
Computer Science and Information Systems20(4):1311–1341 https://doi.org/10.2298/CSIS230225046Y

SRDF QDAG: An Efficient End-to-End RDF Data
Management when Graph Exploration Meets Spatial

Processing

Houssameddine Yousfi1,2, Amin Mesmoudi3, Allel Hadjali1, Houcine Matallah2, and
Seif-Eddine Benkabou3

1 LIAS, ENSMA Engineering School
1 avenue Clément Ader, 86961 Futuroscope Chasseneuil Cedex, France

{houssameddine.yousfi, allel.hadjali}@ensma.fr
2 LRIT, Science Faculty

University Abu Bekr Belkaid, Tlemcen, Algeria
{houssameddine.yousfi, houcine.matallah}@univ-tlemcen.dz

3 LIAS, University of Poitiers
15 rue de l’Hôtel Dieu 86073 POITIERS Cedex 9, France
{amin.mesmoudi, seif.eddine.benkabou}@univ-poitiers.fr

Abstract. The popularity of RDF has led to the creation of several datasets (e.g.,
Yago, DBPedia) with different natures (graph, temporal, spatial). Different exten-
sions have also been proposed for SPARQL language to provide appropriate pro-
cessing. The best known is GeoSparql, that allows the integration of a set of spa-
tial operators. In this paper, we propose new strategies to support such operators
within a particular TripleStore, named RDF QDAG, that relies on graph fragmen-
tation and exploration and guarantees a good compromise between scalability and
performance. Our proposal covers the different TripleStore components (Storage,
evaluation, optimization). We evaluated our proposal using spatial queries with real
RDF data, and we also compared performance with the latest version of a popu-
lar commercial TripleStore. The first results demonstrate the relevance of our pro-
posal and how to achieve an average gain of performance of 28% by choosing the
right evaluation strategies to use. Based on these results, we proposed to extend the
RDF QDAG optimizer to dynamically select the evaluation strategy to use depend-
ing on the query. Then, we show also that our proposal yields the best strategy for
most queries.

Keywords: RDF, Graph Data, Spatial Data, TripleStore, Graph exploration, Opti-
mization.

1. Introduction

Since Google popularized the use of the term Knowledge Graph to designate all knowl-
edge used by its search engine, the number of this type of dataset has not stopped increas-
ing. Knowledge Graphs (KG) are labeled and directed multi-graphs that encode informa-
tion in the form of entities and relationships relevant to a specific domain or organization.
KGs are effective tools for capturing and organizing a large amount of structured and

1312 Houssameddine Yousfi et al.

multi-relational data that can be explored using query mechanisms. Given these charac-
teristics, KGs become the backbone of the Web and existing information systems in dif-
ferent academic fields and industrial applications. Their power comes from their ability
to extend the existing knowledge without affecting the previous ones.

Following this large gain in popularity of knowledge graphs, the need for a standard
data representation format has become obvious. This is especially in the context of the
semantic Web due to its vision of globally accessible and linked data on the internet. In
order to meet that need, RDF (Resource Definition Framework) has been proposed as
the main standard for the semantic Web. In RDF format, Data are represented logically
by a graph-based structure. The advantage of such a representation relies on the fact that
it is schema-less, making it flexible and easy to adopt in different application domains.
Moreover, such flexibility makes RDF more suitable for fast changing data where nor-
malization is not possible or impractical due to the frequent changes to the underlying
schema.

RDF Data is structured using the concept of triples < subject, predicate, object >
where the object can be a literal of predetermined types (string, double, ...) or it can be the
subject of another triple leading to a graph structure. In the context of RDF data, SPARQL
has been proposed as a query language. Since RDF is a graph representation of data, the
query is composed mainly of a sub-graph where some subjects, predicates, or objects are
replaced with variables. This sub-graph is called a basic graph pattern (BGP). Answering
a SPARQL query is equivalent to finding sub-graphs that match the query pattern. On top
of the basic graph pattern (BGP) matching, it is possible to run filters on variables such as
Boolean expressions and regular expressions. The standard W3C norm of SPARQL does
not provide the possibility to express spatial filters. However, many extensions have been
proposed to improve the expressiveness of SPARQL, making it able to express spatial
filters. The most known extensions are GeoSparql [4] and stSparql [19].

Many attempts have been proposed to implement OGC GeoSPARQL [4] by the com-
munity. Such implementation is a hard task since it requires changes on many levels of
the triples store (storage, indexing, evaluation engine and optimizer). The changes also
depend on the type and architecture of the Triplestore. For example, strategies that work
on a Triplestore based on a single table strategy (eg. 3-Store[14]) may not work on another
based on property table (eg. Jena[36]).

Some of the existing Triplestores are capable of answering Spatial-RDF queries with
variant capabilities. Most of them are based on the relational model, whereas, others are
based on single table or fact strategies. Nevertheless, all the previously mentioned ap-
proaches suffer from a high number of joins, which leads to performance and scalability
problems. Recently in [17], the RDF QDAG Triplestore was proposed. It relies on graph
fragmentation and exploration, making it able to offer a better performance and scalability
compromise. In this work, we take advantage of such capabilities and expand the system
to be able to handle spatial data without the loss of this trade-off. The proposed exten-
sions are, to the best of our knowledge, the first that provide spatial-RDF data processing
in a graph exploration system. We managed throw the proposed approaches to achieve an
average gain of performance estimated at 28%.

In this paper, we discuss the extension of RDF QDAG in order to add the support of
spatial operators and filters proposed in GeoSPARQL. The contributions of this paper can
be summarized as follows:

Efficient Spatial-RDF processing within RDF QDAG 1313

– Two evaluation approaches for spatial-RDF data (Spatial-First and BGP-First) are
proposed.

– An existing spatial indexing approach [22] is adapted to be compatible with the graph
exploration logic in RDF QDAG triplestore. This indexing approach is used in the
Spatial First strategies.

– The effect of the query evaluation strategies and the optimization techniques on the
performance of RDF QDAG, is studied in depth.

– An optimizer capable of selecting the best available evaluation strategy based on the
query and statistics about the RDF and spatial data, is developed.

– Finally, an extensive experimental evaluation of the proposed approaches is con-
ducted and compared with a well known and used commercial Triplestore.

The rest of this paper is organized as follows. First, we provide a comprehensive re-
view of related work in section 2. Then, we state the basic concepts in section 3. After
that, we explain the proposed query evaluation strategies with the help of running exam-
ples in section 4. In section 5, we address the optimization issue and establish the basis
of an optimizer capable of choosing the best evaluation strategy based on the available
statistics and metadata. To validate the proposed approaches, in section 6, we discuss the
results of the experimental validation performed. Finally, we conclude the paper and list
some future perspectives.

2. Related Work

In this section, we provide a critical review of main related work. We have divided this
review in three parts: (i) work related to RDF data processing ; (ii) work related to Spatial
data processing ; and (iii) work related to Spatial-RDF data processing.

2.1. RDF Data Processing

One can summarize the approaches dedicated to RDF data processing w.r.t. to their stor-
age strategies of data. Four families of approaches can be distinguished (see Table 1 for a
comparison):

1. The most intuitive way to store RDF data is by using a single big relational table
that contains tree columns corresponding to the subject, predicate and object. This
strategy is known as the single table strategy.

2. A second alternative storage option is the binary table. In this approach, for each
property, the system stores a binary table containing the subject and the object. This
approach is widely used for salable distributed systems [9].

3. The third approach is called ”Property table”. Indeed, subjects with common pro-
prieties are grouped and stored in a large horizontal table. Each column in the table
corresponds to a property.

4. In the fourth approach, RDF data is modeled and stored in its native graph form. Sub-
jects and objects are considered as nodes, while properties are considered as labelled
edges.

1314 Houssameddine Yousfi et al.

Table 1. Comparison of different storage strategies for RDF data, including examples of triplestores
that utilize each strategy, their advantages and disadvantages.

Storage Strategy Triplestore Exam-
ples

Advantages Disadvantages

Single Table Oracle, Sesame [8],
3-Store [14]

Intuitive Large number of self joins
needed for queries

Binary Table SW-Store [3], C-
store [35]

Suitable for dis-
tributed systems

Loss in performance with
multiple properties, many ta-
bles needed for updates

Property Table Jena [36],
DB2RDF [5],
4store [15]

Efficient for queries
with star patterns

Difficulties with chain
queries, storage overhead due
to null values, does not allow
multiple values for the same
property

Native Graph Form Trinity [38], gStore,
RDF QDAG [17,
39]

Stores RDF data in
its native form

N/A

As for the Triplestore RDF QDAG [17], it stores RDF data in a graph form and it
answers the queries using a graph exploration. For an efficient exploration, RDF QDAG
uses a combination of data partitioning and indexing techniques. First, the graph is par-
titioned in many fragments called Graph Fragments (GF for short). Each GF is then
indexed using a clustered B+Tree. Similar to some existing works, RDF QDAG keeps a
separate dictionary of string values. The indices store only IDs rather than the strings. For
more efficiency, RDF QDAG makes use of two different orders SPO and OPS to store
indices.

2.2. Spatial Data Processing

In this section, we focus on storing and indexing techniques of spatial data. Hereafter, the
principle of each technique is presented (see also Table 2 for a comparison).

1. Grid files [29]: Partition the space into stripes alongside each dimension. The width
of a strip can be variable and the number of stripes may differ for each dimension.

2. Kd-trees and kdb-trees [27][33]: Tree based structures that store data entries in the
leafs. Each node in the Kd-tree splits the space along side one dimension (X for
example) constructing two children. Each child node splits the space in the other
dimension (Y in this case). We keep cycling throw dimensions on each layer until we
reach the leafs.

3. Quad-trees [32][28]: They work as follows: each node recursively divide the space
into four quadrants until each bucket (leaf node) has less objects then a given maxi-
mum capacity. During update operations, as soon as a bucket exceeds the given ca-
pacity threshold, a split operation is triggered.

4. R-trees [13, 18]: They rely on object grouping based on the construction of MBRs
(Minimum Bounding Rectangles). To get a tree like structure, we keep grouping re-
cursively MBRs inside each others to construct higher levels until we get one root for
the tree. Properties are considered as labelled edges.

Efficient Spatial-RDF processing within RDF QDAG 1315

The processing of Big spatial data covers various domains and applications, includ-
ing distributed computing frameworks, spatial data analysis and modeling, and spatial
data quality. Notable contributions to this field include the work of Lee et al.[21], which
provides an overview of the challenges and opportunities of processing Big spatial data. In
addition, distributed computing frameworks such as SpatialHadoop[10] and GeoSpark[37]
have been introduced for processing large-scale spatial data. More domain-specific ap-
proaches have also been proposed, such as Astroide[6], a scalable Spark-based processing
engine for Big astronomical data, and the work of Papadopoulos et al.[25], which focuses
on the challenges and opportunities of using Big data processing techniques for climate
change research. Together, these works demonstrate the importance and impact of Big
data processing for spatial data analysis and management.

Table 2. Storing and indexing techniques of spatial data.

Technique Advantages Limits
Grid files [29] Good performance in certain ap-

plications.
Performance can be severely affected
by a high number of dimensions. High
cost of Balancing, Splitting or re-sizing
a single cell Unsuited then for highly
skewed data.

Kd-trees and
kdb-trees
[27][33]

Built efficiently in time com-
plexity O(n logn). Offer efficient
nearness search with time com-
plexity O(logn)

Hard to balance because the direction of
split is different for each level

Quad-trees
[32][28]

Good performance in nearness
queries and KNN joins

Many empty nodes are stored in the
form of chains (which can be solved
by the external balanced regular (x-BR)
trees). Unsuited for secondary storage
due to low fan-out

R-trees [13,
18]

Lighter memory footprint. Rely on
object grouping and not space par-
titioning

To answer a query, multiple sub-trees
needs to be considered

2.3. Spatial-RDF data processing

In order to represent geographical linked data for the semantic Web, the Open Geospatial
Consortium has proposed GeoSPARQL [4] as a norm that extends classic SPARQL. Many
Triplestores have subsequently been subsequently extended to support the processing of
this new standard. The spatial extension of RDF stores extensively depends on the storage
model and the query evaluation engine.

For instance Strabon [20], an extension of Sesame [8], supports spatial data. It stores
data in PostGIS. It implements a propriety table approach, where each table is indexed
using SO and OS indices. Spatial data are saved on a separate relational table. This later
is indexed using an R-tree [13]. The query optimizer extension of Strabon is simple. It
relies on heuristics to push down spatial filters. Since Strabon is based on an old RDF
store (i.e., Sesame), it lacks many optimization techniques used in modern Triplestores.

1316 Houssameddine Yousfi et al.

Table 3. Overview of different spatial extensions of RDF Triplestores.

Extension Underlying
system

RDF Storage Spatial storage

Strabon [20] Sesame [8] Triple table in PostgreSQL R-tree
Brodt et al. [7] RDF-3X[24] Heavy indexing R-Tree
Geo-Store [34] RDF-3X[24] Heavy indexing Grid file
Virtuoso [2] RDBMS N/A N/A
Oracle N/A N/A N/A
GraphDB [1] N/A N/A N/A

Brodt et al. [7] extended RDF-3X [24] to support spatial data. In this work, the range se-
lection operation is the only spatial operation supported leading to very limited extension.
Moreover, the spatial filtering is also limited to either at the beginning of the query eval-
uation or at the end of the query. Geo-Store [34] is another spatial extension of RDF-3X.
Geo-Store relies on a grid file to index the spatial data. The Hilbert space-filling curve is
used to establish a global order for each cell on the grid. Each spatial object will be pared
in the order of the cell that it resides in. An additional triple is added to the data graph in
the following form: < o, hasPosition, gridPosition >. The additional triple leads to an
additional join step while processing the queries. Note also that spatial RDF queries are
also supported by many commercial systems, such as Oracle, Virtuoso [2], and GraphDB
[1]. However, details about their internal design are inaccessible.

3. Background and Preliminaries

This section introduces the principle of Spatial DataBase Management Systems (SDBMS),
some main formal definitions related to RDF graph management and an overview of the
architecture of the RDF QDAG Triplestore.

3.1. SDBMS Systems: A refresher

SDBMS systems are database systems that support spatial data types in their models,
their query languages and provide efficient ways to process spatial operations [12]. The
term spatial data types refers to every data object that contains coordinates in some multi-
dimensional metric space. SDBMSs are considered as the basis of Geographic Informa-
tion Systems (GIS) and many computer-assisted design systems (CADs).

Spatial information can be represented in two different ways: Raster or Vector [30].
Raster data refer to an array or a matrix where each cell (pixel) represents a rectangular
region. Vectors represent object features in the form of geometric shapes. In this work, we
focus on vector representation.

In addition to storing spatial data, SDBMs need to perform spatial operations to an-
swer queries. Spatial queries can be categorized into nearness queries, region queries and
join queries. Nearness queries allow to find objects close to a certain point. While region
queries aim at finding objects that reside fully or partially in a certain region. Finally, the
join queries are operations that allow to filter the Cartesian product of two datasets based

Efficient Spatial-RDF processing within RDF QDAG 1317

on a given condition (i.e., Boolean expression). In the case where the condition implies a
spatial operation, this join is called a spatial join.

In most geographic information systems, we rarely find only spatial data. We generally
find other plane standard data types (i.e strings, doubles ...). These data types also need to
be stored, queried and updated. A common way SDBMS fulfill this need is by using the
relational model. The combination of the relational model with the spatial data has been
well studied in the literature [11, 31]. However, combining spatial data with graph model
has been little studied. The advantage of using a graph model is the ability to store data
without passing by a schema, giving more flexibility for the information systems.

3.2. RDF graph formalisation

In this work, we propose a system capable of handling Spatial and graph data represented
by means of RDF format. Data in RDF are represented using triples called SPO triples
(subject, property, object). Subjects are identified by a Uniform Resource Identifier (URI).
The property represents the relationship between the subject and the object. The object
of a triple can be either the subject of another triple or just a simple data value called a
literal. Following this format, we can represent data as a graph where the nodes are sub-
jects/objects and the edges are the proprieties. Below, we provide some formal definitions
on RDF graph necessary for the reading of the next sections.

Definition 1. (RDF graph) An RDF graph is a four-tuple G = ⟨V,LV , E, LE⟩, where

1. V Is a collection of vertices that correspond to all subjects and objects in RDF data.
The set V can be divided into Vl and Ve where Vl is the set of literal vertices and Ve

is the set of entity vertices.
2. LV is the set of vertex labels. The label of a vertex u ∈ Vl is its literal value, and the

label of a vertex u ∈ Ve is its corresponding URI.
3. E = −−−→u1, u2 is a collection of directed edges that connect the corresponding subject

and objects.
4. LE is a collection of edge labels. Given an edge e ∈ E, its edge label is its corre-

sponding property.

To query RDF data, we use SPARQL [26]. It is a query language that expresses queries
using a basic graph pattern (BGP) containing variables. The answer to the query is the
mappings of the variables where a sub graph from the data matches the graph pattern of
the query. Filters can be added to the query in order to express some conditions on the
graph elements. The following is a formal definition of a SPARQL query:

Definition 2. (Query graph) A query graph is a five-tuple Q = ⟨V Q, LQ
V , E

Q, LQ
E , FL⟩,

where

1. V Q = V Q
e ∪ V Q

l ∪ V Q
p is a collection of vertices that correspond to all subjects and

objects in a SPARQL query, where V Q
p is a collection of parameter vertices, and V Q

e

and V Q
l are collections of entity vertices and literal vertices in the query graph Q

respectively.
2. LQ

V is a collection of vertex labels in Q. A vertex v ∈ V Q
p has no label, while that of

a vertex v ∈ V Q
l is its literal value and that of a vertex v ∈ V Q

e is its corresponding
URI.

1318 Houssameddine Yousfi et al.

3. EQ is a collection of edges that correspond to properties in a SPARQL query. LQ
E are

the edge labels in EQ.
4. FL are constraint filters, such as a wildcard constraint or a spatial constraint.

When storing spatial data using the RDF format, spatial information is stored in the
literals. As a consequence, to express spatial operations, it is necessary to use spatial func-
tions in the filter part of the query. There are many extensions to the SPARQL language
to support spatial filters. Here, we rely on the GeoSPARQL standard [4] defined by the
Open Geospatial Consortium (OGC). It extends both RDF and SPARQL to express spatial
information and queries. See also stSPARQL [19] for a similar set of features.

3.3. Architectural overview of RDF QDAG

Storage
layer

Buffer
Layer

Engine
Layer

Scheduling
layer

System
statistics

Data
Extractor

SQ
Matcher

Dictionary
decoder

Spatial
Engine

Optimizer

Volcano Handler

B+ Trees R Tree

Access methods

Dictionary

Fig. 1. Architectural overview of RDF QDAG

RDF QDAG [17] is composed of several layers. Each layer contains many compo-
nents, as shown in figure 1. In this section, we present the overall architecture of the
system and we detail the process of query evaluation.

Data storage The storage layer in RDF QDAG is responsible for efficiently storing and
accessing different types of data, mainly Graph and Spatial data. We note that data in
RDF QDAG support many native data types such as Strings, Integers, Doubles and more.
To efficiently query all types of data, RDF QDAG uses mainly three access methods
B+tree, R-tree and a Dictionary.

The main storage of the graph data is the B+Tree. In order for the graph to be stored
without losing the semantics that relies in the edges of the graph (Predicates in case of
RDF), the graph should be partitioned into graph fragments while taking the connectivity

Efficient Spatial-RDF processing within RDF QDAG 1319

between them into account. The ideal graph partitioning strategy is the one that maximizes
inter-partition connectivity and minimizes intra-partition connectivity.

Each graph fragment is a grouping of Data Stars. Data stars extend the notion of tuple
in the relational model. We define data stars formally as:

Definition 3. (Data Star) Given a node x (named data star head) in a RDF graph G,
a Data Star DS(x) is the set of either triples sharing the same subject x, or the same
object x. We name Forward Data Star and Backward Data Star the sets

−→
DS(x) =

{(x, p, o)|∃p,o : (x, p, o) ∈ G} and
←−
DS(x) = {(s, p, x)|∃s,p : (s, p, x) ∈ G} respec-

tively.

If we compare the notion of data star with the notion of tuple, the primary key of a
tuple corresponds to the head x of a data star DS(x). RDF QDAG groups similar data
stars into sets called Graph Fragments using characteristic sets [23]

Each subject s in the graph G has a characteristic set defined as −→cs(s) = {p|∃o :
(s, p, o) ∈ G}. Similarly, for objects,←−cs(o) = {p|∃s : (s, p, o) ∈ G}. A forward graph
fragment

−→
Gf groups forward data stars with the same characteristic set. The backward

graph fragments
←−
Gf are formed identically. The formal definition of this concept is given

in definition 4

Definition 4. (Graph Fragment) A Graph Fragment is a set of Data Stars. It is named a
Forward Graph Fragment

−→
Gf if it groups Forward Data Stars such that:

−→
Gf = {

−→
DS(x)|∀i ̸=j

−→cs(xi) =
−→cs(xj)}.

Likewise, a Backward Graph Fragment
←−
Gf is defined as

←−
Gf = {

←−
DS(x)|∀i ̸=j

←−cs(xi) =
←−cs(xj)}.

Once the graph is partitioned into graph fragments, each fragment is loaded into an
index. The index used in the case of RDF QDAG is a B+tree. The efficiency of this type
of index is well studied for this type of graph data [17]. Also compression techniques
are used to optimize the space usage for storage and the number of pages loaded into the
buffers while evaluating queries.

In the context of optimizing space usage, Subject and Object of the graph that are
of type String or URI are replaced with an ID. Otherwise, the size of the fragments will
be significant. Especially since the values of subjects/objects may figure many times in
the fragments. However, this technique necessitates a dictionary to store < value, ID >
combinations. Moreover, an additional encoding and decoding step is required to evaluate
each query.

The third and the last access method is a spatial access method (namely R-tree) that
we added in the context of this work as an extension of RDF QDAG to support spatial
queries. More details on spatial indexing are in section 4.

Scheduling Layer The main component of the scheduling layer is the optimizer. The
optimizer has the role of selecting the best execution plan for a given query. This process

1320 Houssameddine Yousfi et al.

is divided into two steps: (i) plan enumeration and (ii) cost estimation. The plan with the
lowest estimated cost is the one chosen by the optimizer for evaluation.

The nature of the plan depends on the system design. In classical systems, a plan can
be considered as a sequence of join operations on triple patterns. However, in RDF QDAG,
the notion of data star is proposed as an equivalent of tuple in the relational model. In a
similar fashion, the notion of a star query is proposed. Indeed, triple patterns with the
same Subject or Object are grouped together as a forward or a backward data star.

Definition 5. (Query Star) Let Q be the SPARQL query graph. A Forward Query Star−→
QS(x) is the set of triple patterns such that

−→
QS(x) = {(x, p, o)|∃p,o : (x, p, o) ∈ Q}, x

is named the head of the Query Star. Likewise, a Backward Query Star
←−
QS(x) is

←−
QS(x) =

{(s, p, x)|∃s,p : (s, p, x) ∈ Q}. We use
−→
QS,
←−
QS to denote the set of forward and backward

query stars and qs to denote indistinctly a forward and backward query star.

An execution plan is an order function applied on a set of Query Stars and Filter
Unites. The function denotes the order in which the mappings for each Query Star will be
found and the order in which the filter unit will be evaluated

Definition 6. (Execution Plan) . We denote by P = [QS1, QS2, Fu1(p1, p2), ..., QSn]
the plan formed by executing QS1, then QS2, then evaluating the filter unit Fu1(p1, p2)
which requires the mappings of p1 and p2 parameters.

Engine Layer The engine layer is the layer responsible of evaluating the query. More
precisely, it is responsible of evaluating the optimal plan provided by the optimizer.

The evaluation of a Query Star consists of finding matches between the variables of
the Query Star and the nodes of the data graph. For each triple in the star, we seek the set
of mappings, that satisfies it. Next, we merge the mappings related to the triples to build
the Query Star matches.

Definition 7. (Star Query Evaluation) The evaluation of a Query Star QS(x) against the
graph G is formally defined as follows:

JQS(x)KG := {Jtp1KG ⋊⋉ Jtp2KG ⋊⋉ ... ⋊⋉ JtpnKG|n = card(QS(x))}

where:

JtpiKG ⋊⋉ JtpjKG = {µl∪µr|µl ∈ JtpiKG and µr ∈ JtpjKG, µl ∼ µr and µl(tpi) ̸= µr(tpj)}

We denote that a mapping µ is a function V Q
p −→V G. Given two mappings µ1 and µ2,

µ1 ∼ µ2 ⇒ µ1(?x) = µ2(?x).
Based on the previous definitions, we can determine the evaluation of a query using

the set of query stars, as follows:

Definition 8. (Query Evaluation) Given a set of stars, {qs1, qs2,...,qsn},that cover the
query, Triplesq(qs1) ∪ Triplesq(qs2) ∪ ... ∪ Triplesq(qsn) = Triplets(q), the evalu-
ation of the BGP part of the query q using the set of query stars is defined as follows:

JqKG = {µ : ∀µ ∈ Jqs1KG ⋊⋉ Jqs2KG ⋊⋉ ... ⋊⋉ JqsnKG }
We can also set the query BGP evaluation based on fragments, as follows:

Efficient Spatial-RDF processing within RDF QDAG 1321

JqgKG = {µ : ∀µ ∈
⋃

Gf |=qs1
Jqs1KGf ⋊⋉

⋃
Gf |=qs2

Jqs2KGf ⋊⋉ ... ⋊⋉
⋃

Gf |=qsn
JqsnKGf}

Where Gf |= qs iff cs(qs) ⊂ cs(Gf)

The full evaluation of the query is the evaluation of the BGP part and the filters FL
and it is defined as follows

JqgKG = {µ : ∀µ ∈ Jqs1KG ⋊⋉ Jqs2KG ⋊⋉ ... ⋊⋉ JqsnKG|µ |= FL}

1 SELECT ?p
2 WHERE {
3 ?p <hasArea> ?a .
4 ?p <isLocatedIn> ?l .
5 ?l <hasGeometry> ?g .
6 };

Listing 1.1. Example of simple RDF query (Q1)

An execution plan P is called an Acceptable Execution Plan if it fulfills the following
conditions:

1. Coverage: All nodes and predicates of the given query are covered by the set of
Query Stars of the plan.In the case of Query Q1 the execution plan [

←−
?l ,
−→
?p] is not an

acceptable plan since it does not cover the edge < hasGeometry > and the variable
?g.

2. Instantiated head: This condition guarantees that for a plan P = [QS1, ... , QSn],
∀i>1QS, the head of the QSi must be already instantiated. We use this condition to
avoid to a Cartesian product when mappings are exchanged between two star queries.
For example, in the case of Query Q1 the execution plan [

←−
?l ,
←−
?g,
−→
?p] is not an ac-

ceptable plan since the mapping of ?g is not yet available for the second
←−
?g to be

evaluated. In this case the instantiated head condition is not satisfied.

The formal definition of an Acceptable Plan is given in Proposition 9.

Definition 9. (Acceptable Plan) AP Let us consider Q as a given query,
−→
QS and

←−
QS as

the sets of forward and backward graph star queries respectively, T has the set of triple
patterns and the following functions:

– Tr: Q ∪
−→
QS ∪

←−
QS → T It returns the set triple patterns of a query star or a query.

– Nd:
−→
QS ∪

←−
QS → V It returns the nodes of a query star (subject or object).

– Head:
−→
QS ∪

←−
QS → V a function that returns the head of a query star.

An acceptable planAP is a tuple < X, f > where X ⊂
−→
QS∪

←−
QS and f : X → {1...|X|}

is the query stars order function such that:

1.
⋃

QS∈X Tr(QS) = Tr(Q)

2. ∀i ∈ {2...|X|}, Head(f−1(i)) ∈
⋃i−1

j=1 Nd(f−1(j))

1322 Houssameddine Yousfi et al.

4. Query Evaluation Strategies

In this section, we present two evaluation strategies for Geo-SPARQL queries which are
implemented in RDF QDAG. In order to better illustrate those strategies, we show the
processing of the example query Q2 on the dataset D1.

1 PREFIX gv: <http://geovocab.org/geometry#>
2 PREFIX ogis: <http://www.opengis.net/ont/geosparql#>
3

4 select ?g
5 where {
6 ?o type "cultural".
7 ?o gv:geometry ?p.
8 ?p ogis:asWKT ?g.
9 FILTER(bif:st_intersects(

10 bif:st_geomfromtext("POLYGON((7 43, 8 43,
11 8 44, 7 44, 7 43))"), ?g))
12 };

Listing 1.2. Example of spatial selection query (Q2)

Table 4. Example of RDF triples (dataset D1).

Subject Predicate Object
Tennis Championship hostedIn Paris
Tennis Championship type Sports
Tennis Championship geometry G1
G1 asWKT Point(2.34 48.85)
Festival of Lights hostedIn Lyon
Festival of Lights type Cultural
Festival of Lights geometry G2
G2 asWKT Poit(4.846 45.75)
Film Festival hostedIn Cannes
Film Festival Type Cultural
Film Festival geometry G3
G3 asWKT Point(7.012 43.55)

It is worth noticing that the existing formal framework for query plan and query eval-
uation do not take the filters into consideration. Previous contributions have focused on
the graph matching aspect of the query evaluation. The filters were considered as an im-
plementation detail. However, to introduce support for spatial filters, the existing formal
definitions need to be extended to consider the spatial operators used in the filter clause
of the query.

As we mentioned in definition 2, the Filter function FL is a truth function. We then
express this function in a conjunctive normal form. We also introduce the concept of filter
units as the operands of the mentioned conjunction.

Definition 10. (Filter Unit)

Efficient Spatial-RDF processing within RDF QDAG 1323

Let P be a subset of query parameters P ∈ P(V Q
p). and qsp the parameters of the

star query qs. A filter is a truth function FL : JqgKG−→{0, 1}. Filter function can be
expressed as a conjunction of operands. We name each operand a filter unit Fu.

FL = Fu1 ∧ Fu2 ∧ ... ∧ Fun

Using this concept of filter units Fu, one can see that the definition of an execution
plan is extended. In the previous definition, the execution plan is a sequence of star query
evaluation. While this is sufficient to perform the graph matching, it is not enough to
consider the filters. In the new definition of the plan, we consider two types of operators:
the classical star query evaluation and the new filter unit evaluation.

Definition 11. (Execution Plan - extended definition) .Let P be a tuple < X, f > where
X ⊂

−→
QS ∪

←−
QS ∪ FL and f : X → {1...|X|} is the query stars order function.

We denote by P = [QS1, QS2, Fu1(p1, p2), ..., QSn] the plan formed by executing
QS1, then QS2, then evaluating the filter unit Fu1(p1, p2) which requires the mappings
parameters p1 and p2.

As mentioned before, to ensure a graph exploration logic, not all plans are acceptable.
An execution plan is considered acceptable if, starting from the second star query, the
head of the star is already instantiated. In a similar fashion, the position of the filter unit
is critical. We can execute a filter unit only if the mappings for the parameters of the filter
units are already available. On this principle, we extend the definition of an acceptable
plan using the following condition:

Definition 12. (Instantiated filter unit parameter) Let consider the function Param: FU →
Vp a function that returns the parameters of a Filter Unit. An acceptable plan AP is a
tuple < X, f > where X ⊂

−→
QS ∪

←−
QS ∪ FL and f : X → {1...|X|} is the query stars

order function such as ∀i ∈ {2...|X|}, Param(f−1(i)) ∈
⋃i−1

j=1 Nd(f−1(j)).

To provide a better explanation of the concept of an acceptable plan, let’s consider
query Q 2, which contains the following star queries in the BGP:

←−
?g,
−→
?p,
←−
?p,
−→
?o, and

←−
?o.

The filter function consists of a single filter unit,
Fu(?g) =?g¬DC”POLY GON((−100...20))”. There are many possible execution plans
for this query, but not all of them are acceptable. For example, the plan [

−→
?o,
←−
?g, Fu(?g)]

is not acceptable because we need mappings of ?g to be able to evaluate
←−
?g. The existence

of such mappings is mandatory for all star queries except the first one. This is an exam-
ple of a plan that does not satisfy the instantiated head condition explained in Section 3.
Additionally, the plan [

−→
?o, Fu(?g),

−→
?p] is not acceptable because, after evaluating

−→
?o, the

mappings of ?g are not yet available to process the spatial filter Fu(?g). In this case, the
condition of instantiated filter unit condition (definition 12) is not satisfied.

An example of an acceptable plan of the query Q2 is [
−→
?o,
−→
?p, Fu(?g)] or

[
←−
?g, Fu(?g),

←−
?p]. To evaluate acceptable plans, two strategies are discussed: BGP-First

strategy and Spatial-First strategy.

1324 Houssameddine Yousfi et al.

4.1. BGP-First strategy

This strategy consists of finding matches for the graph pattern first, before proceeding
to run the filter on the results of the matching process. An example of a plan where this
strategy can be considered is the following AP1 = [

−→
?o,
−→
?p, Fu(?g)].

Q3

?o

Graph fragments
(B+ Trees)

?p Decoding
Spatial filter

Fu(?g)

Output buffer

Output results

SQ-buffer

Festival of lights

Film Festival

G2

G3

?o ?p

Film Festival G3 Point(7.012 43.55)

?g?o ?p

Festival of lights

Film Festival

G2

G3

Point(4.847 54.75)

Point(7.012 43.55)

?g?o ?p

1

3

1

2

2 3

Fig. 2. The execution of an BGP-First plan

The sequence of star queries and filter units listed in the logical execution plan does
not consider implementation details. Therefore, we illustrate the full execution in figure
2. First, the graph matching part of the query is evaluated. Appropriate graph fragments
are considered for evaluating each star query. Data in each fragment is stored in a B+tree
in order to efficiently retrieve it from the disk. Once the information needed is retrieved,
it is placed in a buffer, named SQ-buffer, so it can be used by the following operator in
the plan.

The same logic is applied to spatial values. The true objects shapes can be significantly
large depending on the geometry of the object (values describing Polygons are larger than
values describing points for example) and on the resolution used to represent the object.
To keep the size of the database low, and to maintain system performance, true shapes are
stored in the dictionary.

Once the shapes are retrieved from the dictionary, the filter function FL is evaluated.
In the case of Q2, the filter function is composed of a single filter unit Fu(?g). This
latter is evaluated in two steps (filter and refine). The Algorithm 1 is an example of an
intersection filter without any loss of generalization to other region connection calculus
operations. In the filter step, only MBRs of the shapes are considered (line 4) to signif-
icantly reduce the search space. The refining step considers the full geometry (line 11
and 12) hence, it is computationally expensive. However, it is necessary to eliminate false
positives from the previous step.

Efficient Spatial-RDF processing within RDF QDAG 1325

Algorithm 1: Intersection Filter (L,Qb,Q)

Data: M : List of mappings;
s: Spatial object;
use true shape: flag to use true shape;
Result: Q: The set of mappings that intersect s

1 Q← ∅;
2 for m ∈M do
3 (MBR(m),m)← decode(m);
4 if MBR(m)¬DCMBR(s) then
5 add m to Q;
6 continue;
7 if m is a point then
8 continue;
9 if use true shape = false then

10 continue ;
11 GEOm ← parseGeometry(m);
12 if GEOm¬DCs then
13 add m to Q;
14 end
15 return Q;

4.2. Spatial-First strategy

The BGP-First strategy presented above can answer spatial-RDF queries and can be easily
integrated into the execution model of RDF QDAG. However, it has some limitations that
we discuss in this section. In this section, we introduce the second proposed strategy
Spatial-First.

When we consider the same example query Q2 with the same dataset D1, one can
observe that multiple valid plans can be run to answer the query. We can list a few of them
as an example: [

−→
?o,
−→
?p, Fu(?g)], [

←−−−−−
cultural,

−→
?o,
−→
?p, Fu(?g)], [

←−
?p,
−→
?p, Fu(?g),

−→
?o]. All the

listed plans have a common problem. Since the filter unit relies on the execution of the
previous query stars, values of the geometry need to be obtained from the dictionary. As
a result, it is impossible to use any spatial access method to speed up the spatial filter
evaluation.

In the Spatial-First strategy, we try to take advantage of a spatial access method. To
do so, we can only consider execution plans that start with the spatial filter. In the case
of query Q2, the plan we consider is the following [Fu(?g),

←−
?g,
←−
?p,
−→
?o]. As before, the

spatial filter is run using two steps. However, this time, the filtering step can benefit from
the spatial index.

The structure of the spatial index we use is an R-tree with some modifications for
better integration with RDF QDAG. The R-tree stores only object approximations in the
form of MBRs with the necessary information to continue the graph exploration. This
ensures the efficiency of the first step of the spatial filter by minimizing the number of
pages. The page size in the index is 16 Kb. The structure of the pages is demonstrated in
the figure 3.

1326 Houssameddine Yousfi et al.

Inner page:

Leaf page:

Page Header xmin ymin xmax ymax Pointer ...

24 Bytes 8B 4B8B 8B 8B

16 kB

TypePage Header xmin ymin xmax ymax ID ...

12 Bytes 8B 8B 8B 8B

SGin

8B 8B1B
Entry for a complex shape

Type x y ID

8B 8B 8B 8B

SGin

1B
Entry for a point

Fig. 3. The structure of index pages and entries

For inner pages, we save 24 bytes as page header. The rest is filled with inner entries
where each entry is composed of an MBR (4 X 8 bytes) as a key and pointer to the
appropriate page (4 bytes). An inner page can have up to 454 entries.

As for the leaf pages, we keep two types of entries: Points and MBRs. The MBRs are
generally approximations of complex geometries. A point is represented by two coordi-
nates (x, y) and an MBR is represented by four (xmin, ymin, xmax, ymax). On the leaf
page, we save 12 bytes as page header, the rest is filled with leaf entries. For each entry,
we store the object type in 1 byte, then we store the key, which is a point/MBR in 2*8/4*8
bytes, respectively, the object id in 8 bytes and the inward pointing fragment ID also in
8 bytes. The fragment ID is used to continue with the graph exploration. A leaf page can
hold from 334 to 496 entries depending on the object types.

In the example shown in figure 4, only geometries ?g where MBR(?g)¬DC MBR(q)
are returned after the exploration of the index. The next operator in the plan is standard
graph exploration matchings.

At the end of the evaluation, the decoding operation is performed to replace object
IDs with the true value. The same is applied to spatial data where MBR approximation
is replaced using the true geometries. Once the full shapes are available (true geometries)
the refining step can be performed in the same way as in the BGP-First strategy.

5. Optimization Techniques

In this section, we present details about some optimization techniques that we propose to
further improve execution time for both proposed strategies.

5.1. Query scheduling

A typical DBMS can answer the same query using different execution plans. All the plans
provide the same results, however, the cost of execution for each plan is different. The

Efficient Spatial-RDF processing within RDF QDAG 1327

Q3

?g ?o

Output buffer

Output results

DecodingFu(?g)

...

Spatial
Refine

step 3

21

?g

Point(7.012 43.55)G3Film Festival

?p?o?g

Point(7.012 43.55)G3Film Festival

?p?o?o

Point(7.012 43.55)

1 2

3

Fig. 4. Execution of Spatial-First strategy

same logic applies for RDF QDAG. In the case of the latter, an execution plan is a se-
quence of SQ and Filter units. Since the execution time can vary significantly from a plan
to another, it is important to choose the best execution plan for a given query.

A traditional approach to select the best plan is to use two steps: plan enumeration
and cost estimation. In the plan enumeration step, we list all the possible execution plans.
However the number of execution plans can be very significant, so enumerating all the
plans is either not possible or not efficient. Many DBMS use a heuristic approach to
enumerate only the most promising plans. In the cost estimation step, we estimate the cost
of executing each plan to select the plan with the lowest possible cost. This is generally
done using dynamic programming since many plans share some parts between each other
and it is not reasonable to recalculate the cost of the same plan segment multiple times.

RDF QDAG uses the GOFast approach for the optimization [39]. In this approach,
both the enumeration and estimation are performed in parallel. In order to do so, authors
rely on a branch and bound algorithm. They start by constructing a tree where each node
represents the accumulated cost of all previous operations and the edges represent plan
operations. Naturally, the cost in the root is 0. The algorithm starts by estimating the
cost of all possible first operations, then it expands on the operation with the lowest cost.
GoFast continues on expanding the branch with the least cost until it gets a full execution
plan.

Estimation in GoFast is based on the statistics collected for each graph fragment. The
statistics also make it possible to reflect the interaction.

The existing GOFast optimization does not take into account the filters since the ma-
jority of the cost is caused by the graph exploration. However, this is not the case for the
spatial filters since the cost of comparing complex shapes is high. On top of that, the use
of an additional access method (R-tree) must be accounted for calculating the cost. Con-
sequently, we extend the existing logic in order to take into account the cost of filter units.
The cost of a plan is mainly the sum of cost of all star queries (both normal and spatial
ones):

1328 Houssameddine Yousfi et al.

Cost(P) =
∑

qs∈ P
Cost(qs) (1)

The estimation of the cost of star query is already part of RDF QDAG system, how-
ever we changed it to be calculated in terms of triples not in terms of data stars. We opted
for this change since the number of data star did not show (see appendix) a correlation
with the choice of the best plan in the case of spatial queries contrary to the number of
triples.

To estimate the full cost of the plan, for each part of the execution plan, two estima-
tions needs to be done: estimation of the input and estimation of the number of results.
This is necessary since the estimation of the cost of part of the plan depends on the number
of results of the previous parts.

Estimation of the Number of Spatial Objects The estimation of the cost of a star query
is already detailed in previous work [39], we will detail only the cost of the filter unit. In
the case of an BGP-First plan, no spatial access method is used. In the case of Spatial-First
plan, the cost of fu is the number of spatial objects that needs to be retrieved from the
index:

Cost(fu) = SOC(Q) (2)

SOC(Q) is the number of spatial objects estimated using the spatial index. We can
do this by taking advantage of the shallow depth of an R-tree. Indeed, since the fan-out
is high, the depth is low (generally 4 to 5 layers maximum). In the estimation phase, we
scan only the top layers of the R-Tree without loading the leaf layer. Naturally, we count
only pointers where the attached key satisfies the filter. To calculate the number of objects
(SOC(Q)) we simply multiply the number of leaf pages that satisfy the query by the
average number of objects in a page. This assumption is based on the fact that most of the
pages are close to 100% fill rate since the index is loaded using STR [22] and no updates
are performed later. The only limitation of this estimation is the fact that not all objects in
the leaf pages satisfy the query.

Estimation of spatial filter results .
The estimation of the number of results after the filter is necessary for the rest of

the process. The number of objects SOC(Q) can be considered as an estimation of the
number of results since it is an estimation of objects where the MBR satisfies the spatial
filter. However, to be able to continue calculating the cost with the GOFast approach for
the rest of the plan, the total number of objects is insufficient. We need to calculate an
estimation of the number of objects for each fragment.

The cost of a plan P is calculated in terms of the number of triples that need to be
retrieved from the disk since the disk cost is the most important cost of the query. The
cost of a particular plan is the sum of the cost of all star queries sqi that compose the plan
(equation 1). The cost of a star query is the number of triples retrieved from the relevant
fragments fgj :

Cost(qs) =
∑

fgj∈sq

Input Tr(fgj , sq) (3)

Efficient Spatial-RDF processing within RDF QDAG 1329

In the case of the first star query, no previous input is needed. As a consequence, the
number of triples retrieved from a particular fragment fgj is simply the number of triples
in the fragment that satisfy the predicates of the star query:

Input Tr(fgj , sq1) = #triples(fgi, prd(sq1)) (4)

However for the rest of the star queries, the number of triples retrieved from a partic-
ular fragment fgj is calculated using:

– #tripls(fgj , pred(sqi): the number of triples that satisfy the predicates of the star
query sqi

– Input Ds(fgj , sqi): the number of data stars considered as in input
– dist(fgj): the number of data stars in the fragment fgj

The formula for calculating the number of triples retrieved in case i > 1 is the following:

Input Tr(fgi, sqi) =
#triples(fgi, pred(sqi)) ∗ Input Ds(fg)

dist(fgj)
(5)

Detailed calculation of InputDs(fgj , sqi) and dist(fgj) is found in Zouaghi et al[39]
since we did not change it. As for the number of triples retrieved from a particular frag-
ment it is the sum of all triples in the fragment where the predicate is the same as one of
the star query predicates:

#triples(fgi, prd(sq1)) =
∑

Pj∈Pred(sqi)

count(pj, fg) (6)

In the case of Spatial-First plan, the number of triples is identical to the number of
spatial objects estimated for each fragment :

Input tr(fgi, SQ1) = #releventObject(fgj/Q) (7)

The number of spatial objects estimated for each fragment is estimated based on the
selectivity of the spatial query as follows:

#releventObject(fgj/Q) = size of(fgj) ∗ S select (8)

Where size of(fgj) is the total number of triples in the fragmentfgj and the spatial
selectivity (S select) is calculated as follows:

S select =
SOC(Q)

total spatial
(9)

Where total spatial is the total number of spatial objects stored in the index.
On top of the estimation of the number of relevant triples to read from disk, GoFast

optimizer also relies on the number of results produced by each star query outpu DSsqi

defined in [39] as follows:

output DSqsi = {(Gf j , pi, k
′′)|pi ∈ edges(qsi) ∧ k′′ = NDSpi

} (10)

Where NDSpi is the number of data stars heads relevant to the predicate pi

1330 Houssameddine Yousfi et al.

However, we had to change the calculation of NDSpi
to take into account the spatial

filters. The new formula is the following:

NDSpi
=

{
1 , if e.node is const

k′

dist(Gfj)
∗ dist NE(pi, Gfj) ∗ S select , otherwise

(11)

Where dist NE(pi, Gfj) is the number of distinct nodes linked to the data star head
in fgj with respect to the predicate pi.

With both estimations of the number of spatial objects and the spatial filter results, the
GoFast optimizer can choose the best execution plan for Spatial-RDF queries.

5.2. Spatial pruning

Earlier, we proposed two execution strategies, ”BGP-First” and ”Spatial-First”, of which
only the latter can benefit from a spatial access method. The ”BGP-first” strategy lacks
spatial awareness at the beginning of the process, which means that it misses opportunities
to reduce the search space based on spatial constraints. To address this issue, we propose
a new optimization technique called ”Spatial pruning”.

As discussed in section 3, the initial RDF graph is partitioned into graph fragments
GF for indexing and storage. When evaluating a query, only the necessary fragments
are considered based on the characteristic sets of each fragment. However, when a query
contains a spatial filter, many fragments that are considered due to their characteristic
sets do not contribute to the final results. This is because the spatial filter in the query
eliminates all the graph patterns produced by these fragments since they are connected to
spatial objects that do not satisfy the filter.

To eliminate fragments that do not contribute to the results earlier in the process, we
associate each graph fragment to an MBR such as all spatial objects connected to the
fragment are situated inside this MBR. When processing the query, the optimizer do not
choose fragment based on the graph part only, but also based on the spatial filter. If the
MBR of a fragment (MBR(Fg)) satisfies the filter, it can contain the results. However,
if the MBR does not satisfy the filter, it is immediately pruned and not considered while
evaluating the query.

The proposed algorithm 2 operates on a set of star queries specified in a query plan.
The algorithm iterates through each star query in the plan (line 3). For each star query, the
relevant fragments are obtained based on the characteristic set (line 4). These fragments
are then linked to the fragments of the previous star query using the function LinkToPre-
viousFragments() (line 5). If the current star query does not contain a spatial filter (line 6),
the algorithm proceeds to the next star query (line 7). However, if the current star query
contains a spatial filter (line 6), the algorithm loops through each fragment while testing
the intersection of the fragment’s Minimum Bounding Rectangle (MBR) with the query
(line 9). If there is no intersection between the fragment’s MBR and the query (line 10),
the fragment and all fragments linked to it are removed from further consideration (line
11).

Efficient Spatial-RDF processing within RDF QDAG 1331

Algorithm 2: Spatial pruning
Data: P: Execution Plan
GF : Set of graph fragments
SF : Gfs →MBR(Gfs): List of spatial fragments MBRs
Result: Gfs : qs→ GFSq|GFSq ⊆ GF :Set of fragment for each Sq

1 Gfs← [];
2 QS ← getQSList(P);
3 for sqi ∈ QS do
4 CurrentFGs← getCurrentFragments(sqi);
5 LinkToPreviousFragments(Gfs,CurrentGfs);
6 if isSpatialF ilter(qsi) = false then
7 continue;
8 for fgi ∈ CurrentFGs do
9 MBRfgi ← SF.getMBR(fgi);

10 if MBRfgi¬DCs then
11 Gfs.removeAllFGsConnectedTo(fgi);
12 end
13 end
14 return Gfs;

6. Experimental evaluation

In this section we discuss several experimental results on the various approaches and
optimisation techniques mentioned in the previous section. We also compare our proposed
solution with a well-known commercial Triplestore Virtuoso.

6.1. Experimental setup and methodology

We perform several experiments on RDF QDAG after integrating the approach and tech-
niques proposed in this paper. RDF QDAG is a project developed using Java and C++.
The storage and access methods are developed using C++ and compiled using GCC ver-
sion 7.5.0. The engine and optimizer are implemented using Java 11 and built using maven
3.8.6. For the run environment, we used Open JDK version 11.0.16. The system can be
downloaded as a Docker image, which includes all necessary dependencies. The image
is available on Docker Hub at https://hub.docker.com/r/qdag/rdf qdag. In addition, a live
demo of the system is provided on our project website at https://qdag.lias-lab.fr/.

All experiments were run on a machine equipped with Intel Xeon (Skylake, IBRS) @
10x 2.295GHz and 64 GB of RAM and an SSD running Ubuntu 18.04 bionic with linux
kernel x86 64 Linux 4.15.0-194-generic.

For the evaluation, we used the YAGO [16] knowledge base. YAGO is a real world
data-set that contains more than 234 million facts on which 4 million are spatial objects.

All experiments are performed on a fresh install of the operating system. We clear
page cache, dentry and inode cache before each query. Execution time is calculated from
the submission of the query to the end of writing the results into an output file.

1332 Houssameddine Yousfi et al.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

0.2

0.5

1

·104

Queries

E
xe

cu
tio

n
tim

e
(m

s) BGP-first
Spatial-first

Fig. 5. Execution time (nanoseconds) of queries using both strategies BGP-first and Spatial-first.

Table 5. Execution time of queries on YAGO

Query Best BGP-First plan Best Spatial-First plan
Plan ID Execution time (ms) # Triples Plan ID Execution Time (ms) # Triples

Q1 1 1506 32503 5 11014 463841
Q2 4 7442 238414 6 6981 144671
Q3 4 735 4377 5 11896 699942
Q4 3 7855 217526 2 3864 91326
Q5 4 5005 205310 6 2942 60374
Q6 1 1488 10639 3 2435 38092
Q7 3 7749 217526 2 9296 56272
Q8 1 9366 369054 3 9548 438063

Efficient Spatial-RDF processing within RDF QDAG 1333

6.2. Effect of evaluation strategies

To study the effect of evaluation strategies on the execution time, we ran several queries
on the YAGO data-set.

The results of the execution time for queries using the BGP-First and Spatial-first
strategies are shown in figure 5. Neither approach consistently outperforms the other, as
demonstrated by the varying performance in queries Q4, Q2, and Q5, where the Spatial-
first approach is superior, and the remaining queries, in which BGP-first performs better.

To further investigate the factors contributing to the varying performance of each ap-
proach, we analyzed intermediary results in both the spatial and graph parts of the queries
to extract the total number of triples loaded from the disk. The total number of triples is
displayed in table 5. The results in the table show a clear correlation between the choice of
the best execution strategy and the number of triples fetched from the disk. In each query,
the strategy with the lowest number of triples is the best-performing one. This observation
has motivated the improvements of the optimizer and the cost model proposed in section
5.

6.3. Effect of Scheduling

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

25

50

75

100

Queries

A
cc

ur
ac

y
%

Initial accuracy improved accuracy

Fig. 6. Initial accuracy and the improved accuracy of the optimizer.

To select the best execution plan and execution strategy, we extended the GoFast op-
timizer to be able to estimate the cost and number of results of spatial filters. As far as
experimental validation goes, we propose to compare the improved version of GoFast with
the existing one. For that, we use the accuracy of the best plan prediction as a performance
metric. The accuracy of the optimizer for a given query is calculated as follows:

A =
#plans−Rank plan

#plans− 1
(12)

The primary function of an optimizer is to select the optimal execution plan for a given
query. To accomplish this, the optimizer assigns a rank to each candidate plan based on
an estimation of its cost. The accuracy of the optimizer is measured in terms of the rank

1334 Houssameddine Yousfi et al.

of the true best plan. Specifically, the accuracy is calculated as the proportion of the true
best plan’s rank among all the candidate plans. A higher rank for the true best plan corre-
sponds to a higher accuracy, with an accuracy of 100% indicating that the optimizer has
successfully identified the true best plan as the top-ranked plan. Conversely, an accuracy
of 0% would indicate that the optimizer ranked the true best plan as the worst among the
candidates.

The figure 6 shows the initial accuracy of Go-Fast and the improved accuracy. As we
can notice, the optimizer after the proposed improvements provides a better prediction of
the best execution plan. It can find the actual best execution plan for the all of the test
queries except Q6 and Q7. Moreover, even for the latter queries, it provides the same or
better accuracy than the original optimizer. This is due to a better estimation of the cost
of the spatial filters.

The accuracy of both approaches is plotted in the figure 6. However, more detailed
results are in the Appendix where we list the results of estimation of each plan compared
to the true cost. We will refer to values form the detailed tables to better explain the results.
The accuracy on queries Q6 and Q7 demonstrates that there is still room for improvement
for the optimizer. In Q6, the improved optimizer chooses the second best execution plan
performing better then the old approach, which choose the third best plan. This is due to
the error of estimation. The best plan for Q6 is the plan P1 with a real cost of 10639,
followed by the plan P7 with a real cost of 7338. The results of the estimation proposed
a cost of 9894 for P1 and 7338 for P7 leading to the choice of P7 as the best plan.

We can notice the same problem with the query Q7 where the cost of P3 is 217526
however it is estimated to be 194145. The gap between the real cost and the estimation
is due to the number of objects eliminated with the refinement step in the spatial filter.
In the refinement step true shapes are considered and in the case of Q7 many objects do
not satisfy the spatial filter despite that there MBR approximations do satisfy the latter.
On top of that, the number of acceptable plans is very low for Q7 (only four acceptable
plans, meaning that each error is amplified when using the accuracy metric leading to
33% accuracy.

6.4. Effect of Encoding

As we mentioned in section 3, RDF QDAG stores data in three types of files: spatial
index, graph fragments and dictionary files. The description of a spatial object in a vector
format can be long, for example the map of a state or a river. For efficiency, we store the
full resolution shape definition in the dictionary. The full value will be replaced by an ID
in the graph fragments and with an approximation (MBR) in the spatial index.

For the storage of the spatial object, we have mainly two options: The Well Known
Text format (WKT) and the Well Known Binary format (WKB). RDF QDAG is capable
of outputting both representations, however, for the storage format, we experimented with
both representations to determine the best encoding format for the system.

In Figure 7, we show the effect of the encoding format on the performance of the
queries. We can clearly notice that the WKB encoding outperforms the WKT one for all
queries. This is due to the different sizes of the two encoding formats. WKB is generally
more compact than WKT, which leads to less I/O cost. On top of that, deserializing the
WKB format is more efficient than parsing the WKT format. For RDF QDAG system, if

Efficient Spatial-RDF processing within RDF QDAG 1335

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

0.2

0.5

1

1.5
·104

Queries

E
xe

cu
tio

n
tim

e
(m

s) WKT
WKB

Fig. 7. Execution time (ms) of queries using WKT and WKB.

the user requests an output of the WKT format, it is more efficient to deserialize the WKB
stored and convert it to WKT than to parse the WKT format.

6.5. Effect of Spatial Pruning

In figure 8, we compare the execution time of queries with and without spatial pruning.
As demonstrated in the figure, the spatial pruning improves performance for most of the
queries. This is due to the decreasing size of the search space. However, this is not the case
of all queries, since the number of pruned fragments depends on the query and can vary
form one to another. This is the case of query Q2 where no fragment is pruned. More so,
the overhead of evaluating the fragments for pruning can be negligible, as demonstrated
with the same query (Q2).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

0.2

0.5

1

1.5
·104

Queries

E
xe

cu
tio

n
tim

e
(m

s) Without SP
With SP

Fig. 8. Execution time (ms) of queries with and without Spatial Pruning.

1336 Houssameddine Yousfi et al.

6.6. Comparison against Virtuoso

After the optimization techniques applied to improve the performance of RDF QDAG,
we compare it with a commercial Triplestore Virtuoso. We choose Virtuoso since it is a
stable and wildly used Triplestore. On top of that it is one of the few Triplestores capable
of answering spatial-rdf queries since it support the GeoSPARQL norm proposed by the
Open Geospatial Consortium. As for the other solutions (e.g., GraphDB and Strabon) we
where unable to load the dataset due to stability issues in the mentioned systems.

The figure 9 depicts the execution times of queries run on both Virtuoso and
RDF QDAG. For RDF QDAG, we plot the execution time of two different runs, one
without any optimization technique used (WKT) the other one with the optimization tech-
niques proposed and studied in previous sections (WKB+SP). We can notice that the WKT
approach outperforms Virtuoso in some queries like Q1 and Q5. However, on most of the
queries,Virtuoso still had better performace leading to a better total execution time of 47
seconds for Virtuoso compared to 52 seconds for WKT. On the other hand, after applying
the proposed optimization techniques (WKT+SP), RDF QDAG outperforms Virtuoso on
all of the test queries without exception and has a better total execution time leading to an
improvement of 28% on average.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0
0.2

0.5

1

1.5

·104

Queries

E
xe

cu
tio

n
tim

e
(m

s) Virtuoso
RDF QDAG (WKT)

RDF QDAG (WKB + SP)

Fig. 9. Compression of execution time between Virtuoso and RDF QDAG.

7. Conclusion

In this paper, we addressed the evaluation of spatial RDF queries issue in the setting of a
graph exploration-based system, known as RDF QDAG. To enhance the system’s capabil-
ity to answer such queries, we proposed an extension that integrates spatial awareness into
the system’s storage layer, evaluation engine and optimization process. More specifically,
we proposed the use of an R-tree data structure, which is adapted to better fit the system,
as well as the integration of the evaluation of spatial filters into the execution plans. Ad-
ditionally, we introduced two evaluation strategies, namely, BGP-First and Spatial-First,
for the execution engine. In terms of optimization, we presented a cost model that con-
siders the cost of spatial operations in order to optimize the selection of execution plans.

Efficient Spatial-RDF processing within RDF QDAG 1337

Furthermore, we proposed a spatial pruning technique to further improve performance by
reducing the search space.

On the other hand, we validated our proposed extension to RDF QDAG through an
experimental setup using a real-world dataset (i.e., YAGO). Our results indicated that
the use of optimization techniques such as WKB encoding and spatial pruning improve
the performance of the system. We also evaluated the proposed execution strategies of
BGP-First and Spatial-First, and found that each strategy had advantages and limitations
depending on the query being executed. To address this, we developed a cost model to
determine the most suitable strategy for each query. Our results also indicated that the
proposed cost model enables the system to better predict the best execution plan compared
to the existing one.

In future work, we plan to continue improving the optimizer, particularly, for queries
involving complex geometrical shapes in order to enhance its ability to predict the best
execution plan. To achieve this, we plan to explore the use of machine learning techniques
to integrate feedback from RDF QDAG query evaluation. Additionally, we intend to ex-
tend the system by incorporating support for temporal constraints, enabling it to answer
spatio-temporal queries. This could involve adapting the existing cost model, introducing
new data structures and indices, and devising new evaluation strategies. The goal is to
improve the efficiency and accuracy of spatio-temporal query processing.

References

1. Graphdb. https://graphdb.ontotext.com/, accessed: 2021-10-18
2. Virtuoso. https://virtuoso.openlinksw.com/, accessed: 2021-10-18
3. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Sw-store: a vertically partitioned dbms

for semantic web data management. The VLDB Journal 18(2), 385–406 (2009)
4. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and geosparql.

Semantic Web 3(4), 355–370 (2012)
5. Bornea, M.A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bhat-

tacharjee, B.: Building an efficient rdf store over a relational database. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. pp. 121–132 (2013)

6. Brahem, M., Zeitouni, K., Yeh, L.: Astroide: a unified astronomical big data processing engine
over spark. IEEE Transactions on Big Data 6(3), 477–491 (2018)

7. Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial query processing into na-
tive rdf triple stores. In: Proceedings of the 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems. pp. 33–42 (2010)

8. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: An architecture for storing and query-
ing rdf data and schema information (2001)

9. Chawla, T., Singh, G., Pilli, E.S., Govil, M.C.: Storage, partitioning, indexing and retrieval in
big rdf frameworks: A survey. Computer Science Review 38, 100309 (2020)

10. Eldawy, A., Mokbel, M.F.: Spatialhadoop: A mapreduce framework for spatial data. In: 2015
IEEE 31st ICDE conference. pp. 1352–1363. IEEE (2015)

11. Ester, M., Kriegel, H.P., Sander, J.: Spatial data mining: A database approach. In: SSD. vol. 97,
pp. 47–66. Citeseer (1997)

12. Güting, R.H.: An introduction to spatial database systems. The VLDB Journal—The Inter.
Journal on Very Large Data Bases 3(4), 357–399 (1994)

13. Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14. ACM (1984)
14. Harris, S., Gibbins, N.: 3store: Efficient bulk rdf storage. 1st International Workshop on Prac-

tical and Scalable Semantic Systems (PSSS’03), Sanibel Island, Florida pp. 1–15 (2003)

1338 Houssameddine Yousfi et al.

15. Harris, S., Lamb, N., Shadbolt, N., et al.: 4store: The design and implementation of a clustered
rdf store. In: 5th International Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2009). vol. 94 (2009)

16. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: A spatially and temporally
enhanced knowledge base from wikipedia. Artificial intelligence 194, 28–61 (2013)

17. Khelil, A., Mesmoudi, A., Galicia, J., Bellatreche, L., Hacid, M.S., Coquery, E.: Combining
graph exploration and fragmentation for scalable rdf query processing. Information Systems
Frontiers 23(1), 165–183 (2021)

18. Kim, K., Cha, S.K., Kwon, K.: Optimizing multidimensional index trees for main memory
access. In: ACM SIGMOD Record. vol. 30, pp. 139–150. ACM (2001)

19. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web:
The model strdf and the query language stsparql. In: Extended Semantic Web Conference. pp.
425–439. Springer (2010)

20. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A semantic geospatial dbms. In:
International Semantic Web Conference. pp. 295–311. Springer (2012)

21. Lee, J.G., Kang, M.: Geospatial big data: challenges and opportunities. Big Data Research 2(2),
74–81 (2015)

22. Leutenegger, S.T., Lopez, M.A., Edgington, J.: Str: A simple and efficient algorithm for r-tree
packing. In: 13th ICDE conf. pp. 497–506. IEEE (1997)

23. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation for rdf queries
with multiple joins. In: 2011 IEEE 27th International Conference on Data Engineering. pp.
984–994. IEEE (2011)

24. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. Proceedings of the VLDB En-
dowment 1(1), 647–659 (2008)

25. Papadopoulos, T., Balta, M.E.: Climate change and big data analytics: Challenges and oppor-
tunities. International Journal of Information Management 63, 102448 (2022)

26. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM Transactions
on Database Systems (TODS) 34(3), 1–45 (2009)

27. Robinson, J.T.: The kdb-tree: a search structure for large multidimensional dynamic indexes.
In: Proc. of the 1981 ACM SIGMOD inter. conf. on Management of data. pp. 10–18. ACM
(1981)

28. Roumelis, G., Vassilakopoulos, M., Corral, A.: Nearest neighbor algorithms using xbr-trees.
In: 2011 15th Panhellenic Conference on Informatics. pp. 51–55. IEEE (2011)

29. Šidlauskas, D., Šaltenis, S., Christiansen, C.W., Johansen, J.M., Šaulys, D.: Trees or grids?:
indexing moving objects in main memory. In: Proc. of the 17th ACM SIGSPATIAL inter. conf.
on Advances in Geographic Info. Syst. pp. 236–245. ACM (2009)

30. Silberschatz, A., Korth, H.F., Sudarshan, S., et al.: Database system concepts, vol. 4. McGraw-
Hill New York (1997)

31. Stolze, K.: Sql/mm spatial: The standard to manage spatial data in a relational database system.
In: BTW 2003–Datenbanksysteme fur Business, Technologie und Web, Tagungsband der 10.
BTW Konferenz. Gesellschaft für Informatik eV (2003)

32. Tang, M., Yu, Y., Aref, W., Mahmood, A., Malluhi, Q., Ouzzani, M.: In-memory distributed
spatial query processing and optimization. Tech. rep., Purdue technical report (2016)

33. Wald, I., Havran, V.: On building fast kd-trees for ray tracing, and on doing that in o (n log n).
In: 2006 IEEE Symposium on Interactive Ray Tracing. pp. 61–69. IEEE (2006)

34. Wang, C.J., Ku, W.S., Chen, H.: Geo-store: a spatially-augmented sparql query evaluation sys-
tem. In: Proceedings of the 20th International Conference on Advances in Geographic Infor-
mation Systems. pp. 562–565 (2012)

35. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data man-
agement. Proceedings of the VLDB Endowment 1(1), 1008–1019 (2008)

36. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D., et al.: Efficient rdf storage and retrieval
in jena2. In: SWDB. vol. 3, pp. 131–150. Citeseer (2003)

Efficient Spatial-RDF processing within RDF QDAG 1339

37. Yu, J., Wu, J., Sarwat, M.: Geospark: A cluster computing framework for processing large-scale
spatial data. In: Proc. of the 23rd SIGSPATIAL Inter. Conf. on Advances in Geographic Info.
Syst. p. 70. ACM (2015)

38. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale rdf
data. Proceedings of the VLDB Endowment 6(4), 265–276 (2013)

39. Zouaghi, I., Mesmoudi, A., Galicia, J., Bellatreche, L., Aguili, T.: Gofast: Graph-based opti-
mization for efficient and scalable query evaluation. Information Systems 99, 101738 (2021)

Houssameddine Yousfi is a PhD student in Computer science at the university of Tlem-
cen, Algeria and the National Engineering School for Mechanics and Aerotechnics (ISAE-
ENSMA), Poitiers, France. He is a member of the Laboratory LRIT and the laboratory
LIAS. The areas of his scientific interest focus on database management systems, spatial
and graph data management and Massively Parallel Processing (MPP) frameworks.

Amin Mesmoudi is an associate professor at the University of Poitiers. He is also a mem-
ber of the Data Engineering team at the LIAS laboratory. He holds a PhD from the Claude
Bernard (Lyon 1) University. His research interests are related to large-scale data persis-
tence, including partitioning, indexing, and compression, as well as data exploitation. He
is particularly interested in designing new evaluation and optimization techniques to sup-
port Massively Parallel Processing (MPP) frameworks.

Allel Hadjali is currently Full Professor in Computer Science at the National Engineering
School for Mechanics and Aerotechnics (ISAE-ENSMA), Poitiers, France. He is a mem-
ber of the Data and Model Engineering research team of the Laboratory of Computer Sci-
ence and Automatic Control for Systems (LIAS). His research interests are Massive Data
Exploitation and Analysis, Extraction, Recommendation and Explainabiliy in Learning
Machine Models. The complete list of his publications is available in http://www.lias-
lab.fr/members/allelhadjali.

Houcine Matallah is currently the Head of the Computer Science Department at the Uni-
versity of Tlemcen. He is also a member of the faculty’s council and scientific committee.
As a member of the LRIT laboratory, his research focuses on database management sys-
tems, including NoSQL and New SQL systems, as well as the challenges of Big Data.

Seif-Eddine Benkabou received his M.Sc. and Ph.D. degrees from the University of
Lyon, Villeurbanne, France, in 2014 and 2018, respectively. He is currently an Assistant
Professor at the University of Poitiers, Poitiers, France. His main research area is unsu-
pervised machine learning, with a focus on outlier detection from temporal data.”

Received: February 25, 2023; Accepted: June 10, 2023.

Appendix

Appendix 1: Results of estimation of each plan for the different queries considered

For all of the following tables, the best execution plan is highlighted in bold.

1340 Houssameddine Yousfi et al.

Table 6. Results of estimation of Q1

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?c,Fu(?g),

←−
?c,
−→
?p] 4774913 4775175 7 7

1 [
−→
?p,
−→
?c,Fu(?g)] 5943.0 29657.0 3 1

2 [
←−
?c,
−→
?c, Fu(?g),

−→
?p] 5595 54502 1 2

3 [
←−
?c,
−→
?p,
−→
?c,Fu(?g)] 5720 54627 2 3

4 [
←−
?f ,
−→
?p,
−→
?c,Fu(?g)] 286682 859297 5 4

5 [Fu(?g),
←−
?g,
←−
?c,
−→
?p] 437395 446318 6 5

6 [
←−
?n,
−→
?p,
−→
?c,Fu(?g)] 83750 857355 4 6

Table 7. Results of estimation of Q2

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?c,Fu(?g),

←−
?c,
−→
?p] 4775880.0 4777965.0 7 7

1 [
−→
?p,
−→
?c,Fu(?g)] 165958.0 493909.0 4 4

2 [
←−
?a,
−→
?p,
−→
?c,Fu(?g)] 243796.0 1321696.0 5 6

3 [
←−
?b,
−→
?p,
−→
?c,Fu(?g)] 389065.0 1154313.0 6 5

4 [
←−
?c,
−→
?c,Fu(?g),

−→
?p] 14421.0 192320.0 1 2

5 [
←−
?c,
−→
?p,
−→
?c,Fu(?g)] 16412.0 194311.0 2 3

6 [Fu(?g),
←−
?g,
←−
?c,
−→
?p] 104914.0 129598.0 3 1

Table 8. Results of estimation of Q3

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?a,
←−
?a,
−→
?w,
−→
?l ,Fu(?g)] 7231.0 7388.0 4 4

1 [
−→
?l ,Fu(?g),

←−
?l ,
←−
?w,
←−
?a] 4774850.0 4774858.0 8 8

2 [
−→
?p,
−→
?a,
−→
?w,
−→
?l ,Fu(?g)] 5447.0 5676.0 3 2

3 [
−→
?w,
−→
?l ,Fu(?g),

←−
?w,
←−
?a] 669919.0 1252615.0 7 7

4 [
←−
?a,
−→
?a,
−→
?w,
−→
?l ,Fu(?g)] 4231.0 5492.0 2 1

5 [Fu(?g),
←−
?g,
←−
?l ,
←−
?w,
←−
?a] 441052.0 702586.0 6 5

6 [
←−
?l ,
−→
?l ,Fu(?g),

←−
?w,
←−
?a] 59251.0 1250718.0 5 6

7 [
←−
?w,
←−
?a,
−→
?w,
−→
?l ,Fu(?g)] 3245.0 7045.0 1 3

Table 9. Results of estimation of Q4

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?e,
−→
?l ,Fu(?g)] 201726.0 208424.0 3 3

1 [
−→
?l ,Fu(?g),

←−
?l] 4774844.0 4774844.0 4 4

2 [Fu(?g),
←−
?g,
←−
?l] 74903.0 98141.0 2 1

3 [
←−
?l ,
−→
?l ,Fu(?g)] 17716.0 194145.0 1 2

Efficient Spatial-RDF processing within RDF QDAG 1341

Table 10. Results of estimation of Q5

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?c,
←−
?c,
−→
?p,Fu(?g)] 4775880.0 4777965.0 7 7

1 [
−→
?p,Fu(?g),

−→
?c] 165958.0 493909.0 4 4

2 [
←−
?a,
−→
?p,Fu(?g),

−→
?c] 243796.0 1321696.0 5 5

3 [
←−
?b,
−→
?p,Fu(?g),

−→
?c] 389065.0 1154313.0 6 6

4 [
←−
?c,
−→
?c,
−→
?p,Fu(?g)] 14421.0 192320.0 1 2

5 [
←−
?c,
−→
?p,Fu(?g),

−→
?c] 16412.0 194311.0 2 3

6 [Fu(?g),
←−
?g,
←−
?c,
−→
?p] 51616.0 75701.0 3 1

Table 11. Results of estimation of Q6

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?l ,Fu(?g),

←−
?l ,
←−
?u,
−→
?p] 4774894.0 4774981.0 7 7

1 [
−→
?p,
−→
?u,
−→
?l ,Fu(?g)] 5901.0 9894.0 3 2

2 [
−→
?u,
−→
?l ,Fu(?g),

←−
?u,
−→
?p] 669962.0 1252701.0 6 6

3 [Fu(?g),
←−
?g,
←−
?l ,
←−
?u,
−→
?p] 30958.0 250625.0 5 4

4 [
←−
?l ,
−→
?l ,Fu(?g),

←−
?u,
−→
?p] 59295.0 1250841.0 4 5

5 [
←−
?u,
−→
?p,
−→
?u,
−→
?l ,Fu(?g)] 5192.0 32596.0 2 3

6 [
←−
?w,
−→
?p,
−→
?u,
−→
?l ,Fu(?g)] 3394.0 7338.0 1 1

Table 12. Results of estimation of Q7

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?e,
−→
?l ,Fu(?g)] 201726.0 208424.0 2 2

1 [
−→
?l ,Fu(?g),

←−
?l] 4774844.0 4774844.0 4 3

2 [Fu(?g),
←−
?g,
←−
?l] 270889.0 297661.0 3 4

3 [
←−
?l ,
−→
?l ,Fu(?g)] 17716.0 194145.0 1 1

Table 13. Results of estimation of Q8

Plan ID Plan # DS # Triples Initial position New position
0 [

−→
?l ,Fu(?g),

←−
?l ,
−→
?p] 4775053.0 4775546.0 6 6

1 [
−→
?p,
−→
?l ,Fu(?g)] 105462.0 339654.0 3 1

2 [
←−
?a,
−→
?p,
−→
?l ,Fu(?g)] 134597.0 469582.0 4 3

3 [Fu(?g),
←−
?g,
←−
?l ,
−→
?p] 186351.0 420618.0 5 2

4 [
←−
?l ,
−→
?l ,Fu(?g),

−→
?p] 59454.0 1251406.0 1 4

5 [
←−
?l ,
−→
?p,
−→
?l ,Fu(?g)] 59857.0 1251809.0 2 5

