly divided into
three types: Boolean kNN query [2], [18], ranked kNN query [14] and Boolean range
query [19].

As people’s needs increase, [1] observed that there may be situations where a single
object cannot meet the needs of users, therefore, they first proposed collective spatial key-
word query (CoSKQ). CoSKQ refers to retrieving a group of spatial web objects such
that the group’s keywords cover the query’s keywords and such that objects are nearest
to the query location and have the lowest inter-object distances. Based on two types of
cost function, they study two instances of this problem, both of which are NP-complete.
So they proposed effective approximate algorithms and exact algorithms to solve the two
instances. Based on the shortcomings of the query in [1], [15] defined a new cost function
describing the quality of set, proposed a new collective query processing method based
on spatial keyword, and devised the corresponding approximate algorithm and exact al-
gorithm.

With the intensive study of the collective spatial keyword query, some variants of
the collective spatial keyword query have been proposed. [7] focused on specific spa-
tial keyword set search in specific direction, and proposed a query algorithm based on
grid index. [3] proposed an inherent-cost aware collective spatial keyword query, which
takes into account the inherent cost of each object, and gave an exact algorithm and ap-
proximate algorithm that can solve the problem. Considering the importance of keyword
level, [20] proposed a level-aware collective spatial keyword query, the corresponding
cost function, the exact algorithm, and the approximate algorithm. Group-based collec-
tive keyword querying was proposed in [17], which considers the case of group of users.
The query aims to find a region containing a set of objects that covers all the query key-
words and these objects are close to the group of users and are close to each other. [9] and
[22] have successively proposed methods for solving collective spatial keyword query
on the road network. [11] considered the problem of scalable collective spatial keyword
queries and proposed a distributed method to solve this problem effectively. In [4], a uni-
fied cost function and a unified method are proposed for the collective spatial keyword
query problem to systematically solve the query problem.

With the in-depth study of spatial keyword queries, the valid time information of ob-
jects has attracted people’s attention. [5] proposed a time-aware Boolean spatial keyword
query (TABSKQ), which returns the k objects that satisfy users’ spatio-temporal descrip-
tion and textual constraint, designed TA-tree index structure, and proposed algorithms to
process TABSKQ efficiently. [21] proposed time-aware spatial keyword queries on road
networks, which finds the k objects satisfying users’ spatio-temporal description and tex-
tual constraint, and devised several effective algorithms using the TG index. [6] proposed
a time-aware spatial keyword cover query (TSKCQ), devised a TR-tree for indexing the
temporal information and the spatial information of objects, and proposed an exact algo-
rithm to tackle TSKCQ.

As far as we know, the previous work on collective spatial keyword query does not
consider the importance of the object’s valid time information. Therefore, we propose
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a new query, that is, time-aware collective spatial keyword query, which considers the
object’s valid time based on the collective spatial keyword query.

3. Problem Definition

In spatial dataset, each object may be associated with one or multiple keywords. We con-
vert the object with multiple keywords into multiple objects in the same location. For any
object o with m (m > 1) keywords, we will create m − 1 other objects with the same
location of o so that each of the m objects has only one different keyword. Let D be a set
of objects. Each o ∈ D is associated with a location denoted by o.λ, a keyword denoted
by o.k and a valid time denoted by o.t, where o.t is in the form of (st, et) with st and et
being the starting time stamp and the ending time stamp of o, respectively. Similar to [5]
and [6], we integerize st and et of o, and take one hour as a time unit. As an example,
any time stamp among [13:00, 14:00) can be converted to a time unit 13. (13:10, 18:00)
can be converted to (13, 18). For simplicity, let et, st ∈ [0, 24] and st ≤ et. The input of
a time-aware collective spatial keyword query (TCoSKQ) is q = (λ,K, T ), where q.λ is
the query location, K = {k1, ..., km}, T = {t1, ..., tm}, ki(1 ≤ i ≤ m) is the ith query
keyword, and ti is a time interval specified in the query for ki. For the query q, the object
set S = {o1, ..., om}(S ⊆ D) containing all the keywords in K is called the feasible
solution.

Definition 1. (Time-aware collective spatial keyword query (TCoSKQ)) Given a spatial
database D and a query q = (λ,K, T ), TCoSKQ returns an optimal solution S (which is
also a feasible solution), such that score(q, S) ≥ score(q, S′), where S′ is any feasible
solution.

According to the two different needs of users, we give the definition of score(q, S):

score(q, S) =

{
score1(q, S), the first evaluation function
score2(q, S), the second evaluation function

(1)

where score1 and score2 are evaluation functions that satisfy the user’s first and second
requirement, respectively.

(a) The score1 is defined as:

score1(q, S) = α(1−max
o∈S

dist(q, o)

max dist
) + (1− α) min

o∈S,ki∈K,o.k=ki

|ti ∩ o.t|
|ti|

(2)

where dist(q, o) is the Euclidean distance between q and o, max dist is the maximum
distance between any two objects in the spatial database D, and α(0 < α < 1) is a
specified parameter. Let Γo = |ti∩o.t|

|ti| , where the object o contains the keyword ki in K.
(b) The score2 is defined as:

score2(q, S) = max
o∈S

score(q, S, o) (3)

score(q, S, o) = β(1− dist(q, o)

max dist
) + (1− β)score1(q′, S), o ∈ S (4)
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where q′ = (o.λ, q.K, q.T ). According to (3), a function value is obtained by centering
on each object in S, so that such an object is called the center object of S. We call o′ the
best center object if o′ = argmax

o∈S
score(q, S, o).

For score1 and score2, the user could choose the function according to the query
location. If the user is in the downtown area at present, score1 may be chosen to find
the result. But if the user is far away from downtown now, the user may have to choose
score2 to find the result.

The notations used in this work are summarized in Table 1.

Table 1. Symbols and Description

Notation Description
D a set of objects
Γo the temporal overlap ratio of the object o
score1 the evaluation function that satisfies the user’s first requirement
score2 the evaluation function that satisfies the user’s second requirement
TRki -tree the time-aware R-tree for keyword ki
d(q, elem) the distance (or minimum distance) from query q to object (or node) elem
C(q, r) a circle with q as the center and r as the radius
NN(q, k) k-keyword nearest neighbor of q

4. TR-tree Index Structure

To process TCoSKQ, we use TR-tree [6] as the index structure of the algorithms, which is
an extension of R-tree [10]. On the basis of R-tree, a new dimension is added for indexing
valid time of objects.

As far as we know, the current collective spatial keyword queries use the index struc-
ture of a single tree, that is, a tree indexes objects in all geographic locations. A single tree
structure suits the situation that most keywords are query keywords. However, in practice,
users will only use a small fraction of keywords as query keywords. So, multiple trees are
also used in this work, one for each keyword. The TR-tree for keyword ki is denoted as
TRki

-tree.
In the case of knowing the query keywords, we only need to find the TR-tree cor-

responding to the query keyword, which greatly reduces the number of objects to be
considered in the query.

Next, we introduce the non-leaf nodes and leaf nodes of TR-tree in detail:
Non-leaf nodes of TR-tree contain entries of the form N(ptrs,mbr, UT ), where ptrs

is the address of a child node of N , mbr is the minimum bounding rectangle (MBR) of
all rectangles in entries of the child node, and UT is a set of the time intervals that are the
union of the valid times of the objects in N .

Leaf nodes of TR-tree contain entries of the form o(id, l, t), where id refers to the
object o, l represents the coordinates of o, and t is the valid time of o.
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Fig. 2a gives the placement of objects containing the keyword “restaurant”. Objects
and valid time of objects are shown in Fig. 2b. The TRk1

-tree for keyword “restaurant” is
created, and the nodes and their corresponding valid time of the tree are shown in Fig. 2c.
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(a) Object placement

 Object Valid time 

o1 (6:00, 10:00) 

o2 (7:00, 9:00) 

o3 (7:00, 11:00) 

o4 (13:00, 17:00) 

o5 (21:00, 24:00) 

o6 (9:00, 14:00) 

(b) Objects and valid time of ob-
jects 

Node Valid time 

N1 (6:00, 11:00) 

N2 (9:00, 17:00), (21:00, 24:00) 

N3 (6:00, 17:00), (21:00, 24:00) 

(c) Nodes and time intervals of nodes

Fig. 2. Example of a TR-tree

TR-tree inherits the important features of R-tree: the minimum distance from the
query to the parent node is less than or equal to the minimum distance to the child node.

Example 1. In Fig. 2, we assume that the time interval specified in the query for the
query keyword “restaurant” is (8:00, 19:00). Thus, we have Γo1 = 2/11, Γo2 = 1/11,
Γo3 = 3/11, Γo4 = 4/11, Γo5 = 0, Γo6 = 5/11.

Definition 2. (MinDist Distance [16]) In Euclidean space of dimension n, the minimum
distance between a point q and MBR N(s, u) is denoted by MinDist(q, N(s, u)), which
is defined as follows:

MinDist(q,N) =

n∑
i=1

|qi − ri|2, ri =


si, qi < si

ui, qi > ui

qi, otherwise
(5)

Given a query q,

Dist(q, elem) =

{
dist(q, elem), elem is an object

MinDist(q, elem), elem is a node
(6)

d(q, elem) =
Dist(q, elem)

max dist
(7)
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5. TCoA1 algorithm

We propose TCoA1 algorithm for the evaluation function score1(q, S) to solve the TCoSKQ
problem. Before we introduce TCoA1 algorithm, we first introduce some notations.

Given a query q = (λ,K, T ), let S be a solution that satisfies the query, then
(1) The distance dominator of S is defined to be the object o ∈ S that is most far away

from q (i.e.,o = argmax
o∈S

dist(q, o) ).

(2) Let o be the distance dominator of S. A circle with q as the center and d(q, o) as
the radius is denoted by C(q, r), where r = d(q, o).

(3) Given a keyword k, for the objects containing k, the one who is closest to q is
called the k-keyword nearest neighbor of q, denoted by NN(q, k).

5.1. Pruning Strategies

The idea of TCoA1 algorithm is to find feasible solutions with the help of distance dom-
inators. However, not every object can be distance dominators, so we will find the lower
bound of distance to q for distance dominators by the following theorem.

Theorem 1. Given a query q = (λ,K, T ), let FS be a feasible solution, let o be the
distance dominator of FS, and let S ={NN(q, k1), NN(q, k2), ..., NN(q, km)}. Then,
we have d(q, o) ≥ dLB , where dLB = max

o′∈S
dist(q, o′).

Proof. Assume d(q, o) < dLB . Let of be the distance dominator of S, i.e., dLB =
d(q, of ), and of contains the keyword kf . Since d(q, o) < dLB , we get of /∈ FS, and
there must be an object o′f ∈ FS containing kf , such that d(q, o′f ) ≤ d(q, o). Therefore,
we have d(q, o′f ) < dLB . This conclusion contradicts that of is NN(q, kf ), so it is true
that d(q, o) ≥ dLB . �

If some distance dominators are too far from q, then the solutions obtained by such
distance dominators would not be the optimal solution. Therefore, such distance domina-
tors can be pruned by the following theorem.

Theorem 2. Given a query q = (λ,K, T ), and the current optimal solution S. Let S′ be
any feasible solution, and let o be the distance dominator of S′. If d(q, o) ≥ dUB , where
dUB = (1− score1(q, S))/α, then we have score1(q, S′) ≤ score1(q, S).

Proof. Assume when o is the distance dominator of S′ and d(q, o) ≥ dUB , there is
score1(q, S′) > score1(q, S). Since score1(q, S′) = α(1−d(q, o))+(1−α) min

oj∈S′
Γoj ≤

α(1 − d(q, o)) + (1 − α), we have α(1 − d(q, o)) + (1 − α) > score1(q, S), i.e.,
d(q, o) < (1−score1(q, S))/α, that is, d(q, o) < dUB , which contradicts the hypothesis.
�

Fig. 3 shows the distance constraint when looking for distance dominators. Suppose
o1, o2, o3, o4, o5, and o6 contain one query keyword in K respectively. Initially, we only
need to consider the objects in the gray area (i.e., o2, o3, o5) to be distance dominators.
As the current optimal solution S changes, the upper bound dUB will become smaller and
smaller.
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Fig. 3. Distance constraint for distance dominators

5.2. TCoA1 Algorithm Description

The steps of the algorithm are as follows:
Step 1: For each query keyword ki in K, NN(q, ki) is found to form the current

optimal solution S.
(1) For the m query keywords in K, the m TR-trees are found, respectively;
(2) For each TRki

-tree, a min heap Minheapi is created, with d(q, elem) as the key,
where elem is the node or object of TRki

-tree;
(3) We create a max heap maxHeapi for each TRki -tree, with Γoi as the key, where

oi represents the object accessed in the TRki -tree;
(4) For each TRki

-tree, NN(q, ki) is found with the best-first strategy [12] to form
the current optimal solution S, i.e., S = {NN(q, k1), NN(q, k2),..., NN(q, km)}.

The process of finding NN(q, ki) is as follows: The root node of TRki
-tree is kept in

Minheapi. Determine whether the top element of Minheapi is a node or an object. If it
is a node, remove the node and store its children in Minheapi. This process is repeated
until the top element is an object, and the object is NN(q, ki).

Example 2. Fig. 4 shows an example. Assume that the query keywords are “restaurant”
and “gym”. The initial state of Minheap1 and Minheap2 is shown in Fig. 4b. When
S is found by using the best-first strategy for each TR-tree, the state of Minheap1 and
Minheap2 is shown in Fig. 4c, we know that NN(q, k1) = o3, NN(q, k2) = o7, there-
fore, we have S = {o3, o7}.

Step 2: Using S, we can determine dLB , which is used to identify the distance domi-
nator. The object o ∈ D will be put into the maxHeap in ascending order d(q, o). Once
a distance dominator is put into the maxHeap, it will be used to find a feasible solution
S′.

(1) Let of = arg max
of∈S

d(q, of ), dLB = d(q, of );

(2) For each o ∈ Minheapi(1 ≤ i ≤ m), if d(q, o) < dLB , then remove o from
Minheapi, and put it into maxHeapi. All these objects will not be distance dominators
according to Theorem 1.

(3) With best-first strategy, we look for a distance dominatorminobject fromMinheapj
(1 ≤ j ≤ m), and put it into maxHeapj to find a new feasible solution S′, which is
formed byminobject and the heads of all the max heaps exceptmaxHeapj . If score1(q, S)
< score1(q, S

′), S is replaced by S′.
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(b) Initial state of Minheap1 and
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(c) The changed state of Minheap1 and
Minheap2

Fig. 4. An example of step 1

(4) According to Theorem 2, if d(q,minobject) < (1 − score1(q, S))/α, then we
repeat (3), otherwise the algorithm terminates.

In (3), once a distance dominator minobject is found, all the objects in C(q, d(q,
minobject)) have been put into the max heaps. But we need not combine all the objects
in the max heaps with minobject to find the feasible solution with the largest score1.
Instead, we only get the feasible solution S′, which is formed byminobject and the heads
of all the max heaps except the max heap of maxHeapj . The reason is that minobject
is the distance dominator of S′, that is, minobject is the object furthest away from q
in S′. Since score1(q, S′) = α(1 − d(q,minobject)) + (1 − α) min

o∈S′
Γo, we know that

α(1 − d(q,minobject)) is a fixed value when we compute score1(q, S′). Therefore, we
create corresponding max heap maxHeapi for each TRki -tree, with Γoi as the key, and
just take the head of all the max heaps except maxHeapj to form S′, which has the
largest score1 among all the combinations.

Example 3. From Example 2, it is known that dLB = d(q, o7). Assume that the current
state of Minheap1, Minheap2, maxHeap1, and maxHeap2 is shown in Fig. 5a. Next,
we first compare d(q, o6) with d(q, o9). From Fig. 4a, we know that d(q, o6) < d(q, o9).
Then, o6 is removed from Minheap1, and Γo6 is calculated and stored in maxHeap1.
The state of all the heaps is shown in Fig. 5b. Since d(q, o6) > dLB , o6 will be the distance
dominator of the next feasible solution S′, we get S′ = {o6, o7}.

The pseudo-code of TCoA1 algorithm is presented in Algorithm 1. The m min heaps
are initialized, and Minheapi is used to store objects or nodes in the TRki -tree (line 1).
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Algorithm 1: TCoA1(D, q)
Input: A spatial database D, a query q = (λ,K, T ), where K = {k1, ..., km},

T = {t1, ..., tm}
Output: The result S

1 Initialize m min heaps Minheap1, ...,Minheapm with d(q, elem) as key;
2 Initialize m max heaps maxHeap1, ...,maxHeapm with Γelem as key;
3 Lists = ∅, S = ∅;
4 for each query keyword ki ∈ K do
5 Minheapi ← the root in TRki -tree;
6 Minheapi = FindN(q,Minheapi, TRki-tree);
7 S ←Minheapi.head;
8 Lists←Minheapi;

9 dLB = max
o∈S

d(q, o);

10 while Lists 6= ∅ do
11 Minheapj = arg min

Minheapi∈Lists
d(q,Minheapi.head);

12 minobject =Minheapj .head;
13 Remove Minheapj .head from Minheapj ;
14 maxHeapj ← minobject;
15 if Minheapj = ∅ then
16 Remove Minheapj from Lists;

17 else
18 Minheapj = FindN(q,Minheapj , TRkj -tree);

19 if d(q,minobject) < dLB then
20 continue;

21 else
22 if d(q,minobject) < (1− score1(q, S))/α then
23 S′ = ∅;
24 for (x = 1;x ≤ m;x++) do
25 if x == j then
26 S′ ← minobject;

27 else
28 S′ ← maxHeapx.head;

29 if score1(q, S′) > score1(q, S) then
30 S = S′;

31 else
32 break;

33 return S;
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Fig. 5. An example of step 2

The m max heaps are initialized, and maxHeapi is used to store objects with keyword
ki (line 2). In lines 4-8, for each TRki

-tree corresponding to the query keyword ki, Algo-
rithm 2 is called to find NN(q, ki) (line 6). In line 7, Minheapi.head is NN(q, ki).
After all the keyword nearest neighbors are found, the current optimal solution S is
formed. In lines 10-32, for the heads of all the min heaps in Lists, the head minobject
with the smallest key is found and moved from Minheapj to maxHeapj . After that, if
Minheapj is not empty, the heap is processed until the head is an object. We process
minobject with dUB and dLB . In lines 22-30, for a distance dominator minobject, if
dLB ≤ d(q,minobject) < dUB = (1−score1(q, S))/α, then a new feasible solution S′

will be found. The current optimal solution will be updated by S′ when score1(q, S′) >
score1(q, S).

The pseudo-code of FindN algorithm for finding an object is presented in Algorithm 2.
In lines 1-8, if the heap is not empty, then the heap will be traversed in the best-first
strategy until the head of the heap is an object. In line 9, the changed heap is returned.

5.3. Time Complexity of TCoA1 Algorithm

We assume that the objects are uniformly distributed. According to [12], after finding the k
nearest neighbors, the total cost isO(klogk). In TCoA1 algorithm, there aremmin heaps,
which are used to find the nearest neighbor in the best-first strategy [12]. Each min heap is
used separately. Each time only one of the min heap is chosen to find the nearest neighbor
incrementally. And the found nearest neighbor will be put into the corresponding max
heap. After the k nearest neighbors are put into a max heap, the total cost is O(klogk).
Once a distance dominator minobject from Minheapj is put into a max heap, a feasible
solution is formed by minobject and the heads of all the max heaps except the max heap
of maxHeapj . The cost is O(1). Let the maximum number of nearest neighbors found
by min heap be ka. So the time complexity of TCoA1 algorithm is O(mkalogka).



1088 Zijun Chen Tingting Zhao and Wenyuan Liu

Algorithm 2: FindN(q, heap, TRki -tree)
Input: a query q, a min heap heap for keeping nodes or objects of TRki -tree, TRki -tree

for the query keyword ki
Output: heap

1 while heap 6= ∅ do
2 elem = heap.head;
3 if elem is a node then
4 Remove elem from heap;
5 for each child e of elem do
6 heap← e;

7 else
8 break;

9 return heap;

6. TCoA2 Algorithm

We propose TCoA2 algorithm for the evaluation function score2(q, S) to solve the TCoSKQ
problem.

The idea of TCoA2 algorithm is to find the central object o in ascending order of
d(q, o), which is used to find a feasible solution. We propose the following theorem to
prune the central object that cannot form the optimal solution.

The current optimal solution obtained during the search process is defined as follows:
If S is the current optimal solution found by o, then for any result set Si found by oi so
far, we have score(q, Si, oi) ≤ score(q, S, o).

Theorem 3. Given a query q = (λ,K, T ), the current optimal solution S found by
o. Let S′ be any feasible solution, whose best center object is o′. If d(q, o′) ≥ (1 −
score(q, S, o))/β, we have score2(q, S′) ≤ score(q, S, o).

Proof. Assume that if d(q, o′) ≥ (1−score(q, S, o))/β, we have score2(q, S′) > score(q,
S, o). Since o′ is the best center object of S′, we have score2(q, S′) = β(1− d(q, o′)) +
(1 − β)score1(q

′, S′) ≤ β(1 − d(q, o′)) + (1 − β), where q′ = (o′.λ,K, T ). Thus,
β(1 − d(q, o′)) + (1 − β) > score(q, S, o), that is, d(q, o′) < (1 − score(q, S, o))/β,
which contradicts the hypothesis. �

It can be known from Theorem 3 that when the central object is searched from near
to far, if the distance from the central object to the query reaches an upper bound, then it
is not necessary to continue to search for the central object, and the search process can be
terminated early.

The following example demonstrates that the center object found firstly may not be
the best central object.

Example 4. Fig. 6 shows an example. Letmax dist = 100, dist(q, o1) = 70, dist(o1, o3) =
20, dist(o2, o1) = 10, α = 0.5, β = 0.3, the feasible solution S = {o1, o2, o3}, and
min
oj∈S

Γoj =0.5.
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(1) When S is found by the center object o1, we have score(q, S, o1) = β(1 −
d(q, o1)) + (1− β)score1(q′, S) = β(1− d(q, o1)) + (1− β)(α(1− d(o1, o3)) + (1−
α) min

oj∈S
Γoj ) = 0.3 ∗ (1− 70/100) + 0.7 ∗ (0.5 ∗ (1− 20/100) + 0.5 ∗ 0.5) = 0.545.

(2) When S is found by the center object o2, we have score(q, S, o2) = β(1 −
d(q, o2)) + (1− β)score1(q′, S) = β(1− d(q, o2)) + (1− β)(α(1− d(o2, o1)) + (1−
α) min

oj∈S
Γoj ) = 0.3 ∗ (1− 80/100) + 0.7 ∗ (0.5 ∗ (1− 10/100) + 0.5 ∗ 0.5) = 0.55.

(3) When S is found by the center object o3, we have score(q, S, o3) = β(1 −
d(q, o3)) + (1− β)score1(q′, S) = β(1− d(q, o3)) + (1− β)(α(1− d(o3, o1)) + (1−
α) min

oj∈S
Γoj ) = 0.3 ∗ (1− 90/100) + 0.7 ∗ (0.5 ∗ (1− 20/100) + 0.5 ∗ 0.5) = 0.485.

According to the above result, it can be seen that only o2 is the best central object of
S.

12 

 

 

d(q, o1) 
o1 o2 o3 q 

d(o1, o3) 

(a) Find S by o1

12 

 

(b) Find S by o  

d(o2, o1) 

o2 o3 
o1 d(q, o2) q 

(b) Find S by o2

Fig. 6. Find the best central object for S

Example 5. Consider Example 4 again. Assume that the current best solution S′ is found
by o′ and score(q, S′, o′) = 0.775. By Theorem 3, we have (1 − score(q, S′, o′))/β =
0.75. Since d(q, o1) = 0.7 < 0.75, we should compute score(q, S, o1), which is 0.545.
Because 0.545 < 0.775, the current optimal solution is unchanged. Since d(q, o2) =
0.8 > 0.75, the query is terminated according to Theorem 3. It is no longer necessary to
calculate score(q, S, o2).

The main idea of TCoA2 algorithm is shown in Fig. 7.
The pseudo-code of TCoA2 algorithm is presented in Algorithm 3. The m min heaps

are initialized, and heapi is used to store objects or nodes in the TRki
-tree (line 1). For

each TRki
-tree, we store its root node in the corresponding heap (lines 3-5). In lines 6-23,

for the head of each heap in Lists, the element elem with the smallest key is found and
removed. If elem is a node, all children of elem are stored in the corresponding heap. If
elem is an object, then it is a central object, which is used to find S′. In lines 16-21, if
d(q, elem) < (1 − Cscore))/β, then it is possible to find the optimal solution by elem
according to Theorem 3. TCoA1* algorithm is called to find a feasible solution, and the
final solution is updated.

TCoA1* algorithm is got by modifying TCoA1 algorithm as follows:
a. Different input. TCoA1* algorithm needs to know which object is to be the center

object to find the result set;



1090 Zijun Chen Tingting Zhao and Wenyuan Liu

Algorithm 3: TCoA2(D, q)
Input: A spatial database D, a query q = (λ,K, T ), where K = {k1, ..., km},

T = {t1, ..., tm}
Output: The result S

1 Initialize m min heaps heap1, ..., heapm with d(q, elem) as key;
2 Lists = ∅, S = ∅, Cscore = 0;
3 for each query keyword ki ∈ K do
4 heapi ← the root in TRki -tree;
5 Lists← heapi;

6 while Lists 6= ∅ do
7 heapj = arg min

heapi∈Lists
d(q, heapi.head);

8 elem = heapj .head;
9 Remove heapj .head from heapj ;

10 if elem is a node then
11 for each child e of elem do
12 heapj ← e;

13 else
14 if heapj = ∅ then
15 Remove heapj from Lists;

16 if d(q, elem) < (1− Cscore)/β then
17 q′ = (elem.λ,K, T );
18 S′ = TCoA1*(D, q′, elem);
19 if score(q, S′, elem) > Cscore then
20 S = S′;
21 Cscore = score(q, S′, elem);

22 else
23 break;

24 return S;
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Fig. 7. The main idea of TCoA2 algorithm

b. For the input central object o, TCoA1* algorithm does not need to create a min
heap and a max heap for the TR-tree corresponding to the keyword contained in o;

c. All result sets found by TCoA1* algorithm must contain the input central object.
To support the correctness of TCoA1* algorithm, we give the following Theorems by

rewriting Theorem 1 and 2, respectively.

Theorem 4. Given q′=(oi.λ, q.K, q.T ), where oi is a central object, let FS be a feasible
solution containing oi, let o be the distance dominator ofFS, and let S = {NN(q′, k1),...,
oi, ..., NN(q′, km)}. Then, we have d(q′, o) ≥ dLB , where dLB = max

o′∈S
d(q′, o′).

Proof. The proof is similar to that of Theorem 1. �

Theorem 5. Given q′=(oi.λ, q.K, q.T ), where oi is a central object, and the current op-
timal solution S containing oi. Let S′ be any feasible solution containing oi, and let o be
the distance dominator of S′. If d(q′, o) ≥ dUB , where dUB = (1 − score1(q′, S))/α,
then we have score1(q′, S′) ≤ score1(q′, S).

Proof. The proof is similar to that of Theorem 2. �

For each found central object o, TCoA1* algorithm is called to find feasible solution
S′ containing o, where S′ is the best solution with o being a central object according to
Theorem 4 and 5.

Correctness analysis of TCoA2 algorithm: According to Definition 1, for any fea-
sible solution S, it is necessary to calculate score(q, S, oi), where oi is a best central
object. But for S, we could not predict which object in S is the best central object,
so we have to try each object o as a central object in ascending order of d(q, o). For
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TCoA2 algorithm, assume that the current optimal solution Sp is found by op, and the
best central object of any feasible solution S is o. According to Theorem 3, if d(q, o) ≥
(1 − score(q, Sp, op))/β, then we have score2(q, S) ≤ score(q, Sp, op). Therefore,
TCoA2 algorithm can return the correct result.

Time complexity of TCoA2 algorithm: We assume that the objects are uniformly
distributed. In TCoA2 algorithm, there aremmin heaps, which are used to find the nearest
neighbor in the best-first strategy [12]. Once a nearest neighbor is found, it is used to call
TCoA1* algorithm, whose time complexity is the same with that of TCoA1 algorithm.
Let the maximum number of nearest neighbors found by min heap be kb, and let the
maximum number of nearest neighbors found by min heap in TCoA1* algorithm be ka.
So the time complexity of TCoA2 algorithm is O(mkblogkb +mkbmkalogka).

7. Experiment and Result Analysis

All the algorithms are implemented in Java 1.7.0. All the experiments have been per-
formed on a Windows 7 PC with an Intel(R) Core(TM) i5-2450M CPU and 4G RAM.

We use the datasets Oldenburg (https://www.cs.utah.edu /∼lifeifei/
SpatialDataset.htm) and GN (extracted from the Geographic Names Information System
in USA, https://www.usgs.gov/), and generate randomly keyword information and valid
time information for each object in the datasets. Oldenburg contains 6,105 objects and 59
different keywords. GN contains 2288631 objects and 1865 different keywords. We assign
one keyword to each object using the Zipf distribution [13] in both datasets. The starting
time stamp of objects in both datasets is set to follow the Gaussian distribution, and the
ending time stamp of objects is computed by the starting time stamp plus the length of
time interval which is in the range of [6, 12]. Each query location is randomly read from
the dataset, and the query keywords and query time interval are randomly assigned to the
query. We randomly produce 100 queries and report the average results.

7.1. TCoA1 algorithm and Baseline algorithm

The max heaps are used to obtain a feasible solution in step 2 of TCoA1 algorithm. In
order to test the performance of those max heaps, we propose a baseline algorithm (Base-
line) for comparison.

Baseline algorithm is got by modifying TCoA1 algorithm as follows:
a. In step 1 (3) in section 5.2, the max heaps are replaced by lists. For each TRki

-tree,
the list listi is created, which keeps objects that have been visited in the TRki

-tree.
b. In step 2 (3) in section 5.2, after finding the distance dominator minobject, we

combine minobject with all objects in each list except the list containing minobject to
get multiple feasible solutions. In each feasible solution, one object is taken from each
list. We retain the solution S′ with the largest score1. Finally, the final result is updated
with S′.

We should note that the pruning strategies for the distance dominators in TCoA1 algo-
rithm are applicable in Baseline algorithm. Therefore, Baseline algorithm uses the pruning
strategies too.

(1) Effect of the number of query keywords m
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Fig. 8 shows the influence of m on the query time of TCoA1 algorithm and Baseline
algorithm. We set α = 0.6. According to Fig. 8, TCoA1 algorithm is faster than Baseline
algorithm. It is because after finding the distance dominator minobject, TCoA1 algo-
rithm directly obtains head of each heap except the heap containing minobject, and then
combines with minobject to get a feasible solution. However, Baseline algorithm needs
to obtain all the objects in each list except the list containing minobject, and to combine
with minobject to get a large number of feasible solutions. Finally, we retain the feasible
solution with the largest score1(q, S′) to update the final result. The query time of both
algorithms increases when m increases. This is because the total number of objects con-
taining query keywords may increase when m increases. This may result in an increase
in the total number of the distance dominators used. It can also be seen from Fig. 8 that
TCoA1 algorithm are scalable.
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(2) Effect of α
The α is a parameter used to adjust the distance and time. When α changes from 1 to

0, more weight is assigned to temporal relevance. When α is close to 1, TCoSKQ is more
related to positional relevance.

Fig. 9 shows the influence of α on the query time of TCoA1 algorithm and Baseline
algorithm. We set m = 4. According to Fig. 9, with α increasing, the query time of
TCoA1 algorithm and Baseline algorithm decreases. This is because when α increases,
the smaller max

o∈S
d(q, o) is, the larger the score1(q, S) is. TCoSKQ prefer finding the

result close to the query location. It is easier to find the result that satisfies the condition
in a small range, so that few distance dominators are used.

7.2. TCoA1 algorithm and TCoA1NoPrune algorithm

In order to test the pruning effect on the total number of the distance dominators used
(Ndu), we remove a pruning strategy of TCoA1 algorithm (i.e., Theorem 2), then get
TCoA1NoPrune algorithm. Next, we compare TCoA1 algorithm and TCoA1NoPrune
algorithm on Ndu and query time using the two datasets.

(1) Effect of m
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Fig. 10 shows the influence of m on Ndu in the query. We set α = 0.6. Accord-
ing to Fig. 10, TCoA1 algorithm uses less total number of distance dominators than
TCoA1NoPrune algorithm does. This is because TCoA1 algorithm uses pruning strat-
egy to prune a large number of distance dominators. Ndu in TCoA1NoPrune algorithm is
the total number of objects containing the query keywords and the distance to q is not less
than dLB . With m increasing, Ndu in TCoA1 algorithm and TCoA1NoPrune algorithm
increases. This is because the total number of objects containing query keywords may
increase when m increases.

Fig. 11 shows the influence ofm on query time. We set α = 0.6. According to Fig. 11,
TCoA1 algorithm is faster than TCoA1NoPrune algorithm. As m increases, the query
time of TCoA1 algorithm and TCoA1NoPrune algorithm increases. This is because the
query time of the algorithms is related to Ndu.
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(2) Effect of α
Fig. 12 shows the influence of α on Ndu in the query. We set m = 4. According

to Fig. 12, α has no impact on Ndu in TCoA1NoPrune algorithm. This is because the
distance dominator is not pruned in TCoA1NoPrune algorithm, and Ndu is the total num-
ber of objects containing the query keywords and the distance to q is not less than dLB .
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As α increases, Ndu in TCoA1 algorithm decreases. This is because when α increases,
TCoSKQ prefer positional relevance. It is easier to find the result that satisfies the condi-
tion in a small range, so that few distance dominators are used.

Fig. 13 shows the influence of α on query time. We set m = 4. As shown in Fig. 13,
α has no impact on the query time of TCoA1NoPrune algorithm, and the query time
in TCoA1 algorithm decreases with α increasing. This is because the query time of the
algorithms is related to Ndu.
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7.3.3 TCoA2 algorithm and TCoA2NoPrune algorithm 

In order to test the pruning effect on the total number of the center objects used (Nco), we 
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(b) Ndu (GN)

Fig. 12. Ndu versus α

7.3. TCoA2 algorithm and TCoA2NoPrune algorithm

In order to test the pruning effect on the total number of center objects used (Nco), we re-
move the pruning strategy of TCoA2 algorithm (i.e., Theorem 3), then get TCoA2NoPrune
algorithm. Next, we compare TCoA2 algorithm and TCoA2NoPrune algorithm on Nco

and query time using the two datasets.
(1) Effect of m
Fig. 14 shows the influence of m on Nco in the query. We set α = 0.6 and β = 0.6.

According to Fig. 14, Nco in TCoA2 algorithm is less than TCoA2NoPrune algorithm.
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Fig. 13. Query time versus α

This is because TCoA2 algorithm uses pruning strategy to prune a large number of center
objects. Nco in TCoA2NoPrune algorithm is the total number of objects containing the
query keywords. When m increases, Nco in TCoA2 algorithm and TCoA2NoPrune algo-
rithm increases. This is because the total number of objects containing query keywords
may increase when m increases.

Fig. 15 shows the influence of m on query time. We set α = 0.6 and β = 0.6. With m
increasing, the query time of TCoA2 algorithm and TCoA2NoPrune algorithm increases,
and TCoA2 algorithm is faster than TCoA2NoPrune algorithm. This is because the query
time of the algorithms is related to Nco.
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(2) Effect of β 

β is a parameter used to adjust the distance and score1. When β changes from 1 to 0, more 

weight is assigned to score1. When β is close to 1, TCoSKQ is more related to positional relevance. 

Fig.16 shows the influence of β on Nco in the query. We set m=4 and α=0.6. According to Fig.16, 

β has no impact on Nco in TCoA2NoPrune algorithm. This is because there is no pruning strategy in  

TCoA2NoPrune algorithm, and Nco is the total number of objects containing the query keywords.  

As β increases, Nco in the TCoA2 algorithm decreases. This is because when β increases, TCoSKQ 

prefer positional relevance. It is easier to find the result that satisfies the condition in a small range, 

so that few the center objects are used. 

Fig.17 shows the influence of β on query time. We set m=4 and α=0.6. As shown in Fig.17, β 

has no impact on the query time of TCoA2NoPrune algorithm, and the query time in TCoA2 

algorithm decreases with β increasing. This is because the query time of the algorithms is related to 

Nco. 
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Fig. 14. Nco versus m

(2) Effect of β
The β is a parameter used to adjust the distance and score1. When β changes from 1

to 0, more weight is assigned to score1. When β is close to 1, TCoSKQ is more related
to positional relevance.

Fig. 16 shows the influence of β on Nco in the query. We set m = 4 and α = 0.6.
According to Fig. 16, β has no impact on Nco in TCoA2NoPrune algorithm. This is
because there is no pruning strategy in TCoA2NoPrune algorithm, and Nco is the total
number of objects containing the query keywords. As β increases, Nco in TCoA2 algo-
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Fig.15 Query time versus m  

(2) Effect of β 

β is a parameter used to adjust the distance and score1. When β changes from 1 to 0, more 

weight is assigned to score1. When β is close to 1, TCoSKQ is more related to positional relevance. 

Fig.16 shows the influence of β on Nco in the query. We set m=4 and α=0.6. According to Fig.16, 

β has no impact on Nco in TCoA2NoPrune algorithm. This is because there is no pruning strategy in  

TCoA2NoPrune algorithm, and Nco is the total number of objects containing the query keywords.  

As β increases, Nco in the TCoA2 algorithm decreases. This is because when β increases, TCoSKQ 

prefer positional relevance. It is easier to find the result that satisfies the condition in a small range, 

so that few the center objects are used. 

Fig.17 shows the influence of β on query time. We set m=4 and α=0.6. As shown in Fig.17, β 

has no impact on the query time of TCoA2NoPrune algorithm, and the query time in TCoA2 

algorithm decreases with β increasing. This is because the query time of the algorithms is related to 

Nco. 

(b) Query time (GN)

Fig. 15. Query time versus m

rithm decreases. This is because when β increases, TCoSKQ prefer positional relevance.
It is easier to find the result that satisfies the condition in a small range, so that few center
objects are used.

 6 

0

100

200

300

400

500

0.1 0.3 0.5 0.7 0.9

N
co

BETA

TCoA2 TCoA2NoPrune

0

1000

2000

3000

4000

0.1 0.3 0.5 0.7 0.9

N
co

BETA

TCoA2 TCoA2NoPrune

 
            (a) Nco (Oldenburg)                           (b) Nco (San Francisco) 

Fig.16 Nco versus β 

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9

Q
ue

ry
 t

im
e 

(m
s)

BETA

TCoA2 TCoA2NoPrune

1

10

100

1000

10000

0.1 0.3 0.5 0.7 0.9

Q
ue

ry
 t

im
e 

(m
s)

BETA

TCoA2 TCoA2NoPrune

 

(a) Query time (Oldenburg)                        (b) Query time (San Francisco) 

Fig.17 Query time versus β 

(a) Nco (Oldenburg)

 6 

0

100

200

300

400

500

0.1 0.3 0.5 0.7 0.9

N
co

BETA

TCoA2 TCoA2NoPrune

0

1000

2000

3000

4000

0.1 0.3 0.5 0.7 0.9

N
co

BETA

TCoA2 TCoA2NoPrune

 
            (a) Nco (Oldenburg)                           (b) Nco (San Francisco) 

Fig.16 Nco versus β 

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9

Q
ue

ry
 t

im
e 

(m
s)

BETA

TCoA2 TCoA2NoPrune

1

10

100

1000

10000

0.1 0.3 0.5 0.7 0.9

Q
ue

ry
 t

im
e 

(m
s)

BETA

TCoA2 TCoA2NoPrune

 

(a) Query time (Oldenburg)                        (b) Query time (San Francisco) 
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(b) Nco (GN)

Fig. 16. Nco versus β

Fig. 17 shows the influence of β on query time. We setm = 4 and α = 0.6. As shown
in Fig. 17, β has no impact on the query time of TCoA2NoPrune algorithm, and the query
time in TCoA2 algorithm decreases with β increasing. This is because the query time of
the algorithms is related to Nco.

8. Conclusions

This paper presents a new query, time-aware collective spatial keyword query (TCoSKQ).
For different needs of users, we define two new evaluation functions, score1 and score2,
and adopt the TR-tree index structure. For the evaluation function score1, we propose
pruning strategies for effectively pruning the number of the distance dominators used, and
give TCoA1 algorithm for solving the query problem. For the evaluation function score2,
we propose effective pruning strategies to prune the number of the center objects used,
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Fig. 17. Query time versus β

and give TCoA2 algorithm. Finally, the efficiency and scalability of the two algorithms
are verified. In the future work, other evaluation functions could be proposed.
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