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Abstract. Heart sounds classification plays an important role in cardiovascular
disease detection. Currently, deep learning methods for heart sound classification
with heavy parameters consumption cannot be deployed in environments with lim-
ited memory and computational budgets. Besides, de-noising of heart sound sig-
nals (HSSs) can affect accuracy of heart sound classification, because erroneous re-
moval of meaningful components may lead to heart sound distortion. In this paper,
an automated heart sound classification method using adaptive wavelet threshold
and 1D LDCNN (One-dimensional Lightweight Deep Convolutional Neural Net-
work) is proposed. In this method, we exploit WT (Wavelet Transform) with an
adaptive threshold to de-noise heart sound signals (HSSs). Furthermore, we utilize
1D LDCNN to realize automatic feature extraction and classification for de-noised
heart sounds. Experiments on PhysioNet/CinC 2016 show that our proposed method
achieves the superior classification results and excels in consumption of parameter
comparing to state-of-the-art methods.

Keywords: heart sounds classification, adaptive wavelet threshold, lightweight deep
convolutional neural network.

1. Introduction

Population aging is the trend of population development in the world. According to China
Cardiovascular Health Index (2019), the mortality rate of residents from cardiovascular
diseases (CVD) accounts for all disease mortality more than 85% of the total, and the trend
is increasing [28]. Most seriously, heart disease is one of the biggest challenges of car-
diovascular disease in China, and there currently are 11 million coronary heart diseases,
5 million pulmonary heart diseases, 4.5 million heart failures, 2.5 million rheumatic heart
diseases, and 2 million congenital heart diseases. Heart sounds contain a large number of
biomedical signals of cardiac activity. Heart sound classification is one of the most eco-
nomical and effective non-invasive diagnostic methods for various cardiac abnormalities,
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and is also of great significance for primary screening and early treatment of cardiovas-
cular diseases.

Heart sounds classification based on manual auscultation has greater uncertainty and
delay in diagnosis, and it is difficult to meet the increasing patients. Since hospitals, com-
munity hospitals, nursing centers and other places are crowded with people, manual aus-
cultation is easily affected by many factors such as the surrounding environment, the
quality of the stethoscope, and the doctor’s experience. Currently, digital stethoscopes
based on IoT (Internet of Things) are developing rapidly. Three products of digital stetho-
scopes are currently available in the market: Eko Core [8], Thinklabs[35] and Hefei Huake
Electronic HKY-06C [15] . Digital stethoscopes are rapidly entering family healthcare
monitoring. However, automatic heart sounds classification is insufficient in terms of ob-
jectivity and effectiveness, which restricts the popularization of digital stethoscopes. Cur-
rently, automatic heart sounds classification is developing in the direction of high accu-
racy, lightweight deployment, and real-time response, so as to effectively support family
health monitoring and clinical applications, which is becoming a research hot issue.

In general, signal preprocessing, feature extraction and classification are the mainly
steps of heart sound signals (HSSs) diagnosis.

(i) In the first step, signal pre-processing includes noise removal and signal segmenta-
tion. Empirical Mode Decomposition (EMD) [1], STFT (short-time Fourier Transform)[40],
Hidden Markov Model [19] and Hibernate transform, wavelet threshold de-noising method
[3] were usually used to measure cardiac cycle durations and de-noise the signals. The
above methods are mainly unsupervised heart sound de-noising algorithms, which needs
to manually set thresholding parameters and decomposition levels. Signal segmentation
plays a crucial role for feature extraction and classification. Heart sound signals is seg-
mented into series of fundamental heart sounds (FHSs), and each FHS includes a number
of the first (S1), the second (S2), systolic and diastolic hear sounds. For example, an event
detection approach with deep recurrent neural networks (DRNNs) [24] was proposed for
heart sound segmentation, i.e. the detection of the state-sequence first heart sound (S1)-
systole-second heart sound (S2)-diastole. In order to accurately segment PCG signals,
most of PCG segmentation algorithms need synchronous ECG (Electrocardiograph) as
reference signals. However, it is not convenient to collect heart sounds and their reference
ECG signals at the same time and ensure their synchronization in practice.

(ii) In the second step, extracted features can be divided into three major types: time-
domain, frequency-domain and time-frequency domain-based features. Generally, it is
relatively easy to extract the time-domain features or frequency-domain domain, but it is
difficult to calculate the features in the time-frequency domain, because these features are
difficult to represent discriminative features. Extracted features can also be divided into
handcrafted features and deep features. Hand-crafted feature refers to extracting the dis-
criminative features from HHSs, such as MFCC (Mel Frequency Cepstrum Coefficient),
LPC (Linear Prediction Coefficient), and LPCC (Linear Prediction Cepstrum Coefficient)
features. For example, STFT (Short-time Fourier Transform), Wavelet transform and S-
transform method can be adopted to transform and represent signals in different time-
frequency-domain. Extraction of handcrafted features still is a challenging task because
of the non-stationary and diversity of heart sound signals. Besides, it is easy to be sub-
jectively affected and produces actual deviations. Deep feature refers to extract features
from HSSs through specific model which is obtained by learning and training. Owing to
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the strong feature representation power of deep learning technologies, deep learning has
recently been used for exploratory applications in heart sounds, such as Depth Recurrent
Neural network (DRNN), ShuffleNet [41], and 1D CNN (Convolutional Neural Network)
[39].

(iii) In the last step, the classifier is trained over the extracted features in order to the
prediction results of each heart sound signal. Various classifiers, such as Artificial Neural
Network (ANN)[7], twin Support Vector Machine(tSVM)[20], and improved duration-
dependent HMM, have been used to classify heart sounds. Feature extraction and clas-
sification are inseparable in deep learning-based heart sound classification. Heart sounds
classification based deep convolution neural network (DCNN), such as 1D CNN , 1D
DCNN [32], DS-CNN [13] , require a large scale of annotated data. Furthermore, DCNN
model with heavily parameters consumption relies on high-performance GPU and parallel
processing technology.

To sum up, the main challenges of heart sounds classification under are as follows:
(i) The quality of heart sound is affected by the complex noise of internal physiological
changes and external environmental changes. Besides, de-noising algorithms for HSSs
can erroneously remove meaningful heart sound components due to manual setting of pa-
rameters, and even lead to heart sound distortion. (ii) Most of heart sound segmentation
algorithms ideally assume that heart sounds are collected under strictly constrained en-
vironment. In practice, it is difficult to capture the state sequence S1-systole-S2-diastole,
resulting in insufficient segmentation accuracy. (iii) The size of deep neural networks is
not suitable for deployment on digital stethoscopes with strict constraints on memory and
computational budget.

In this paper, we develop an automated heart sound classification method using adap-
tive wavelet threshold and 1D LDCNN (one-dimensional Lightweight Deep Convolu-
tional Neural Network) with low parameters and high accuracy. In this method, wavelet
transform with an adaptive threshold is used to de-noise heart sound signals. The de-
noised heart sound is segmented by a 3s sliding window and then fed into 1D LDCNN
for automatic feature extraction and classification. Compared with several related work in
heart sound classification methods, the proposed 1D LDCNN obtains the better classifi-
cation performances with an accuracy of 97.92%, a sensitivity of 98.20%, an F1-score of
0.9859 and the lowest parameters consumption of 0.02M.

The key contributions of our work are as follows:
(i) We propose a wavelet transform with an adaptive threshold which de-noises the

heart sound signal and avoids filtering out the approximate components of heart sound in
the process of wavelet transform decompose.

(ii) We build a new 1D LDCNN which includes tem blocks, dense blocks and transi-
tion blocks. Among them, a point-wise convolution and a depth-wise separable convolu-
tion are used to effectively reduce the amount of parameters in dense blocks. The channel
attention mechanism is introduced to recalibrate feature maps and further increase repre-
sentation power in transition blocks.

(iii) Experiments demonstrate the superiorities of the proposed architecture with other
state-of-the art CNN-based methods in terms of classification performance and parameters
consumption. Besides, a heart sound acquisition system is implemented, which includes
acquisition module of heart sounds and a mobile application. It deploys the proposed
architecture to achieve automated heart sounds classification.
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This paper is framed in different sections. Section 2 introduces related works of au-
tomatic heart sound classification. Section 3 proposes the framework of automatic heart
sound classification and discusses the architecture of 1D LDCNN. Section 4 explains ex-
perimental results and deploys 1D LDCNN on mobile system. In Section 5, we draw the
conclusions and discuss the future work.

2. Related Works

HSSs have periodicity, randomness and non-stationarity, and many of their features are
recessive. Due to strong feature representation ability, deep learning is suitable for HSSs.
Most of research works use deep neural networks and end-to-end architecture to learn and
classify heart sound signals. Related works are discussed as follows:

(i) Deep neural networks are only used for heart sound segmentation. In response to
the problem of insufficient utilization of cardiac cycle duration information, a Duration
Long-short Term Memory network [5] was exploited to address heart sound segmenta-
tion by incorporating the duration features. Ma et al. [23] proposed a diagnosis method
for congenital heart disease-related pulmonary arterial hypertension. This method first uti-
lized a double-threshold adaptive method to segment heart sound. And then, deep learning
features and time-frequency domain features were combined to form the fusion feature.
Finally, XGBoost was used to classify heart sounds. Chen et al.[3] proposed a method for
heart sounds classification that combined an improved frequency slice wavelet transform
with CNN. This method converted 1D cardiac signal into a 2D time-frequency picture,
and selected appropriate classifiers by SampEn (sample entropy) threshold to determine
whether the heart sound recordings is normal. Besides, Humayun et al.[16] proposed a
classification framework, consisting of a CNN with 1D CNN time-convolutional layers.
In addition, representation learning was utilized to generate features. Finally, SVM and
LDA (linear discriminant analysis) classifiers were exploited to classify heart sounds.
Similarly, Li et al.[21] utilized convolution module to extract frequency-domain features
and recurrent module to extract the time-domain features, and finally implemented heart
sounds classification based on the fusion features.

(ii) Deep neural networks are only used for heart sound classification. In[26] Markov
switching autoregressive model (MSAR) was exploited to segment heart sound and fur-
ther a continuous-density HMM with Gaussian mixtures was utilized to classify heart
sounds. Oh et al. [27] exploited deep WaveNet model to classify heart sounds, which in-
cludes fives Heart valve diseases (HVD) as follows: mitral valve prolapse (MVP), mitral
stenosis (MS), mitral regurgitation (MR) and aortic stenosis (AS), normal (N). In addi-
tion, Ismail et al. [17] introduced a hybrid network-based heart sounds classification using
transfer learning.

(iii) Deep neural networks are used for feature extraction and classification with end-
to-end architecture. Xiao et al. [39] proposed an automatic heart sound classification
method using deep learning, which includes pre-processing, heart sound classification
of patches using CNN with attention mechanism, and majority voting for heart sounds
classification. Raza et al.[29] depended on band filter removed the noise from HSSs, and
further exploited RNN that is based on LSTM, Dropout, Dense and Softmax layer to clas-
sify heart sound recordings. Due to the low SNR, 497 features were extracted and then
fed these features into the CNN, performing heart sounds classification. Ghosh et al. [12]
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proposed a time-frequency-domain (TFD) deep neural network approach for automated
FHSA detection using PCG signals. Xiang el al.[37] proposed a heart sound classification
using two-dimensional features, which transferred heart sound classification into image
classification. An end-to-end Le-LWTNe, which embedded the trainable CNN into the
lifting wavelet transform (LWT), is proposed for automatic abnormality detection of heart
sounds [11]. Wang et al. [36] proposed an automatic approach for heart failure typing
based on heart sounds and one-dimensional CNN (1D CNN). Guo et al. [13] developed
a dual-stream convolutional Neural Networks (DS-CNN) to detect abnormal from heart
sound recordings.

(iv) Deep neural networks are used for feature extraction and classification (not end-
to-end architecture). Shukla et al. [33] proposed an efficient method for automatic seg-
mentation detection. Furthermore, a supervised ANN model is exploited to detect S1-S2
and non-S1-S2 segments of the cardiac cycle. Finally, a CNN model is used to auto-
matically diagnose the heart diseases based on heart sounds. Rubin et al.[32] captures
the time-frequency distribution of signal energy and classifies normal and abnormal heat
maps using DCNN. A combination of WT and WPT energy-based features followed by a
deep recurrent neural network (RNN) model was proposed for recognizing heart sounds
[18]. Ren et al. [30] proposed deep attention-based neural networks for heart sounds clas-
sification, which exploited attention mechanisms to a CNN and an RNN to capture feature
and context information.

Compared to the above methods, we can highlight the contributions of our proposed
method. (i) The use of wavelet transform with an adaptive threshold is more benefit to
remove noise and enhance the quality of HSSs than the other methods. In practice, it is
not sufficient to only use the frequency domain filtering method, such as elliptic filter [6]
and band filter, and wavelet threshold to remove the noise from HSSs. This is because
that the main frequency of heart sound signal overlaps with the main frequency of the
noise signal[4]. Besides, the parameters of wavelet transform in this paper are adaptive
thresholds for their superior effect in the de-noising of HSSs. (ii) Deep learning methods
for heart sounds classification, such as [21] [20], etc., are getting deeper and wider which
bring a mass of trainable parameters and need to consume a lot of memory and computing
resources. 1D LDCNN is a kind of lightweight models, which is more conducive to large-
scale application of heart sounds classification.

3. Proposed Framework

In this section, we will give a detailed description about our proposed method as follows:
HSSs pre-processing phase, de-noising the heart sound signal based on wavelet transform
with an adaptive threshold; HSSs classification phase recognizing normal and abnormal
heart sounds based on 1D LDCNN which constitutes stem block, three simplified dense
blocks and transition blocks, and Softmax layer. A GAP (Global Average Pool) layer
is followed by FC (Fully Connected Layer) and a Softmax. FC is usually used before
the classification layer is replaced with a GAP to obtain global information about the
feature map and avoid overfitting. The method increases the types of distinguishable heart
sounds and improves the performance without affecting the accuracy while reducing its
computational complexity.
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3.1. Pre-processing of HSSs

Heart sounds have the following characteristics: (i) HSSs have periodicity, randomness
and non-stationarity; (ii) HSS has obvious common characteristics and weak individual
characteristics; (iii) The important information of heart sound is concentrated in the fre-
quency of 25Hz-400Hz; (iv) The primary murmurs of heart sound span between 30Hz
and 700Hz. Heart sound signals often contain noise such as lung sound and internal body
noise. Therefore, effective filtration is of critical important to enhance the heart sounds
signal by reducing the influence of background noise and removing spike noise. In this pa-
per, first, the Butterworth bandpass filter is used to filter out frequencies above 400Hz and
frequencies below 25Hz of heart sound signal. Butterworth bandpass filter can eliminate
most of the noise signal, and reduce the calculations of subsequence wavelet transform.
Then, because the main frequency of heart sound overlaps with the main frequency of
the noise signal, wavelet transform is used for secondary noise eliminated. When wavelet
transform decomposes HSSs, only the low-frequency part is further decomposed, and the
high-frequency part, that is, the detailed part of the signal, is no longer decomposed [34].
Wavelet coefficients with relatively small amplitude values are mostly noise, while the
wavelet coefficients are relatively large for the effective signal of heart sounds [42]. The
threshold is set on the basis of this property. The wavelet coefficients below the selected
threshold are zeroed or smoothed by threshold quantization processing to suppress the
influence of high-frequency noise, while the coefficients not below the selected threshold
are retained.

In general, the hard and soft threshold function method was proposed as follows:
Mini-max threshold, Sqtwlolg threshold, and Rigrsure threshold[25]. Mini-max threshold
is directly related to the length of HSSs. Sqtwlolg threshold is a hard threshold which
the reconstructed signal after de-noising processing is very rough. When the heart sound
signals are too long, the Mini-max threshold is too larger to filter out the most of the
wavelet coefficients and reconstructed signal will be easily lose useful signal. Rigrsure
threshold relies on Stein’s unbiased risk estimate to obtain adaptive threshold of wavelet
coefficients of decomposed layers. Rigrsure threshold is continuous, we first calculate the
square value of each element in the signal S, and then sort from the largest to the smallest
as a new sequence M ={M1,M2,· · ·,ML},and finally calculate the risk estimate for each
element in M according to formula (1). Let Mk be square root of the smallest element k0
in the risk estimate, and λ is used as the threshold.

Rk =

L− 2k +
k∑

i=1

Mk + (L− k)ML−k

L
k = 1, 2, ..., L (1)

λ=
√

σMk0
(2)

Where L is the length of the signal, and k represents the index in corresponding to the
element currently calculated.

Stein’s unbiased risk estimate mainly calculates the threshold based on the variance of
the high-frequency coefficients decomposed in the first layer, and then uses the threshold
to process the wavelet coefficients of other layers. It does not take into account the prob-
lem of high-frequency component reduction and results in removing useful heart sound
components. Wavelet decomposition is performed in accordance with the high and low
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frequency coefficients. For this reason, this paper introduces adaptive factor of the number
of decomposition layers, and its formula is as follows:

λj =
λ

αj
(3)

αj = ln

(
j +

j

J

)
(4)

where j is the threshold of the j − th layer, J is the number of decomposition layers,
αj denotes the adaptive factor, and λj is related to the number of layers of wavelet de-
composition. The threshold increases and decreases with the number of layers. When we
calculate the high-frequency coefficient, a larger threshold can be obtained. When we
calculate the low-frequency coefficient, a slight smaller threshold can be obtained. The
detailed algorithm of de-noising is shown as Algorithm 1.

Algorithm 1: Heart sound signals de-noising based on wavelet transform with an
adaptive threshold
Input: Heart sound signals
Output: The reconstructed heart sound signal
1. Using the Butterworth bandpass filter to filter out frequencies above 400Hz and
frequencies below 25Hz of heart sound signal.
2. Using wavelet transform to further eliminate noise.
3. Selecting the appropriate wavelet function to suppress the influence of high
frequency noise.
4. Calculating the Stein’s unbiased risk estimate for each element in sequence
according to formula (1).
5. Introducing the layer number adaptive factor on the original basis, according to
fomula (4).
6. The processed wavelet coefficients are inversely transformed to obtain the final
de-noised heart sound signal.
7. Return the reconstructing of heart sound signal.

Heart sound signals de-noising based on wavelet transform with an adaptive threshold
has some advantages as follows:

(i) The effect of wavelet transform with hard threshold remains rough because it ne-
glects to processes wavelet coefficients larger than hard threshold and results in de-noising
distortion. Wavelet transform with an adaptive threshold compensates for the deficiency
of hard threshold by taking into account high-frequency and low-frequency coefficients.

(ii) The effect of wavelet transform with rigrsure threshold improves smooth because
it performs continuous compression on wavelet coefficients and results in filtering out
the approximate components of heart sound signals. Wavelet transform with an adaptive
threshold in this paper retains a large coefficient and avoids de-noising distortion in the
process of wavelet decomposition.
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3.2. An Architecture of 1D LDCNN

In order to reduce extra computing of raw input signals, we employ the sliding windows
to split the Heart sound recordings into a series of patches with fixed length, i.e., 3s length
and 1s stride (from empirically selected). On one hand, segmenting heart sound record-
ings into FHSs accurately is very difficult. On the other hand, sliding windows can extends
the scale of training set. This method does not need to extract features in advance, so as
to avoid the loss of features due to improper design and affect the classification effect. We
construct a 1D LDCNN to automatically learn the discriminative features of heart sounds.
The network first uses the stem block to enhance the characterization ability of features,
and then uses simplified dense blocks and transition blocks to extract deep features, and
finally uses softmax as the heart sound classifier. In particular, deep separable convolu-
tion in dense blocks can reduce the amount of network parameters. Furthermore, channel
attention in transition blocks highlights the channel features with high contribution. The
detail architecture of 1D LDCNN is as follows:

(i) Stem Block
We design stem block which can be effectively increase representation power while

increasing a small amount of computational cost. At the beginning, the first convolutional
layer uses a 1×3 kernel size, stride 2, followed by batch normalization (BN) and Rectified
Linear Unit (ReLU), the output feature map can be obtained. In order to enhance the
richness of features, we use a 2-way convolutional layer to get different scales of receptive
fields. One way of the layer uses a Cov 1× 1 , stride 1 and Cov 1× 3 , stride 2, followed
by BN and ReLU, respectively. The other way of the layers uses max-pooling 1×2, stride
2. The output feature map G2 and G3 can be obtained respectively. Finally, in order to
finally connect in the channel dimension, we use convolution to compress the amount of
channels to 24, and the output feature map G4 can be obtained. In order to reduce the
computational complexity, the maximum pooling compression feature dimension with a
step size of 2 is used to obtain the final output feature map. The calculation of the entire
stem block is as follows

G1 = F

[
24∑
i=1

(W1×3i ×X1×w)

]
(5)

G2 = F


24∑
j=1

[
W1×3j × F

[
12∑
i=1

(W1×1i ×G1)

]] (6)

G3 = MaxPool(G1)1×2 (7)

G4 = F

{
24∑
i=1

[W1×1i × Cat (G2, G3)]

}
(8)

Gout = MaxPool[G4]1×3 (9)

F = ReLU [BN (·)] (10)

where X1×w indicates the input of stem block; w is the dimension of input data; W1×3

, W1×1 are the 1 × 3 convolutional kernel and 1 × 1 convolutional kernel, respectively;
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Cat() denotes concatenation operation; MaxPool() denotes the max-pooling neural net-
work operation.

(ii) Simplified dense block
Dense concatenation is an important feature reuse in DenseNet. Since DenseNet al-

lows all previous feature maps are used to as input to the subsequent layer of the network.
This method can make the network simple, but it also causes the memory access cost
to increase quadratically with network depth and in turn leads to computation cost. In
order to reduce the amount of original dense connections, each layer of the network is di-
rectly connected to all previous layers with only retaining the reuse of low-level features,
thereby reducing redundant connections. In the simplified dense network, the output of
each block is divided into two parts: one part is used for the input of the next block to
extract higher-level features; the other part is used for the final concatenation operation,
so that low-level features can be obtained so as to improve feature expression ability. The
formula of a simplified dense block is as follows

Gdense = cat (H1, H2, · · · , Hk) (11)

where Gdense denotes output of a simplified dense block, Hk(k > 1) is a composite func-
tion which includes a series of operations, i.e., BN, H SWISH, Dropout and convolutional
layers.

In order to further lower the parameter consumption of simplified dense block, a
separable convolution is utilized to extract features. DWconv can effectively reduce the
amount of parameters and computation cost by separating spatial features and channel
features. Besides, the H-Swish activation function is used instead of the ReLU activation
function to further reduce the computation cost. The formula of Hk is as follows

Hk =


J

{
S

[
J

[
C∑
i=1

(W1×1i ×Gk−1)

]]}
, stride = 1,

cat

(
J [S (Gk−1)] , J

{
S

[
J

[
C∑
i=1

(W1×1i ×Gk−1)

]]})
, stride = 2.

(12)

J = H SWISH [BN (·)] (13)

where Gk−1 denotes the output of dense block, Gk−1 = Gout(k = 1); i denotes i − th
convolution kernel; C denotes the current number of convolution kernels; S denotes the
depth-wise separable convolution.

(iii) Transition block
The output Gdense of simplified dense block can be seen that the amount of output

channels is very high and cannot be directly used as the input of the next dense module.
Transition block is used to squeeze the dimensionality of the output map of simplified
dense block. In order to improve representation power, attention mechanism module is
introduced into transition blocks. The transition blocks with pooling layers are introduced
to divide the networks into two blocks processing feature maps at different resolutions.
Using a convolution 1 × 1 instead of fully connected layer, the number of output chan-
nels is a half of the original dense block. In the attention mechanism module, it exploits
global maximum pooling and global average pooling (GAP) to simultaneously generate
average-pooled features and max-pooled features respectively. And then, both features are
forward to a shared two-layer convolution, where the amount of output channels of the
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first convolution is a half of that of the second convolution. The two output features are
added and the corresponding weights are obtained through Sigmoid. In short, the channel
attention is computed as

Gatt = σ {Conv [AvgPool (G′
dense)] + Conv [MaxPool (G′

dense)]} (14)

where σ denotes the sigmoid activation function; G′
dense represents the two-layer convo-

lutions; AvgPool(G′
dense) and MaxPool(G′

dense) represent the global average pooling
calculation and global maximum pooling calculation, respectively.

3.3. Heart sound classification

Heart sounds classification is the last step of the model. Heart sounds are mainly divided
into two categories: Normal and Abnormal, with 0 for Normal and 1 for Abnormal. The
GAP layer averages the features extracted by the network and maps the features to 2
channel dimensions through the FC (fully connected) layer, and finally uses softmax layer
to calculate the probabilities of the 2 channels, and takes the corresponding index of the
maximum probability as the final output of the network. Softmax is an effective way
that handles multi-class classification problems in which output represents in categorical
ways. The activation function of softmax is defined as

S(y) =
eyi∑K

k=1 e
yk

(15)

where y, S are the input and the output, respectively. The Softmax function is used in the
last layer of the neural network to obtain the probabilities of the category class of each
input.

4. Experimental Setup and Analysis

4.1. Experimental Setting

We conduct the experiments on publicly available heart sound dataset which provided
by PhysioNet/CinC Heart Sound Classification Challenge held in 2016. The heart sound
records of PhysioNet/CinC 2016 data set [22] are collected from different clinical and
non-clinical real environments, including clean and noisy heart sound records. The targets
of its collection are both healthy subjects and pathological patients, including children
and adults. The database includes six sub-data sets a-b-c-d-f, which are integrated from
data sets provided by different research organizations such as MIT, AAD, AUTH, TUT,
UHA, etc., and are strictly labeled to divide the data into normal and abnormal. There
are two types of normal heart sound records from healthy subjects, and abnormal records
from pathological patients who have been diagnosed with heart disease. There are a total
of 3240 heart sound records from 764 subjects. The shortest record is only 5s and the
longest lasts over 120s. This experiment exploits python and PyTorch (Deep Learning
Framework) to build the proposed network. The training environment of the networks as
follows: CPU (Intel i5-10400F), GPU (Nvidia RTX 2070Super), and 8GB video memory.
The operating system is Ubuntu 18.04.
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4.2. Evaluation Metrics

In order to compare with state-of-the art heart sound classification method, we choose
Accuracy (Acc), Sensitivity (Se), Specificity (SP ), Precision (Pr), F1 score and MAcc
as several evaluation metrics, which are defined as follows

Acc :
TP + TN

TP + FP + TN + FN
(16)

Se :
TP

FP + TN
(17)

Sp :
TN

FP + TN
(18)

Pr :
TP

TP + FP
(19)

F1 : 2× Se× Pr

Se+ Pr
(20)

MAcc :
Se+ Sp

2
(21)

where TP , TN , FP , FN denotes true-positive, true-negative, false-positive and false-
negative.

4.3. Pre-Processing of HSSs

The a0074 record is de-noised by a 5-layer db6 wavelet decomposition. The choice of
threshold rules will have a certain effect on the noise reduction effect. Fig. 1 shows the
noise reduction effect of wavelet transform with Rigrsure threshold of a0074 record. Al-
though the noise is basically eliminated, some meaningful components of heart sound
signal heart are also excessively eliminated. Fig. 2 shows the noise reduction effect of
wavelet transform with an adaptive threshold. Compared to Fig. 1, more meaningful com-
ponents are retained in Fig. 2.

4.4. Classification Effect of 1D LDCNN

In order to fully learn the potential features of the provided dataset, we need train the
proposed architecture of 1D LDCNN as much as possible. Therefore, we can divide the
provided dataset (PhysioNet/CinC 2016) into three parts, a training set/a validation set/a
test set with a percentage of 8:1:1 respectively. The training set is used to train the model,
the validation set to optimize the model and the test set to evaluate and check the perfor-
mance of the model. Our proposed model is trained with a batch size of 64. The WCE
(Weighted cross-entropy) with rate 1 to 0.25 (Abnormal to Normal) is chosen as loss func-
tion. Adam optimizer function uses momentum and adaptive learning rates to converge
faster.

Table 1 summarizes the experimental results. Our proposed method is mainly com-
pared with five state-of-art methods. It can be seen that the proposed method outperforms
other methods except Sp. In terms of Acc, Se and Pr, our proposed method obtains an



1494 Jianqiang Hu et al.

Fig. 1. The de-noising effect of 5-layer db6 wavelet decomposition with Rigrsure thresh-
old

Fig. 2. The de-noising effect of 5-layer db6 wavelet decomposition with an adaptive
threshold
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accuracy of 97.92%, a sensitivity of 98.20% and a precision of 98.98%. It obtains the first
place. The effect of MFCC-CNN [31] method is obtained with an accuracy of 93.31%,
a specificity of 95.16%, and a sensitivity of 82.66%, which uses MFCC-based features
to transform 1D to 2D time-frequency heat map, and exploits MFCC heart maps using
CNN to classify heart sounds recordings. In addition, a modified AlexNet model [10]
achieves an accuracy of 97.05%, a specificity of 93.20% and a sensitivity of 95.12%. A
cross-wavelet assisted AlexNet model [9] obtains an accuracy of 97.89%, a specificity of
97.12% and an F1 score of 0.9421, which exploits thresholding-based wavelet transform
to remove noise, and convolution neural network (Alex Net architecture) recognizes ab-
normal/normal PCG signals. Notably, 1D Clique [39], 1D Dense [38] and 1D LDCNN,
all the three focus on feature reuse and parameter efficiency to automatic heart sounds
classification. Compared with 1D Clique and 1D Dense, 1D LDCNN provides the best
sensitivity (98.20% vs. 86.21% vs. 85.29%), which indicates that the positive feature of
1D LDCNN is to avoid missed diagnosis as much as possible. Besides, 1D LDCNN pro-
vides the lowest specificity (92.22% vs. 95.16% vs. 95.73%), which demonstrates that
1D Clique and 1D Dense overemphasize to avoid misdiagnosis at the expense of missed
diagnosis. Table 3 also shows that only our proposed method and cross-wavelet assisted
AlexNet employ WT-HSEGAN and wavelet transform for de-noising, respectively.

In addition, 1D LDCNN, 1D Clique and 1D Dense all put raw heart sound data into
the network to automatically extract features and perform classification. Among them,
the model sizes, namely the trainable parameters (Params) are 0.02M, 0.19M, and 0.11M,
respectively. And interestingly, model size of 1D LDCNN without deep separable con-
volution is 0.023M, i.e., deep separable convolution can further reduce parameters by
0.003M, which is more conducive to use in resource-constrained terminals.

Table 1. Evaluation results for the proposed method in comparisons with state-of-art
methods

Methods Acc(%) Se(%) Pr(%) Sp(%) F1 Parms(M)

MFCC-CNN 93.31 82.66 95.38 95.16 0.8857 -
Modified AlexNet 97.05 95.12 - 93.20 - -
1D Dense 93.56 85.29 96.09 95.73 0.9037 0.11
1D Clique 93.28 86.21 96.27 95.16 0.9096 0.19
Cross-wavelet assisted AlexNet 97.89 97.12 - - 0.9421 -
1D LDCNN 97.92 98.20 98.98 92.22 0.9859 0.02

In order to verify the effect of different modules on the improvement performance
of proposed model, this paper constructs a basic DCNN model in which the stem mod-
ule and separable convolution are replaced by conventional convolution operations with
convolution kernel sizes of 7 and 3, respectively. The attention mechanism is removed
from the transition module. Then, stem module, channel attention mechanism, and sepa-
rable convolutions are added to the basic DCNN model, and the network structure used
by each model remains the same. Finally, under the same data set conditions, the net-
work is trained and tested, and the final results are shown in Table 2. It can be ob-
served that adding each module in sequence has a relatively obvious improvement ef-
fect on the model, and can obtain a high F1 score. The deep neural network model
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(DCNN + stem block+attention+DWconv) uses the stem structure to enhance the
model’s initial feature presentation ability for original heart sound data, and reuses low-
level features in subsequent dense modules to further improve the network. The feature
presentation ability of the transition module introduces the channel attention mechanism
to highlight the channel features with large contributions, which makes the extracted fea-
tures more distinguishable, and is more conducive to the classification and recognition of
heart sounds.

Table 2. Performance comparison of different modules on the performance of the model

Methods Acc(%) Se(%) Pr(%) Sp(%) F1 MAcc

DCNN 89.13 95.27 91.26 66.77 0.9322 0.8102
DCNN+stem block 91.76 94.54 94.93 81.60 0.9473 0.8807
DCNN+stem block+attention 94.89 96.74 96.74 88.13 0.9674 0.9244
DCNN+stem block+attention+DWconv 97.70 98.20 98.98 92.22 0.9859 0.9521

4.5. A Real-Time Heart Sound Detection System

The real-time heart sound detection system is developed by our group, which includes
acquisition module of heart sounds and a mobile application. In Fig. 3, acquisition mod-
ule of heart sounds consists of a transducer (acquisition probe), microcontroller, analog
signal processing, audio AD module, power amplifier, and communication module. The
sensitivity of a transducer is −36db ± 3d. The acoustic vibration generated during the
cardiac activity is output through the transducer, amplifier circuit, detection circuit and
serial port in the form of vibration wave.

The following points should be noted:
(i) During the heart sound acquisition, the patient should keep the probe relatively

still, and try to avoid holding the acquisition probe with hands.
(ii) The patient collects heart sounds as far as possible in a temperature-friendly and

quiet environment, keeping relaxed and breathing evenly. The mobile application is used
to display real-time HSSs, preprocess and classify HSSs transmitted from via serial port.

We deploy 1D LDCNN on a resource constrained device with CUP (Qualcomm Snap-
dragon 865), GUP (Adreno 650), Memory (12GB) and 256GB storage capacity[14]. The
deployment process of 1D LDCNN is as follows:

(i) Convert 1D LDCNN to an ONNX model, and further convert an ONNX model to
a NCNN model.

(ii) Build an Android application package (APK) using a NCNN model.
(iii) Migrate the APK to mobile phone for installation and operation. The deployed

mobile application is relatively simple, mainly including three buttons of preprocessing,
de-noising and classification.

Fig. 4 shows two screenshots of heart sounds classification in a mobile phone. In
Fig. 4(a), the normal heart sound has an SNR of 20.358465dB and a positive predictive
value (PPV) of 31.8356%. Correspondingly, the abnormal heart sound has an SNR of
19.945709dB and a PPV of 99.96306% in Fig. 4(b). The results verify the feasibility of
deployment.
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Fig. 3. Acquisition module of heart sounds

5. Conclusions

In this paper, a novel heart sound classification method using adaptive wavelet threshold
and 1D LDCNN is proposed. Taking advantages of wavelet transform with an adaptive
threshold, the noise of HSSs can be effectively removed. More importantly, it can avoid
filtering out meaningful component in the process of wavelet transform decomposition.
Furthermore, 1D LDCNN is exploited to realize the automatic feature extraction and fi-
nal classification, which uses simplified dense blocks and attention mechanism to reduce
parameters. Experiment results on PhysioNet/CinC 2016 Challenge database show that
our proposed method achieves better performances in terms of classification performance
and parameters consumption. To a certain extent, easy lightweight deployment of the
proposed method also promotes the application of digital stethoscopes in unconstrained
environment.

In our future works, we will explore more efficient de-noising method for heart mur-
murs and environments noises. We will take into consider to build more efficient architec-
ture suitable for deployment in resource-constrained terminals. Additionally, 1D LDCNN
effectively captures hidden patterns of HSSs in Euclidean space, but we hope to achieve
better prediction results using graph neural network (GNN) [2][43], provided that suffi-
cient training data is available.
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(a) Normal (b) Abnormal

Fig. 4. Screenshot of heart sounds classification in a mobile phone.
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