
Computer Science and Information Systems 18(3):771–790 https://doi.org/10.2298/CSIS200620040W

End-to-End Diagnosis of Cloud Systems against

Intermittent Faults

Chao Wang
1,3

, Zhongchuan Fu
2,*, and Yanyan Huo

1

1 Computer School, Beijing Information Science and Technology University,

North 4th Ring Mid Road 35,

100101 Beijing, China

wangchao@bistu.edu.cn
2 Computer Science & Technology Department, Harbin Institute of Technology,

Xidazhi Street 92,

150001 Heilongjiang, China

fuzhongchuan@hit.edu.cn
3 Beijing Advanced Innovation Center for Materials Genome Engineering,

 North 4th Ring Mid Road 35,

100101 Beijing, China

Abstract. The diagnosis of intermittent faults is challenging because of their

random manifestation due to intricate mechanisms. Conventional diagnosis

methods are no longer effective for these faults, especially for hierachical

environment, such as cloud computing. This paper proposes a fault diagnosis

method that can effectively identify and locate intermittent faults originating from

(but not limited to) processors in the cloud computing environment. The method

is end-to-end in that it does not rely on artificial feature extraction for applied

scenarios, making it more generalizable than conventional neural network-based

methods. It can be implemented with no additional fault detection mechanisms,

and is realized by software with almost zero hardware cost. The proposed method

shows a higher fault diagnosis accuracy than BP network, reaching 97.98% with

low latency.

Keywords: cloud system, intermittent fault, fault diagnosis, end-to-end, LSTM,

PNN.

1. Introduction

The diagnosis of intermittent faults has drawn increasing attention in recent years. This

problem is challenging because of the random manifestation of such faults due to

intricate mechanisms. This can be mainly attributed to two reasons: a) The long time

operation, high-load operation, and large cluster scale could more easily lead to

phenomena such as PVT variation, cross talk, and interference, as the computing density

increases (along with energy throughput) in cloud systems; b) On the other hand,

aggressive chip feature sizes increase the hardware fault susceptibility of the single

device itself [1].

* Corresponding author

772 Chao Wang et al.

Hardware faults can be classified into 3 categories: transient, intermittent, and

permanent faults, depending on the duration. Transient faults often manifest as bit-flips

and were first detected through a radioactive material contained in the chip package.

High-energy radioactive particles, such as thorium and uranium, in the package emit α

particles with energy > 8 MeV. When the accumulated electric quantity exceeds the

charge threshold, the behavior of the PN junction changes, resulting in a bit-flip [2]. The

duration of this type of fault is in the picosecond scale; it can be recovered by writing or

refreshing. By contrast, a permanent fault is due to the aging of components or

irreversible physical damage such as open or short failures in the circuits [3]. Permanent

faults need to be replaced or repaired. Existing state-of-the-art diagnosis technologies

are mainly designed for transient and permanent faults.

The mechanism of intermittent faults is complex, and was put forward as early as the

1970s [4]. The causes of device failures include time-dependent dielectric breakdown

(TDDB), negative bias temperature instability (NBTI), electromigration (EM), stress

migration (SM), and thermal cycling (TC) [5]. An intermittent fault is non-periodic, i.e.,

the time, frequency, probability, and amplitude of fault occurrence are random [6]. As

reported, faults that occur in electronic devices are typically intermittent. Intermittent

faults in integrated circuits are 10~30 times more frequent than permanent faults [7]. An

error report [8] from Microsoft Windows on 950,000 personal computers showed that

approximately 39% of the hardware errors reported in microprocessors are intermittent

faults.

Most existing fault diagnosis technologies are based on replay, i.e., after detecting the

fault, the process instance is executed again on the standby core, and the former and

latter are then compared for the diagnosis. This type of method is only applicable to

distinct transient and permanent faults, because intermittent faults occur non-

periodically and are not necessarily reproduced in the process of replay. This let us to

conclude that the diagnosis of intermittent faults is challenging, from the embed devices

to the cloud computing systems (with redundant threads or cores, but not avail against

the uncertainty and propagation thereafter). Raghavan [9] compared the outputs of a

tested circuit and reference circuit, and distinguished permanent and intermittent faults

based on whether the number of faults exceeded a certain threshold. The number and

threshold of faults are typically determined with respect to conditions such as the fault

rate. To diagnose intermittent faults, Lafortune adopted the monitoring theory to study

the diagnosability of discrete event systems (DESs), to check whether the fault can be

diagnosed within a limited time [10, 11]. Due to the assumption that the fault type is

known (assuming that the known fault is intermittent), the purpose is to identify how the

system works in the recovery state against an intermittent fault, but not to diagnose an

unknown fault, based on observable events, to be an intermittent fault or not. Therefore,

the diagnosability of intermittent fault cannot be analyzed.

A novel intermittent fault diagnosis algorithm for cloud systems is presented to

overcome the above limitations. Our contributions are as follows: (1) End-to-End. To

avoid the heavy reliance on environment feature extraction, this method is intuitively

designed as an end-to-end diagnosis method, which, although requires information

selection, does not use any potential function; it explores the best characteristic

representation to solve problems from the perspective of "intuition”; (2) Covers all the

hardware types. Unlike most conventional methods, this method covers all the hardware

types and the fault locating responsibility, meaning that this method needs to identify

 End-to-End Diagnosis of Cloud Systems... 773

each instance to be a golden run or an isolating faulty category (transient/ intermittent/

permanent faults), and also to locate where the fault originates from; (3) No additional

fault detection mechanism. This method does not rely on additional fault detection

mechanisms. It uses only hardware interrupt handlers as the basis for inspection; these

are commonly used in central processor units, and it is realized via software, so the

hardware cost is almost zero. The experimental results show that the diagnosis accuracy

reaches 97.98% for all the three types of faults (transient, intermittent, and permanent

faults).

The rest of this paper is organized as follows. Section 2 presents the related work in

literature. Section 3 describes a novel end-to-end diagnosis framework, including

corresponding algorithms. In Section 4, the method is validated with experimental work.

Section 5 concludes the paper.

2. Related Work

We would like to present the research work in literature of the fault diagnosis area,

especially in the hardwired faults those originated in the computer devices. In this part

of work, the description of transient, intermittent, and permanent fault models, the fault

diagnosis method and fault injection technologies are introduced.

2.1. Fault Models

The pulse description method can uniformly describe the hardware fault models, by

using the activation time and the inactivity time as the parameters during the fault

occurs. In the case of irradiation, when the illuminated high-energy particles reach the

fault threshold, the transient fault will be triggered, causing a bit flip. As the fault

duration increases, the energy is released and the transient fault disappears(see Fig.

1(a)). A permanent fault is an irreversible physical defects in the circuit, and a fault

phenomenon will always exist (see Fig. 1(b)).

The intermittent faults are different from these two. The occurrence and

disappearance of intermittent faults happens mutually (see Fig.1(c)). The fault location

is fixed (same as transient and permanent faults). In fact, the intermittent fault model

with 101 order duration of the clock cycle has now been accepted by the academic

community, and thus, is adopted in this paper and is applied at different levels such as

processor structure, virtual machine monitor, operating system and even application

level.

774 Chao Wang et al.

ActivationActivation InactivationInactivationInactivationInactivation

(a) Transient fault model

ActivationActivationInactivationInactivation

(b) Permanent fault model

BurstBurst InactivationInactivationInactivationInactivation
tA tI

Activation
 #1

Activation
 #1

InactivationInactivationActivation
 #2

Activation
 #2

Activation
#LBurst

Activation
#LBurst

(c) Intermittent fault model

Fig. 1. Pulse-based description method for hardware faults [12, 33].

2.2. Fault diagnosis methods

Research that designs scheme for the post-silicon debugging mechanism records the

footprint of every instruction as it is executed in the processor [13-15]. Some of them

(e.g., IFRA[16]) requires the presence of hardware-based fault detectors to limit the

error propagation, while others are implemented in a hybrid hardware-software manner,

and with no additional detectors [17, 18]. Carratero et al. [19] propose their method to

diagnose faults in the load-store unit (LSU) which is performed during post-silicon

validation, and it only covers design faults. In contrast, SCRIBE [20] is proposed to

diagnose intermittent faults during regular operation. After the fault is detected, the

program is replayed on the standby core, and a data dependence graph (DDG) is

constructed by extracting the runtime information (microstructure-level devices). By

comparing the data flow graphs of two runs [21], the diagnosis and location of the

intermittent fault are realized. Our work is similar to theirs in some aspects. However, as

SCRIBE’s potential assumption that the fault type is known (assuming that the known

fault is intermittent or permanent), the purpose is to diagnose how the system is

currently in a recovery or intermittent fault state based on observable events. Therefore,

in fact, the diagnosability of intermittent fault are remained unsolved, and additional

detection mechanism is still needed by this method.

 End-to-End Diagnosis of Cloud Systems... 775

Hari et al. designed a trace-based fault diagnosis (TBFD) mechanism to diagnose

permanent faults. Although the diagnosis accuracy reached 95%, heavy-weight

overheads, such as hardware buffers and re-executions, were required [22]. Furthermore,

TBFD is only effective for permanent faults. Considering the burst and non-periodic

characteristics of intermittent faults, TBFD is not an alternative solution for intermittent

fault diagnosis. Deng et al. proposed a stochastic automata-based method that can

diagnose both of the permanent fault and the intermittent fault. They set up a finite

automaton model by introducing the fault identification mechanism, wherein the state

transformation of the system is invested, and the probability of the fault event is made

out [23].

The above methods depend on the scale of sample space: few samples cannot

guarantee the accuracy of the diagnosis, which in turn can easily cause false alarms. As

the existing samples are often limited in the real-world [24], fault injection is an

effective method to accumulate the fault instances.

2.3. Fault injectors

Fault injectors are developed and realized toward upper levels in view of

systematization. VFIT [25], INJECT [26], and VERIFY [27] are fault injection

platforms developed on very high-speed hardware description language (VHDL),

supporting fault models on the switch-level, gate level, and register transfer level (RTL).

Wang et al. extended their fault injection simulator to multi-core architecture. They

selected the UltraSPARC processor (8 cores, 64 threads) as Device Under Test (DUT)

to characterize the effects of intermittent faults at the RTL level, and showed that some

systematic events can be used as detection symptoms [28-29]. Rashid set up a pure

software-based fault injector that is designed on SimpleScalar, and investigated the

characteristic of intermittent faults at the application program level (Spec CPU2006)

[30]. Hu et al. set up a system-level fault injection platform based on the Simics

simulator, and studied the impact of hardware fault on a multi-core system through

software simulation, including operating system and application program [31]. Le and

Tamir proposed fault injection tools based on cloud environments, taking advantage of

virtualization environment (virtual machine monitor) to implement a fault injection

interface toward the upper layers [32]. As fault injection modules are (and can only be)

implemented in a virtual machine monitor, only misbehaviors of the guest operating

system fall into the observation scope and can be tracked.

In this study, the cloud platform is selected as the injection target. Unlike the above

fault injector, this work is not implemented merely “on” the cloud (the fault behavior

propagation path only covers the operating system level and above); in fact, this work is

different in that the virtualization firmware can be tracked even at the CPU structural

level, which is beyond the operating system level. Thus, the fault propagation behavior

can be tracked with more accuracy than injectors set up on the cloud.

776 Chao Wang et al.

3. Approach

This paper presents an end-to-end fault diagnosis method. The fault log is recorded in

the fault injection camp in the cloud environment. Based on the system level run-time

information, features are automatically extracted and inputted to the neural network.

This method covers all the hardware types as the target fault set, including transient,

intermittent, and permanent faults.

We first perform fault diagnosis based on a BP neural network through the statistical

analysis of the log. Although artificial feature extraction is less computationally complex

than the end-to-end method, there are drawbacks in the way it relies on manual feature

extraction, which has two disadvantages: First, the selection of the features needs to be

conducive to the classification. Therefore, features are combined through statistical or

potential function methods for processing. This method strongly depends on the quality

of the feature extraction, even more important than the learning algorithm used. For

example, if the color of hair is extracted as a feature, the classification effect for gender

will be poor regardless of the classification algorithm used. Therefore, features need

enough training for design, which is increasingly difficult in the case of large amounts of

data and complex systems. In addition, useful information may be potentially lost in the

calculation of the original features. Second, the data element in the feature set may

change (information or attributes need to be updated) depending on the operating

environment in order to avoid the lack of generalization ability, and the repeated tuning

and optimization processes for evaluating how the extracted features may influence the

back-end performance, which may increase the time cost of model development.

Therefore, an end-to-end diagnosis framework for system-level symptoms is proposed in

this paper, providing an efficient solution to the implementation of intermittent fault

diagnosis.

3.1. Challenges and solutions of end-to-end model

In the non-end-to-end algorithm, a significant amount of preparatory work is required.

For example, in speech recognition, "phoneme" has been invented by linguists.

Although it improves the efficiency in the processing step, it will undoubtedly lead to

other information loss in the speech. The algorithm requires less data. However, the

feature extraction depends on humans, and the feature needs to be redefined for

application scenario migration (such as changing language), so the generalization ability

is not high.

Hence, the end-to-end method has been proposed, in which the original data are pre-

processed and selected as features that are learned without any potential functions.

Hence, it can be integrated into the algorithm without human intervention, in order to

explore the best characteristic representation to solve problems from the perspective of

"intuition". As a result, the input (original data or feature sequence) and the output (fault

categories or locations) have been directly connected to both ends of a neural network.

However, the end-to-end learning algorithm does not require much human intervention,

but it needs a lot of labeled data.

 End-to-End Diagnosis of Cloud Systems... 777

Based on a fault behavior tracking (FBT) system [33], we have applied a two-month

period fault injection campus to obtain the systematic-level fault propagation behavior in

the cloud computing environment. We obtained statistics from 42,000 experiments on

fault injection under SPEC2006 workloads, including eon, gcc, parser, perlbmk, and

twolf. For each instance, one of the three types of faults is chosen and injected into the

target fault location. We set a time window (within the time of 1,000,000 instructions

starting from fault injection) and collected the system-level fault propagation behavior

sequence generated in this window. For intermittent faults, an total of 24,000 runs (300

injections * 4 units * 5 benchmarks * 4 Lburst) were conducted; for transient and

permanent faults, we conducted 12,000 and 6,000 runs, respectively, since there are two

types of permanent faults, namely permanent stuck@0 and permanent stuck@1,

compared with the transient faults, which are only of one type. Based on this behavior,

the input neural network extracts the features and carries out fault diagnosis. Currently,

the simulator covers all the hardware types as the target fault set, including transient,

intermittent, and permanent faults, and supports fault injections into four targets, namely

the Address generator, Decoder, ALU_FPU, and Register Files in the processor, and

monitors the run-time log trace from the instruction buffer and state registers. We

developed FBT modules to monitor the software stack.

Given that millions of experimental instances are required to produce numerical

labeled data for training the end-to-end framework, we implemented fault injection

automatically in the FBT, wherein blue screen recognition and dead loop detection were

developed in the controller module, to recognize system crashes due to illegal memory

address access, trap stack overflow, and/or other severe perturbations.

3.2. Overall architecture

The reliability modules include the fault injector, fault tracer, and analyzer modules. In

Step 1, we developed the fault injector module in the FBT to inject the three types of

faults (transient/intermittent/permanent) into the specified location in the target unit. The

target system is a multi-layer cloud system simulator, wherein the CPU/memory/hard

disk is located beyond the VMM and guest operating systems. We adopted the prototype

of UltraSPARC T2 processor as the target CPU. UltraSPARC T2 is a commercial chip

multi-threading (CMT) processor, which has eight 64-bit cores and 8/16 threads in each

core. Instead of exploiting instruction-level parallelism (ILP) and deep pipelining, this

processor model achieves a good performance by taking advantage of thread-level

parallelism (TLP), which is an optimized CPU model for cloud computing environment,

instead of using the ILP architecture.

The cloud software stack, comprising a VMM layer and the operating system for

control domain and other virtual domains, is overlaid on top of the simulated hardware.

Inside these domains, user applications (in our fault injection campaigns, the

benchmark) are processed. The execution environment includes the computer hardware

and host operating system. The latter is responsible for the simulator and other fault

injection relevant modules. Below the host operating system is a (real world) hardware

computing device that is responsible for executing all the software layers in Step 2, and

the logs are then recorded in the host operating system in Step 3. The system-level

symptoms are collected so that the fault propagation can be logged at all levels.

778 Chao Wang et al.

Step 4: Feature selection

When using the machine learning technique, feature selection is the most important part.

Based on the statistical distribution we just proved, we can take the number of times of a

system call shown up in the trace as the major feature and other features, such as the trap

level and high OS, as the complement features (unlike feature extraction, feature

selection does not require a calculation process for the potential function, which belongs

to the original data, because we cannot and do not need to input all the original data into

the neural network). The exceptions and interrupts in the cloud environment are

collectively referred to as trap. In SPARC architecture, the related attribute values of the

trap are stored in specific registers (as listed in Table 1). TL is the trap-level register,

which specifies the trap nesting level of the current program state. Under normal

circumstances, the value of TL is 0, which means no trap. When the processor enters a

trap, the value of TL is increased by 1. When the nesting level of the trap is greater than

1, nest failure occurs. The SPARC architecture requires that at least five layers of

nesting are supported. A nest fault is determined by the value of TL. When TL is greater

than or equal to 2, nest fault occurs. TT is the trap-type register, indicating the trap-type

number. The values of CCR, ASI, pstate, and CWP are also saved in the TSTATE

register. The HP and P states represent the privilege level of the processor, indicating

hypervisor authorization and operating system administrator, respectively. When a trap

occurs, the hardware will automatically save PC/NPC to TPC/TNPC, and save

CCR/ASI/pstate/CWP to TSTATE. Otherwise, the trap state program counter (TPC),

trap state next program counter (TNPC), and TSTATE are saved in the hardware

register stack. The CPU then enters the privilege execution mode and jumps to the trap

vector entry to execute the relevant trap service program.

 End-to-End Diagnosis of Cloud Systems... 779

Injecting

Faults

Massive

Logs

Propagation

across

layers

Feature

Selection

Neural

Network

Diagnosing

Results

2
1 2 3

1

……

step1

step2

step3 step4

step5

step6

Architecture Layer

VM Layer

OS Layer

AP-Level Layer

Fig. 2. Block diagram of the proposed end-to-end diagnosis algorithm

High OS: the trap handler only takes a small piece of the coding fragment, except in

two cases: 1) to allocate time slices to the application, the operating system may take a

longer time to execute. And we record that the maximum continuous instructions is

10000, by tracking the instructions running in the priviledged mode (operating system);

2) to execute the system call procedures, the operating system executes 105 or 106

continuous instructions before returning to the unpriviledged mode (application

program). Therefore, under normal states, the number of continuous instructions

executed in the priviledged mode will not exceed 106. When this threshold is exceeded,

the behavior is considered abnormal.

Table 1. Functional trap registers.

Register Description
TL Register to record Trap Level

TT Register to record Trap Type

TSTATE Register to record Trap State

Steps 5 & 6: Diagnose algorithms

In the process of fault diagnosis, both of the two learning strategies have been

investigated--offline and online. By analyzing the fault behavior (based on the log files),

it is not difficult to find that the sample can be regarded as a sequence. For each fault

injection simulation instance, several trap events are generated and then logged. Based

on this, a sequence can be simply setup as sample towards a learning strategy. In this

paper, the method based on the long and short term neural network is adopted, that is,

the trap sequence is constructed as the input vector to input to the long short term

780 Chao Wang et al.

memory (LSTM). Before the diagnosis framework starts to works, it requires to collect

the entire trap event as the input sequence (from the beginning of the simulation to the

finish), so it is called the offline learning strategy; on the other hand, each fault can be

treated as an event that needs to be diagnosed immediately, and hence the serialized data

can be expanded into vector data and submitted one by one. This are often called the

online learning strategy. We implement the online mode based on Back Propagation

Neural Network (BP) and Probabilistic Neural Network (PNN), respectively. The

performance of the learning strategies will be discussed in section 4.

Applying Feature Vectors

for Training/Testing

Networks

Long Short Term

Memory (LSTM)

Probabilistic Neural

Network (PNN)

Back Propagation Neural

Network (BP)

Trap sequence vectors

 see in Table 3

DataElement2Vector

 for each emerging trap

Offline diagnosis

Online diagnosis

Diagnosis accuracy

for Faulty/Gloden

Instances Classification

Fig. 3. The diagnosis framework consists of offline and online learning strategies.

Offline learning strategy

LSTM. In the course of training, RNN neural network often has gradient disappearing

or exploding, so Hochreiter et al. [34] put forward long short term memory neural

network. This problem is well overcome in LSTM by adding three gate structures:

forget gate, input gate and output gate, to keep and update the status information of each

unit module. The input gate receives the current information of the system; the forgetting

gate filters the information and discards the useless memory; the output gate filters the

value of the next hidden state. In this scheme, the output result is defined as the fault

categories, in which we can select the maximum value as the diagnosis result. Cross

entropy loss is chosen as the loss function, which is suitable for multiple classifiers.

There are two parameters for cross entropy: input value and label, representing the

specific gravity of classification of the samples and the category index [0, n-1]. In

Equation 1, where is the true value and is the predicted value.

 


N

1k kk)n log (m - loss
(1)

Online learning strategy

BP neural network. This is an artificial neural network based on the learning

mechanism of back propagation. In the BP neural network, linear transformation is used

to map nodes in the input layer to nodes in the hidden layer. The activation function of

 End-to-End Diagnosis of Cloud Systems... 781

hidden layer and the linear transformation are co-operated to map nodes from the hidden

layer to the output layer. The hidden layer can be one or more layers. We adopt softmax

to be the activation function, which converts each vector value to the [0, 1]. See the

calculation formula in Equation 2:

)max(,)(
)(

)(

ij x

x

i x
e

e
xf

j

i













(2)

Wherein ix is the thi element in the input vector， is the maximum element

among ix .

PNN. Unlike BP network, probabilistic neural network is a forward propagation

classifier that uses Bayesian decision theory to classify samples. Bayesian decision-

making refers to taking the test sample as the classification with the highest probability.

The PNN consists of four layers: one input layer, one output layer, and two hidden

layers. The two hidden layers are the sample and competition layers. The neuron

activation function of the sample layer is used to calculate the distance between the input

value and the category center. If the distance is close to a center, the probability of this

value in the corresponding area is set high. Theoretically, the output function of the

PNN adopts the Bayesian classification method, wherein using Gauss function (equation

3) to compute the distance between input vector and center point in order to classify the

data with the maximum probability.

 
 

  
   












 


gl

i

n

j

j

g

ij

nn

g

g

xx

l
x

1 1 2

2

2/
2

exp
2

1
;y




(3)

wherein n represents number of feature dimension， gl represents the number of

samples in the thg category， ijx represents the thj data of the thi neuron, and  is

a hyper parameter.

3.3. Implementation

The following assumptions about the system are illustrated before we introduce the

working flow: a) we assume a commodity multi-core system in which all cores are

homogeneous, and are able to communicate with each other through a shared address

space. b) We assume the availability of a fault-free core to perform the diagnosis. This is

similar to the assumption made by and Li et al. [34]. The fault-free core is only needed

during diagnosis. c) Trap logic unit (TLU) in processor is hardened in need to assure the

correct exception information is logged. Note that UltraSparc T2 processor provides
two trap return instructions, retry and done. Retry makes trap return to the
instruction where trap is raised, and re-executes the instruction again when the
done instruction returns to continue with the program. When the system detects a
fault, it may use the retry instruction to return to the abnormal instruction for re-

782 Chao Wang et al.

execution, or use the done instruction to transfer the trap to the operating system
when the hypervisor may not be able to process the trap.

⑥

Hardware

TLU

(harden)
Non-faulty Cores

Hypervisor

Guest OSPrivilige mode

Non-Priviliged mode Application

①

②

③

④

⑤useful
context

BP/PNN
network

Faulty Core

done

retry

⑥

Fig. 4. Working flow of online and offline diagnose methods. The steps in the figure are

explained in the box.

Overheads. Compared to other diagnosis schemes, our technique incurs low

performance and power overheads with reasons as follows: a) as it initiates diagnosis

only when error detection occurs, the diagnosis overhead is not incurred during fault-

free execution; b) our scheme do not need to log the context information in the

processor continuously (only when an error detection occurs, and not like SCRIBE [19]

which needs to do this continuously); c) the complex task of figuring out the fault type

and faulty component is done in software. Hence, the power overhead is low.

4. Experimental result

In this section, we evaluated the performance of the proposed end-to-end diagnosis

framework against hardware faults for cloud computing systems. We used the FBT

simulator based on the software asset management (SAM) to emulate the considered

case studies.

Figure 5 shows the coverage of systematic-level fault behavior in the cloud system

environment in our FBT simulator. high OS is large. In the transient fault, the coverage

of high OS is the highest, in the permanent fault model, the coverage of high OS is the

lowest, and almost 0 in the ALU and the decoder. The coverage of high OS decreases

with the increase of the burst length. In the ALU, the coverage rate of high OS is

significantly higher than that of other components. The overall coverage of nest is also

high, and with the increase of the burst length, the coverage is significantly increased. In

the transient fault model, the coverage is basically 0, which can be used as the diagnostic

feature of the model.

In these traps, the coverage of 0x10 and 0x34 is high. In the ALU, the trap is mainly

0x34, which is caused by the address reading error of the ALU. In the decoder, the

coverage of 0x10 and 0x34 is about 50%, which may be caused by the illegal instruction

caused by bit flipping, or by the error of the target address or register number caused by

the fault, resulting in the wrong instruction address, etc. In the program counter (PC)

1) Application program authorized and gets to run in cores
2) Failure due to intermittent fault
3) System throws an exception (trap events in the TLU)
4) Log program’s context: registers in
 core and TLU (core dump)
5) Sent to the BP network/PNN network
 (optional for the online mode)
6) Return back to the application program
 and keep running (retry/done instruction)
7) Goto step 2) or 3)
8) Application program has been finished or crashed;
 send all the log info to LSTM network

 (optional for the offline mode)

 End-to-End Diagnosis of Cloud Systems... 783

register, the coverage of 0x10 and 0x34 is high, which may be caused by the change of

PC value. The coverage of 0x10 is almost 0 in ALU, but higher in other components,

which can be used as the diagnosis feature of ALU. 0x30 only appears in the faulty

ALU, and 0xd only appears in the faulty PC register, which can also be used as feature

of faulty location diagnosis.

Fig. 5. Systematic-level fault behavior occupation

Offline diagnosis scheme(LSTM):

Cross entropy loss adopts “one hot” mode. As shown in table 2, when hidden reaches

249, the accuracy is the highest; when hidden is determined as 249, it is found that when

batch is 50, the accuracy is the highest. With the Adam optimizer, the learning rate is 1e-

4, the regularization parameter is 1e-5, the number of neurons in the hidden layer is 249,

the batch is set to 50, and the accuracy is 59.8%.

Table 2. Hidden nodes and batch size tuning of LSTM.

Hidden nodes tuning Batch size tuning

Hidden Accuracy Hidden Accuracy Batch Accuracy

25 53.40% 248 58.70% 16 55.50%

50 59.10% 249 59.80% 50 59.80%

100 53.40% 250 59.10% 100 55.50%

150 57.70% 255 58.40% 150 59.10%

200 56.20% 260 56.60% 200 54.50%

245 57.30% 300 58.00% 250 50%

784 Chao Wang et al.

Online diagnosis scheme(BP/PNN):

For BP network, we adopt Adam optimizer, the learning rate is 1e-2, the number of

neurons in hidden layer is 150. The sample proportion of fault type is 334:1205:294,

and the accuracy rate is 77.83%. After further learning with smote data enhancement

strategy, the accuracy of the fault type (T/I/P) is 89.71%, and the loss is stable at about

0.4. Figure 6 (d, e, f) shows the difference between the real value of the fault duration

and the diagnosis value after the data enhancement. The sample proportion of fault parts

is 284:884:666; the accuracy of fault location is 82.30%, and the loss is stable at about

0.4. See Table 3 column "fault location" for the accuracy of each fault location. See

Figure 6 (a, b, c) for the true value and diagnosis value of fault diagnosis.

For PNN network, the transmission factor is set to 0.007 after tuning, and the best

accuracy is 97.98%. Figure 7 shows the difference between the test result and the real

value (the yellow line represents the real value and the blue line represents the predicted

value). It can be seen that compared with the BP network, the diagnose performance of

PNN is much more stable.

Figure 8 shows the training process of the LSTM network, in which the upper

coordinate system represents the change of accuracy during training, the red line

represents the change of test data loss value, and the blue line represents the change of

training data loss value. The accuracy and loss changes of the BP network are shown in

Figure 9. From the comparison, we can see that the BP network training process is

stable, but the LSTM network training is more tough, in which the loss value and

accuracy are changing unsteadily; then it can be concluded that the LSTM network is

relatively poor in the ability to acquire knowledge from fault data compared with BP

network.

Table 3. Diagnose accuracy of BP network.

Fault type (after SMOTE) Fault location

Fault type Accuracy Sample DUT Accuracy Sample

transient 72.84% 334 decoder 75.09% 284

intermittent 97.68% 1205 ALU 84.18% 884

permanent 76.27% 294 PC 82.88% 666

total 89.71% total 82.30%

Table 4. Tuning of transmission factor in PNN network.

Factor Accuracy

0.1 57.79%

0.05 72.06%

0.01 94.13%

0.008 95.64%

0.007 97.98%

0.006 97.98%

 End-to-End Diagnosis of Cloud Systems... 785

(a) DUT:decoder, Scheme: BP (d) Fault: transient, Scheme: BP

(b) DUT:ALU, Scheme: BP (e) Fault: intermittent, Scheme: BP

(c) DUT: program counter, Scheme: BP (f) Fault: permanent, Scheme: BP

 Fig. 6. Diagnose result diagrams of BP network.

786 Chao Wang et al.

(a) DUT:decoder, Scheme:PNN (d) Fault: transient, Scheme:PNN

(b) DUT:ALU, Scheme: PNN (e) Fault: intermittent, Scheme:PNN

(c) DUT: program counter, Scheme: PNN (f) Fault: permanent, Scheme:PNN

Fig. 7. Diagnose result diagrams of PNN network.

 End-to-End Diagnosis of Cloud Systems... 787

Fig.8. Test accuracy and loss of LSTM.

Fig.9. Test accuracy and loss of BP network.

The training process of the BP network is error back-propagation learning, and the

basic requirement is that the error function has continuity (because it needs to ensure

that the error function can be biased). Thus, the final fitting result of the BP network is a

continuous function in multi-dimensional space; however, the general result of fault

diagnosis is discontinuous: it is neither 0 nor 1, so the BP network has a larger error than

the PNN network. In contrast, to classify data with the lowest risk, the PNN directly uses

the Bayesian classification method based on the Gaussian density function. Hence, its

output is either 0 or 1, so it has a higher fault diagnosis rate than the BP network.

The latency is 0.0952 seconds (BP) and 0.0286 seconds (PNN) alternatively for the

online mode and 0.421 seconds (LSTM) for the offline mode. These algorithms run on

Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, with 2 x 32 KB L1 cache and 2 x 256

KB L2 cache. The statistics do not include time for core dump. However, we observe

that a considerable proportion of the system call traces of faulty instances is repeated in

most of the cases, so there should be observable reduction in the latency. Accordingly, a

software recovery mechanism is favorable. In addition, training of the network is done

788 Chao Wang et al.

offline. Hence, there is no need to recompute the weights of each neural connection

when performing the diagnosis, thus saving significant time.

5. Conclusion

In this paper, we propose an offline/online diagnosis mechanism for cloud system

against intermittent faults. We take systematic-level behavior as a high-level

representation of fault behavior. We implement an end-to-end neural network-based

method that takes advantage of the log information to perform feature selection. Then,

we set up a unified diagnosis framework based on LSTM/BP/PNN classifiers. Among

the three classifiers, the PNN performs best in diagnosis accuracy. It employs the

Bayesian probability analysis method to make fault category and fault location close to

the actual label. The offline training/online diagnosis ensures that this method can be

implemented in firmware, with zero hardware costs.

References

1. Gil, P., Arlat, J., Madeira, H. et al, Fault Representativeness. Deliverable ETIE2. DBench

European Project (IST-2000-25425).

2. Nishant J. George, Carl R. Elks, Barry W. Johnson and John Lach. Transient fault models

and AVF estimation revisited//In International Conference on Dependable Systems and

Networks (DSN), Chicago, IL, 2010:477-486.

3. Process Integration, Devices and Structures, The International Technology Roadmap for

Semiconductors, 2012.

4. C. Constantinescu. Impact of deep submicron technology on dependability of VLSI circuits.

Proceedings of Dependable Systems and Networks Conference, 2002:205-209.

5. Gracia-Moran J, Gil-Tomas D, Saiz-Adalid L J, et al. Experimental validation of a fault

tolerant microcomputer system against intermittent faults[C]// IEEE/IFIP International

Conference on Dependable Systems & Networks. 2010.

6. Tharf M S H. Computer modeling of electromagnetic interference, radiation, and crosstalk in

electronic systems[M]. 1993.

7. C. Constantinescu. Intermittent Faults in VLSI Circuits[C]. Proceedings of the IEEE

Workshop on Silicon Errors in Logic - System Effects, 2007.

8. Rashid L, Pattabiraman K and Gopalakrishnan S. Intermittent hardware errors recovery:

modeling and evaluation. In: 2012 ninth international conference on quantitative evaluation

of systems (QEST), London, 17– 20 September 2012. New York: IEEE.

9. Raghavan V. On Asymmetric Invalidation with Partial Test[J]. IEEE Transactions on

Computers, 1993, 42(6): 764-768.

10. Lafortune S, Sengupta R, Sampath M, et al. Failure Diagnosis of Dynamic Systems an

Approach Based on Discrete Event Systems[C]. Proc of the American Control Conference,

Arlington, USA, 2001: 2058-2071.

11. Deng Guanqian, Qiu Jing, Li Zhi, Yan Ning. A Survey on Intermittent Fault Diagnosis

Technology[J].Ordnance Industry Automation, 2015-01, 34(1): 15-20.

12. Daniel Gil-Tomás, Joaquín Gracia-Morán, J.-Carlos Baraza-Calvo, Luis-J. Saiz-Adalid, and

Pedro-J. Gil-Vicente. Studying the effects of intermittent faults on a microcontroller[J].

Elsevier Microelectronics Reliability, 2012, 11(52):2837-2846

http://yadda.icm.edu.pl/yadda/contributor/0fc4427ab4a9e9c9bdcf771bebfe3d9b
http://yadda.icm.edu.pl/yadda/contributor/c5e5a3ed6b274a522e29abaa3afebf5a
http://yadda.icm.edu.pl/yadda/contributor/b2b24a1beb92a36aae31c5b9df3d212e
http://yadda.icm.edu.pl/yadda/contributor/39a6fe8304258e9c367d1c6052d155b5

 End-to-End Diagnosis of Cloud Systems... 789

13. Rohan Garg, Tirthak Patel, Gene Cooperman, Devesh Tiwari. Shiraz: Exploiting System

Reliability and Application Resilience Characteristics to Improve Large Scale System

Throughput [C]// IEEE/IFIP International Conference on Dependable Systems & Networks.

IEEE, 2018, pp. 83-94.

14. Guanpeng Li, Karthik Pattabiraman. Modeling Input-Dependent Error Propagation in

Programs[C]// IEEE/IFIP International Conference on Dependable Systems & Networks.

IEEE, 2018, pp. 279-290.

15. Sam Ainsworth, Timothy M. Jones. Parallel Error Detection Using Heterogeneous

Cores[C]// IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE,

2018, pp. 338-349.

16. S.-B. Park and S. Mitra. IFRA: Instruction footprint recording and analysis for post-silicon

bug localization in processors[C]// DAC, 2008, pp. 373-378.

17. A. DeOrio, Q. Li, M. Burgess, and V. Bertacco. Machine learning-based anomaly detection

for post-silicon bug diagnosis[C]// DATE, 2013, pp. 491-496.

18. J. Carretero, X. Vera, J. Abella, T. Ramirez, M. Monchiero, and A. Gonzalez.

Hardware/software-based diagnosis of load-store queues using expandable activity logs[C]//

HPCA, 2011, pp. 321-331.

19. Dadashi M , Rashid L , Pattabiraman K , et al. Hardware-Software Integrated Diagnosis for

Intermittent Hardware Faults[C]// IEEE/IFIP International Conference on Dependable

Systems & Networks. IEEE, 2014.

20. Jiaqi Yan, Guanhua Yan, Dong Jin. Classifying Malware Represented as Control Flow

Graphs using Deep Graph Convolutional Neural Network[C]// IEEE/IFIP International

Conference on Dependable Systems & Networks. IEEE, 2019, pp. 52-63.

21. Deng Guanqian, Jing Qiu, Liu Guanjun, et al. A Discrete Event Systems Approach to

Discriminating Intermittent from Permanent Faults[J]. Chinese Journal of Aeronautics, 2014,

27(2): 390-396.

22. Deng Guanqian, Jing Qiu, Liu Guanjun, et al. A Stochastic Automaton Approach to

Discriminate Intermittent from Permanent Faults[J]. Journal of Aerospace Engineering,

2014, 228(6): 880-888.

23. Maurice G, Diaz F, Coti C, et al. Downtime statistics of current cloud solutions, 2014,

http://iwgcr.org/wp-content/uploads/2014/03/downtime-statistics-current-1.3.pdf

24. Baraza J C，Gracia J，Gil D，et al. A Prototype of a VHDL based Fault Injection Tool:

Description and Application [J]. Journal of Systems Architecture, 2002, 47 (10) : 847-867．

25. Zarandi H R，Miremadi G，Ejlali A R. Fault Injection into Verilog Models for

Dependability Evaluation of Digital Systems[C]// Proceedings of the International

Symposium on Parallel and Distributed Computing, IEEE Press, 2003: 281-287．

26. Sieh V, Tschche O, Balbach F. VERIFY: Evaluation of Reliability Using VHDL Models

with Embedded Fault Descriptions[C]// Proceedings of the 27th International Symposium on

Fault-tolerant Computing. Seattle, USA: IEEE Press, 1997: 32-36.

27. Chao Wang, Zhongchuan Fu, Hong-Song Chen, Gang Cui. Characterizing the Effects of

Intermittent Faults on a Processor for Dependability Enhancement Strategy[J]. The Scientific

World Journal, 2014:1-12.

28. Chao Wang, Wei Zhang. Intermittent fault injection platform implemented in register

transfer level[J]. Journal of Beijing Information Science & Technology University, 2015

(30): 46-50.

29. Rashid L., Pattabiraman K., Gopalakrishnan S.. Characterizing the Impact of Intermittent

Hardware Faults on Programs[J]. IEEE Transactions on Reliability, 2015, 64(1):297-310.

30. Radha Venkatagiri, Khalique Ahmed, Abdulrahman Mahmoud, Sasa Misailovic, Darko

Marinov, Christopher W. Fletcher, Sarita V. Adve. gem5-Approxilyzer: An Open-Source

Tool for Application-Level Soft Error Analysis[C]// IEEE/IFIP International Conference on

Dependable Systems & Networks. IEEE, 2019, pp. 214-221.

https://dblp.uni-trier.de/pid/23/4826-1.html
https://dblp.uni-trier.de/pid/208/1839.html
https://dblp.uni-trier.de/pid/c/GeneCooperman.html
https://dblp.uni-trier.de/pid/76/9083.html
https://dblp.uni-trier.de/pid/151/4108.html
https://dblp.uni-trier.de/pid/91/5344.html
https://dblp.uni-trier.de/pid/181/0549.html
https://dblp.uni-trier.de/pid/62/1131.html

790 Chao Wang et al.

31. Qian Hu, etc al. Simics-based System Level Fault Injection Platform[J]. Computer

Engineering, 2015(41):57-63.

32. Le M and Tamir Y. Fault injection in virtualized systems-challenges and applications. IEEE

T Depend Secure 2015, 12(3): 284-297.

33. Chao Wang, Zhongchuan Fu. Quantitative evaluation of fault propagation in a commercial

cloud system[J]. International Journal of Distributed Sensor Networks, 2020,16(3):1-11.

34. Hochreiter S , Schmidhuber J . Long Short-Term Memory[J]. Neural computation, 1997,

9(8):1735-1780.

35. M. L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou. Trace based

microarchitecture-level diagnosis of permanent hardware faults[C]//IEEE/IFIP International

Conference on Dependable Systems & Networks. IEEE, 2008, pp. 22-31.

Wang Chao is an Assistant Professor at the School of Computer Science in Beijing

Information Science and Technology University of China. His main research interests

are directed to reliability qualification of cloud computing using simulation and fault

injection, and high performance computing in deep learning model accelerator

development. He is also interested in unmanned ground vehicle and system, including

objection detection, navigation and decision making.

Fu Zhongchuan is a vice professor in Computer Science department in Harbin Institute

of Technology of China. His main research interests involve fault injection simulator

development, and quantitative analysis of reliability technology in cloud computing

environment. He is also interested in high performance computing in CPU model

development.

Huo Yanyan is an algorithm engineer graduated from the School of Computer Science

in Beijing Information Science and Technology University of China. She is interested in

deep learning and AI area.

Received: June 20, 2020; Accepted: November 15, 2020.

