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Abstract. The diagnosis of intermittent faults is challenging because of their 

random manifestation due to intricate mechanisms. Conventional diagnosis 

methods are no longer effective for these faults, especially for hierachical 

environment, such as cloud computing. This paper proposes a fault diagnosis 

method that can effectively identify and locate intermittent faults originating from 

(but not limited to) processors in the cloud computing environment. The method 

is end-to-end in that it does not rely on artificial feature extraction for applied 

scenarios, making it more generalizable than conventional neural network-based 

methods. It can be implemented with no additional fault detection mechanisms, 

and is realized by software with almost zero hardware cost. The proposed method 

shows a higher fault diagnosis accuracy than BP network, reaching 97.98% with 

low latency. 

Keywords: cloud system, intermittent fault, fault diagnosis, end-to-end, LSTM, 

PNN. 

1. Introduction 

The diagnosis of intermittent faults has drawn increasing attention in recent years. This 

problem is challenging because of the random manifestation of such faults due to 

intricate mechanisms. This can be mainly attributed to two reasons: a) The long time 

operation, high-load operation, and large cluster scale could more easily lead to 

phenomena such as PVT variation, cross talk, and interference, as the computing density 

increases (along with energy throughput) in cloud systems; b) On the other hand, 

aggressive chip feature sizes increase the hardware fault susceptibility of the single 

device itself [1].  
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Hardware faults can be classified into 3 categories: transient, intermittent, and 

permanent faults, depending on the duration. Transient faults often manifest as bit-flips 

and were first detected through a radioactive material contained in the chip package. 

High-energy radioactive particles, such as thorium and uranium, in the package emit α 

particles with energy > 8 MeV. When the accumulated electric quantity exceeds the 

charge threshold, the behavior of the PN junction changes, resulting in a bit-flip [2]. The 

duration of this type of fault is in the picosecond scale; it can be recovered by writing or 

refreshing. By contrast, a permanent fault is due to the aging of components or 

irreversible physical damage such as open or short failures in the circuits [3]. Permanent 

faults need to be replaced or repaired. Existing state-of-the-art diagnosis technologies 

are mainly designed for transient and permanent faults. 

The mechanism of intermittent faults is complex, and was put forward as early as the 

1970s [4]. The causes of device failures include time-dependent dielectric breakdown 

(TDDB), negative bias temperature instability (NBTI), electromigration (EM), stress 

migration (SM), and thermal cycling (TC) [5]. An intermittent fault is non-periodic, i.e., 

the time, frequency, probability, and amplitude of fault occurrence are random [6]. As 

reported, faults that occur in electronic devices are typically intermittent. Intermittent 

faults in integrated circuits are 10~30 times more frequent than permanent faults [7]. An 

error report [8] from Microsoft Windows on 950,000 personal computers showed that 

approximately 39% of the hardware errors reported in microprocessors are intermittent 

faults. 

Most existing fault diagnosis technologies are based on replay, i.e., after detecting the 

fault, the process instance is executed again on the standby core, and the former and 

latter are then compared for the diagnosis. This type of method is only applicable to 

distinct transient and permanent faults, because intermittent faults occur non-

periodically and are not necessarily reproduced in the process of replay.  This let us to 

conclude that the diagnosis of intermittent faults is challenging, from the embed devices 

to the cloud computing systems (with redundant threads or cores, but not avail against 

the uncertainty and propagation thereafter). Raghavan [9] compared the outputs of a 

tested circuit and reference circuit, and distinguished permanent and intermittent faults 

based on whether the number of faults exceeded a certain threshold. The number and 

threshold of faults are typically determined with respect to conditions such as the fault 

rate. To diagnose intermittent faults, Lafortune adopted the monitoring theory to study 

the diagnosability of discrete event systems (DESs), to check whether the fault can be 

diagnosed within a limited time [10, 11]. Due to the assumption that the fault type is 

known (assuming that the known fault is intermittent), the purpose is to identify how the 

system works in the recovery state against an intermittent fault, but not to diagnose an 

unknown fault, based on observable events, to be an intermittent fault or not. Therefore, 

the diagnosability of intermittent fault cannot be analyzed. 

A novel intermittent fault diagnosis algorithm for cloud systems is presented to 

overcome the above limitations. Our contributions are as follows: (1) End-to-End. To 

avoid the heavy reliance on environment feature extraction, this method is intuitively 

designed as an end-to-end diagnosis method, which, although requires information 

selection, does not use any potential function; it explores the best characteristic 

representation to solve problems from the perspective of "intuition”; (2) Covers all the 

hardware types. Unlike most conventional methods, this method covers all the hardware 

types and the fault locating responsibility, meaning that this method needs to identify 
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each instance to be a golden run or an isolating faulty category (transient/ intermittent/ 

permanent faults), and also to locate where the fault originates from; (3) No additional 

fault detection mechanism. This method does not rely on additional fault detection 

mechanisms. It uses only hardware interrupt handlers as the basis for inspection; these 

are commonly used in central processor units, and it is realized via software, so the 

hardware cost is almost zero. The experimental results show that the diagnosis accuracy 

reaches 97.98% for all the three types of faults (transient, intermittent, and permanent 

faults).  

The rest of this paper is organized as follows. Section 2 presents the related work in 

literature. Section 3 describes a novel end-to-end diagnosis framework, including 

corresponding algorithms. In Section 4, the method is validated with experimental work. 

Section 5 concludes the paper. 

2. Related Work 

We would like to present the research work in literature of the fault diagnosis area, 

especially in the hardwired faults those originated in the computer devices. In this part 

of work, the description of transient, intermittent, and permanent fault models, the fault 

diagnosis method and fault injection technologies are introduced.  

2.1. Fault Models 

The pulse description method can uniformly describe the hardware fault models, by 

using the activation time and the inactivity time as the parameters during the fault 

occurs. In the case of irradiation, when the illuminated high-energy particles reach the 

fault threshold, the transient fault will be triggered, causing a bit flip. As the fault 

duration increases, the energy is released and the transient fault disappears(see Fig. 

1(a)). A permanent fault is an irreversible physical defects in the circuit, and a fault 

phenomenon will always exist (see Fig. 1(b)).  

The intermittent faults are different from these two. The occurrence and 

disappearance of intermittent faults happens mutually (see Fig.1(c)). The fault location 

is fixed (same as transient and permanent faults). In fact, the intermittent fault model 

with 101 order duration of the clock cycle has now been accepted by the academic 

community, and thus, is adopted in this paper and is applied at different levels such as 

processor structure, virtual machine monitor, operating system and even application 

level.   
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Fig. 1. Pulse-based description method for hardware faults [12, 33]. 

2.2. Fault diagnosis methods 

Research that designs scheme for the post-silicon debugging mechanism records the 

footprint of every instruction as it is executed in the processor [13-15]. Some of them 

(e.g., IFRA[16]) requires the presence of hardware-based fault detectors to limit the 

error propagation, while others are implemented in a hybrid hardware-software manner, 

and with no additional detectors [17, 18]. Carratero et al. [19] propose their method to 

diagnose faults in the load-store unit (LSU) which is performed during post-silicon 

validation, and it only covers design faults. In contrast, SCRIBE [20] is proposed to 

diagnose intermittent faults during regular operation. After the fault is detected, the 

program is replayed on the standby core, and a data dependence graph (DDG) is 

constructed by extracting the runtime information (microstructure-level devices). By 

comparing the data flow graphs of two runs [21], the diagnosis and location of the 

intermittent fault are realized. Our work is similar to theirs in some aspects. However, as 

SCRIBE’s potential assumption that the fault type is known (assuming that the known 

fault is intermittent or permanent), the purpose is to diagnose how the system is 

currently in a recovery or intermittent fault state based on observable events. Therefore, 

in fact, the diagnosability of intermittent fault are remained unsolved, and additional 

detection mechanism is still needed by this method.  
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Hari et al. designed a trace-based fault diagnosis (TBFD) mechanism to diagnose 

permanent faults. Although the diagnosis accuracy reached 95%, heavy-weight 

overheads, such as hardware buffers and re-executions, were required [22]. Furthermore, 

TBFD is only effective for permanent faults. Considering the burst and non-periodic 

characteristics of intermittent faults, TBFD is not an alternative solution for intermittent 

fault diagnosis. Deng et al. proposed a stochastic automata-based method that can 

diagnose both of the permanent fault and the intermittent fault. They set up a finite 

automaton model by introducing the fault identification mechanism, wherein the state 

transformation of the system is invested, and the probability of the fault event is made 

out [23].  

The above methods depend on the scale of sample space: few samples cannot 

guarantee the accuracy of the diagnosis, which in turn can easily cause false alarms. As 

the existing samples are often limited in the real-world [24], fault injection is an 

effective method to accumulate the fault instances.  

2.3. Fault injectors 

Fault injectors are developed and realized toward upper levels in view of 

systematization. VFIT [25], INJECT [26], and VERIFY [27] are fault injection 

platforms developed on very high-speed hardware description language (VHDL), 

supporting fault models on the switch-level, gate level, and register transfer level (RTL). 

Wang et al. extended their fault injection simulator to multi-core architecture. They 

selected the UltraSPARC processor (8 cores, 64 threads) as Device Under Test (DUT) 

to characterize the effects of intermittent faults at the RTL level, and showed that some 

systematic events can be used as detection symptoms [28-29]. Rashid set up a pure 

software-based fault injector that is designed on SimpleScalar, and investigated the 

characteristic of intermittent faults at the application program level (Spec CPU2006) 

[30]. Hu et al. set up a system-level fault injection platform based on the Simics 

simulator, and studied the impact of hardware fault on a multi-core system through 

software simulation, including operating system and application program [31]. Le and 

Tamir proposed fault injection tools based on cloud environments, taking advantage of 

virtualization environment (virtual machine monitor) to implement a fault injection 

interface toward the upper layers [32]. As fault injection modules are (and can only be) 

implemented in a virtual machine monitor, only misbehaviors of the guest operating 

system fall into the observation scope and can be tracked.  

In this study, the cloud platform is selected as the injection target. Unlike the above 

fault injector, this work is not implemented merely “on” the cloud (the fault behavior 

propagation path only covers the operating system level and above); in fact, this work is 

different in that the virtualization firmware can be tracked even at the CPU structural 

level, which is beyond the operating system level. Thus, the fault propagation behavior 

can be tracked with more accuracy than injectors set up on the cloud.  
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3. Approach 

This paper presents an end-to-end fault diagnosis method. The fault log is recorded in 

the fault injection camp in the cloud environment. Based on the system level run-time 

information, features are automatically extracted and inputted to the neural network. 

This method covers all the hardware types as the target fault set, including transient, 

intermittent, and permanent faults.  

We first perform fault diagnosis based on a BP neural network through the statistical 

analysis of the log. Although artificial feature extraction is less computationally complex 

than the end-to-end method, there are drawbacks in the way it relies on manual feature 

extraction, which has two disadvantages: First, the selection of the features needs to be 

conducive to the classification. Therefore, features are combined through statistical or 

potential function methods for processing. This method strongly depends on the quality 

of the feature extraction, even more important than the learning algorithm used. For 

example, if the color of hair is extracted as a feature, the classification effect for gender 

will be poor regardless of the classification algorithm used. Therefore, features need 

enough training for design, which is increasingly difficult in the case of large amounts of 

data and complex systems. In addition, useful information may be potentially lost in the 

calculation of the original features. Second, the data element in the feature set may 

change (information or attributes need to be updated) depending on the operating 

environment in order to avoid the lack of generalization ability, and the repeated tuning 

and optimization processes for evaluating how the extracted features may influence the 

back-end performance, which may increase the time cost of model development. 

Therefore, an end-to-end diagnosis framework for system-level symptoms is proposed in 

this paper, providing an efficient solution to the implementation of intermittent fault 

diagnosis. 

3.1. Challenges and solutions of end-to-end model 

In the non-end-to-end algorithm, a significant amount of preparatory work is required. 

For example, in speech recognition, "phoneme" has been invented by linguists. 

Although it improves the efficiency in the processing step, it will undoubtedly lead to 

other information loss in the speech. The algorithm requires less data. However, the 

feature extraction depends on humans, and the feature needs to be redefined for 

application scenario migration (such as changing language), so the generalization ability 

is not high. 

Hence, the end-to-end method has been proposed, in which the original data are pre-

processed and selected as features that are learned without any potential functions. 

Hence, it can be integrated into the algorithm without human intervention, in order to 

explore the best characteristic representation to solve problems from the perspective of 

"intuition". As a result, the input (original data or feature sequence) and the output (fault 

categories or locations) have been directly connected to both ends of a neural network. 

However, the end-to-end learning algorithm does not require much human intervention, 

but it needs a lot of labeled data. 
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Based on a fault behavior tracking (FBT) system [33], we have applied a two-month 

period fault injection campus to obtain the systematic-level fault propagation behavior in 

the cloud computing environment. We obtained statistics from 42,000 experiments on 

fault injection under SPEC2006 workloads, including eon, gcc, parser, perlbmk, and 

twolf. For each instance, one of the three types of faults is chosen and injected into the 

target fault location. We set a time window (within the time of 1,000,000 instructions 

starting from fault injection) and collected the system-level fault propagation behavior 

sequence generated in this window. For intermittent faults, an total of 24,000 runs (300 

injections * 4 units * 5 benchmarks * 4 Lburst) were conducted; for transient and 

permanent faults, we conducted 12,000 and 6,000 runs, respectively, since there are two 

types of permanent faults, namely permanent stuck@0 and permanent stuck@1, 

compared with the transient faults, which are only of one type. Based on this behavior, 

the input neural network extracts the features and carries out fault diagnosis. Currently, 

the simulator covers all the hardware types as the target fault set, including transient, 

intermittent, and permanent faults, and supports fault injections into four targets, namely 

the Address generator, Decoder, ALU_FPU, and Register Files in the processor, and 

monitors the run-time log trace from the instruction buffer and state registers. We 

developed FBT modules to monitor the software stack. 

Given that millions of experimental instances are required to produce numerical 

labeled data for training the end-to-end framework, we implemented fault injection 

automatically in the FBT, wherein blue screen recognition and dead loop detection were 

developed in the controller module, to recognize system crashes due to illegal memory 

address access, trap stack overflow, and/or other severe perturbations. 

3.2. Overall architecture 

The reliability modules include the fault injector, fault tracer, and analyzer modules. In 

Step 1, we developed the fault injector module in the FBT to inject the three types of 

faults (transient/intermittent/permanent) into the specified location in the target unit. The 

target system is a multi-layer cloud system simulator, wherein the CPU/memory/hard 

disk is located beyond the VMM and guest operating systems. We adopted the prototype 

of UltraSPARC T2 processor as the target CPU. UltraSPARC T2 is a commercial chip 

multi-threading (CMT) processor, which has eight 64-bit cores and 8/16 threads in each 

core. Instead of exploiting instruction-level parallelism (ILP) and deep pipelining, this 

processor model achieves a good performance by taking advantage of thread-level 

parallelism (TLP), which is an optimized CPU model for cloud computing environment, 

instead of using the ILP architecture. 

The cloud software stack, comprising a VMM layer and the operating system for 

control domain and other virtual domains, is overlaid on top of the simulated hardware. 

Inside these domains, user applications (in our fault injection campaigns, the 

benchmark) are processed. The execution environment includes the computer hardware 

and host operating system. The latter is responsible for the simulator and other fault 

injection relevant modules. Below the host operating system is a (real world) hardware 

computing device that is responsible for executing all the software layers in Step 2, and 

the logs are then recorded in the host operating system in Step 3. The system-level 

symptoms are collected so that the fault propagation can be logged at all levels. 
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Step 4: Feature selection 

When using the machine learning technique, feature selection is the most important part. 

Based on the statistical distribution we just proved, we can take the number of times of a 

system call shown up in the trace as the major feature and other features, such as the trap 

level and high OS, as the complement features (unlike feature extraction, feature 

selection does not require a calculation process for the potential function, which belongs 

to the original data, because we cannot and do not need to input all the original data into 

the neural network). The exceptions and interrupts in the cloud environment are 

collectively referred to as trap. In SPARC architecture, the related attribute values of the 

trap are stored in specific registers (as listed in Table 1). TL is the trap-level register, 

which specifies the trap nesting level of the current program state. Under normal 

circumstances, the value of TL is 0, which means no trap. When the processor enters a 

trap, the value of TL is increased by 1. When the nesting level of the trap is greater than 

1, nest failure occurs. The SPARC architecture requires that at least five layers of 

nesting are supported. A nest fault is determined by the value of TL. When TL is greater 

than or equal to 2, nest fault occurs. TT is the trap-type register, indicating the trap-type 

number. The values of CCR, ASI, pstate, and CWP are also saved in the TSTATE 

register. The HP and P states represent the privilege level of the processor, indicating 

hypervisor authorization and operating system administrator, respectively. When a trap 

occurs, the hardware will automatically save PC/NPC to TPC/TNPC, and save 

CCR/ASI/pstate/CWP to TSTATE. Otherwise, the trap state program counter (TPC), 

trap state next program counter (TNPC), and TSTATE are saved in the hardware 

register stack. The CPU then enters the privilege execution mode and jumps to the trap 

vector entry to execute the relevant trap service program. 
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Fig. 2. Block diagram of the proposed end-to-end diagnosis algorithm 

High OS: the trap handler only takes a small piece of the coding fragment, except in 

two cases: 1) to allocate time slices to the application, the operating system may take a 

longer time to execute. And we record that the maximum continuous instructions is 

10000, by tracking the instructions running in the priviledged mode (operating system); 

2) to execute the system call procedures, the operating system executes 105 or 106 

continuous instructions before returning to the unpriviledged mode (application 

program). Therefore, under normal states, the number of continuous instructions 

executed in the priviledged mode will not exceed 106. When this threshold is exceeded, 

the behavior is considered abnormal. 

Table 1. Functional trap registers. 

Register Description 
TL Register to record Trap Level 

TT Register to record Trap Type 

TSTATE Register to record Trap State 

Steps 5 & 6: Diagnose algorithms 

In the process of fault diagnosis, both of the two learning strategies have been 

investigated--offline and online. By analyzing the fault behavior (based on the log files), 

it is not difficult to find that the sample can be regarded as a sequence. For each fault 

injection simulation instance, several trap events are generated and then logged. Based 

on this, a sequence can be simply setup as sample towards a learning strategy. In this 

paper, the method based on the long and short term neural network is adopted, that is, 

the trap sequence is constructed as the input vector to input to the long short term 
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memory (LSTM). Before the diagnosis framework starts to works, it requires to collect 

the entire trap event as the input sequence (from the beginning of the simulation to the 

finish), so it is called the offline learning strategy; on the other hand, each fault can be 

treated as an event that needs to be diagnosed immediately, and hence the serialized data 

can be expanded into vector data and submitted one by one. This are often called the 

online learning strategy. We implement the online mode based on Back Propagation 

Neural Network (BP) and Probabilistic Neural Network (PNN), respectively. The 

performance of the learning strategies will be discussed in section 4.  

Applying Feature Vectors 

for Training/Testing 

Networks

Long Short Term 

Memory (LSTM)

Probabilistic Neural 

Network (PNN)

Back Propagation Neural 

Network (BP)

Trap sequence vectors

 see in Table 3

DataElement2Vector

 for each emerging trap

Offline diagnosis

Online diagnosis

Diagnosis accuracy 

for Faulty/Gloden 

Instances Classification

Fig. 3. The diagnosis framework consists of offline and online learning strategies. 

Offline learning strategy 

LSTM. In the course of training, RNN neural network often has gradient disappearing 

or exploding, so Hochreiter et al. [34] put forward long short term memory neural 

network. This problem is well overcome in LSTM by adding three gate structures: 

forget gate, input gate and output gate, to keep and update the status information of each 

unit module. The input gate receives the current information of the system; the forgetting 

gate filters the information and discards the useless memory; the output gate filters the 

value of the next hidden state. In this scheme, the output result is defined as the fault 

categories, in which we can select the maximum value as the diagnosis result. Cross 

entropy loss is chosen as the loss function, which is suitable for multiple classifiers. 

There are two parameters for cross entropy: input value and label, representing the 

specific gravity of classification of the samples and the category index [0, n-1]. In 

Equation 1, where is the true value and is the predicted value. 

 


N

1k kk )n log (m -  loss  
(1) 

Online learning strategy  

BP neural network. This is an artificial neural network based on the learning 

mechanism of back propagation. In the BP neural network, linear transformation is used 

to map nodes in the input layer to nodes in the hidden layer. The activation function of 
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hidden layer and the linear transformation are co-operated to map nodes from the hidden 

layer to the output layer. The hidden layer can be one or more layers. We adopt softmax 

to be the activation function, which converts each vector value to the [0, 1]. See the 

calculation formula in Equation 2:  
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Wherein ix  is the thi  element in the input vector，  is the maximum element 

among ix . 

PNN. Unlike BP network, probabilistic neural network is a forward propagation 

classifier that uses Bayesian decision theory to classify samples. Bayesian decision-

making refers to taking the test sample as the classification with the highest probability. 

The PNN consists of four layers: one input layer, one output layer, and two hidden 

layers. The two hidden layers are the sample and competition layers. The neuron 

activation function of the sample layer is used to calculate the distance between the input 

value and the category center. If the distance is close to a center, the probability of this 

value in the corresponding area is set high. Theoretically, the output function of the 

PNN adopts the Bayesian classification method, wherein using Gauss function (equation 

3) to compute the distance between input vector and center point in order to classify the 

data with the maximum probability.  
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wherein n  represents number of feature dimension， gl represents the number of 

samples in the thg  category， ijx  represents the thj  data of the thi  neuron, and   is 

a hyper parameter. 

3.3. Implementation  

The following assumptions about the system are illustrated before we introduce the 

working flow: a) we assume a commodity multi-core system in which all cores are 

homogeneous, and are able to communicate with each other through a shared address 

space. b) We assume the availability of a fault-free core to perform the diagnosis. This is 

similar to the assumption made by and Li et al. [34]. The fault-free core is only needed 

during diagnosis. c) Trap logic unit (TLU) in processor is hardened in need to assure the 

correct exception information is logged. Note that UltraSparc T2 processor provides 
two trap return instructions, retry and done. Retry makes trap return to the 
instruction where trap is raised, and re-executes the instruction again when the 
done instruction returns to continue with the program. When the system detects a 
fault, it may use the retry instruction to return to the abnormal instruction for re-
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execution, or use the done instruction to transfer the trap to the operating system 
when the hypervisor may not be able to process the trap. 
 

⑥

Hardware 

TLU

(harden)
Non-faulty Cores 

Hypervisor

Guest OSPrivilige mode

Non-Priviliged mode Application

①

②

③

④

⑤useful 
context

BP/PNN 
network

Faulty Core

done

retry

⑥

       

Fig. 4. Working flow of online and offline diagnose methods. The steps in the figure are 

explained in the box. 

Overheads. Compared to other diagnosis schemes, our technique incurs low 

performance and power overheads with reasons as follows: a) as it initiates diagnosis 

only when error detection occurs, the diagnosis overhead is not incurred during fault-

free execution; b) our scheme do not need to log the context information in the 

processor continuously (only when an error detection occurs, and not like SCRIBE [19] 

which needs to do this continuously); c) the complex task of figuring out the fault type 

and faulty component is done in software. Hence, the power overhead is low.  

4. Experimental result 

In this section, we evaluated the performance of the proposed end-to-end diagnosis 

framework against hardware faults for cloud computing systems. We used the FBT 

simulator based on the software asset management (SAM) to emulate the considered 

case studies.  

Figure 5 shows the coverage of systematic-level fault behavior in the cloud system 

environment in our FBT simulator. high OS is large. In the transient fault, the coverage 

of high OS is the highest, in the permanent fault model, the coverage of high OS is the 

lowest, and almost 0 in the ALU and the decoder. The coverage of high OS decreases 

with the increase of the burst length. In the ALU, the coverage rate of high OS is 

significantly higher than that of other components. The overall coverage of nest is also 

high, and with the increase of the burst length, the coverage is significantly increased. In 

the transient fault model, the coverage is basically 0, which can be used as the diagnostic 

feature of the model.  

In these traps, the coverage of 0x10 and 0x34 is high. In the ALU, the trap is mainly 

0x34, which is caused by the address reading error of the ALU. In the decoder, the 

coverage of 0x10 and 0x34 is about 50%, which may be caused by the illegal instruction 

caused by bit flipping, or by the error of the target address or register number caused by 

the fault, resulting in the wrong instruction address, etc. In the program counter (PC) 

1) Application program authorized and gets to run in cores
2) Failure due to intermittent fault
3) System throws an exception (trap events in the TLU)
4) Log program’s context: registers in 
    core and TLU (core dump)
5) Sent to the BP network/PNN network 
    (optional for the online mode)
6) Return back to the application program 
    and keep running (retry/done instruction)
7) Goto step 2) or 3)
8) Application program has been finished or crashed; 
    send all the log info to LSTM network

    (optional for the offline mode)
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register, the coverage of 0x10 and 0x34 is high, which may be caused by the change of 

PC value. The coverage of 0x10 is almost 0 in ALU, but higher in other components, 

which can be used as the diagnosis feature of ALU. 0x30 only appears in the faulty 

ALU, and 0xd only appears in the faulty PC register, which can also be used as feature 

of faulty location diagnosis.  

 

Fig. 5. Systematic-level fault behavior occupation 

Offline diagnosis scheme(LSTM): 

Cross entropy loss adopts “one hot” mode. As shown in table 2, when hidden reaches 

249, the accuracy is the highest; when hidden is determined as 249, it is found that when 

batch is 50, the accuracy is the highest. With the Adam optimizer, the learning rate is 1e-

4, the regularization parameter is 1e-5, the number of neurons in the hidden layer is 249, 

the batch is set to 50, and the accuracy is 59.8%. 

Table 2. Hidden nodes and batch size tuning of LSTM. 

Hidden nodes tuning Batch size tuning 

Hidden Accuracy Hidden Accuracy Batch Accuracy 

25 53.40% 248 58.70% 16 55.50% 

50 59.10% 249 59.80% 50 59.80% 

100 53.40% 250 59.10% 100 55.50% 

150 57.70% 255 58.40% 150 59.10% 

200 56.20% 260 56.60% 200 54.50% 

245 57.30% 300 58.00% 250 50% 
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Online diagnosis scheme(BP/PNN): 

For BP network, we adopt Adam optimizer, the learning rate is 1e-2, the number of 

neurons in hidden layer is 150. The sample proportion of fault type is 334:1205:294, 

and the accuracy rate is 77.83%. After further learning with smote data enhancement 

strategy, the accuracy of the fault type (T/I/P) is 89.71%, and the loss is stable at about 

0.4. Figure 6 (d, e, f) shows the difference between the real value of the fault duration 

and the diagnosis value after the data enhancement. The sample proportion of fault parts 

is 284:884:666; the accuracy of fault location is 82.30%, and the loss is stable at about 

0.4. See Table 3 column "fault location" for the accuracy of each fault location. See 

Figure 6 (a, b, c) for the true value and diagnosis value of fault diagnosis. 

For PNN network, the transmission factor is set to 0.007 after tuning, and the best 

accuracy is 97.98%. Figure 7 shows the difference between the test result and the real 

value (the yellow line represents the real value and the blue line represents the predicted 

value). It can be seen that compared with the BP network, the diagnose performance of 

PNN is much more stable. 

Figure 8 shows the training process of the LSTM network, in which the upper 

coordinate system represents the change of accuracy during training, the red line 

represents the change of test data loss value, and the blue line represents the change of 

training data loss value. The accuracy and loss changes of the BP network are shown in 

Figure 9. From the comparison, we can see that the BP network training process is 

stable, but the LSTM network training is more tough, in which the loss value and 

accuracy are changing unsteadily; then it can be concluded that the LSTM network is 

relatively poor in the ability to acquire knowledge from fault data compared with BP 

network. 

Table 3. Diagnose accuracy of BP network. 

Fault type (after SMOTE) Fault location 

Fault type Accuracy Sample  DUT Accuracy Sample  

transient 72.84% 334  decoder 75.09% 284  

intermittent 97.68% 1205  ALU 84.18% 884  

permanent 76.27% 294  PC 82.88% 666  

total 89.71%  total 82.30%  

Table 4. Tuning of transmission factor in PNN network. 

Factor Accuracy 

0.1 57.79% 

0.05 72.06% 

0.01 94.13% 

0.008 95.64% 

0.007 97.98% 

0.006 97.98% 
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(a) DUT:decoder, Scheme: BP                    (d) Fault: transient, Scheme: BP 

       
(b) DUT:ALU, Scheme: BP                       (e) Fault: intermittent, Scheme: BP 

       
(c) DUT: program counter, Scheme: BP         (f) Fault: permanent,  Scheme: BP 

 Fig. 6. Diagnose result diagrams of BP network. 
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(a) DUT:decoder, Scheme:PNN          (d) Fault: transient, Scheme:PNN 

 
(b) DUT:ALU, Scheme: PNN             (e) Fault: intermittent, Scheme:PNN 

 
(c) DUT: program counter, Scheme: PNN      (f) Fault: permanent,  Scheme:PNN 

Fig. 7. Diagnose result diagrams of PNN network.  
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Fig.8. Test accuracy and loss of LSTM.                  

 

Fig.9. Test accuracy and loss of BP network. 

The training process of the BP network is error back-propagation learning, and the 

basic requirement is that the error function has continuity (because it needs to ensure 

that the error function can be biased). Thus, the final fitting result of the BP network is a 

continuous function in multi-dimensional space; however, the general result of fault 

diagnosis is discontinuous: it is neither 0 nor 1, so the BP network has a larger error than 

the PNN network. In contrast, to classify data with the lowest risk, the PNN directly uses 

the Bayesian classification method based on the Gaussian density function. Hence, its 

output is either 0 or 1, so it has a higher fault diagnosis rate than the BP network.  

The latency is 0.0952 seconds (BP) and 0.0286 seconds (PNN) alternatively for the 

online mode and 0.421 seconds (LSTM) for the offline mode. These algorithms run on 

Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, with 2 x 32 KB L1 cache and 2 x 256 

KB L2 cache. The statistics do not include time for core dump. However, we observe 

that a considerable proportion of the system call traces of faulty instances is repeated in 

most of the cases, so there should be observable reduction in the latency. Accordingly, a 

software recovery mechanism is favorable. In addition, training of the network is done 
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offline. Hence, there is no need to recompute the weights of each neural connection 

when performing the diagnosis, thus saving significant time.  

5. Conclusion 

In this paper, we propose an offline/online diagnosis mechanism for cloud system 

against intermittent faults. We take systematic-level behavior as a high-level 

representation of fault behavior. We implement an end-to-end neural network-based 

method that takes advantage of the log information to perform feature selection. Then, 

we set up a unified diagnosis framework based on LSTM/BP/PNN classifiers. Among 

the three classifiers, the PNN performs best in diagnosis accuracy. It employs the 

Bayesian probability analysis method to make fault category and fault location close to 

the actual label. The offline training/online diagnosis ensures that this method can be 

implemented in firmware, with zero hardware costs. 
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