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Abstract. Dynamic adaptive streaming over HTTP (DASH) has been widely used
in video streaming recently. In DASH, the client downloads video chunks in or-
der from a server. The rate adaptation function at the video client enhances the
user’s quality-of-experience (QoE) by choosing a suitable quality level for each
video chunk to download based on the network condition.
Today networks such as content delivery networks, edge caching networks, content-
centric networks, etc. usually replicate video contents on multiple cache nodes. We
study video streaming from multiple sources in this work. In multi-source stream-
ing, video chunks may arrive out of order due to different conditions of the network
paths. Hence, to guarantee a high QoE, the video client needs not only rate adapta-
tion, but also chunk scheduling.
Reinforcement learning (RL) has emerged as the state-of-the-art control method
in various fields in recent years. This paper proposes two algorithms for stream-
ing from multiple sources: RL-based adaptation with greedy scheduling (RLAGS)
and RL-based adaptation and scheduling (RLAS). We also build a simulation en-
vironment for training and evaluation. The efficiency of the proposed algorithms is
proved via extensive simulations with real-trace data.

Keywords: multi-source streaming, reinforcement learning, proximal policy opti-
mization, dynamic adaptation streaming over HTTP.

1. Introduction

A significant part of Internet traffic today is video streaming [1]. Dynamic adaptive stream-
ing over HTTP (DASH) is the primary technique to stream a video from a server to a video
player. In DASH, videos are encoded in multiple quality levels. Furthermore, videos are
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partitioned into video chunks. Each chunk contains media data in a short interval of play-
back time. Video players request the chunks with suitable quality levels based on the cur-
rent network condition [2–5]. The downloaded chunks are buffered in the client’s memory
before being played. Buffer size is the total playing time of the wait-to-be-played chunks.
When a new video chunk is successfully downloaded, the buffer size increases by a chunk
length. When a chunk is played, the buffer size is decreased by the chunk length. The
buffer size has an upper threshold level. When the buffer exceeds the threshold, the client
will pause downloading a new chunk, wait for the buffer to decrease below the threshold,
and then resume downloading. The client rebuffers when the chunk will be played is not
in the buffer. Rebuffering causes video freezes.

The rate adaptation function in video clients is essential in providing a high quality-
of-experience (QoE) for the user. Various adaptation methods are proposed for DASH.
Throughput-based adaptation method chooses the quality level for the next chunk such
that it does not exceed the estimated throughput [6,7]. The throughput is usually estimated
by the mean or harmonic mean of several last requested chunks. The buffer-based methods
observe the buffer level to decide the encoding quality level [8, 9]. Both the throughput-
based method and BOLA, a buffer-based method [8], are employed in Dash.js reference
client [6]. Some methods combine both these two approaches [10].

On the other hand, several networks today such as content delivery networks, edge
caching networks, content-centric networks, etc. replicate popular videos at the routers
to reduce network congestion and delay. Utilizing multiple sources to stream a video to
a user is studied in this paper. When streaming from multiple sources, quality control is
much more complicated than streaming from a single source. In multi-source streaming,
the quality control includes not only rate adaptation, i.e., choosing the quality levels for
the chunks, but also chunk scheduling, i.e., which chunk indices are requested on each
path (see Fig. 1). Due to the difference in the network conditions of the connections, the
chunks may arrive at the video client out of order. For example, assume that the maximum
buffer size of the client is 3 chunks and there are two paths. With bad scheduling, path
2 is downloading chunk 2 while path 1, with very high throughput, already downloaded
chunks 1, 3, 4. Therefore, the buffer is full, however, the video playing is frozen since the
client waits for chunk 2.

Some previous works have studied multi-source streaming [11–13]. In [11], MSPlayer
can download video content from multiple servers. The authors in [11] consider the
chunks with only one quality level, however, the chunk size varies. They focus on the
chunk scheduling problem. The client estimates the path quality to request chunk in-
dices and chunk sizes for the paths. In work [12], MP-H2 protocol is designed on top of
HTTP/2. MP-H2 splits the video into many chunks, and the client requests chunks over
multiple network connections such as wi-fi and cellular. Chunk sizes are calculated based
on bandwidth and round-trip-time of the connections. A chunk scheduling algorithm is
then used to download the chunks over multiple paths. No adaptation method is proposed
in [12]. The work [13] has proposed a bitrate adaptation algorithm for DASH, called DQ-
DASH, that allows downloading multiple video chunks from various servers in parallel
to enhance QoE. Distributed queueing theory is applied to address the situation when
multiple clients send requests to many servers simultaneously. Fair QoE across clients is
considered in the model. Different from [11–13], our proposed framework jointly consid-
ered rate adaptation and chunk scheduling.
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Fig. 1. Multi-source video streaming.

Reinforcement learning (RL) has been widely used in many fields recently. The works
[14–16] have applied RL algorithms for single-source adaptive streaming. The actions of
RL agents in these works are the quality levels of video chunks. The work [14] applied
a Q-learning method for DASH. Buffer and network bandwidth are discretized for the
discrete state space. The study [15] applied Asynchronous Advantage Actor-Critic (A3C)
algorithm for rate adaptation. The work [16] has proposed D-DASH that applied a Deep
Q-learning to choose the quality level for the chunks.

In this work, we also use RL algorithm for rate adaptation and chunk scheduling in
streaming from multiple sources. However, there are several challenges we cannot simply
extend the RL framework for single-source streaming in [15,16] to multi-source streaming
straightforwardly:

– The action space of multi-source streaming must be redesigned to integrate schedul-
ing. An action must include a chunk index and a quality level.

– The RL algorithms need a simulation environment to train the model. In the envi-
ronment for single-source streaming, when the agent takes action, i.e., downloads a
new chunk, the environment immediately returns a reward value associated with that
chunk, which is calculated from the utility of the chunk’s quality, the quality switch
penalty between two consecutive chunks and the rebuffering penalty. The rebuffering
penalty is calculated when action is taken. However, in multi-source streaming, where
the chunks may arrive to the client out of order, the simulation environment cannot
estimate the rebuffering time right when an action is taken.

– The simulation environment for the single-source streaming is open [15]. However,
the simulation environment for the multi-source streaming is not available in the lit-
erature, as far as we know.

Multipath transmission control protocol (MPTCP) [17–19] also utilizes multiple paths
to transmit data from a source to a destination. It is shown that MPTCP achieves high
throughput, provides a smooth hand-off, and improves the high availability of TCP con-
nection. However, the MPTCP adoption has been prolonged because of the middlebox
problem. Moreover, it requires modifying the kernels of both client and server. Our pro-
posed framework can be applied to stream a video from a single source to a video player
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over multiple paths as MPTCP does. However, the MPTCP is a source-control protocol at
the transport layer, whereas our proposed multi-source streaming is a client-based control
protocol at the application layer. Therefore, the proposed multi-source streaming does not
need to modify the kernel as well as overcomes the middlebox problem.

The contributions of our work include:

1. We propose two RL-based frameworks for rate adaptation and chunk scheduling in
multi-source streaming called RL-based adaptation with greedy scheduling (RLAGS)
and RL-based adaptation and scheduling (RLAS).

2. We build an environment, which is an event-driven simulation that simulates a client
downloading chunks from multiple sources and playing the chunks for training and
testing.

3. We conduct extensive simulations with real-trace bandwidth to evaluate the perfor-
mance of the proposed methods. Both RLAGS and RLAS outperform the other base-
line methods used with greedy scheduling for multi-source streaming, i.e., throughput-
based and BOLA. The source code is available at
https://github.com/ntnghia1908/Master_Thesis.

This is the extended work of our conference paper [20]. In this paper, RLAS improves
the proposed algorithm in [20] by using invalid action masking to avoid duplicate down-
loads. In addition, we propose RLAGS algorithm with greedy scheduling. We also add
more evaluations in various network scenarios. The outline of the paper is as follows.
Section I has presented the motivation and related works. Section II describes the RL
model applied in rate adaptation and chunk scheduling for video streaming from multiple
sources. The simulation environment and results are presented in Section III, and Section
IV concludes the work.

2. Reinforcement learning frameworks for DASH

This section describes the RL framework, including reward function, action space, and
state space. Two chunk scheduling policies are considered, i.e., greedy and RL-based
scheduling, which leads to two proposed algorithms, RLAGS and RLAS, respectively.

2.1. Reward

We apply a similar reward function used in [15,16], which captures utility, switch penalty,
and rebuffering penalty. Assume that a time step begins when the client requests a video
chunk. The episode ends when the client finishes playing the video.

Reward for single-source streaming: Assume that step t starts when the client requests
for chunk t, the reward at step t in single-source adaptive streaming is given by [15, 16]
(see Table 1 for the notation descriptions):

rt = qt − β | qt − qt−1 | −γϕt − δ[max(0, Bmin −Bt)]
2, t = 2, . . . , N, (1)

where

https://github.com/ntnghia1908/Master_Thesis


Reinforcement Learning - based Adaptation and... 161

Table 1. Main notations

Notations Descriptions
Bmax maximum buffer size (in seconds)

N number of video chunks

L number of quality levels in action space

W number of chunks in action space

A action space

rt reward estimated at step t

st environment state at step t

qi utility of quality level i

β quality-switch coefficient

γ rebuffering coefficient

– qt is the utility corresponding to the quality level of chunk t;
– | qt−qt−1 | penalties the difference in quality levels between two consecutive chunks;
– ϕt is rebuffering time is seconds;
– [max(0, Bmin−Bt)]

2 is an optional penalty that is applied whenever the buffer level
is below a threshold Bmin. This term helps to reduce the risk of rebuffering.

If dt, i.e., the download time of chunk t, is greater than remaining time in buffer, which
is Bt, then rebuffering time ϕt is dt − Bt, otherwise, there is no rebuffering. Hence,
the rebuffering time associated with chunk t in single-source streaming is given by the
following formula

ϕt = max(0, dt −Bt). (2)

Reward for multi-source streaming: Formula (2) is no longer correct in the multi-
source streaming environment since the buffer at the client may not store consecutive
chunks. For example, the buffer may have chunks 3, 5, 6, and 7, while chunk 4 has not
fully received on the low-throughput path. Therefore, in the multi-source environment,
the reward is estimated when playing chunks in a step. Let a step start when the client
requests a chunk and end when the client requests a new chunk or reaches the end of the
episode. The reward returned at step t in the multi-source streaming environment is given
by

rt =
∑
i

qi − β
∑
i

| qi − qi−1 | −γϕt, (3)

where i is any chunk index played, and ϕt is the cumulative rebuffering time in step t.
The terms

∑
i qi, β

∑
i | qi − qi−1 |, and γϕt are called utility, switching penalty, and

rebuffering penalty, respectively.
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2.2. State space

The state s of the proposed reinforcement learning frameworks includes the following
components

– vector of network throughput measurements of last 06 video chunks on each path;
– vector of chunk sizes of L quality levels of next W chunks count from playing chunk

(length W × L);
– the vector of quality levels of next W chunks counted from the playing chunk, if the

chunks have not yet downloaded, their quality level is set to 0;
– current buffer size in seconds;
– number of remaining chunks that have not yet played;
– quality level of the playing chunk; and
– download times of last 06 video chunks on each path.

2.3. Scheduling policies and action spaces

We assume that the request for a new chunk is sent on a path right after the downloading
chunk on that path is fully received if the buffer size is under Bmax. Otherwise, the client
will pause sending a new request. Let’s consider two scheduling policies, i.e., greedy
scheduling and RL-based scheduling, corresponding to two proposed methods, RLAGS
and RLAS, respectively.

Greedy scheduling In greedy scheduling, the chunk is requested in order. When the
client downloads a new chunk from a source, it requests the chunk index, the smallest
index that has not been or is being downloaded. Therefore, RLAGS agent only decides
the quality level of the chunk to request. The action space of RLAGS includes the quality
levels of video chunks:

ARLAGS = {li|i = 1, . . . , L}, (4)

where L is the number of quality levels of video.
For example, in Fig. 2 (upper figure), chunks 1-3 have been played, chunk 4 is playing,

and chunk 5 has already been requested. The next request is for chunk 6, with the quality
level decided by RLAGS.

RL-based scheduling RLAS method uses RL-based scheduling. When the client re-
quests a new chunk, the RL agent decides both the index and quality level. Assuming that
the maximum number of chunks that can be stored in the video buffer is W , the number
of quality levels is L. Action space of RLAS method is defined as

ARLAS = {(ci, lj)|ci ∈ [1,W ], j ∈ [1, L]}. (5)

If the playing chunk is ct and the RL agent takes action at = (ci, lj) to download chunk
on a path at time step t, the client will download chunk index ct + ci at quality lj on this
path.

For example, in Fig. 2, if quality levels for each chunk are low, medium, and high
(L = 3), W = 4. Assume that at current time t, the playing chunk is ct = 4 and the
RL agent takes action at = (3, 2). It means that the agent will download chunk index
4 + 3 = 7 with quality level 2, which is medium quality (see Fig. 2).
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Fig. 2. The action spaces of RLAGS and RLAS. (The shade regions represent the chunks
that have been requested.)

Invalid action masking With RLAS, there are invalid actions in some steps. Firstly,
the two-dimension action space of RLAS allows the possibility of re-download the same
chunk index again if that chunk has not been played. The chunk index already downloaded
is considered an invalid action to avoid duplicate downloads. Secondly, since RLAS’s
action space is a sliding window that shifts forward by one chunk when a new chunk is
played, some actions are invalid when the number of remaining chunks is less than the
window side W . Hence, the valid actions of RLAS are given by

{(ci, lj) | ci ∈ [1,min [W,N − ct], ci has not been requested, j ∈ [1, L]}, (6)

where N is the number of chunks of the video, and chunk ct is the chunk being played.
There are several approaches to dealing with invalid actions. Two common ones are

invalid action penalty and invalid action masking. With the invalid action penalty ap-
proach, the rewards resulting from the invalid actions are set to negative values. With
invalid action masking, the action is sampled among the valid actions in each step. These
approaches are well investigated and implemented in the work [21]. With policy gra-
dient algorithms, invalid action masking is shown theoretically and empirically that it
outperforms the other approaches, particularly with the state-of-the-art proximal policy
optimization (PPO) algorithm in the experiments [21]. Therefore we also apply PPO in
our evaluations.

2.4. PPO for multisource DASH

PPO is a policy gradient algorithm that uses two networks, actor and critic, like A2C or
A3C. The actor network estimates the policy directly from the state. A baseline is sub-
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tracted from the return to reduce the variance of a policy gradient algorithm. A common-
used baseline is the value function, which is estimated by a critic network. To accelerate
the training, PPO algorithm could also use multiple copied environments in parallel, sim-
ilar to A2C and A3C.

However, PPO is an improvement from A2C/A3C. To prevent the catastrophic drop
in the performance of the traditional actor-critic algorithms, PPO constraints the change
in policy between two consecutive training steps by introducing a new clipped surrogate
objective. PPO has shown a reliable performance and is used in many RL applications.
Please see the detail of PPO algorithm in [25].

We utilize Stable Baseline3 [26] library to implement PPO in training and evaluation.
Stable Baseline3 includes a set of reliable implementations of deep RL algorithms and is
used in many applications. The invalid action masking function is also provided with PPO
in Stable Baseline3.

3. Evaluations

3.1. Event-driven environment

We build an environment that simulates the streaming from two sources, emulating the
practical scenarios, e.g., a cell phone uses Wi-Fi and 4G to connect to video servers, or
a laptop connects via Ethernet and Wi-Fi simultaneously. Scenarios with more than two
sources can be easily extended by modifying reset function. The simulation environment
follows Gym interface to be able to use Stable Baseline3 [26].5

The environment emulates a client downloading chunks on two paths parallelly and
playing the received chunks. An array-type buffer, which stores downloaded chunk in-
dices, is maintained during an episode. When the client fully receives a chunk, the chunk
index is appended to the buffer, and the buffer size increases by a chunk length. The client
plays the chunks stored in the buffer sequentially. If a chunk is played, that chunk index
is removed from the buffer, and the buffer size increases by a chunk length.

There are four main events, i.e., DOWN, PAUSE, PLAY, REBUFFER. Every event
has a timestamp, and the program runs through the events iteratively in time order until the
end of the episode. DOWN and PAUSE events are associated with a path index, whereas
PLAY and REBUFFER events are not.

– A DOWN event simulates sending a request for a chunk, say ct, on a path. When
the program encounters a DOWN event at time t, at timestamp t + downtime, where
downtime is the time from sending the request for ct to fully receiving the chunk, a
new DOWN event associated with a new chunk is generated if the buffer size is less
than Bmax. The index and the quality level of the new chunk are decided by RLAGS
or RLAS methods. Otherwise, a PAUSE event is generated if the buffer size exceeds
Bmax.

– A PAUSE event simulates pausing the download on a path due to the buffer size
exceeding Bmax. If a PAUSE event is encountered at time t, with timestamp t +
sample, where sample is a short period (0.05 second in our program), a new PAUSE

5 The source code of the environment is available at https://github.com/ntnghia1908/Master_
Thesis/blob/main/RLAS/menv_baseline.py.

https://github.com/ntnghia1908/Master_Thesis/blob/main/RLAS/menv_baseline.py
https://github.com/ntnghia1908/Master_Thesis/blob/main/RLAS/menv_baseline.py
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event is generated if the buffer size exceeds Bmax; otherwise, a new DOWN event
associated with a new chunk is generated.

– A PLAY event occurs when the client starts playing a chunk, say chunk ct. After a
PLAY event, at time t + chunk length, a new PLAY event associated with chunk
ct + 1 is generated if this chunk is available in the buffer; otherwise, a REBUFFER
event is generated.

– A REBUFFER event occurs when the chunk going to be played is not in the buffer.
After a REBUFFER event, at time t + sample, a new PLAY event associated with
chunk ct + 1 is generated if this chunk is fully received; otherwise, a REBUFFER
event is generated.

3.2. Simulation settings

We evaluate RLAGS and RLAS with Big Bug Bunny video [4]. There are seven quality
levels 300, 700, 1200, 1500, 3000, 6000, 8000 Kbps (L = 7). Assume that the maximum
buffer size of the client is Bmax = 30 seconds and the video chunk length is 4 seconds.
The number of chunks in the action space is W = ⌊30/04⌋ = 7, which means that if
the agent is playing chunk i, the maximum chunk index stored in the buffer is i + 7. We
train with the first 60 chunks, which results in 240 seconds per episode. Table 2 shows the
parameters of the simulation environment.

Two real-trace datasets are used: a broadband dataset provided by US Federal Com-
munications Commission (FCC) [22] and a 4G LTE Dataset collected from two major
Irish mobile operators [24].

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
bw means (Mbps)

FCC

LTE

Fig. 3. The distributions of the means of all traces of the datasets.

The FCC dataset contains over one million throughput traces in the “download speed”
category with a granularity of 10 seconds per sample [23]. (It is 5 seconds before 2016.)
The 4G dataset has 135 traces, with around 15 minutes per trace, at 1-second granularity.
The traces are collected from Irish mobile operators with five mobility patterns: static,
pedestrian, car, bus, and train [24].

Since the real bitrates of 8,000 Kbps quality level of the almost chunks are less than
4000 Kbps [4], we choose the traces with the average throughputs in [0.1, 2.0] Mbps, in
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which 1800 traces in the FCC dataset and 400 traces in the LTE one. Fig. 3 shows the
distributions of the average throughputs of the traces from two datasets. We randomly
select 80% of traces in each dataset for training, the remaining ones are for testing.

Table 2. Simulation parameters

Environment parameter Notation Value
maximum buffer size Bmax 30 seconds

number of video chunks N 60 chunks

number of quality levels in
action space

L 7

number of chunks in action
space

W 7

quality levels li [300, 700, 1200, 1500, 3000, 6000, 8000] Kbps

utility qi ln( li
l1
)

quality-switch coefficient β 1

rebuffering coefficient γ 3.3

We compare RLAGS and RLAS methods with two well-known adaptation methods,
i.e., throughput-based [2] and BOLA [8] (a buffer-based) methods. These adaptations are
originally designed for single-source video streaming. We apply greedy scheduling to
extend them to multi-source streaming. In the throughput-based method, the quality of
the next download chunk on one path is the highest quality level which is smaller than the
harmonic mean of the last six chunks downloaded on that path.

Table 3 lists some tuned hyper-parameters for RLAGS and RLAS. The not-listed hy-
perparameters are used with the default values provided by Stable Baseline3. We use fully
connected neural networks with 64 nodes for each hidden layer. We tuned the number of
hidden layers for the algorithms. Round-trip-times of the network connections are uni-
formly random in [50, 100] ms.

Each proposed algorithm is trained in five runs, 30, 000 episodes each run. Each
episode chooses a random trace in the training set and starts at a random point. The
throughput trace is circulated if the time from starting point of an episode to the end
of the throughput trace is not enough for the time playing the episode. The results are the
average values in five runs.

3.3. Results

Fig. 4 shows the convergence of both RLAGS and RLAS algorithms in training with
turned parameters given in Table 3. We can see that RLAGS converges faster than RLAS
since RLAGS has fewer actions than RLAS, which are only quality levels. However,
RLAS yields a higher average reward than RLAGS.

We test the case when one path is a broadband connection, and the other path is an
LTE connection. The reward, utility, switch penalty, and rebuffering penalty are given
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Table 3. Tuned hyperparameters used in RLAGS and RLAS.

Hyperparameters Descriptions Tuning ranges RLAGS RLAS
learning rate learning rate uniform: [0.0001, 0.001] 0.000125 7.61e-05

batch size minibatch size uniform: [59, 590] 411 530

n epochs number of epoch when
optimizing the surro-
gate loss

values: [10, 20, 30] 10 10

gamma reward discount factor values: [0.99, 1.0] 0.99 1

gae lambda factor for trade-off of
bias vs. variance for
generalized advantage
estimator

values: [0.9, 0.95] 0.9 0.95

clip range clipping parameter values: [0.2, 0.3] 0.3 0.2

vf coef value function coeffi-
cient for the loss calcu-
lation

uniform: [0.2, 0.5] 0.317708 0.286954

ent coef entropy coefficient for
the loss calculation

values: [0.0, 0.00001,
0.00000001]

0 0

act func value function coeffi-
cient for the loss calcu-
lation

values: [128, 256, 512] 256 512

features dim value function coeffi-
cient for the loss calcu-
lation

values: [tanh, relu] relu tanh

policy net arch layer number of policy net-
work layer

values: [1, 2, 3, 4] 1 3

policy net arch units policy network unit. values: [64, 128, 256, 512] 512 256

value net arch layers number of value net-
work layer

values: [1, 2, 3, 4] 3 4

value net arch units value network unit. values: [64, 128, 256, 512] 512 256

in Table 4. The rewards yielded by RLAGS and RLAS are higher than the reward by
throughput-based and BOLA methods. RLAS achieves the highest reward, and RLAGS
results in a smaller rebuffering penalty.

We consider the performance of multisource streaming in the case when the difference
between two paths increases gradually. Particularly, the mean bandwidth of the first path is
from 1.5 Mbps to 2 Mbps and the mean bandwidth of the second path decreases gradually,
in [1.5, 2.0] Mbps, in [1.0, 1.5] Mbps, in 0.5, 1.0 Mbps, and less than 0.5 Mbps.

We can see from Fig. 5 that the rewards of multisource streaming of all the methods
decrease gradually. The rewards of RLAS are the highest in most of the cases, which
shows the efficiency of the RL-based chunk scheduling. BOLA yields a higher reward
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Fig. 4. Convergence of training phases of RLAGS and RLAS methods. The lines and
shadows are the means and the standard deviations of the running average rewards of five
runs, respectively.

Table 4. Rewards of ABR methods when one path is broadband and another path is LTE
connection.

Methods reward utility
switch
penalty

rebuffering
penalty

THGHPUT 42.10 68.56 21.40 5.06

BOLA 77.80 129.75 27.26 24.70

RLAGS 88.35±2.04 97.86±2.29 8.53±1.01 0.98±0.52

RLAS 107.75±1.91 130.68±5.87 17.51±4.88 5.42±2.62

than RLAGS. However, in the extreme case when the mean bandwidth of two paths is
very different, RLAGS and RLAS outperform the traditional methods.

Table 5. Rewards of ABR methods with the mean bandwidths of the first path is in
[1.5, 2.0] Mbps and of the second path is less than 0.5 Mbps.

Methods reward utility
switch
penalty

rebuffering
penalty

THGHPUT 17.34 68.20 32.03 18.83
BOLA -35.78 120.11 19.10 136.78

RLAGS 66.61±4.94 92.68±2.66 9.74±1.92 16.33±7.69

RLAS 57.55±3.99 105.69±1.77 17.54±1.49 30.59±3.76
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Fig. 5. The test rewards of different adaptation methods when the mean bandwidth of
the first path is in [1.5, 2] Mbps and the mean bandwidth of the second path decreases
gradually.

Table. 5 shows the performance of the adaptation methods in the extreme case: the
average throughput of the first path is in [1.5, 2.0] Mbps, and of the second path is less
than 0.5 Mbps. Overall, RLAGS and RLAS outperform BOLA method, and their rewards
are much higher than those of the throughput-based method. The reward of RLAGS is a bit
higher than RLAS because it has fewer actions in the action space. Hence, the agent may
be easier to learn the optimum. The throughput-based method has the least rebuffering;
however, it also has the lowest utility. BOLA has the highest utility but also the highest
rebuffering penalty. RLAGS balances the objectives: high utility, low number of switches,
and small rebuffering penalties.
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Fig. 6. A sample of throughput traces in the extreme case: the mean bandwidths of the
first path is in [1.5, 2.0] Mbps and of the second path is less than 0.5 Mbps.

Fig. 7 shows video quality levels selection and buffer occupancy when the client ex-
periences a pair of throughput traces shown in Fig. 6 with different methods. The video
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Fig. 7. The quality levels and the buffer occupancy with the sample throughput traces in
Fig. 6.

played by the RL-based methods is more stable than by the other methods. We see that
the proposed methods have a smarter buffer occupancy so that they can download higher
quality levels with fewer switches than other methods.

4. Conclusions

We have proposed two novel adaptation and scheduling methods for video streaming
from multiple sources, i.e., RL-based adaptation and greedy scheduling (RLAGS) and
RL-based adaptation and scheduling (RLAS). The state space, action space, and reward
are defined for the methods. We have also built a GymAI-compatible environment for
training and evaluation. Extensive simulations have shown that the proposed methods
outperform the baseline methods in terms of the user’s QoE. Model-free reinforcement
learning algorithms could not work well in transfer learning [27]. If running the model
in an untrained environment, the model could yield a low reward. In the future, we will
apply model-based algorithms to bitrate adaptation.
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