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Abstract. The proliferation of Internet of Things (IoTs) technology is being se-
riously impeded by insecure networks and data. An effective intrusion detection
model is essential for safeguarding the network and data security of IoTs. In this pa-
per, a hybrid parallel intrusion detection model based on deep learning (DL) called
HPIDM features a three-layer parallel neural network structure. Combining stacked
Long short-term memory (LSTM) neural networks with convolutional neural net-
work (CNN) and SK Net self-attentive mechanism in the model allows HPIDM
to learn temporal and spatial features of traffic data effectively. HPIDM fuses the
acquired temporal and spatial feature data and then feeds it into the CosMargin
classifier for classification detection to reduce the impact of data imbalance on the
performance of the Intrusion Detection System (IDS). Finally, HPIDM was experi-
mentally compared with classical intrusion detection models and the two compara-
tive models designed in this paper, and the experimental results show that HPIDM
achieves 99.87% accuracy on the ISCX-IDS 2012 dataset and 99.94% accuracy on
the CICIDS 2017 dataset. In addition, it outperforms other comparable models in
terms of recall, precision, false alarm rate (FAR), and F1 score, showing its feasi-
bility and superiority.

Keywords: intrusion detection, deep learning (DL), Long short-term memory (LSTM),
convolutional neural network (CNN), SK Net self-attentive mechanism.

1. Introduction

With the rapid development of wireless sensor networks (WSN), 5G communication tech-
nology, big data processing technology, and artificial intelligence technology, the IoTs
have been widely used and opened a new era of the Internet of Everythings [27]. Accord-
ing to a white paper released by Cisco, global mobile data traffic has surged by 17 times
over the last five years, with nearly 650 million new mobile devices added.

In the era of the IoTs, everything is interoperable, which also means that cyber-attacks
can easily invade the real world. Data shows that in the past 10 years, cyber attacks have
evolved from individual hackers to organized cyber armies, and the areas of attack are
becoming larger and larger, from Internet computers and information networks to military
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and civilian critical information infrastructures. The use of standards and specifications
for the IoTs has become a crucial factor in the development of the industry, the premise of
which is to ensure the security of the network and data. An IDS is software or hardware
that detects malicious activity on a specific computer or network [37], [14]. IDS reacts to
detected intrusions in real-time and alerts administrators and is used to secure the network.

As network attacks become more sophisticated and efficient, traditional intrusion de-
tection methods based on machine learning (ML) are insufficient in detecting and pre-
venting such attacks. As a result, new network attack defense methods must be explored.
Intrusion detection technology based on DL has garnered significant attention from both
academic and business communities, providing a novel idea for the network security re-
search of the IoTs [46]. DL-based IDS identifies suspicious network activity, prevents
hackers from gaining access, and notifies users. They usually have well-known labels and
common attack formats. This helps protect against risks such as data breaches. By ana-
lyzing traffic more accurately, reducing the number of false alarms, and assisting security
teams in distinguishing malicious from legitimate network activity, DL, CNN, and re-
current neural networks (RNNs) can be used to develop smarter IDS [25]. The primary
contributions of our paper are as follows.

(1) A DL-based hybrid parallel intrusion detection model (HPIDM) is proposed. The
three-layer parallel neural network structure of HPIDM is composed of stacked LSTM
and CNN as well as the SK Net attention mechanism, which enables HPIDM to learn
the Spatial and temporal features of traffic data effectively. Not only can HPIDM auto-
matically and fully learn the spatial and temporal features of traffic data, but it can also
effectively address the issue of data imbalance through multiple-feature fusion.

(2) Based on the HPIDM, two comparison versions are proposed. Comparison model
1 is to change the Fully Convolutional Network(FCN) module of the first layer to a con-
ventional CNN model on HPIDM to verify the effectiveness of the FCN module, and
comparison model 2 is to change the combination of the CNN and the stacked LSTM
module of the second layer to a conventional CNN module to verify the effectiveness of
the stacked LSTM.

(3) The results of the ablation experiments showed that the experimental accuracy
of the HPIDM on the ISCX 2012 dataset was 99.87%, which was 0.06%, 0.05%, 0.11%,
0.13%, and 0.12% higher than the TPCNN, TPCNN-C, CROSS CNN,
CROSS CNN LSTM, and HPM models respectively, and 0.13% and 0.12% higher than
the comparison models model1 and model2 by 0.13% and 0.02% respectively. The exper-
imental accuracy on the CIC-IDS 2017 dataset was 99.94%, which was 0.03%, 0.02%,
0.02%, 0.03%, and 0.04% higher than the TPCNN, TPCNN-C, CROSS CNN,
CROSS CNN LSTM, and HPM models, respectively. Moreover, the HPIDM outperforms
its counterparts in terms of accuracy, recall, precision, FAR, F1 score, and other related
metrics. This validates its feasibility and superiority, as well as the effectiveness of the
FCN module and the stacked LSTM module in the HPIDM.

Based on the abbreviations in this document, important symbols are explained in this
section using Table 1. The remainder of this paper is structured as follows. In Second 2,
the DL-based approach, intrusion detection models, and Back Propagation (BP) neural
networks are briefly introduced. Section 3 provides a detailed description of the dataset,
data preprocessing algorithms, and the proposed intrusion detection model. The experi-
mental environment and parameters are first presented, and then ablation experiments on
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both the ISCX-IDS2012 and CICIDS2017 datasets are conducted in Section 4. Finally,
the full paper is summarized, and future work prospects are in Section 5.

Table 1. Explanation of abbreviations.

Abbreviations Explanation
IoTs Internet of Things
DL deep learning

LSTM Long short-term memory
CNN convolutional neural network

SK Net Selective Kernel Networks
IDS Intrusion Detection System
FAR false alarm rate
WSN wireless sensor networks
ML machine learning

RNNs recurrent neural networks
FCN Fully Convolutional Network
RFF radio frequency fingerprinting
FPN Feature pyramid network

2. Related Work

Early IDS used a single-layer architecture that could only detect misuse or anomaly at-
tacks. To accurately identify misuse and anomaly attacks, Zhang et al. [43] propose an
adaptive serial hierarchical attack identification system (SHIDS) that can automatically
train a new classifier and adaptively modify its structure after the new classifier is trained.
However, the adaptive learning capability is limited and is not able to learn the features
of malicious traffic autonomously. Hall et al. [24] propose a new approach to integrate
radio frequency fingerprinting (RFF) technology into a wireless IDS. This approach can
effectively control the unauthorized use of network resources by media but is superior to
the aging of transceivers and other reasons, which can affect the classification success rate
and is relatively homogeneous in terms of scalability.

With the development of machine learning techniques, intrusion detection is gradually
shifting towards machine learning-based methods. These methods automatically identify
new attacks by learning patterns of attack behavior from large amounts of network data
and are thus better able to respond to unknown attack methods [2], [22]. Dina et al. [6] pro-
pose a comprehensive summary of machine learning-based intrusion detection methods
proposed in the literature over the past decade: artificial neural networks, association rules,
fuzzy association rules, Bayesian networks, clustering, decision trees, integrated learning,
evolutionary computation, hidden Markov models, inductive learning, etc. Sarnovsky et
al. [30] propose a hierarchical IDS based on a primitive symmetric combination of ma-
chine learning methods and knowledge-based methods to support the detection of the
severity of existing types and novel network attacks.

But with the rise of emerging technologies such as cloud computing and the IoTs,
intrusion detection is also facing new challenges. For example, virtualization technologies
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in cloud computing environments may result in traditional intrusion detection methods
being unable to accurately distinguish traffic between virtual machines; and the large
number of devices in the IoTs may pose a large data volume and complexity challenges
for intrusion detection [4], [28]. Conventional machine learning methods can no longer
meet cybersecurity needs, and DL networks with end-to-end features can solve new types
of malicious traffic feature extraction problems. Researchers are therefore applying DL
to the field of intrusion detection to improve the accuracy and real-time performance of
intrusion detection, as well as to better adapt to the changing network environment. Tao
et al. [33] propose a deep reinforcement learning approach to detect malicious attacks
in aerial computing networks of UAVs. Fatani et al. [7] propose an advanced feature
extraction and selection method for an IoTs IDS based on DL and Aquila optimizer. Cai
et al. [3] propose a hybrid parallel DL model for efficient intrusion detection based on
metric learning, which improves the detection accuracy of malicious traffic.

Although DL-based intrusion detection techniques are currently the main techniques
for network traffic intrusion, a major drawback is that they are highly dependent on feature
design and have a high FAR, which does not perform well in real-world applications [35],
[17]. Researchers have made several efforts to improve the detection and classification
performance of malicious traffic, however, they have neglected the accuracy of malicious
sample classification. To this end, this paper abstracts the CNN underlying intrusion traffic
data into high-level features, extracts sample features autonomously, interweaves stacked
LSTM and multi-scale convolutional operations into the neural network, automatically
learns the spatial and temporal features of the traffic data adequately through multiple
feature fusions, and optimizes the network parameters to converge the model through a
stochastic gradient descent algorithm, and finally performs a sample test to detect the
network’s intrusion behavior. Simulation results show that the method proposed in this
paper has high detection accuracy and true positive rate, as well as a low FAR.

3. Models and Methods

This section introduces the design of a hybrid parallel neural network model, HPIDM,
which leverages DL techniques to improve the performance of IoTs anomaly traffic de-
tection.

3.1. Data Pre-processing

In this study, the ICSX 2012 and CIC-IDS 2017 datasets are utilized that include both
header and payload information and are considered more novel than the KDD99 dataset
[34], [13]. Before conducting experiments, data preprocessing is performed to reduce
the interference of noise, missing values, and inconsistent data. The preprocessing steps
in this study comprise traffic segmentation, traffic cleaning, image generation, and IDX
conversion [36], [20].

(1) Flow cut-off
First, the continuous pcap traffic is divided into discrete traffic units based on quin-

tuple information to extract information from each data file. The discrete traffic data file
is created by considering every 5th packet in the data stream as a whole traffic cell. If
the number of packets is less than 5, the forward padding method is used. Since packet
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lengths are variable, the first 96 bytes of each packet are used to represent it. All malicious
traffic is then stored in a CSV file by iterating over the packets [38], [26].

(2) Flow cleaning
The traffic cleaning process involves the replacement of MAC addresses at the data

link layer and IP addresses at the IP layer with new randomly generated addresses [5].
This strategy is employed to eliminate the influence of these addresses on the identifi-
cation results. Specifically, the IP and MAC addresses of each flow are replaced with
random numbers, ensuring that the addresses are consistent within each flow after the
replacement. Once this process is completed, file cleaning is performed.

(3) Image generation
The preprocessed files are normalized to a fixed length in bytes. If the file is longer

than the designated number of bytes, it is truncated, and if it is shorter, it is padded with
0x00 at the end. The normalized file is then converted into a binary grayscale image, where
each byte represents a grayscale pixel value. Specifically, the value 0x00 corresponds to
black, and 0xff corresponds to white. This conversion allows for visual analysis of the
data in an easily interpretable format. The resulting image is saved in PNG format.

(4) IDX conversion
To train the CNN and LSTM networks in the experiments, the collected data must

be transformed into the appropriate format. For the CNN, the images must be converted
into IDX format files. And for the LSTM network, the input format is flexible, but the
maximum input length is limited to prevent excessively long inference times [45].

3.2. Model Design

As shown in Fig. 1, HPIDM consists mainly of a three-layer parallel convolutional neural
network, which is used to extract temporal and spatial features of the data by interspers-
ing stacked LSTM and SK Net self-attentive mechanism structures in the convolutional
neural network, and achieve accurate classification of small sample datasets through fea-
ture fusion, and good experimental results were obtained on the test set. Furthermore, the
HPIDM leverages feature fusion technology to enhance the learning performance of traf-
fic data features and effectively address data imbalance issues. The model achieves good
detection rates on the CIC-IDS 2017 and ISCX 2012 datasets.

The HPIDM utilizes a three-layered neural network. The first layer implements the
Fully Convolutional Network (FCN) to capture more detailed traffic features. To avoid
losing the temporal features of traffic data, a combined network structure of CNN and
LSTM is used in the second layer to learn the temporal features and improve the ac-
curacy of the predicted values. Lastly, the third layer integrates the convolutional layer
and pooling layer (Max pool) with the SK attention mechanism to enhance the model’s
performance.

(1) Top branch
In HPIDM, the upper branch employs a FCN to extract more precise traffic features.

The FCN pioneers the use of convolutional neural networks for semantic segmentation,
enabling it to process input images of any size. Unlike traditional CNN, the FCN in-
corporates a fully convolutional layer, which grants it the flexibility to handle images of
varying dimensions. By utilizing a deconvolutional layer for upsampling, the FCN can
generate segmentation results that match the input image’s size. Furthermore, it dispenses
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Fig. 1. Local details of the HPIDM

with pooling layers, thereby reducing the model’s parameters and computational require-
ments. As a result, the efficiency of the model is significantly improved.

The input data is convolved four times. The kernel size is 3, the padding is 1, and the
stride size is 1 in the first and third convolutions. While the second and fourth convolu-
tional layers have a kernel size of 3, padding of 1, and stride size of 2.

From Eq. (1), it can be seen that nout = ninin convolution layers 1 and 3, i.e., the
output size is equal. And nout =

nin

2 in convolution layers 2 and 4, i.e., the output is 1/2
of the input.

nout =
nin − kernel + 2padding

stride
+ 1 (1)

Where kernel is the number of convolution kernels, padding is the filling value, stride
is the sliding step size.

(2) Intermediate layer branching
The convolutional layer of the CNN model enables local perception within each fea-

ture of the data, followed by higher-level synthesis operations to obtain global informa-
tion. The pooling layer serves to reduce feature dimensions, compress data and param-
eters, decrease overfitting, and enhance the fault tolerance rate of the model, thereby
ensuring adequate feature learning [29] [12]. Consequently, the lower branch utilizes a
combination of convolution and pooling to eliminate redundant information, expand the
perception field, and reduce dimensionality and parameter numbers. Considering that the
temporal features of the traffic data would be lost if only the traffic features learned using
the convolutional network were used, an LSTM structure was added to this layer to learn
the temporal features of the traffic.

The HPIDM utilizes the heap LSTM network to capture time sequence features of
traffic data. The core idea of LSTM is gated logic. LSTM is made up of memory blocks
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rather than neurons. Through a storage unit and three control gates, it can allow the model
to selectively process data and develop memories of pertinent historical information over
extended time intervals.

The LSTM model comprises three gates, the forgetting gate, the input gate, and the
output gate. The forgetting gate utilizes the sigmoid function to regulate the extent of
memory retention from the previous time, as shown in Eq. (2), where f t is between 0
and 1.

ft = σ(Uf ×Xt +Wf × ht−1 + bf ), (2)

Where σ represents the sigmoid function, U and W are the weights of variables, Xt

is the input variables, h is the input variables, and b is the intercept term.
The input gate first employs activation and excitation functions to filter and store input

variables, then produces new vectors, and finally updates cell states based on the old cell
states and the new variables, as depicted in Eqs. (3) to (5).

it = σ(Ui ×Xt +Wi × ht−1 + bi) (3)

c̃t = tanh(Uc ×Xt +Wc × ht−1 + bc)) (4)

ct = ftct−1 + itc̃t (5)

where it takes the value of 0 or 1, c̃t is the saved input variable, tanh is the tangent
excitation function, ct−1 is the old cell state value, ct is the new cell state value, and ft
is the degree of forgetting.

The output gate determines the output variables according to the activation function
and processes the data using the excitation function, as shown in Eqs. (6) to (7).

ot = σ(Uo ×Xt +Wo × ht−1 + bo) (6)

ht = ot × tanh(ct) (7)

where ot is the input gate activation function and h is the output variable.
CNN is used to extract spatial features, which are subsequently forwarded to the

LSTM module for time series feature learning. The resulting time series features are com-
bined with the spatial features learned in the first and third layers for feature fusion. The
fused features are fed to each layer to facilitate further learning.

(3) Bottom branch
The bottom branch utilizes traditional CNN in conjunction with the SK Net self-

attentive mechanism. While extracting data features alone, CNN may fail to fully reflect
the influence of high-frequency features. In recent years, multi-scale geometric analysis
theory has introduced a novel approach to image edge detection. Non-subsampling Shear-
let multi-scale decomposition is the feature of multi-scale, multi-directionality, translation
invariance, and anisotropy, and has high operational efficiency and unrestricted decompo-
sition methods [15], [9]. To enable different images to learn convolution kernels of varying
importance, the SK attention mechanism is incorporated into the local path, allowing it
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Fig. 2. SK Net model diagram

to select convolution kernels of different sizes depending on the target scale and produce
differing effects [31], [41]. The specific model diagram is presented in Fig. 2.

SK Net can be divided into three phases, splitting, fusion, and selection. In the split-
ting stage, the original feature map is passed through two parallel convolution kernels of
size 3×3 and 5×5 filters for parallel convolution operations, and the convolution results
of different scales U1 and U2 are fused with features. In the fusion stage, the part of
each convolutional kernel weight is calculated and the feature maps of the two parts are
summed by the element, as shown in Eq. (8).

U = U1 + U2 (8)

The generated U is globally averaged pooled, S is obtained by the Fgp function, and
the feature map dimension changes from [C×H×W] to [1×1×C], as shown in Eq. (9).

S = Fgp(U) =
1

H ×W

H∑
i=1

W∑
j=1

U(i, j) (9)

Full concatenation is used to generate compact features z. δ is the RELU activation
function, B denotes batch normalization (BN), the dimension of z is the number of con-
volution kernels, the dimension of Ws is d×C, d represents the feature dimension after
full concatenation, L has a value of 32 in the text, and r is the compression factor, as
shown in Eqs. (10) and (11).

z = Ffc(S) = δ(B(Ws)) (10)

d = max(C/r, L) (11)

After the first two stages, the weight information of different scale spaces is obtained.
Select is the process of the new feature map obtained after the calculation of the convo-
lution kernel with different weights. If it is two convolution kernels, then ac + bc = 1,
the dimension of Z will be d ∗ 1, the dimension of A will be C ∗ d, B will be C ∗ d,
then the dimension of a = A ∗ Z will be 1 ∗ C. Ac and Bc are the cth row data of A
and B, and ac is the bc element of a. This gives the weights of each convolution kernel,
respectively, as shown in Eq. (12).
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ac =
eAcz

eAcz + eBcz
, bc =

eBcz

eAcz + eBcz
(12)

Applying the weights to the feature map, where V = [V1, V2, ..., Vc], the dimension
of Vc is H*W and the final feature map V is obtained by the attention weights on each
kernel. The final output is presented in Eq. (13).

Vc = ac × U1c + bc × U2c, ac + bc = 1 (13)

Due to the limited perceptual field of convolutional operations, feature extraction of
images using a single convolutional kernel of fixed scale size has certain limitations On
the contrary, multi-scale feature extraction can get more comprehensive features.

(4) Feature cross-fertilization
The feature fusion method can make comprehensive use of multiple image features

to achieve the complementary advantages of multiple features and obtain the robustness
and accuracy of recognition results [23]. Feature pyramid network (FPN) is mainly pro-
posed for the multi-scale features of targets in images. It is used to extract features of
different scales for classification in the field of target recognition [8], [42]. Based on the
high resolution of low-level features and the semantic information of high-level features,
the prediction effect is achieved by fusing these features of different layers [21]. FPN up-
samples the deep layer information and sums the shallow layer information element by
element, thus constructing a feature pyramid structure.[10]

The main methods of feature fusion are early fusion, late fusion, feature non-fusion,
etc. In this experiment, concat and add in the early fusion method is used. add is the
increase of information under the features describing the image, but the dimension of
the image itself does not increase, only the amount of information under each dimension
increases [44]. And concat is the merging of the number of channels, which means that
the number of features (the number of channels) describing the image itself increases,
while the amount of information under each feature does not increase [11].

In this paper, the multi-scale feature fusion of FPN is applied to the HPIDM. The
output features of different layers are cascaded several times to obtain the fused feature
matrix, which enables the model to fully learn the spatial and temporal features of the
traffic data.

First, after the first down sampling of the three-layer neural network, the output feature
maps are fused using channel cascading, which does not change the size of the feature
maps, but only the multiplicity of channels [32].

Since the convolution kernel of each output channel is independent, only the output
of a single channel is concerned. Suppose the two input channels are X1, X2, ..., Xc and
Y1, Y2, ..., Yc.

Then the single output channel of concat is presented in Eq.(14), where * denotes
convolution.

Zconcat =

c∑
i=1

Xi ∗Ki +

c∑
i=1

Yi ∗Ki+c (14)

The fused feature maps are fed simultaneously into a three-layer neural network, with
the first layer first passing through a 3*3 sliding convolution window and then down-
sampling to reduce the size of the feature maps. The second layer is passed through a
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stacked LSTM module. The third layer is downsampled after passing through a sliding
convolution window and an SK attention mechanism.

The three output feature mappings are subjected to an add fusion operation and then
outputted after a global convolution operation and a global average pooling layer [40].

The single output channel of add is Eq.(15).

Zadd =

c∑
i=1

(Xi + Yi) ∗Ki =

c∑
i=1

Xi ∗Ki +

c∑
i=1

Yi ∗Ki (15)

The output data is fed into a fully connected layer and a CosMargin layer to classify
multiclass imbalanced malicious traffic. A batch processing normalization layer is shelved
after each convolutional layer to speed up the convergence of the network model.

4. Experiment and Result Analysis

This section presents the experimental environment and parameter settings. The system-
atic evaluation of the experiment employs primarily five evaluation metrics. The valid-
ity of the model is verified on the ISCX-IDS 2012 ID and CICIDS2017 datasets. The
control group comprises classical models such as TPCNN, TPCNN C, CROSS CNN,
CROSS CNN LSTM, and HPM.

4.1. Experimental Environment and Parameter Settings

Table 2. Experiment environment.

Equipment Example
OS Windows 10 Professional Edition

CPU Intel(R)Core(TM)i7-8700CPU@3.20GHz3.19GHz
GPU RTX 2060
RAM 8G

Compiler environment Python 3.8

The experimental environment is shown in Table 2. The proposed model is veri-
fied using three features, namely data header, payload, and data header with payload.
256-dimensional features are extracted from each data stream and then scaled to 16*16
grayscale images for network training. In the experiments, Adam is employed as an ac-
celerated convergence method, and the optimizer is set to 0.0005 to prevent overfitting,
with a fixed momentum factor of 0.9. The learning rate is set to 0.001 for the first eight
phases for better speed. In the next three phases, the learning rate is reduced to 0.0001,
and the learning rate is set to 0.00001 with a batch size of 256 in the last two phases. No
additional data enhancement is used during the testing and training phases to effectively
validate the proposed model.
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4.2. Selection of Datasets

Compared to other datasets, the CIC-IDS 2017 and ISCX 2012 datasets use the original
traffic and contain various types of attacks. Furthermore, they are relatively new and have
good robustness and stability.

The CIC-IDS2017 dataset is generated in a simulated environment and spans over
five days, incorporating both benign and common attacks to emulate real-world data. The
dataset is fully labeled for various types of traffic and consists of source data (PCAP) and
network traffic analysis results (CSV files) based on timestamps, source and target IP ad-
dresses, source and target ports, protocols, and attack flow. The CIC-IDS2017 dataset di-
vides the acquired network traffic data into a total of 12 categories, there is an unbalanced
number of different attacks, which are distributed among the pcap network traffic. Table 3
shows the collection date of the dataset and its corresponding data volume.[39][16]

Table 3. Category distribution of the CIC-IDS2017 dataset.

Data Description Data volume size
Monday, July 3, 2017 Normal flow 11G
Tuesday, July 4, 2017 Normal traffic + malicious traffic 11G

Wednesday, July 5, 2017 Normal traffic + malicious traffic 13G
Thursday, July 6, 2017 Normal traffic + malicious traffic 7.8G

Friday, July 7, 2017 Normal traffic + malicious traffic 8.3G

Unlike the KDD99 dataset, the content of the ISCX2012 dataset is newer and its data
sample size is larger. The dataset is created using a dynamic approach that encompasses
both malicious and non-malicious network behaviors.

The anomaly distribution in the CIC-IDS 2017 and the ISCX 2012 datasets are shown
in Figs. 3 and 4, respectively.

Fig. 3. Anomaly distribution in the CIC-IDS 2017 dataset
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Fig. 4. Anomaly distribution in the ISCX 2012 dataset

The CICIDS2017 dataset is divided into experiments, of which 80% is used as the
training set and the remaining 20% as the test set. To distribute each category equally
between the training and test sets, it is necessary to divide each type in a ratio of 4:1.

4.3. Five Indicators for experimental evaluation

This paper focuses on the evaluation of intrusion detection from five metrics, accuracy,
recall, precision, FAR, and F1 score. The classification of indicators is shown in Table 4.

Table 4. Classification of indicators.

Relevant Not Relevant
Retrieved True Positives (TP) False Positives (FP)
Not Retrieved False Negatives (FN) True Negatives (TN)

TP refers to the number of accurately identified positive samples, TN refers to the
number of accurately identified negative samples, FP represents the number of falsely
identified positive samples, and FN represents the number of falsely identified negative
samples.

(1) Accuracy
a metric that measures the ratio of correctly classified samples by the classifier to the

total number of samples in a given test data set. It indicates the system’s ability to accu-
rately identify intrusions from various behaviors. A detection system with a low accuracy
may mistake legitimate activities for intrusions and produce false alarms, which is called
false alarm phenomena.[19]It is defined as in Eq. (16).

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

(2) Recall
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It is the ratio of the number of positive samples that are correctly identified to the total
number of all positive samples that should be retrieved, and it is defined as Eq. (17).

Recall =
TP

TP + FN
(17)

(3) Precision
It is also called accuracy rate which is the ratio of the number of positive samples

correctly retrieved to the number of positive samples retrieved, which is defined in Eq.
(18).

Precision =
TP

TP + FP
(18)

(4) FAR
It is also known as the false positive rate which is defined as the ratio of incorrectly

predicted attack samples to all normal samples and is defined in Eq. (19).

FAR =
FP

FP + TN
(19)

(5) F1 score
an evaluation metric that reflects both precision and recall. It is defined as the har-

monic mean of precision and recall, as shown in Eq. (20). The F1 score can provide a
balanced evaluation of the model’s performance by considering both the true and false
positives.

F1−score = 2 ∗ ( Precision ∗Recall

Precision+Recall
) (20)

In the experiments, the positive categories are considered to be the accurately detected
categories, while the negatively detected categories are considered negative. The quality
of the model is assessed using the five evaluation metrics mentioned earlier. A higher
value of accuracy, precision, recall, and F1 score indicates better model performance,
while a lower value of the FAR indicates better performance.[18][1]Accuracy is a general
measure of a model’s classification effectiveness, while Precision, Recall, and F1 score
are more focused on assessing the model’s effectiveness in detecting different categories.

4.4. Ablation Experiment and Result

To further verify the performance of abnormal network traffic detection, the HPIDM is
compared with the conventional network models like TPCNN, TPCN C, CROSS CNN,
CROSS CNN LSTM, and HPM using the datasets ISCX-IDS 2012 and CICIDS2017.
Fig. 5 shows the results of the comparison of the recognition accuracy of the models
on the ISCX-IDS 2012 dataset. Fig. 6 presents the comparison between the HPIDM and
other models in terms of precision, recall rate, F1%score, and FAR. As seen in Fig. 5,
the HPIDM has the highest overall detection accuracy on the ISCX-IDS 2012 dataset,
outperforming the classical model by 0.06%, 0.05%, 0.11%, 0.13%, 0.12%, respectively,
outperforming the two comparison models by 0.13%, 0.02%. From Fig. 6 (A), it can be
seen that the detection accuracy of the HPIDM is higher and smoother, which indicates
that the proposed method in this paper effectively improves the problem of low detection
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rate due to data imbalance. As shown in Fig. 6 (B), the recall rate of the HPIDM is higher
than that of other comparable models, indicating that it has a stronger positive sample
identification ability. As shown in Fig. 6 (C), compared with other models, the F1 score
of the HPIDM is higher, which means that the HPIDM is more robust. It can be seen from
Fig.6 (D) that the FAR of the HPIDM is lower and smoother. The experimental results
show that the HPIDM is significantly better than other classical network traffic anomaly
detection models.

Fig. 5. Comparison of the recognition accuracy of each model on the ISCX-IDS 2012
dataset

Moreover, a comparison of the HPIDM with other classical models in terms of time
consumption is shown in Figs. 7and 8. It is evident that although the HPIDM is not the
fastest in training time, its testing time is much less than the TPCNN and TPCNN C mod-
els. Additionally, while the training and testing time of the CROSS CNN and
CROSS CNN LSTM models are shorter than the HPIDM, they exhibit inferior perfor-
mance regarding precision, recall, and other relevant aspects. In summary, the HPIDM
has high training accuracy and feasibility despite its relatively longer training time.

Additional experiments are conducted in the CICIDS2017 dataset to further validate
the efficacy of the HPIDM. The experimental results are presented in Tables 5 to 9. As
shown in Table 9, all classifiers exhibit a classification accuracy of over 99%. Notably, the
HPIDM displays the highest classification accuracy compared to all other models. More-
over, Table 5 to9 indicate that the HPIDM surpasses other models in terms of accuracy,
recall, and F1 score on the CICIDS2017 dataset, thus reinforcing its effectiveness.

Furthermore, the training duration of distinct classifiers is also evaluated on the CI-
CIDS2017 dataset, as depicted in Fig. 9. Tables 5 to 8 and Fig. 9 reveal that the HPIDM
outperforms other models in terms of accuracy and training time. The experimental out-
comes obtained from the CICIDS2017 dataset provide evidence of the HPIDM’s feasibil-
ity.

Additionally, two upgraded versions of the HPIDM are introduced and the FCN struc-
ture of the first layer and the stacked LSTM module of the second layer are taken as
variables for comparative experiments to validate the fusion of feature information. The
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Fig. 6. Comparison of precision, recall, F1 score, and FAR for each model on the ISCX-
IDS 2012 dataset

Fig. 7. Comparison of training time for each model on ISCX-IDS 2012 data
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Fig. 8. Comparison of test times for each model on ISCX-IDS 2012 data

Table 5. Precision comparison

Label 0 1 2 3 4 5 6 7 8 9 10 11
HPIDM 1.00001.00000.99280.99870.99110.99191.00001.00001.00000.99991.00000.9991
TPCNN 1.00001.00000.98480.99920.98000.99670.99971.00001.00001.00000.99980.9967
TPCNN C 1.00001.00000.99550.99900.98170.99381.00001.00001.00000.99991.00000.9972
CROSS CNN 1.00001.00000.99560.99920.98600.99240.99971.00001.00001.00000.99970.9976
CROSS CNN LSTM1.00001.00000.99060.99870.98890.99100.99981.00001.00001.00001.00000.9986
HPM 1.00001.00000.99130.99860.98890.99101.00001.00001.00000.99990.99980.9967

Table 6. Recall comparison

Label 0 1 2 3 4 5 6 7 8 9 10 11
HPIDM 1.0000 1.0000 0.9706 0.9998 0.9801 0.9934 0.9997 1.0000 1.0000 1.0000 0.9998 0.9995
TPCNN 1.0000 1.0000 0.9796 0.9996 0.9750 0.9891 0.9995 1.0000 1.0000 1.0000 0.9998 1.0000
TPCNN C 1.0000 1.0000 0.9754 0.9999 0.9867 0.9862 0.9999 1.0000 1.0000 0.9999 0.9998 0.9995
CROSS CNN 1.0000 1.0000 0.9803 0.9998 0.9860 0.9929 0.9994 1.0000 1.0000 1.0000 0.9998 0.9991
CROSS CNN LSTM 1.0000 1.0000 0.9698 0.9997 0.9838 0.9929 0.9995 1.0000 1.0000 1.0000 0.9998 0.9991
HPM 1.0000 1.0000 0.9681 0.9997 0.9809 0.9924 0.9995 0.9995 1.0000 1.0000 0.9996 0.9986

Table 7. F1 score comparison

Label 0 1 2 3 4 5 6 7 8 9 10 11
HPIDM 1.0000 1.0000 0.9815 0.9993 0.9856 0.9927 0.9999 1.0000 1.0000 0.9999 0.9999 0.9991
TPCNN 1.0000 1.0000 0.9822 0.9994 0.9775 0.9929 0.9996 1.0000 1.0000 1.0000 0.9998 0.9983
TPCNN C 1.0000 1.0000 0.9854 0.9994 0.9842 0.9900 0.9997 1.0000 1.0000 0.9999 0.9999 0.9983
CROSS CNN 1.0000 1.0000 0.9879 0.9995 0.9860 0.9926 0.9996 1.0000 1.0000 0.9998 0.9998 0.9991
CROSS CNN LSTM 1.0000 1.0000 0.9801 0.9992 0.9863 0.9919 0.9997 1.0000 1.0000 1.0000 0.9999 0.9988
HPM 1.0000 1.0000 0.9796 0.9992 0.9848 0.9917 0.9997 0.9997 1.0000 0.9999 0.9997 0.9976
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Table 8. FAR comparison

Label 0 1 2 3 4 5 6 7 8 9 10 11
HPIDM 0.0 0.0 0.0001 0.0009 0.0001 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TPCNN 0.0 0.0 0.0003 0.0006 0.0001 0.0001 0.0 0.0 0.0 0.0 0.0 0.0
TPCNN C 0.0 0.0 0.0001 0.0007 0.0001 0.0001 0.0 0.0 0.0 0.0 0.0 0.0
CROSS CNN 0.0 0.0 0.0001 0.0006 0.0001 0.0001 0.0 0.0 0.0 0.0 0.0 0.0
CROSS CNN LSTM 0.0 0.0 0.0002 0.0009 0.0001 0.0001 0.0 0.0 0.0 0.0 0.0 0.0
HPM 0.0 0.0 0.0002 0.0009 0.0001 0.0001 0.0 0.0 0.0 0.0 0.0 0.0

Table 9. Comparison of the recognition accuracy of each model on the CICIDS2017
dataset

Label HPIDM TPCNN TPCNN C CROSS CNN CROSS CNN LSTM HPM
Accuracy 0.9994 0.9991 0.9992 0.9992 0.9991 0.99900

Fig. 9. Comparison of training time for each model on the CICIDS2017 dataset
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network model structures for comparison tests 1 and 2 are illustrated in Figs. 10and 11.
The experiments remain consistent except for the FCN structure of the first layer and the
stacked LSTM module of the second layer.

Fig. 10. Model-1 structure

Table 10 shows the accuracy, recall, precision, FAR, F1 score of HPIDM, model-1,
and model-2 on the ISCX 2012 dataset. The detection accuracy of the HPIDM on the
ISCX 2012 dataset remains the highest, 0.13% higher than that of the comparison model
1 and 0.02% higher than that of the comparison model 2, and F1 score and Recall are
optimal, thus demonstrating the effectiveness of the FCN structure and stacked LSTM
module in the HPIDM, which indicates that the structure can better learn the features of
the traffic data and is more effective in detecting abnormal network traffic.

Table 10. Comparison of experimental results between the HPIDM and the improved
model on the ISCX-IDS 2012 dataset

Classifier Accuracy Precision Recall F1 score FAR Training time
HPIDM 0.9987 0.9988 0.9988 0.9987 0.0004 1593.5
Model-1 0.9974 0.9984 0.9979 0.9981 0.0006 1901.8
Model-2 0.9986 0.9987 0.9984 0.9985 0.0005 1104.08

5. Conclusion

This paper introduces a novel hybrid parallel intrusion detection model (HPIDM) based
on deep learning. Ablation experiments conducted demonstrate the superior performance
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Fig. 11. model-2 structure

of HPIDM compared to other models. On the ISCX-IDS 2012 and CICIDS 2017 datasets,
HPIDM achieves remarkable accuracy rates of 99.87% and 99.94%, respectively, surpass-
ing the comparison models. Furthermore, HPIDM exhibits superior recall, accuracy, FAR,
and F1 score compared to existing classical models. The success of HPIDM can be at-
tributed to its three-layer parallel neural network structure, which combines a stacked
long and short-term memory (LSTM) neural network with a convolutional neural net-
work (CNN), along with the SK Net self-attentive mechanism. This unique combination
enables HPIDM to efficiently learn both the temporal and spatial features of traffic data.
The experiments comparing the improved models Model1 and Model2 with the HPIDM
model also show the soundness of the design of our model in the FCN module and the
stacked LSTM module. HPIDM fuses the acquired temporal and spatial feature data sev-
eral times and then feeds it into the CosMargin classifier for classification detection to
reduce the impact of data imbalance on Intrusion Detection System (IDS) performance,
resulting in a model with strong robustness and positive sample recognition rate.

HPIDM shows better results in terms of detection accuracy and other evaluation crite-
ria. This model effectively identifies malicious activities and network attacks on specific
computers or networks, providing timely alerts to administrators for network security. Its
versatility extends to various applications, such as smart homes where it detects unau-
thorized access to home networks, safeguarding residents’ privacy. In industrial control
systems, the model detects cyber attacks on critical infrastructure, preventing potential
damage. Additionally, it contributes to healthcare systems by detecting and preventing
unauthorized access to sensitive patient data.

However, it is important to note that the dataset used in this study comprises a large
number of labeled samples, covering various anomalous network traffic classes. In real-
world network environments, a substantial amount of data remains unlabeled, and the
anomalous traffic classes are unknown. Given the impracticality of labeling all data, fu-
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ture research will focus on exploring semi-supervised intrusion detection methods. The
aim is to design effective models and methods that can be trained using limited labeled
data and abundant unlabeled data. One potential approach involves leveraging Genera-
tive Adversarial Networks (GANs) to learn the underlying distribution of network traffic,
enabling anomaly detection by comparing real and generated data. This research direc-
tion aims to further enhance the accuracy of anomalous network traffic detection, thereby
ensuring the network and data security of IoT systems.
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